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Abstract

Cooperative Control of Multiple Wheeled Mobile Robots: Normal and

Faulty Situations

Mohamed Atef Mohamed Ismail Kamel, Ph.D.

Concordia University, 2016

Recently, cooperative control of multiple unmanned vehicles has attracted a great

deal of attention from scientific, industrial, and military aspects. Groups of unmanned

ground, aerial, or marine vehicles working cooperatively lead to many advantages in a vari-

ety of applications such as: surveillance, search and exploration, cooperative reconnaissance,

environmental monitoring, and cooperative manipulation, respectively. During mission exe-

cution, unmanned systems should travel autonomously between different locations, maintain

a pre-defined formation shape, avoid collisions of obstacles and also other team members,

and accommodate occurred faults and mitigate their negative effect on mission execution.

The main objectives of this dissertation are to design novel algorithms for single wheeled

mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of

WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant

cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme.

In normal/fault-free cases, an integrated approach combining input-output feedback lin-

earization and distributed model predictive control (MPC) techniques is designed and imple-

mented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative

task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed

to avoid potential collisions of surrounding obstacles. Moreover, the proposed control al-

gorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial

vehicles (UAVs) for forest monitoring and fire detection applications.

When actuator faults occur in one of the robots, two cases are explicitly considered: i) if

the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot
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has to get out from the formation mission, and an FTCC strategy is designed such that

the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete

the mission with graceful performance degradation. Two methods are used to investigate

this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment

problem; and ii) if the faulty robot can continue the mission with degraded performance,

then the other team members reconfigure the controllers considering the capability of the

faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each

robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman

filter (TSKF) to detect and diagnose actuator faults is presented.

In case of using any other nonlinear controller in fault-free case rather than MPC, and

in case of severe fault occurrence, another FTCC strategy is presented. First, the new re-

configuration is formulated by an optimal assignment problem where each healthy WMR

is assigned to a unique place. Second, the new formation can be reconfigured, while the

objective is to minimize the time to achieve the new formation within the constraints of the

WMRs’ dynamics and collision avoidance. A hybrid approach of control parametrization

and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to

address this problem. Since PSO cannot solve the continuous control inputs, CPTD is

adopted to provide an approximate piecewise linearization of the control inputs. Therefore,

PSO can be adopted to find the global optimum solution.

In all cases, formation operation of the robot team is based on a leader-follower ap-

proach, whilst the control algorithm is implemented in a distributed manner. The results of

the numerical simulations and real experiments demonstrate the effectiveness of the proposed

algorithms in various scenarios.
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Chapter 1

Introduction

1.1 Overview

From the literal meaning, mobile robots are the robots that can move from one place to

another autonomously, that is, without assistance from external human operators. Mobile

robots have the special feature of moving around freely within a predefined workspace to

achieve their goals. This mobile capability makes them suitable for replacing human beings

in civilian applications as well as military applications. According to the environment in

which they move, mobile robots can be classified into unmanned aerial vehicles (UAVs),

autonomous underwater vehicles (AUVs), and unmanned ground vehicles (UGVs).

UGVs are distinguished in wheeled mobile robots (WMRs) and legged mobile robots

(LMRs). WMRs are very popular because they are appropriate for typical applications

with relatively low mechanical complexity and energy consumption. LMRs are suitable for

tasks in non-standard environments, stairs, heaps of rubble, etc. Mobile robots also include

mobile manipulators (wheeled or legged robots equipped with one or more light manipulators

to perform various tasks) (Tzafestas, 2014).

A discussion of such a broad universe of possible UGV systems needs some organizing

principle. In fact a taxonomy of UGV systems could be based upon any of a number of

characteristics of each system, including (Mohammed, 2013): i) the specific reasons for

choosing a UGV solution for the application (i.e., hazardous environment, size limitation);

ii) the system’s intended operating environment (i.e., indoor environments, outdoors on
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roads, general cross-country terrain, etc); iii) the vehicle’s mode of locomotion (i.e., wheels,

legs, tracks); and iv) how the vehicle’s path is determined (i.e., control and navigation

techniques employed).

