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Two types of coupled different dimensional delayed reaction-diffusion neural network (CDDDRDNN) models without and with
parametric uncertainties are analyzed in this paper. On the one hand, passivity and synchronization of the raised network model
with certain parameters are studied through exploiting some inequality techniques and Lyapunov stability theory, and some
adequate conditions are established. On the other hand, the problems of robust passivity and robust synchronization of
CDDDRDNNS with parameter uncertainties are solved. Finally, two numerical examples are given to testify the effectiveness of

the derived passivity and synchronization conditions.

1. Introduction

In recent years, complex networks (CNs) have attracted
much attention since they are ubiquitous under the cir-
cumstance of our daily life, for instance, communication
networks, food webs, and social networks. Coupled neural
networks (CNNs), as a particular type of CNs, have been put
into use successfully in various fields, e.g., pattern recog-
nition, chaos generators design, and brain science [1-3].
Strictly speaking, these applications in a large extent are
depending on some properties of dynamics in CNNs (e.g.,
synchronization). Thus, the problem of synchronization for
CNNs has attracted comprehensive attention and been
developed into a hot research topic. So far, many important
and interesting results have been derived on this topic re-
cently [4-10]. Through exploiting the properties of random
variables, Yang et al. [4] acquired some synchronization
conditions for randomly delayed CNNs. In [7], several
synchronization criteria were gained for delayed CNNs in
accordance with the Lyapunov functional strategy.

Nevertheless, most of the synchronization results in afore-
said literatures [4-10] neglected reaction-diffusion phenomena.
In fact, the reaction-diffusion phenomena are unavoidable for
CNs such as neural networks and cellular networks when they
are implemented by means of electric circuits in practical sit-
uations [11]. Hence, it is necessary to research coupled reaction-
diffusion neural networks (CRDNNS). Recently, some signifi-
cant synchronization results for CRDNNs have been acquired
[12-17]. In [12], the authors researched synchronization of
CRDNNs and presented some synchronization criteria. By
designing appropriate pinning controllers, several synchroni-
zation criteria were established for CRDNNS in [17]. Further-
more, owing to the existence of external interferences, the noises
of environment, and equipment restrictions, it is very difficult to
ensure network models containing the certain parameter values
in some practice situations. Consequently, some authors studied
parametric uncertainties of neural networks [18-22], and a few
interesting results have been derived regarding robust syn-
chronization of CNNs with uncertain parameters [23-25]. In
[24], the scholars presented the memristive CNNs model with
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parametric uncertainties and obtained some adequate conditions
for guaranteeing the robust synchronization for the considered
network. By utilizing impulsive functional strategy combined
with the stability theory, Li et al. [25] presented some robust
synchronization criteria for the CNNs with uncertainties.

Actually, passivity is also one of the most important
behaviors of dynamics for CNs which can guarantee a
system’s internal stabilization in system theory. Due to the
potential applications in plenty of fields, e.g., fuzzy control
and sliding mode control, the passivity problem of CNNs has
been investigated extensively in the past years [26-33]. In
[27], the authors proposed several passivity criteria for
delayed CNNs. Ren et al. [28] analyzed the model of
CRDNNSs and established some passivity and pinning pas-
sivity conditions for the considered network. Unfortunately,
the passivity results in aforementioned studies [26-33] are
based on the case that the dimension of input is identical
with output. As far as we know, only few scholars have
addressed the problem of passivity for the network with
nonidentical dimensional output and input [34-36]. The
authors in [34] established some conditions for ensuring that
the CRDNNs with the input and output in different di-
mensions achieve passivity. Ren et al. [36] discussed the
(pinning) passivity problems of CNNs with nonidentical
dimensional output and input and acquired some corre-
sponding passivity criteria.

Note that the networks are composed of identical
nodes in the aforementioned works [4-36]. Unfortunately,
this case is very rare in the real-world networks. Conse-
quently, the CNs consisting of nonidentical nodes in the
same dimension [37-41] have been discussed firstly by
researchers. Zhao et al. [39] dealt with the synchronization
problem of CNs with nonidentical nodes. As a matter of
fact, the networks constructed by nonidentical nodes of
different dimensions can reflect more real networks in
many circumstances. Note that the networks constructed
by nonidentical nodes in different dimensions can exhibit
different and even more sophisticated dynamical behav-
iors, which makes the passivity and synchronization
methods for the networks with the same dimensional
nonidentical nodes or identical nodes in the above-
mentioned works [4-41] invalid. Hence, it is necessary and
meaningful to develop some new stabilization and syn-
chronization strategies for the network with nonidentical
nodes of different dimensions [42-45]. In [43], by de-
signing appropriate decentralized controllers, the authors
devoted to establishing stabilization and synchronization
criteria for CNs consisting of nonidentical nodes. Up to
now, only a few researchers considered CNNs constructed
by the nonidentical nodes of different dimensions [46-48].
In [47], the authors investigated generalized synchroni-
zation of delayed CNNs with different dimensional nodes
by making use of the Lyapunov functional method. To the
best of knowledge, the problems of synchronization and
passivity for CDDDRDNNs have not yet been investigated.
Consequently, it is essential to put forth some efforts to
study passivity and synchronization of CDDDRDNNeS.

In terms of the above introduction, the main aim in this
paper is to address passivity and synchronization of
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CDDDRDNNs without and with parametric uncertainties.
On the one hand, we discuss the CDDDRDNNs without
parametric uncertainties, and several conditions are derived
to guarantee the considered network to achieve passivity and
synchronization. On the other hand, the problems of robust
synchronization and robust passivity for CDDDRDNNs
with parametric uncertainties are also studied.

2. Preliminaries

Let the matrix G € R™, the notation G<0 (G>0,
G <0,G>0) signifies G is symmetric and negative (positive,
seminegative, and semipositive) definite. A, (-) (A, (-))
represents the minimum (maximum) eigenvalue of the
corresponding matrix. An open-bounded domain in R? with
smooth boundary 0Q is defined by Q={m= (m,
mz,---,mQ)Tllmgl <{,0=1,2,---,0}. For any z(m,t) =
(z,(m,t),z, (M, t),---, 2, (m, 1)) € R", we have

1/2
lz(,t)l, = <JQ sz (m,t)dm> ) (1)
i=1

Definition 1 (see [49]). Let u(m,t) € R? and y(m,t) € R?
denote the input and output of a system. Assume that there
exists a storage function S: [0,+00) — [0,+00) which
satisfies

L’ I (u, y)dt > S (1)) - S(t,), 2)

for any t),t; € [0,+00) and t,<t;, then the system with
supply rate II(u, y) is dissipative. Moreover, a system is
passive if the system is dissipative with

I (u, y) = JQyT(m, Qu (m, H)dm, (3)

where the matrix Q € R™?, Furthermore, assume that a
system is dissipative with

II(u,y) = JQyT (m, t)Qu (m, t)dm
- JQyT (m,t)M,y (m,t)dm (4)

- J ul (m, t)M,u (m, t)dm,
Q

in which M, e R?9>0,M, e RP*? >0, A,(M,)+A4,,
(M,) >0, and Q € R??, then the system is strictly passive.
Especially, if M, >0, then the system is called to be
output-strictly passive; if M, >0, then the system is called
to be input-strictly passive.

