

Op naar één video-encoder per individu: gestuurde 'High Efficiency Video Coding'

Towards One Video Encoder per Individual: Guided High Efficiency Video Coding

Johan De Praeter

Promotoren: prof. dr. P. Lambert, dr. ir. G. Van Wallendael
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. R. Van de Walle

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-94-6355-005-5
NUR 965
Wettelijk depot: D/2017/10.500/40

Examencommissie

Promotoren:
prof. dr. Peter Lambert (Universiteit Gent)
dr. ir. Glenn Van Wallendael (Universiteit Gent)

Stemgerechtigde leden:
(Voorzitter) prof. dr. ir. Gert De Cooman (Universiteit Gent)
prof. dr. ir. Filip De Turck (Universiteit Gent)
dr. ir. Jan Aelterman (Universiteit Gent)
ir. Werner Van Leekwijck (Nokia Bell Labs, Antwerpen)
prof. dr. ir. José Luis Martı́nez (Universidad de Castilla-La Mancha, Spanje)
prof. dr. ir. Béatrice Pesquet-Popescu (Télécom ParisTech, Frankrijk)

Interne verdediging: 2 mei 2017
Publieke verdediging: 8 juni 2017

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur
Vakgroep Elektronica en Informatiesystemen
IDLab

Campus Ufo,
Sint-Pietersnieuwstraat 41,
B-9000 Gent, Belgë

Tel.: +32-9-331.49.93

Acknowledgments

Four years ago, I was writing the acknowledgements of my master dissertation.
Now, having switched to American spelling, I am writing the acknowledgments
of my PhD dissertation, which will be a fair bit more elaborate than what I wrote
back then. After all, compared to a master thesis, working on a PhD thesis takes
much longer, and involves many more people. As such, I would like to express my
gratitude to all those who contributed either directly or indirectly to the realization
of this dissertation.

First of all, I would once again, as in my master dissertation, like to thank
prof. Rik Van de Walle, whose courses on Multimedia Techniques and Design
of Multimedia Applications led me to find IDLab (formerly Data Science Lab,
formerly-formerly Multimedia Lab). Also, I would like to thank him for creating
this wonderful lab.

Furthermore, I would like to thank my promotor, prof. Peter Lambert, for lead-
ing our multimedia compression group within IDLab and for keeping the river of
funding flowing. I would also like to thank my former co-promotor prof. Jan De
Cock, who guided my during the first years of my PhD, somewhat like a fatherly
figure. In the same way, I would also like to thank my current co-promotor, dr. ir.
Glenn Van Wallendael, who took over this guiding from Jan, and to whom I am
very thankful for always pointing out whenever I tended to make things overcom-
plicated.

Additionally, I also wish to thank the members of the examination board for
their feedback that improved the quality of this work: prof. Gert De Cooman, prof.
Filip De Turck, dr. ir. Jan Aelterman, ir. Werner Van Leekwijck, prof. José Luis
Martı́nez, and prof. Béatrice Pesquet.

Next, I would also like to thank both my current and former colleagues from
the office C3.02 for the interesting discussions, so thanks Glenn (all possible things
related to video compression), Tom (stuff about HDR), Thijs (the complexity of
encoders), Ruben (machine learning and models), Niels (linking research to actu-
ally putting it into practice), and Vasilis (motion vectors and optical flows). Also,
a big thank you to Luong as well for the regular discussions and collaborations
related to video transcoding, and also to Sebastiaan for teaching me how to use
connecting words that helped to make my papers flow better.

Besides people from my office, I am also grateful to the people with whom
I worked together in projects and who provided me with many new insights. In

ii

particular, I want to thank Jürgen from Barco, as well as Patrice and Jef from
Nokia Bell Labs, and prof. Munteanu from the Vrije Universiteit Brussel. Then,
going beyond Belgium, I would also like to thank Antonio from Universidad de
Castilla-La Mancha in Albacete for our discussions and collaborations during and
also after his three-month research stay with us in Ghent.

Now, I believe that I have listed all people who have had a direct impact on the
contents of my dissertation. Of course, these four years would not have been the
same without the lunchtime buddies (excluding the people from my office in order
to prevent too much repetition), so thanks to Aza, Olivier, Florian, Gerald, Martin,
Kristof, Laura, and (sometimes present) Steven and Baptist. Also, thanks to the
gaming office (Gaétan, Jonas, and Ignace) for putting up with me whenever I came
to chat about random stuff. Also, before I forget, also thanks to Ellen (and Laura
and Kristof who were already mentioned) for the administrative work related to
my PhD.

Finally, I would also like to thank my parents for their moral support and for
always being there when I need them. And then, last but not least – on the contrary
actually, I want to give a huge thanks to my wife, Steffie, (and by extension to
our cat, Tijger, who faithfully keeps her company whenever I’m at work or at a
conference) for putting up with me and both loving and supporting me through
both the bright and dark moments of my PhD and life in general.

May 2017
Johan De Praeter

Table of Contents

Acknowledgments i

List of Acronyms vii

English summary xi

Nederlandse samenvatting xv

1 Introduction 1
1.1 Approaches to video content delivery 2
1.2 Guided encoding for personalized video 4
1.3 Outline . 6
1.4 Publications . 9

1.4.1 Publications in international journals 9
1.4.2 Publications in international conferences 10

2 Low-Complexity Encoding of High Efficiency Video Coding 13
2.1 Introduction . 13
2.2 High Efficiency Video Coding 14
2.3 Accelerating HEVC . 16

2.3.1 Test conditions and metrics 16
2.3.2 Comparison . 18

2.4 Conclusion . 24
References . 25

3 Encoding Complexity Reduction of Personalized Video Compositions 31
3.1 Introduction . 31
3.2 Related work . 34
3.3 Proposed transcoding methods 36

3.3.1 Extraction of coding information 36
3.3.2 Trivial method . 38
3.3.3 Machine learning method 40

3.4 Parameter analysis for machine learning 42
3.4.1 Test conditions . 42
3.4.2 Parameter analysis . 43

3.5 Results . 46

iv

3.5.1 Compression efficiency of shifts 47
3.5.2 Complexity-scalable prediction 49
3.5.3 Comparison with existing work 53

3.6 Conclusion . 56
References . 58

4 Personalized Views Extracted from Ultra-High-Resolution Video 63
4.1 Introduction . 63
4.2 Related work . 64
4.3 System architecture . 66
4.4 Extraction and encoding of views 68

4.4.1 Method . 68
4.4.2 Evaluation . 71
4.4.3 Discussion . 76

4.5 Further encoding complexity reduction 78
4.5.1 Used content . 79
4.5.2 Evaluation . 80

4.6 Comparison with the tile-based method 81
4.6.1 Bit rate comparison . 84
4.6.2 PSNR comparison . 85
4.6.3 Discussion . 87

4.7 Conclusion . 89
References . 90

5 Guided Encoding of Personalized Dynamic-Range Video 93
5.1 Introduction . 93
5.2 Related work . 94
5.3 Proposed method . 95

5.3.1 Simultaneous encoder architecture 95
5.3.2 Analysis of HDR and LDR coding information 96

5.4 Evaluation . 101
5.4.1 Effect of coding information 101
5.4.2 Robustness of the model 105
5.4.3 Comparison with related work 107

5.5 Conclusion . 108
References . 109

6 Video Encoder Architecture for Personalized Bit Rate Representations113
6.1 Introduction . 113
6.2 Related work . 115
6.3 Proposed method . 116

6.3.1 Architecture . 116
6.3.2 Analysis of theoretical complexity 120

6.4 Evaluation . 122
6.4.1 Compression efficiency of RE modules 122

v

6.4.2 Effect of CIC modules on compression efficiency 124
6.4.3 Handling of small bandwidth variations and packet loss . . 130
6.4.4 Switching coding info source 134
6.4.5 Comparison with state-of-the-art 136

6.5 Conclusion . 138
References . 139

7 Overall Conclusion 143

List of Acronyms

A

AVC Advanced Video Coding

B

BD Bjøntegaard Delta

C

CIC Coding Information Calculation
CTU Coding Tree Unit
CU Coding Unit

F

fps frames per second

H

HD High-Definition
HDR High-Dynamic-Range
HEVC High Efficiency Video Coding
HM HEVC reference software

viii

I

IEC International Electrotechnical Commission
ISO International Organization for Standardization
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector

J

JCT-VC Joint Collaborative Team on Video Coding
JVET Joint Video Exploration Team

L

LDR Low-Dynamic-Range

M

MPEG Moving Picture Experts Group
MSE Mean Squared Error

P

PSNR Peak Signal-to-Noise Ratio
PU Prediction Unit

Q

QP Quantization Parameter

ix

R

RD Rate-Distortion
RDO Rate-Distortion Optimization
RE Residual Encoder
RoI Region of Interest

S

SI Spatial Index
SVM Support Vector Machine

T

TI Temporal Index
TS Time Saving
TU Transform Unit

U

UHD Ultra-High-Definition

V

VCEG Video Coding Experts Group
VR Virtual Reality

W

WebRTC Web Real-Time Communication

English summary

Imagine that you put on your virtual reality (VR) glasses to transport yourself and
your living room couch to the spectator stands of a sports match. Now imagine
thousands of other people having the same idea. For the people who have to film
the match on location and transport this to the viewers at home, this is no dream.
Instead, it is a nightmare. After all, they need to provide an appropriate video to
each user sitting at home, and also to people who are on the go and want to follow
the match on their smartphones. Forget for a moment about the future with VR-
glasses, and come back to the present, where you have so many different devices
with all kinds of different specifications, and people with all kinds of different
internet connections. At this point, content providers might actually start to long
for the past.

After all, nowadays, video is ubiquitous. Whereas video was only displayed
on television sets and in movie theaters in the past, it is now found on smart-
phones, laptops, tablets, VR-glasses, and numerous other displays. In order to
bring video to these devices, encoded video bitstreams are typically transported
over networks with different bandwidth capacities. However, due to this heteroge-
neous environment containing different devices and networks, the videos have to
be adapted to fit the circumstances. For example, when using VR glasses to look
around in a high-resolution 360-degree video, sending the entirety of the video to
the viewer consumes a large amount of bandwidth. However, since the user only
sees a limited view of the 360-degree video at a time, sending all of it is a waste of
bandwidth. Therefore, the video should be adapted to only transmit the region of
interest that is being watched by the viewer at that time.

Adapting video in order to encode it and send it to a viewer can be done in two
ways: either by using a fixed number of encoders, or by using completely person-
alized encoders. Using the first method, the content provider encodes the video
only at certain spatial resolutions and with certain bit rates. In the above example
of 360-degree video, the video is also divided into separately encoded tiles, from
which only the tiles inside the region of interest are transmitted to the user. The ad-
vantage of using a fixed amount of encoders is that the computational complexity
of the system remains fixed, independent of the number of viewers. However, if
the network circumstances change, the viewer might need a lower-quality version
of the same video that consumes less bandwidth. In the case of a fixed amount of
encoders, such a change is only possible at the start of a video segment, which typ-
ically lasts between two to ten seconds depending on the application. As a result,

xii ENGLISH SUMMARY

switching to a different version results in latency, which will negatively impact the
experience of users in interactive applications.

In contrast, if the content provider opts for a system with completely person-
alized encoders, each user receives a video that optimally adapts to the properties
of his device and network. As a result, if the available bandwidth decreases, the
bit rate of the encoded video is decreased as well, meaning that no latency is intro-
duced, since there is no need to switch to a different version of the video. However,
since each individual user requires a computationally complex encoder, the over-
all complexity of the system will increase drastically as more users connect to the
system. Consequently, this solution is currently used only when the amount of
expected users is small.

In order to make such a personalized system more feasible, one could attempt
to use fast encoding algorithms to reduce the computational complexity of each
individual encoder. However, as is shown in Chapter 2 of this dissertation for
High Efficiency Video Coding (HEVC), the methods proposed in the state-of-the-
art are only able to reduce the computational complexity of the reference encoding
software by less than 75%. This means that, in the best-case scenario, four fast en-
coders operate at the same computational cost as a single non-accelerated encoder.
As such, the complexity reduction provided by these algorithms is insufficient for
scenarios with a large amount of users.

However, contrary to the state-of-the-art algorithms for fast encoding, a sys-
tem that encodes personalized video bitstreams has the advantage that it contains
multiple encoders that encode different versions of the same video content. As
such, instead of relying on statistical information generated during video encod-
ing to make fast decisions, these personalized encoders can rely on guidance from
coding decisions made by the other encoders in the system. In order to investigate
the viability of a system with one encoder per individual, the use of this guided
encoding has been studied in four different scenarios.

The first scenario, in Chapter 3, considers the problems that arise when creat-
ing a personalized video composition for each user. For example, in many indus-
tries, different video feeds are gathered in a control room and displayed together
on a video wall. This composition also needs to be displayed on other devices in
remote locations. Each of these devices should be able to rearrange the composi-
tion according to the preferences of the viewer. In order to provide each of these
users with such a personalized composition, each different video composition is
encoded and transmitted as a single bitstream. In order to reduce the complexity
of the encoding of such a video, the coding decisions of each personalized en-
coding of a composition are guided by the decisions made by the encoding of the
separate videos in the composition. However, if the individual videos are spa-
tially misaligned with the grid of coded blocks of the composition, simply copying
the coding information is not compression-efficient. Therefore, the coding de-
cisions of the video in the composition are determined by predicting encoding
decisions of misaligned sequences by using a trivial method or a more adaptive,
computational-complexity scalable machine learning method. Using the trivial
method, a complexity reduction of 82% is achieved with a bit rate overhead of

ENGLISH SUMMARY xiii

3% for a misalignment of 32 pixels. However, for other shifts, the performance of
the machine learning method is better. As such, the proposed method succeeds in
offering a fast-encoding solution for any amount of misalignment for a reasonable
bit rate overhead.

Contrary to the first scenario in which multiple videos were combined into one,
the second scenario as described in Chapter 4 considers a use case in which each
viewer is presented with only a limited, personalized viewport from an ultra-high-
resolution video in order to have a more immersive experience. For example, in
a soccer match, one user might prefer to zoom in on his favorite players, whereas
other users might instead want to follow the ball or have a general overview of
the field. Since the entire ultra-high-resolution video may have a resolution of
10,000×1880 pixels or more, and since most displays only support resolutions of
1920×1080 pixels, sending the entire ultra-high-resolution video to each viewer
would be a waste of bandwidth. Instead, each user should only receive a person-
alized crop from the ultra-high-resolution video. Since cropping such a region of
interest from the full video can also result in misalignment as in the previous sce-
nario, the cropped view is constrained to having the upper-left corner of the view
match the block grid of the entire ultra-high-resolution video. Consequently, the
effect of cropping can be isolated from the effect of misalignment, and the per-
sonalized view can be encoded by copying more coding information from the full
video than was the case in the scenario of misalignment in compositions. By thus
guiding the coding decisions of the personalized view with coding information
extracted from the encoding of the entire video, complexity reductions between
96.5% and 97.5% are achieved for bit rate overheads between 8% and 20%. These
overheads are still smaller than the overheads introduced by the traditional method
for panoramic and 360-degree video delivery of having a fixed amount of encoders
create separate encodings of different tiles. Moreover, since the personalized en-
coders do not suffer from the same structural latency as the tile-based method, the
former could thus become a viable alternative for the latter.

The third scenario, in Chapter 5, then considers a case where the properties of
the original video differ: one version of the video is filmed in high-dynamic-range
(HDR), whereas the other version is optimized for display on televisions support-
ing only lower dynamic ranges (LDR). As such, the dynamic range of the video is
personalized according to the capabilities of the receiving device. A video provider
thus has to encode multiple versions of the same video, effectively multiplying the
required computational complexity with the amount of different versions. How-
ever, when encoding both an HDR and LDR version of the video, the coding de-
cisions made during the encoding of HDR can be used to guide the decisions of
the LDR version, thus decreasing the encoding complexity of the latter version.
Since both versions contain the same video content with only differences in pixel
values, contrary to the cropped or misaligned content in the previous scenario, all
coding information can be copied from one version to another. By then selecting
the quantization parameter of the LDR encoding according to the model described
in this dissertation, the correlation between the two versions is maximized, thus
resulting in a smaller bit rate overhead. Following this model, the LDR version of

xiv ENGLISH SUMMARY

the video is encoded with a complexity reduction of 99.7% while achieving a bit
rate overhead of 12.4%. In other words, using guided encoding, a video provider
can simultaneously encode multiple dynamic-range versions of the same video for
about the same computational complexity as when encoding a single version.

Whereas previous scenarios considered changes to the input video such as dif-
ferent spatial misalignments, different crops, and different dynamic ranges, the
fourth and final scenario, which is described in Chapter 6, considers the use of
different encoding parameters to produce bitstreams encoded at different bit rates.
For example, in real-time live-streaming use cases such as virtual classrooms and
video conferences, each user has a different amount of available bandwidth de-
pending on his own network conditions. If a fixed amount of encoders are then
used, each user is connected to an encoder that encodes a version of the video with
a lower bit rate than the available bandwidth. Consequently, the bandwidth of the
client will not be utilized to its full capacity, meaning that the provided bitstream is
not necessarily encoded with the highest quality that the bandwidth capacity of the
user could handle. Moreover, clients with fluctuating bandwidth will experience
extra latency due to constant switching between video streams. In order to avoid
such a scenario, each user should be provided with a personalized encoder that
generates a bit rate version that best matches the current bandwidth of the client.
Since the computational complexity of such an unoptimized system increases lin-
early with the amount of clients, the work in this dissertation focuses on greatly
reducing the amount of complexity that each client adds to the system. In order
to realize this, the numerous personalized encoders are guided by the coding de-
cisions calculated by dedicated modules. These modules determine the optimal
coding decisions when encoding the video at certain fixed bit rates. The guided
encoders then only have to encode the residual picture of the video by copying
all coding decisions generated by one of these modules. By creating a system
with only six coding information calculation modules covering the desired bit rate
range, the system can provide individual encoders with a complexity reduction of
99.2% with the average bit rate overhead of the system being 11.8%. As a result,
one hundred extra users joining the proposed system results in a smaller increase
of overall computational complexity than one extra user joining a similar system
that does not use guided encoding.

By considering the above four scenarios, it can be concluded that guided en-
coding greatly accelerates the encoding of personalized video streams for individ-
ual users. Depending on the scenario, the coding information between encoders
can be shared more efficiently, with cropping and misalignment introducing the
greatest differences in coding information between encoders. In contrast, small
changes in pixel values and bit rate allow the creation of a system in which per-
sonalized encoders can completely share all coding information with only small
penalties in the form of bit rate overhead. Therefore, it would be interesting for
future standardization of video compression to take these findings into account
by encoding coding decisions and the residual picture as separate parts of the bit-
stream in order to facilitate the use of such guided encoding.

Nederlandse samenvatting
–Summary in Dutch–

Stel je voor dat je jouw virtual-reality (VR) bril opzet om jezelf en de zetel in jouw
woonkamer te transporteren naar de tribune van een sportwedstrijd. Stel je nu ook
voor dat duizenden andere mensen hetzelfde idee krijgen. Voor diegenen die de
match ter plaatse moeten filmen en deze naar de kijkers thuis moeten transporte-
ren, is dit geen droom, maar een nachtmerrie. Zij moeten tenslotte een passende
video bezorgen aan elke gebruiker die thuis zit, alsook aan de mensen op straat
en op het openbaar vervoer die de wedstrijd op hun smartphones willen volgen.
Vergeet even de toekomst met VR-brillen en keer terug naar het heden, waar al
zovele verschillende toestellen met talloze verschillende specificaties bestaan en
waar mensen achter zoveel verschillende soorten internetverbindingen zitten. Dat
is het moment waarop sommige contentproviders met een verlangende blik zouden
durven verlangen naar het eenvoudige verleden.

In tegenstelling tot vroeger, treft men namelijk tegenwoordig video overal aan.
Waar video vroeger enkel op televisies en in bioscopen getoond werd, is het nu
terug te vinden op smartphones, laptops, tablets, VR-brillen, en tal van andere
beeldschermen. Om video naar deze apparaten te brengen, worden gecodeerde
videostromen gewoonlijk getransporteerd over netwerken met verschillende ca-
paciteiten op gebied van bandbreedte. Echter, wegens de heterogeniteit van deze
omgeving die verschillende toestellen en netwerken omvat, moeten de video’s aan-
gepast worden naargelang de omstandigheden. Bijvoorbeeld, als iemand met een
VR bril rondkijkt in een hoge-resolutie 360-gradenvideo, kost het versturen van
deze volledige video naar de kijker een enorme hoeveelheid bandbreedte. Echter,
aangezien de gebruiker op elk moment slechts een beperkte regio van de 360-
gradenvideo in zijn gezichtsveld waarneemt, is het versturen van de volledige vi-
deo een verspilling van bandbreedte. Daarom moet de video zo aangepast worden
dat enkel het huidige interessegebied naar de kijker wordt verstuurd.

Het afstemmen van video om deze vervolgens te coderen en naar een kijker
te versturen, kan op twee manieren: hetzij met een vast aantal encoders, hetzij
door volledig gepersonaliseerde encoders. Met de eerste methode codeert de con-
tentprovider de video slechts voor enkele spatiale resoluties en bitsnelheden. In
het bovenstaande voorbeeld van 360-gradenvideo wordt de video bovendien ook
onderverdeeld in afzonderlijk gecodeerde tegels, waarbij enkel de tegels die bin-
nen het interessegebied liggen, naar de gebruiker verstuurd worden. Het voordeel
van zo een beperkte hoeveelheid encoders te gebruiken, is dat de computationele

xvi NEDERLANDSE SAMENVATTING

complexiteit van het systeem vast blijft, onafhankelijk van het aantal kijkers. Ech-
ter, als de omstandigheden van het netwerk veranderen, is het mogelijk dat de
gebruiker een minder kwaliteitsvolle versie van dezelfde video nodig heeft omdat
zijn beschikbare bandbreedte gedaald is. In het geval van een vast aantal enco-
ders is een dergelijke sprong naar een andere versie enkel mogelijk aan het begin
van een videosegment. Deze segmenten hebben – afhankelijk van de toepassing –
gewoonlijk een tijdsduur van twee á tien seconden, waardoor bij het verspringen
naar een andere versie een vertraging ontstaat, die een negatieve impact heeft op
de gebruikerservaring bij interactieve toepassingen.

Als daarentegen de contentprovider kiest voor een systeem met volledig geper-
sonaliseerde encoders, zal elke gebruiker een video ontvangen die steeds optimaal
afgestemd is op de eigenschappen van zijn toestel en het netwerk. Hierdoor zal
dus in het geval van een daling van de beschikbare bandbreedte de bitsnelheid
van de video die gecodeerd wordt, meedalen. Dit betekent bijgevolg dat er geen
vertraging ontstaat, aangezien het in dit geval niet nodig is om naar een andere
versie van de video te verspringen. Echter, aangezien elke individuele gebrui-
ker een computationeel complexe encoder vereist, zal de gehele complexiteit van
het systeem drastisch stijgen naarmate meer gebruikers verbinding maken met het
systeem. Derhalve wordt deze oplossing momenteel enkel gebruikt wanneer het
verwachte aantal gebruikers klein is.

Om het gebruik van een dergelijk gepersonaliseerd systeem haalbaar te maken,
zou men algoritmes voor snelle codering kunnen gebruiken om de computationele
complexiteit van elke afzonderlijke encoder te reduceren. Echter, in Hoofdstuk 2
van dit proefschrift blijkt voor High Efficiency Video Coding (HEVC) dat de me-
thodes die voorgesteld worden in de recentste literatuur, slechts in staat zijn tot het
bereiken van een complexiteitsreductie van minder dan 75% voor de referentie-
encoding software. Dit betekent dat, in het beste geval, vier snelle encoders de-
zelfde rekentijd vereisen als een niet-versnelde encoder. Als zodanig is de com-
plexiteitsreductie die bereikt wordt door deze algoritmes, onvoldoende voor sce-
nario’s met een groot aantal gebruikers.

In tegenstelling tot technieken voor snelle codering voor afzonderlijke enco-
ders, heeft een systeem met gepersonaliseerde video-encoders het voordeel dat het
verschillende encoders bevat die elk een verschillende versie van dezelfde beeldin-
houd comprimeren. Als zodanig kunnen deze gepersonaliseerde encoders rekenen
op sturing van codeerbeslissingen gemaakt door andere encoders in het systeem
voor het maken van hun eigen codeerbeslissingen. Om de haalbaarheid van een
systeem met één encoder per individu te onderzoeken, is het gebruik van gestuurde
codering onderzocht voor vier verschillende scenario’s.

Het eerste scenario, in Hoofdstuk 3, neemt de problemen onder de loep die zich
voordoen bij het creëren van een gepersonaliseerde videocompositie voor elke ge-
bruiker. Dit gebeurt bijvoorbeeld in industriële applicaties waar verschillende vi-
deobronnen verzameld worden in een controlekamer en daar op een video wall
worden getoond. Deze compositie moet dan ook nog op andere toestellen op an-
dere locaties verschijnen. Op elk van deze apparaten moet het echter mogelijk
zijn voor de gebruiker om zijn eigen compositie samen te stellen naargelang zijn

SUMMARY IN DUTCH xvii

voorkeur. Om iedere gebruiker met een dergelijke gepersonaliseerde compositie
te voorzien, wordt elke verschillende videocompositie gecodeerd en verstuurd als
een enkele bitstroom. Om de codeercomplexiteit van deze video te reduceren,
worden de codeerbeslissingen van elke gepersonaliseerde codering van een com-
positie gestuurd door de beslissingen gemaakt tijdens het coderen van de afzon-
derlijke video’s in de compositie. Echter, als deze individuele video’s niet spatiaal
gealigneerd zijn met het raster van gecodeerde blokken van de compositie, is het
rechtstreeks kopiëren van de codeerinformatie niet compressie-efficiënt. Daarom
worden de codeerbeslissingen van de video in de compositie bepaald door codeer-
beslissingen van de niet-gealigneerde sequenties te voorspellen met behulp van
een triviale methode of een meer adaptieve machine learning methode die schaal-
baarheid biedt op gebied van computationele complexiteit. Bij het gebruik van de
triviale methode wordt een complexiteitsreductie van 82% bereikt met een over-
head van 3% in bitsnelheid indien een sequentie 32 pixels verkeerd gealigneerd is.
Voor andere verschuivingen van het beeld presteert de machine learning methode
beter. Als zodanig slaagt de voorgestelde werkwijze erin om voor een bescheiden
overhead van bitsnelheid een oplossing te bieden voor het snel coderen van elke
hoeveelheid van foutieve alignatie.

In tegenstelling tot het eerste scenario waarin meerdere video’s werden samen-
gevoegd tot één enkele compositie, beschouwt het tweede scenario, beschreven in
Hoofdstuk 4, een use case waarin elke kijker voorzien wordt van een beperkte,
persoonlijke weergave uit een ultra-hoge-resolutie video met de bedoeling om een
meer immersieve ervaring te beleven. Bijvoorbeeld, in een voetbalwedstrijd kan
het zijn dat de ene gebruiker verkiest om in te zoomen op zijn favoriete spelers,
terwijl andere gebruikers de bal willen volgen of een algemeen overzicht van het
speelveld verkiezen. Aangezien de volledige ultra-hoge-resolutie video een reso-
lutie kan hebben van 10.000×1880 pixels of meer en aangezien de meeste beeld-
schermen slechts een resolutie van 1920×1080 kunnen tonen, is het versturen van
de volledige ultra-hoge-resolutie video naar alle gebruikers een verspilling van
bandbreedte. In plaats daarvan is het beter dat elke gebruiker slechts een geper-
sonaliseerde uitsnijding uit de ultra-hoge-resolutie video ontvangt. Aangezien het
uitsnijden van een dergelijk interessegebied uit een volledige video ook kan leiden
tot een foutieve alignatie zoals in het vorige scenario, wordt de beperking opgelegd
dat de linkerbovenhoek van de uitsnijding moet samenvallen met het blokraster van
de volledige ultra-hoge-resolutie video. Bijgevolg kan het effect van het bijsnijden
geı̈soleerd worden van het effect van foutieve alignatie en kan de gepersonaliseerde
weergave gecodeerd worden door het kopiëren van meer codeerinformatie uit de
volledige video dan wat het geval was in het scenario met foutieve alignatie in com-
posities. Door op deze manier de codeerbeslissingen van de persoonlijke weergave
te sturen met codeerinformatie geëxtraheerd uit de codering van de volledige vi-
deo, worden complexiteitsreducties tussen 96,5% en 97,5% bereikt voor overheads
in bitsnelheden tussen 8% en 20%. Deze overheads zijn nog steeds kleiner dan de
overheads die gepaard gaan met het gebruik van de traditionele oplossing voor le-
vering van panoramische en 360-graden video waarbij een vast aantal encoders het
volledige beeld coderen als afzonderlijke tegels. Aangezien de gepersonaliseerde

xviii NEDERLANDSE SAMENVATTING

encoders bovendien vrij zijn van de structurele vertraging van de tegelgebaseerde
methode, kunnen deze gepersonaliseerde encoders in de toekomst een alternatief
voor deze laatste worden.

Het derde scenario, in Hoofdstuk 5, beschouwt dan een geval waarin de eigen-
schappen van de originele video verschillen: een versie van de video is gefilmd
met een hoog dynamisch bereik (HDR), terwijl de andere versie geoptimaliseerd
is voor weergave op televisies die enkel lagere dynamische bereiken (LDR) onder-
steunen. Als zodanig wordt het dynamisch bereik van de video gepersonaliseerd
naargelang de capaciteiten van het doeltoestel en moet een video provider dus
verschillende versies van dezelfde video coderen, wat dus de vereiste computati-
onele complexiteit vermenigvuldigt met het aantal verschillende versies. Echter,
wanneer zowel een HDR als LDR versie van dezelfde video gecodeerd worden,
kunnen de codeerbeslissingen die gemaakt worden tijdens het coderen van HDR,
gebruikt worden om de beslissingen van de LDR versie te sturen, waardoor de
codeercomplexiteit van deze laatste sterk vermindert. Aangezien beide versies
dezelfde video-inhoud bevatten met enkel verschillen in pixelwaarden, kan – in
tegenstelling tot de uitgesneden of foutief gealigneerde inhoud uit de vorige sce-
nario’s – alle codeerinformatie van één versie naar de andere gekopieerd worden.
Door vervolgens de kwantisatieparameter van de LDR codering te kiezen volgens
het model beschreven in dit proefschrift, wordt de correlatie tussen de twee versies
gemaximaliseerd, waardoor de overhead van de bitsnelheid verkleind wordt. Door
dit model te gebruiken, wordt de LDR versie van de video gecodeerd met een
complexiteitsreductie van 99,7%, terwijl de overhead van bitsnelheid 12,4% is.
Met andere woorden, met behulp van gestuurde codering kan een video provider
meerdere versies van dezelfde video met een verschillend dynamisch bereik ge-
lijktijdig coderen voor dezelfde computationele complexiteit als voor het coderen
van één enkele versie.

Daar waar de vorige scenario’s veranderingen van de invoervideo behandelden
zoals foutieve alignering, verschillende uitsnijdingen en verschillende dynami-
sche bereiken, beschouwt het vierde en laatste scenario dat beschreven wordt in
Hoofdstuk 6, het gebruik van verschillende codeerparameters om bitstromen te
produceren die gecodeerd zijn met verschillende bitsnelheden. Bijvoorbeeld, in
use cases waarbij real-time live-streaming vereist is, zoals het geval is in virtuele
klaslokalen en videoconferenties, heeft iedere gebruiker een verschillende hoe-
veelheid beschikbare bandbreedte naargelang de toestand van zijn eigen netwerk.
Als er dan een vaste hoeveelheid encoders gebruikt wordt, wordt elke gebruiker
verbonden met een encoder die een versie van de video codeert die een lagere bit-
snelheid heeft dan de beschikbare bandbreedte. Bijgevolg wordt de bandbreedte
van de cliënt niet ten volle benut, wat betekent dat de geleverde bitstroom niet
noodzakelijk gecodeerd is met de hoogste kwaliteit die ondersteund wordt door
de gebruiker. Bovendien zullen cliënten met een fluctuerende bandbreedte extra
vertraging ondervinden door het constant wisselen tussen videostromen. Om een
dergelijk scenario te voorkomen, moet iedere gebruiker voorzien worden van een
gepersonaliseerde encoder die een versie genereert waarvan de bitsnelheid het best
overeenkomt met de huidige bandbreedte van de cliënt. Aangezien de computatio-

SUMMARY IN DUTCH xix

nele complexiteit van een dergelijk niet-geoptimaliseerd systeem lineair stijgt met
het aantal cliënten, concentreert het werk in dit proefschrift zich op een extreme
reductie van de complexiteit die iedere cliënt aan het systeem toevoegt. Om dit te
bereiken worden de talrijke gepersonaliseerde encoders gestuurd door de codeer-
beslissingen die berekend worden door gespecialiseerde modules. Deze modules
bepalen de optimale codeerbeslissingen wanneer de video aan zekere, vaste bit-
snelheden wordt gecodeerd. De gestuurde encoders moeten dan enkel nog het
residuele beeld van de video coderen door alle codeerbeslissingen die gegenereerd
worden door één van deze modules, te kopiëren. Door een systeem te creëren
met slechts zes codeerinformatieberekeningsmodules die het volledige gewenste
bereik van bitsnelheden omvatten, kan het systeem individuele encoders voorzien
met een complexiteitsreductie van 99,2% met een gemiddelde overhead van bit-
snelheid van 11,8% voor het gehele systeem. Hierdoor resulteert het toevoegen
van honderd extra gebruikers aan het systeem voor een lagere stijging van totale
computationele complexiteit dan het toevoegen van één extra gebruiker aan een
soortgelijk systeem dat geen gestuurde codering gebruikt.

Door de bovenstaande vier scenario’s in acht te nemen, kan er geconcludeerd
worden dat gestuurde codering het mogelijk maakt om videostromen die geper-
sonaliseerd worden voor elke individuele gebruiker, veel sneller te coderen. Af-
hankelijk van het scenario kan de codereerinformatie tussen encoders efficiënter
gedeeld worden. Hierbij zorgen uitsnijding en foutieve alignatie voor de groot-
ste verschillen in codeerinformatie tussen encoders. Daartegenover laten kleine
veranderingen in pixelwaarden en bitsnelheid het toe om een systeem te creëren
waarbij gepersonaliseerde encoders alle codeerinformatie volledig kunnen delen
met slechts een kleine boete in de vorm van overhead van bitsnelheid als gevolg.
Gezien deze resultaten zou het dus interessant zijn voor toekomstige standaardi-
satie op gebied van videocompressie om deze bevindingen in rekening te brengen
door codeerbeslissingen en het residueel beeld als aparte delen van de bitstroom te
coderen met het oog op het vereenvoudigen van het gebruik van gestuurde code-
ring.

1
Introduction

Imagine that you put on your virtual reality (VR) glasses to transport yourself and
your living room couch to the spectator stands of a sports match. Now imagine
thousands of other people having the same idea. For the people who have to film
the match on location and transport this to the viewers at home, this is no dream.
Instead, it is a nightmare. After all, they need to provide an appropriate video to
each user sitting at home, and also to people who are on the go and want to follow
the match on their smartphones. Forget for a moment about the future with VR-
glasses, and come back to the present, where you have so many different devices
with all kinds of different specifications, and people with all kinds of different
internet connections. At this point, content providers might actually start to long
for the past.