Starting from the late 1960s where the first mobile robot was developed, whose name

was Shakey (Nilsson, 1969), and till now, there have been significant researches on WMRs

development, which have found important usage in both military and civilian applications

(Tzafestas, 2014; Moravec, 1980; Thorpe et al., 1988; Schwartz, 2000; Thrun et al., 2006;

Montemerlo et al., 2008; Kamel, 2009). The most important issues in WMRs development

are how they can be more intelligent, autonomous, reliable, and safe.

1.2 Motivation

Due to continuous development of advanced mechatronic, computing and communication

technologies in the last two decades, it is now possible to find on-board embedded com-

puters which have more computing power. Exchanging information among mobile robots

distributed over an area is now possible by means of off-the-shelf ad-hoc wireless network

devices. In addition, there are various small size, light weight sensing devices on the market

ranging from laser range sensors to color charge-coupled devices (CCD) cameras. As a re-

sult, by exploiting current technology, one can build a group of relatively small robots having

satisfactory capabilities within a reasonable cost, these robots can interact together in a co-

operative manner. This technology is called network robot systems (NRS) (Sanfeliu et al.,

2008), or multiple unmanned vehicles (MUVs) (Zhang and Mehrjerdi, 2013). Compared to

a single vehicle, the usage of MUVs has many advantages such as:

� Multi-tasking: when using a team of robots, the task can be decomposed into several

sub-tasks which can be handled at the same time. Therefore, the mission can be

achieved much faster than a single robot, results in reduction of the time of mission

execution. For example, using a team of UAVs in forest monitoring and fire detection

mission can reduce the time of monitoring and information collection significantly

compared with single UAV;
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� Fault-tolerance: In case of using MUVs, if fault occurs in one or more robots in the

team, the other robots can accommodate the occurred faults and mitigate their nega-

tive effect on mission execution. This increases the system robustness and reliability,

especially in dangerous missions;

� Cost-effectiveness: Designing a powerful and versatile robot that is capable of han-

dling different tasks sometimes might not be feasible due to robot size and payloads

limitations. However, with a group of robots each has simple functions, cost-effective

robots can be built without losing the capability of different tasks handling;

� Flexibility: The functionality of a group of robots can be easily changed by combining

different robots with different capabilities; and

� Distribution: Robots can work simultaneously at different positions in the same

workspace. For example, during a surveillance task, the target can be monitored from

different positions with different types of sensors by a group of robots. This will provide

more detailed and accurate information about the target.

Due to these advantages, robotic networks are applied in many applications in both mili-

tary and civil applications such as surveillance (Acevedo et al., 2014; Kingston et al., 2008),

search and exploration (Nieto-Granda et al., 2014; Hu et al., 2013), cooperative reconnais-

sance (Balch and Arkin, 1998), environmental monitoring (Marques et al., 2005; Dunbabin

and Marques, 2012), and cooperative manipulation (Tanner et al., 2003; Prasad et al., 2015).

During mission execution, vehicles are required to travel autonomously between different lo-

cations, to avoid collision of obstacles and other team members, and to accommodate faults

in individual members.

Within these applications, cooperative/formation control arises because a group of robots

can accomplish a mission more effectively by maintaining a pre-defined formation shape. For-

mation control was inspired by the emergent self-organization observed in nature, like birds

flocking and fish schooling (Xie, 2007). Formation control allows for intelligent leaders and

single agent planning, while followers can focus on other tasks. Leader-following is a common

approach to build formations of MUVs. Formation control has been studied extensively in

3



the literature, with application to the WMRs (Consolini et al., 2008), UAVs (Wang and

Xin, 2013), and AUVs (Panagou and Kyriakopoulos, 2013), respectively. The challenge here

lies in designing a formation controller that is computationally simple, robust, fault-tolerant,

and can be implemented in real time.

In addition to maintaining a formation shape during task executions under normal con-

ditions, it would be great that robots possess a fault-tolerance capability in the presence of

faults. Thus, the healthy robots can react correspondingly to eliminate the negative effect

on mission completion. Otherwise, the formation shape will be broken while mission com-

pletion becomes impossible. Such an objective can be achieved by so-called fault-tolerant

cooperative control (FTCC) strategies. Accordingly, adding FTCC algorithm to a team

of WMRs become very important from the point of view of robots’ safety, reliability, and

mission completion. The challenges here are i) how to detect the faults, and estimate their

value and degree of severity; ii) how to take the decision to compensate the fault effect on

the mission completion; and iii) how to execute this decision.