Lemma 2.1 (see [50]). Let Q be a cube |my|<(, (o=
1,2,--+,0) and real-valued function w(m) € C'(Q) satisfy
w(m)| 39 = 0. Then,

2
J wz(m)dm<(ij (Bw(m)> dm, (5)
Q Q

om,
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where m = (m;,m,,--- ,mQ)T-

3. Passivity and
Synchronization of CDDDRDNNSs

3.1. Network Model. The CDDDRDNNSs considered in this
section is stated as follows:
ow; (m, t) D, iazwi (m, t) B

o omz bwime1)

o=1

+ A f i (w;(m, 1)) + J; + Gu; (m, 1)

+ Z,¢; (w; (m,t — 7;(1))) + Zc,]H,]w] (m,t),
(6)
in which =12, N, w(mt)= (W (m, 1),
’) (m,t),- (’) (m, 1) € Rf denotes the state vector of

zth neuron; B € R4 = diag (b, b3, b ’))>0 A, =

(zgnexes fi (witm,0) = (f1 (wll)(m’ o), f5
fg:) (wf(f) (m,t)))"; D, = diag(d\”,d{",.
-7, (1), 95
Lo (wd mt -7, £ (), and

-,&;) denote the activation functions for the
) (T,
Y ]fx ) >

(agh)£i><§i>
WS (m, 1)), -+,
di)> 05 g, (w; (m,t = 7,(0)) = (91" (w}” Oyt
(wz“)w,t—ri(t))),-

o ()1 =12,
lth neuron in neural network 7; J; = (](')

u;(m,t) € RP denotes the control input; the inner cou-
pling matrix is defined by H;; € R, ; G; € R&%Pi is a

known matrix; C = (¢;;)yxy 18 the couphng configuration
matrix denoting coupling weight, which satisfies
¢;;#0(i# j) if node i and node j are connected, or else
¢;; = 0. In addition, the time-varying delay 7, () satisfies
0<7;(t)<7; and 7;(1)<§; < 1.

Remark 1. As a special type of CNs, CNNs have attracted
much attention due to their extensive applications on plenty
of fields. So far, a large number of scholars have acquired
some interesting research results about synchronization and
passivity of CNNs [4-36]. Nevertheless, the considered CNs
in the aforementioned literature are made up of identical
nodes. As a matter of fact, it is utterly impractical that the
networks have totally identical nodes in many practical
situations. For instance, due to the differences of the pa-
rameters, it is impossible that the neurons in the nervous
system of neural networks are entirely the same as each
other. Consequently, it is significant to study CNNs com-
posed of nonidentical nodes. To our knowledge, a few in-
vestigators have discussed CNs consisting of the same
dimensional nonidentical nodes in recent years [37-41].
However, the networks with nonidentical nodes of different
dimensions can describe more practical networks. In ad-
dition, the considered networks in these existing works did
not take the reaction-diffusion terms into account. There-
fore, we pay our attention on the CRDNNs with different

dimensional nodes. As far as we know, this is our first step
toward addressing the passivity and synchronization
problems of CDDDRDNN .

For network (6), the initial value condition and
boundary value condition are described by

w; (m,t) = 9;(m, 1),
(7)

(m,t) € Qx[-p,0],
w; (m,t) =0, ()

(m,t) € 0Q x [—p, +00),

wherei =1,2,---,N, 9, (m, 1) is bounded and continuous on
Qx [-p,0] and p = max;_, .. v{7;}.

Suppose that the functions f l(’) (+) and (pl(') (+) satisfy the
following global Lipschitz condition; there exist positive
constants y; and ¥, such that

.fl(i) (v) - £} (Uz)| <yalvy = vy,

(i) (i) = ©)
|§01 (v1) =9 (Uz)| <Palvr - val,
hold for all v,v, e R, =1,2,---,&,i=1,2,-- N
Let the constant vector O = (67,5%,---,0%)" be an

equ1l1br1um point of an isolated node of network (6). Then,

2A
> IO B+ Ai(0) + T+ 2, 6)
(10)
N
+Zcinl]5] :0,
j=1

where 5, = (3(",0,",---,0{") e R%,i=1,2,--,N.
For the error Vector z;(m,t) = (zl’) (m,t), zzl
(m,t),-- -,zf (m,t)) = w;(m, t) — 0;, we have

0z, (m B _ iazz (m, t)

- Biz;(m,t) + Aifi (z;(m,1))

+ Gu; (m,t) + Z;9; (z; (m, t — 7;(1)))

N
+ZCU ij J(m 1),
=1
(11)

where i; 1,2,.--,N,}i (;i(m, D) = f;(w;(m 1) - f,(5) =
(flf’) " (m, 1)) - £’ ), fz” (Wi (m, 1))~ £ @), -,
fE P m ) - PN and §;(z;(mt = 7,(1)) = ¢,
(w; (m,t—7,(1))) - 9, (5;) = (go; (wl’)(m, ) - <P(’)(01(’)) 9y
(W (m, 1) = 9" @), -+, 9" (W (m, 1)) = 9" @'

The output vector y; (m,t) € R% of the network (11) is
given as follows:

y;(m,t) = Kl(i)zi (m,t) + Kz(i)ui (m, 1), (12)

where K\ € R%% and K € R%*”: are the known matrices.
In the whole paper, we denote
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2(m,1) = (27 (m,£).28 (m, 1), 25 (m, 1)) (1) = (ul (mo0),ul (m, 1), uly (m, )

. . . T 1 1 1
ymt) = (5 om0, y2 om0+, ¥y (m, 1) ,L:<1_511€v1—azlfz"“’l—aNIfN)

pP=p1+ppt P =qt Pt N
E=8+6+ -+
D = diag(D,, D,,---,Dy),
Z=diag(Z,,Z,, -, Zy),
G = diag(G,,G,,--+,Gy)»
B = diag(B,,B,,- -, By),
A= diag(A;, Ay, Ay), (13)
¥, = diag(y7, v o Vi )
Y = diag (¥, ¥,, -+, ¥y)s
¥, = diag({/}izl’ ‘7/?2> s ‘AViZE,v)’
Y= diag(‘?l,‘?z,-u,q/N),
Fm0) =(F1 (2 0m,0), F> (22 om,0)), -+, Fy (2 (m, 1))
P(z(mt —1(1) = 9, (2, (m,t = 1, (1)), §, (25 (m, t = 7, (1)), -,
on (an (mt -y @), H :(ﬁij)NxN’ whereﬁ = ¢;;Hj, K, = diag(Kfl)’Kl(Z)’”"K(N))’

R, = diag(K3", K{?, -, KiV).