After all, in the past, people watched video only in movie theaters and on tele-
vision sets. These simple videos were delivered to the televisions over traditional
broadcast networks. However, as the years progressed, the internet was born and
expanded quickly. Combined with the advent of devices such as laptops, smart-
phones, tablets, VR-glasses, and many more devices with displays, this expansion
of the internet gave rise to a myriad of ways to view video, such as streaming
videos from video sharing sites, watching live video streams of events, participat-
ing in interactive remote classrooms, making video calls to other people, and play-
ing video games on remote devices. As a result, video now has an even stronger
presence in the lives of people than ever before.

Since the devices on which video is consumed and the networks over which
video is transported have become very diverse, so have the requirements for the

2 INTRODUCTION

properties of the video itself. For example, as a higher bit rate is required in order
to transfer a high-resolution video, it would be a waste of bandwidth capacity if a
high-resolution video is transported over the network to a low-resolution display.
A version with a low resolution should be transmitted instead. Similarly, if a tele-
vision set does not support High-Dynamic-Range (HDR) video, the video sent to
this display should be adapted to the capabilities of this device in order to provide
the best quality of experience. The way in which the video is encoded should thus
be adapted to the user depending on his device and network capabilities, providing
him with an optimal, personalized experience.

1.1 Approaches to video content delivery

Content providers have two main ways to adapt the encoding of a video to the user:
by using a fixed number of encoders (using adaptive streaming techniques), or by
using completely personalized encoders to provide an individual bitstream to each
user by using a protocol such as Web Real-Time Communication (WebRTC). The
former, adaptive streaming method is traditionally used by content providers with
many viewers. By providing a fixed number of different bitstream representations
of an encoded video, each user will receive the version that is best suited for his sit-
uation. An example of such different bitstream representations is shown in Figure
1.1, where five bitstream representations are available, spread across three differ-
ent video resolutions of 720p (1280×720 pixels), 1080p (1920×1080 pixels), and
2160p (3840×2160 pixels). Depending on their bandwidth capacity, each user re-
ceives an appropriate representation with a bit rate below their bandwidth capacity.
If the available bandwidth changes while watching the video (e.g. due to varying
network conditions), the user is switched to another, more suitable representation.
For example, in Figure 1.1, if a user receiving a video with a 1080p resolution at a
bit rate of 15 Mbps has his connection dropping to 12 Mbps, he will be switched
to the 10 Mbps version instead. Note, however, that this switching is only possible
at the start of a new video segment, which typically has a duration between two
and ten seconds depending on the application.

This technique of adaptive streaming can be expanded further to also pro-
vide both HDR and Low-Dynamic-Range (LDR) versions of the same video in
order to adapt to the dynamic range capabilities of the device of the user. Fur-
thermore, adaptive streaming can also be used by dividing an ultra-high-resolution
360-degree or panoramic video into independently encoded tiles in order to send
only the appropriate tiles to the users, since the actual viewport of users is typically
smaller than the entire video in such applications.

Each extra bitstream representation that must be created for adaptive stream-
ing comes at a large computational cost. However, the greatest advantage of this
technique is that the amount of representations that are created is known on before-

INTRODUCTION 3

2160p @ 25 Mbps

1080p @ 15 Mbps

1080p @ 10 Mbps

720p @ 5Mbps

720p @ 2 Mbps

Original video

Encoding of fixed bitstream representations Bitstream sent to viewers

Figure 1.1: In the case of fixed bitstream representations, the amount of video encoders is
limited and multiple clients receive the exact same bitstream.

720p @ ~5 Mbps

Original video

Encoding of personalized bitstream representations Bitstream sent to viewers

720p @ ~3 Mbps

720p @ ~2 Mbps

720p @ ~6 Mbps

1080p @ ~10 Mbps

720p @ ~9 Mbps

720p @ ~7 Mbps

1080p @ ~12 Mbps

1080p @ ~14 Mbps

1080p @ ~20 Mbps

1080p @ ~17 Mbps

1080p @ ~15 Mbps

2160p @ ~25 Mbps

Figure 1.2: In the case of personalized bitstream representations, the amount of video
encoders equals the number of clients. Each client receives a bitstream tailored to his

needs.

4 INTRODUCTION

hand and thus fixed, resulting in a system that scales well. After all, the content
provider has full control over the number of computationally expensive encoders
that he provides, no matter how many viewers connect to the system.

In contrast, as seen in Figure 1.2, the method using completely personalized
encoders requires a number of encoders equal to the number of current viewers.
As a result, if the network conditions of a user change, the target bit rate of the
encoder is automatically adjusted in order to match the new conditions. Similarly,
in the case of 360-degree or panoramic video, only the current view is transmitted
to the user, which for example results in a video with a bit rate of 4.2 Mbps instead
of a full 360-degree video of 23.4 Mbps, which is a reduction of the required
bandwidth by more than 80%1. The greatest advantage of such a personalized
approach compared to a fixed amount of encoders is the low latency of the system,
since users do not need to wait for the beginning of a new segment until they can
switch to a different bitstream representation. Additionally, it can also be used in
situations where the amount of possible representations is very high, such as in the
case when each user needs to receive their own video composition.

However, as is also seen in Figure 1.2, the amount of encoders for the same
amount of users as in Figure 1.1 has increased dramatically. Consequently, per-
sonalized encoders are currently only used in practice when the maximum amount
of clients is expected to be very small. This is for example the case in an indus-
trial context where different compositions of videos have to be created depending
on the device on which they have to be displayed (see also Chapter 3), or in low-
latency communications such as video conferencing with a very small amount of
users. In order to make personalized encoders more feasible, the computational
complexity of each individual encoder should thus be decreased.

1.2 Guided encoding for personalized video
At its root, a video encoder is a piece of software or hardware that takes a video
as an input and compresses it into a bitstream. As seen in Figure 1.3, such a
compressed bitstream consists of coding decisions (such as block partitionings
and motion vectors in the case of block-based video compression standards), and
residual pictures, which partially compensate for the difference between original
frames and the frames predicted by the coding decisions. If more bits are assigned
to the residual, the resulting video quality will be higher, but the compression ratio
of the resulting bitstream will be lower, whereas applying stronger quantization to
the residual (and thus assigning less bits), results in a lower video quality, but also
in a more compressed bitstream.

1These numbers have been obtained using the KiteFlite 8192x4096 30fps video sequence, with a
quantization parameter of 28 for both the full video as well as for a 1080p crop of the center, using the
x265 encoder software with the slow preset.

INTRODUCTION 5

Video
encoder

Input video

Compressed bitstream

Coding decisions

Residual picture

Figure 1.3: When an input video is encoded by a video encoder, it is compressed as a
combination of coding decisions and residual pictures.

Guide coding decisions

Encoding complexity = large

Encoding complexity = small

Personal
version 2

Personal
version 1

Figure 1.4: A video encoder is very computationally complex. However, when many
personal versions of a similar video are created, the coding decisions of one video encoder
can be guided by the decisions of another encoder, thus greatly reducing the computational

complexity of the guided encoder.

In order to have a higher video quality for the same compression ratio, it is im-
portant for a video encoder to make coding decisions that will result in the small-
est difference between the original frames and the predicted frames. However,
obtaining these optimal coding decisions is a very computationally intensive task,
hence content providers prefer to limit the amount of encodings using techniques
such as adaptive streaming as mentioned in the previous section. If they supplied
each viewer with a personalized video instead, the amount of required video en-
coders, and consequently the total computational complexity of their system as
well, would increase greatly with each user.

6 INTRODUCTION

However, since different versions of the same video are all still based on the
same original, there remains a similarity between the coding decisions used during
the encoding of each personalized bitstream. As such, the part of a video encoder
that calculates the coding decisions can be accelerated by exploiting this similarity
between the coding decisions of encodings of different personalized versions. In
this dissertation, this technique is called guided encoding, as illustrated in Figure
1.4. By using this technique in order to greatly reduce the computational complex-
ity of personalized encoders, providing each user with a personalized bitstream
becomes more feasible.

1.3 Outline
As mentioned in the previous section, this dissertation focuses on reducing the
computational complexity of personalized encoders by exploiting the similarity
between coding decisions of similar encodings. All techniques mentioned in this
dissertation can potentially be adapted to most modern block-based video com-
pression standards such as Advanced Video Coding (H.264/AVC), VP9, and High
Efficiency Video Coding (HEVC). Although H.264/AVC is currently the most
widely used standard, its successor, HEVC, was standardized in 2013. Since this
standard was created with very-high resolution video in mind, and was also ex-
tended to support HDR, both which feature in one of the use cases in this dis-
sertation, the main focus of this dissertation lies on HEVC. However, others have
already performed much research in order to reduce the complexity of video en-
coding with HEVC in the case of having only a single encoder. Therefore, Chapter
2 gives a high-level overview of the coding decisions made by an HEVC encoder
and the performance of the state-of-the-art HEVC fast-encoding algorithms.

Chapter 2 is followed by the main body of this dissertation. In this main
body, four different personalization scenarios are investigated in which similar-
ity between different bitstreams is exploited to guide encoding decisions. The first
scenario, in Chapter 3, focuses on spatially misaligned video sequences. In this
chapter, a video is spatially shifted by several pixels since it has to be inserted
into a personalized video composition. As illustrated in Figure 1.5, the similar-
ity between the original and shifted video is then exploited in order to guide and
accelerate the encoding of the shifted version.

The second scenario discussed in this dissertation is described in Chapter 4
and focuses on ultra-high resolution video. Since each user might be looking at a
different location in the ultra-high resolution video, they each receive a personal-
ized, cropped view. However, providing a separately encoded view for each user
is a computationally expensive nightmare. Therefore, as seen in Figure 1.6, the
encoding of these personalized views is accelerated by exploiting the correlation
with the coding information of the corresponding region from the full encoding of
the ultra-high resolution video.

INTRODUCTION 7

Original
bitstream

Shifted
bitstream

Original video

Shifted video

Video encoder

Fast transcoder

Decoder

Encoder

Shifter

Guided

encoding

Figure 1.5: Guided encoding is applied to transcoding of a shifted picture by using the
coding information obtained during decoding of the original bitstream to accelerate the

encoding of the shifted video.

Personal
view

Full video encoder

Personalized view encoder

Guided

encoding

Full video

Cropped view

Figure 1.6: Guided encoding is applied to the encoding of personalized, cropped views by
using the coding information of the corresponding region from the full video encoder to

accelerate the personalized view encoder.

8 INTRODUCTION

HDR
bitstream

LDR
bitstream

High-Dynamic-Range video

Low-Dynamic-Range video

Simultaneous encoder

Guided

encoding

HDR Encoder

LDR Encoder

Figure 1.7: Guided encoding is applied to the simultaneous encoding of both an HDR and
LDR version of the same video by using the coding information of the HDR version to also

encode the LDR version.

Bit rate
for user 1

Bit rate
for user 2

Bit rate
for user N

Coding info calculator

Original video

Guided encoding

Residual Encoder 1

Residual Encoder 2

Residual Encoder N

Figure 1.8: Guided encoding is applied to personalized bitstream representations by using
dedicated coding information calculators that generate coding information for many

residual encoders. These encoders attain the required bit rate by encoding the the residual
picture with different quantization parameters.

INTRODUCTION 9

Whereas the first two scenarios both focus on a spatial displacement of video
(respectively spatial shifting and cropping), the third scenario considers different
versions of the source video that have to be encoded. These source videos differ
in terms of dynamic range, with one video having a higher dynamic range while
the other has a lower dynamic range. Instead of separately encoding both an HDR
version and LDR version of the video, the technique described in Chapter 5 in-
vestigates the correlation between the encodings of these different versions. By
exploiting this correlation, a simultaneous encoder is created as shown in Figure
1.7, which guides the encoding decisions for the version with a lower dynamic
range by using the coding decisions of the HDR version.

Finally, in Chapter 6, the fourth scenario focuses on providing a personalized
bitstream representation which adapts to the current network condition of each
user. As such, each user requires a personalized encoder that encodes the video
at a bit rate similar to the available network bandwidth. In order to realize such a
system, as illustrated in Figure 1.8, coding information is calculated by dedicated
coding information calculators. These calculators pass the coding information to
residual encoders, which have a very low computational complexity. These resid-
ual encoders then adapt to the bit rate of the user to which they are paired by
adapting the quantization parameter used to quantize the residual picture.

This dissertation then comes to a close with the conclusion in Chapter 7.

1.4 Publications

1.4.1 Publications in international journals

1. L. Pham Van, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van de
Walle. Performance analysis of machine learning for arbitrary downsizing
of pre-encoded HEVC video. IEEE Trans. Consum. Electron., 61(4):507–
515, Nov. 2015.

2. A. J. Diaz-Honrubia, J. De Praeter, G. Van Wallendael, J. L. Martinez,
P. Cuenca, J. M. Puerta, and J. A. Gamez. CTU splitting algorithm for
H.264/AVC and HEVC simultaneous encoding. J. Supercomputing, (online
first: Feb. 2016).

3. L. Pham Van, J. De Praeter, G. Van Wallendael, S. Van Leuven, J. De Cock,
and R. Van de Walle. Efficient Bit Rate Transcoding for High Efficiency
Video Coding. IEEE Trans. Multimedia, 18(3):364–378, Mar. 2016.

4. J. De Praeter, H. Swimberghe, G. Renard, G. Van Wallendael, and P. Lam-
bert. Dynamic encoder profile optimisation for real-time video streaming
applications. Electron. Lett., 52(13):1116–1118, June 2016.

10 INTRODUCTION

5. A. J. Diaz-Honrubia, J. De Praeter, J. L. Martinez, P. Cuenca, and G. Van
Wallendael. Reducing the Complexity of a Multiview H.264/AVC and HEVC
Hybrid Architecture. J. Signal Process. Syst., (online first: June 2016).

6. J. De Praeter, G. Van Wallendael, T. Vermeir, J. Slowack, and P. Lambert.
Spatially misaligned HEVC transcoding with computational-complexity scal-
ability. J. Visual Commun. Image Representation, 40, Part A:149 – 158,
Oct. 2016.

7. J. De Praeter, A. J. Diaz-Honrubia, T. Paridaens, G. Van Wallendael, and
P. Lambert. Simultaneous Encoder for High-Dynamic-Range and Low-
Dynamic-Range Video. IEEE Trans. Consum. Electron., 63(4):pp, Nov.
2016.

8. J. De Praeter, G. Van Wallendael, J. Slowack, and P. Lambert. Video En-
coder Architecture for Low-Delay Live-Streaming Events. submitted to
IEEE Trans. Multimedia.

1.4.2 Publications in international conferences

1. J. De Praeter, J. De Cock, G. Van Wallendael, S. Van Leuven, P. Lambert,
and R. Van de Walle. Efficient Picture-in-Picture Transcoding for High
Efficiency Video Coding. In Proc. IEEE Int. Workshop Multimedia Signal
Process. (MMSP), pages 514–515, Sept. 2013.

2. J. De Praeter, J. De Cock, G. Van Wallendael, S. Van Leuven, P. Lambert,
and R. Van de Walle. Efficient Transcoding for Spatially Misaligned Com-
positions for HEVC. In Proc. IEEE Int. Conf. Image Process. (ICIP), pages
2494–2498, Oct. 2014.

3. L. Pham Van, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van de
Walle. Machine learning for arbitrary downsizing of pre-encoded video
in HEVC. In Proc. IEEE Int. Conf. Consum. Electron. (ICCE), pages
406–407, Jan. 2015.

4. N. Van Kets, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van de
Walle. Fast encoding for personalized views extracted from beyond high
definition content. In Proc. IEEE Int. Conf. Broadband Multimedia Syst.
and Broadcast. (BMSB), pages 1–7, June 2015.

5. L. Pham Van, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van
de Walle. Out-of-the-loop information hiding for HEVC video. In Proc.
IEEE Int. Conf. Image Process. (ICIP), pages 3610–3614, Sept. 2015.

INTRODUCTION 11

6. A. J. Diaz-Honrubia, J. De Praeter, S. Van Leuven, J. De Cock, J. L. Mar-
tinez, and P. Cuenca. Using Bayesian classifiers for low complexity multi-
view H.264/AVC and HEVC hybrid architecture. In Proc. IEEE Int. Conf.
Mach. Learn. Signal Process. (MLSP), pages 1–6, Sept. 2015.

7. J. De Praeter, A. J. Diaz-Honrubia, N. Van Kets, G. Van Wallendael, J. De Cock,
P. Lambert, and R. Van de Walle. Fast simultaneous video encoder for adap-
tive streaming. In Proc. IEEE Int. Workshop Multimedia Signal Process.
(MMSP), pages 1–6, Oct. 2015.

8. L. Pham Van, J. De Praeter, G. Van Wallendael, P. R. Alface, and P. Lambert.
Intra-frame sharing for low-complexity decoding of SHVC video. In Proc.
IEEE Int. Conf. Consum. Electron. (ICCE), pages 297–298, Jan. 2016.

9. G. Cebrian-Marquez, A. J. Diaz-Honrubia, J. De Praeter, G. Van Wallen-
dael, J. L. Martinez, and P. Cuenca. A motion vector re-use algorithm for
H.264/AVC and HEVC simultaneous video encoding. In Proc. ACM In-
ternational Conference on Advances in Mobile Computing and Multimedia,
pages 241–245, Dec. 2015.

10. J. De Praeter, P. Duchi, G. Van Wallendael, J. F. Macq, and P. Lambert. Effi-
cient Encoding of Interactive Personalized Views Extracted from Immersive
Video Content. In Proc. ACM 1st International Workshop on Multimedia
Alternate Realities, pages 25–30, Oct. 2016.

11. C. Van Goethem, J. De Praeter, T. Paridaens, G. Van Wallendael, and P. Lam-
bert. Multistream Video Encoder for Generating Multiple Dynamic Range
Bitstreams. In Picture Coding Symposium (PCS), pages 1–5, Dec. 2016.

12. J. De Praeter, J. Van de Vyver, N. Van Kets, G. Van Wallendael, and S. Ver-
stockt. Moving Object Detection in the HEVC Compressed Domain for
Ultra-High-Resolution Interactive Video. In Proc. IEEE Int. Conf. Con-
sum. Electron. (ICCE), Jan. 2017.

2
Low-Complexity Encoding

of High Efficiency Video Coding

2.1 Introduction

High Efficiency Video Coding (HEVC) is the most recently standardized video
compression standard, designed by the Joint Collaborative Team on Video Coding
(JCT-VC) of the ISO/IEC Moving Picture Experts Group (MPEG) and the ITU-T
Video Coding Experts Group (VCEG) [1]. This standard provides twice the com-
pression efficiency of its predecessor, H.264/AVC, for the same subjective quality
thanks to a series of new or improved coding tools. However, these tools also re-
sult in a much higher coding complexity compared to H.264/AVC. Therefore, even
without considering a system with an individual encoder per client, many efforts
have been made to reduce the computational complexity of HEVC encoders.

In order to better contextualize the complexity reductions achieved in the ap-
plications in the following chapters of this dissertation, this chapter will provide
an overview of related work that reduces the coding complexity of a single en-
coder, without exploiting coding information from other encodings. First, a short
overview is presented of the coding decisions made by an HEVC encoder in Sec-
tion 2.2. Next, Section 2.3 gives an overview of the accelerations that can be
achieved by accelerating certain encoding decisions and compares the related work
to the maximum attainable complexity reduction. Finally, the conclusion of this
chapter is presented in Section 2.4.

14 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

(a)
Depth 0

Depth 1

Depth 2

Depth 3

(b)

Figure 2.1: Block representation (a) and quadtree representation (b) of a CTU. For a CTU
of 64×64 pixels, depths of 0, 1, 2, and 3 respectively correspond with CUs of 64×64,

32×32, 16×16, and 8×8 pixels.

2.2 High Efficiency Video Coding

As mentioned in the previous section, the improved compression efficiency of
HEVC comes at a cost of a large computational complexity. In order to better
understand the source of this increased complexity, and to also identify the coding
decisions that can be accelerated in an HEVC encoder, a high-level overview of
the most computationally-complex coding tools is presented here.

The first of these coding tools is the coding unit (CU) splitting process. In
HEVC, a frame is divided in coding tree units (CTUs) which are typically 64×64
pixels and should be considered as such in the rest of this dissertation. These
CTUs are recursively split into CUs according to a quadtree structure down to a
size of 8×8 pixels. Whether or not a block (and thus the corresponding node in
the quadtree) should be split, is signaled by a split flag.

Note that in this dissertation, the depth of a CU refers to its depth in the
quadtree, hence depth 0, 1, 2, and 3 respectively correspond with CUs of 64×64,
32×32, 16×16, and 8×8 pixels. This relation between the quadtree depth and the
block representation of a CTU is illustrated in Figure 2.1. Furthermore, due to the
flexibility of recursively splitting a CTU into these different CU sizes, each CTU

CHAPTER 2 15

Figure 2.2: Example of CU splitting (solid white lines) and PU splitting (dashed lines) of a
frame. Regions with more details and/or movement are assigned smaller block partitions.

has 83,522 possible CU structures which have to be evaluated by the encoder in
terms of compression efficiency.

For each CU, the optimal prediction mode has to be decided. This mode is
either intra- or inter-prediction. Depending on the mode, a CU can be further
partitioned into Prediction Units (PUs). For intra-mode, a CU can be assigned one
of two PU partitioning modes, whereas an inter-predicted CU has to decide the
optimal PU partitioning out of eight possible modes. An example of CU and PU
splitting is shown in Figure 2.2, where it can be seen that regions with more details
and/or movement are assigned smaller block partitions.

If a PU is intra-predicted, 35 possible intra-prediction directions have to be
evaluated for luma-components, whereas five possible modes (derived from the
luma direction) are evaluated for the chroma-components. If a PU is inter-predicted,
motion estimation is carried out to find the best-matching block in one of the refer-
ence pictures. In case of B-frames, both unidirectional and bidirectional prediction
are tested.

Besides motion estimation, inter-predicted PUs are also evaluated with merge-
and skip-mode. Merge-mode indicates that the PU has the same motion vector as
the best motion vector predictor candidate. These candidates can be the motion
vectors of spatially or temporally neighboring blocks and are used to calculate
the motion vector difference during motion estimation. In case of merge-mode,
this difference equals zero, and only the index of the best motion vector predictor
candidate is encoded into the bitstream. Skip-mode then differs from merge-mode
in a sense that no residual picture is encoded and that it can only be used if a CU
only has one PU (a partitioning mode of 2N×2N).

16 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

Finally, each CU is also recursively split according to a quadtree structure into
Transform Units (TUs) for transformation and quantization of the residual picture.
The smallest size of these TUs is 4×4 pixels.

To determine the most compression-efficient combination of possible cod-
ing parameters, encoders can evaluate all possible configurations during the rate-
distortion optimization (RDO) process. However, since this RDO process is com-
putationally intensive, several accelerations have been proposed to reduce the amount
of configurations to be evaluated. These possible accelerations are discussed and
compared in the next section.

2.3 Accelerating HEVC

In this section, related work on accelerating HEVC is compared to each other. In
order to facilitate such comparisons, these works all attempt to use similar test
conditions and evaluation metrics. These conditions and metrics are presented
first, followed by the actual comparison.

2.3.1 Test conditions and metrics

All encoder-acceleration algorithms proposed in the related literature are evaluated
using the HEVC reference software (HM) [2]. Although this software is meant as
a reference, depending on the version, there might be small discrepancies if the
algorithm were to be implemented in a different version. However, for the purpose
of a high-level comparison, as is aimed for in this dissertation, these differences
should be considered negligible.

In addition to using the same reference software, implemented algorithms are
also evaluated on a standardized test set of video sequences [3]. These videos are
divided into six classes depending on their spatial resolution or other character-
istics. Class A contains videos with a resolution of 2560×1600 pixels with a bit
depth of 10 bits for two of the four videos in this class and a bit depth of 8 bits
for the remaining two. All other classes only contain videos with a bit depth of
8 bits. Class B, C, and D then contain videos with a resolution of respectively
1920×1080, 832×480, and 416×240 pixels. Class E consists of video content
at a resolution of 1280×720 pixels, with the special characteristic of this class
being that the videos always contain a close-up of one or two people speaking
against a static background. Finally, class F consists of special content such as a
computer-generated video and screen captures of slide shows. Note that due to the
special natures of class E and F, and the high resolution of class A, these classes
are sometimes not included in the evaluation of algorithms in the related literature.

When encoding the video, four different configurations can be used depending
on the intended scenario that is evaluated:

CHAPTER 2 17

• All-intra is a configuration that encodes the video with only intra-frames.
This configuration is used to test accelerations that only target intra-coded
CUs.

• The low-delay P configuration encodes the video with an intra-frame, fol-
lowed by P-frames until the end of the video sequence. The frames are
encoded in display order with each frame only using previous frames as ref-
erence frames. Since there is no structural delay of having to wait for future
frames when decoding, this configuration is suitable for low-delay scenar-
ios.

• The low-delay configuration differs from the low-delay P configuration by
encoding all P-frames as B-frames instead. As with the P-frames, these B-
frames only use previous frames as reference frames. However, since each
PU in a B-frame can have up to two motion vectors instead of one, both
the compression efficiency and the computational complexity of encoding
these frames is higher than those of P-frames. Quantitatively, the low-delay
configuration reduces the bit rate overhead for the same quality as the low-
delay P configuration by 7.5% on average. However, this comes at a cost of
an average computational complexity increase of 48.9%.

• Random access contains both B-frames and I-frames, with an I-frame at the
start of each intra-period to provide random access to the video stream. This
intra-period is defined as approximately one second. Additionally, hierar-
chical B-frames are used, meaning that, contrary to the low-delay configu-
rations, the frames are not encoded in display order.

Using (subsets of) the above test conditions, the algorithms in the related lit-
erature are then evaluated in terms of compression efficiency and reduction of
computational complexity compared to a non-accelerated encoding of the same
video under the same test conditions. The compression efficiency is evaluated as
Bjøntegaard-Delta rate (BD-rate) [4], which is the average bit rate overhead of the
fast encoding algorithm compared to the non-accelerated encoding for the same
quality. In order to calculate this metric, four rate-distortion (RD) points are re-
quired for both the fast encoding and the non-accelerated encode. These points
are acquired by using four different quantization parameter (QP) values (22, 27,
32 and 37) and measuring the resulting bit rate and distortion, with the distortion
expressed as the Peak Signal-to-Noise Ratio (PSNR). Finally, the BD-rate is mea-
sured as the average relative bit rate difference between the curves resulting from
the interpolation of the two sets of four RD-points.

Computational complexity reduction is usually expressed as time saving (TS):

TS =
Tref − Tfast

Tref
, (2.1)

18 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

with Tref being the encoding time of the non-accelerated encoding with the HM
encoder, while Tfast is the encoding time of the accelerated encoding under the
same test conditions. Additionally, speed-up is also used as a measure:

Speed-up =
Tref
Tfast

=
1

1− TS
(2.2)

This measure equals the amount of fast encoders that are needed to reach the same
computational complexity as a single non-accelerated encoder. In this chapter, all
complexity reductions reported using speed-up in the related literature have been
converted to TS using the above equation.

2.3.2 Comparison

Tables 2.1 to 2.4 show the state-of-the-art fast encoding algorithms in the literature
for respectively the all-intra, low-delay P, low-delay, and random access configu-
rations. These methods are sorted according to increasing times saving. Note,
however, that these numbers should only be considered as a rough indication of
the performance of the algorithms, since they have been implemented on different
versions of HM, with some also omitting evaluation on the test sequences in class
A, E and/or F.

Additionally, Figures 2.3 to 2.6 compare the time savings of these methods to
the maximum computational complexity reduction that can be achieved when skip-
ping certain coding decisions. These maxima were determined by first performing
a non-accelerated encoding for all test sequences and configurations, and then us-
ing the coding decisions generated by these encodings to skip these decision in an
accelerated encoding of the same videos.

By examining Table 2.1, it is seen that all but two of the fast-encoding methods
accelerate CU splitting decisions. The motivation for accelerating these decisions
is that all other coding decisions presented in Section 2.2 are evaluated for each
CU. As such, even if decisions concerning the intra direction are accelerated for
each possible CU structure, this optimal CU structure still needs to be determined.
On the other hand, if only a limited amount of CU structures are evaluated, the
optimal intra direction decision only needs to be found for each of these CU struc-
tures. Besides CU splitting decisions, only PU, TU and intra direction decisions
are accelerated for the all-intra configuration, since motion estimation and merge-
and skip-mode are only used for inter-coded PUs.

When comparing the time saving of methods presented in Table 2.1 to the
maximum time savings shown in Figure 2.3, it becomes clear that the highest time
saving achieved by the algorithms in the literature is similar to the maximum time
saving that can be achieved by accelerating all CU coding decisions (dashed line
(1) in the figure). This is achieved with a complexity reduction of 63.5% by the
method of S. Cho that uses an early-splitting and early-stopping condition in order

CHAPTER 2 19

to evaluate only one CU structure for each CTU. The overhead in terms of bit rate
for this acceleration is 3.5%. The method of M. Yang achieves a greater complexity
reduction of 65.4% with a BD-rate of only 1.3%. However, although both CU, TU,
and intra directions decisions are accelerated, the resulting complexity reduction
is still significantly lower than the time saving of 77.6% when accelerating all
CU and PU decisions (dashed line (2) in Figure 2.3) or the highest possible time
saving of 94.5% when accelerating all coding decisions (dashed line (4) in the
same figure).

Similar observations as with the all-intra configuration can be made for low-
delay-P (Table 2.4), low-delay (Table 2.5) and random access (Table 2.4). Again,
CU coding decisions are most commonly accelerated, since all other coding deci-
sions are made on a sub-CU level. Besides CU decisions, PU decisions are also
often accelerated, since decreasing the number of PU modes to be evaluated (eight
in the case of inter-coded CUs) has a greater effect than in the case of intra-coded
CUs (only one or two possible PU sizes). Skip-mode is frequently accelerated as
well, since a successful early detection of skip-mode implies that no further deci-
sions need to be made for that CU concerning PUs, TUs and motion estimation.

Despite many techniques for accelerating the encoding of inter-coded frames,
with the highest reported time savings for the low-delay-P, low-delay, and random
access configurations respectively being 67.6%, 68%, and 69%, neither of these
methods reaches the maximum time saving that can be achieved when accelerating
all CU decisions. This is more clearly illustrated in Figures 2.4 to 2.6, where
none of the techniques achieve a higher time saving than indicated by the dashed
line (1). The reason for this is that, for example in the case of accelerating CU
decisions, fast-encoding will almost never accelerate all of these decisions, since
making non-optimal decisions comes at the cost of increasing BD-rates. Since
they do not accelerate all CU decisions, they can never break past line (1) by
only accelerating CU decisions. Therefore, in order to reach higher complexity
reductions, accelerating other coding decisions is necessary. However, as with CU
decisions, they never skip all coding decisions, meaning that it is impossible for
conventional fast-encoding algorithms to reach line (4) in the figure.

Figure 2.6 also further illustrates how greater time savings come at a cost of
higher BD-rates, since accelerating coding decisions typically means that less op-
timal coding decisions will be chosen than with a non-accelerated encoding. Be-
cause fast-encoding algorithms are meant to reduce the computational complexity
of an encoder while preserving the compression efficiency as much as possible,
time savings above the maximum possible time saving of accelerating all CU de-
cisions have not been investigated further in the context of fast encoding. How-
ever, as seen in Table 2.5 where the time saving values for accelerating all CU
decisions and accelerating all coding decisions have been converted to speed-up
values, state-of-the-art fast-encoding algorithms speed up the HM reference soft-

20 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

Method Accelerated decisions TS (%) BD-rate (%)

Y. Lin [5] CU 13.4 0.0
M. Fini [6] intra direction 14.4 0.1
Y. Cen [7] CU 15.9 2.8
S. Wang [8] CU + intra direction 26.6 0.5
D. Ruiz [9] intra direction 29.7 0.4
F. Belghith [10] CU 31.3 0.8
H. Ding [11] CU 35.8 2.3
I. Marzuki [12] CU + PU + TU + intra direction 40.0 1.3
M. Ramezanpour [13] CU + PU + intra direction 43.0 0.5
N. Hu [14] CU + PU + intra direction + other 43.9 0.3
Y. Lin [15] CU 44.1 1.5
A. Oztekin [16] CU 45.1 4.6
M. Ramezanpour [17] CU + PU + intra direction 45.8 1.5
L. Shen [18] CU 47.0 1.1
L. Zhao [19] CU + TU + intra direction 50.0 0.5
B. Min [20] CU 52.3 0.8
D. Ruiz [21] CU 53.2 2.2
K. Lim [22] CU + PU 53.5 2.0
W. Zhao [23] CU + PU + intra direction 54.0 2.5
H. Kim [24] CU 54.2 1.0
Y. Zhang [25] CU 55.6 1.3
S. Park [26] CU + PU 57.0 0.6
Y. Song [27] CU + PU + intra direction 57.2 0.9
H. Zhang [28] CU + intra direction 60.0 1.0
S. Cho [29] CU 63.5 3.5
M. Yang [30] CU + TU + Intra direction 65.4 1.3

Table 2.1: Comparison of state-of-the-art acceleration for the all-intra configuration.

Method Accelerated decisions TS (%) BD-rate (%)

H. Zhang [28] CU + intra direction 15.0 0.9
S. Yang [31] motion 19.0 0.2
A. Jimenez-Moreno [32] CU 26.4 0.9
S. Wang [8] CU + motion + intra direction 40.9 0.4
J. Xiong [33] CU 42.8 1.9
H. Kim [24] CU 48.5 0.6
Q. Zhang [34] CU 49.6 1.8
Z. Liu [35] CU + PU 56.7 1.1
Q. Hu [36] CU + PU + skip 58.1 1.1
W. Zhao [23] CU + PU + intra direction 67.6 2.4

Table 2.2: Comparison of state-of-the-art acceleration for the low-delay-P configuration.

CHAPTER 2 21

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

B
D

-r
at

e
(%

)

Time saving (%)

(1) (2) (3) (4)

Figure 2.3: Comparison of state-of-the-art accelerations for the all-intra configuration
with the maximum complexity reduction when accelerating all coding decisions related to

CU (1) + PU (2) + TU (3) + intra direction (4).

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

B
D

-r
at

e
(%

)

Time saving (%)

(1) (2)(3)(4)

Figure 2.4: Comparison of state-of-the-art accelerations for the low-delay P configuration
with the maximum complexity reduction when accelerating all coding decisions related to

CU (1) + PU (2) + merge + skip (3) + motion + TU + intra direction (4).

22 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

Method Accelerated decisions TS (%) BD-rate (%)

L. Shen [37] TU 13.0 0.5
H. Zhang [28] CU + intra direction 15.0 0.8
B. Kim [38] merge + skip 30.0 2.2
X. Huang [39] PU 35.2 1.9
K. Goswami [40] PU + skip 39.6 0.5
J. Xiong [33] CU 40.3 2.2
L. Shen [41] CU 41.0 1.1
S. Ahn [42] CU + skip 42.7 1.0
Q. Zhang [34] CU 46.9 2.0
H. Kim [24] CU 48.4 0.6
T. Lin [43] CU 49.9 0.7
L. Shen [44] CU + skip 51.8 0.9
H. Tan [45] CU 56.0 0.8
Z. Liu [46] CU 57.0 0.8
Y. Ahn [47] CU + PU 57.8 2.0
J. Lee [48] CU + merge + skip 68.0 2.5

Table 2.3: Comparison of state-of-the-art acceleration for the low-delay configuration.