WMR control is challenging since robot model is nonlinear, multi-variable and nonholo-

nomic, also the basic limitation of WMR control comes from their kinematics. The control

of WMR requires the ability of the controller to overcome robot nonlinearities as well as the

nonholonomic constraints, so that the robot can be stabilized with sound robustness. Dur-

ing the past decades, many researchers work in those challenges. Though numerous control

algorithms are found in the literature, controller design is still challenging. Many control al-

gorithms have been developed to solve the WMR control problem such as a Lyapunov-based

nonlinear controllers, adaptive controller, fuzzy controllers, and dynamic feedback lineariza-

tion.

Recently, WMR control problem is formulated as an optimal control problem, where

optimization-based techniques can be applied. One of these approaches is the model pre-

dictive control (MPC). In the last decade, MPC has gained more attention in the field

of WMR control. Its ability to handle constraints makes it a promising approach for sin-

gle WMR control and also cooperative control of a team of WMRs. However, the main

shortcoming of MPC is its high computational requirement, especially with increasing the

number of robots, resulting in the limitation of applying MPC with a team of WMRs in
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real-time applications. For this reason, the main challenge of applying MPC lies in solving

the computational effort problem.

1.3 Thesis Objective

The objective of this thesis can be stated as: controlling multiple WMRs while accomplish-

ing different cooperative missions in both normal case in which no fault occurs for any robot

in formation, and faulty case where one or more robots subject to faults, then the other

team members can eliminate the fault effect and complete the mission.

1.4 Research Contributions

The main contributions of this dissertation can be summarized as follows:

� Develop a novel algorithm for solving the trajectory tracking problem of a differentially-

driven WMR based on a combination of an input-output feedback linearization and

linear model predictive control (LMPC). The linear model of the robot with nonlinear

dynamics is found through feedback linearization, while LMPC is applied to the linear

model. With this approach, the computational effort problem associated with MPC

can be avoided;

� Theoretical proof of stability, robustness and convergence of the proposed control al-

gorithm;

� Apply the proposed control algorithm to solve the problem of cooperative control of

WMRs in a distributed manner;

� Develop an obstacle avoidance algorithm based on the mechanical impedance concept,

and implement it to a robot control system. In case of multiple WMRs, the obsta-

cle avoidance algorithm is also embedded to each robot control system to allow the

individual robots to avoid obstacles;
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� Real-time implementation of the proposed control algorithm in case of single robot

trajectory tracking, and cooperative control of a team of WMRs in both obstacle-free

and cluttered environments;

� Use the proposed cooperative control algorithm for a team of WMRs, which is paired

with a team of UAVs for forest monitoring and fire detection mission, to solve the

problems of UAVs’ limited flight time and limited payload;

� Exploit the two-stage Kalman filter (TSKF) for fault detection and diagnosis (FDD)

purpose. The advantage of using the TSKF is to simultaneously estimate the states

and fault parameters necessary for FTCC design and implementation;

� Design FTCC algorithms capable of reconfigure the formation shape of the team once

a severe fault has occurred to one or more robots in the team in the situation where

the faulty robot(s) are unable to complete the mission. These algorithms are based on

the Graph Theory, optimal assignment, and particle swarm optimization (PSO);

� Enhance the FTCC algorithms to be able to drive the team to complete the mission but

with degraded performance if one or more robots subject to faults but can continue

the mission. Therefore, the other team members will reconfigure their controllers

considering the capability of the faulty robot; and

� Real-time implementation of the proposed FTCC algorithms to a team of WMRs in

both regular and severe fault cases.

1.5 Thesis Outline

This thesis is presented in six chapters, after this introductory chapter, the structure of the

upcoming chapters reflect the composition of the thesis.