3.2. Passivity Analysis. It follows from (11) and (12) that the
following system with output y;(m,t) € R?% and input
u;(m,t) € RP can be obtained as follows:

0z; (m t) 2 (m,t N
Z - —Bz(m,t)+Af,(z (m,t))+Gu(m,t)+Zq>l(l-(m,t—‘r,-(t)))+z H,jz;(m,1),
= O' j=1 (14)
y;i(m,t) = Kz, (m, t) + K u; (m, t),
where H;; = ¢;;H;; and i = 1,2,---, N. where @, = ~Y2_ (1/{)(P D + DP) — PB — BP +PAATP +

PZZTP+¥+¥L+PH+H P+R,M,K,,A, = PG+K,
=~ ST ST =~ ST s
Theorem 1. System (14) reaches output-strict passivity if M, K, -K,Q A, =K,M,K, -K,Q-Q'K,.

there are matrices Q € RT?, P = diag(Py, P,,---,Py) >0 Proof. Construct the Lyapunov functional for system (14) as
(P; € R%<%), and 0 < M, € R satisfying follows:

N
V=Y [ 2 tmopzomoim
PD+ DP >0, (15) N & 5 t
+ —’J J 29 (my 1)) drm .
O, Ny ;j:l 1-8; )ir,0) Q( ] )
: <0, (16)
A1 A, (17)
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Then,

N 0 2
v =2y ng? (m, )P, <D,. % — Biz; (m,t) + A (2, (m, 1)) + Gy, (m, £) + Z,; (2 (mot = 7,(8)))
i=1 o

g i )
[ (20 omn) am

j=1 i

Mz

Il
—

N N § 2 (1 )
+2Hijzj<m,t)>dm_zz‘”f(l_;)jg(z]( (1)) dm s

i=1 j=1 i i

N )
Szz L)z?(m, t)Pi<Di Zgzia Zi;m 2 Bz, (m,t) +Af1 (z;(m, 1)) + Z,9; (z; (m, t — 7, (1)) + ZHUZJ(m, t)
(18)
N _

+G,»ui(m,t)>dm—ZJQz (m,t = 7,(0) ¥z, (m, £ - T(t))dm+Zj L mt) [y m dm

i=1 i=1

2
= ZJQZT (m, t)P<D 3 % — Bz (m,t) + AjAr (z(m,t)) + Gu(m,t) + Zo(z(m,t — 7(t))) + ﬁz(m, t)>dm

o=1

+ J 2" (m, t)¥Lz (m, t)dm — J 2l mt - 1(1)Pz(m, t — 7(t))dm.
Q Q

By means of the boundary condition and Green’s for- where h=1,2,---,§,i=1,2,---,N,and g = 1,2,---,¢,. Let

mula, one can obtain the following: =(p gh)£ «&» one has
o'z (1) | 2 9z (mt) 3z (m,t)
(i) h
J (m.t) Z 2 jﬂ S, dm,
(19)
§ &

8m2

2 N
J 2" (m, t)PDZaZ(m t)dmzz

2
om =1 g=1 h=1

) 100 ’) t
[ om0

N o & & 0z t (i)
ZZ Z J z, (m,t) 9z,"” (m, t) (20)
i=1 0=1 g=1 h=1 amU amU
0 T
_ZJ' 0z (m,t) PDaz(m,t) dm
Z)a\ om, om,
PD+DP=T"T. (22)
Then, we obtain
[y 0 T Thus,
2J 2" (m,)PD Y J ;(”Z’ D = - y j <M> .
Q = om ZJa\ om, 0z (m, t) az(m t) 0z(m,t)\ _r.0z(m,t)
(21) (PD + DP) r'r
5 om, . om, om,
. D+ pP) 22D 4 .
Mg _<6(Fz(m, t))) 0(Tz(m,t))
Obviously, there is a real matrix I' € R®¢ satisfying om, om,

(23)
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Let ¢(m,t) =Tz(m,t), for (m,t) €0Q x [-p,+00), it Therefore,
follows from boundary condition (8) that ¢(m,t) = 2 2
I'z(m,t) = 0. In terms of Lemma 2.1, we can get J z (m, t)PDZ 9 Za(nz t) Z_ZJ ZT(H’l, t)
g 0 (m 1)\ 0p(m1) | < =it
t
ZJ-Q( ) Z:: J (/) (m. 1) - (PD + DP)z (m, t)dm.
(25)
21
(m,t)dm = Z _zJQZT (m,t) (P D + DP)z (m, t)dm. In addition, we can derive that
o=15¢
(24)
N -~
J 2T (m, OPAT (2 (m, £))dm = 2 ZJ T (m,)PAT, (2, (m, £))dm
i=1
N N o
< ZJ z; T (m, t)P,A,Al P.z;(m,t)dm + Zj fi (w;(m, t))fl (w; (m,t))dm
-1 Q =179
N N & oy
= | A omopaalpzmndm sy Y [ [#9(w” o) - £1°(6)] dm
i=17 @ i=11=1 7 @ (26)
N N &
< ZJ z; I'(m, t)PlAlAl P.z;(m,t)dm + Z Z j '%1 z, @ (m, t)
i-17Q i=1 =1 Q
N N
= J 2! (m, )P, AAT Pz, (m, ydm + Y J 2T (m, 0¥z, (m, t)dm
=17 Q =179
= J z' (m,t)(PAA"P + %)z (m, t)dm.
Q
Similarly, we have
2J Z" (m,t — (£))PZp (z(m, t — 7(t)))dm
Q
N
= Zz J. 2! (m,t = 7;(t))P,Z;9; (z; (m,t — 7;(1)))dm
i-17Q
. . ) @)
<y j 2 (m,OP,Z,Z Pz, (m, ydm + Y J T (ot =7, (0)¥,2, (m, t - 7, (£))dm
i=1 =17 Q
- j 2T (m, )PZZ" Pz (m, t)dm + j 2T (it - 7(6) Pz (m, t - 7(6))dmm.
Q Q
By (25)-(27), one has
0
V(t)SJ z' (m, t)|:— ZLZ(PD +DP) - PB- BP + PAA'P
Q o=15¢
+PZZ'P+ V¥ + WL+ PH+ H P|z(m,t)dm (28)

+ ZJ. z (m, t)PGu (m, t)dm.
Q
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Thus,

V() - 2J 3T (m, £)Qui (m, £)dm + j T (m, )M, y (m, £)dm
Q Q
SJ z" (m, t)|: Z—z PD +DP) —PB—BP+PAATP+PZZTP+\P+\PL+PH+HTP]z(m,t)dm

+ J z (m, t)I?lTMll?lz(m, t)dm + J Z' (m, t)I?lTMIIAQu (m, t)dm + J u' (m, t)I?ZMll?lz(m, t)dm
Q Q Q

" J T (m, )R M, R yut (m, £)dm — 2[ 27 (m, )R Qu(m, H)dm — 2J T (m, R Qu (m, t)dm
Q Q Q