Method Accelerated decisions TS (%) BD-rate (%)

L. Shen [37] TU 13.0 0.6
H. Zhang [28] CU + intra direction 17.0 1.1
H. Lee [49] Skip 33.3 0.0
B. Kim [38] merge + skip 35.4 0.8
G. Correa [50] CU 37.0 0.3
X. Huang [39] PU 39.5 2.0
K. Goswami [40] PU + skip 40.4 0.4
L. Shen [41] CU 42.0 1.5
Z. Liu [46] CU 49.0 0.8
L. Shen [44] CU + skip 49.1 0.7
S. Ahn [42] CU + skip 49.6 1.4
J. Lee [51] CU + PU 51.7 2.6
H. Kim [24] CU 53.6 0.7
A. Lee [52] CU + PU 54.9 0.9
T. Lin [43] CU 55.0 0.5
H. Tan [45] CU 55.0 1.2
Y. Ahn [47] CU + PU 57.5 1.4
Z. Liu [35] CU + PU 59.8 1.0
Q. Hu [36] CU + PU + skip 65.1 1.3
G. Correa [53] CU + PU + TU 65.3 1.4
W. Zhao [23] CU + PU + intra direction 68.4 1.9
J. Lee [48] CU + merge + skip 69.0 3.0

Table 2.4: Comparison of state-of-the-art acceleration for the random-access
configuration.

CHAPTER 2 23

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100

B
D

-r
at

e
(%

)

Time saving (%)

(1) (2)(3)(4)

Figure 2.5: Comparison of state-of-the-art accelerations for the low-delay configuration
with the maximum complexity reduction when accelerating all coding decisions related to

CU (1) + PU (2) + merge + skip (3) + motion + TU + intra direction (4).

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

B
D

-r
at

e
(%

)

Time saving (%)

(1) (2)(3)(4)

Figure 2.6: Comparison of state-of-the-art accelerations for the random access
configuration with the maximum complexity reduction when accelerating coding decisions

related to CU (1) + PU (2) + merge + skip (3) + motion + TU + intra direction (4).

24 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

Time saving (%) Speed-up

Configuration CU All CU All

All-intra 62.7 94.5 2.7 18.3
Low-delay-P 74.9 99.4 4.0 159.4
Low-delay 74.1 99.6 3.9 227.8
Random access 75.3 99.4 4.1 167.6

Table 2.5: Maximum time savings and speed-ups when accelerating only CU decisions
versus accelerating all coding decisions, for all configurations.

ware by at most a factor of about 2.7 for the all-intra configuration, and about
4 for all other configurations. Although the maximum possible speed-up for the
all-intra configuration is 18.3, the speed-ups of the other configurations reach val-
ues of more than 150, meaning that accelerating all coding decisions can allow a
content provider to run more than 150 fast encoders for the same computational
complexity as a non-accelerated encoder. Although achieving this number might
not seem realistic for traditional fast encoders, since they will always have to exe-
cute some calculations in order to determine the coding information, these number
are achievable by guided, personalized encoders in certain scenarios, as will be
shown in the further chapters of this dissertation.

2.4 Conclusion
This chapter presented an overview of the coding decisions taken by an HEVC en-
coder and illustrated how the state-of-the-art fast encoding methods only achieve
a limited complexity reduction of the encoder, since they aim at reducing the com-
putational complexity of a single fast encoder while retaining the compression
efficiency. However, in scenarios with personalized encoders, this complexity re-
duction is insufficient, since each extra user of the system will linearly increase
the overall computational complexity. Therefore, in this dissertation, the focus
lies on achieving very high speed-ups for a variety of scenarios with personalized
encoders, while utilizing the similarities between the coding information of these
encoders.

CHAPTER 2 25

References

[1] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video
Technol., 22(12):1649–1668, Dec. 2012.

[2] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. Sullivan. High
Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved Encoder
Description Update 2. Technical Report JCTVC-T1002, ITU-T Joint Col-
laborative Team on Video Coding (JCT-VC), Feb. 2015.

[3] F. Bossen. Common test conditions and software reference configurations.
Technical Report JCTVC-L1100, ITU-T Joint Collaborative Team on Video
Coding (JCT-VC), Jan. 2013.

[4] G. Bjøntegaard. Calculation of average PSNR differences between RD-
curves. Technical Report VCEG-M33, ITU-T Video Coding Experts Group
(VCEG), Apr. 2001.

[5] Y.-C. Lin and J.-C. Lai. Feature-based fast coding unit partition algorithm
for high efficiency video coding. J. Appl. Research Technol., 13(2):205–219,
2015.

[6] M. R. Fini and F. Zargari. Two stage fast mode decision algorithm for intra
prediction in HEVC. Multimedia Tools Appl., pages 1–18, 2015.

[7] Y.-F. Cen, W.-L. Wang, and X.-W. Yao. A fast CU depth decision mechanism
for HEVC. Inf. Process. Lett., 115(9):719–724, 2015.

[8] S. Wang, F. Luo, S. Ma, X. Zhang, S. Wang, D. Zhao, and W. Gao. Low
complexity encoder optimization for HEVC. J. Visual Commun. Image Rep-
resentation, 35:120–131, 2016.

[9] D. Ruiz, G. Fernández-Escribano, J. L. Martı́nez, and P. Cuenca. Fast intra
mode decision algorithm based on texture orientation detection in HEVC.
Signal Process. Image Commun., 44:12–28, 2016.

[10] F. Belghith, H. Kibeya, M. A. B. Ayed, and N. Masmoudi. Fast coding unit
partitioning method based on edge detection for HEVC intra-coding. Signal
Image Video Process., pages 1–8, 2015.

[11] H. Ding, X. Huang, and Q. Zhang. The fast intra CU size decision algorithm
using gray value range in HEVC. Optik - Int. J. Light Electronc Optics,
127(18):7155–7161, 2016.

26 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

[12] I. Marzuki, J. Ma, Y.-J. Ahn, and D. Sim. A context-adaptive fast intra cod-
ing algorithm of high-efficiency video coding (HEVC). J. Real-Time Image
Process., pages 1–17, 2015.

[13] M. Ramezanpour and F. Zargari. Fast CU size and prediction mode decision
method for HEVC encoder based on spatial features. Signal Image Video
Process., pages 1–8, 2016.

[14] N. Hu and E. H. Yang. Fast Mode Selection for HEVC Intra-Frame Coding
With Entropy Coding Refinement Based on a Transparent Composite Model.
IEEE Trans. Circuits Syst. Video Technol., 25(9):1521–1532, Sept. 2015.

[15] Y.-C. Lin, J.-C. Lai, and H.-C. Cheng. Coding unit partition prediction tech-
nique for fast video encoding in HEVC. Multimedia Tools Appl., pages 1–24,
2015.

[16] A. Öztekin and E. Erçelebi. An early split and skip algorithm for fast intra
CU selection in HEVC. J. Real-Time Image Process., pages 1–11, 2015.

[17] M. Ramezanpour and F. Zargari. Fast HEVC I-frame coding based on
strength of dominant direction of CUs. J. Real-Time Image Process., pages
1–10, 2015.

[18] L. Shen, Z. Zhang, and Z. Liu. Effective CU Size Decision for HEVC Intra-
coding. IEEE Trans. Image Process., 23(10):4232–4241, Oct. 2014.

[19] L. Zhao, X. Fan, S. Ma, and D. Zhao. Fast intra-encoding algorithm for high
efficiency video coding. Signal Process. Image Commun., 29(9):935–944,
2014.

[20] B. Min and R. C. C. Cheung. A Fast CU Size Decision Algorithm for the
HEVC Intra Encoder. IEEE Trans. Circuits Syst. Video Technol., 25(5):892–
896, May 2015.

[21] D. Ruiz, G. Fernández-Escribano, V. Adzic, H. Kalva, J. L. Martı́nez, and P.
Cuenca. Fast CU partitioning algorithm for HEVC intra coding using data
mining. Multimedia Tools Appl., pages 1–34, 2015.

[22] K. Lim, J. Lee, S. Kim, and S. Lee. Fast PU Skip and Split Termination Algo-
rithm for HEVC Intra Prediction. IEEE Trans. Circuits Syst. Video Technol.,
25(8):1335–1346, Aug. 2015.

[23] W. Zhao, T. Onoye, and T. Song. Hierarchical Structure-Based Fast Mode
Decision for H.265/HEVC. IEEE Trans. Circuits Syst. Video Technol.,
25(10):1651–1664, Oct. 2015.

CHAPTER 2 27

[24] H. S. Kim and R. H. Park. Fast CU Partitioning Algorithm for HEVC Using
an Online-Learning-Based Bayesian Decision Rule. IEEE Trans. Circuits
Syst. Video Technol., 26(1):130–138, Jan. 2016.

[25] Y. Zhang, S. Kwong, G. Zhang, Z. Pan, H. Yuan, and G. Jiang. Low Complex-
ity HEVC INTRA Coding for High-Quality Mobile Video Communication.
IEEE Trans. Ind. Informat., 11(6):1492–1504, Dec. 2015.

[26] S. J. Park. CU encoding depth prediction, early CU splitting termination
and fast mode decision for fast HEVC intra-coding. Signal Process. Image
Commun., 42:79–89, 2016.

[27] Y. Song, Y. Zeng, X. Li, B. Cai, and G. Yang. Fast CU size decision and
mode decision algorithm for intra prediction in HEVC. Multimedia Tools
Appl., pages 1–17, 2016.

[28] H. Zhang and Z. Ma. Fast Intra Mode Decision for High Efficiency Video
Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol., 24(4):660–668,
Apr. 2014.

[29] S. Cho and M. Kim. Fast CU Splitting and Pruning for Suboptimal CU Par-
titioning in HEVC Intra Coding. IEEE Trans. Circuits Syst. Video Technol.,
23(9):1555–1564, Sept. 2013.

[30] M. Yang and C. Grecos. Fast intra encoding decisions for high efficiency
video coding standard. J. Real-Time Image Process., pages 1–10, 2014.

[31] S. H. Yang and K. S. Huang. HEVC fast reference picture selection. Electron.
Lett., 51(25):2109–2111, Dec. 2015.

[32] A. Jimenez-Moreno, E. Martinez-Enriquez, and F. Diaz-de-Maria. Complex-
ity Control Based on a Fast Coding Unit Decision Method in the HEVC Video
Coding Standard. IEEE Trans. Multimedia, 18(4):563–575, April. 2016.

[33] J. Xiong, H. Li, Q. Wu, and F. Meng. A Fast HEVC Inter CU Selection
Method Based on Pyramid Motion Divergence. IEEE Trans. Multimedia,
16(2):559–564, Feb. 2014.

[34] Q. Zhang, J. Zhao, X. Huang, and Y. Gan. A fast and efficient coding unit
size decision algorithm based on temporal and spatial correlation. Optik -
Int. J. Light Electronc Optics, 126(21):2793–2798, 2015.

[35] Z. Liu, T.-L. Lin, and C.-C. Chou. Efficient prediction of CU depth and PU
mode for fast HEVC encoding using statistical analysis. J. Visual Commun.
Image Representation, 38:474–486, 2016.

28 LOW-COMPLEXITY ENCODING OF HIGH EFFICIENCY VIDEO CODING

[36] Q. Hu, X. Zhang, Z. Shi, and Z. Gao. Neyman-Pearson-Based Early Mode
Decision for HEVC Encoding. IEEE Trans. Multimedia, 18(3):379–391,
Mar. 2016.

[37] L. Shen, Z. Zhang, X. Zhang, P. An, and Z. Liu. Fast TU size decision algo-
rithm for HEVC encoders using Bayesian theorem detection. Signal Process.
Image Commun., 32:121–128, 2015.

[38] B.-G. Kim. Fast coding unit (CU) determination algorithm for high-
efficiency video coding (HEVC) in smart surveillance application. J. Su-
percomputing, pages 1–22, 2016.

[39] X. Huang, Q. Zhang, X. Zhao, W. Zhang, Y. Zhang, and Y. Gan. Fast inter-
prediction mode decision algorithm for HEVC. Signal Image Video Process.,
pages 1–8, 2015.

[40] K. Goswami, J.-H. Lee, and B.-G. Kim. Fast algorithm for the High Ef-
ficiency Video Coding (HEVC) encoder using texture analysis. Inf. Sci.,
364:72–90, 2016.

[41] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang. An Effective CU Size
Decision Method for HEVC Encoders. IEEE Trans. Multimedia, 15(2):465–
470, Feb. 2013.

[42] S. Ahn, B. Lee, and M. Kim. A Novel Fast CU Encoding Scheme Based on
Spatiotemporal Encoding Parameters for HEVC Inter Coding. IEEE Trans.
Circuits Syst. Video Technol., 25(3):422–435, Mar. 2015.

[43] T.-L. Lin, C.-C. Chou, Z. Liu, and K.-H. Tung. HEVC early termination
methods for optimal CU decision utilizing encoding residual information. J.
Real-Time Image Process., pages 1–17, 2016.

[44] L. Shen, Z. Zhang, and Z. Liu. Adaptive Inter-Mode Decision for HEVC
Jointly Utilizing Inter-Level and Spatiotemporal Correlations. IEEE Trans.
Circuits Syst. Video Technol., 24(10):1709–1722, Oct. 2014.

[45] H. L. Tan, C. C. Ko, and S. Rahardja. Fast Coding Quad-Tree Decisions Us-
ing Prediction Residuals Statistics for High Efficiency Video Coding (HEVC).
IEEE Trans. Broadcast., 62(1):128–133, Mar. 2016.

[46] Z. Liu, T.-L. Lin, and C.-C. Chou. HEVC coding-unit decision algorithm us-
ing tree-block classification and statistical data analysis. Multimedia Tools
Appl., pages 1–22, 2016.

[47] Y.-J. Ahn and D. Sim. Square-type-first inter-CU tree search algorithm for
acceleration of HEVC encoder. J. Real-Time Image Process., pages 1–14,
2015.

CHAPTER 2 29

[48] J. Lee, S. Kim, K. Lim, and S. Lee. A Fast CU Size Decision Algorithm
for HEVC. IEEE Trans. Circuits Syst. Video Technol., 25(3):411–421, Mar.
2015.

[49] H. Lee, H. J. Shim, Y. Park, and B. Jeon. Early Skip Mode Decision for
HEVC Encoder With Emphasis on Coding Quality. IEEE Trans. Broadcast.,
61(3):388–397, Sept. 2015.

[50] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz. Fast coding
tree structure decision for HEVC based on classification trees. Analog Integr.
Circuits and Signal Process., 87(2):129–139, 2016.

[51] J.-H. Lee, K. Goswami, B.-G. Kim, S. Jeong, and J. S. Choi. Fast encoding
algorithm for high-efficiency video coding (HEVC) system based on spatio-
temporal correlation. J. Real-Time Image Process., pages 1–12, 2015.

[52] A. Lee, D. Jun, and J. S. Choi. Fast motion estimation using priority-based
inter-prediction mode decision method in high efficiency video coding. J.
Real-Time Image Process., pages 1–9, 2015.

[53] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz. Fast
HEVC Encoding Decisions Using Data Mining. IEEE Trans. Circuits Syst.
Video Technol., 25(4):660–673, Apr. 2015.

3
Encoding Complexity Reduction of

Personalized Video Compositions

3.1 Introduction

A first personalization scenario in which guided encoding can be used to accelerate
personalized encoders occurs when creating video compositions. In many indus-
tries, these compositions often consist of visual information such as surveillance
footage. This information is gathered in a control room where it is displayed as
a composition of multiple input streams on a video wall. These individual video
sequences are either tiled next to each other, or partially overlap. However, (part
of) this information is sent to other devices such as desktop computers, laptops,
and other handheld devices. All of these devices receive a personalized compo-
sition of input bitstreams. This composition must be freely arrangeable, meaning
that each separate sequence can be dragged across the screen. Since decoding all
these input bitstreams requires multiple decoders, which are not available on the
client device, the composition is created in the network by specialized hardware,
as seen in Figure 3.1. This new bitstream is then decoded by a single decoder at
the receiver.

The same approach is used for sending personalized advertisements embedded
in the picture during live video broadcasts. Depending on the location of the view-
ers, broadcasters insert different advertisements into the encoded video stream of
the content providers without requiring the client device to decode both the video
and advertisement.

32 PERSONALIZED COMPOSITIONS

Compositor Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Figure 3.1: Depending on the needs of the client, a personalized composition (right) is
created from several input videos (left).

Another similar scenario occurs during video conferencing between more than
two locations. If a participant wants to display all video streams on his handheld
device, the power and memory of the decoder might be insufficient for decoding
the multiple input bitstreams.

In the above use cases, each different, personalized composition needs to be en-
coded. This encoding step requires much computational power. Moreover, current
displays support resolutions up to 3840×2160 pixels and will further evolve to-
wards 7680×4320 pixels. With such high resolutions becoming common, both the
input video sequences and the composition will be compressed using HEVC [1],
since this compression standard offers a bit rate reduction of 50% for the same
perceptual quality as its predecessor, H.264/AVC [2]. However, as was mentioned
in Chapter 2, the computational complexity of the encoder is also higher compared
to the predecessors of HEVC. Consequently, reducing this increased complexity is
crucial in order to limit the resources necessary to generate compositions.

Previous work on compositions focuses on picture-in-picture insertion of video
content in H.264/AVC by re-using encoding decisions from the original video se-
quences [3–5]. A similar approach was also used for HEVC in order to achieve
high complexity reductions. In this approach, the block structures of the input bit-
streams are merged and passed to the encoder, reducing the number of encoding
decisions that need to be evaluated [6]. However, this solution is only applicable
if the inserted content is constrained to a fixed grid based on the size of the CTUs.
In compositions that do not constrain sequences to this grid, misalignment of the
CTU-grids is introduced as seen in Figure 3.2.

CHAPTER 3 33

(a) CTU-grid of video 1 (b) CTU-grid of video 2

(c) Misalignment of grids

(d) Correct CTU-grid of composition

Figure 3.2: Illustration of CTU-grid misalignment in a composition. If the CTU-grids of
(a) and (b) are naively combined in a composition (c), misalignment of the grids occurs in

the middle. The correct CTU-grid of the entire composition should instead be (d).

In this figure, the CTU-grids of both video 1 and video 2 are depicted. When
arranging both videos into a composition, the grid of video 2 (Figure 3.2c) be-
comes misaligned with the grid of the overall composition (Figure 3.2d). In fact,
the correct CTU-grid of video 2 in the composition is shifted by 32 pixels to the
right compared to the original CTU-grid. As such, in the remainder of this dis-
sertation, a shift is defined as the number of pixels in the x- and y-direction that a
CTU-grid of a new version of the video is shifted compared to the CTU-grid in the
original version of the video.

Since coding information in HEVC is determined for each CTU, simply copy-
ing this coding information in order to achieve fast encoding of a composition is
not possible if the CTU-grid is shifted for one or more videos. As such, in or-
der to support flexible, personalized compositions, a more intelligent solution is
necessary for fast re-encoding of misaligned content in HEVC.

The problem of handling misaligned video sequences is classified as transcod-
ing, which is defined as converting one compressed input bitstream to an outgoing
bitstream. A naive cascaded transcoding approach consists of decoding the input

34 PERSONALIZED COMPOSITIONS

bitstream, applying the desired operation, and then re-encoding the video. How-
ever, this re-encoding step is computationally complex, whereas all of the coding
information of the input bitstream is discarded. One way to accelerate this compu-
tationally intensive task is by determining the coding information of the re-encode
in parallel [7, 8]. Another way would be to not completely discard the coding in-
formation of the original input bitstream. Therefore, transcoding techniques focus
on exploiting the information of the input bitstream in order to skip encoding deci-
sions in the re-encoding step [9–11]. Examples of transcoding operations include
spatial downscaling [12, 13], frame rate reduction [14, 15], requantization [16, 17],
and changing the compression format [18, 19].

This chapter proposes an efficient HEVC-based transcoder for spatially mis-
aligned sequences that can be applied to any misalignment of an input sequence.
To achieve this, both a trivial and a machine learning method are presented. The
latter method also introduces a probability threshold, which allows the model to
only apply decisions with a higher confidence than the threshold. This results in
a transcoder that allows a trade-off between complexity and quality depending on
the available resources.

The rest of the chapter starts with a description of related work on transcoding.
Section 3.3 then describes the proposed methods followed in Section 3.4 by an
in-depth analysis of the parameters for the machine learning method. The results
are presented in Section 3.5. Finally, Section 3.6 ends with the conclusion.

3.2 Related work

In other works on transcoding, motion re-estimation is often used in order to reduce
complexity during re-encoding [12, 18]. However, in HEVC, CTUs of 64×64

pixels can be recursively split into CUs which can be as small as 8×8 pixels.
These CUs can then be split further into eight possible PU modes which are used
for inter prediction (or two in the case of intra prediction) and are shown in Figure
3.3. These modes are 2N×2N , 2N×N , N×2N , N×N , and four asymmetrical
partitioning modes, with the size of the entire CU being 2N×2N pixels. With
the first mode, the entire CU consists of one PU of size 2N×2N . For modes
2N×N , N×2N , and the asymmetrical modes, the CU is split into two PUs of a
size as described by the mode. For mode N×N , the CU is split into four PUs.
Consequently, even when motion re-estimation is applied, the most optimal block
structure still needs to be determined.

Another way to reduce complexity is by using mode mapping in order to
limit the amount of partitioning modes that the encoder needs to test. In related
transcoding works, machine learning techniques have often been applied to find
a correlation between coding information of the input bitstream and the parti-
tioning modes of the output bitstream [20–28]. The applied techniques include

CHAPTER 3 35

2Nx2N 2NxN Nx2N NxN

2Nx(N/2) [up] 2Nx(N/2) [down] (N/2)x2N [left] (N/2)x2N [right]

Figure 3.3: Different possible PU partitioning modes for a CU of size 2N×2N in case of
inter prediction.

support vector machines (SVM) [20, 21], decision trees [22–26], and linear dis-
criminant functions [27, 28]. Some of these algorithms have also been compared
to each other, showing that a random forest performed the best in the case of spa-
tial transcoding [29]. Several algorithms have been trained offline [20–26], i.e.,
using a subset of sequences for training and a separate set for evaluation. How-
ever, online-trained models, which are trained on the first k frames of a sequence
and are then applied to the rest of the sequence, are better adapted to the content
of the current sequence [27–29].

Many of the above papers focus on transcoding using older standards than
HEVC. Applying these techniques on HEVC is impossible due to the more com-
plex coding tools of HEVC compared to its predecessors. Despite this differ-
ence in coding tools, some research tries to bridge the gap between the differ-
ent compression technologies by translating an older compression standard to
HEVC [19, 27, 28]. However, because of the big difference in compression stan-
dards, techniques that try to learn these conversions are suboptimal to be used as
transcoding techniques within the same standard.

Transcoding in HEVC itself has been considered for transrating [23] and spa-
tial transcoding [29], but in these cases the encoder has been accelerated only by
limiting CU partitioning decisions. Complexity in HEVC can be further reduced
by also limiting PU partitioning modes, which is part of the proposed method in
this chapter.

None of the above papers have considered transcoding of spatially misaligned
sequences. This type of transcoding in HEVC has only been considered in previ-
ous work by creating a mode mapping model based on an offline-trained decision
tree [26]. This tree was trained for pixel-shifts of 32, 16 and 8 pixels. However,

36 PERSONALIZED COMPOSITIONS

this means that the model is restricted to these shifts, which limits the applicability
and does not allow the end user to freely arrange the videos in the composition.
Moreover, only CU decisions were skipped, meaning that all possible PU parti-
tioning modes are still evaluated for each predicted CU.

As their main novelty, the methods proposed in this chapter overcome the
drawbacks of being restricted to certain shifts and of only accelerating CU deci-
sions. This is achieved by proposing two transcoding methods that can be applied
to all possible pixel-shifts and further improve complexity reduction by predict-
ing PU information as well. Moreover, the second method achieves an improved
trade-off between encoding complexity and compression efficiency.

3.3 Proposed transcoding methods

An efficient transcoder for misaligned sequences is a transcoder that reduces the
complexity of re-encoding while minimizing the loss of compression efficiency. To
achieve this, coding information from the input bitstream can be used in order to
guide the CU structure and PU mode decisions of the shifted output bitstream. This
information is then used during re-encoding to limit the number of evaluations of
CU sizes and PU partitioning modes. However, if the predicted CU structures and
PU modes are not optimal, this might result in a reduced compression efficiency.
Therefore, it is important to have an accurate prediction model for any form of
spatial misalignment.

In this section, the coding information extracted from the input bitstreams is
presented first. This information is then used in two different methods that pre-
dict CU and PU information by detecting whether a block in the output bitstream
should be split. The first is a trivial method based on the correlation between the
input and output block structures and uses the same model for all shifts and se-
quences. On the other hand, the second method generates online-trained machine
learning models, which means that a unique model is generated for each shifted
sequence during transcoding.

3.3.1 Extraction of coding information

To determine the coding information of the shifted video, sixteen features are ex-
amined. These features are based on the coding information of the original video
and are extracted from the input bitstream during transcoding. More specifically,
they are extracted from the co-located input blocks, i.e., the blocks in the input bit-
stream that contain the same block of pixels as the block in the output bitstream for
which coding information needs to be determined. For example, the region of co-
located blocks in the shifted video in Figure 3.4a is marked in red for the original
bitstream in Figure 3.4b. The features used in this chapter are the following:

CHAPTER 3 37

• the fraction of the co-located blocks that are intra-coded (intraFraction)

• the mean, variance, maximum, and minimum CU depth (mean CUdepth,
var CUdepth, max CUdepth, and min CUdepth)

• the mean, variance, maximum, and minimum TU depth (mean TUdepth,
var TUdepth, max TUdepth, and min TUdepth)

• the mean, variance, maximum, and minimum PU depth (mean PUdepth,
var PUdepth, max PUdepth, and min PUdepth)

• the variance of the input motion vectors (mvVariance)

• the mean and the variance of the transform coefficient variance (mean DCTvar,
var DCTvar)

The first of the sixteen features is the intra fraction. This value indicates the
percentage of pixels in the co-located input blocks that are intra-coded. This fea-
ture was selected in order to take possibly different behavior into account that
may depend on the amount of intra-coded blocks in the input bitstream, since
intra-blocks have only two possible PU partitioning modes contrary to inter-coded
blocks, and they do not have any motion vectors either.

Twelve more features are based on the depth of the block structures in the
input bitstream. The depth of a block refers to the number of times a CTU has
been split. Therefore, for Coding Units CUs and Transform Units TUs, depth 0
refers to a block of 64×64 pixels, whereas depth 4 refers to a block of 4×4 pixels.
For PUs, the depth dPU is defined as

dPU =

{
dCU if PUpart size = 2N×2N

dCU + 1 other
(3.1)

with dCU being the depth of the CU to which the PUs belong, PUpart size being
the partitioning size of the PUs, and 2N×2N being one of the eight possible par-
titioning sizes. For each block type (CU, PU, and TU), four features (mean, vari-
ance, maximum, minimum value) are calculated for the depths of the co-located
input blocks. The use of these features is based on the assumption that the CU
structure of a spatially shifted picture will show high correlations with the original
block structures.

Another feature is the motion vector variance, which is defined as

σ2
mv = σ2

x + σ2
y (3.2)

with σ2
x and σ2

y respectively being the variance of the x- and y-component of the
motion vectors in the co-located input blocks. This feature is used to measure the
similarity between the motion vectors of the co-located blocks, since it is assumed

38 PERSONALIZED COMPOSITIONS

that for a small σ2
mv , a good match could be found for the current output block size,

meaning that it will not need to be split. If motion vector variance information is
unavailable (as is the case with intra-coded blocks), it is not used.

The last two features are the variance σ2
DCT and the mean µDCT of the trans-

form coefficient variance, defined as

σ2
DCT = 16σ2

y + σ2
u + σ2

v (3.3)

and
µDCT =

4µy + µu + µv

6
(3.4)

with σ2
i and µi respectively the variance and mean of the i-component of the trans-

form coefficient variance. These features are used since the transform coefficient
variance will be zero if a block in the input bitstream is skipped. This informa-
tion might be useful to combine with motion vector variance to predict splitting
behavior of the output block.

Due to misalignment with the CTU-grid, some of the above features that use
mean and variance need to be weighted. This need for weighting is illustrated in
Figure 3.4 in the case of a shift of 16 pixels in both x- and y-direction. In this
figure, the block for which information needs to be predicted is not aligned with
the CTU-grid of the original input bitstream (the red square does not align with
the black lines). For example, to determine the mean CU depth of the co-located
block, the depth of each CU within the co-located block is multiplied with a weight
determined by the amount of overlap between the co-located block and the CUs in
the original bitstream. The resulting value is then normalized. Consequently, the
mean CU depth is 1.875 in the depicted example.

3.3.2 Trivial method

In the model described in [26], the CU structure is retained for blocks if the shift is
a multiple of the block size for which the splitting behavior needs to be predicted.
E.g. for a shift of 32 pixels, the CU structure of blocks of 32 pixels and smaller
is retained. This rule is based on the high correlation between the CU structure of
the input and output bitstream for certain shifts. However, this specific rule can
only be applied for certain combinations of shifts and block sizes. Since the goal
of this chapter is to transcode any spatially misaligned sequence, the rule based on
correlation between CU structures should be generalized. This is done as follows.

For each CTU in the output bitstream, the CU structure is predicted based on
the mean CU depth of the co-located blocks in the input bitstream. Only if this
value is greater than the CU depth of the currently evaluated output block, the
block is split. The same procedure is recursively applied for the new blocks.

After predicting the CU structure, a higher complexity reduction can be achieved
by predicting PUs as well. For a subset of three sequences (BasketballDrillText,

CHAPTER 3 39

(a) Shifted video

(b) Original

1 2 3

1

011

2
2

3
33

3 3
33

3 3
33

3 3
33

3 3
33

3 3
33

(c) Depths of blocks

4w

w

8w

w
w w

w w
w w

w w
w w
w w
w w

w w
w w

w w
w w

8w

4w

4w

4w

4w 4w

(d) Weights (w = 16)

Figure 3.4: Shift of 16 pixels in both x- and y-direction. To find features for the CU of
64 × 64 pixels in the shifted video, the info from the co-located block marked by the red

square in the original is used. Note that this block is not aligned with the CTU-grid of the
original (black lines in (b)).

FourPeople, and RaceHorses) encoded with quantization parameters 22, 27, 32,
and 37, the PU partitioning mode of each CU size is 2N×2N in at least 77% of
the cases (Figure 3.5). For a full test set of 22 sequences (as shown in Table 3.3),
this mode occurs at least 74%. Therefore, the greatest complexity reduction can
be gained by predicting when a CU should be encoded with this PU mode.

40 PERSONALIZED COMPOSITIONS

0

100

64 x 64 32 x 32 16 x 16 8 x 8

Occurrence (%)

CU size

2Nx2N 2NxN Nx2N Other

11

77

Figure 3.5: Relative occurrence of PU partitioning modes for each block size for a subset
of three sequences. 2N×2N occurs in more than 77% of the cases for all block sizes.

Based on these observations, the trivial method is further expanded for PUs by
examining the PU mode of the co-located input blocks if the output CU is not split.
If the mode of all the co-located blocks of a predicted CU is 2N×2N , only this
mode is evaluated by the encoder. In all other cases, all PU modes are evaluated.

3.3.3 Machine learning method

One of the drawbacks in [26] and other transcoding algorithms based on an offline-
trained model is the reliance on a diverse training set. This might cause the result-
ing model to be too general. This means that the model only takes features into
account that correlate the best with all of the training data. However, the relative
importance of features for determining splitting behavior might be different for
each sequence. Moreover, offline-training is impractical to apply if all forms of
spatial misalignment must be taken into account, since there are 64×64 possible
combinations of shifts.

The second proposed method for predicting CU and PU information over-
comes the above drawbacks by applying an online-trained machine learning al-
gorithm, which is content-adaptive and applicable for all shifts. This machine
learning model is trained on the first k inter-coded frames of a sequence, and cre-
ates a unique model that predicts the block structures of the remaining frames.
Such a model consists of several sets of CU and PU classifiers, one for each block
size in the output bitstream. A CU classifier determines whether a block of that
size should be split (i.e., whether the split flag equals 1, as mentioned in section
2.2), whereas a PU classifier determines if only mode 2N×2N should be tested
by the encoder for a CU that was not split.

CHAPTER 3 41

max_TUdepth <= 1.5

var_DCTvar <= 0.0005

yes

max_CUdepth <= 1.5

no

max_PUdepth <= 1.5

yes

split_flag = 1
distribution = [4 11]

no

...

yes

...

no

var_DCTvar <= 0.0006

yes

mvVariance <= 0.2265

no

...

yes

...

no

...

yes

...

no

Figure 3.6: Example of a decision tree with 756 samples. At each inner node (rectangles),
a rule is evaluated until a leaf node is reached. At the leaf node (ellipse), a decision is

made based on the distribution of split and unsplit samples in the node. Since 11 out of 15
samples were split in the shown leaf node, any test samples that end up in this node will be

split with a confidence of 73%.

The classifiers are trained based on the random forest algorithm [30], since this
algorithm was shown to have the best performance out of several machine learning
algorithms in the case of spatial transcoding [29]. The random forest algorithm
generates multiple decision trees. Each of these decision trees uses only a random
subset of all candidate features and a random subset of all training samples. Such
a single decision tree is built by determining rules in each node with the goal
of maximizing entropy reduction for the given samples [31]. In this chapter, a
node is not split any further if a split would result in a node containing less than
1% of the total number of samples used in the tree. An example of such a tree
is shown in Fig. 3.6. Given an input sample with max TUdepth ≤ 1.5 and
var DCTvar > 0.0005, the tree would predict that the sample is split with a
probability of 73%, since the class distribution shows that 4 training samples were
not split and 11 were split. Implementation-wise, predicting the class of a sample
with a tree can thus be thought of as a large set of if-else statements.

A single tree can be sensitive to noise and outliers in the data. On the other
hand, a random forest has a higher noise robustness due to averaging over the
different trees. Moreover, other machine learning algorithms may have a high
computational complexity, such as SVM [32] with a training complexity of the
order O(n3 · m), with n the number of samples and m the number of features.
On the other hand, random forests have fast training times of the order O(p ·m ·
n† · log(n†)), with p the number of trees. Note that for random forests n† is used
since each tree only uses a random subset of the total number of samples. Due
to this low complexity, random forests are a good fit to use in an online-training
algorithm.

42 PERSONALIZED COMPOSITIONS

In order to predict the output class of a new input sample, after determining the
probability of each possible output class in each of the decision trees, the outcomes
of the trees are combined by using either a voting or an averaging strategy. Since
in this chapter an averaging strategy is used, the probabilities of each tree are av-
eraged to determine the outcome of the random forest with the highest probability.
Due to this averaging, the random forest is less prone to overfitting than a single
decision tree.

Since the implementation of the random forest algorithm used in this chapter
averages the probabilistic prediction of each tree for each class instead of using
the voting strategy, a probability p is obtained for each class [33]. By comparing
this probability with a threshold, only decisions that are more certain than this
threshold will be enforced in the encoder. If the probability is lower than the
threshold, the encoder will evaluate all options. The aim of this threshold is to
allow a trade-off between complexity reduction and quality.

3.4 Parameter analysis for machine learning
In order to obtain good results for the machine learning method presented in the
previous section, it is necessary to analyze the effect of certain parameters on the
performance of the algorithm. This section describes the test conditions used to
evaluate the performance of the transcoding algorithms in this chapter. Under these
conditions, the parameters of the machine learning algorithm are then tested.

