131 research outputs found

    Finite time Synchronization of Inertial Memristive Neural Networks with Time Varying Delay

    Get PDF
    Finite time synchronization control of inertial memristor-based neural networks with varying delay is considered. In view of drive and response concept, the sufficient conditions to ensure finite time synchronization issue of inertial memristive neural networks is given. Based on Lyapunov finite time asymptotic theory, a kind of feedback controllers is designed for inertial memristorbased neural networks to realize the finite time synchronization. Based on Lyapunov stability theory, close loop error system can be proved finite time and fixed time stable. Finally, illustrative example is given to illustrate the effectiveness of theoretical results

    Passivity and synchronization of coupled different dimensional delayed reaction-diffusion neural networks with dirichlet boundary conditions

    Get PDF
    Two types of coupled different dimensional delayed reaction-diffusion neural network (CDDDRDNN) models without and with parametric uncertainties are analyzed in this paper. On the one hand, passivity and synchronization of the raised network model with certain parameters are studied through exploiting some inequality techniques and Lyapunov stability theory, and some adequate conditions are established. On the other hand, the problems of robust passivity and robust synchronization of CDDDRDNNs with parameter uncertainties are solved. Finally, two numerical examples are given to testify the effectiveness of the derived passivity and synchronization conditions

    Finite-time stabilization for fractional-order inertial neural networks with time varying delays

    Get PDF
    This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results

    SATURATED AND ASYMMETRIC SATURATED IMPULSIVE CONTROL SYNCHRONIZATION OF COUPLED DELAYED INERTIAL NEURAL NETWORKS WITH TIME-VARYING DELAYS

    Get PDF
    This paper considers control systems with impulses that are saturated and asymmetrically saturated which are used to examine the synchronization of inertial neural networks (INNs) with time-varying delay and coupling delays. Under the theoretical discussions, mixed delays, such as transmission delay and coupling delay are presented for inertial neural networks. The addressed INNs are transformed into first order differential equations utilizing variable transformation on INNs and then certain adequate conditions are derived for the exponential synchronization of the addressed model by substituting saturation nonlinearity with a dead-zone function. In addition, an asymmetric saturated impulsive control approach is given to realize the exponential synchronization of addressed INNs in the leader-following synchronization pattern. Finally, simulation results are used to validate the theoretical research findings

    New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks

    Get PDF
    Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This model takes into account the inertial term as well as the two types of delays, which greatly reduces the conservatism with respect to the model. A change of variables transforms the 2β 2\beta order inertial frame into β \beta order ordinary frame in order to deal with the effect of the inertial term. In the following steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS. In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further demonstrated by two simulation examples

    Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays

    Get PDF
    This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    Distributed Adaptive Control for Networked Multi-Robot Systems

    Get PDF
    corecore