T (29)
+2J z' (m,t)PGu(m,t)dm
Q
T S T T 3 ~ =T =T =
= | 2"(m)|-Y (PD+DP)-PB~BP+PAA"P+PZZ"P+¥ +¥L+PH + H P+ K, MK, |z(m,t)dm
Q o=15¢
+ 2J 2" (m, t)(PG +R'MR, - RITQ)u(m, Bdm + J " (m, t)<1‘<§le<2 “&lq- QT1‘<2>u(m, Bdm
Q Q
@, Ay
- J o (m,1) @ (m, t)dm,
? AT A,
. PD+DP >0, (33)
where @ (m, t) = (27 (m, t),u” (m,t))*. On the basis of (16),
s ® PG-KiQ <0 (34)
2JQyT (m, £)Qu (m, t)dm — IﬂyT (m, )M, y (m, )dm >V (£). G'P-Q'R, -RiQ-Q'K, )
(30) where ®, = -2 (1/( )(PD+DP)— PB - BP + PAATP +
Then, PZZTP+ W+ WL+ PH+ H' P.
t
2 J l J yT (m, 1)Qu (m, t)dm dt Corollary 2. System (14) realizes input-strict passivity if
to J Q there exist matrices P =diag(P,,P,,---, Py)>0(P; €
4 R%%),Q € R™?, and 0 < M, € RP*P satisfying
- I J T (m, M, y (m, 0)dm dt > V () - V (£,),
to J Q PD+DP >0, (35)
(31)
ST
for any t,,t; € [0,+00) and t; > t,. In other words, @, PG-K,Q <0 (36)
G'P-Q'R, M,-K,Q-Q'K,

t
| [ (" omrQuim -7 om 0"ty (m0))dmds
tyJ o
where ®, = ~Y°_ (1/{)(PD + DP) - PB— BP + PAATP +
S(t1) = S(to), PZZTP+ ¥+ WL+ PH+H' P,
(32)
Remark 2. To the best of our knowledge, the concept of
passivity is proposed for the first time in circuit analysis and
has discovered comprehensive potential applications in lots
of areas after that. Over the past few decades, some scholars
have investigated the passivity of CNNs and CRDNNs and
Corollary 1. System (14) realizes passivity if there are ma-  derived many meaningful results [26-33]. Note that the
trices P =diag(P,P,,---,Py)>0 (P; € R&¥) and  passivity problem is solved in the abovementioned works
Q € RT? satisfying based on the case that the input has identical dimension as

where S(t) =V ()/2.
The following results can be deduced by using the similar
method. O



the output. As far as we know, only a few passivity results
have been obtained for the CRDNNs with different di-
mensional input and output until now [34-36]. However,
the networks considered in these works are coupled by
identical nodes. Therefore, we devote ourselves to studying
the passivity of CRDNNs consisting of different dimensional
nodes (i.e., CDDDRDNNSs), in which the input has different
dimensions as output. Hence, the acquired passivity results
are more general and less conservative in this paper.

3.3. Synchronization Analysis. Definition 2. Network (6)

achieves synchronization if for all i = 1,2,---, N,
im0 -], =0 @)
< L 0°z; (m, 1)
V(t)=2 Jz»Tm,tP» D, Yy~
=25 [ < >l< it

i=1 j=1

IA

[\
M=
—

©)

N

\Ya z; (m, t)dm —

N
Y JinT(m, 0

i=1

IN
D_.

2" (m, t)[

O'lcr

<Yz, 0I5,

where Y, = A, (-Y2_, (1/{3)(PD + DP) - PB— BP + PA

ATP + PZZTP +¥ + VL + PH + H'P) <0.
From (40), we have

V(t)
Y,

From (17) and (40), one knows that all terms of V' (t) are
bounded and V' (¢) is nonincreasing. Hence, V (f) converges
to a finite nonnegative real number. According to (41), we
can infer that lim, Io Iz (-, t)II%dt exists and is finite.
Furthermore, since 7; (f) is bounded, it is easily derived that

‘/’u ‘ 0 2 _
LT t)j (2 (m, )Y dm dh = o,

(42)

Izl < (41)

N &

1]1

Hence, lithJrOO_[QzT (m,t)Pz(m,t)dm is not only
existing but also is a nonnegative real number. Next, we will

1-1;(t))

N ll/i' i I//1(
*) 1—]5,J( om0 dm - ZZ e

1

Complexity
under the condition u; (m,t) =0

Theorem 2. Network (6) is synchronized if there are matrices
P = diag(P,, P,,---,Py) >0 (P; € R%%) satisfying

PD +DP >0, (38)

w, +PH+H'P<0, (39)

where W, = -Y2_, 1/{>(PD + DP) - PB - BP + PAA™P + P
Z7Z'P + ‘P + VL.

Proof. Choose the same Lyapunov functional as (17) for
system (11), then,

+ A, fi(z:(m 1) + Z:9; (z;(m, t — 7,(t))) - Bz; (m, £) + Z H,z;(m, t)> m

L}(z](.i) (m,t -1 (t)))zdm

ziT(m,t)Pl-< i Z('” D AT, (2 (m 1) + Z:3, (2, (m.t - 1.(8))) — Bz, (m, t)+ZH1]](m t)>
o=1 j=1

Z JQZiT (m,t —7;(1))¥,z; (m, t — 7;(t))dm

(PD +DP)—PB-BP+PAA'P+PZZ'P+¥ + VL + PH + HTP]z(m, )dm

(40)

prove that limt_>+oo_[QzT (m, t)Pz (m, t)dm = 0. If not, one
can get

im JQZT (m, t)Pz (m,t)dm = ¢ > 0. (43)
Obviously, there is a real constant 6> 0 such that
jQzT (m, 0Pz (m O)dm >, £20. (44)
Hence,
=013 >5 26, (45)

where x = A,; (P). According to (40) and (45), we obtain

V(t)<¥ >0, (46)

It follows from (46) that
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+00 +00 qu
V() <V (+00) = V' (6) = J V(6)dt < j S = —o
0 0
(47)
This is unreasonable. Consequently,
lim J 2" (m, )Pz (m, £)dm = 0, (48)
t—+00 J O

Then, we have lim,_, _llz(-, )], = 0. Hence, network
(6) is synchronized. O

4. Robust Passivity and Robust
Synchronization of CDDDRDNNs

4.1. Network Model. Taking the parameter uncertainties into
account,a CDDDRDNN with uncertain parameters is stated
as follows:

B := 1B, = diag(b{") : B;<B,<B,,0<b" <b? <b
(P) (0 ) @) =0 - _

A —<Ai—(agh)£ixfi.ggh<aghg wo i=12,
(P) —(,0 (@) @) 0 —

Z —«Zi—(zgh)fixgi ZghSZgpSZgp 1= 12,

In addition, for convenience, we denote
' (i) }
(1)
= ()
2y, = max{ 23} o |
Ei Ei (i) 2
9iA = Z Z <a9h> >

=1 h=1

G
g, = max{

«Q

& & N
i i ~(1) (51)
Siz = Z (zgh) ,
g=1h=1
9, = diag(9, I, 9 I, > 9y I, ) € R,

9, = diag(9, I, 9, I, 9y I ) € R,

Q = diag(21,22>" ° )QN))

= diag(ﬁl;ﬁza"'>§]\])a
where g =1,2,---,§andh = 1,2,---,&,,i = 1,2,---,N.