Chapter 2 gives a brief introduction of the nonholonomic mobile robots, the kinematic

model of the differentially-driven WMRs, its controllability to stabilize at a given posture

and about feasible trajectories. Then, a full review of single WMR control is presented. In

addition, a brief introduction on cooperative control classes and a literature review of the
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existing work on cooperative control and FTCC of WMRs is presented. MPC types, ad-

vantages and disadvantages, and a review on WMRs control based on MPC are illustrated.

Finally, the experimental setup used for the on-board implementation of the proposed al-

gorithms is presented, with the full description of the sensors, the ground station, and the

WMRs under study.

In Chapter 3, single robot trajectory tracking as well as cooperative control of a team of

WMRs based on a combination of input-output feedback linearization and LMPC is illus-

trated. Then, an obstacle avoidance algorithm based on the mechanical impedance principle

is presented. Next, pairing of a team of WMRs with a team of UAVs for forest monitoring

and fire detection mission is investigated. Finally, simulation and experimental results are

presented.

Chapter 4 introduces FTCC algorithm of a team of WMRs. In case of severe actuator

fault occurrence, the mission is re-assigned to the remaining healthy robots based on two

strategies: the Graph Theory, and the optimal assignment. A motion re-coordination algo-

rithm in case of non-severe fault occurrence is also illustrated. TSKF is proposed for FDD

purposes. Simulation results, as well as real-time experiments are presented.

Chapter 5 presents the FTCC algorithm based on the time optimal reconfiguration. A

hybrid approach of control parametrization and time discretization (CPTD) and PSO is

proposed in this chapter. Moreover, simulation and experimental results are also presented.

Finally, in Chapter 6, conclusions and recommendations for future work are outlined.
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Chapter 2

Background, Literature Review, and

Preliminaries

This chapter reviews some of the most relevant cooperative control of multiple WMRs in

normal and faulty situations that can be found in the literature. Some terms and expressions

frequently used throughout this thesis are also defined.

This chapter is organized as follows. First, an overview of the differentially-driven WMR

is presented. Its kinematic model, controllability to stabilize at a given posture and about

feasible trajectories, and a review of the existing control strategies are presented. Second,

a brief review on MPC, its concept, types, advantages and disadvantages, and the existing

work of controlling WMRs based on MPC is highlighted. Next, a review for cooperative

control of WMRs, their classes and strategies in normal case are presented. In addition, a

brief review of applying MPC to a team of multiple WMRs is highlighted. Finally, a review

of the existing work on cooperative control of WMRs in faulty situations is presented, in

which FDD and FTCC are reviewed.

2.1 Basic Motion Tasks of a Single Wheeled Mobile

Robot (WMR)

Two basic approaches are considered for a WMR in an obstacle-free environment:
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� Point-to-point motion (or posture stabilization): where the desired goal is to

stabilize the robot to a final posture starting from a given initial one; and

� Trajectory tracking: in which a specific point on the robot must follow a time-

varying trajectory in the Cartesian space.

In WMRs, trajectory tracking control is easier to achieve than posture stabilization (Klančar

and Škrjanc, 2007). This comes from the assumption that the wheels are in perfect contact

with the ground, resulting in the nonholonomic constraints. Also, according to Blazic (2014),

trajectory tracking problem is more important since the nonholonomic constraints and other

control goals (such as obstacle avoidance, minimum fuel consumption, and minimum travel

time) are implicitly included in the path-planning procedure. Furthermore, the trajectory

tracking problem can be extended to more complex schemes such as the cooperative control

of multiple WMRs.

2.2 Nonholonomic WMRs

A nonholonomic mobile robot is the one that cannot move in the lateral direction, and

can move only in the direction perpendicular to the axis of the driving wheels. Most of

WMRs can be considered as nonholonomic mobile robots. As mentioned in Chapter 1,

nonholonomic mobile robots have the ability to work in large application domains such

as search and exploration, surveillance, transportation and military targets tracking. Due

to this wide range of applications, the research of nonholonomic mobile robots has many

directions. As the dissertation objective stated in Section 1.4, only the trajectory tracking,

and cooperative control of a team of nonholonomic mobile robots are considered.

