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This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and
coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for
a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed,
which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally
in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling
parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively.
Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes
in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the
effectiveness of the proposed controller design methods.

1. Introduction

A complex network refers to a large-scale network with
a complex topology and dynamic behavior. It consists of
a large set of interconnected nodes, in which the node
is a fundamental unit with specific contents [1]. Complex
networks exist in many fields of science, engineering, and
society and have attracted much attention in recent years
[2–5]. As one of the most important collective behaviors,
synchronization phenomena have been a topic of research.
There are a lot of synchronization phenomena in physical
sciences and inmathematics. Several books and reviews [6–9]
have also dealt with this topic. Such applications are pervasive
and include clock synchronization in complex networks [10–
12], coordination of unmanned aerial vehicles [13], and fair
allocation of network resources [14].

In the past decade, special attention has been paid to
the synchronization of dynamical systems, particularly large-
scale and complex networks of chaotic oscillators [15, 16].
With the discovery of the small-world effect and scale-free
feature of most complex networks, a lot of works have been
concentrated on synchronization in small-world networks
and scale-free networks [17–20]. In these investigations, an
essential requirement is that the structure of the networks
and the coupling functions are known beforehand. In order
to overcome the aforementioned constraints, synchroniza-
tion in complex networks by controller methods has also
been investigated [21–24]. Zhou et al. [21] proposed some
synchronization criteria and designed simple controllers
for several specific complex networks. In [22], for a class
of complex networks with uncertain inner couplings, the
event-triggered synchronization control problem was put
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forward. The uncertain inner coupling under consideration
was characterized in terms of the interval matrix. In order
to save the communication and computation resources,
the event-based mechanism was adopted and an event-
triggered synchronization control scheme was proposed
for the complex networks. Based on the leader–follower
model, Zhou et al. [23] proposed an improved network
structure model for realizing the cluster synchronization
on multiple subnetworks of complex networks, and some
suitable pinning controllers on the chosen nodes of each
follower’s subnetwork are designed. Yu et al. [24] employed
a decomposition approach to incorporate the nodes’ inertial
effects into the distributed control design for second-order
nodes in a dynamical network with communication delays
and switching communication topologies.

However, the following problems still exist in the control
of dynamical networks and have not been solved in a good
way. It is often difficult to get an exact estimation of coupling
coefficients in reality.Therefore, it is preferable if the coupling
functions in a dynamical network are not restricted to be
completely known. If the network structure is only partially
known or completely unknown, it is very difficult or even
impossible to design a controller to achieve the intended net-
work synchronization. Besides the problem above, the nodes
in the dynamical network usually have the characteristics of
time delay. Because of the finite speeds of transmission as well
as traffic congestion, a signal or influence traveling through a
complex network is often associated with time delays. Time
delay is the main factor which gives rise to instability in
dynamical networks. This issue has attracted the attention of
many scholars recently. In [25, 26], the authors found that
the solution space of time-delayed networks was infinite-
dimensional, and its theoretical analysis was often very diffi-
cult. Dhamala et al. [27] assumed that the coupling was linear
betweennodes and explored the effect on the synchronization
of time-delayed nodes in various networks. Then, Atay et al.
[28] found that altering the time delay would be helpful to
improve the capability of the network synchronization.Gao et
al. [29] studied the uncertain time-delay systems and robust
stability analysis. They solved the problems about a class of
nonlinear time-delay systems with memory stabilization. In
[30], a complex dynamical network model with time-varying
inner coupling was introduced. And a sufficient condition
was given to achieve the exponential synchronization.

In this paper, we will give positive answers to all the
questions above. We combine the adaptive control method
with the network with time-delayed nodes and coupling
delays. The local and global features of adaptive synchro-
nization of networks are studied based on the Lyapunov-
Krasovskii stability theorem. The results we got are suitable
for the general dynamical network; that is, they are inde-
pendent of the network topology. The paper is organized as
follows.Thegeneral networkmodel and severalmathematical
preliminaries are described in Section 2. In Section 3, the
analysis of adaptive synchronization is studied, and also
two desirable controllers are designed. Section 4 gives two
typical examples. The M-G system is used with the time-
delayed nodes in the ring network and second-order nodes
in the dynamical network with time-varying communication

delays and switching communication topologies. Simulation
results show the effectiveness and correctness of the proposed
methods. Finally, conclusions are given in Section 5.

2. Network Model and
Mathematical Preliminaries

2.1. A Complex Dynamical NetworkModel with Time-Delayed
Nodes and Coupling Delays. Consider a nonlinear complex
network consisting of 𝑁 identical delay nodes, which are
coupled as follows [31]:

𝑥̇𝑖 = 𝑓 (𝑥𝑖, 𝑡) + 𝑔𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑁) + 𝑢𝑖 (𝑡) ,
𝑡 ≥ 0, 1 ≤ 𝑖 ≤ 𝑁, (1)

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛)T ∈ R𝑛 represents the state
vector of the 𝑖th node; 𝑓 : Ω × R+ → R𝑛 represents a
smooth nonlinear vector function; 𝑔𝑖 : R𝑚 → R𝑛, 𝑚 = 𝑛𝑁
represents a smooth unknown nonlinear coupling function;𝑢𝑖(𝑡) ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑁, represents the control input.