According to (10), we can get the error system z; (m, t) of
network (49) as follows:

3 - Bw,; (m,t) + A; f; (w; (m, 1))

ow; (m B _ ZQ: (m,t

+ ] + Gu; (m,t) + Z,p; (w; (m, t — 17,(t)))
N
Z ijw; (m,1),
=
(49)

in  which i=12,---,N,w;(m,t),];,G;,u;(m,t), f; (w;
(m, 1)), @; (w; (m, t — 7;(1))), Hj;, and ¢;; represent the same
senses as in model (6). The parameters D;, B;, A;, and Z; can
be changed within a certain parameter range of precisions as
follows:

a’, i=1200 N = 1,200,890, € D,
, i=1,2,---,N,s=1,2,---,&,VB, € B
(50)
N,g=1,2-,&h=12,---,&VA € AP
N,g=1,2 -,Ei,hz1,2,---,Ei,VZieZ(P)}.
0z, (m 0 _ az(m,t) =
Z 2z (m,t) + A, f; (z;(m, 1))

Gu; (m,t) + Z,;9; (z;(m, t — 7,(1)))

+ ZCUHUZ] (m, 1),

(52)

where the ranges of D;, B;, A;, and Z; are described by using

(50).

4.2. Robust Passivity Analysis. The output vector y; (m,t) of
system (52) is defined similarly as (12). In terms of (12) and
(52), the error system with output y; (m,t) € R% and input
u; (m,t) € R? can be described by

[ 0z, (m, 1) 2 9z (m,t)
— oD, Z e ASkicads

o 2y Bz (mt)+ AT (z;(m,1))

o=1

z.(m,t),

+ Gu;(m, t) + Z,9; (z; (m, t — 7, (1)) )+ZHZJ f

| yi(m,t) = Kfi)zi(m, t) + Kz(i)ui (m,t),

(53)
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where Hij =¢;H;jandi=12,---,N. where

= Y2 (2/()PD-2PB+(9, + 9,)P> + ¥ + VL +

Theorem 3. If there are. matrices P = diag(P\,P,, PH+H P+ f{lTMlK'l,Al = PG + K?MIRZ - IZ’?Q,AZ =

R‘N’ and 0< M, € R satzsfymg

(@) &xg; ~ — ~ ~
> Py) >0 (P, = dzag(pl P2 o py) €RVT,Qe KZMIK2 - KZQ - QTK,, then, system (53) under the given
ranges of parameters (50) is output-robustly passive.

O; A
( AT A, > <0, (54) Proof. Choose the same Lyapunov functional as (17) for
! system (52). Then,

am(zr 1~1 1 -

o=1 =

N 2 N
V(t)=2ZJ z?(m,t)pi<Diiaz"(m’t)—az.(m,t)+A.},.(z,.(m,t))+Giui(m,t)+2<p,( - 7,(1))) Z iz, (m, t))
- Q

N & =2 . N & 52
L (L= (1)) ; LY i 2
—ZZJITJQ( 9 (m,t - 7,0)) dm + Y . %J (2 (m, 1)) dm

i=1 j=1 ! i=1 j=

szj zF (m, t)P(D
Q

+ J 25 (m, )PLz (m, t)dm — J 2l (mt — (1) Pz (m, t — 7(£))dm.
Q Q

Q
Za Z(’" )—Bz(m,t) + Af (z(m, 1)) + Gu(m, t) + Zp (z (m,t — 7(t))) +Erz(m,t)>dm

o=1

(55)
Obviously,
N & N . 2 N & N . 2
—ZJ- 2" (m,t)PBz (m, t)dm = -2 Z Z pfl’)bfl’)J (z;(l’) (m, t)) dm< -2 Z p,i’)lg(’)j (z,ﬁ’) (m, t)) dm
o pus st Q iihpm Mo (56)
- ‘ZJ 2" (m, )P Bz (m, t)dm.
Q
Similar to the deduction of (25), one can get
2 i )
ZJ (m, t‘)PDZa Za(nz 2 dm< — Z(_ZJ z' (m,t)PDz (m, t)d
o=15¢ Q
N Ei Q 2 i
==Y > Y ol [ (2 omo) am
P e
(57)

In addition,



Complexity

N
2] 2 (mt)PAf (z(m,t)dm =2 I 2l (m, )P, A, f;(z;(m,t))dm
Q Q

J z (m HPZp (z(m,t — 7(t)))dm =2 JQZ (m,t)P;,Z

According to (56)-(59), one gets

Q
V(t)sJQzT(m,t)[ Z—ZPD -2PB+(9, +9,)P’

11
i=1
N N
Z J. z; (m, t)P,A,Al P,z;(m,t)dm + Z J ziT (m,t)¥,z; (m, t)dm
=170 i=1 7 © (58)
N N
< Z J Zl-T (m, t)SiAPizzi (m, t)dm + Z J ziT (m,t)¥;z; (m, t)dm
i-17Q =17 Q
_ J 27 (m, )(9,P* + W)z (m, H)dm,
Q
@i (z;(m,t —7;(1)))dm
i=1
N N R
<y J 2 (m,OP,Z, 21 Pz, (m, t)dm + Y j 2T (mt =, (0) P2, (m, £ - 7, (£))dm
=17 Q =170
- J 27 (m, )9, P2 (m, t)dm + J 2T (myt = () Pz (m, £ — 7(£))drm.
Q Q
(59)
Then,
t T t T
2 LO Joy (m, t)Qu (m, t)dm dt — LO JQy (m,t)M,y
(m,t)dmdt >V (t;) =V (t,),
(60) (63)

+¥+¥L+PH+ FITP:|z(m, t)dm

+ ZJ z' (m, t)PGu (m, t)dm.
Q

Hence,

V(t) - ZJ-Q)/T (m, t)Qu (m, t)dm + JQyT (m,t)M,y (m,t)dm
0
_J 2" (m, t)[ 2—2132—213§+(9A+.92)P2 +¥+ YL

+PFI+EITP+I?lTMIIAq]z(m,t)dm+2j z (m,t)
Q

ST o T
‘(PG+K1M1K2—K1Q>u(m,t)dm

+ J ul (m, t)(KZMIKZ - KZQ - QTI?Z)u(m, t)dm
Q
O3 A

=I mT(m,t)< >®(m,t)dm.
@ AT A,

From (54), one can get

(61)

ZJOyT (m, t)Qu (m, t)dm — JQ)/T (m,t)M,y (m,t)dm > V(1)
(62)

for any t,t; € [0,+0c0) and t;>¢,. In other words,

r J <yT(m, HQu(m,t) - y" (m, t)%y(m, t))dm dt
ty JQ 2
>S(t;) — S(ty),
(64)
in which S(¢) = V (¢)/2.