3.4.1 Test conditions

Both methods described in Section 3.3 were implemented in version 12.0 of the
HEVC reference software [34]. However, since the algorithms work on a high
level to determine CU and PU structures, they can also be applied to other HEVC
encoders in order to achieve complexity reduction. To evaluate the methods, 22
sequences of varying content and resolution [35] were pre-encoded using a quan-
tization parameter of 22, 27, 32, and 37, with the low-delay configuration using
only P-frames and with a constant quantization parameter for each frame. The
full test set is also shown in Table 3.3. It should be noted that both class E and
F contain special types of content, with E focusing on video conferencing with
static backgrounds, and F containing sequences with special characteristics such
as screen content. All bitstreams were decoded, shifted, and re-encoded with the
same configuration and quantization parameter as the original encoding.

Each test was conducted on a single core of machines running on a dual-socket
octa-core Intel Xeon Sandy Bridge (E5-2670) processor @ 2.6 GHz. For class A,
the transcoding process had access to 6 GB RAM, whereas up to 2 GB RAM was
allowed for transcoding sequences from other classes. Since all tests are executed
under the same conditions, time can be used as a relative measure for complexity.

CHAPTER 3 43

85

86

87

88

89

90

91

92

93

94

0 5 10 15

Number of training frames

Block 64

Block 32

Block 16

Correct predictions (%)

Figure 3.7: Relationship between number of training frames and correct predictions of the
split flag for each block size, averaged over four shifts for three sequences. Between two

and five training frames, the correctness increases by one percent, whereas it stops
increasing after ten frames.

Complexity reduction is determined by comparing the encoding time of the
fast encoder Tfast to the encoding time of the reference encoder Tref in terms of
time saving as defined in equation (2.1).

The difference in compression efficiency is expressed in BD-rate [36]. This
metric shows the average increase in bit rate of a sequence re-encoded with the
fast encoder compared to a sequence re-encoded with the reference encoder for
the same PSNR. The PSNR for a sequence is calculated by decoding a shifted
bitstream and comparing it to the original, uncompressed video.

To shift a sequence L pixels in a certain direction, the picture is first padded
with L pixels at either the top or left edge. Then, rows and/or columns of CTUs
containing padding are cropped in order to avoid any influence of the artificial
padding on the results. Unless stated otherwise, a shift of L pixels refers to shifting
the picture by L pixels in both x- and y-direction.

3.4.2 Parameter analysis

Using the above conditions, the following parameters are analyzed: the size of the
training set, the number of trees in the random forest, and the number of relevant
features. In this analysis, the sixteen features described in Section 3.3 are used as
an initial feature set.

Since more data beats a cleverer algorithm [37], it is important to select a suf-
ficiently large training set. However, since each training frame is fully re-encoded,

44 PERSONALIZED COMPOSITIONS

87

88

89

90

91

92

93

94

0 5 10 15 20 25 30

Number of trees

Block 64

Block 32

Block 16

Correct predictions (%)

Figure 3.8: Relationship between number of trees in the forest and correct predictions of
the split flag for each block size, averaged over four shifts for three sequences. After a

certain number of trees in the forest, the correctness converges to a limit.

the training set should be kept as small as possible. In order to determine the opti-
mal number of training frames, a CU classifier was trained for each block size for
the sequences BasketballDrillText, FourPeople, and RaceHorses. These sequences
were selected from the full set of sequences due to their diverse characteristics.
Four different shifts were applied to each sequence: 0, 8, 16, and 32 pixels in both
x- and y-direction. The number of trees was fixed at 100, and the initial set of
sixteen features was used (mentioned in Section 3.3.1). For each classifier, the
relative amount of correct predictions of the split flag was calculated for the test
frames (Figure 3.7). The correct predictions of the classifier for each block size
increase by 1% between using two1 and five training frames. In terms of compres-
sion efficiency and complexity, this means that the average BD-rate is reduced by
0.33%, whereas the time saving is only reduced by 0.28% due to fully re-encoding
three extra frames. Between five and ten training frames, the increase in predic-
tion correctness is smaller. It is most noticeable for a block size of 64, since the
amount of available samples in each frame is smaller for larger block sizes. The
average BD-rate is only further reduced by 0.1%, whereas the time saving is again
reduced by 0.28%. Beyond ten frames, the increase in correctness becomes negli-
gible compared to the reduction of the time saving. Therefore, ten training frames
will be used.

1Note that the results for one frame are not displayed in the figure because the percentage of correct
predictions is very low. This is because the first inter-frame of the BasketballDrillText sequence is
identical to the first (intra-)frame of the video, meaning that the frame is entirely coded using CUs with
the lowest possible depth (using skip-mode), resulting in irregular behavior for one training frame.

CHAPTER 3 45

An important parameter of the random forest algorithm is the number of trees
in the forest [38]. If the number of trees grows, both the performance and compu-
tational complexity of the algorithm increase. However, after a certain number of
trees, there is no further significant gain in performance, whereas the complexity
continues increasing. The optimal number of trees is determined similarly to the
number of frames, using ten training frames and the same features. On average,
it is observed that the correctness of the predictions converges to a limit after five
trees (Figure 3.8). However, since small fluctuations in the correctness were ob-
served more often when the number of trees is smaller, twenty trees are used in the
rest of this chapter2.

The performance of a machine learning algorithm is also affected by the num-
ber of features [37, 39]. If there are many irrelevant features, the algorithm will
perform worse because of the introduced noise. However, using only a small
amount of features might introduce a larger generalization error. Consequently,
it is important to identify a sufficient number of relevant features. The initial set
of sixteen features was used as a starting point to train the CU and PU classifiers.
Additionally, the same sequences and shifts were used as for the analysis of the
number of frames and trees.

The random forest algorithm allows the calculation of the relative feature im-
portance during training [30]. This value is calculated for each tree in the forest as
the expected fraction of the samples a feature contributes to. Consequently, fea-
tures used in higher decision nodes of the tree will have a greater importance. The
calculated value is then averaged over all the trees in the forest. Finally, the rel-
ative importance of each feature is averaged over all block sizes and tested shifts
(as shown in Table 3.1).

The importances of the features for the CU classifier show that the CU struc-
tures of the co-located blocks have a high correlation with the output CU structure.
Other features related to block structures have a high importance as well. There
is less than 1% difference between the importance of mvVariance, max TUdepth,
and var DCTvar. However, there is a difference of more than 1% in importance
between both the sixth and seventh feature, and ninth and tenth feature. Therefore,
the performance was evaluated for using all sixteen features, as well as for both
nine and six features. On average, for the three tested sequences with four shifts,
the time saving was 71.5% for either amount of features, whereas the BD-rate was
2.74% for sixteen features, 2.76% for nine features, and 3.06% for six features.
Since the compression efficiency for nine and sixteen features is similar, the top
nine features will be used to train the CU classifier for the full test set.

For the PU classifier, motion vector variance appears to have the greatest im-
portance in determining whether a PU in the output bitstream should be encoded

2In terms of training time, this increases from about 500ms for one tree to 750ms for 30 trees, with
some fluctuations due to the shared nature of the used computing cluster.

46 PERSONALIZED COMPOSITIONS

CU classifier

Feature Importance %

mean CUdepth 15.3

max CUdepth 12.7

min CUdepth 11.4

mean PUdepth 11.0

max PUdepth 9.1

mean TUdepth 8.2

mvVariance 6.6

max TUdepth 5.9

var DCTvar 5.7

min TUdepth 3.7

mean DCTvar 3.7

var PUdepth 3.5

var TUdepth 1.3

min PUdepth 1.1

var CUdepth 0.8

intraFraction 0.1

PU classifier

Feature Importance %

mvVariance 28.7

mean PUdepth 18.0

max PUdepth 14.9

min PUdepth 14.7

mean DCTvar 5.7

var DCTvar 3.8

mean CUdepth 2.7

mean TUdepth 2.7

var PUdepth 2.2

var TUdepth 1.8

var CUdepth 1.4

max CUdepth 1.0

max TUdepth 0.9

min CUdepth 0.8

min TUdepth 0.6

intraFraction 0.2

Table 3.1: Relative importance of each feature for a subset of three sequences when
training the CU and PU classifier.

as 2N×2N . Most likely, if the motion vectors in the co-located blocks are sim-
ilar, there is no need to split the CU further into PUs. Information about the PU
structure of the input bitstream also appears to be important in order to determine
the PU partitioning in the output. Since there is a difference of 9% in importance
between the fourth and fifth most important feature, only the top four features will
be used to train the PU classifiers for the full test set.

3.5 Results

In this section, the trivial method and machine learning method are evaluated under
the same test conditions as in the previous section. The compression efficiency of
different shifts is examined, followed by an evaluation of the trade-off between
complexity reduction and coding performance.

CHAPTER 3 47

0

1

2

3

4

5

6

0 8 16 24 32 40 48 56 64

Shift

BD-rate (%)

Figure 3.9: BD-rate (%) for 64 different shifts applied to the sequence BQTerrace. The
behavior between shifts of 0 and 32 appears to resemble a mirrored version of the

behavior between shifts of 32 and 64.

3.5.1 Compression efficiency of shifts

In the following set of experiments, the behavior of predicting the CU structure is
evaluated for all possible shifts, up to a shift of 63 pixels, since 64 pixels equals the
block size of a CTU. This means that all shifts above 64 pixels have an equivalent
shift between 0 and 63 pixels. Similarly, negative shifts are not considered either.
Moreover, as seen with an example sequence (Figure 3.9), the BD-rates of shifts
between 33 and 63 pixels resemble a mirrored version of the BD-rates between 1
and 32 pixels. This behavior indicates that a shift of L pixels is equivalent to a
shift of 64− L pixels. Since a shift of 64−N pixels is similar to applying a shift
of −L, this means that the direction of a shift has no effect on the compression
efficiency. Therefore, only shifts between 0 and 32 pixels will be considered in the
rest of the experiments.

The compression efficiency of the models depends on the shifts (Figure 3.10).
For both the trivial and machine learning model, no shift at all performs the best in
terms of BD-rate, followed by a shift of 32 pixels, and 16 pixels. Since these shifts
better retain the alignment with a grid, the CU structure is preserved better [26].
For example, in case of a shift of 32 pixels, blocks of 32×32 pixels and smaller
might retain their CU structure after shifting. This results in a higher correlation
between the input and output bitstream, and therefore results in a better prediction
model. Since a better model will predict more efficient encoding decisions, the
BD-rate is lower for these shifts.

48 PERSONALIZED COMPOSITIONS

0

1

2

3

4

5

6

7

8

9

0 8 16 24 32

Shift

Trivial Average

Machine average

BD-rate (%)

Trivial

Machine learning

Figure 3.10: Average compression efficiency in BD-rate (%) for the trivial and machine
learning model. Shifts that cause more misalignment with the CTU-grid result in a higher

BD-rate. For these shifts, the machine learning model performs better than the trivial
model.

Compared to the trivial model, the machine learning model results in a sig-
nificantly lower BD-rate for shifts that cause more misalignment with the original
grid of CUs (Figure 3.10). This shows that for such shifts, a complex model is
necessary in order to maintain a good compression efficiency. For shifts of 0 or
32 pixels, the trivial model performs similar to the machine learning model. In
these cases, usage of the trivial model might be preferred due to its simplicity in
implementation.

For both the trivial and machine learning model, a shift of 0 pixels shows an
average BD-rate increase of 1.33%. This is caused by some optimizations in the
HM encoding software that speed up the encoding process [40]. These optimiza-
tions require information that is calculated during CU evaluations that are skipped
by the models. Since this information is not available, this will result in a lower
compression efficiency.

In the previous experiments, shifts of L pixels in both x- and y-directions were
considered. However, in many scenarios it is necessary to shift a sequence asym-
metrically with (L,M) pixels, which consists of an x-shift of L pixels and a y-shift
of M pixels with L6=M . As seen in Table 3.2 for the machine learning model, a
shift of (8, 32) pixels results in a BD-rate of 4.26%, whereas a shift of (32, 8)

pixels results in a BD-rate of 4.12%. On average, the difference in BD-rate be-
tween an (L,M) shift and an (M,L) shift is smaller than 0.2%, suggesting that
both are equivalent. Moreover, the direction of the shift that causes the greatest

CHAPTER 3 49

y-shift

x-shift 0 8 16 24 32

0 1.33 4.05 2.92 4.11 1.96
8 4.05 4.69 4.48 4.72 4.26
16 2.74 4.42 3.18 4.38 2.93
24 4.17 4.71 4.49 4.72 4.27
32 1.76 4.12 3.01 4.20 2.14

Table 3.2: Average BD-rate (%) for asymmetric shifts with the machine learning model.

misalignment with the grid appears to affect the BD-rate the most. For example,
the BD-rate of a shift of (16, 32) is 2.93%. This increases to 4.42% for a shift of
(16, 8). On the other hand, between a shift of (16, 32) and (16, 16), the BD-rate
only increases to 3.18%. For the trivial model, similar behavior was observed.

In all of the above results, the transcoding model predicts the complete CU
structure. This means that the time saving is similar for all shifts, since only a
single CU structure is evaluated by the encoder. Small variations between shifts
may occur if the model predicts large CU sizes more often, since this reduces the
number of evaluated CUs. However, the time saving does not show a correlation
with the shifts, contrary to the BD-rate (see also Table 3.3).

3.5.2 Complexity-scalable prediction

The previous subsection showed that several shifts are equivalent to one another
in terms of compression efficiency. It was also determined that the shifts such
as 0, 32, and 16 pixels that retain alignment with a grid result in a better coding
performance. Moreover, asymmetric shifts are mostly influenced by the direction
of a shift causing the greatest misalignment. Therefore, in this subsection, the
experiments are only conducted for symmetric shifts of 0, 32, 16, and 8 pixels.

As described in Section 3.3, the machine learning method allows setting a
threshold for the confidence of predictions. This allows to trade encoder speed-up
for compression efficiency by only skipping decisions if the confidence is higher
than the threshold. Both a threshold tCU for CU predictions, and a threshold tPU

for PU predictions can be set.
In a first set of experiments, only CU information is predicted, meaning that

only tCU is modified. This threshold was varied from 0.9 to 0.5 with steps of 0.1.
When tCU = 0.5, all predictions are accepted, which results in the highest amount
of speed-up. However, a confidence close to 0.5 means that the decision has a high
probability to be incorrect, which results in a lower compression efficiency. For a

50
P

E
R

S
O

N
A

L
IZ

E
D

C
O

M
P

O
S

IT
IO

N
S

Table 3.3: Results for selected shifts for the full test set. Only CU information is predicted, with tCU = 0.5.

BD-rate (%) Time saving (%)

Class Sequence Resolution Frames Shift 0 Shift 32 Shift 16 Shift 8 Shift 0 Shift 32 Shift 16 Shift 8

A

PeopleOnStreet 3840×2160 150 1.02 1.30 1.77 3.74 64.68 65.93 64.60 67.06
Traffic 3840×2048 300 1.53 2.25 3.13 4.84 75.30 74.65 73.53 74.55

Average 1.28 1.77 2.45 4.29 69.99 70.29 69.06 70.80

B

BasketballDrive 1920×1080 500 1.06 1.68 2.95 4.79 66.96 67.57 69.25 71.75
BQTerrace 1920×1080 600 1.50 2.43 2.75 4.02 71.84 71.78 71.86 72.88
Cactus 1920×1080 500 1.19 1.95 3.57 5.67 70.85 70.93 71.66 73.55
Kimono1 1920×1080 240 1.05 1.81 3.89 3.67 71.22 71.56 71.70 74.53
ParkScene 1920×1080 240 1.41 2.03 2.93 4.64 72.20 72.15 72.24 72.57

Average 1.28 2.06 3.28 4.50 71.53 71.61 71.86 73.39

C

BasketballDrill 832×480 500 0.81 1.36 2.33 4.67 71.60 71.18 69.09 71.54
BQMall 832×480 600 1.20 2.01 2.70 5.05 72.92 72.61 71.35 71.59
PartyScene 832×480 500 0.66 0.91 1.62 3.47 69.33 69.60 68.61 68.46
RaceHorses 832×480 300 1.00 1.37 2.13 3.43 65.80 65.88 65.11 67.60

Average 0.92 1.41 2.20 4.16 69.91 69.82 68.54 69.80

Continued on next page

C
H

A
P

T
E

R
3

51
Table 3.3 – Continued from previous page

BD-rate (%) Time saving (%)

Class Sequence Resolution Frames Shift 0 Shift 32 Shift 16 Shift 8 Shift 0 Shift 32 Shift 16 Shift 8

D

BasketballPass 416×240 500 0.86 1.06 1.88 3.35 67.29 68.37 68.11 66.23
BlowingBubbles 416×240 500 0.73 1.07 1.84 2.99 68.53 68.33 69.57 66.23
BQSquare 416×240 600 0.73 1.38 1.85 2.47 70.97 70.99 71.66 67.56
RaceHorses 416×240 300 0.93 1.54 2.20 3.61 65.21 65.83 66.24 63.44

Average 0.81 1.26 1.95 3.10 68.00 68.38 68.89 65.86

E

FourPeople 1280×720 600 1.89 2.66 4.48 7.15 79.58 78.40 77.93 77.83
Johnny 1280×720 600 2.94 4.56 4.63 5.49 80.20 79.20 79.01 78.81
KristenAndSara 1280×720 600 2.34 3.42 5.00 5.65 79.01 78.16 78.11 78.26

Average 2.00 2.98 4.02 5.35 76.70 76.03 75.99 75.19

F

BasketballDrillText 832×480 500 0.82 1.19 2.15 4.82 71.59 71.48 69.78 71.11
ChinaSpeed 1024×768 500 1.69 2.40 3.24 4.48 58.21 61.83 65.67 67.80
SlideEditing 1280×720 300 1.87 3.30 5.99 5.73 81.34 80.69 81.52 80.93
SlideShow 1280×720 500 1.96 5.38 6.89 9.47 74.43 74.73 75.71 75.75

Average 1.58 3.07 4.56 6.13 71.39 72.18 73.17 73.90

Average for all sequences 1.33 2.14 3.18 4.69 71.32 71.45 71.47 71.82

52 PERSONALIZED COMPOSITIONS

40

45

50

55

60

65

70

75

0 1 2 3 4 5 6 7 8

BD-rate (%)

Time Saving (%)

tCU = 0.9

tCU = 0.5

Machine learning, shift 0

Machine learning, shift 32

Machine learning, shift 16

Machine learning, shift 8

Trivial, shift 0

Trivial, shift 32

Trivial, shift 16

Trivial, shift 8

Figure 3.11: Average trade-off between BD-rate (%) and Time Saving (%) for CU
prediction. Contrary to the trivial method, the machine learning method can trade encoder

speed-up for compression efficiency by modifying the confidence threshold tCU .

shift of 8 pixels, these low confidences appear to occur more often. For example,
at tCU = 0.5 both shift 8 and shift 16 have a similar time saving, whereas at
tCU = 0.9 shift 8 has a time saving of 42% while shift 16 has a time saving of
52% (Figure 3.11). This implies that the machine learning algorithm can predict
more CUs with a high confidence for a shift of 16 pixels. This is likely caused by
the worse misalignment of shift 8 compared to shift 16, which makes it harder for
the algorithm to find a good correlation between input information and the output
CU structure. For shifts 16, 32, and 0, the complexity reduction for tCU = 0.9

is progressively higher, indicating that predictions for these shifts have a higher
confidence.

Figure 3.11 also shows that for a shift of 0 and 32 pixels, the trivial CU pre-
diction method has a slightly higher speed-up than the machine learning method.
However, the latter method only requires half the bit rate overhead for a penalty in
speed-up of only 8% for shift 0 and 5% for shift 32. This makes the machine learn-
ing method useful if bit rate constraints are stricter than the complexity reduction
requirements.

In a second group of experiments, prediction of PU information is allowed as
well. In addition to tCU , tPU is now also varied. When comparing the machine
learning method to the trivial method with both CU and PU prediction, it is ob-
served that the former can achieve a higher compression efficiency for a similar
speed-up if the shift is no multiple of 16 pixels (as seen in Figure 3.12).

When predicting both CU and PU information, time saving increases up to
84% for the machine learning method and 82% for the trivial method compared to

CHAPTER 3 53

70

75

80

85

0 1 2 3 4 5 6 7 8 9 10

BD-rate (%)

Time Saving (%)

tPU = 0.9 tPU = 0.5

Machine learning, shift 0

Machine learning, shift 32

Machine learning, shift 16

Machine learning, shift 8

Trivial, shift 0

Trivial, shift 32

Trivial, shift 16

Trivial, shift 8

Figure 3.12: Average trade-off between BD-rate (%) and Time Saving (%) for prediction of
both CUs and PUs when modifying the confidence threshold tPU . tCU = 0.5 for the

machine learning method. This method achieves a higher speed-up for the same
compression efficiency as the trivial method for shifts that are no multiple of 16 pixels.

the original encoder (Figure 3.12). However, the BD-rate also increases compared
to predicting only CU information (e.g. in Figure 3.13 from 3.17% BD-rate to
4.20% between tCU = 0.5 and (tCU , tPU) = (0.5, 0.9) for shift 16). An expla-
nation for this increase might be that forcing a PU partition of 2N×2N limits the
possibilities for the encoder to correct a non-optimal decision for the CU struc-
ture. If only the CU information is predicted wrongly, the encoder can still correct
this by selecting a PU partitioning that will produce a good match for the motion
estimation.

Although predicting PU information increases the BD-rate, given the right
combination of PU threshold and CU threshold, the complexity-scalable PU pre-
diction can achieve a higher complexity reduction for the same BD-rate as the CU
prediction (Figure 3.13). This suggests that in order to achieve the best perfor-
mance for the machine learning method, both CU and PU information should be
predicted.

3.5.3 Comparison with existing work

In order to show the effectiveness of the proposed complexity-scalable method
for transcoding spatially misaligned sequences in HEVC, the results are compared
to the existing work based on an offline-trained decision tree in [26]. Since this
model only supports transcoding for shifts that are a multiple of 8, the results are
compared for shifts of 32, 16 and 8 pixels.

54 PERSONALIZED COMPOSITIONS

60

65

70

75

80

85

0 1 2 3

BD-rate (%)

Shift 0 - 0.6

Shift 0 - 0.7

Shift 0 - 0.8

Shift 0 - 0.9

Shift 0

Time Saving (%)

tCU = 0.6

tCU = 0.7

tCU = 0.8

tCU = 0.9

CU only

tCU = 0.9 tCU = 0.5

(tCU, tPU) = (0.9, 0.9)

(tCU, tPU) = (0.9, 0.5)

(tCU, tPU) = (0.6, 0.9) (tCU, tPU) = (0.6, 0.5)

(a) Shift 0

55

60

65

70

75

80

85

0 1 2 3 4

BD-rate (%)

Shift 32 - 0.6

Shift 32 - 0.7

Shift 32 - 0.8

Shift 32 - 0.9

Shift 32

Time Saving (%)

tCU = 0.6

tCU = 0.7

tCU = 0.8

tCU = 0.9

CU only

(b) Shift 32

CHAPTER 3 55

50

55

60

65

70

75

80

85

0 1 2 3 4 5

BD-rate (%)

Shift 16 - 0.6

Shift 16 - 0.7

Shift 16 - 0.8

Shift 16 - 0.9

Shift 16

tCU = 0.6

tCU = 0.7

tCU = 0.8

tCU = 0.9

CU only

Time Saving (%)

(c) Shift 16

40

45

50

55

60

65

70

75

80

85

0 1 2 3 4 5 6 7

BD-rate (%)

Shift 8 - 0.6

Shift 8 - 0.7

Shift 8 - 0.8

Shift 8 - 0.9

Shift 8

Time Saving (%)

tCU = 0.6

tCU = 0.7

tCU = 0.8

tCU = 0.9

CU only

(d) Shift 8

Figure 3.13: Comparison between predicting only CU information and both CU and PU
information with the machine learning method when modifying confidence thresholds tCU

and tPU . Predicting both CU and PU information results in a higher speed-up for the
same compression efficiency regardless of the shift.

56 PERSONALIZED COMPOSITIONS

40

45

50

55

60

65

70

75

0 1 2 3 4 5

BD-rate (%)

Time Saving (%)

Proposed method, shift 32

Proposed method, shift 16

Proposed method, shift 8

State-of-the-art, shift 32

State-of-the-art, shift 16

State-of-the-art, shift 8

Figure 3.14: Comparison between the proposed method and state-of-the-art [26]. For any
threshold in the existing work, a better point in terms of time saving or BD-rate can be

found for the proposed method.

The existing work also supports complexity control with the splitting threshold
tsplit and stopping threshold tstop. Threshold tsplit was fixed at 0, since this re-
sults in a good trade-off between BD-rate and time saving, while tstop was varied
from 0.25 to 1 with steps of 0.25. As seen in Figure 3.14, the proposed model
outperforms the existing work for all shifts when predicting only CUs.

Additionally, for a shift of 32 pixels, the difference between [26] and the pro-
posed model is smaller than for a shift of 16 or 8 pixels. This illustrates that the
proposed model can adapt better to more difficult shifts.

3.6 Conclusion

In this chapter, two methods were proposed in order to transcode any spatially
shifted video sequence. First, a trivial method focuses on simplicity of imple-
mentation and results in a general model that can be applied to any shift. A sec-
ond, machine learning method uses the random forest algorithm to create a unique
model for each misaligned video sequence. The coding decisions made by either
method are guided by the coding decisions made by the non-shifted version of the
video in order to speed up transcoding by skipping CU and PU decisions during
the re-encoding step of the shifted sequence.

Evaluation of the methods shows a better performance when the shifts align
with a grid. Additionally, the bit rate increase of asymmetric shifts is mainly de-
termined by the direction that causes the most misalignment. For achieving the

CHAPTER 3 57

highest complexity reduction of 82% with a BD-rate smaller than 3%, the trivial
method can be used for shifts of 0 and 32 pixels. However, for other shifts, the per-
formance of the machine learning method is better. Moreover, the machine learn-
ing method performs best when predicting both CU and PU information, achieving
high complexity reductions for limited bit rate overheads.

In conclusion, using coding decisions from a non-shifted version of the video
in order to guide the encoding of a spatially misaligned sequence succeeds in en-
abling fast encoding for any amount of misalignment of the input videos with the
CTU-grid of the entire composition.

58 PERSONALIZED COMPOSITIONS

References
[1] G.J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview of the High

Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video
Technol., 22(12):1649–1668, Dec. 2012.

[2] J. Ohm, G.J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand. Comparison
of the Coding Efficiency of Video Coding Standards – Including High Effi-
ciency Video Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol.,
22(12):1669–1684, Dec. 2012.

[3] C.-H. Li, H. Lin, C.-N. Wang, and T. Chiang. A fast H.264-based picture-in-
picture (PIP) transcoder. In Proc. IEEE Int. Conf. Multimedia Expo (ICME),
pages 1691–1694, June 2004.

[4] Y. Michalevsky and T. Shoham. Fast H.264 picture in picture (PIP)
transcoder with B-slices and direct mode support. In Proc. IEEE Mediter-
ranean Electrotechnical Conf. (MELECON), pages 862–867, April 2010.

[5] D. Grois, M. Loants, O. Hadar, R. Ohayon, and N. Amram. Ultra-fast live
video-in-video insertion for H.264/AVC. In Proc. IEEE Int. Conf. Consum.
Electron. (ICCE), pages 635–636, Jan. 2013.

[6] J. De Praeter, J. De Cock, G. Van Wallendael, S. Van Leuven, P. Lambert, and
R. Van de Walle. Efficient Picture-in-Picture Transcoding for High Efficiency
Video Coding. In Proc. IEEE Int. Workshop Multimedia Signal Process.
(MMSP), pages 514–515, Sept. 2013.

[7] C. Yan, Y. Zhang, J. Xu, F. Dai, J. Zhang, Q. Dai, and F. Wu. Efficient Parallel
Framework for HEVC Motion Estimation on Many-Core Processors. IEEE
Trans. Circuits Syst. Video Technol., 24(12):2077–2089, Dec. 2014.

[8] C. Yan, Y. Zhang, J. Xu, F. Dai, L. Li, Q. Dai, and F. Wu. A Highly Parallel
Framework for HEVC Coding Unit Partitioning Tree Decision on Many-core
Processors. IEEE Signal Process. Lett., 21(5):573–576, May 2014.

[9] A. Vetro, C. Christopoulos, and H. Sun. Video transcoding architectures and
techniques: an overview. IEEE Signal Process. Mag., 20(2):18–29, Mar.
2003.

[10] I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang. Video transcoding: an
overview of various techniques and research issues. IEEE Trans. Multimedia,
7(5):793–804, Oct. 2005.

[11] J. Xin, C.-W. Lin, and M.-T. Sun. Digital Video Transcoding. Proc. IEEE,
93(1):84–97, Jan. 2005.

CHAPTER 3 59

[12] Y.-P. Tan and H. Sun. Fast motion re-estimation for arbitrary downsizing
video transcoding using H.264/AVC standard. IEEE Trans. Consum. Elec-
tron., 50(3):887–894, Aug. 2004.

[13] V. Patil, R. Kumar, and J. Mukherjee. A Fast Arbitrary Factor Video Resizing
Algorithm. IEEE Trans. Circuits Syst. Video Technol., 16(9):1164–1171,
Sept. 2006.

[14] C.-T. Hsu, C.-H. Yeh, C.-Y. Chen, and M.-J. Chen. Arbitrary Frame Rate
Transcoding Through Temporal and Spatial Complexity. IEEE Trans. Broad-
cast., 55(4):767–775, Dec. 2009.

[15] C.-H. Yeh, S.-J. Fan Jiang, C.-Y. Lin, and M.-J. Chen. Temporal Video
Transcoding Based on Frame Complexity Analysis for Mobile Video Com-
munication. IEEE Trans. Broadcast., 59(1):38–46, Mar. 2013.

[16] J. De Cock, S. Notebaert, P. Lambert, and R. Van de Walle. Requantization
transcoding for H.264/AVC video coding. Signal Processing: Image Com-
munication, 25(4):235–254, Apr. 2010.

[17] L. Pham Van, J. De Praeter, G. Van Wallendael, S. Van Leuven, J. De Cock,
and R. Van de Walle. Efficient Bit Rate Transcoding for High Efficiency Video
Coding. IEEE Trans. Multimedia, 18(3):364–378, Mar. 2016.

[18] Q. Tang and P. Nasiopoulos. Efficient Motion Re-Estimation With Rate-
Distortion Optimization for MPEG-2 to H.264/AVC Transcoding. IEEE
Trans. Circuits Syst. Video Technol., 20(2):262–274, Feb. 2010.

[19] W. Jiang, Y. Chen, and X. Tian. Fast transcoding from H.264 to HEVC based
on region feature analysis. Multimedia Tools and Applications, pages 1–22,
Sept. 2013.

[20] X. Jing, W.-C. Siu, L.-P. Chau, and A.G. Constantinides. Efficient inter
mode decision for H.263 to H.264 video transcoding using support vector
machines. In Proc. IEEE Int. Symposium Circuits Syst. (ISCAS), pages
2349–2352, May 2009.

[21] Z.-G. Liu, Y. Yang, and X.-H. Ji. Fast macroblock mode decision for
H.264/AVC baseline profile video transcoder based on support vector ma-
chines. Multimedia Systems, 18(5):359–372, Oct. 2012.

[22] J.L. Martinez, G. Fernandez-Escribano, H. Kalva, W. A. C. Fernando, and
P. Cuenca. Wyner-Ziv to H.264 video transcoder for low cost video encoding.
IEEE Trans. Consum. Electron., 55(3):1453–1461, Aug. 2009.

60 PERSONALIZED COMPOSITIONS

[23] L. Pham Van, J. De Cock, G. Van Wallendael, S. Van Leuven, R. Rodriguez-
Sanchez, J.L. Martinez, P. Lambert, and R. Van de Walle. Fast transrating
for high efficiency video coding based on machine learning. In Proc. IEEE
Int. Conf. Image Process. (ICIP), pages 1573–1577, Sept. 2013.

[24] G. Fernandez-Escribano, J. Bialkowski, J.A. Gamez, H. Kalva, P. Cuenca,
L. Orozco-Barbosa, and A. Kaup. Low-Complexity Heterogeneous Video
Transcoding Using Data Mining. IEEE Trans. Multimedia, 10(2):286–299,
Feb. 2008.

[25] G. Fernandez-Escribano, H. Kalva, J.L. Martinez, P. Cuenca, L. Orozco-
Barbosa, and A. Garrido. An MPEG-2 to H.264 Video Transcoder in the
Baseline Profile. IEEE Trans. Circuits Syst. Video Technol., 20(5):763–768,
May 2010.

[26] J. De Praeter, J. De Cock, G. Van Wallendael, S. Van Leuven, P. Lambert,
and R. Van de Walle. Efficient Transcoding for Spatially Misaligned Com-
positions for HEVC. In Proc. IEEE Int. Conf. Image Process. (ICIP), pages
2494–2498, Oct. 2014.

[27] T. Shanableh, E. Peixoto, and E. Izquierdo. MPEG-2 to HEVC Video
Transcoding With Content-Based Modeling. IEEE Trans. Circuits Syst.
Video Technol., 23(7):1191–1196, July 2013.

[28] E. Peixoto, T. Shanableh, and E. Izquierdo. H.264/AVC to HEVC Video
Transcoder Based on Dynamic Thresholding and Content Modeling. IEEE
Trans. Circuits Syst. Video Technol., 24(1):99–112, Jan. 2014.

[29] L. Pham Van, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van de
Walle. Performance analysis of machine learning for arbitrary downsizing of
pre-encoded HEVC video. IEEE Trans. Consum. Electron., 61(4):507–515,
Nov. 2015.

[30] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct. 2001.

[31] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[32] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12:2825–
2830, Oct. 2011.

CHAPTER 3 61

[34] Il-Koo Kim, Ken McCann, Kazuo Sugimoto, Benjamin Bross, Woo-Jin Han,
and Gary Sullivan. High Efficiency Video Coding (HEVC) Test Model 12
(HM12) Encoder Description. Technical Report JCTVC-N1002, ITU-T Joint
Collaborative Team on Video Coding (JCT-VC), Aug. 2013.

[35] F. Bossen. Common test conditions and software reference configurations.
Technical Report JCTVC-L1100, ITU-T Joint Collaborative Team on Video
Coding (JCT-VC), Jan. 2013.

[36] G. Bjøntegaard. Calculation of average PSNR differences between RD-
curves. Technical Report VCEG-M33, ITU-T Video Coding Experts Group
(VCEG), Apr. 2001.

[37] P. Domingos. A Few Useful Things to Know About Machine Learning. Com-
mun. ACM, 55(10):78–87, Oct. 2012.

[38] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas. How many trees in a random
forest? In Machine Learning and Data Mining in Pattern Recognition, pages
154–168. Springer, 2012.

[39] I. H. Witten and F. Eibe. Transformations: Engineering the Input and Out-
put. In Data Mining: Practical Machine Learning Tools and Techniques,
chapter 7, pages 285–343. Morgan Kaufmann, 2005.

[40] I.-K. Kim, W.-J. Han, J. H. Park, and X. Zheng. CE2: Test results of asym-
metric motion partition (AMP). Technical Report JCTVC-F379, ITU-T Joint
Collaborative Team on Video Coding (JCT-VC), July 2011.