When the network reaches synchronization, that is, 𝑡 →∞, 𝑥1(𝑡) = 𝑥2(𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁(𝑡), the coupling control will
disappear at this point; that is,

𝑔𝑖 (𝑥1, 𝑥2, . . . , 𝑥𝑁) + 𝑢𝑖 (𝑡) = 0. (2)

This ensures that the solution of any solitary node 𝑥𝑖(𝑡) is also
the solution of the synchronous coupling network.

As can be seen from the Introduction, there is a delay in
the actual network. After adding the time-delay term in the
model of (1), the dynamical network with these time-delayed
nodes and coupling delays can be written as

𝑥̇𝑖 = 𝑓1 (𝑥𝑖, 𝑡) + 𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝑡)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
+ 𝑢𝑖 (𝑡) ,

(3)

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛)T ∈ R𝑛 represents the state vector
of the 𝑖th node; 𝑓𝑘 : Ω × R+ → R𝑛, 𝑘 = 1, 2, represents
a continuous nonlinear function; 𝑔𝑖 : R𝑚 → R𝑛, 𝑚 =𝑛𝑁, represents an unknown continuous nonlinear coupling
function; 𝜏 ≥ 0 is a time delay; and 𝑢𝑖(𝑡) ∈ R𝑛, 1 ≤ 𝑖 ≤ 𝑁,
represents a control input.

Obviously, when the complex network achieves synchro-
nization, there is 𝑥1(𝑡) = 𝑥2(𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁(𝑡), and the
coupling and control items will disappear at this time; that
is, 𝑔𝑖(𝑥1(𝑡 − 𝜏), 𝑥2(𝑡 − 𝜏), . . . , 𝑥𝑁(𝑡 − 𝜏)) + 𝑢𝑖(𝑡) = 0.
2.2. Mathematical Preliminaries. The following definitions
and assumptions are necessary for discussing the network
synchronization problem.

Definition 1. Let 𝜉(𝑡) be a unique solution of a complex
network (3) which satisfies the following equation:

̇𝜉 (𝑡) = 𝑓1 (𝜉 (𝑡) , 𝑡) + 𝑓2 (𝜉 (𝑡 − 𝜏) , 𝑡) , (4)

where 𝜉(𝑡) can be an equilibrium point, a nontrivial periodic
orbit, or even a chaotic orbit.
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Definition 2. If there is a nonempty subset 𝐷 ⊆ R, for any𝑡 ≥ 0, 𝜏 ≥ 0, there is 𝜉(𝑡) ∈ R, which satisfies the following
formula:

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝜉 (𝑡)󵄩󵄩󵄩󵄩2 = 0, 1 ≤ 𝑖 ≤ 𝑁. (5)

Then, the solution of the complex network (3) is asymp-
totically synchronized with (5). 𝐷 × ⋅ ⋅ ⋅ × 𝐷 is called the
synchronous region.

Next, subtracting (2) from (4) yields the following error
dynamical system:

̇𝑒𝑖 (𝑡) = 𝑓1 (𝑥𝑖, 𝜉) + 𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑢𝑖 (𝑡) ,

(6)

where

𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
= 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
− 𝑔𝑖 (𝜉, 𝜉, . . . , 𝜉, 𝜉) ,

𝑓1 (𝑥𝑖, 𝜉) = 𝑓1 (𝑥𝑖, 𝑡) − 𝑓1 (𝜉, 𝑡) ,
𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉) = 𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝑡) − 𝑓2 (𝜉 (𝑡 − 𝜏) , 𝑡) .

(7)

By linearizing (6) which is evaluated at 𝜉(𝑡, 𝜏), we can get
the following equation:

̇𝑒𝑖 (𝑡) = 𝐴 (𝑡) 𝑒𝑖 (𝑡) + 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑢𝑖 (𝑡) ,

(8)

where ‖𝐴(𝑡)‖2 = ‖𝐷𝑓1(𝜉, 𝑡)‖2, ‖𝐵(𝑡)‖2 = ‖𝐷𝑓2(𝜉, 𝑡)‖2, 𝐴(𝑡) is
a Jacobian matrix of 𝑓1 on 𝜉(𝑡), 𝐵(𝑡) is a Jacobian matrix of 𝑓2
on 𝜉(𝑡), and there is 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝜉(𝑡).

In order to facilitate the follow-up study, we present the
following assumptions.

Assumption 3. Suppose that ‖𝐴(𝑡)‖2 and ‖𝐵(𝑡)‖2 are bounded.
That is, there exist nonnegative constants 𝛼 and 𝛽 satisfying‖𝐴(𝑡)‖2 ≤ 𝛼 and ‖𝐵(𝑡)‖2 ≤ 𝛽.
Assumption 4. Suppose that the nonlinear function 𝑔(⋅) is
Lipschitz continuous. That is, ∀𝑥𝑖, 𝑥𝑗 ∈ R𝑛, the following
formula holds:󵄩󵄩󵄩󵄩󵄩𝑔 (𝑥𝑖, 𝑡) − 𝑔 (𝑥𝑗, 𝑡)󵄩󵄩󵄩󵄩󵄩2 ≤ 𝜇𝑖𝑗 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩2 . (9)

Therefore, (3) can be written as follows:
󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)󵄩󵄩󵄩󵄩2
≤ 𝑁∑
𝑗=1

𝜇𝑖𝑗 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩󵄩2 ,
(10)

where 𝜇𝑖𝑗 is a nonnegative Lipschitz constant, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤𝑗 ≤ 𝑁.