The following results can be deduced by using the similar
method. O

Corollary 3. System (53) under the given ranges of pa-
rameters (50) is robustly passive if there are matrzces P=
dlag (P1> P,, ---,Py)>0 (P; —dlag(p1 , p2 RN pf D)
<) and Q € RT*P satisfying
> <0, (65)

D, PG-K,Q
GTP-Q'R, -K,Q-Q'K,
where e —ZQ L(2/C)PD-2PB+(9, +9,)P? + ¥+

A
YL+PH+H

Corollary 4. System (53) under the given ranges of pa-
rameters (50) is input-robustly passive if there are matrzces
P =diag(P,P,,---,Py)>0 (P; = dlag(p1 ,p2 , ,pE ) e
R%%),Q € R¥P, and 0 < M, € RP*P satzsfymg

o) PG-K Q
< o L >so, (66)
G'P-Q'K, M,-K,Q-Q'K,
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where  ®, = -Y2_ (2/(2)PD-2PB+(9, + 9,)P> + ¥ +

VL+PH+OP.

4.3. Robust Synchronization Analysis. Definition 3. Network
(49) under the given ranges of parameter (50) realizes ro-
bust synchronization if for all D, e D®Y,B, € B,
A e AP andZ, € ZWP,i=1,2,---,N,

im0 =2,

) (67)

under the condition u; (m,t) =0

Theorem 4. Network (49) under the given ranges of pa-

rameters (50) achieves robust synchronization if there are

matrzces P = diag(P,, P,, -+, Py) >0 (P; = diag (p”, p\?,
’PE ) € RE%) satisfying

W, +PH +H P<0, (68)

where W, = =Y°_ (2/(2)PD -2PB+ (9, + 9,)P* + ¥ + VL.

Proof. Select the same Lyapunov functional as (17) for
system (52); then,

N
V(t)SZZ ng?(m, t)Pi< ZQ: Zi (m )
izl -

= Bizi(m,t) + Z,9; (z;(m, t = 7,(1)))

Z

+ Aifi(z;(m,1)) Z Uzj(m,t)>

+ ——z;(m,t)dm

B

Il
—

JQZ (m, t) 8

™M=

I
—_

J T (myt -7, (0) ¥z, (m, t - 7, (£))dm
Q

1

< JQZT (m,t) |: -

+‘I’+‘T’L+PIfI+ITITP

- 2
Y 5 PD-2PB

+(9, +9,)P

o~
Q

o=1

z(m,t)dm

—_

<Y, lz (5015,
(69)

Complexity

where Y, =y, (-Y2_, (2/C)PD-2PB+(9, + 9,)P* +

YL+VY+PH+H P)<o0.

Then, lim, ,, lz(-,t)l, = 0 can be proved similarly as
in Theorem 2. Consequently, network (49) under the given
ranges  of  parameters  (50)  realizes  robust
synchronization. O

Remark 3. In Section 3, we deal with the passivity and
synchronization problems of CDDDRDNNSs and estab-
lish some adequate conditions to achieve the passivity and
synchronization of network (6). Note that the parameters
in matrices D;, B;, A;, and Z; of network model (6) are
fixed. However it is utterly unreahstlc for the networks
with some certain parameters due to the noises of en-
vironment and equipment restrictions in some practical
situations [18-25]. Thus, it is necessary to consider the
case that the parameters in matrices D;, B;, A;, and Z; of
network model (6) belong to some given ranges and
investigate robust dynamical properties of the considered
network. As far as we know, the robust synchronization
and robust passivity of CDDDRDNNs with parametric
uncertainties have never been studied. In this section, we
present several robust synchronization and robust pas-
sivity criteria of CDDDRDNNs with uncertain parame-
ters in Theorems 3 and 4 and Corollaries 3 and 4,
respectively.

5. Numerical Examples

Example 1. Consider the following CDDDRDNN:Gs:

2
qwimb _p, i T g mt) + Afy (wy(m, )

ot = oml
+ ] + Gu; (m,t) + Z,9; (w; (m, t — 17;(t)))
+ZCUH’J ](m t),
(70)
where i=1,2,3,¢, =3¢, =¢, = 2,f,(i) (v) = gvl(i) (v) = (lv

+1|—|v-1|/8),1=1,2,3,Q = {m| - 0.5<m<0.5}, D=
diag (0.6, 0.8, 0.9), D, = diag(0.5, 0.7), D; = diag (0.8, 0.9),
B, = diag(0.8,0.9, 1.2), B, = diag(0.7,0.9), B, = diag (0.6,
0.9), 7; (t) = 0.04i — 00216_t,T1 =0.04, 6, =0.02, T2 =0.08,
62_004 7, =0.12,8, = 0.06 and J, = (0,0,0)7,], = J, =
(0,0)" I (m,t) = (8+/f cos(mrm), 5/t cos(mm), 10\/?cos
(mm))", u, (m, t) = (16~ cos(mm), 10\/—cos(nm)) ,us (m,
t) = (24\/—cos(7z m) 15+f cos(m))’. The matrlces A; =
(agh)fxf’ i~ (Z h)Exf’ - (Cl])3><3’G Hz]’Kl » and K Y
are chosen as foH?)ws
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o

0.2
0.1
0.2
0.1

0.2
0.5 |,
0.4
0.2
0.3 |,
0.2

0.3 0.1
04 02)

0.4
H”=<02
0.1
K}=<a2
0.3
0.1
K;=( 02
0.2
0.2
K;={ 03
0.2
0.2
Ky=| 0.1
0.2
0.3
K:=| 0.1
0.2
0.1
K3—<01
>=| o
0.3
-0.1
c=[( 02
0.3

13

0.2 0.4
02 05 )