4
Personalized Views Extracted from

Ultra-High-Resolution Video

4.1 Introduction

A second type of personalization of video bitstreams focuses on guiding coding
decisions of video encoders that each encode a personalized view extracted from
ultra-high-resolution video in order to create a more immersive experience for each
viewer. Such an immersive experience is difficult to create in current consumer
set-ups. After all, watching a live broadcast of an event such as a sports match or
a music concert through traditional television is a static experience. Contrary to
sitting in the stadium or concert hall, the viewer is restricted to a single viewpoint.
As a result, viewers are merely observers who are disconnected from the actual
event. However, with the advent of new technology such as VR glasses, this static
experience will evolve into a more immersive one, making viewers feel as if they
are actually present at the event.

In order to allow users to truly experience this immersion, panoramic or 360-
degree video content is necessary. This will allow the user to look around in the
scene, unrestricted by a single viewpoint, and will thus increase the level of im-
mersion. However, delivery of such video content to the home is not trivial, since
the resolution of this video is far beyond 3840× 2160 pixels, which is the highest
resolution consumer displays and distribution channels currently support. Resolu-
tions beyond this ultra-high resolution lead to even higher bit rates, which cannot
be transported over the limited bandwidth capacity of users at home.

64 PERSONALIZED VIEWS

A common approach to the above problem is to split the high-resolution video
into tiles, which are separately encoded video streams. A subset of these tiles is
then sent to the client depending on the desired view. However, this system still
requires either an extra component that will join the separate video streams into
one for decoding with a standard decoder, or the client needs multiple decoders
to decode the multiple streams. Moreover, depending on the size of the separate
tiles, some tiles will contain pixel data that is not displayed within the current view,
resulting in a waste of bandwidth capacity.

A better solution is to send only the required view to the client. For example,
sending an entire 360-degree video with a resolution of 8192 × 4096 pixels at 30
frames per second encoded with HEVC results in a bit rate of 23.4 Mbps, whereas
sending only a view of 1920×1080 pixels results in a bit rate of 4.2 Mbps, which is
less than one-fifth of the original bit rate. However, since each viewer may be look-
ing at a different region of the video, a separate, personalized video is encoded for
each client. Since encoding is computationally complex, such a system requires a
high amount of resources. Therefore, as the first main contribution in this chapter,
a fast personalized-view approach is proposed in order to reduce the complexity
of each individual encode by using information obtained from a pre-analysis of
the entire ultra-high-resolution video. Such an approach typically results in some
bit rate overhead. As such, the second main contribution in this chapter is to in-
vestigate how the overhead of the personalized-view approach compares to the
tile-based approach.

The remainder of this chapter first gives an overview of the state-of-the-art
in Section 4.2. Section 4.3 then describes the overall architecture of a system
that provides personalized views. The fast encoding of the personalized views is
then presented and evaluated in Section 4.4, with further reductions of complexity
being proposed in Section 4.5. The latter method is then compared to the tile-based
approach in Section 4.6. Finally the conclusion is given in Section 4.7.

4.2 Related work

The traditional approach to provide users with more interactive video, the tile-
based method, has already been thoroughly discussed in the literature [1–4]. This
technique was mostly applied to the H.264/AVC codec. In this approach, the high-
resolution video is downsampled at the server to different resolutions (including
a thumbnail) in order to provide zooming by having multiple resolution layers.
These different layers are then subdivided into a grid of non-overlapping tiles and
encoded. At the user side, the user selects his Region of Interest (RoI) view based
on a thumbnail, which is a low-resolution overview of the entire video, or by using
other input methods such as VR glasses. Next, the tiles contained within and
intersecting with the RoI boundary for the requested resolution are streamed from

CHAPTER 4 65

Figure 4.1: Illustration of the tile-based method. The tile borders are indicated by the
white lines. The red areas are not transmitted to the user. The gray areas indicate the

pixels that are not displayed on the user side.

Figure 4.2: Illustration of the personalized-view method. The red area is not transmitted to
the user. Only the required view is sent to the user side.

the server. These tiles are rendered at the user side and cropped to the appropriate
resolution of the display if necessary.

The tile-based method has several disadvantages. A first disadvantage is that
tiled streaming results in a bit rate overhead due to sending additional pixels out-
side the RoI that are not displayed at the user side, as illustrated in Figure 4.1. This
is because some tiles may partially overlap with the RoI, since the RoI is unlikely
to be aligned with tile boundaries. To reduce these wasted bits, one can reduce the
dimension of the tiles. However, since each tile is encoded independently, small
tiles lead to a lower compression ratio, increasing the number of bits needed for
the RoI [5]. Another disadvantage is that the user also requires a customized video
player to decode, combine and synchronize the tiled streams, which makes this
approach harder to deploy. A third disadvantage is that the tiles need to have an
encoding structure that allows random access, since the tiles can only be decoded
starting from an intra-coded frame. Moreover, the intra-period must be small in
order to allow low-delay panning, which leads to an increase in bit rate due to
the lower compression efficiency of intra-coded frames. Finally, a structural delay
is introduced, since repositioning the RoI to another region is only possible after
decoding all frames within an intra-period. This structural delay can have a neg-
ative impact on very low-delay interactive applications such as viewing the video
through VR glasses.

As a solution to the above disadvantages, a monolithic streaming method has
been investigated by Quang Minh Khiem et al. [6]. In this method, only H.264/AVC
macroblocks that belong to the RoI are sent to the viewer, together with the blocks

66 PERSONALIZED VIEWS

4K 4K

Scale down

Personal
stream 1

Info

Fast Encode

Personal
stream 2

Fast Encode

Full
Encode

Production DistributionProcessing

(x,y,w,h)

(x,y,w,h)

Figure 4.3: System architecture of a multi-viewpoint fast-encoding solution.

in previous frames that are used as a reference for the sent macroblocks. This
results in more bandwidth-efficient streaming compared to the tile-based method.
However, a random access coding structure is still used, meaning that the structural
delay and the bit rate overhead of intra-frames remain.

4.3 System architecture

Due to many disadvantages of the tile-based method, a personalized-view tech-
nique is proposed in this chapter. This technique differs from the tile-based method
by encoding the selected RoI of each user on the fly. Consequently, no extra pixel
overhead is sent to the user, as illustrated in Figure 4.2. Another advantage of the
personalized-view approach is that the user can use a standard decoder and has
very flexible digital pan/tilt/zoom possibilities. A disadvantage is that the method
is not scalable to a large number of users. In order to alleviate this problem, the
encoding complexity of the individual encodes was lowered by reusing coding in-
formation of an encoded full ultra-high-resolution video in order to speed up the
encoding process of the RoI of each user. An overall system architecture that in-
corporates the creation, processing and distribution of these personalized views is
described and depicted in Figure 4.3.

The main goal of this system is to deliver a high amount of simultaneously
encoded videos with different output resolutions, zoom levels and cropping pa-
rameters. In the scenario shown in Figure 4.3, multiple users can request different
personalized views from within the same ultra-high-resolution video. The system
then delivers these personalized HEVC streams encoded by fast encoders to the ap-
propriate client. The coding decisions of these fast HEVC encoders are guided by
the coding information from an HEVC encoder that encodes the entire panoramic

CHAPTER 4 67

or 360-degree video. The overall system consists of three major parts: production,
processing and distribution, with the main focus and contribution of this chapter
lying within the processing step. In the following three paragraphs, each of the
parts of the system will be highlighted briefly.

Production This part of the system describes the creation of the input content.
In Figure 4.3, the content consists of two stitched 4K (3840× 2160 pixels) camera
images. This results in content of about 7680 by 2160 pixels. The creation and
stitching [7] of this content goes beyond the scope of this dissertation. In general,
any content creation process that results in a very high resolution image can be
used as input to this system. Applications may range from sports as depicted in
Figure 4.3, to surveillance and more industrial applications. The output of this step
is directly linked to the processing step.

Processing By using coordinates provided by different users as input to the sys-
tem, the processing step creates different views and encodes them as HEVC bit-
streams ready for distribution to the users. Because a full encode of each view
would result in a computationally complex system that requires one extra full en-
coder per extra viewer, this chapter describes techniques to reduce this overall
complexity. The key idea behind these complexity reducing techniques is the use
coding information extracted from a full encode of the ultra-high-resolution video
in order to guide (and thus accelerate) the coding decisions of the encoders of the
individual, personalized views of the same content.

Distribution The last step in the process is the video distribution. This is the part
where the HEVC encoded bitstream is sent to the consumer devices. Because each
user receives his own personalized view, the video streams can be optimized based
on the device parameters, e.g. tablet users might request content with a full high-
definition (HD) resolution of 1920×1080 pixels, while users wearing VR glasses
require a different resolution. Note that the architecture requires bi-directional
communication between the distribution and processing step due to the cropping
parameters (x- and y- coordinates, and width w and height h of the cropped view
in the figure) being sent from the distribution to the processing. Also note that due
to the interactive nature of the system, the client and his personal encoder should
be synchronized1.

1For example, this synchronization could be done through the use of timestamps sent together
with the video packets, and another timestamp sent from the client to the server to make sure that
the selection of the view gets ignored if some past instructions arrive after future instructions due to
network delays.

68 PERSONALIZED VIEWS

Fast Encoder

Figure 4.4: Accelerated personalized-view encoding. A part of the coding information (on
the right) of the full ultra-high-resolution video is fed to the encoder together with the

cropped view in order to accelerate the encoding of this view.

4.4 Extraction and encoding of views

HEVC uses a block structure as described in Chapter 2 to divide a frame into multi-
ple small coding blocks. Since determining the optimal block structure of a frame
is computationally complex, the encoder complexity can be greatly reduced by
limiting the structures that should be considered. This can be done by exploiting
coding information from the encoding of the original ultra-high-resolution video.
This is illustrated in Figure 4.4, where the CU structure is extracted from the same
location in the ultra-high-resolution video as the personalized view. Both the per-
sonalized view and this coding information are then fed to a fast encoder which
has to make less encoding decisions.

This section further investigates the viability of reusing CU structure decisions
from the full ultra-high-resolution video in order to accelerate the encoding of the
personalized views. The method is first introduced, followed by an evaluation and
short discussion.

4.4.1 Method

When allowing users to select a personalized view of an ultra-high-resolution
video, three major movements within the video are defined. These movements
are similar to the pan, tilt and zoom camera movement known from the field of
image capturing. The first movement is panning within the content. As shown in
Figure 4.5a, the pan operation retains the output size, but shifts the image left or
right on the horizontal axis. The second movement depicted in Figure 4.5b corre-
sponds with tilting. Tilting is similar to panning, except that the motion is upwards

CHAPTER 4 69

(a) Pan

(b) Tilt

(c) Zoom

Figure 4.5: View adaptation conform to camera pan (a), tilt (b) and zoom (c).

70 PERSONALIZED VIEWS

(a) Alignment

(b) Misalignment

Figure 4.6: Difference between spatial alignment (a) and spatial misalignment (b) of
selected views.

or downwards on the vertical axis. Finally, the third and last movement consists of
zooming in or out on the content. As depicted in Figure 4.5c, the zoom operation
creates a smaller image by cropping and shifting the original image while retaining
the same aspect ratio.

Pan, tilt and zoom operations correspond to a combination of cropping, scaling
and shifting the original picture to create a new viewpoint. The outcome of these
operations can result in one of two scenarios for the personalized view: alignment
or misalignment. In a first scenario, as depicted in Figure 4.6a, the view that the
user selects is perfectly aligned with CTU-grid of the original image. In this case,
the block structure of that part of the image can easily be reused, as was also the
case in Chapter 3. However, similar to the creation of compositions in the previous

CHAPTER 4 71

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Spatial Index

Temporal Index

Bosphorus
BundNightscape

Jockey

ParkJoy

Marathon

ReadySteadyGo

Figure 4.7: Description of the chosen test sequences in terms of spatial and temporal
activity.

chapter, misalignment can also occur. In this case, as shown in Figure 4.6b, the
boundaries of the personalized view do not align with existing block boundaries,
making it impossible to simply copy the block structures of the full panoramic
video. Nonetheless, since each view is created from the same input video, there
is a certain amount of correlation between the personalized view and the original
video, which should make it possible to predict CU structures for the personalized
views based on the entire panoramic video.

In order to predict CU structures, a machine learning model is trained on the
first 10 frames of each new view by using the Random Forest algorithm [8]. Since
the problem of misalignment is similar to the case of fast transcoding of compo-
sitions, the same parameters and features are used as in the previous chapter. The
machine learning algorithm thus creates an ensemble classifier from 20 decision
trees, whereas the features are calculated based on the co-located blocks in the full
ultra-high-resolution video.

4.4.2 Evaluation

In order to evaluate the algorithm for fast encoding of personalized views, version
16.3 of the HEVC reference software was modified [9]. The Ultra HD (UHD)
sequences Bosphorus, BundNightscape, Jockey, Marathon, ParkJoy and ReadyS-
teadyGo, which have a resolution of 3840×2160 pixels, were used as the original
video from which personalized views are extracted [10]. These sequences were
chosen from a larger pool of UHD sequences due to their diverse spatial and tem-

72 PERSONALIZED VIEWS

Sequence Fps Description

Bosphorus 120 Camera moves in parallel to follow boat
BundNightscape 30 Fixed camera and small moving objects
Jockey 120 Fast camera pan and zoom to follow horse
Marathon 30 Fixed camera and many moving objects
ParkJoy 50 Camera moves in parallel to follow people
ReadySteadyGo 120 Camera pans to follow action

Table 4.1: Short description of test sequences, including the frame rate in frames per
second (fps). The total number of encoded frames equals ten times the frame rate with a

maximum of 600 frames.

poral activity as measured using the Spatial Index (SI) and Temporal Index (TI)
(Figure 4.7) described in the ITU-T Recommendation P.910 [11]. They are further
described in Table 4.1 and shown in Figure 4.8.

Each UHD sequence was encoded with QP values of 22, 27, 32 and 37. Each
of these versions was encoded using a low delay configuration, which consists
of an I-frame followed by P-frames. This configuration results in a lower delay,
which is a requirement for interacting with personalized views.

To evaluate the proposed algorithm, the differences in compression efficiency
and encoding complexity reduction are measured. The difference in compression
efficiency is expressed in BD-rate [12]. This metric shows the average increase
in bitrate for the same PSNR of encoding a personalized view by reusing infor-
mation from the original UHD sequence (fast encoder) compared to encoding this
view without reusing information (reference encoder). Complexity reduction is
determined in terms of time saving as given by equation (2.1).

In the following subsections, two scenarios are simulated and evaluated. First,
a virtual zoom is simulated, followed by a pan- and tilt-scenario.

4.4.2.1 Simulating zoom

If a user with a 720p screen wants to view a part of the UHD video at the original
resolution, the CU structure of the relevant part of the UHD video can be copied
to encode this personalized view. However, if the user zooms out with a factor
of two, the personalized view should reuse the information from a 1080p version
of the original video. If the user zooms out even further to watch the complete
video on the 720p screen, CU structure information for a 720p version needs to
be determined. To simulate this scenario of zooming, the UHD video is encoded
at three resolutions (2160p, 1080p and 720p) by using coding information of the
UHD video encoded at 2160p.

C
H

A
P

T
E

R
4

73

(a) Bosphorus (b) BundNightscape (c) Jockey

(d) Marathon (e) ParkJoy (f) ReadySteadyGo

Figure 4.8: Ultra HD sequences used in the simulations.

74 PERSONALIZED VIEWS

The results in Table 4.2 indicate that performing a fast encode at resolutions
other than 2160p does not differ greatly in compression efficiency (with the excep-
tion of Jockey) from performing a fast encode of the UHD sequence at its original
resolution of 2160p. This seems to indicate that zoom levels of 1080p and 720p are
indeed viable choices for providing personalized views. Additionally, all versions
also show similar complexity reductions between 69% and 79%.

If the CU structure of encoding the UHD sequence at its original resolution
is predicted, the machine learning algorithm reports a 100% accuracy since the
encoder simply has to copy all of the original CU information. However, the sim-
ulation reported BD-rates between 2.4% and 4.7% (Table 4.2), which is far from
the expected 0%. This behavior was investigated further and can be attributed to
two encoder optimizations in the HM reference software.

The first encoder optimization speeds up inter-prediction of asymmetrical mo-
tion partitions [13]. This optimization uses the PU partitioning size of the parent
CU to decide which asymmetrical motion partitions will be evaluated and whether
full motion estimation will be performed in addition to merge estimation. If the
evaluation of the parent CU is skipped, as is the case with the algorithm proposed
in this section, its PU partitioning size is not known and the existing encoder opti-
mization does not function correctly.

The second encoder optimization provides an extra candidate starting point
for motion estimation [14]. This starting point is based on the motion vector of
the most recently calculated 2N×2N PU with the same reference picture as the
currently tested motion vector. However, if some CU sizes are not evaluated, this
value can be incorrect, leading to less optimal encoder decisions.

4.4.2.2 Simulating pan and tilt

The effects of pans and tilts of the personalized view can be simulated by shifting
the view on the UHD video in x- and y-direction. Since the size of CTUs in this
dissertation is 64×64 pixels, shifts of k pixels are assumed to be equivalent to
shifts of k mod 64 pixels in terms of misalignment. Additionally, a shift of k
pixels is also assumed to be equivalent to a shift of −k pixels. Hence, only shifts
of up to 32 pixels will be evaluated. To simulate these shifts, a view of 3808×2128

pixels is used on the UHD sequences. This view can shift up to 32 pixels in both
x- and y-direction (see also Figure 4.9).

In a first experiment, the relation between shifts in different directions was
investigated. As seen in Table 4.3 for the sequence BundNightscape, an (x, y)

shift shows a similar compression efficiency as a (y, x) shift. For this sequence,
the largest difference can be seen between e.g. a shift of (0,32) pixels with a BD-
rate of 4.6% and (32,0) pixels with a BD-rate of 4.4%. Since the other sequences
displayed similar behavior, only shifts in a single direction are used in the next
experiment.

CHAPTER 4 75

BD-Rate(%) Time Saving (%)

Sequence 2160p 1080p 720p 2160p 1080p 720p

Bosphorus 4.3 4.6 5.1 78.8 77.8 77.4
BundNightscape 4.2 5.5 5.5 79.5 77.9 78.2
Jockey 4.7 8.2 9.3 78.0 77.6 77.5
Marathon 3.2 3.6 2.9 71.0 69.2 69.4
ParkJoy 2.4 2.5 2.1 72.1 69.2 69.2
ReadySteadyGo 4.5 5.6 5.5 77.1 74.3 73.8

Table 4.2: Results of the zoom simulation.

Figure 4.9: To simulate pan and tilt for shifts of up to 32 pixels in both x- and y-direction,
the personalized view shows the complete video with 32 pixels subtracted from both its

width and height.

x-shift

y-shift 0 8 16 24 32

0 4.2 5.7 5.1 5.7 4.4
8 5.7 6.0 6.0 6.2 5.6
16 5.2 5.9 5.4 6.0 5.1
24 5.8 6.2 6.2 6.2 5.9
32 4.6 5.7 5.2 5.7 4.5

Table 4.3: Effect on BD-rate when combining pan and tilt movements, for the sequence
BundNightscape.

76 PERSONALIZED VIEWS

In a second experiment, the effect of misalignment was investigated in detail
for all 32 shifts. As seen in Figure 4.10, some shifts perform better than others.
Shifts of 0 and 32 pixels perform best since they respectively preserve alignment
with the CTU-grid of 64×64 pixels and a CU-grid of 32×32 pixels. Shifts of 16
pixels perform slightly better than surrounding shifts, although this performance
is worse than for shifts of 32 pixels. Depending on the sequence, shifts from 1
to 3 pixels and shifts of 30 and 31 pixels also perform generally better than other
shifts. As in Chapter 3, this is most likely due to very small shifts only introducing
a negligible amount of misalignment for some sequences.

In all of the above results, the fast encoder predicts the complete CU structure.
As seen in Table 4.4, this means that the time saving is similar for all shifts, since
only a single CU structure is evaluated by the encoder. Small variations between
shifts may occur if the model predicts large CU sizes more often, since this reduces
the number of evaluated CUs. Since the complexity reduction is similar for all
shifts, only the compression efficiency should be taken into account to determine
the shifts that should be allowed when selecting personalized views.

4.4.3 Discussion

Although the method proposed in this section allows accelerated encoding of per-
sonalized views by skipping CU decisions based on a predicted CU structure, the
method has several drawbacks. First, the machine learning algorithm requires the
use of training frames. If the content of the video changes greatly, this implies that
the model needs to be retrained, meaning that 10 new frames of the personalized
views need to be fully encoded. However, in the case of many users, this implies a
large spike in computational complexity, which might not be desirable. In order to
avoid these spikes caused by retraining, an offline-trained model might be used in-
stead. However, even if a model for each possible combination of shifts and zoom
levels is implemented in memory, the usage of these models would likely have a
negative effect on the compression efficiency, as has already been demonstrated in
the case of spatial transcoding where content-dependent online models outperform
offline-trained models [15].

Second, by only predicting CU information, the complexity reduction is still
limited. Similar to Chapter 3, the model could be extended to include PU infor-
mation, but by creating a more complicated model, the computational complexity
during retraining would also increase. Therefore, an alternative solution might
be to directly copy coding information from the full panoramic video by always
forcing alignment of the personalized view with the CTU-grid2. As illustrated in

2Note that in the previous chapter, alignment can also be forced. However, this would result in
restricting users to a fixed grid of possible positions for the videos. Since current commercial products
for control rooms generally allow complete freedom of placement, this would thus lead to a loss of a
currently existing feature, which may not be welcomed by all customers.

CHAPTER 4 77

0

1

2

3

4

5

6

7

0 8 16 24 32

Shift

ReadySteadyGo

BundNightscape

Jockey

Marathon

Bosphorus

ParkJoy

BD-rate (%)

Figure 4.10: Effect on BD-rate when panning the virtual camera.

Time Saving (%) (all shifts)

Sequence Average Standard deviation

Bosphorus 79.0 0.2
BundNightscape 79.0 0.1
Jockey 77.4 0.1
Marathon 70.0 0.2
ParkJoy 71.2 0.3
ReadySteadyGo 76.1 0.2

Table 4.4: Time saving when panning the virtual camera.

78 PERSONALIZED VIEWS

Actual visible region

Figure 4.11: When copying coding information for a personalized view, alignment of the
coding information with the CTU-grid can be forced by encoding a slightly larger view

than the one that is actually shown to the viewer.

Figure 4.11, enforcing this alignment is possible by encoding extra pixels that are
transmitted, but are not displayed on the user-side. In order to support zooming
capabilities, the full panoramic video should also be encoded at different resolu-
tions. If necessary, these different versions of the full panoramic video can also
be encoded in an accelerated way by using information from the original in the
same way as in Section 4.4.2.1. This alternative solution with a greater potential
for complexity discussion is further investigated in the next section.

4.5 Further encoding complexity reduction

In the previous section the encoding complexity of the individual encodes was
lowered by reusing coding information of an encoded full ultra-high-resolution
video in order to speed up the encoding process of the RoI of each user. However,
only CUs were reused from the ultra-high-resolution video, resulting in limited
acceleration. As a result, the remaining complexity of each individual encode is
still significant.

In order to further accelerate the individual encodes in the personalized-view
approach, it is necessary to extract prediction mode, PU information, motion vec-
tors, and merge information from the full encode of the ultra-high-resolution video
and use this information in addition to CU information to speed up the encoding
of the individual personalized views. As noted in Section 4.4.3, this is only possi-
ble after forcing alignment of the personalized view with the CTU-grid of the full
panoramic video.

By feeding the encoder with more coding information such as PU information
and motion vectors, more coding steps can be skipped. Consequently, copying

CHAPTER 4 79

Figure 4.12: Selected 1088p RoIs for hockey1 1. The RoIs are marked with their
corresponding notation on the figure. The middle views are indicated by their prefix m.

more coding information of the panoramic video lowers the coding complexity of
the personalized views and thus speeds up the encoding process. However, this
will also lead to less optimal coding decisions since the cropped view lacks the
surrounding pixels, which impacts intra- and inter-prediction at the borders of the
view.

4.5.1 Used content

Contrary to the previous section, where 4K-videos were used due to their greater
abundance, a more realistic scenario with true panoramic content is considered
in the rest of this chapter. The tested content consists of a hockey sports game,
because this type of content has static areas such as the ice hockey field, moving
areas such as the audience, and fast moving parts such as the hockey players. It is
important to have a large range of spatial and temporal variability in the scenes, be-
cause this influences the complexity of the encoding. The hockey content consists
of five sequences, split in two scenes. Only the first sequence of each scene was
used for the evaluation, respectively named hockey1 1 and hockey2 1. Hockey1 1
contains a scene where cheerleaders enter the field, whereas hockey2 1 is a scene
during the match itself. The sequences have a duration of 10s each, at a rate of 60
frames per second. They have a resolution of 10.000×1880 pixels and have been
4:2:0 chroma subsampled.

From the two sequences, static views were chosen that contain different types
of spatial and temporal activity. These views consist of regions that many users
will choose to watch, such as the ice hockey field itself. These selected RoIs are
shown in Figure 4.12. The top and middle views are indicated by their correspond-
ing view numbers as shown in the figure. The middle views, which mostly show
the ice hockey field, are specified by their prefix m. The views with view number
five (5 and m5) were ignored because these do not have the correct RoI resolution.

The RoIs each have a resolution of 1920×1088 pixels (1088p). The reason for
the small deviation from 1080p is to have a multiple of the CTU size in HEVC
in order to have perfect alignment with the CTU-grid of the full panoramic video.
Only static views without zooming are considered in this section.

80 PERSONALIZED VIEWS

0

5

10

15

20

10 20 30

Spatial Index

hockey1_1

hockey2_1

Temporal Index

m00

m0

1

m4

m1
m2

2m3

4

m4

0

m2

4

1

3

m1

2

m33

Figure 4.13: Spatial and temporal information for each view in sequence hockey1 1 and
hockey2 1. The notes beneath the markers specify the particular view. The selected RoIs

cover a variety of spatial and temporal activity.

In order to have a better indication on how much spatial and temporal informa-
tion each view contains, the SI and TI values have been calculated for the different
views. As seen in Figure 4.13, the RoIs have a large variety of TI/SI values, which
corresponds with the assumption that views with different types of motion and
spatial details are considered.

4.5.2 Evaluation

For the personalized-view method both the entire panoramic video and the RoIs
were encoded. All encodings were done with version 16.5 of the HM software.
Both the full panoramic video and all cropped views were encoded with four dif-
ferent QP values: 22, 27, 32 and 37.

All the views for both the non-accelerated reference encode and accelerated en-
codings were encoded with a low-delay configuration, meaning that the sequence
is encoded with an I-frame, followed by all P-frames. This configuration was
chosen since, contrary to the tiled-based approach which requires many random
access points, each user has a personalized view and encoder instance. Therefore,
the cropped region of the raw panoramic video (views) can be fed to one encoder
instance for each user. It does not need I-frame refreshes because the user con-
tinues to use the same personalized stream. This configuration results in a lower
delay, which is an important requirement for interacting with personalized views.
For the tile-based method, a random access configuration would be needed be-
cause all the tiles can be retrieved by all users at any time and any position that
corresponds with their selected RoI.

CHAPTER 4 81

In order to evaluate the performance of the proposed personalized view method,
bit rate overhead and encoder complexity reduction were evaluated. The bit rate
overhead was again measured using the BD-rate, whereas the complexity reduc-
tion was calculated using the time saving metric.

Table 4.5 shows that by reusing only CU information the BD-rate is between
4.9% and 7.4% for the selected views with a time saving of around 79%. This time
saving is comparable to the complexity reduction reported in Section 4.4. How-
ever, reusing CU info in combination with mode, PU and motion vector decisions
increases this complexity reduction to more than 96.5%. In this case, the BD-rate
is between 8.3% and 19.5%. How these values compare to a tile-based approach
is further investigated in the next section.

Finally, copying merge (with skip) information results in irregular behavior for
all views except for view 0. Merge mode typically copies motion vectors from
spatially or temporally adjacent blocks, as illustrated in Figure 4.14. In this figure,
the blue block has a merge candidate list containing references to blocks D, B,
C, A, and the temporal neighbor in this order. Note that this candidate list is not
encoded into the bitstream, but is instead derived in both the encoder and decoder
based on the availability of neighboring blocks. Only the merge index is actually
stored in the bitstream as coding information. If this index is 0, this means that the
motion vectors from block D are copied for the blue block. However, if the coding
information of the entire panoramic video is used to encode a personalized view
(the cropped region indicated by the orange rectangle in the figure), block D is no
longer available, meaning that the copied merge index 0 will refer to the first avail-
able block, which is block B. Since motion vectors are then copied from the wrong
block, the predicted block will differ a lot from the original picture. Moreover, in
case of skip-mode when no residual picture is encoded, this predicted picture can-
not be compensated by the residual. Due to this lack of residual, the block will
resemble an incorrect area of the picture, eventually propagating throughout the
video and leading to the afterimages shown in Figure 4.15. As a result, despite
offering higher complexity reduction beyond 99%, merge information should not
be copied in a personalized-view scenario.

4.6 Comparison with the tile-based method

The second main contribution of this chapter is to compare the tile-based method
and the personalized-view method in terms of bit rate and PSNR for particular
views. The bit rate should be low in order to make the interactive video system
usable for clients with a limited bandwidth capacity. However, the PSNR should be
high to have a good video quality for the RoI. In order to provide a fair comparison,
several tile sizes of the tile-based approach were selected.

82 PERSONALIZED VIEWS

A B C

(E)

D

Figure 4.14: Under normal circumstances, if merge- or skip-mode is used for the blue
block, it will have a merge candidate list consisting of [D,B,C,A,...]. If the merge index of

this block is 0, the motion vector information of block D will be copied for this block.
However, if the video is cropped (indicated by the orange rectangle), block A and D can no

longer be a part of the merge candidate list and the merge candidate list will thus start
with [B,C,...]. As a result, the blue block with merge index 0 thus mistakenly copy the

motion vectors of B instead.

Figure 4.15: Illustration of afterimage-effect caused by copying unavailable blocks in the
cropped views with merge/skip mode. Affected regions where afterimages are seen are

marked with red rectangles.

C
H

A
P

T
E

R
4

83

BD-rate (%) Time saving (%)

Sequence View CU + mode + PU + motion + merge CU + mode + PU + motion + merge

0 7.4 8.4 15.6 19.5 22.1 78.3 79.5 92.9 96.5 99.2
hockey1 1 m1 7.2 8.9 16.5 17.7 1164.1 80.7 81.0 93.1 97.3 99.5

m4 6.1 8.0 15.0 16.2 278.6 78.1 79.3 92.6 96.6 99.2

hockey2 1
m1 5.5 7.3 13.2 13.7 862.9 79.2 79.7 92.6 96.8 99.3
m3 4.9 6.0 9.5 8.3 -98.9 81.2 81.8 93.4 97.5 99.6

Table 4.5: BD-rates and Time Savings obtained by supplying different coding information. The columns incrementally represent the type of coding
information that is reused from the panoramic video.

84 PERSONALIZED VIEWS

For the tile-based approach, the panoramic sequences were split into different
tile sizes. The choice was made to pick 16:9 tile resolutions, because the RoIs
are also close to 16:9 and this is a common aspect-ratio. The tested tile sizes were
1280×720, 1024×576, 640×360, 256×144 and 128×72 pixels. Next, these tiles
were compressed using HM 16.5 as was done for the personalized-view method.

The tiles need to provide random access in order to allow changing of the
RoI at any time as the tiles are pre-encoded on the server. Therefore, a random
access configuration was chosen. This configuration consists of a structure of I-
frames followed by B-frames that repeats every intra-period. This intra-period was
selected as 32 frames, because this corresponds to a delay of 0.5s. Note that this
is still a considerable amount of maximum delay when other tiles are selected,
e.g. when another RoI is chosen. However, a smaller intra-period would result
in higher bit rates due to worse compression of I-frames compared to B-frames.
All tiles were encoded with the same four different QP values as in the previous
section (22, 27, 32 and 37).

In the following subsections, the tile-based method and the personalized-view
method are subsequently compared in terms of bit rate and PSNR, followed by a
discussion.

4.6.1 Bit rate comparison

For the personalized-view method, the bit rates are retrieved from the encoding
step with different coding information supplied to the encoder. For the tile-based
method, the bit rates are calculated as the sum of the tiles of one particular tile
size that (partially) overlap with the corresponding view. Figure 4.16 shows the
bit rates of both methods and of the non-accelerated personalized-view encode for
hockey1 1 view m4. This view represents the plain white ice hockey field, the
cheerleaders and the audience.

When both methods are compared, the bit rates of the personalized-view method
are lower than the bit rates of the tile-based method. For example, in Figure 4.16,
a bit rate of 6.83 Mbps is seen for QP 22 for which the cropped CU coding in-
formation of the panoramic video is reused, whereas 144p tiles have a bit rate of
around 9 Mbps for QP 22. As seen for each QP, the bit rate of the personalized-
view method remains below the bit rate of the tile-based method, even despite the
overhead caused by accelerating the encoding of the personalized views. The rea-
son for this difference is likely due to overhead caused by encoding a video with
separate tiles. Because of the separate tiles, decisions such as motion estimation
are constrained to the tile itself. As a result, if an object leaves the tile, it will be
encoded less efficiently. Moreover, the tile boundaries will usually not match the
boundaries of the selected view. As a result, extra pixels outside the view are also
encoded, which further increases the bit rate overhead.

CHAPTER 4 85

Non-accelerated

CU

+ mode

+ PU
+ motion

+ merge

Personalized view method Tile-based method

Figure 4.16: Comparison between the tile-based method with different tile sizes and the
personalized-view method in terms of bit rate for hockey1 1 view m4 with the

personalized-view method using a low-delay configuration.

In the above comparisons only static views are considered, but it is expected
that the personalized-view method will further outperform the tile-based method
in terms of bit rate when panning and tilting are taken into consideration. In such a
scenario, all tiles covered by a dynamic view during the same intra-period need to
be retrieved. If the user completely changes the RoI within this intra-period, the bit
rate will at least double during this period since both the tiles corresponding to the
old and new RoI will have been transmitted. Moreover, extra latency is introduced,
since the current frame can only be decoded after all reference frames of the tiles
corresponding to the new RoI have been retrieved.

4.6.2 PSNR comparison

Another important aspect to compare with is quality, which is measured in PSNR.
The mean PSNR for the tile-based method was calculated by first transforming all
the PSNR values back to the Mean Squared Error (MSE). Then, the average of
all the MSE values, temporally and spatially corresponding to each tile size and to

86 PERSONALIZED VIEWS

Non-accelerated

CU

+ mode

+ PU
+ motion

+ merge

Personalized view method Tile-based method

Figure 4.17: Comparison between the tile-based method and the personalized-view
method in terms of PSNR for hockey1 1 view m4.

each QP that covers the view, was calculated and transformed back to PSNR. Since
PSNR∝ 10 log10(MSE), averaging MSEs instead of PSNR tends to penalize more
if a single tile has a low PSNR. Consequently, minimizing such an average tends
to enforce a more constant PSNR over the different tiles.

Figure 4.17 presents the PSNR of both methods for hockey1 1 view m4. This
figure shows that the tile-based method for all the tile sizes performs better in terms
of PSNR than the personalized-view method. For QP 32, the PSNR is around 39
dB when the cropped CU, mode and PU coding information of the panoramic
video is reused, whereas the 144p tiles have a PSNR of around 40 dB for QP
32. Similar behavior is seen for the other views. Note that for the personalized-
view method the PSNR drops significantly when merge coding information is also
reused from the panoramic video.