Lemma 5 (see [32]). For any𝜔, 𝜁 ∈ 𝑅𝑛, 𝜌 > 0, one has 2𝜔𝑇𝜁 ≤
𝜌𝜔𝑇𝜔 + (1/𝜌)𝜁𝑇𝜁.
3. Synchronization Analysis and Design of
Adaptive Controller

In this section, we apply the Lyapunov-Krasovskii stability
theorem to the problems of local and global synchronization
of coupled delay dynamical network with time-delay nodes.
Then, we design an adaptive controller according to the
different situations.

3.1. Local Synchronization of Coupled Delay Dynamical Net-
work with Time-Delay Nodes. Consider all the nodes in the
dynamical network without loss of energy and generality.
Assume that the ith (1 ≤ 𝑖 ≤ 𝑁) node is controlled by the
following adaptive controller, which is described by

𝑢𝑖 (𝑡) = −𝜍𝑖𝑒𝑖 (𝑡) ,
̇𝜍𝑖 = 𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩22 ,

(11)

where 𝜍𝑖 and 𝑘𝑖, 𝑖 = 1, 2, . . . , 𝑁, are positive constants. Thus,
the controlled network (2) can be rewritten as follows:

𝑥̇𝑖 = 𝑓1 (𝑥𝑖, 𝑡) + 𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝑡)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
− 𝜍𝑖𝑒𝑖 (𝑡) ,

̇𝜍𝑖 = 𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩22 ,
̇𝑒𝑖 (𝑡) = 𝐴 (𝑡) 𝑒𝑖 + 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)

+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
− 𝜍𝑖𝑒𝑖 (𝑡) ,

̇𝜍𝑖 = 𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩22 .

(12)

When the parameters 𝜇𝑖𝑗, (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁) are known
or unknown but bounded nonlinear couplings, there exists
the following theorem.

Theorem 6. If Assumptions 3 and 4 are established, then the
complex network (2) will achieve local asymptotical stability
under the action of the adaptive controller (11).

Proof. Construct a Lyapunov candidate as follows:

𝑉 (𝑒, 𝑡, 𝜏) = 1
2
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) +
𝑁∑
𝑖=1

∫𝑡
𝑡−𝜏

𝑒T𝑖 (𝑠)Η𝑒𝑖 (𝑠) 𝑑𝑠

+ 1
2
𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖)2𝑘𝑖
(13)

where 𝑒(𝑡) = (‖𝑒1(𝑡)‖, ‖𝑒2(𝑡)‖, . . . , ‖𝑒𝑁(𝑡)‖, ‖𝑒1(𝑡 − 𝜏)‖, ‖𝑒2(𝑡 −𝜏)‖, . . . , ‖𝑒𝑁(𝑡 − 𝜏)‖)T, 𝜍𝑖 and 𝑘𝑖, 𝑖 = 1, 2, . . . , 𝑁, are positive
constants, and Η ∈ R𝑛×𝑛 is the positive definite matrix that



4 Mathematical Problems in Engineering

needs to be determined.Thus, the time derivative of𝑉(𝑒, 𝑡, 𝜏)
along (6) is

𝑉̇ (𝑒, 𝑡, 𝜏) = 1
2
𝑁∑
𝑖=1

( ̇𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) ̇𝑒𝑖 (𝑡))

+ 𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡) Η𝑒𝑖 (𝑡) − 𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡 − 𝜏)]

− 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) ̇𝜍𝑖𝑘𝑖 = 1
2
𝑁∑
𝑖=1

[(𝐴 (𝑡) 𝑒𝑖 (𝑡)
+ 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑢𝑖 (𝑡))T 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) (𝐴 (𝑡) 𝑒𝑖 (𝑡) + 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑢𝑖 (𝑡))] +

𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡) Η𝑒𝑖 (𝑡) − 𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡

− 𝜏)] − 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) ̇𝜍𝑖𝑘𝑖 = 1
2
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴T (𝑡) + 𝐴 (𝑡)

+ 2Η] 𝑒𝑖 (𝑡) +
𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) 𝐵T (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) 𝐵 (𝑡)

⋅ 𝑒𝑖 (𝑡 − 𝜏)] +
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . ,

𝑥𝑁 (𝑡 − 𝜏) , 𝜉) +
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) 𝑢𝑖 (𝑡) −
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡

− 𝜏) − 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) ̇𝜍𝑖𝑘𝑖 .

(14)

Substituting the adaptive controller (11) into (14) yields the
following:

𝑉̇ (𝑒, 𝑡, 𝜏) = 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴
T (𝑡) + 𝐴 (𝑡)

2 + Η] 𝑒𝑖 (𝑡)

+ 𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) 𝐵T (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)]

+ 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡)
⋅ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑁∑
𝑖=1

𝜍𝑖𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) −
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡 − 𝜏)

− 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) 𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) =
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴
T (𝑡) + 𝐴 (𝑡)

2
+ Η − 𝜍𝑖𝐼𝑛×𝑛] 𝑒𝑖 (𝑡)

+ 𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) 𝐵T (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)]

− 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡 − 𝜏) +
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡)
⋅ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉) .

(15)

According to Assumptions 3 and 4 and Lemma 5, selectingΗ = 𝜀𝐼𝑛×𝑛, where the constant 𝜀 > 0, it can be obtained that

𝑉̇ (𝑒, 𝑡, 𝜏) ≤ 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴
T (𝑡) + 𝐴 (𝑡)

2 + (𝜀 − 𝜍𝑖) 𝐼𝑛×𝑛]

⋅ 𝑒𝑖 (𝑡) + 1
2
𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) (𝐵T𝐵 + 𝐼) 𝑒𝑖 (𝑡 − 𝜏)
+ 𝑒T𝑖 (𝑡) (𝐵T𝐵 + 𝐼) 𝑒𝑖 (𝑡)]
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝜇𝑖𝑗 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩󵄩2 −
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)

⋅ Η𝑒𝑖 (𝑡 − 𝜏) ≤
𝑁∑
𝑖=1

(𝛼 + 𝜀 + 𝛽2 + 1 − 𝜍𝑖) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩22

+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝜇𝑖𝑗 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩󵄩2 − 𝛽2 − 𝜀 + 1
2

⋅ 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩22 = 𝑒T (𝑡) (diag{𝛼 + 𝜀 + 𝛽2 + 1

− 𝜍1, . . . , 𝛼 + 𝜀 + 𝛽2 + 1 − 𝜍𝑁, −𝛽
2 − 𝜀 + 1
2 , . . . ,

− 𝛽2 − 𝜀 + 1
2 } + 𝑃) 𝑒 (𝑡) ,

(16)

where = ( 0 Γ/2Γ/2 0 ), Γ = (𝜇𝑖𝑗)𝑁×𝑁.
Therefore, we can choose the appropriate constants 𝜍𝑖, 𝑖 =1, 2, . . . , 𝑁, and 𝜀 > 0, such that the diagonal matrix diag{𝛼 +𝜀+𝛽2+1−𝜍1, . . . , 𝛼+𝜀+𝛽2+1−𝜍𝑁, −(𝛽2−𝜀+1)/2, . . . , −(𝛽2− 𝜀 +1)/2} + 𝑃 is a negativematrix.This equation shows that 𝜍𝑖, 𝑖 =1, 2, . . . , 𝑁, is uniformly bounded, and the error system (8) is

asymptotically stable by the action of the adaptive controller
(11). By using the Lyapunov method, it can be clearly seen
that the error system (6) is also asymptotically stable under
the action of the adaptive controller (11). It is concluded that𝑒 = 0 is an asymptotically stable equilibrium point of the
error system (8) and it is also deduced that 𝑒 = 0 is an
asymptotically stable equilibrium point of the system.



Mathematical Problems in Engineering 5

The above stability criteria are delay-independent. In a
coupled complex network with different delays, (17) can also
be synchronized using an adaptive controller (11):

𝑥̇𝑖 = 𝑓1 (𝑥𝑖, 𝑡) + 𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝑡)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏1) , 𝑥2 (𝑡 − 𝜏2) , . . . , 𝑥𝑁 (𝑡 − 𝜏𝑁))
+ 𝑢𝑖 (𝑡) ,

(17)

where 𝜏𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑁, is the coupling delay; the
proof is similar to that of Theorem 6. We can derive from
Theorem 6 that synchronization of such complex networks
mainly depends on three basic parameters: the dynamic char-
acteristics of complex network nodes (𝛼, 𝛽, 𝜀), the dynamic
parameters of the adaptive controller (𝜁), and the network
structure parameters (𝜇𝑖𝑗).

In summary, we can see that the dynamical network with
time-delay nodes and coupling delay structure can achieve
local synchronization; that is, complex network synchroniza-
tion can be realized under the action of adaptive controller
(11).

3.2. Global Synchronization of Coupled Delay Dynamical
Network with Time-Delay Nodes. In this section, we discuss
the global synchronization problem with time-delay nodes
and coupled delay networks. The network structure is as
follows:

𝑥̇𝑖 = 𝑓1 (𝑥𝑖, 𝑡) + 𝑓2 (𝑥𝑖 (𝑡 − 𝜏) , 𝑡) + ℎ1 (𝑥𝑖, 𝑡)
+ ℎ2 (𝑥𝑖 (𝑡 − 𝜏) , 𝑡)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
+ 𝑢𝑖 (𝑡) ,

(18)

where ℎ𝑖 : R𝑛 × R+ → R𝑛, 𝑖 = 1, 2, is an unknown
and smooth function. According to the derivation process of
Section 2, we can compute the error dynamic equation of (11):

̇𝑒𝑖 (𝑡) = 𝐴 (𝑡) 𝑒𝑖 (𝑡) + 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏) + ℎ1 (𝑥𝑖, 𝜉)
+ ℎ2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
+ 𝑢𝑖 (𝑡) ,

(19)

where ℎ1(𝑥𝑖, 𝜉) = ℎ1(𝑥𝑖, 𝑡) − ℎ1(𝜉, 𝑡), ℎ2(𝑥𝑖(𝑡−𝜏), 𝜉) = ℎ2(𝑥𝑖(𝑡−𝜏), 𝑡) − ℎ2(𝜉, 𝑡).
The definitions of other sections are the same as those

defined in Section 2.