According to Tzafestas (2014), a nonholonomic constraint (relation) is defined to be a

constraint that contains time derivatives of generalized coordinates (variables) of a system

and is not integrable. To understand what this means, a holonomic constraint can be defined

as any constraint that can be expressed in the form:

F (q, t) = 0 (2.1)
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where q is the vector of generalized coordinates, q = [q1, q2, . . . , qn]T . Then, suppose another

constraint with following form:

f(q, q̇, t) = 0 (2.2)

If this constraint can be converted to the form:

F (q, t) = 0, (2.3)

then, this constraint is integrable. Therefore, although f in (2.2) contains the time derivatives

of q, it can be expressed in the holonomic form (2.3), and it is a holonomic constraint.

Definition 2.1 (Nonholonomic constraint). A constraint of the form (2.2) is said to be non-

holonomic if it cannot be expressed in the form (2.3) such that to involve only the generalized

variables themselves

2.3 Differentially-Driven WMR

An accurate mathematical model of vehicle behavior is very important for the design of

the robot controller. In autonomous mobile robots usually two kinds of modeling are used,

kinematic and dynamic. Kinematic modeling does not include mass, torque, inertia, etc. It

treats the robot as a point object. Dynamic modeling includes the mass, inertia, slippage,

etc. Figure 2.1 shows the schematic view of a differentially-driven WMR.

2.3.1 Kinematic Model of a Differentially-Driven WMR

In a two-wheeled differentially-driven WMR, the wheels of the vehicle are controlled inde-

pendent of each other, so the rear wheels are active and independent in performing driving

and steering of the robot, while the front wheel was added only for stability.

As shown in Figure 2.1, point q is the current posture with coordinates (x, y) and ori-

entation angle φ. Assuming non-deforming wheels and robot moves without slipping, then

defining the vector q(t) and its derivative as:

q = [x y φ]T , q̇ =
[
ẋ ẏ φ̇

]T
10



where q(t) and q̇(t) ∈ Rn. Then, the nonlinear kinematic equation of the robot is:

q̇ =


ẋ

ẏ

φ̇

 =


cosφ 0

sinφ 0

0 1


v
ω

 = S(q)u (2.4)

where the matrix S(q) ∈ Rn × Rm, and the control inputs vector u ∈ Rm. v and ω are the

linear and angular velocities, respectively. m and n describe the number of robots’ control

inputs and states, respectively.

The velocities of the right and left wheels of the robot vR and vL, respectively can be

presented as:

vR = v + hω,

vL = v − hω
(2.5)

where h is the distance between the robot longitudinal axis and each wheel. Consequently,

the angular velocity of each wheel ωR and ωL can be calculated as follows:

ωR =
vR
r
,

ωL =
vL
r

(2.6)

where r is the radius of wheels.

From equation (2.4), one can obtain

Figure 2.1: Two-wheeled differentially-driven WMR

11



ẋ = v cosφ,

ẏ = v sinφ

then
ẋ

cosφ
=

ẏ

sinφ

which results in

ẋ cosφ = ẏ sinφ (2.7)

Equation (2.7) represent the nonholonomic constraint of the differentially-driven WMR,

while Figure 2.2 illustrates this constraint graphically.

2.3.2 Controllability and Stabilization at a Point

The point stabilization can be defined as follows:

Definition 2.2 (Pose stabilization). Given an arbitrary constant reference position and

orientation qr = [xr, yr, φr]
T , the point stabilization problem is to find a feedback control law

u = [v, ω]T , such that

lim
t→∞

(qr − qo) = 0,

with an initial posture qo(0).

The first step for analysis and control of nonlinear systems is the linearization of that

Figure 2.2: Nonholonomic constraint of a differentially-driven WMR
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system. If the linear system is controllable, then the original nonlinear system is least

locally controllable and feedback stabilizable Xie (2007). Linearizing equation (2.4) about

the equilibrium point (where q = 0 and u = 0), then

q̇ =


1 0

0 0

0 1


v
ω

 (2.8)

A linear system is said to be controllable at time t0 if it is possible by means of an

unconstrained control vector to transfer the system from any initial state x(t0) to any other

state in a finite interval of time (Ogata, 2010). Mathematically the system will be controllable

if and only if the n × n matrix Cx has full rank, the matrix Cx is given by:

Cx =
[
B AB A2B . . . An−1B

]
(2.9)

If the rank of Cx is n, the linear system is controllable. In other words, it is possible to

achieve any point in the state-space of the system by using bounded inputs. By computing

the controllability matrix of the linearized model, one can obtain:

Cx =


1 0

0 0

0 1


Since the rank of Cx = 2, then the linear system is non-controllable.