0.2 0.1
0.2
0.3 |,
0.1

0.3
04 |,
0.1

0.2 0.3
0.3 02 |,
0.1 0.3
0.2
0.2 |,
0.4
0.2
0.3 |,
0.2

0.3 0.2
-04 02 |

0.2 -0.8

0.2 0.3
0.4 0.1 |,

(71)
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Case 1. Obviously, the equlhbrlum point of an 1solated node vy = ¥y = 0.25. It is easy to calculate the following matrices
of network (70) s =(0,0,0,0,0,0,0)" and P,Q, and M, satisfying (15) and (16):
4.9725 -0.7644 —0.7186 —0.0353 —-0.0591 -0.0363 —0.0508 —-0.0707 —0.0289
-0.7644 4.3790 -0.9676 —-0.0454 -0.0765 —0.0477 —0.0609 -0.0850 —0.0352
-0.7186 —-0.9676 4.5415 -0.0363 -0.0613 —0.0386 —0.0533 —-0.0742 -0.0306
—0.0353 -0.0454 —0.0363 5.3616 0.0154 -0.0287 —-0.0215 -0.0299 -0.0122
M, =| -0.0591 -0.0765 —-0.0613 0.0154 5.3503 -0.0393 -0.0360 -0.0501 -0.0206 |,
-0.0363 -0.0477 —0.0386 —0.0287 -0.0393 5.3398 —0.0222 -0.0309 -0.0128
—-0.0508 -0.0609 —0.0533 —0.0215 -0.0360 —0.0222 5.5126 0.2342 0.0883
-0.0707 -0.0850 —0.0742 -0.0299 -0.0501 —0.0309 0.2342 5.6688 0.1327
—-0.0289 -0.0352 —0.0306 —0.0122 -0.0206 —0.0128 0.0883 0.1327 5.4320 (72)
4.3345 5.8441 5.2880 -0.0640 0.0404 -0.0208 0.0671
-3.7523 7.7721 -3.5249 -0.0102 -0.0813 -0.0252 -0.1125
29109 -10.7922 3.1831 -0.0047 -0.0718 —0.0219 -0.0890
0.0218 0.0085 0.0367 11.6387 —-10.2133 0.0546 0.0150
Q=] -0.1185 -0.3761 -0.2903 -2.9389 3.7925 —0.0623 -0.1872 |,
0.0379 0.1798 0.1093 -0.9002 11.2576  0.0067 0.0789
-0.5730 -0.9531 -1.1102 -0.1287 -0.0881 22.6726 —64.9202
0.2752  0.4871 0.5449 0.0814 0.0072 -16.9261 50.4379
0.0993 0.1553 0.1884 -0.0423 -0.0047 8.0204 3.4236
0.2165 —-0.0111 —-0.0091
and P = diag(Py, Py, Py), where P, =| —0.0111 0.1750 -0.0054 |,
1.4434 —0.4099 —0.3575 -0.0091 -0.0054 0.1493
P, =| —0.4099 1.1014 -0.1331 |, p2:( 02567 _00117>, (75)
-0.0117 0.1929
-0.3575 -0.1331 1.3827 0.1780 —0.0118
(73) P =(—0.0118 0.1520 )

1.8096 —0.1693
P, = ,
-0.1693 1.5437
1.4530 -0.0737
P, = .
-0.0737 1.2896
On the basis of Theorem 1, the network (70) with the
input u (m,t) € R” and output y (m,t) € R? as described in

(12) realizes output-strictly passivity. Figure 1 displays the
simulation results.

Case 2. y;, 9y, and O are similar as those in Case 1. By
exploiting the MATLAB Toolbox, the matrix P satisfying
(38) and (39) can be computed as follows:

P = diag(P,, P,, P;), (74)

where

According to Theorem 2, the network (70) realizes
synchronization. Figures 2-4 show the simulation results.

Example 2. Consider the following CDDDRNN:Ss:

2
ow; (m b _ i ow; (m D B, (m,t) + A, f, (w, (m, 1))

+ ] + Gu; (m,t) + Z,p; (w; (m, t — 7,(t)))

3
+Zcij i ](m 1),
=1

(76)
in which 1—12351—35 ,=&6=2,0= {ml-05<
m < 0.5}, f, (v) = q)l (v)—(|v+1| lv-1])/4, 1=1,2,3,
7, () = 0.02i — 0.04ie”™!, 7 | = 0.02,8, = 0.04, 7, = 0.04,3, =
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35 T T T T

t(s)

o i, G, o
— laGm, 0 i ., byl
S I s, = sGm 0l

FiGure 1: Change processes of z; (m,t), u; (m,t) and y;(m,t) in
network (70).

0.35 T T T T T T

0.3 1

0.25

0.2

0.15 H

0.1

0.05

t(s)

—_— zgl)(m, t)
—_— z&l)(m, 1)

—_ 231)(711 t)

FIGUure 2: Change processes of z](-l) (m,t) in network (70).

0.08,7; = 0.06,0, =012, and J, = 0,0,007,], =], =
(0,0)", u, (m, t) = (3+/t cos (mm), 4\/—cos(nm) 6/t cos
(mm))",u, (m, t) = (6+F cos (nm) 8+t cos (mm))’, u; (m, t)
= (9+/t cos(mm), 12\/_cos(7rm)) The matrices C =

(€ij)3x» Gis H,],K1 , and K2 are chosen as follows:

15
0.2 0.1 0.4
G, =(o.3 0.4 0.2 |,
02 03 0.1
(02 0.3)
G, = ,
0.4 0.5
0.3 0.4
% (02 03)
0.2 0.3
02 0.3 0.4
HU—(03 0.2 0.1>,
02 0.3 0.3
0.2 0.4
Hy, = ( 0.4 0.2 )
03 03
0.3 0.6
Hy, _(03 04 |,
02 0.5
0.2 0.3 0.4
Hy, _( )
0.4 0.5 0.3
0.3 0.4
o (05 0.6)’
(0.3 04
Has (05 0.4)’
0.3 0.2 0.3
Hj, =( >
0.4 0.3 0.2
0.3 0.4 (77)
Hj, _( ))
0.3 0.4
i _(0,3 0.4)
¥ \o402)
02 0.1 0.2
K, —(0.2 0.3 0.1),
02 0.5 0.3
0.3 0.4
K§=(0.4 0.5 |,
0.1 0.3
0.4 0.2
K} = ( 0.2 0.3 )
0.3 0.2
0.4 0.5 0.3
K;=(0.1 03 02 |,
0.3 0.4 0.1
02 03
K’ _(0.3 0.2 )
0.3 0.1
0.3 0.2
KZ—(OA 05 |,
0.3 0.4
02 -0.8 0.5
C=|-07 01 02
04 03 -06
The parameters D; = diag(dfi,dz(i), . d(')) B, = diag

(b(i),béi),"‘, El)) A (agh)fx'f’ andZ = (Z )fx{ (l =12

3) in network (76) can be changed in the precisions given as
follows:
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DP

B®

{Bi diag(bs(i)) :

A% == (6,
{70

{D, = diag(d) :

0.7 T T T T T T

0.4 i

0.3} R

0.2 | i

0.1 R

0 1
0 0.5 1 1.5 2 2.5 3 3.5

t(s)

— 2P (m, 1)

— 2P (m, t)

FiGure 3: Change processes of z](-z) (m,t) in network (70).

2.5 3 3.5

t(s)

—_— z§3)(m, t)

— Z(m, 1)

FiGUure 4: Change processes of Z](-3) (m, t) in network (70).