Assumption 7 (see [33]). Suppose that there are unknown but
nonnegative constants 𝛾𝑖, 𝑖 = 1, 2, . . . , 𝑁, satisfying

󵄩󵄩󵄩󵄩ℎ1 (𝑥𝑖, 𝜉)󵄩󵄩󵄩󵄩2 ≤ 𝛾𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩2 ,󵄩󵄩󵄩󵄩ℎ2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉)󵄩󵄩󵄩󵄩2 ≤ 𝛾𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩2 ,
𝑖 = 1, 2, . . . , 𝑁.

(20)

The following theorem gives amethod of global synchroniza-
tion criterion for the dynamical network (18).

Theorem 8. If Assumptions 3, 4, and 7 are established, then
the complex dynamical network (18) achieves global asymptotic
stability under the action of the adaptive controller of (11).

Proof. Select the following Lyapunov function:

𝑉 (𝑒, 𝑡, 𝜏) = 1
2
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) +
𝑁∑
𝑖=1

∫𝑡
𝑡−𝜏

𝑒T𝑖 (𝑠)Η𝑒𝑖 (𝑠) 𝑑𝑠

+ 1
2
𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖)2𝑘𝑖 ,
(21)

where 𝑒(𝑡) = (‖𝑒1(𝑡)‖, ‖𝑒2(𝑡)‖, . . . , ‖𝑒𝑁(𝑡)‖, ‖𝑒1(𝑡 − 𝜏)‖, ‖𝑒2(𝑡 −𝜏)‖, . . . , ‖𝑒𝑁(𝑡 − 𝜏)‖)T, 𝜍𝑖 and 𝑘𝑖, 𝑖 = 1, 2, . . . , 𝑁, are positive
constants, and Η ∈ R𝑛×𝑛 is the positive definite matrix that
needs to be determined.Thus, the time derivative of𝑉(𝑒, 𝑡, 𝜏)
along (6) is

𝑉̇ (𝑒, 𝑡, 𝜏) = 1
2
𝑁∑
𝑖=1

( ̇𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) ̇𝑒𝑖 (𝑡))

+ 𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡) Η𝑒𝑖 (𝑡) − 𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡 − 𝜏)]

− 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) ̇𝜍𝑖𝑘𝑖 = 1
2
𝑁∑
𝑖=1

[(𝐴 (𝑡) 𝑒𝑖 (𝑡)
+ 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏) + ℎ1 (𝑥𝑖, 𝜉) + ℎ2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
+ 𝑢𝑖 (𝑡))T 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) (𝐴 (𝑡) 𝑒𝑖 (𝑡) + 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)
+ ℎ1 (𝑥𝑖, 𝜉) + ℎ2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉)
+ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑢𝑖 (𝑡))] +

𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡) Η𝑒𝑖 (𝑡) − 𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡

− 𝜏)] − 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) ̇𝜍𝑖𝑘𝑖 = 1
2
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴T (𝑡) + 𝐴 (𝑡)

+ 2Η] 𝑒𝑖 (𝑡) +
𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) 𝐵T (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡)

⋅ 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)] +
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) ,

. . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉) +
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [ℎ1 (𝑥𝑖, 𝜉) + ℎ2 (𝑥𝑖 (𝑡

− 𝜏) , 𝜉)] + 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) 𝑢𝑖 (𝑡) −
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡 − 𝜏)

− 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) ̇𝜍𝑖𝑘𝑖 .

(22)
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The substitution of the adaptive controller (3) into (13) yields
the following:

𝑉̇ (𝑒, 𝑡, 𝜏) = 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴
T (𝑡) + 𝐴 (𝑡)

2 + Η] 𝑒𝑖 (𝑡)

+ 𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) 𝐵T (𝑡) 𝑒𝑖 (𝑡) + 𝑒T𝑖 (𝑡) 𝐵 (𝑡) 𝑒𝑖 (𝑡 − 𝜏)]

+ 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡)
⋅ 𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏) , 𝜉)
+ 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [ℎ1 (𝑥𝑖, 𝜉) + ℎ2 (𝑥𝑖 (𝑡 − 𝜏) , 𝜉)]

+ 𝑁∑
𝑖=1

𝜍𝑖𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) −
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)𝑄𝑒𝑖 (𝑡 − 𝜏)

− 𝑁∑
𝑖=1

(𝜍𝑖 − 𝜍𝑖) 𝑒T𝑖 (𝑡) 𝑒𝑖 (𝑡) .