The reason of the increased PSNR might possibly be that the smaller tile sizes
do not use skip-mode as often as the larger tile sizes, since they have less neigh-
boring blocks to copy the motion information from. Instead, they are more likely
to perform motion estimation to calculate new motion vectors, and might also split
the CUs into PUs for which a better match can be found than for the complete CU

CHAPTER 4 87

Figure 4.18: Illustration of tiling artefacts at QP 37. The tile borders are indicated by the
white ticks.

with skip-mode. Moreover, contrary to skip-mode, a residual picture is calculated
for the resulting block, which compensates for errors between the original and the
motion-compensated picture and thus results in a larger PSNR value.

However, note that, although the PSNR of the tile-based method appears to be
higher, inter-tile artefacts are visible at higher QP-values for the tile-based method
as a blocking effect at the border of each tile (illustrated in Figure 4.18). These
are not taken into account with the PSNR metric, despite lowering the subjective
visual quality.

4.6.3 Discussion

In previous subsections, bit rate and PSNR were considered separately. However,
in Figure 4.19, the optimal tile size (144p) and fastest personalized-view method
(accelerating both CU, PU, mode, and motion decisions) are compared. Addition-
ally, the non-accelerated personalized-view approach is shown as well.

The figure shows that the accelerated personalized-view method performs bet-
ter compared to the tile-based approach in terms of compression efficiency in the
lower bit rate range (under 3 Mbps for hockey1 1 view m4). However, in the range
of higher bit rates, both perform similar. Therefore, for static views as tested in
this chapter, the tile-based method might be a better approach in terms of scala-
bility for many users, since the tiles only need to be encoded once. Nevertheless,
the non-accelerated personalized-view method is still more compression-efficient,
since it does not suffer from the overhead introduced by the guided encoding, and
does not have any tiling overhead either. As such, for a small amount of users,

88 PERSONALIZED VIEWS

36

37

38

39

40

41

42

43

44

0 2 4 6 8 10 12

Non-accelerated

+ motion

144p

Non-accelerated (personalized view)

+ motion (personalized view)

144p (tile-based method)

Bit rate (Mbps)

PSNR (dB)

Figure 4.19: Comparison in terms of both bit rate and PSNR between the
personalized-view approach and the tile-based method for hockey1 1 view m4.

and if computational power is not much of a concern, the non-accelerated person-
alized views or the personalized-view method that only accelerates CU and/or PU
and mode decisions (and thus has a smaller BD-rate overhead compared to also
accelerating motion) might be better choices.

Note that, as was mentioned in Section 4.6.1, the personalized-view method
would not suffer from the structural latency or the extra bit rate overhead when
considering dynamic views. Therefore, it is likely that even accelerations up to mo-
tion information will outperform the tile-based approach when considering move-
ment of the view. However, in order to test this, motion vectors can no longer
be simply copied from the full panoramic video, and should thus be modified to
compensate for the movement of the view. Moreover, special care might need to
be taken for motion vectors that point to non-existent blocks due to the movement.
Furthermore, in order to have a fair comparison with the tile-based approach, dif-
ferent intra-periods besides the 0.5s as tested for static views should be tested
as well, since this affects both the structural latency and bit rate overhead of the
tile-based method. Finally, if the coding decisions of the guided encoding can be
further refined, and in particular if merge decisions can be handled better by for ex-
ample using different strategies for blocks at the boundaries of the cropped views,
the performance of the accelerated personalized-view method might still increase.
However, these further investigations are left as future work.

CHAPTER 4 89

4.7 Conclusion
In this chapter, a fast personalized-view method for delivery of interactive views
from immersive video content was proposed. An initial method that accelerated
the encoding of the personalized views by using CU structures predicted from the
entire panoramic video was applicable for any location of the RoI. However, this
method was limited in complexity reduction and may require a computationally
expensive retraining of the machine learning algorithm during encoding. There-
fore, a second method consisting of directly copying coding information from the
entire panoramic video was also investigated by forcing the RoI to be aligned with
the CTU-grid of the entire video.

The second method was then compared to the tile-based method. This compar-
ison showed that reusing coding information obtained from a panoramic video to
accelerate the encoding of each personalized view with 95-98% results in a bit rate
overhead of 8-20%, which is still smaller in terms of bit rate overhead compared
to the tile-based method. Moreover, since personalized, guided encoders do not
suffer from the same structural latency as the tile-based method if the system were
to be extended to dynamic views, such encoders could especially become a viable
alternative for the tile-based approach in low-latency scenarios.

90 PERSONALIZED VIEWS

References

[1] A. Mavlankar and B. Girod. Spatial-Random-Access-Enabled Video Coding
for Interactive Virtual Pan/Tilt/Zoom Functionality. IEEE Trans. Circuits
Syst. Video Technol., 21(5):577–588, May 2011.

[2] N. Quang Minh Khiem, G. Ravindra, and W. T. Ooi. Adaptive encoding of
zoomable video streams based on user access pattern. Signal Processing:
Image Communication, 27(4):360–377, 2012.

[3] V. Reddy Gaddam, H. B. Ngo, R. Langseth, C. Griwodz, D. Johansen, and
P. Halvorsen. Tiling of panorama video for interactive virtual cameras: Over-
heads and potential bandwidth requirement reduction. In Picture Coding
Symposium (PCS), pages 204–209, May 2015.

[4] Y. Umezaki and S. Goto. Image segmentation approach for realizing
zoomable streaming HEVC video. In Int. Conf. Inf. Commun. Signal Pro-
cess. (ICICS), pages 1–4, Dec. 2013.

[5] P. R. Alface, J. F. Macq, and N. Verzijp. Interactive omnidirectional video
delivery: A bandwidth-effective approach. Bell Labs Technical Journal,
16(4):135–147, Mar. 2012.

[6] N. Quang Minh Khiem, G. Ravindra, A. Carlier, and W. T. Ooi. Support-
ing Zoomable Video Streams with Dynamic Region-of-interest Cropping. In
Proceedings of the First Annual ACM SIGMM Conference on Multimedia
Systems, MMSys ’10, pages 259–270, 2010.

[7] C. Fehn, C. Weissig, I. Feldmann, M. Muller, P. Eisert, P. Kauff, and H. Bloss.
Creation of High-Resolution Video Panoramas of Sport Events. In Proc.
IEEE Int. Symposium Multimedia (ISM), pages 291–298, Dec. 2006.

[8] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct. 2001.

[9] K. McCann, C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. Sulli-
van. High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved
Encoder Description. Technical Report JCTVC-S1002, ITU-T Joint Collab-
orative Team on Video Coding (JCT-VC), Oct. 2014.

[10] L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia. The SJTU 4K video se-
quence dataset. In Proc. IEEE Int. Workshop Quality Multimedia Experience
(QoMEX), pages 34–35, July 2013.

[11] ITU-T. Subjective video quality assessment methods for multimedia applica-
tions. Technical Report Rec. P.910, Apr. 2008.

CHAPTER 4 91

[12] G. Bjøntegaard. Calculation of average PSNR differences between RD-
curves. Technical Report VCEG-M33, ITU-T Video Coding Experts Group
(VCEG), Apr. 2001.

[13] I.-K. Kim, W.-J. Han, J. H. Park, and X. Zheng. CE2: Test results of asym-
metric motion partition (AMP). Technical Report JCTVC-F379, ITU-T Joint
Collaborative Team on Video Coding (JCT-VC), July 2011.

[14] B. Li and J. Xu. On motion estimation start point. Technical Report JCTVC-
R0105, ITU-T Joint Collaborative Team on Video Coding (JCT-VC), July
2014.

[15] L. Pham Van, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van de
Walle. Performance analysis of machine learning for arbitrary downsizing of
pre-encoded HEVC video. IEEE Trans. Consum. Electron., 61(4):507–515,
Nov. 2015.

5
Guided Encoding of

Personalized Dynamic-Range Video

5.1 Introduction

A third type of personalization in this dissertation consists of adapting the dynamic
range of the bitstream to the capabilities of the receiving device. HDR technology
is an emerging technology that consists of the capturing and displaying of a higher
range of luminance than before [1]. For example, an HDR-display will be able to
achieve a brightness of more than 4000 nits (candela per square meter), whereas
a traditional high-definition television only reaches a brightness of 400 nits. This
higher range of brightness improves the potential contrast of images and videos in
such a way that the image corresponds better to what would be seen through the
human eye instead of a camera.

Due to limitations in display technology and because the reference luminance
value of HDR has not been decided yet, television manufacturers are currently
producing televisions with an output luminance between 400 and 1000 nits. How-
ever, as technology continues to evolve, this luminance will increase further. As
a result, consumers will be left with a wide array of televisions with different dy-
namic range capabilities. This will pose a challenge to the content providers, since
displaying an HDR video on a display with a lower dynamic range requires the
use of tone mapping algorithms [2–6]. These algorithms map an HDR video to a
low-dynamic-range (LDR). However, if the tone mapping is done by the consumer
television, each television might implement a different algorithm. As a result, al-

94 PERSONALIZED DYNAMIC-RANGE

most no consumers will view the video in the way as the content provider intended,
which can negatively influence the reputation of the provider if the HDR video is
not optimally mapped to LDR.

A better solution for the content provider is to create multiple versions of the
HDR video with different (lower) dynamic ranges. In this way, the provider can
ensure that each consumer will receive a video that the target device is capable
of displaying without additional tone mapping. However, this also means that the
content provider needs to perform video compression, a computationally complex
operation, on multiple versions of the same video. Since encoding of HDR con-
tent is expected to be done with the HEVC standard, which has a much higher
computational complexity compared to older standards, the problem of the high
computational encoding cost will be even greater.

To solve this problem, this chapter proposes to reuse coding information from
the HDR video to guide the encoding of the LDR versions. In order to achieve this,
the correlation between coding information of HDR and LDR videos encoded at
different qualities is first examined. This correlation is then used to create a model
that determines the LDR video correlating the most with the HDR video from
which coding information is reused.

As its main contribution to the state-of-the-art, this chapter allows simultane-
ous encoding of multiple dynamic range versions of a video for approximately the
same computational cost as a single encoder. Additionally, it also measures the
trade-off between compression efficiency and computational complexity by vary-
ing the amount of coding information of the HDR video that is reused for encoding
the LDR versions of the same video. This allows content providers to make a de-
cision between having either a higher bit rate overhead or a higher computational
complexity.

The rest of this chapter is organized as follows. Section 5.2 gives a short
overview of related work on HEVC encoder acceleration and simultaneous en-
coders. In section 5.3, the analysis of the HDR and LDR video and the creation of
the model are presented. Section 5.4 then evaluates the performance of the model
and the use of different types of coding information. Finally, the conclusion is
found in section 5.5.

5.2 Related work

As was also mentioned in section 2.2 , since all coding information needs to be
evaluated for each CU, most work that accelerates HEVC encoders focuses on
early termination of CU splitting or determining the optimal CU structure of the
compressed video [7–13]. Other research also accelerates the encoder by limit-
ing the PU partitioning modes [14] and TU splits [15], sometimes in combination
with early termination of CU splitting [16, 17]. Finally, some works also focus on

CHAPTER 5 95

accelerating intra mode evaluations in intra frames [18, 19], or fast skip mode de-
cisions [20]. However, in most of these works, keeping the compression efficiency
as high as possible is favored over great reductions in encoding complexity.

The above works all focus on reducing the complexity of an encoder that en-
codes a single sequence. However, recent research has begun to focus on multi-rate
or simultaneous encoders where coding information of one version of a video is
used to speed up encoding of other versions. In the past, multi-rate encoding for
older compressions standards has been considered for VP8 by reusing motion in-
formation between versions encoded at different bit rates [21, 22]. More recently,
a simultaneous encoder of H.264/AVC and HEVC reuses motion vectors [23] or
uses block structures from H.264/AVC to predict CU and PU decisions in order to
accelerate the encoding of an HEVC version [24].

Simultaneous encoding of different versions that are encoded with HEVC have
been considered as well. These focus on different video representations for adap-
tive streaming by either considering different versions at the same resolution [25],
versions with different spatial resolutions [26], or a combination of both [27].
However, all these methods focus on accelerating CU decisions, which limits the
complexity reduction they attain. As a result, the multiple versions that are gener-
ated still require a sizeable amount of processing complexity.

Contrary to the aforementioned papers, this chapter reduces the complexity
as much as possible in order to have a simultaneous encoder that can generate
multiple versions with negligible computational cost compared to a single encode.

5.3 Proposed method

This section first describes the simultaneous encoder architecture. Next, it analyzes
the correlation between the coding information of HDR and LDR versions of the
same video. Based on this information, a model is built to estimate the version
which has the highest correlation.

5.3.1 Simultaneous encoder architecture

The proposed simultaneous encoder architecture is shown in Figure 5.1. Several
input videos are fed to the simultaneous encoder which consists of several sub-
encoders. The HDR encode is the video with the highest dynamic range of the
supplied versions. Videos with lower dynamic ranges are denoted as LDR.

The HDR version is fully encoded. As such, the optimal combination of coding
information such as CU, PU, and TU structures, as well as inter- and/or intra-
prediction information is determined for each CTU. Whenever the information for
a complete CTU is determined, (part of) this information is supplied to the LDR
encoders. These encoders proceed to encode the CTU at the same location in

96 PERSONALIZED DYNAMIC-RANGE

Full encode
HDR (4000 nits)

Fast encode
LDR (1000 nits)

Fast encode
LDR (100 nits)

Input videos
Output
videos

HDR
coding info

Figure 5.1: Proposed simultaneous encoder architecture. The HDR version of the video is
fully encoded, whereas the encoding of the other versions is accelerated by using

information from the full encode.

these different versions. The encoding of these versions is accelerated by using
the supplied coding information of the HDR version.

Since the coding information from the HDR encoding is directly passed to the
LDR encoders with a delay of at most one CTU, this means that the encoding of
the different versions happens at the same time. As a result, no extra memory is
required to store the HDR coding information. The memory requirements of the
proposed simultaneous encoder are therefore the same as when running a separate
encoder for each version on the same machine.

Note that the simultaneous encoder could also use an LDR encoder at a lower
dynamic range to speed up the encoding of the higher dynamic ranges. However,
since speeding up encoders usually results in a decrease of quality for the same
bit rate, and since content providers are likely to prefer having the best possible
quality for the HDR sequence, the HDR sequence is always fully encoded.

5.3.2 Analysis of HDR and LDR coding information

In order to determine the feasibility of using HDR coding information to accelerate
the encoding of an LDR version of the same content, the correlation between cod-
ing information of HDR and LDR content was investigated. This analysis was per-
formed on three video sequences provided by MPEG [28]. Only three sequences
had both HDR (4000 nits) and LDR (100 nits) versions available at the time of
writing. The first frame of each sequence is displayed in Figure 5.2. These se-
quences are the following:

CHAPTER 5 97

Market Fire Balloon

Figure 5.2: First frame of each video sequence used in this chapter.

Sequence Number of frames Frame rate (fps) Intra-period

Market3Clip4000r2 400 50 48
FireEater2Clip4000r1 200 25 24
BalloonFestival 240 24 24

Table 5.1: Overview of sequences and parameters

• Market (Market3Clip4000r2) consists of a street market with some pedes-
trians in the left corner of the image and clothes waving in the wind in the
right corner while the camera slowly pans from left to right.

• Fire (FireEater2Clip4000r1) consists of a night scene with two fire jugglers
and a fire breather performing a show.

• Balloon (BalloonFestival) consists of a scene with many people walking in
the bottom part and with a skyline and balloons in the upper part.

For each of the three video sequences, both an automatically and manually
color-graded version were available. Automatic color-grading means that the HDR
version has been converted to an LDR version by using a tone mapping algorithm
as mentioned in section 5.1. With manual color-grading on the other hand, the
colors of the video are manually tuned by a professional grader to achieve the best
visual quality. However, since manually color-grading a large amount of different
LDR versions is costly, content providers may prefer to select an automatic color-
grading algorithm to generate the LDR versions of the video. In order to simulate
this scenario, this chapter will primarily focus on the automatically color-graded
videos.

For each sequence, the HDR version and its corresponding automatically color-
graded LDR version were encoded with HM version 16.5 [29] with QP values
ranging from 18 to 42. As an encoder configuration, the 10-bit random access
configuration was used with an intra-period of approximately 1 second, which is

98 PERSONALIZED DYNAMIC-RANGE

common in adaptive streaming scenarios used by content providers. An overview
of the encoding parameters is given in Table 5.1.

Since both an LDR and HDR version are still based on the same video content,
there might be some correlation between coding decisions made when encoding
both versions. However, since the values of the pixels between the two versions
are different (e.g. with clipping of pixel values occurring in very dark or very
bright regions in the LDR version), it is unlikely that the highest correlation is
found when using the same coding parameters for both. Therefore, the correlation
between the HDR and LDR versions of the video is investigated for different QP
values.

CU information is used to determine this correlation between the different
HDR and LDR versions of each sequence, since all other coding information de-
pends on CU structures as explained in section 2.2. To determine the correlation,
these CU structures can be interpreted as hierarchical data. For example, CUs of
depth 0 and 1 can be considered to be more correlated compared to depth 0 and
3. As such, the Pearson product-moment correlation coefficient can be used to
describe the CU correlation between two frames [30]. This coefficient is called the
r-score and has a range from -1 to 1. For the positive values of an r-score, high
values indicate high correlation, whereas zero implies no correlation at all.

Each frame is split up into blocks of 8×8 pixels, which equals the smallest
CU size. Next, each of these blocks is assigned the depth of the CU to which it
belongs. All depths of these 8×8 blocks are then added to a vector for both the
HDR and LDR frame. The r-score of a frame j is then calculated as equation (5.1),
with x, y, and n respectively being the LDR vector, HDR vector, and number of
8×8 blocks in a frame.

rj = rxy,j =

∑n
i=1(xi,j − xj)(yi,j − yj)√∑n

i=1(xi,j − xj)2
∑n

i=1(yi,j − yj)2
(5.1)

Next, the r-coefficients of each frame are combined to obtain the correlation
over the entire video. Since using a normal arithmetic mean to average the cor-
relation coefficients skews the result, a Fisher z-transform is used [31]. The CU
correlation is thus calculated as equation (5.2), where m is the number of frames
in the video.

ravg = tanh

(∑m
j=1 arctanh(rj))

m

)
(5.2)

An example of CU correlations is given in Table 5.2 for the balloon video
sequence. The correlations are presented in percentage, with each column repre-
senting a QP of the LDR version (QPLDR) and each row representing a QP of the
HDR version (QPHDR). Note that some QP values are omitted for clarity. When

CHAPTER 5 99

QPLDR →
QPHDR ↓

22 24 26 28 30 32 34 36 38 40

40 57 60 63 67 71 76 80 84 89 93
38 61 65 68 71 75 79 84 87 92 95
36 65 69 72 75 79 83 87 91 94 93
34 69 73 76 79 83 87 91 93 92 90
32 73 76 80 83 86 90 93 92 89 86
30 77 81 84 87 91 93 91 88 85 81
28 82 85 88 91 93 91 88 84 80 77
26 85 89 92 93 91 88 84 80 77 73
24 89 92 93 92 88 85 81 77 74 70
22 92 93 92 89 86 82 78 74 71 67
20 93 92 89 86 83 79 75 71 67 64
18 92 90 87 84 80 76 72 69 65 62

Table 5.2: Correlations (%) between an LDR and HDR version of the same video for the
balloon sequence. A lighter color indicates a higher correlation.

looking at QPLDR = 22, the QPHDR with the highest correlation is 20, with a
correlation of 93%. For each QPLDR, such a QPHDR with a correlation of 93%
or more can be found by following a diagonal in the table. This indicates that there
might be a rule to determine the most optimal QP pair of QPLDR and QPHDR.

In order to better determine the relationship between QPLDR and QPHDR,
the most correlating QPHDR is determined for each QPLDR for the three video
sequences, as shown in Figure 5.3. Based on this information, a prediction model
is created by using Ridge regression with generalized cross-validation [32]. This
form of regression has an adjustable parameter which is determined through the
generalized cross-validation and controls the norm of the weight in the error term
to control the extent of the inherent overfitting due to using a small data set. In
order to obtain the model, the problem in equation (5.3) is thus solved, with X

containing zeroes in its first column and the vector of QPs of the LDR version in its
second column, y being the vector of the matching most correlating QPHDR, and
w containing the intercept (w0) and coefficient (w1) of the model to be determined.

min
w
‖Xw − y‖22 + α ‖w‖22 (5.3)

The resulting model estimated from the three sequences is

y = 0.976422x− 0.959334 (5.4)

100 PERSONALIZED DYNAMIC-RANGE

15

20

25

30

35

40

45

20 25 30 35 40

M
o

st
 c

o
rr

el
at

in
g

Q
P

H
D

R

QPLDR

balloon
fire
market
prediction

Figure 5.3: Most correlating QP of the HDR version for each QPLDR. Based on the data
from the three sequences, a prediction model is estimated.

When taking into account that QP values are non-continuous, the final model
for determining the most correlating QP pair becomes equation (5.5). This predic-
tion model is also shown in Figure 5.3.

QPHDR = bQPLDR × 0.976422− 0.459334c (5.5)

Due to the limited amount of video content that is currently available in both
HDR and LDR versions, the model cannot be verified on a separate validation set.
However, to investigate the behavior of estimating the model from a different set,
leave-one-out cross-validation was used. Consequently, three additional models
were created, each estimated from only two of the three available video sequences.
When using these models to predict the most correlating QP pair for each of the
three sequences, the predicted QP differs only by 2 at most. When looking at the
highest correlated QPHDR for each QPLDR, some other QPs have a correlation
close to the QP with the highest correlation. This is visualized in Figure 5.4 for
the balloon sequence.

In this figure, the error bars represent a buffer margin of 2.5% around the most
correlating QPHDR. For example, if the most correlating QPHDR has a correla-
tion of 97% with the LDR version, the error bars cover all QPs that have a corre-
lation of 94.5% or more. All QP values predicted by the three additional models

CHAPTER 5 101

15

20

25

30

35

40

45

20 25 30 35 40

M
o

st
 c

o
rr

el
at

in
g

Q
P

H
D

R

QPLDR

balloon_fire

fire_market

balloon_market

highest correlation

Figure 5.4: Illustration of the 2.5% buffer margin around the most correlating QPHDR for
each QPLDR for the balloon sequence. Models estimated from only two of the sequences

always predict a most correlating QP within this buffer margin.

fall within this range. As such, even when the model is only estimated from a sub-
set of the sequences, the resulting model still results in a good prediction. In the
remainder of this chapter, the model estimated from all three sequences is used.

5.4 Evaluation

In this section, the performance of the algorithm is evaluated when accelerating
different types of encoding decisions. Next, the robustness of the model is ana-
lyzed, while also verifying the earlier assumption that a model based on the CU
correlation between two sequences also performs well when copying other types
of information. Finally, the proposed encoder acceleration is compared to related
work.

5.4.1 Effect of coding information

To evaluate the proposed model, LDR versions of the three video sequences were
encoded by copying information from the most correlating HDR version based

102 PERSONALIZED DYNAMIC-RANGE

Name Coding information

CU CU split flag

+ mode + PU Prediction mode (inter/intra)
PU partitioning mode

+ merge Merge index
Merge flag
Split flag

+ motion Motion vector predictor index
Motion vector difference
Reference picture index
Type of inter-prediction (uni-/bi-directional)

+ intra direction Luma intra-prediction direction
Chrome intra-prediction direction

+ TU TU split flag

Table 5.3: Full overview of reused coding information

on equation (5.5). The same configuration as in section 5.3 was used for the en-
coder. The LDR versions were incrementally accelerated by copying CU infor-
mation, mode and PU information, merge information, motion information, intra-
prediction direction, and TU information. A full overview of this information is
given in Table 5.3. For example, in the rest of this chapter, ‘+ merge’ will always
indicate that the CU split flag, prediction mode, PU partitioning mode, merge in-
dex, merge flag, and split flag from the HDR version have been reused to encode
the LDR version of the video.

The performance of the algorithm was measured in terms of complexity reduc-
tion, and in terms of coding efficiency. The complexity reduction is expressed as a
speed-up factor defined as equation (2.2). Additionally, the time saving in equation
(2.1) is also calculated in order to allow better comparison with related work.

Coding efficiency is measured using BD-rate, which measures the average bit
rate increase for the same quality compared to the non-accelerated encode [33].
Similar to previous chapters, the quality is measured in PSNR.

Figure 5.5 shows RD-curves for the LDR version of the market sequence. The
other sequences behave in a similar way. These RD-curves show that copying cod-
ing information from the most correlated HDR version (as predicted by equation
(5.5)) to accelerate an LDR version of the same video, decreases the coding effi-
ciency of the LDR version only slightly, except when copying merge information

CHAPTER 5 103

28

30

32

34

36

38

40

42

0 5 10 15

P
SN

R
 (

d
B

)

Bit rate (Mb/s)

Full encode
CU
+ mode + PU
+ merge
+ motion
+ intradir
+ TU

Figure 5.5: RD-curves for the LDR version of market. Except when copying merge
information from the HDR sequence without also copying motion information, the coding

efficiency decreases only slightly compared to a full encode.

without also copying motion information. This is because merge information and
motion information are closely related. When a PU uses merge mode, it will copy
the motion vectors from an adjacent block according to the merge index. However,
when motion information is still recalculated and not copied from the HDR ver-
sion, the motion vectors referred to by the merge index in the LDR version might
be different from the original HDR version. As a result, wrong motion vectors will
be used, and this will cause either a spike in residual information in case of merge,
or the copying of a wrong block in case of skip. Furthermore, these errors will
propagate as more blocks use merge mode.

A full overview of the results is given in Table 5.4. Each column shows the
information that was copied from the HDR version. In each column, more infor-
mation is copied. When copying only CU information, the bit rate increase is only
2.9% on average. However, when mode and PU information is copied, the BD-rate
increases to 7.7% on average, since the encoder has less freedom to correct wrong
CU structures by compensating with a different mode or PU structure. As was also
seen in Figure 5.5, copying merge information then results in a spike in BD-rate
of 38.6%. However, when also copying motion information, these values lower
to 7.5%, which is a similar value as when copying CU, mode, and PU informa-

104
P

E
R

S
O

N
A

L
IZ

E
D

D
Y

N
A

M
IC-R

A
N

G
E

Video CU + mode + PU + merge + motion + intra direction + TU

BD-rate (%)

Market 2.4 7.4 41.6 8.0 12.8 13.7
Fire 3.9 9.0 44.4 8.0 11.5 12.6
Balloon 2.2 6.6 29.7 6.6 10.1 11.0

Average 2.9 7.7 38.6 7.5 11.5 12.4

Time saving (%)

Market 74.0 95.7 99.0 99.5 99.6 99.7
Fire 73.8 95.8 99.2 99.5 99.6 99.7
Balloon 74.0 95.6 99.1 99.4 99.6 99.6

Average 74.0 95.7 99.1 99.4 99.6 99.7

Speed-up factor

Market 3.8 23.4 98.5 182.8 235.5 290.4
Fire 3.8 23.8 132.9 185.3 266.9 328.2
Balloon 3.8 22.5 110.8 167.6 230.8 278.4

Average 3.8 23.2 114.1 178.5 244.4 299.0

Speed-up gain Average 3.8 6.0 4.9 1.6 1.4 1.2

Table 5.4: Results for different amounts of coding information used

CHAPTER 5 105

tion. Copying the intra direction has a negative effect, increasing the BD-rate to
11.5%. This appears to indicate that copying wrong decisions to intra-frames has
a strong negative effect on the following inter-frames because they are used as ref-
erence frames for motion estimation. Finally, when also adding TU information,
the BD-rate becomes 12.4% on average.

In terms of speed-up, the encoder is already accelerated by a factor of 3.8
when copying CU information. However, when adding all information, the speed-
up factor of the encoder is 299. In fact, since all coding information is fed to
the encoder, the only remaining complexity is the calculation of the residual and
entropy coding.

To show how much copying each type of information further accelerates the
encoder compared to adding less information, the speed-up gain was also calcu-
lated. For example, copying mode and PU information further accelerates the
encoder 6 times compared to copying only CU information. By using this metric,
it becomes clear that copying mode and PU information on top of CU information
results in the most gain. From merge information and beyond, this gain decreases.
However, even when adding TU information, this gain is still 1.2, which is still
significant since it means that the encoder was further sped up with 20%.

Finally, one might notice that the BD-rates when copying the intra direction
and TU information are greater than 10%, which might be considered large. How-
ever, the disadvantages of these higher bit rates are compensated by achieving very
high encoding speeds. As such, content providers can make a trade-off between
compression efficiency and encoding speed depending on their requirements.

5.4.2 Robustness of the model

As mentioned in section 5.3, the correlation between two different dynamic range
versions of the same video is determined based on the CU structure of the bit-
streams due to the assumption that all other coding information is dependent on
CU structures. In order to verify that a model based on CU correlations also results
in the most efficient selection of a QP pair when all information is copied from the
HDR version, the coding efficiency of using other HDR versions was determined
by varying QPHDR. In Figure 5.6, the curve ‘+ TU’ shows the results that are
obtained by using the model. The diamond-shaped points are the results obtained
when encoding the version with a QPLDR of 30 by copying information from dif-
ferent HDR versions. The most optimal points in terms of coding efficiency are
obtained by copying information from QPHDR 27 and 28. Since QPHDR 28 is
the value predicted by the model, the assumption made in section 5.3 appears to
be correct. For other sequences and points, similar behavior is seen.

As another way to evaluate the robustness of the model, manually color-graded
versions of the LDR version were used. A new model was estimated from these

106 PERSONALIZED DYNAMIC-RANGE

36

37

38

39

40

1400 1600 1800 2000 2200 2400

P
SN

R
 (

d
B

)

Bit rate (kbps)

+ TU

Series2

QPHDR = QPLDR = 30

QPHDR = QPLDR – 2 (model)

Varying QPHDR

+ TU

QPHDR = 27

Figure 5.6: Coding efficiency when copying all coding information from an HDR version
coded with varying QPHDR to encode an LDR version, for the balloon sequence. The

points connected with the line show a part of the RD-curve created by encoding the LDR
version by copying all coding information from the HDR version according to the model.

Model CU + motion + TU

Estimated from manual 3.6 11.4 18.5
Estimated from auto 3.6 11.3 18.4

Table 5.5: Average BD-rate (%) of manually color-graded sequences when using a model
estimated from either the manually or automatically color-graded sequences

manually color-graded versions and the same evaluations were done as with the
model for the automatic color-graded sequences. This model sometimes differed
by one QP value compared to the model for automatic color-graded sequences due
to the difference in color-grading techniques. Next, the latter model was used to
determine the most correlating version of the manually color-graded versions. The
results are shown in Table 5.5 for the cases of copying only CU information, all
information up to motion, and all information. The results show that both models
perform very similar, with only a difference of 0.1% BD-rate. This is due to the
buffer margin of the most correlatingQPHDR as was also shown in Figure 5.4. As
a result, the model is robust to small changes in the used color-grading algorithm.

CHAPTER 5 107

0

2

4

6

8

10

12

14

1 10 100 1000

B
D

-r
at

e
(%

)

Speed-up

Jimenez-Moreno
Kim
Correa
Lee
Ahn
Cebrian-Marquez
Schroeder 2015a
Schroeder 2015b
De Praeter
Diaz-Honrubia
Proposed (CU)
Proposed (+ motion)
Proposed (+ TU)

Figure 5.7: Comparison with state-of-the-art. The fastest version of the proposed
algorithm achieves speed-ups that are more than 90 times greater than related work.

5.4.3 Comparison with related work

In order to compare the proposed simultaneous encoder to the state-of-the-art,
it was compared to several fast-encoding and simultaneous-encoding algorithms
from Jimenez-Moreno [12], Kim [13], Correa [17], Lee [8], Ahn [9], Cebrian-
Marquez [23], Schroeder [25, 26], De Praeter [27], and Diaz-Honrubia [24]. The
most relevant results from these works were selected. Although these works used
different sequences for evaluation, it becomes clear that the proposed method
achieves a far greater speed-up compared to the state-of-the-art. This is seen by
comparing the fastest algorithm of the related work (‘Lee’ in Figure 5.7), which
has a speed-up of 3.23, to the proposed method when copying all information
(‘Proposed (+ TU)’ in Figure 5.7), which has a speed-up of 299. In this example,
the proposed method is more than 90 times faster compared to the fastest related
work with a BD-rate that is only 4.2 times the BD-rate of Lee’s algorithm.

The reason for these high speed-ups is that the proposed methods, in particular
‘Proposed (+ motion)’ and ‘Proposed (+ TU)’, accelerate more coding decisions
than the state-of-the-art fast-encoding algorithms. Even ‘Proposed (+ CU)’, which
corresponds to line (1) in Figure 2.6, outperforms the traditional fast-encoding al-
gorithms in terms of speed-up, since traditional fast-encoding algorithms typically
do not accelerate all CU decisions (as was also remarked in Chapter 2).

108 PERSONALIZED DYNAMIC-RANGE

5.5 Conclusion
In this chapter, a model to select the most correlating HDR version for an LDR
version of the same video was presented. By copying coding information from
this video, the encoding of the LDR video can be accelerated, allowing content
providers to serve consumers with many different televisions with different dy-
namic range capabilities.

Experimental results show that only CU information should be copied if cod-
ing efficiency is the most important concern of the video provider. However, if
many devices with different dynamic range capabilities need to be served and
encoder complexity becomes a concern, all information can be copied because
it gives a good trade-off between speed-up and bit rate overhead. In this case,
the video provider can effectively encode multiple dynamic-range versions of the
same video for approximately the computational cost of a single encoder by using
guided encoding.

CHAPTER 5 109

References

[1] R. Boitard, M. T. Pourazad, P. Nasiopoulos, and J. Slevinsky. Demystifying
High-Dynamic-Range Technology: A new evolution in digital media. IEEE
Consum. Electron. Mag., 4(4):72–86, Oct. 2015.

[2] J. Lee, G. Jeon, and J. Jeong. Piecewise tone reproduction for high dynamic
range imaging. IEEE Trans. Consum. Electron., 55(2):911–918, May 2009.

[3] J. W. Lee, R. H. Park, and S. Chang. Tone mapping using color correction
function and image decomposition in high dynamic range imaging. IEEE
Trans. Consum. Electron., 56(4):2772–2780, Nov. 2010.

[4] J. W. Lee, R. H. Park, and S. Chang. Local tone mapping using the K-means
algorithm and automatic gamma setting. IEEE Trans. Consum. Electron.,
57(1):209–217, Feb. 2011.

[5] K. Kim, J. Bae, and J. Kim. Natural hdr image tone mapping based on
retinex. IEEE Trans. Consum. Electron., 57(4):1807–1814, Nov. 2011.

[6] J. W. Lee, R. H. Park, and S. Chang. Noise reduction and adaptive con-
trast enhancement for local tone mapping. IEEE Trans. Consum. Electron.,
58(2):578–586, May 2012.

[7] G. Correa, P. Assuncao, L. Agostini, and L. A. da Silva Cruz. Complex-
ity control of high efficiency video encoders for power-constrained devices.
IEEE Trans. Consum. Electron., 57(4):1866–1874, Nov. 2011.

[8] J. Lee, S. Kim, K. Lim, and S. Lee. A Fast CU Size Decision Algorithm
for HEVC. IEEE Trans. Circuits Syst. Video Technol., 25(3):411–421, Mar.
2015.

[9] S. Ahn, B. Lee, and M. Kim. A Novel Fast CU Encoding Scheme Based on
Spatiotemporal Encoding Parameters for HEVC Inter Coding. IEEE Trans.
Circuits Syst. Video Technol., 25(3):422–435, Mar. 2015.

