555 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Detection & isolation of sensor and actuator additive faults in a 4-mecanum wheeled mobile robot (4-MWMR)

    Get PDF
    International audienceIn this paper, the fault detection and isolation problem regarding actuation and sensing of a 4-mecanum wheeled mobile robot (4-MWMR) is studied. The challenge with respect to the current state of the art lies in detecting and distinguishing wheel sensor from wheel actuator additive faults for this kind of robots. An approach based on generating residuals is proposed. Sensor faults isolation is based on simply analyzing residual signatures which are different under each sensor fault. Due to omni-move properties, actuator faults are, however, more difficult to be isolated. More residual characteristics must be taken into consideration to achieve the isolation

    Cooperative Control of Multiple Wheeled Mobile Robots: Normal and Faulty Situations

    Get PDF
    Recently, cooperative control of multiple unmanned vehicles has attracted a great deal of attention from scientific, industrial, and military aspects. Groups of unmanned ground, aerial, or marine vehicles working cooperatively lead to many advantages in a variety of applications such as: surveillance, search and exploration, cooperative reconnaissance, environmental monitoring, and cooperative manipulation, respectively. During mission execution, unmanned systems should travel autonomously between different locations, maintain a pre-defined formation shape, avoid collisions of obstacles and also other team members, and accommodate occurred faults and mitigate their negative effect on mission execution. The main objectives of this dissertation are to design novel algorithms for single wheeled mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme. In normal/fault-free cases, an integrated approach combining input-output feedback linearization and distributed model predictive control (MPC) techniques is designed and implemented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed to avoid potential collisions of surrounding obstacles. Moreover, the proposed control algorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial vehicles (UAVs) for forest monitoring and fire detection applications. When actuator faults occur in one of the robots, two cases are explicitly considered: i) if the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot has to get out from the formation mission, and an FTCC strategy is designed such that the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete the mission with graceful performance degradation. Two methods are used to investigate this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment problem; and ii) if the faulty robot can continue the mission with degraded performance, then the other team members reconfigure the controllers considering the capability of the faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman filter (TSKF) to detect and diagnose actuator faults is presented. In case of using any other nonlinear controller in fault-free case rather than MPC, and in case of severe fault occurrence, another FTCC strategy is presented. First, the new reconfiguration is formulated by an optimal assignment problem where each healthy WMR is assigned to a unique place. Second, the new formation can be reconfigured, while the objective is to minimize the time to achieve the new formation within the constraints of the WMRs' dynamics and collision avoidance. A hybrid approach of control parametrization and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to address this problem. Since PSO cannot solve the continuous control inputs, CPTD is adopted to provide an approximate piecewise linearization of the control inputs. Therefore, PSO can be adopted to find the global optimum solution. In all cases, formation operation of the robot team is based on a leader-follower approach, whilst the control algorithm is implemented in a distributed manner. The results of the numerical simulations and real experiments demonstrate the effectiveness of the proposed algorithms in various scenarios

    Cooperative Control of Multiple Wheeled Mobile Robots: Normal and Faulty Situations

    Get PDF
    Recently, cooperative control of multiple unmanned vehicles has attracted a great deal of attention from scientific, industrial, and military aspects. Groups of unmanned ground, aerial, or marine vehicles working cooperatively lead to many advantages in a variety of applications such as: surveillance, search and exploration, cooperative reconnaissance, environmental monitoring, and cooperative manipulation, respectively. During mission execution, unmanned systems should travel autonomously between different locations, maintain a pre-defined formation shape, avoid collisions of obstacles and also other team members, and accommodate occurred faults and mitigate their negative effect on mission execution. The main objectives of this dissertation are to design novel algorithms for single wheeled mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme. In normal/fault-free cases, an integrated approach combining input-output feedback linearization and distributed model predictive control (MPC) techniques is designed and implemented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed to avoid potential collisions of surrounding obstacles. Moreover, the proposed control algorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial vehicles (UAVs) for forest monitoring and fire detection applications. When actuator faults occur in one of the robots, two cases are explicitly considered: i) if the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot has to get out from the formation mission, and an FTCC strategy is designed such that the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete the mission with graceful performance degradation. Two methods are used to investigate this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment problem; and ii) if the faulty robot can continue the mission with degraded performance, then the other team members reconfigure the controllers considering the capability of the faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman filter (TSKF) to detect and diagnose actuator faults is presented. In case of using any other nonlinear controller in fault-free case rather than MPC, and in case of severe fault occurrence, another FTCC strategy is presented. First, the new reconfiguration is formulated by an optimal assignment problem where each healthy WMR is assigned to a unique place. Second, the new formation can be reconfigured, while the objective is to minimize the time to achieve the new formation within the constraints of the WMRs' dynamics and collision avoidance. A hybrid approach of control parametrization and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to address this problem. Since PSO cannot solve the continuous control inputs, CPTD is adopted to provide an approximate piecewise linearization of the control inputs. Therefore, PSO can be adopted to find the global optimum solution. In all cases, formation operation of the robot team is based on a leader-follower approach, whilst the control algorithm is implemented in a distributed manner. The results of the numerical simulations and real experiments demonstrate the effectiveness of the proposed algorithms in various scenarios