,<D,;<D,,0<04is<d” <0.6is, i=1,2---,N,s=1,2,---,&,¥D,; e DV};

1

<B;<B,0<12is<b” <16is, i=1,2,,N,s=1,2,-,&VB e B}

2i<a,; <
g+h =g+ h

;+03i<z(i)<
g+h T T T g4n

Complexity

. . P
+03i, i=1,2,,N,g=1,2-,8h=1,2--, VYA € Al )};

+04i, i=12,-,N,g=12,--,&h=12--,VZ, eZ(P)}.

(78)
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FIGUre 5: Change processes of z; (m,t), u; (m,t) and y;(m,t) in
network (76).

Case 1. Obviously, y; = ¥, = 0.5 and the equilibrium point
of an isolated node of network (76) is O = (0,0, 0,0, 0,0,0)".

17
0.25
0.2
0.15
0.1
0.05 |
0
45
t(s)
— 2V (m, £)
— 20 (m, 1)
— Z(m, 1)

FIGURE 6: Change processes of z;l) (m,t) in network (76).

It is not difficult to calculate the matrices P,Q, and M,
satisfying (54) as follows:

1.2297 -0.0937 -0.1183 0.0318 0.0413 0.0159 -0.0142 -0.0103 -0.0115

M, =| 0.0413 0.0530 0.0803 -0.0192

—-0.0937 1.2081 -0.1195 0.0410 0.0530 0.0217 -0.0207 -0.0166 -0.0171
-0.1183 -0.1195 1.1776 0.0622 0.0803 0.0340 -0.0330 -0.0281 -0.0277
0.0318 0.0410 0.0622 1.2876 -0.0192 0.0102 -0.0097 -0.0074 -0.0079

0.0159 0.0217 0.0340 0.0102 0.0095 1.3233 -0.0062 -0.0049 -0.0051
—-0.0142 -0.0207 —0.0330 -0.0097 -0.0124 -0.0062 1.3534 0.0455 0.0449
—-0.0103 -0.0166 —0.0281 -0.0074 -0.0093 -0.0049 0.0455 1.3585 0.0431
-0.0115 -0.0171 -0.0277 -0.0079 -0.0101 -0.0051 0.0449 0.0431 1.3386
0.9904 0.0197 0.4052 -0.0358 -0.0044 0.0347 -0.0164

-1.7563 1.4252 2.8033 0.0946 0.0507 -0.2257 —0.0020
1.3650 0.3042 -1.7168 0.0407 0.0357 0.0309 -0.0368
—-0.0357 -0.1531 -0.0033 -1.4861 3.9352 0.0425 -0.0718
Q=| 0.0929 0.3681 0.0193 1.0186 -2.3689 —0.1092 0.0390 |,
—-0.0214 -0.2121 0.0412 2.5131 0.2759 0.0837 -0.0048
-0.0274 -0.0498 0.0196 -0.0190 —-0.0630 4.6554 -0.9467
-0.0133 0.1213 0.0760 -0.0019 -0.0240 3.5739 -0.0527

1.2710  0.0095 -0.0124 -0.0093 -0.0101 |,

(79)

0.0312 -0.1258 —-0.1058 0.0045 0.0832 -6.8413 2.9637

and P = diag(P,, P,, P;), where
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FIGURE 7: Change processes of ngz) (m, t) in network (76).

02842 0 0
P,=| o o288 o0 |
0 0 0.1766
02473 0 (80)
Pz :( 0 0.1490)’

0.1724 0
P, = .
0 00778

In terms of Theorem 3, network (76) with the input
u(m,t) € R” and output y(m,t) € R’ as described in (12)
under the given parameters defined in (78) realizes output-
strictly passivity. Figure 5 displays the simulation results.

Case 2. y;,;, and O are the same as those in Case 1. By
exploiting the MATLAB Toolbox, the matrices P satisfying
(68) can be computed as follows:

P = diag(P,, P,, P), (81)
where
0.1876 0 0
P, = 0 01007 0 |,
0 0 0.0677
b, :(0.1015 0 ) (82)
0 0.0512

0.0672 0
P, = .
0 0.0340

According to Theorem 4, network (76) under the given
ranges of parameters defined in (78) achieves robust syn-
chronization. Figures 6-8 show the simulation results.

Complexity

t(s)

—_ z§3)(m, t)

— 2P (m, 1)

FIGUure 8: Change processes of z](-3) (m, t) in network (76).

Remark 4. Section 3 is devoting to investigating the syn-
chronization and passivity of CDDDRDNNSs. First, the
network model of CDDDRDNN:Ss is presented in Section
3.1. In Section 3.2, the passivity of CDDDRDNNs with
certain parameters is studied. Moreover, we establish some
adequate conditions to ensure the network being output-
strictly passive in Theorem 1, passive in Corollary 1, and
input-strictly passive in Corollary 2, respectively. Then, in
Theorem 2 of Section 3.3, a synchronization criterion is
obtained for the considered network. Because the precise
values of parameters are difficult to acquire because of
noises of environment and equipment limitations, we
address the problems of robust synchronization and pas-
sivity for CDODDRDNNs with parametric uncertainties in
Section 4. The main distinction on two Kkinds of
CDDDRDNNSs in Section 3 and Section 4 is whether
D,, B;, A;, and Z; in the network model of CDDDRDNN's is
uncertain or not. More precisely, in Section 4.1, we give the
CDDDRDNN model with parametric uncertainties firstly.
After that, a robust output-strict passivity criterion is
proposed for CDODDRDNN s with parameter uncertainties
in Theorem 3 of Section 4.2. Meanwhile, we establish the
related robust passivity condition in Corollary 3 and robust
input-strict passivity condition in Corollary 4, respectively.
Then, a robust synchronization criterion is obtained for the
considered network in Theorem 4 of Section 4.3. In Section
5, we select the most intricate output-strict passivity
condition for verifying the validity of the obtained passivity
results. Actually, the related passivity or input-strict pas-
sivity condition can be illustrated similarly. In order to
avoid repetition, we omit the simulation results for
showing the effectiveness of the obtained passivity results
in corollaries. Therefore, in Case 1 and Case 2 of Example 1,
the correctness of the output-strict passivity and syn-
chronization conditions in Theorems 1 and 2 for
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CDDDRDNNSs (70) with parametric certainties are dem-
onstrated, respectively. Similarly, in Case 1 and Case 2 of
Example 2, the robust output-strict passivity criterion and
robust synchronization criterion in Theorem 3 and 4 for
CDDDRDNNSs (76) with uncertain parameters described
by (78) are demonstrated, respectively.

6. Conclusion

The synchronization and passivity of CDDDRDNNs with
and without parameter uncertainties have been investigated
in this paper. First, several new criteria for CDODDRDNNs
with parametric certainties have been derived to guarantee
the passivity and synchronization by taking advantage of the
Lyapunov functional method. Second, we have also studied
the problems of robust synchronization and robust passivity
for CDDDRDNNs with uncertain parameters. Third, two
numerical examples have been provided to display the ef-
fectiveness of the obtained passivity and synchronization
results. In our future work, it would be very interesting to
study the pinning adaptive passivity and synchronization of
CDDDRDNNE.
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