[10] L. Pham Van, J. De Praeter, G. Van Wallendael, J. De Cock, and R. Van de
Walle. Machine learning for arbitrary downsizing of pre-encoded video in
HEVC. In Proc. IEEE Int. Conf. Consum. Electron. (ICCE), pages 406–407,
Jan. 2015.

[11] A. J. Diaz-Honrubia, J. L. Martinez, P. Cuenca, J. A. Gamez, and J. M.
Puerta. Adaptive Fast Quadtree Level Decision Algorithm for H.264 to HEVC
Video Transcoding. IEEE Trans. Circuits Syst. Video Technol., 26(1):154–
168, Jan. 2016.

110 PERSONALIZED DYNAMIC-RANGE

[12] A. Jimenez-Moreno, E. Martnez-Enriquez, and F. Diaz de Mara. Complexity
Control Based on a Fast Coding Unit Decision Method in the HEVC Video
Coding Standard. IEEE Trans. Multimedia, 18(4):563–575, Apr. 2016.

[13] H. S. Kim and R. H. Park. Fast CU Partitioning Algorithm for HEVC Using
an Online-Learning-Based Bayesian Decision Rule. IEEE Trans. Circuits
Syst. Video Technol., 26(1):130–138, Jan. 2016.

[14] C. E. Rhee, K. Lee, T. S. Kim, and H. J. Lee. A survey of fast mode decision
algorithms for inter-prediction and their applications to high efficiency video
coding. IEEE Trans. Consum. Electron., 58(4):1375–1383, Nov. 2012.

[15] K. Choi and E. S. Jang. Early TU decision method for fast video encoding in
high efficiency video coding. Electron. Lett., 48(12):689–691, June 2012.

[16] L. Shen, Z. Liu, X. Zhang, W. Zhao, and Z. Zhang. An Effective CU Size
Decision Method for HEVC Encoders. IEEE Trans. Multimedia, 15(2):465–
470, Feb. 2013.

[17] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz. Fast
HEVC Encoding Decisions Using Data Mining. IEEE Trans. Circuits Syst.
Video Technol., 25(4):660–673, Apr. 2015.

[18] L. Shen, Z. Zhang, and P. An. Fast CU size decision and mode decision al-
gorithm for HEVC intra coding. IEEE Trans. Consum. Electron., 59(1):207–
213, Feb. 2013.

[19] H. Zhang and Z. Ma. Fast Intra Mode Decision for High Efficiency Video
Coding (HEVC). IEEE Trans. Circuits Syst. Video Technol., 24(4):660–668,
Apr. 2014.

[20] H. Lee, H. J. Shim, Y. Park, and B. Jeon. Early Skip Mode Decision for
HEVC Encoder With Emphasis on Coding Quality. IEEE Trans. Broadcast.,
61(3):388–397, Sept 2015.

[21] D.H. Finstad, H.K. Stensland, H. Espeland, and P. Halvorsen. Improved
Multi-Rate Video Encoding. In Proc. IEEE Int. Symposium Multimedia
(ISM), pages 293–300, Dec. 2011.

[22] H. Espeland, H. K. Stensland, D. H. Finstad, and P. Halvorsen. Reducing
processing demands for multi-rate video encoding: implementation and eval-
uation. Int. J. Multimedia Data Eng. Manag., 3(2):1–19, Apr. 2012.

[23] G. Cebrian-Marquez, A. J. Diaz-Honrubia, J. De Praeter, G. Van Wallen-
dael, J. L. Martinez, and P. Cuenca. A motion vector re-use algorithm for

CHAPTER 5 111

H.264/AVC and HEVC simultaneous video encoding. In Proc. ACM Interna-
tional Conference on Advances in Mobile Computing and Multimedia, pages
241–245, Dec. 2015.

[24] A. J. Diaz-Honrubia, J. De Praeter, G. Van Wallendael, J. L. Martinez,
P. Cuenca, J. M. Puerta, and J. A. Gamez. CTU splitting algorithm for
H.264/AVC and HEVC simultaneous encoding. J. Supercomputing, pages
1–13, Feb. 2016.

[25] D. Schroeder, P. Rehm, and E. Steinbach. Block structure reuse for multi-rate
high efficiency video coding. In Proc. IEEE Int. Conf. Image Process. (ICIP),
pages 3972–3976, Sept. 2015.

[26] D. Schroeder, A. Ilangovan, and E. Steinbach. Multi-rate encoding for
HEVC-based adaptive HTTP streaming with multiple resolutions. In Proc.
IEEE Int. Workshop Multimedia Signal Process. (MMSP), pages 1–6, Oct.
2015.

[27] J. De Praeter, A. J. Diaz-Honrubia, N. Van Kets, G. Van Wallendael,
J. De Cock, P. Lambert, and R. Van de Walle. Fast simultaneous video
encoder for adaptive streaming. In Proc. IEEE Int. Workshop Multimedia
Signal Process. (MMSP), pages 1–6, Oct. 2015.

[28] E. François, J. Sole, J. Ström, and P. Yin. Common test conditions for
HDR/WCG video coding experiments. Technical Report JCTVC-W1020,
ITU-T Joint Collaborative Team on Video Coding (JCT-VC), Feb. 2016.

[29] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. Sullivan. High
Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved Encoder
Description Update 2. Technical Report JCTVC-T1002, ITU-T Joint Col-
laborative Team on Video Coding (JCT-VC), Feb. 2015.

[30] L. Wasserman. All of Nonparametric Statistics, pages 13–25. Springer New
York, 2006.

[31] D. M. Corey, W. P. Dunlap, and M. J. Burke. Averaging correlations: Ex-
pected values and bias in combined Pearson rs and Fisher’s z transforma-
tions. J. General Psychology, 125(3):245–261, 1998.

[32] R. M. Rifkin and R. A. Lippert. Notes on regularized least squares. Technical
Report CBCL-268, Computer Science and Artificial Intelligence Laboratory,
May 2007.

[33] G. Bjøntegaard. Calculation of average PSNR differences between RD-
curves. Technical Report VCEG-M33, ITU-T Video Coding Experts Group
(VCEG), Apr. 2001.

6
Video Encoder Architecture for

Personalized Bit Rate Representations

6.1 Introduction

In a fourth and final scenario discussed in this dissertation, guided encoding is
used in order to enable real-time video-streaming events with many participants,
such as virtual classrooms and video conferences. These events require a low
delay when transmitting a video to a receiver in order to provide a good quality of
experience. However, maintaining such a low delay poses a considerable challenge
when participants have a fluctuating connection due to e.g. an unstable wireless
access point or network congestion.

A common approach to handle the fluctuating bandwidth of participants is to
use adaptive streaming [1]. Using this solution, the original video is encoded at
different quality levels that each target a different range of bit rates. Depending on
the current bandwidth capacity of the user, a video segment of the version with an
appropriate bit rate is transmitted to this user. If the bandwidth capacity of the user
changes during some point in time, the user instead receives video segments from
either a higher bit rate or lower bit rate version of the video.

This approach has several disadvantages. First, if the bandwidth capacity of a
user becomes smaller than the bit rate of the video segment, the video will freeze
until the next, lower quality, video segment is received. To reduce the delay in
such a scenario, the provider could encode shorter video segments. However, if
the segment length decreases, so does the compression efficiency of the video,

114 PERSONALIZED BIT RATE

meaning that the user will receive a lower quality video for the same bit rate.
Although the freezing of the video can also be prevented by having the receiver
buffer several frames and display them with some delay, this solution is not an
option in real-time video streaming due to its strict low-delay requirements.

A second disadvantage of the adaptive streaming approach is that, although
attempts can be made to increase the overall fairness of the system [2], the band-
width of an individual user might not be used to its full capacity, even in the case
of a stable network connection. This occurs in cases where e.g. a low-quality and
high-quality video are offered at a bit rate of respectively 1 Mbps and 10 Mbps,
whereas the receiver has a bandwidth capacity of 5 Mbps. Since the capacity is
too small for the high-quality version, the user will receive the low-quality version,
despite having a much higher capacity. In this case, if it were to exist, a video en-
coded at 5 Mbps would have offered the user a better video quality by making the
most out of the available bandwidth capacity.

The disadvantages of adaptive streaming in terms of delay and bandwidth uti-
lization are overcome by using protocols for low-latency communication such as
the real-time streaming protocol [3] and WebRTC. These solutions generally rely
on providing a personalized bitstream over a single connection with each end-user.
By adapting the bit rate of the video stream depending on the network conditions
of the client, there are no delays due to segment switching, and the bandwidth of
each client can be fully utilized to provide the best video quality. However, in an
interactive video-streaming event with many participants, such an approach cannot
be applied in practice, since providing a personalized bitstream for each receiver
would require a large amount of computationally expensive video encoders.

In order to make a system for low-delay video streaming viable for events
with many participants, this chapter proposes an architecture based on calculating
coding information for a fixed number of bit rate representations of the video and
supplying this coding information to very low-complex residual encoders. Each
individual residual encoder can provide a personalized bitstream to each user over
a wide range of bit rates. By increasing the amount of bit rate representations
for which coding information is calculated, the compression efficiency of each
generated bitstream increases at the cost of an overall increase in computational
complexity of the system.

As its main contribution, this chapter enables the realization of a system for
low-delay video communications by overcoming the disadvantage of having an
excessive amount of computationally complex video encoders. As its second con-
tribution, this chapter also investigates the effect of varying the amount of modules
for calculation of coding information.

The remainder of this chapter describes the current state-of-the-art, followed
by the proposed method in Section 6.3. Next, the method is evaluated in Section
6.4. Finally, the conclusion is presented in Section 6.5.

CHAPTER 6 115

6.2 Related work

Since a real-time video-streaming system with many participants with a single bit-
stream per user is computationally complex, a possible solution would be the use
of fast encoding algorithms. These algorithms attempt to reduce the computational
complexity of a video encoder by limiting the number of encoding decisions evalu-
ated by an encoder. For example, the computational complexity of encoders using
the H.264/AVC video compression standard [4] has been reduced by limiting the
number of block prediction modes [5–9], or by accelerating the motion estima-
tion [10–12] or intra-prediction process [13–17]. Sometimes, different strategies
are combined as well to further reduce the encoding complexity [18].

The computational complexity of the successor of H.264/AVC, HEVC [19],
has been reduced in similar ways. Common approaches consist of limiting the
number of block partitioning modes [20–24] or intra-prediction modes [25, 26].
Other works have also attempted to reduce the HEVC encoder complexity by ac-
celerating motion estimation [27] or by using fast-skip decisions [28, 29]. Finally,
some research further reduces the encoding complexity by limiting several types
of coding information at once [30–36]. However, in all fast encoding algorithms
for H.264/AVC and HEVC, the encoder still has to make a large amount of encod-
ing decisions. As a result, although the computational complexity is reduced, the
complexity reduction provided by conventional fast encoders results in a speed-up
of a factor four at most, which means that four accelerated encoders have a similar
computational complexity as one non-accelerated encoder. This speed-up is still
insufficient for a real-time video-streaming application with many participants.

Besides creating a real-time video-streaming system by accelerating individual
fast encoders, it might be possible to use a simultaneous bit rate encoder to encode
multiple bit rate representations of the same video at the same time at a reduced
computational cost. This idea has been proposed before in the context of adaptive
video streaming for HEVC. Such an encoder performs a non-accelerated encode of
a video bitstream at a certain bit rate while the encodings of other representations
of the video (at different bit rates) are accelerated by limiting the coding decisions
based on the coding information obtained from the non-accelerated encoding. In
particular, block partitioning decisions [37, 38], as well as intra-prediction modes
and motion vector decisions [39] have been used in these methods. However,
as with the encoding accelerations of a conventional fast encoder, the complex-
ity reduction is still too limited (speed-up factor of four) to make real-time live-
streaming events with many users feasible.

Finally, there exists a technique for non-real-time streaming that can greatly
reduce the computational complexity of an encoder [40, 41]. This method uses
control streams, which are regular video streams from which the residual informa-
tion is removed. Only these control streams are then stored on a server, instead

116 PERSONALIZED BIT RATE

of the entire video as is the case with adaptive streaming. As a result, less stor-
age space is required to store these control streams compared to a full bitstream.
When the bitstream is requested by a client, the coding decisions stored in the con-
trol stream are used to perform fast-transcoding with a very low complexity on a
high quality bitstream, in order to re-create the bitstream from which the control
stream had been extracted.

Inspired by the ideas of control streams, and contrary to both traditional fast
encoders and simultaneous encoders that only provide a limited computational
complexity reduction in favor of retaining a higher compression efficiency, the
system proposed in this chapter aims to drastically reduce the computational com-
plexity. By doing so, the use of personalized bitstreams becomes a viable solution
for low-delay live-streaming to many users.

6.3 Proposed method

A video bitstream consists of coding information (e.g. block partitioning modes
and motion vector information) and the residual picture. Normally, all of this
information is calculated by a traditional, non-accelerated video encoder. Conse-
quently, if multiple users each require an individual bitstream, multiple traditional
encoders are needed to create these bitstreams. Each of these bitstreams thus has
its own coding information and residual picture. However, if each user receives
a personalized bitstream, some users might require bitstreams in similar bit rate
ranges. These bitstreams might have similar coding information, as is observed
with the block structures of videos encoded with HEVC [37]. In such a case, in-
stead of recalculating the coding information for each individual bitstream, it may
be better to create a system that encodes multiple bitstreams with the same coding
information.

In the following subsection, an architecture based on sharing coding informa-
tion is proposed in order to provide personalized bitstreams to users in a low-delay
live-streaming scenario. Next, the theoretical complexity of the proposed architec-
ture is examined.

6.3.1 Architecture

As mentioned above, a video bitstream consists of coding information and the
residual picture. It would thus be possible to use one set of coding information
to generate several bitstreams at the same time. To achieve this, the proposed
system shown in Figure 6.1 contains two kinds of modules: coding information
calculation (CIC) modules and residual encoder (RE) modules. A CIC module
calculates coding information for a certain bit rate representation of the video.
This information is then shared with the RE modules. These modules each create

CHAPTER 6 117

CIC Module @ 20 Mbps

RE Module @ ~22 Mbps

RE Module @ ~20 Mbps

RE Module @ ~16 Mbps

CIC Module @ 10 Mbps

RE Module @ ~14 Mbps

RE Module @ ~8 Mbps

Input video

In
fo

 s
h

ar
in

g
In

fo
 s

h
ar

in
g

Figure 6.1: The proposed architecture when using two coding information calculation
(CIC) modules and five residual encoder (RE) modules.

a standard-compliant bitstream by using the supplied coding information to calcu-
late a residual picture. The bit rate of each video is then adapted by appropriately
reducing the size in bits of the residual picture (e.g. by adjusting the quantiza-
tion parameter of the frame) depending on the available bandwidth of the user
connected to the RE module.

It should also be noted that the CIC module and RE modules are synchronized,
meaning that in block-based encoders, the RE module encodes a block immedi-
ately after the coding information has been calculated by the CIC module. As a
result, no extra delay is introduced compared to using traditional encoders, since
these encoders also first have to calculate coding information for a block before
encoding the residual picture. Further note that each user also needs to be syn-
chronized with his RE module, since communication between the user and the
module is necessary in order to have the module adjust to the bandwidth of the
user. As a result, the entire system should be kept synchronized, which may result
in some extra complexity for the implementation of the architecture. However,
in case of less strict latency requirements, the need for synchronization would be
smaller, and CIC module could thus temporarily store the coding decisions for
later use by RE modules, meaning that only synchronization between users and
RE modules is necessary.

Although a system with a single CIC module may be able to provide bitstreams
at a wide range of bit rates, the coding efficiency will plummet if the bit rate of the
bitstreams generated by the RE modules differs much from the bit rate representa-

118 PERSONALIZED BIT RATE

Input video frame

T

Q-1

T-1

IE

IP

MC

ME

-
+

T

Q-1

T-1

IP

MC

-
+

E Coded
bitstream

@ ~bit rate 1

Decoded picture buffer

Decoded picture buffer

Motion
data

Intra
prediction

data

Q0

Q1

1

0

CIC Module

RE Module

Figure 6.2: Detailed view of a CIC-RE module pair. The CIC module resembles a
traditional encoder loop, whereas the RE module mostly contains components with a

similar complexity as a traditional decoder. (T: transform; Q: quantization; E: entropy
encode; IE: intra-picture estimation; IP: intra-picture prediction; MC: motion

compensation; ME: motion estimation)

tion used by the CIC module. After all, in such a scenario, the coding information
of the CIC module may no longer be a good fit, since the residual picture used
within the CIC module would greatly differ from the residual picture used in the
RE module. For example, a block-based video encoder will use larger block sizes
at lower bit rates, since a higher quantization parameter removes detailed texture
from the picture, making it easier for motion estimation to find a good match in
previous pictures for large areas. At high bit rates, on the other hand, textures are
better preserved, meaning that smaller blocks are used. If the large block sizes

CHAPTER 6 119

Output video

Q-1 T-1

IP

MC

+
+Coded

bitstream

Decoded picture buffer

E-1

Figure 6.3: Detailed view of typical video decoder. (T−1: inverse transform; Q−1:
dequantization; E−1: entropy decode; IP: intra-picture prediction; MC: motion

compensation)

of the lower bit rate are used to encode the version with a high bit rate, or vice
versa, this will result in inefficient coding decisions, leading to a lower compres-
sion efficiency. In order to mitigate this effect of copying coding information from
versions with a large difference in bit rate, the proposed architecture in this chapter
consists of multiple CIC modules (an example with two is shown in Figure 6.1).

In the proposed architecture with multiple CIC modules, each CIC module cal-
culates coding information for a different constant bit rate of the video. Each user
is then connected to an RE module which is connected to the CIC module with the
most similar bit rate. For example, if two available CIC modules generate coding
information for a bit rate representation of respectively 10 Mbps and 20 Mbps, an
RE module encoding a video at 14 Mbps would be connected to the CIC module
of 10 Mbps. By doing this, the RE module can use the coding information that
fits its bit rate representation the most, thus limiting the decrease in compression
efficiency that occurs due to copying non-optimal coding information.

Note that in this architecture, RE modules should not be constrained to always
being connected to the same CIC module. For example, if the internet connection
of a user drops from 22 Mbps to 8 Mbps, an RE module that was previously using
coding information supplied by a CIC module of 20 Mbps should switch to using
coding information from a CIC module of 10 Mbps.

Figure 6.2 shows a more detailed view of the interaction between the CIC
module and an RE module in the case of a block-based video encoder such as
H.264/AVC, HEVC, and VP9. The CIC module resembles the encoding loop of a
traditional video encoder: for each input video frame, the best coding decisions for
intra-picture prediction are determined through intra-picture estimation, whereas
the best coding decisions for inter-picture prediction are determined through mo-
tion estimation. Using these decisions, the residual picture is calculated, trans-
formed and quantized with a quantization parameter Q0. The quantized picture is

120 PERSONALIZED BIT RATE

then dequantized and inversely transformed in order to be stored in a decoded pic-
ture buffer which contains the reference pictures for motion estimation and com-
pensation. Note that contrary to a traditional encoder, there is no need to apply
entropy encoding to the quantized picture since the CIC module should not gener-
ate an actual bitstream.

The encoding loop of the RE module on the other hand does not have the
computationally intensive steps of intra-picture estimation and motion estimation
since all coding information such as block partitioning modes, intra-coding deci-
sions, and motion estimation decisions are copied from the CIC module. Using
these coding decisions, the RE module performs intra-picture prediction and mo-
tion compensation in order to calculate the residual picture, which is then trans-
formed and quantized with a quantization parameter Qi for an RE module i. Note
that usually Qi 6= Q0 since Qi is used to adapt the bit rate of the generated bit-
stream to the available bandwidth. The resulting picture is then entropy encoded
and transmitted to the user.

6.3.2 Analysis of theoretical complexity

Since the actual computational complexity of the system depends on variables
such as the used video compression standard and the exact encoder implemen-
tations, this section makes a theoretical approximation of the expected computa-
tional complexity independent of the used standard and implementation.

As was explained in the previous subsection, a CIC module resembles a tradi-
tional video encoder, excluding the entropy encoding step. Therefore, the required
computational complexity of a CIC module can be approximated by the computa-
tional complexity Ce of a traditional video encoder using the same video compres-
sion standard. In contrast, the complexity of an RE module is much lower, since
this module does not contain the computationally complex steps of intra-picture
estimation and motion estimation. When comparing the remaining components of
the RE module to a traditional decoder as seen in Figure 6.3, one can see that the
intra-prediction, motion compensation, inverse transformation, and quantization
steps are found both in the RE module and the decoder. Additionally, the com-
putational complexity of the entropy encoding step in the RE module is similar to
the complexity of the entropy decoding step in a decoder. As such, since the com-
putational complexity of the remaining transform and quantization steps is small,
the complexity of an RE module (CRE) can be approximated by the computational
complexity Cd of a traditional video decoder using the same compression standard
for a video encoded at the same target bit rate, multiplied by a small factor α.

The above approximation was tested for HM version 16.5 [42] by using CIC
modules to calculate coding information for a low-delay configuration, for all
quantization parameter values from 22 up to 37, and for all video sequences that

CHAPTER 6 121

0

1

2

3

4

5

6

21 23 25 27 29 31 33 35 37

QP

CRE / Cd

Figure 6.4: The average computational complexity of an RE module (CRE) equals about
five times the computational complexity of a decoder (Cd) when tested with the HEVC

reference software.

are also used in section 6.4 (listed in Table 6.1). The information generated by
these CIC modules was then used by RE modules to encode these sequences (thus
Q0 = Qi = QP for all tested quantization parameters). Additionally, the time
needed to decode each bitstream was also measured. The result of this test is
found in Figure 6.4, which shows α = CRE

Cd
averaged over all tested sequences,

with the error bars indicating the standard deviation. This measure thus expresses
the complexity of an RE module relative to the complexity of a decoder. As seen in
this figure, in the case of HM 16.5, the complexity of an RE module equals about
five times the complexity of a decoder. However, do note that in HEVC, the trans-
formation step also includes partitioning each CU into TUs (see also section 2.2),
and the encoder also has to determine parameters for the sample-adaptive offset
filter, which might further contribute to a higher complexity of the RE modules
compared to a decoder. As such, it can be assumed that for HM 16.5, α < 5.

Using the above approximationsCe and αCd for the computational complexity
of respectively the CIC module and RE module, the total complexity of the pro-
posed architecture for m users while providing n CIC modules can be estimated
as

C(m,n) ≈ nCe +mαCd . (6.1)

122 PERSONALIZED BIT RATE

In most common video compression formats, decoding complexity is always
smaller than encoding complexity. Therefore, Ce equals a multiple k of Cd, which
allows rewriting the previous equation as

C(m,n) ≈ nCe +m
α

k
Ce . (6.2)

This implies that the complexity of the system increases by Ce for every CIC
module that is added to the system, whereas the complexity also increases by the
same amount for every k/α extra users that participate in the live-streaming event
(with k = Ce/Cd). Since both the parameters k and α depend on the used video
compression standard and encoder/decoder implementations, the relative compu-
tational cost of adding an extra CIC module compared to supporting more users
will highly depend on the used video codecs.

6.4 Evaluation
The previous sections discussed a generic architecture for providing personalized
bitstreams to users. However, since the actual compression efficiency of individual
bitstreams depends on the used video codec, the performance of the architecture
has been evaluated by applying it to the HEVC video compression standard. In
particular, the simulations were carried out using HM version 16.5 [42]. In order
to simulate RE modules, the encoder of this software has been modified to skip
all encoding decisions except for the calculation of the residual quadtree and the
residual itself by using coding information that is calculated for a certain quantiza-
tion parameter by a CIC module (Q0). Since the architecture is aimed at low-delay
video, a low-delay configuration (encoder lowdelay main) is used. This configu-
ration consists of an intra-coded frame (I-frame) followed by inter-coded frames
(B-frames) that only use previous frames as reference pictures.

In the following subsections, the compression efficiency of the residual en-
coders is first evaluated to verify the effect of using coding information calculated
for an encoding at a different quantization parameter than the one used by the RE
module. Next, the impact of varying the amount of CIC modules is determined in
terms of its effect on the overall compression efficiency of the system. The effects
of bandwidth variations and I-frame retransmissions, as well as a scenario where
an RE module switches from copying coding information from one CIC module
to another are then investigated next. Finally, the performance of the RE modules
is compared to the current state-of-the-art.

6.4.1 Compression efficiency of RE modules

Since the quantization parameter used by the RE module (Qi) does not necessarily
equal the quantization parameter of the corresponding CIC module (Q0), the cod-

CHAPTER 6 123

30

32

34

36

38

40

42

0 1 2 3 4 5 6

Traditional encode

Q = 22

Q = 27

Q = 32

Q = 37

Bit rate (Mbps)

PSNR (dB)

0

0

0

0

A

B

C

D

Figure 6.5: Compression efficiency of RE modules when copying coding information from
CIC modules using a quantization parameter Q0 compared to the compression efficiency
of traditional encoders using the same quantization parameters. The RE modules are able
to cover the range of bit rates not covered by a fixed amount of traditional encoders while

providing an increasingly higher video quality.

ing information copied from the CIC module may be suboptimal. As a result, the
compression efficiency of an RE module will be lower than a traditional encoder
using the same quantization parameter. However, since the goal of the proposed
system is to use all available bandwidth capacity of users in order to provide a
higher video quality than what they would receive in a scenario with a fixed num-
ber of encoders, the architecture is useful as long as this goal is achieved.

To test whether the above goal can be achieved, all tested video sequences (see
also Table 6.1) were encoded with a traditional encoder with quantization values
of 22, 27, 32, and 37. These results are compared to RE modules copying coding
information from CIC modules for which Q0 equals these same values. For each
CIC module with a quantization parameterQ0, eight RE modules were tested with
the quantization parameter of RE module i beingQi. The relation betweenQ0 and
Qi is

Q0 = Qi + ∆Qi , (6.3)

124 PERSONALIZED BIT RATE

with ∆Qi ranging from -4 up to 4, excluding 0, since the compression efficiency
of such an encode is the same as the compression efficiency of the traditional
encoding with the same quantization parameter.

Figure 6.5 shows the results for the sequence BasketballDrill. In this RD-
curve, the bit rate is shown on the x-axis, whereas the distortion on the y-axis is
expressed as PSNR. Four RD-points of a traditional encode are shown, indicated
by the letters A, B, C, and D for quantization parameters 37, 32, 27, and 22, respec-
tively. Of these four points, the dashed lines indicate either the bit rate (vertical
lines) or PSNR (horizontal lines) that these RD-points result in. All other points
on the chart belong to encodings generated by RE modules by copying coding
information from CIC modules with a certain Q0.

The figure shows that the RE modules can successfully cover the range of bit
rates between two subsequent traditional encodings. Moreover, the RE modules
offer a higher quality than the traditional encoding when the bit rate increases,
and a lower quality when the bit rate decreases. For example, this is seen by
comparing the RD-points of the RE module with Q0 = 27 to RD-point C of the
traditional encode. The four RE modules based on this Q0 with a Qi < Q0 all
have an increasingly higher quality with an increasingly higher bit rate. This bit
rate remains smaller than the next RD-point of a traditional encode (point D, with
quantization value 22). Similarly, the four RE modules based on Q0 = 27 with
a Qi > Q0 decrease in quality while also decreasing in bit rate. However, at all
times, both the bit rate and quality remain higher than the traditional encode with
a quantization value of 32 (point B). This observation can also be made for all
other RE modules by comparing their bit rate and PSNR to the bit rate and PSNR
indicated by the dashed lines.

The occurrence of the same behavior has been verified for all other test se-
quences using the same values for Q0 and Qi. Since this observation shows that
the RE modules can make the most out of the bandwidth of users by offering an
appropriate video quality for bit rates that cannot be achieved by only having a lim-
ited amount of traditional encoders, it can be concluded that the architecture can
successfully provide users with a personalized video stream based on the available
bandwidth.

6.4.2 Effect of CIC modules on compression efficiency

As an additional observation in Figure 6.5, it can be seen that the compression
efficiency of an RE module decreases when |∆Qi| increases. For example, if
Qi = 28 the RE module could use information from either a CIC module with
Q0 = 27 or from a CIC module with Q0 = 32. In the former case, ∆Qi equals 1
and the resulting bit rate is about 2.1 Mbps while the PSNR is 37.2 dB. In the latter
case, ∆Qi equals -4. The resulting bit rate is also about 2.1 Mbps. However, the

CHAPTER 6 125

PSNR is 36.8 dB, which is 0.4 dB lower compared to an RE module with a smaller
|∆Qi|. Therefore, in order to increase the compression efficiency of the complete
system, the distance between the subsequent Q0 values should be decreased.

A straightforward way to decrease the distance between Q0 values is the ad-
dition of more CIC modules to the system. However, as explained in Section 6.3,
CIC modules have a similar computational complexity as a traditional encoder.
Consequently, the number of these modules should be limited as much as possi-
ble. This section thus aims to investigate the effect of the number of CIC modules
on the compression efficiency of the system.

Figure 6.6 shows the effect of adding more CIC modules for the sequence
BasketballDrill. The values for Q0 were chosen to be spread as uniformly as
possible across the examined range of quantization values (22 up to 38), since this
spread of Q0 values was experimentally determined to be optimal. Each subfigure
shows the interpolation of four RD-points with quantization values of 22, 27, 32,
and 37 using a traditional encoder. This interpolation should be compared to the
curves resulting from the interpolation of the RD-points of the RE modules that use
coding information from CIC modules with different values of Q0. Each distinct
value of Q0 has a separate curve resulting from encodings with RE modules using
different values of Qi. The CIC points, which are RD-points obtained when Qi =

Q0 are also shown. This figure shows that when only a single CIC module is used,
the compression efficiency of the system is much smaller than in the case of using
traditional encoders. However, when the amount of CIC modules increases, this
difference decreases.

In order to better quantify the compression efficiency of the whole system, an
appropriate metric is needed. Normally, when measuring the difference in com-
pression efficiency between two encoders, this difference can be expressed as BD-
rate [43]. This metric measures the relative average difference in bit rate between
different encoders for the same quality and requires at least four RD-points for
each of the encoders in order to create a fitting interpolation for each set of four
RD-points. The average bit rate overhead is then measured as the area between
the two resulting curves averaged over the range of PSNR-values covered by both
curves. However, in the case of the system proposed in this chapter, the traditional
BD-rate metric can only be applied in the case when one CIC module is used.
Therefore, the BD-rate metric should be extended to BD-rate?. With BD-rate?,
one reference encoding is created as usual by creating an interpolated curve based
on the RD-points of four traditional encodings with quantization values 22, 27, 32,
and 37. However, since there can be multiple CIC modules, multiple curves need
to be compared to the curve of the reference encoding. Therefore, BD-rate? calcu-
lates the area between the reference encoding and the most compression-efficient
curves in each PSNR-range (the curve with the lowest bit rate in the PSNR-range),
as illustrated with a gray color in Figure 6.7. Similar to the normal BD-rate met-

126 PERSONALIZED BIT RATE

30

32

34

36

38

40

42

0 1 2 3 4 5 6

CIC points

Traditional encode

Q = 31

PSNR (dB)

Bit rate (Mbps)

0

(a) 1 CIC module

30

32

34

36

38

40

42

0 1 2 3 4 5 6

CIC points

Traditional encode

Q = 26

Q = 34

PSNR (dB)

Bit rate (Mbps)

0

0

(b) 2 CIC modules

CHAPTER 6 127

30

32

34

36

38

40

42

0 1 2 3 4 5 6

CIC points

Traditional encode

Q = 24

Q = 28

Q = 32

Q = 36

PSNR (dB)

Bit rate (Mbps)

0

0

0

0

(c) 4 CIC modules

30

32

34

36

38

40

42

0 1 2 3 4 5 6

CIC points

Traditional encode

Q = 23

Q = 26

Q = 28

Q = 31

Q = 34

Q = 37

PSNR (dB)

0

0

0

0

0

0

Bit rate (Mbps)

(d) 6 CIC modules

Figure 6.6: Comparison between using 1, 2, 4, or 6 CIC modules. The compression
efficiency of the RE modules increases as more CIC modules are used.

128 PERSONALIZED BIT RATE

30

32

34

36

38

40

42

0 1 2 3 4 5 6

Reference

Q = 26
(interpolation)

Q = 34
(interpolation)

Bit rate (Mbps)

PSNR (dB)

Overhead = 18%

Overhead = 23%

Overhead = 15%

0

0

Figure 6.7: Illustration of worst and average bit rate overhead of the system. The worst bit
rate overhead of the system is calculated as the highest overhead across the tested range
(23% in this example). The average bit rate overhead is calculated by averaging the area

between the reference measurements and the RE encoders (marked in gray) over the tested
range.

ric, this area is then averaged over the entire range of PSNR-values covered by the
reference encoding and the most compression-efficient curves.

Besides the average bit rate overhead, BD-rate?, the worst-case bit rate over-
head is also calculated by finding the quality value for which the distance between
the reference curve and the most compression-efficient curves is the largest. In
order to determine the worst-case bit rate overhead, the intersections between the
most compression-efficient curves as well as the lowest and highest RD-points of
the reference encoding are examined. This is also illustrated in Figure 6.7 where
the bit rate overhead at the lowest and highest quality of the reference encoding
is respectively 18% and 15%. However, the bit rate overhead is even larger at
the intersection between the two most compression-efficient curves. As such, the
worst-case bit rate overhead is 23% in this example.