(23)

According to Assumptions 4 and 7 and Lemma 5, select-
ingΗ = 𝜀𝐼𝑛×𝑛, where the constant 𝜀 > 0, the following can be
obtained:

𝑉̇ (𝑒, 𝑡, 𝜏) ≤ 𝑁∑
𝑖=1

𝑒T𝑖 (𝑡) [𝐴
T (𝑡) + 𝐴 (𝑡)

2
+ (𝜀 + 𝛾𝑖 − 𝜍𝑖) 𝐼𝑛×𝑛] 𝑒𝑖 (𝑡) + 1

2
⋅ 𝑁∑
𝑖=1

[𝑒T𝑖 (𝑡 − 𝜏) (𝐵T𝐵 + 𝐼) 𝑒𝑖 (𝑡 − 𝜏)
+ 𝑒T𝑖 (𝑡) (𝐵T𝐵 + 𝐼) 𝑒𝑖 (𝑡)]
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

(𝜇𝑖𝑗 + 𝛾𝑖) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩󵄩2 +
𝑁∑
𝑖=1

𝛾𝑖

⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩22 −
𝑁∑
𝑖=1

𝑒T𝑖 (𝑡 − 𝜏)Η𝑒𝑖 (𝑡 − 𝜏) ≤
𝑁∑
𝑖=1

(𝛼 + 𝜀
+ 𝛽2 + 𝛾𝑖 + 1 − 𝜍𝑖) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩22
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

(𝜇𝑖𝑗 + 𝛾𝑖) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩󵄩2

− 𝛽2 − 𝜀 + 1
2

𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏)󵄩󵄩󵄩󵄩22 = 𝑒T (𝑡) (diag{𝛼 + 𝜀
+ 𝛽2 + 𝛾𝑖 + 1 − 𝜍1, . . . , 𝛼 + 𝜀 + 𝛽2 + 𝛾𝑖 + 1 − 𝜍𝑁,
− 𝛽2 − 𝜀 + 1

2 , . . . , −𝛽2 − 𝜀 + 12 } + 𝑃) 𝑒 (𝑡) ,

(24)

where P = ( 0 Γ/2Γ/2 0 ), Γ = (𝜇𝑖𝑗 + 𝛾𝑖)𝑁×𝑁.

Therefore, we can choose the appropriate constants 𝜍𝑖, 𝑖 =1, 2, . . . , 𝑁, and 𝜀 > 0, such that the diagonal matrix diag{𝛼+𝜀 + 𝛽2 + 𝛾𝑖 + 1 − 𝜍1, . . . , 𝛼 + 𝜀 + 𝛽2 + 𝛾𝑖 + 1 − 𝜍𝑁, −(𝛽2 −𝜀 + 1)/2, . . . , −(𝛽2 − 𝜀 + 1)/2} + 𝑃 is a negative matrix. This
equation shows that 𝜍𝑖, 𝑖 = 1, 2, . . . , 𝑁, is uniformly bounded.
By using the Lyapunov method, the error system (18) is
also asymptotically stable under the action of the adaptive
controller (11) (e.g., lim𝑡→∞‖𝑒𝑖(𝑡)‖ = 0, 𝑖 = 1, 2, . . . , 𝑁). It is
concluded that 𝑒 = 0 is an asymptotically stable equilibrium
point of the error system (19).

4. Numerical Simulation

In this section, two typical examples of the complex network
are used to show the correctness and effectiveness of the
adaptive controller (11). One example is a ring network with
fifty nodes, in which the dynamic performance for each
node is complex. The other example is a dynamical network
with switching topologies and twelve second-order nodes,
in which the dynamic performance for each node is more
complex. And the network state equation satisfies (3).

4.1. Simulation I. Chaos often comes from the bifurcation
control to the equation of the form

𝑑𝑥
𝑑𝑡 = production − destruction

= 𝑝𝑔 (𝑥 (𝑡 − 𝜏)) − 𝑞𝑥,
(25)

where 𝑔(⋅) is a nonlinear function and 𝑝 > 0, 𝑞 > 0. Generally
speaking, maximum production occurs at some intermediate
value of 𝑥(𝑡 − 𝜏), and thus the control displays both positive
and negative feedback characteristics. The M-G system [34,
35]

𝑥̇ (𝑡) = −𝑝𝑥 (𝑡) + 𝑞 𝑥 (𝑡 − 𝜏)
1 + 𝑥 (𝑡 − 𝜏)𝑟 (26)

comes from the equation in case of controlling the density of
circulating blood cells. We choose this model for our studies
since it has been thoroughly investigated in the literature [34]
and is easily implementable electronically [35]. The number
of positive Lyapunov exponents as well as the dimension of
the strange attractor of this system can easily be controlled by
varying the delay time 𝜏. For fixed values of the parameters,
both of these quantities increase linearly with the increase
of 𝜏 [34]. In order to analyze the system dynamics and
the proposed controller design, it is adopted in (25) that
a polynomial approximation of the M-G system shows the
same qualitative behavior.The system equation thus becomes

𝑥̇ (𝑡) = −𝑝𝑥 (𝑡) + 𝑞 [𝑥 (𝑡 − 𝜏) − 𝑥3 (𝑡 − 𝜏)] . (27)

When 𝑝 = 0.33, 𝑞 = 1.33, and 𝜏 = 4, system (27) becomes
chaotic. This system has three unstable fixed points:

𝑥1 = 0,
𝑥2,3 = ±(1 − 𝑝

𝑞)
1/2 . (28)
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We choose a ring network with fifty nodes as our complex
network, because the network is one regular network of all
typical networks and is an ordinarymathematicalmodel [36],
which can represent many physical models. Assume that it
satisfies the following conditions:

(1) The complex network coupling function form is

𝑔𝑖 (𝑥1 (𝑡 − 𝜏) , 𝑥2 (𝑡 − 𝜏) , . . . , 𝑥𝑁 (𝑡 − 𝜏))
= 𝑁∑
𝑗=1

𝜇𝑖𝑗𝑥𝑗 (𝑡 − 𝜏) . (29)

(2) It satisfies the previous conditions in Assumptions 3
and 4.