    Fault-Tolerant Control of Autonomous Ground Vehicle under Actuator and Sensor

    Get PDF
    Unmanned ground vehicles have a wide range of potential applications including autonomous driving, military surveillance, emergency responses, and agricultural robotics, etc. Since such autonomous vehicles need to operate reliably at all times, despite the possible occurrence of faulty behaviors in some system components, the development of fault-tolerant control schemes is a crucial step in ensuring reliable and safe operations. In this research, a fault-tolerant control scheme is developed for a nonlinear ground vehicle model with possible occurrence of both actuator faults in the form of loss of effectiveness (LOE) and sensor bias faults. Based on the vehicle and fault models under consideration, the unknown fault parameters are estimated online using adaptive estimation methods. The estimated fault parameters are used for accommodating the fault effect to maintain satisfactory control performance even in the presence of faults. Real-time algorithm implementation and demonstration using the Qbot2e ground robot by Quanser are conducted to show the effectiveness of the fault-tolerant control algorithm

    Maximum likelihood estimation-assisted ASVSF through state covariance-based 2D SLAM algorithm

    Get PDF
    The smooth variable structure filter (ASVSF) has been relatively considered as a new robust predictor-corrector method for estimating the state. In order to effectively utilize it, an SVSF requires the accurate system model, and exact prior knowledge includes both the process and measurement noise statistic. Unfortunately, the system model is always inaccurate because of some considerations avoided at the beginning. Moreover, the small addictive noises are partially known or even unknown. Of course, this limitation can degrade the performance of SVSF or also lead to divergence condition. For this reason, it is proposed through this paper an adaptive smooth variable structure filter (ASVSF) by conditioning the probability density function of a measurementto the unknown parameters at one iteration. This proposed method is assumed to accomplish the localization and direct point-based observation task of a wheeled mobile robot, TurtleBot2. Finally, by realistically simulating it and comparing to a conventional method, the proposed method has been showing a better accuracy and stability in term of root mean square error (RMSE) of the estimated map coordinate (EMC) and estimated path coordinate (EPC)

    Development of Fault Diagnosis and Fault Tolerant Control Algorithms with Application to Unmanned Systems

    Get PDF
    Unmanned vehicles have been increasingly employed in real life. They include unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned spacecrafts, and unmanned underwater vehicles (UUVs). Unmanned vehicles like any other autonomous systems need controllers to stabilize and control them. On the other hand unmanned systems might subject to different faults. Detecting a fault, finding the location and severity of it, are crucial for unmanned vehicles. Having enough information about a fault, it is needed to redesign controller based on post fault characteristics of the system. The obtained controlled system in this case can tolerate the fault and may have a better performance. The main focus of this thesis is to develop Fault Detection and Diagnosis (FDD) algorithms, and Fault Tolerant Controllers (FTC) to increase performance, safety and reliability of various missions using unmanned systems. In the field of unmanned ground vehicles, a new kinematical control method has been proposed for the trajectory tracking of nonholonomic Wheeled Mobile Robots (MWRs). It has been experimentally tested on an UGV, called Qbot. A stable leader-follower formation controller for time-varying formation configuration of multiple nonholonomic wheeled mobile robots has also been presented and is examined through computer simulation. In the field of unmanned aerial vehicles, Two-Stage Kalman Filter (TSKF), Adaptive Two-Stage Kalman Filter (ATSKF), and Interacting Multiple Model (IMM) filter were proposed for FDD of the quadrotor helicopter testbed in the presence of actuator faults. As for space missions, an FDD algorithm for the attitude control system of the Japan Canada Joint Collaboration Satellite - Formation Flying (JC2Sat-FF) mission has been developed. The FDD scheme was achieved using an IMM-based FDD algorithm. The efficiency of the FDD algorithm has been shown through simulation results in a nonlinear simulator of the JC2Sat-FF. A fault tolerant fuzzy gain-scheduled PID controller has also been designed for a quadrotor unmanned helicopter in the presence of actuator faults. The developed FDD algorithms and fuzzy controller were evaluated through experimental application to a quadrotor helicopter testbed called Qball-X4

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance
    corecore