The results of all tested sequences in terms of average bit rate overhead are
shown in Table 6.1. This table further illustrates the behavior observed in Fig-

C
H

A
P

T
E

R
6

129

BD-rate? (%) when using n CIC modules

Class Sequence Resolution Frames n = 1 2 3 4 5 6 7 8 9 10

A
PeopleOnStreet 2560×1600 150 24.4 15.0 13.2 12.4 12.1 11.8 11.7 11.6 11.5 11.5
Traffic 2560×1600 150 33.3 20.9 17.9 16.8 16.2 15.9 15.7 15.6 15.5 15.5

Average 28.8 18.0 15.5 14.6 14.1 13.9 13.7 13.6 13.5 13.5

B

BasketballDrive 1920×1080 500 24.9 14.5 12.5 11.8 11.6 11.3 11.1 11.0 11.0 11.0
Cactus 1920×1080 500 30.5 20.4 17.5 15.8 14.6 14.4 14.1 14.1 13.8 13.7
Kimono1 1920×1080 240 17.3 11.2 9.8 9.5 9.2 9.0 9.0 8.9 8.9 8.9
ParkScene 1920×1080 240 29.8 17.7 15.1 14.3 13.8 13.5 13.4 13.3 13.2 13.1

Average 25.6 16.0 13.7 12.9 12.3 12.1 11.9 11.8 11.7 11.7

C

BasketballDrill 832×480 500 22.5 14.0 12.4 11.8 11.6 11.4 11.3 11.2 11.2 11.2
BQMall 832×480 600 25.1 15.5 13.6 13.1 12.7 12.5 12.4 12.3 12.2 12.2
PartyScene 832×480 500 24.9 14.4 12.5 11.9 11.6 11.4 11.2 11.2 11.1 11.1
RaceHorses 832×480 300 22.8 13.0 11.3 10.8 10.6 10.4 10.2 10.1 10.1 10.1

Average 23.8 14.2 12.5 11.9 11.6 11.4 11.3 11.2 11.2 11.1

D

BasketballPass 416×240 500 21.3 12.6 11.2 10.8 10.5 10.3 10.3 10.2 10.1 10.1
BlowingBubbles 416×240 500 28.2 16.3 14.2 13.4 13.0 12.8 12.6 12.5 12.5 12.5
BQSquare 416×240 600 34.1 17.3 14.4 13.5 13.0 12.7 12.4 12.3 12.3 12.3
RaceHorses 416×240 300 25.8 14.4 12.6 12.0 11.7 11.4 11.3 11.2 11.2 11.1

Average 27.4 15.2 13.1 12.4 12.0 11.8 11.7 11.5 11.5 11.5

F

BasketballDrillText 832×480 500 22.0 13.8 12.2 11.8 11.4 11.3 11.1 11.1 11.1 11.0
ChinaSpeed 1024×768 500 25.9 15.2 13.1 12.4 12.1 11.9 11.7 11.7 11.5 11.5
SlideShow 1280×720 500 15.3 9.9 8.9 8.5 8.4 8.3 8.2 8.1 8.1 8.1

Average 21.1 12.9 11.4 10.9 10.7 10.5 10.4 10.3 10.2 10.2

Average for all sequences 25.2 15.1 13.1 12.4 12.0 11.8 11.6 11.5 11.5 11.5

Table 6.1: Average Bit Rate Overhead (BD-rate?) of the Proposed System for all Used Test Sequences

130 PERSONALIZED BIT RATE

0

10

20

30

40

50

60

70

0 4 8 12 16

Worst

Average

Average BD-rate* overhead (%)

Number of used CIC modules

Figure 6.8: Relation between the compression efficiency and the number of used CIC
modules. As the number of CIC modules increases, the amount of improvement in

compression efficiency converges.

ure 6.6. For example, for the Class A sequence PeopleOnStreet, the average bit
rate overhead is 24.4% when using only one CIC module. This overhead is al-
most halved to 15.0% by increasing the number of CIC modules to two. How-
ever, adding another CIC module only further decreases the overhead to 13.2%.
Between six and seven CIC modules, the bit rate overhead only decreases from
11.8% to 11.7%. As the number of CIC modules is yet further increased, the bit
rate overhead eventually converges. This behavior is also illustrated as an average
over all sequences in Figure 6.8. As is seen in this figure, the worst-case bit rate
overhead also follows a similar trend of decreasing sharply when increasing the
number of CIC modules from one to two, but then stops decreasing as more CIC
modules are added. However, increasing the number of these modules still con-
tributes to the overall computational complexity. Therefore, it is advisable to limit
the number of CIC modules in the proposed system to six or less.

6.4.3 Handling of small bandwidth variations and packet loss

In the previous section, the effect of the amount of CIC modules on the global com-
pression efficiency of the system was investigated. However, this evaluation did
not take possible bandwidth fluctuations and packet loss for individual RE mod-
ules into account. Therefore, in this subsection, the effects of these fluctuations on
individual RE modules are analyzed.

CHAPTER 6 131

To simulate bandwidth fluctuations, an RE module with a quantization param-
eter value of Qi,1 switches to using a quantization parameter value of Qi,2 after
the sixteenth frame, with the relation between the two values being defined as

Qi,1 = Qi,2 + ∆Qi,1−2 . (6.4)

Furthermore, at all times, the RE module copies coding information from a CIC
module with a quantization parameter value of Q0 = Qi,2 + ∆Qi,2. For each
test sequence from the previous subsection, four RE modules are tested with Qi,2

values of 22, 27, 32, and 37. These modules and compared in terms of BD-rate
overhead to a traditional encoding with the same four quantization parameters.
Note that in order to map out the evolution over time, for each frame, the BD-rate
is calculated by only taking all previous frames after the switch into account. Some
results of this experiment for the BlowingBubbles sequence are shown in Figure
6.9. In this figure, it is seen that for negative values of ∆Qi,2, the first frames have
a smaller BD-rate immediately after the change, whereas the opposite holds true
for positive values. The reason for this behavior is that in the case of a negative
∆Qi,2, the PSNR of the frames before the switch are higher, meaning that the
frames after the switch will have higher-quality reference frames. As more frames
are encoded, this effect dissipates, as is seen by all configurations converging to a
similar range of values between 9% and 10% BD-rates.

When examining the average behavior of all sequences in Table 6.2, similar
behavior can be seen. This table shows the additional BD-rate overhead when the
bandwidth fluctuates from Qi,1 to Qi,2 while copying coding information from a
CIC module withQ0 = Qi,2+∆Qi,2 compared to a situation where the bandwidth
does not fluctuate (Qi,1 = Qi,2, meaning that ∆Qi,1−2 = 0). As with the figure
in the previous paragraph, when ∆Qi,1−2 < 0 (a switch from a higher to a lower
quality), the overhead of the fluctuating scenario is smaller than in the case without
fluctuation, whereas for ∆Qi,1−2 > 0 (a switch from a lower quality to a higher
quality), the opposite is true.

In a second experiment, a method to recover from packet losses due to extreme
bandwidth fluctuations or other problems in the network is simulated. This method
consists of having a separate CIC module that calculates coding information for the
video with an all-intra configuration, meaning that it calculates the optimal coding
information for each frame to encode it as an intra-frame. In case of packet loss,
an RE module can then recover by transmitting an intra-frame encoded using the
coding information from this CIC module, and then continue by copying coding
information from a CIC module calculating coding information for inter-frames.
The effect of inserting the coding information of such an intra-frame is shown
in Figure 6.10, where the video has recovered from packet loss by coding the
sixteenth frame as an intra-frame. Since this intra-frame has a higher PSNR than
the inter-coded frames using the same quantization parameter, the second frame

132 PERSONALIZED BIT RATE

-10

-5

0

5

10

15

20

0 100 200 300 400 500

(1;-2) (1;-1) (1;0) (1;1) (1;2)

Frame # after change of Qi

(ΔQi,2 ; ΔQi,1-2) =

Combined BD-rate of previous frames

Figure 6.9: Evolution of BD-rate over time for an RE module for the BlowingBubbles
sequence, after a transition from Qi,1 to Qi,2 = Qi,1 − ∆Qi,1−2, while copying coding
information from a CIC module with Q0 = Qi,2 + ∆Qi,2. For negative values of ∆Qi,2,
the first frames have a smaller BD-rate immediately after the change, whereas the opposite

is true for positive values.

∆Qi,2 →
∆Qi,1−2 ↓

-3 -2 -1 1 2 3

-5 -5.3 -5.0 -4.7 -4.6 -4.6 -4.6
-4 -4.6 -4.2 -3.9 -3.9 -3.9 -3.9
-3 -4.3 -3.4 -3.1 -3.1 -3.2 -3.2
-2 -2.7 -3.1 -2.2 -2.2 -2.2 -2.2
-1 -1.4 -1.3 -1.9 -1.1 -1.1 -1.2
0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.5 1.5 1.4 0.4 1.2 1.2
2 3.0 3.0 2.8 2.3 1.7 2.4
3 4.6 4.6 4.4 3.8 3.6 3.0
4 6.0 6.0 5.9 5.2 5.0 4.9
5 7.5 7.4 7.2 6.7 6.4 6.4

Table 6.2: Additional BD-rate overhead when the bandwidth fluctuates from Qi,1 to Qi,2

while copying coding information from a CIC module with Q0 = Qi,2 + ∆Qi,2 compared
to a situation where the bandwidth does not fluctuate (Qi,1 = Qi,2, meaning that

∆Qi,1−2 = 0). When ∆Qi,1−2 < 0, the overhead of the fluctuating scenario is smaller
than in the case without fluctuation, whereas for ∆Qi,1−2 > 0, the opposite is true.

CHAPTER 6 133

-10

-5

0

5

10

15

20

0 100 200 300 400 500-3

3

-2

2

-1

1

0

ΔQi =

Frame # after I-insertion

Combined BD-rate of previous frames

Figure 6.10: Evolution of BD-rate over time for an RE module for the BlowingBubbles
sequence, after inserting an I-frame to recover from packet loss. The first frames after the

I-frame insertion have a smaller overhead compared to the rest of the frames.

has a reference frame of higher quality than if said frame had been encoded as an
inter-frame. As a result of this higher quality, the following frames appear to have
a higher compression efficiency than the reference encoder1. Finally, by the end
of the video, the effect of the intra frame has dissipated almost completely, with
an extra BD-rate overhead between -0.6% and -0.7% compared to an RE module
that did not experience packet loss and an intra-frame insertion (not shown in the
figure).

As a conclusion, it can be said that bandwidth fluctuations have a positive effect
on the bit rate overhead when going from a higher quality to a lower quality, while
they have a negative effect when going from a lower quality to a higher quality.
Since this negative effect is slightly stronger than the positive effect, it might be
useful to transmit an intra-frame after many bandwidth fluctuations. Furthermore,
this intra-frame can also be used to recover from packet losses. Finally, the exact
effect of many consecutive fluctuations is left as future work.

1Note that only the BD-rate of the frames after the I-insertion have been taken into account, meaning
that the bit rate of the intra-frame, which is typically much higher than an inter-coded version of the
same frame, has not been taken into account. In practice, such a sudden burst in bit rate would be
undesirable. Therefore, an intra-refresh would be used instead, meaning that only parts of the frame
are coded with intra blocks in the first recovery frame, whereas other zones are encoded as intra in the
following frames, until the entire picture has received an intra-refresh.

134 PERSONALIZED BIT RATE

Q0

Qi Initial frames Last 200 frames

Switch set1 {25, 29, 33, 37} Qi − 3 Qi + 1

Ref set1 {25, 29, 33, 37} Qi + 1 Qi + 1

Switch set2 {23, 27, 31, 35} Qi + 3 Qi − 1

Ref set2 {23, 27, 31, 35} Qi − 1 Qi − 1

Table 6.3: Configurations for testing the effect of switching the coding info source

6.4.4 Switching coding info source

As mentioned in Section 6.3, an RE module can switch the CIC module it copies
coding information from. For example, this is the case if there are two CIC mod-
ules calculating coding information for a 20 Mbps and a 10 Mbps version of the
video and the connection of a client linked to an RE module at 18 Mbps drops to
8 Mbps. While the connection is still 18 Mbps, the RE module will be copying
coding information from the 20 Mbps CIC module. However, when the connec-
tion drops to 8 Mbps, the RE module should switch to copying coding information
from the 10 Mbps CIC module instead.

In order to test the effect of switching the CIC module used as the coding info
source, the system was tested using the two configuration sets shown in Table 6.3.
In both configurations, five CIC modules were used with values of 22, 26, 30,
34, and 38 as Q0. In the first configuration, four RE modules were active with
Qi values of 25, 29, 33, and 37. To simulate a switch of the coding information
source, the RE modules used the CIC module for whichQ0 = Qi−3 as the source
of coding information for the first part of the video. Then, for the last 200 frames
of the video, the RE modules switched to using coding information provided by
the CIC module for which Q0 = Qi + 1. This switch set1 was compared to
a ref set1 for which the RE modules copied coding information from the CIC
module with Q0 = Qi + 1 for the entire duration of the video. Similarly, the
second configuration set first copies coding information from CIC modules with
Q0 = Qi + 3 and then switches to Q0 = Qi − 1 while being compared to a
reference set using a CIC module with Q0 = Qi − 1 for the entire duration of
the video. In both configurations, the Q0 after the switch is closer to Qi than the
initial Q0, since a switch would only occur when the distance between Q0 and Qi

becomes too large.
Note that since the last 200 frames were used, only videos with more than 200

frames (see Table 6.1) were considered. Also, temporal motion vector prediction
was disabled in order to prevent dependencies between motion vectors before and
after the switch from producing an invalid bitstream.

CHAPTER 6 135

-3

-2

-1

0

1

2

3

4

0 50 100 150 200

RaceHorsesC

BasketballDrive

BQMall

Cactus

BlowingBubbles

Number of frames after switching CIC module

Combined BD-rate of previous frames

Figure 6.11: BD-rate of having an RE module switch from using coding information of a
CIC module with Q0 = Qi − 3 to using coding information produced by a CIC module
with Q0 = Qi + 1, compared to having an RE module use the coding information of the

latter CIC module for the entire duration of the video.

-2

0

2

4

6

8

10

12

14

16

0 50 100 150 200

Cactus

BlowingBubbles

BQMall

BasketballDrive

RaceHorsesC

Number of frames after switching CIC module

Combined BD-rate of previous frames

Figure 6.12: BD-rate of having an RE module switch from using coding information of a
CIC module with Q0 = Qi + 3 to using coding information produced by a CIC module
with Q0 = Qi − 1, compared to having an RE module use the coding information of the

latter CIC module for the entire duration of the video.

136 PERSONALIZED BIT RATE

The bit rate overhead for the same quality was calculated for the frames af-
ter the switch by comparing each switch set to its corresponding ref set. This
overhead for n frames after the switch was calculated as the BD-rate between the
ref set and the switch set by only considering the bit rate and PSNR of those n
frames. A negative BD-rate indicates that the switch set has a higher compression
efficiency compared to the ref set.

Figure 6.11 shows the effect of switching from a CIC module with a lower
Q0 to using coding information based on a higher Q0. After about 50 frames, the
overhead stabilizes for all tested video sequences. Moreover, the overhead remains
between 2% and -2% for all sequences (including the ones not shown in the figure).
Figure 6.12 then shows the effect of switching from a CIC module with a higher
Q0 to a lower Q0. Again, after about 50 frames, the overhead stabilizes, with all
tested videos achieving BD-rates below 4%.

Both test configurations show that switching the source of coding information
mostly impacts the first frames after the switch. However, the impact becomes
small after about 50 frames for most videos, showing that switching the CIC mod-
ule linked to an RE module can be done with minimal impact on the compression
efficiency of the system. Do note that, if compression efficiency is of great con-
cern or if many switches are expected, it may be advisable to prohibit the use of
skip-mode by CIC modules, since this mode signifies that no residual informa-
tion should be encoded. As such, the RE modules will not be able to compensate
for inefficient coding decisions, which will let errors propagate more easily after
switching the source of coding information. In order to still be able to use pos-
sibly compression-efficient skip-mode decisions even when they are disabled for
the CIC modules, the complexity of the RE modules could slightly be increased
by having them check for skip-mode under certain conditions. However, further
investigation of this matter is beyond the scope of this dissertation.

6.4.5 Comparison with state-of-the-art

As mentioned in Section 6.2, a possible solution for reducing the computational
complexity of a real-time video-streaming system with many participants would be
the use of fast encoding algorithms. However, as was also remarked in the same
section, these algorithms only partially reduce the amount of coding decisions that
a video encoder has to make. The RE modules in the proposed architecture, on the
other hand, skip all coding decisions. In order to quantitatively compare the differ-
ence between using fast encoding algorithms and the proposed architecture with
RE modules, this section offers a comparison in terms of compression efficiency
and computational complexity.

Compression efficiency is measured as BD-rate, which is the average bit rate
overhead of the fast encoding algorithm compared to a traditional non-accelerated

CHAPTER 6 137

BD-rate (%) Time saving (%) Speed-up

Xiong [20] 2.1 36.9 1.6
Kim [23] 0.6 49.5 2.0
Tan [24] 0.8 56.0 2.3
Shen [30] 1.0 47.1 1.9
Ahn [33] 1.0 37.7 1.6
Lee [31] 4.8 69.3 3.3

∆Qi = 1 10.5 99.2 124.0
∆Qi = 2 13.5 99.2 124.4
∆Qi = 3 17.7 99.2 124.1

Table 6.4: Comparison with state-of-the-art

encoding. Computational complexity reduction is expressed as time saving (equa-
tion 2.1). Additionally, speed-up (equation 2.2) is also used as a measure in order
to express the amount of fast encoders that are needed to reach the same computa-
tional complexity as a single non-accelerated encoder.

Six state-of-the-art fast encoding algorithms that reported results for a low-
delay configuration were selected for the comparison [20, 23, 24, 30, 31, 33]. Since
video sequences in class A, E, and F were not evaluated in all related work, only
the results for class B, C, and D sequences were included in the average BD-rate
and time saving presented in Table 6.4.

For the proposed architecture, three configurations were used. In each configu-
ration, four non-accelerated encodings with quantization values of 22, 27, 32, and
37 were used as a reference. Similarly, four fast encodings were made by using
the same four values as the Qi of each RE module for each configuration. The dif-
ference between the three configurations is the Q0 = Qi +∆Qi (see also equation
(6.3)) of the four CIC modules that were used in each configuration from which
the coding information was copied.

As seen in Table 6.4, the proposed system results in higher bit rate overheads
than the related work. However, the computational complexity of the RE mod-
ules is much lower than the fast encoding algorithms. For example, the speed-up
of the RE modules is around 124, which means that the system can activate 124
RE modules before reaching the same computational complexity as using a single
traditional encoder. On the other hand, the fastest algorithm of the related work
by Lee [31] would already reach the same computational complexity as a non-
accelerated encoder by using more than three fast encoders. As such, although the
state-of-the-art performs better in terms of compression efficiency, only the pro-
posed architecture can manage to significantly decrease the complexity for person-
alized bitstreams for low-delay live-streaming with a great number of participants.

138 PERSONALIZED BIT RATE

6.5 Conclusion
This chapter proposed a system for low-delay live-streaming of video bitstreams
with a bit rate tailored to the bandwidth capacity of individual users. This was
achieved by using a combination of RE modules and CIC modules. The CIC
modules calculate coding information at certain bit rates, while the RE modules
copy this coding information to skip all encoding decisions except for residual
encoding. The bit rate is thus adapted to the bandwidth by modifying the amount
of encoded residual information.

The proposed system achieves its goal of providing each user with a bitstream
at different bit rates at a very low computational complexity. Moreover, it was
shown that the number of information calculation modules should be kept limited,
since using more than six CIC modules with the HEVC video standard only results
in negligible increases in compression efficiency. As a result, the proposed system
using guided encoding can serve more than one hundred extra users for the same
computational complexity as one extra user joining a similar system that does not
use this set-up.

CHAPTER 6 139

References

[1] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the
Internet. IEEE Multimedia, 18(4):62–67, Apr. 2011.

[2] J. De Praeter, H. Swimberghe, G. Renard, G. Van Wallendael, and P. Lam-
bert. Dynamic encoder profile optimisation for real-time video streaming
applications. Electron. Lett., 52(13):1116–1118, June 2016.

[3] R. Lanphier. Standardizing Real-Time Streaming Protocols. IEEE Computer,
31(7):94–96, July 1998.

[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video
Technol., 13(7):560–576, July 2003.

[5] S. H. Ri, Y. Vatis, and J. Ostermann. Fast Inter-Mode Decision in an
H.264/AVC Encoder Using Mode and Lagrangian Cost Correlation. IEEE
Trans. Circuits Syst. Video Technol., 19(2):302–306, Feb. 2009.

[6] M. Paul, M. R. Frater, and J. F. Arnold. An Efficient Mode Selection Prior
to the Actual Encoding for H.264/AVC Encoder. IEEE Trans. Multimedia,
11(4):581–588, June 2009.

[7] H. Zeng, C. Cai, and K. K. Ma. Fast Mode Decision for H.264/AVC Based
on Macroblock Motion Activity. IEEE Trans. Circuits Syst. Video Technol.,
19(4):491–499, Apr. 2009.

[8] Y. H. Sung and J. C. Wang. Fast Mode Decision for H.264/AVC Based on
Rate-Distortion Clustering. IEEE Trans. Multimedia, 14(3):693–702, June
2012.

[9] J. Y. Lee and H. Park. A Fast Mode Decision Method Based on Motion Cost
and Intra Prediction Cost for H.264/AVC. IEEE Trans. Circuits Syst. Video
Technol., 22(3):393–402, Mar. 2012.

[10] X. Xu and Y. He. Improvements on Fast Motion Estimation Strategy for
H.264/AVC. IEEE Trans. Circuits Syst. Video Technol., 18(3):285–293, Mar.
2008.

[11] Z. Liu, L. Li, Y. Song, S. Li, S. Goto, and T. Ikenaga. Motion Feature and
Hadamard Coefficient-Based Fast Multiple Reference Frame Motion Estima-
tion for H.264. IEEE Trans. Circuits Syst. Video Technol., 18(5):620–632,
May 2008.

140 PERSONALIZED BIT RATE

[12] Y. Ismail, J. B. McNeely, M. Shaaban, H. Mahmoud, and M. A. Bayoumi.
Fast Motion Estimation System Using Dynamic Models for H.264/AVC Video
Coding. IEEE Trans. Circuits Syst. Video Technol., 22(1):28–42, Jan. 2012.

[13] K. Bharanitharan, B. D. Liu, J. F. Yang, and W. C. Tsai. A Low Complexity
Detection of Discrete Cross Differences for Fast H.264/AVC Intra Prediction.
IEEE Trans. Multimedia, 10(7):1250–1260, Nov. 2008.

[14] B. G. Kim. Fast Selective Intra-Mode Search Algorithm Based on Adaptive
Thresholding Scheme for H.264/AVC Encoding. IEEE Trans. Circuits Syst.
Video Technol., 18(1):127–133, Jan. 2008.

[15] T. J. Kim, J. E. Hong, and J. W. Suh. A fast intra mode skip decision algo-
rithm based on adaptive motion vector map. IEEE Trans. Consum. Electron.,
55(1):179–184, Feb. 2009.

[16] D. Quan and Y. S. Ho. Categorization for fast intra prediction mode decision
in H.264/AVC. IEEE Trans. Consum. Electron., 56(2):1049–1056, May 2010.

[17] C. Y. Wu and P. C. Su. Fast Intra-Coding for H.264/AVC by Using Projection-
Based Predicted Block Residuals. IEEE Trans. Multimedia, 15(5):1083–
1093, Aug. 2013.

[18] C. K. Chiang, W. H. Pan, C. Hwang, S. S. Zhuang, and S. H. Lai. Fast H.264
Encoding Based on Statistical Learning. IEEE Trans. Circuits Syst. Video
Technol., 21(9):1304–1315, Sept. 2011.

[19] G.J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video
Technol., 22(12):1649–1668, Dec. 2012.

[20] J. Xiong, H. Li, Q. Wu, and F. Meng. A Fast HEVC Inter CU Selection
Method Based on Pyramid Motion Divergence. IEEE Trans. Multimedia,
16(2):559–564, Feb. 2014.

[21] X. Huang, Q. Zhang, X. Zhao, W. Zhang, Y. Zhang, and Y. Gan. Fast inter-
prediction mode decision algorithm for HEVC. Signal, Image and Video
Processing, pages 1–8, 2015.

[22] L. Shen, Z. Zhang, X. Zhang, P. An, and Z. Liu. Fast TU size decision al-
gorithm for HEVC encoders using Bayesian theorem detection. Signal Pro-
cessing: Image Communication, 32:121–128, 2015.

[23] H. S. Kim and R. H. Park. Fast CU Partitioning Algorithm for HEVC Using
an Online-Learning-Based Bayesian Decision Rule. IEEE Trans. Circuits
Syst. Video Technol., 26(1):130–138, Jan. 2016.

CHAPTER 6 141

[24] H. L. Tan, C. C. Ko, and S. Rahardja. Fast Coding Quad-Tree Decisions Us-
ing Prediction Residuals Statistics for High Efficiency Video Coding (HEVC).
IEEE Trans. Broadcast., 62(1):128–133, Mar. 2016.

[25] M. R. Fini and F. Zargari. Two stage fast mode decision algorithm for intra
prediction in HEVC. Multimedia Tools and Applications, pages 1–18, 2015.

[26] D. Ruiz, G. Fernandez-Escribano, J. L. Martinez, and P. Cuenca. Fast intra
mode decision algorithm based on texture orientation detection in HEVC.
Signal Processing: Image Communication, 44:12–28, 2016.

[27] S. H. Yang and K. S. Huang. HEVC fast reference picture selection. Electron.
Lett., 51(25):2109–2111, Dec. 2015.

[28] H. Lee, H. J. Shim, Y. Park, and B. Jeon. Early Skip Mode Decision for
HEVC Encoder With Emphasis on Coding Quality. IEEE Trans. Broadcast.,
61(3):388–397, Sept 2015.

[29] T. Vermeir, J. Slowack, G. Van Wallendael, P. Lambert, and R. Van de Walle.
Real-time complexity constrained encoding. In Proc. IEEE Int. Conf. Image
Process. (ICIP), pages 819–823, Sept. 2016.

[30] L. Shen, Z. Zhang, and Z. Liu. Adaptive Inter-Mode Decision for HEVC
Jointly Utilizing Inter-Level and Spatiotemporal Correlations. IEEE Trans.
Circuits Syst. Video Technol., 24(10):1709–1722, Oct. 2014.

[31] J. Lee, S. Kim, K. Lim, and S. Lee. A Fast CU Size Decision Algorithm
for HEVC. IEEE Trans. Circuits Syst. Video Technol., 25(3):411–421, Mar.
2015.

[32] G. Correa, P. A. Assuncao, L. V. Agostini, and L. A. da Silva Cruz. Fast
HEVC Encoding Decisions Using Data Mining. IEEE Trans. Circuits Syst.
Video Technol., 25(4):660–673, Apr. 2015.

[33] S. Ahn, B. Lee, and M. Kim. A Novel Fast CU Encoding Scheme Based on
Spatiotemporal Encoding Parameters for HEVC Inter Coding. IEEE Trans.
Circuits Syst. Video Technol., 25(3):422–435, Mar. 2015.

[34] I. Zupancic, S. G. Blasi, E. Peixoto, and E. Izquierdo. Inter-Prediction Op-
timizations for Video Coding Using Adaptive Coding Unit Visiting Order.
IEEE Trans. Multimedia, 18(9):1677–1690, Sept 2016.

[35] J. Zhang, B. Li, and H. Li. An Efficient Fast Mode Decision Method for Inter
Prediction in HEVC. IEEE Trans. Circuits Syst. Video Technol., 26(8):1502–
1515, Aug. 2016.

142 PERSONALIZED BIT RATE

[36] L. Pham Van, J. De Praeter, G. Van Wallendael, S. Van Leuven, J. De Cock,
and R. Van de Walle. Efficient Bit Rate Transcoding for High Efficiency Video
Coding. IEEE Trans. Multimedia, 18(3):364–378, Mar. 2016.

[37] J. De Praeter, A. J. Diaz-Honrubia, N. Van Kets, G. Van Wallendael,
J. De Cock, P. Lambert, and R. Van de Walle. Fast simultaneous video
encoder for adaptive streaming. In Proc. IEEE Int. Workshop Multimedia
Signal Process. (MMSP), pages 1–6, Oct. 2015.

[38] D. Schroeder, P. Rehm, and E. Steinbach. Block structure reuse for multi-rate
high efficiency video coding. In Proc. IEEE Int. Conf. Image Process. (ICIP),
pages 3972–3976, Sept. 2015.

[39] D. Schroeder, A. Ilangovan, M. Reisslein, and E. Steinbach. Efficient multi-
rate video encoding for HEVC-based adaptive HTTP streaming. IEEE Trans.
Circuits Syst. Video Technol., PP(99):1–1, 2016.

[40] G. Van Wallendael, J. De Cock, and R. Van de Walle. Fast transcoding for
video delivery by means of a control stream. In Proc. IEEE Int. Conf. Image
Process. (ICIP), pages 733–736, Sept. 2012.

[41] T. Rusert, K. Andersson, R. Yu, and H. Nordgren. Guided just-in-time
transcoding for cloud-based video platforms. In Proc. IEEE Int. Conf. Image
Process. (ICIP), pages 1489–1493, Sept. 2016.

[42] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. Sullivan. High
Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Improved Encoder
Description Update 2. Technical Report JCTVC-T1002, ITU-T Joint Col-
laborative Team on Video Coding (JCT-VC), Feb. 2015.

[43] G. Bjøntegaard. Calculation of average PSNR differences between RD-
curves. Technical Report VCEG-M33, ITU-T Video Coding Experts Group
(VCEG), Apr. 2001.

7
Overall Conclusion

When optimally adapting video to the device and network requirements of the
receiver, each receiver requires an individual video encoder. However, doing so
gradually evolves into a computationally complex nightmare as more users need
to be served by this system. As shown in Chapter 2, even with state-of-the-art fast
encoding algorithms, the computational complexity of HEVC encoders is only
reduced by less than 75%. This means that, in the best case, four clients can be
served with the same complexity as a non-accelerated encoder. Consequently, the
computational complexity of the system remains too large to serve many users.

Contrary to fast encoding algorithms for a single encoder, providing a per-
sonalized video stream to each user has the distinct advantage of being able to
use guided encoding by deriving coding decisions from earlier decisions made by
other encoders. In this dissertation, the use of this guided encoding has thus been
studied for four scenarios.

The first scenario considers the creation of a personalized video composition
for each user. By rearranging videos into a different composition, the CTU-grid
of the video in the composition might become misaligned with the CTU-grid of
the original. Chapter 3 examines how coding information of such a spatially mis-
aligned video can be predicted based on the coding information of the original
video encoding. This is done using both a trivial method and a machine learning
method. Using the trivial method, a complexity reduction of 82% is achieved with
a bit rate overhead of 3% for a misalignment of 32 pixels. However, for other
shifts, the performance of the machine learning method is better. As such, the
proposed method succeeds in offering a fast-encoding solution for any amount of
misalignment for a reasonable bit rate overhead.

144 CONCLUSION

Instead of combining video sequences into a composition, Chapter 4 considers
a scenario in which a cropped view is extracted from a very-high-resolution video.
In this chapter, it is observed that misalignment as with the previous scenario can
also occur here. However, in order to allow higher complexity reductions, the
cropped view is constrained to the CTU-grid of the full video. By doing so, more
information from the full view can be reused, leading to complexity reductions be-
tween 96.5% and 97.5%, with bit rate overheads between 8% and 20%. Although
the overhead appears to be large, it is compared to the overhead introduced by
the traditional tile-based approached used in this scenario, and it is concluded that
the overhead introduced by the guided encoding of personalized views is smaller
than the overhead of using tiles. Moreover, since the personalized encoders do not
suffer from the same structural latency as the tile-based method, the former could
thus become a viable alternative for the latter.

Due to the nature of crops, not all coding information of the full view could be
copied, since some coding information depended on other coding decisions from
outside the cropped view. However, in a third scenario, this is not the case. In
Chapter 5, a scenario is considered in which users receive a different version of
the video depending on the dynamic-range capabilities of their device. In this
scenario, the coding decisions of an encode of a low-dynamic-range version of a
video are guided by the coding decisions taken by an encode of a high-dynamic-
range version of the same video. Contrary to the cropped or shifted content in the
previous scenarios, since both versions contain the same video content with only
differences in pixel values, all coding information can be copied from one version
to another. Moreover, by selecting the quantization parameter of the low-dynamic-
range encoding according to the model described in this chapter, the correlation
between both versions is maximized, which results in a smaller bit rate overhead.
As such, a complexity reduction of 99.7% is achieved for a bit rate overhead of
12.4%. In other words, using guided encoding, a video provider can simultane-
ously encode multiple dynamic-range versions of the same video for about the
same computational complexity as when encoding a single version.

Finally, after considering shifts, crops, and different dynamic ranges of the
source video, a fourth scenario also considers a difference in encoding parameters.
In this scenario in Chapter 6, each individual client connected to the system re-
ceives a video stream that is adapted to his current bandwidth capabilities in order
to provide low-latency communications as required in real-time video-streaming
events with many participants such as virtual classrooms and video conferences. In
order to guide the encoding of these numerous personalized encoders, specialized
modules calculate coding decisions at certain bit rates of the video. The guided
encoders then only have to encode the residual picture of the video by copying
all coding decisions generated by one of these modules. By creating a system
with only six coding information calculation modules covering the desired bit rate

CONCLUSION 145

range, the system can provide individual encoders with a complexity reduction of
99.2% with the average bit rate overhead of the system being 11.8%. As a result,
one hundred extra users joining the proposed system results in a smaller increase
of overall computational complexity than one extra user joining a similar system
that does not use guided encoding.

In conclusion, guided encoding is an effective way to greatly accelerate the en-
coding of personalized video streams for individual users, although the amount of
coding information that can be shared efficiently depends on the scenario: spatial
shifting and cropping operations require more intelligent decisions and algorithms,
whereas small changes in pixel values and target bit rates more easily allow person-
alized encoders to completely share all information. In light of the latter scenarios,
future standardization of video compression might want to take these findings into
account by encoding coding decisions and the residual picture as separate parts of
the bitstream in order to facilitate the use of such guided encoding.

Future work
As no research is ever truly finished, the work performed in this dissertation also
serves as a foundation on which future research on guided encoding can build.
Such research could focus in particular on expanding on the use case of streaming
personalized views extracted from 360-degree video to users wearing VR-glasses.
More specifically, the guided encoding techniques should be expanded to take dy-
namic views into account, in addition to the static views examined in Chapter 4.
Additionally, the techniques should be applied to ultra-high resolution 360-degree
video content for which content is currently becoming available in standardized
test sets provided by the Joint Video Exploration Team (JVET), the successor to
JCT-VC. Furthermore, the concept of CIC modules and RE modules from Chap-
ter 6 can be combined with the streaming of 360-degree video in order to handle
bandwidth fluctuations as well.

Finally, the best way to actually deploy a system for low-latency 360-degree
video streaming should be investigated as well. One way to do this, inspired by
the current draft requirements of the JVET related to network-distributed video
coding, might be by actually sending a (near) lossless compressed version of the
entire 360-degree video over a high-bandwidth backbone network together with
coding information generated by CIC modules for the entire video. This coding
information is then used in order to accelerate the encoding at the edge nodes
where personalized views are extracted from the entire 360-degree video. These
extracted views are then transmitted to the users at home over the last mile con-
nection, which has a much lower bandwidth than the backbone network. By thus
further expanding on the concepts of guided encoding as described in this disser-
tation, a highly immersive application such as sitting in your couch at home and
being transported to a sports stadium by VR-glasses can become a reality.

	Acknowledgments
	List of Acronyms
	English summary
	Nederlandse samenvatting
	Introduction
	Approaches to video content delivery
	Guided encoding for personalized video
	Outline
	Publications
	Publications in international journals
	Publications in international conferences

	Low-Complexity Encoding of High Efficiency Video Coding
	Introduction
	High Efficiency Video Coding
	Accelerating HEVC
	Test conditions and metrics
	Comparison

	Conclusion
	References

	Encoding Complexity Reduction of Personalized Video Compositions
	Introduction
	Related work
	Proposed transcoding methods
	Extraction of coding information
	Trivial method
	Machine learning method

	Parameter analysis for machine learning
	Test conditions
	Parameter analysis

	Results
	Compression efficiency of shifts
	Complexity-scalable prediction
	Comparison with existing work

	Conclusion
	References

	Personalized Views Extracted from Ultra-High-Resolution Video
	Introduction
	Related work
	System architecture
	Extraction and encoding of views
	Method
	Evaluation
	Discussion

	Further encoding complexity reduction
	Used content
	Evaluation

	Comparison with the tile-based method
	Bit rate comparison
	PSNR comparison
	Discussion

	Conclusion
	References

	Guided Encoding of Personalized Dynamic-Range Video
	Introduction
	Related work
	Proposed method
	Simultaneous encoder architecture
	Analysis of HDR and LDR coding information

	Evaluation
	Effect of coding information
	Robustness of the model
	Comparison with related work

	Conclusion
	References

	Video Encoder Architecture for Personalized Bit Rate Representations
	Introduction
	Related work
	Proposed method
	Architecture
	Analysis of theoretical complexity

	Evaluation
	Compression efficiency of RE modules
	Effect of CIC modules on compression efficiency
	Handling of small bandwidth variations and packet loss
	Switching coding info source
	Comparison with state-of-the-art

	Conclusion
	References

	Overall Conclusion