(3)Thedynamic equations of each node areM-G systems,
where𝑁 = 50, and the coupling strengths are all 0.1.

The network structure is shown in Figure 1.
Then, the state equation of this complex network can be

written as

𝑥̇1 (𝑡) = −0.33𝑥1 (𝑡) + 1.33 [𝑥1 (𝑡 − 𝜏) − 𝑥31 (𝑡 − 𝜏)]
+ 0.1𝑥2 (𝑡) + 0.1𝑥50 (𝑡) + 𝑢1 (𝑡) ,

𝑥̇2 (𝑡) = −0.33𝑥2 (𝑡) + 1.33 [𝑥2 (𝑡 − 𝜏) − 𝑥32 (𝑡 − 𝜏)]
+ 0.1𝑥1 (𝑡) + 0.1𝑥3 (𝑡) + 𝑢2 (𝑡) ,

𝑥̇3 (𝑡) = −0.33𝑥3 (𝑡) + 1.33 [𝑥3 (𝑡 − 𝜏) − 𝑥33 (𝑡 − 𝜏)]
+ 0.1𝑥2 (𝑡) + 0.1𝑥4 (𝑡) + 𝑢3 (𝑡) ,

...
𝑥̇50 (𝑡) = −0.33𝑥50 (𝑡)

+ 1.33 [𝑥50 (𝑡 − 𝜏) − 𝑥350 (𝑡 − 𝜏)] + 0.1𝑥1 (𝑡)
+ 0.1𝑥49 (𝑡) + 𝑢4 (𝑡) .

(30)

From the knowledge of Section 2, it is well known that
such networks are very hard to synchronize. Figure 2 shows
the state responses of this ring complex network with 𝜏 =0.5 and without control. It is obvious that the network is
desynchronized.

The synchronization target node is selected as 𝑥 =√1 − 𝑝/𝑞 ≐ 0.867. The initial states of 50 nodes are
selected randomly from 0 to 25. Let 𝑘𝑖 = 25, 𝜍𝑖(0) =10, and then according to Theorem 8, it can be seen that
this complex network is locally asymptotically synchronous
under the action of adaptive controller (11). The adaptive
synchronization analysis of complex networks is carried out
by using MATLAB to prove that the adaptive controller can
synchronize the complex network on the trajectory of the
specified chaotic node. If the simulation result is correct, this
will prove that the controller is effective. Figures 3 and 4 show
the synchronous error 𝑒𝑖, 𝑖 = 1, 2, . . . , 50, for 𝜏 = 0.1 and𝜏 = 0.5 with the same controller, respectively.

Obviously, it should be pointed out that the controlled
network is asymptotically stable at zero under the effective
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Figure 1: The ring network structure with 50 nodes.
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Figure 2: State response 𝑥𝑖 of 50 nodes’ dynamical network without
control.

adaptive controller (11). The simulation results indicate that
the coupling delays create some obstacle to the synchroniza-
tion of the complex networks. The response performance is
deteriorated as the time delays become large. It is clear from
the figures that the errors are very small.

4.2. Simulation II. The proposed theorems have been used
for synchronizing the second-order nodes in the dynamical
complex network. Consider twelve second-order nodes in
the dynamical network with switching topologies. The state
equation of each second-order node is described by

𝑀𝑖𝑥̈𝑖 = 𝑢𝑖; (31)

that is,

𝑥̇𝑖 = V𝑖,
𝑀𝑖V̇𝑖 = 𝑢𝑖, (32)

where 𝑥𝑖 ∈ R𝑚 are the position vectors; V𝑖 ∈ R𝑚 stand
for the velocity vectors; 𝑀𝑖 ∈ R𝑚×𝑚 are symmetric positive
definitematrices; and 𝑢𝑖 ∈ R𝑚 are the control inputs. Let𝑀 =
diag{𝑀1,𝑀2, . . . ,𝑀𝑛} ∈ R𝑛𝑚×𝑛𝑚, 𝑥 = [𝑥T1 , 𝑥T2 , . . . , 𝑥T𝑛 ]T ∈
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Figure 3: Synchronization error 𝑒𝑖 of 50 nodes’ network with 𝜏 = 0.1.
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Figure 4: Synchronization error 𝑒𝑖 of 50 nodes’ network with 𝜏 =
0.5.

R𝑛𝑚, V = [VT1 , VT2 , . . . , VT𝑛 ]T ∈ R𝑛𝑚, and 𝑢 = [𝑢T1 , 𝑢T2 , . . . , 𝑢T𝑛 ]T ∈
R𝑛𝑚. According to (32), for the arbitrary nth node, there is

𝑥̇ = V,
𝑀V̇ = 𝑢. (33)

Suppose that there exists a communication time delay𝜏 between nodes 𝑖 and 𝑗. The interaction topology of a
dynamical network of nodes with second-order nodes is
represented using a directed graph 𝐺 = (𝑉, 𝐸, 𝐴) with the
set of nodes 𝑉 = {]1, ]2, . . . , ]𝑛}, the set of directed edges𝐸 ⊆ 𝑉 × 𝑉, and the adjacency matrix 𝐴 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛.
H ∈ {1, 2, . . . , 𝑛} is the set of node subscripts, and 𝑒𝑖𝑗 = (𝑖, 𝑗)
denotes the directed edge fromnode 𝑖 to node 𝑗.The elements
in the adjacency matrix 𝐴 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛 satisfy 𝑎𝑖𝑖 = 0,𝑎𝑖𝑗 > 0 (if and only if 𝑒𝑖𝑗 ∈ 𝐸). The set of neighbors of a node𝑖 is ℵ𝑖 = {𝑗 ∈ H : (𝑖, 𝑗) ∈ 𝐸}. Let 𝑑𝑖 = ∑𝑗∈ℵ𝑖 𝑎𝑖𝑗, 𝑖 ∈ H;
the degree matrix of a directed graph 𝐺 can be expressed as𝐷 = diag{𝑑1, 𝑑2, . . . , 𝑑𝑛}. The Laplacian matrix 𝐿 is defined

by 𝐿 ≜ 𝐷−𝐴. It can be shown that, using the Gershgorin disc
theorem [14], all of the eigenvalues of 𝐿 have a nonnegative
real part. Furthermore, if 𝐺 is undirected, then the Laplacian
matrix of 𝐺 is symmetric and satisfies 𝐿 = 𝐵𝐵T, which means
that 𝐿 is positive semidefinite. The in-degree and out-degree
of node 𝑉𝑖 can be defined as 𝑑in(]𝑖) = ∑𝑛𝑗=1 𝑎𝑗𝑖 and 𝑑out(]𝑖) =∑𝑛𝑗=1 𝑎𝑖𝑗, respectively. If 𝑑in(]𝑖) = ∑𝑛𝑗=1 𝑎𝑗𝑖 = 𝑑out(]𝑖) =
∑𝑛𝑗=1 𝑎𝑖𝑗, then node ]𝑖 is an equilibrium point. If there exists a
direct graph between nodes in graph G, then 𝐺 is a strongly
connected and balanced graph.

Figure 5 gives three strongly connected and balanced
graphs with 0–2 weights. The initial values of 𝑥𝑖 and V𝑖 are
selected randomly in the region and [0, 800] × [0, 800] and[0, 800] × [0, 800], respectively.

The inertias of the twelve second-order nodes are𝑀1 = diag{1, 1, 1, 1}, 𝑀2 = diag{2, 2, 2, 2}, . . . ,𝑀12 =
diag{12, 12, 12, 12}. We set 𝜏 = 0.2; Figures 6 and 7 show
the numerical simulation results of the twelve second-order
nodes in the dynamical network with an arbitrary switching
signal. Figure 6 gives the inertial nodes’ position error curves.
Figure 7 shows the inertial nodes’ velocity error curves. It is
obvious that, for the dynamical networkwith communication
time delay and switching topology, the control strategy
proposed in this paper also achieves the exponential stability.

From the above, the synchronization process of the
dynamical network can be described as follows: detect the
designated node and the other nodes; then, the state variables
of nodes are subtracted from the designed node, respectively,
by using the subtraction device. This way, we can get the
error signals 𝑒𝑖(𝑡), and then the error signals are sent to
the adaptive controller. Furthermore, the adaptive controller
chooses a one-dimensional variable as the control variable.
According to 𝑒𝑖(𝑡), we can adjust the control outputs and
make the variables of the designated node and other nodes
synchronized. At the moment, the error 𝑒𝑖(𝑡) is close to zero.
A block diagram is expressed in Figure 8.

5. Conclusions

This paper studied the adaptive synchronization of uncertain
dynamical networks with time-delayed nodes and coupling
delays, with known or unknown but bounded nonlinear cou-
pling functions. The parameters of the adaptive controllers
can be chosen according to the presented theorems which
can stabilize the network to the desired fixed points. The
adaptive synchronization criteria by using the Lyapunov-
Krasovskii stability theory also provide some new insights
into the network synchronization and the possible appli-
cations in engineering systems. At last, an example of a
dynamical network with fifty M-G system nodes has been
simulated, demonstrating the effectiveness of the proposed
controllers. Note that the adaptive controllers proposed
are both delay-dependent, so there are no compensations
to the delay couplings. However, how to solve the delay-
dependent problem to reach synchronization seems to be
new and useful. Furthermore, as another issue, in some real
complex systems, interacting subjects are not identical and
have different individual properties. Some synchronization
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Figure 8: The block diagram of adaptive control of the dynamical network.

criteria are expected to bemore powerful and deserve further
exploration.
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