The model presented in (2.4) belongs to the special class of nonlinear systems, called

affine systems, and described by the following form:

q̇ = g0(q) +
m∑
i=1

gi(q)ui (2.10)

The term g0(q) is called “drift”, and the system with g0(q) = 0 is called a “driftless”

system. For driftless affine systems, a sufficient condition for controllability (which is called

the accessibility rank condition) is that; “for any q, the dimension of the involutive closure

of the distribution generated by the vector fields’ gi is equal to n” (De Wit et al., 1993; Yun
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and Yamamoto, 1992), that:

dim{inv ∆} = n, ∆ = span{gi} (2.11)

From (2.4), n = 3, and the vector fields are:

g1 =


cosφ

sinφ

0

 , g2 =


0

0

1

 (2.12)

To determine the involutivity of ∆, we should find the Lie bracket of g1 and g2 as

g3 = [g1, g2] =
∂g2

∂q
g1 −

∂g1

∂q
g2 (2.13)

then:

g3 =


sinφ

− cosφ

0


so

inv ∆ =


cosφ 0 sinφ

sinφ 0 − cosφ

0 1 0


It is clear that the rank of (inv ∆) = n. Therefore, the system is controllable. However,

the existence of smooth time-invariant state feedback control laws for such nonholonomic

systems cannot be implied from controllability. This problem will be discussed in Section

2.3.3.

2.3.3 Brockett’s Theorem

The smooth time-invariant state feedback stabilization problem can be defined as:

Definition 2.3. Find a state feedback u = k(q), where k(q) is a smooth function of q, such

that the closed-loop system.

q̇ = S(q)k(q) (2.14)
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is asymptotically stable.

Brockett (1983) gives a general theorem on necessary conditions for smooth feedback

stabilization of such nonlinear systems

Theorem 2.1 (Brockett’s Theorem). Consider the nonlinear system ẋ = f(x, u) with

f(x0, 0) = 0 and f(., .) continuously differentiable in a neighborhood of (x0, 0), necessary

conditions for the existence of a continuously differentiable control law for asymptotically

stabilizing (x0, 0) are:

1. The linearized system has no uncontrollable modes associated with eigenvalues with

positive real part,

2. There exists a neighborhood N of (x0, 0) such that for each ξ ∈ N there exists a control

uξ(t) defined for all t > 0 that drives the solution of ẋ = f(x, uξ) from the point x = ξ

at t = 0 to x = x0 at t =∞,

3. The mapping γ : N×Rm → Rn, N a neighborhood of the origin, defined by γ : (x, u)→

f(x, u) should be onto an open set of the origin.

The details and proof of Brockett’s theorem are mentioned in (Brockett, 1983; Bloch,

2003). The following corollary to Brockett’s theorem is a special case for driftless systems.

Corollary 2.1. Consider a driftless system of the form

q̇ =
m∑
i=1

gi(q)ui, q ∈ Rn, u ∈ Rm,m ≤ n (2.15)

where gi are smooth vector fields. If the vectors gi are linearly independent, i.e.

rank[g1, g2, . . . , gm] = m (2.16)

then a solution to a stabilization problem defined in Definition 2.3 exists if and only if m

= n.

According to Corollary 2.1, Lyapunov stability is achieved only if the number of inputs

equal to the number of states. Since n = 3, and m = 2, then a smooth time-invariant
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feedback laws is not valid for the nonholonomic WMR. Consequently, to get a posture-

stabilizing controller, it is either necessary to avoid the continuity requirement or to use

time-varying control laws.

2.3.4 Controllability and Stabilization about a Trajectory

In a trajectory tracking problem, it is convenient to generate a desired trajectory with

coordinates qr = [xr(t), yr(t), φr(t)]
T . In order to be feasible, the reference trajectory must

satisfy the nonholonomic constraint on the robot motion, or be consistent with equation (2.4)

(Luca et al., 2001). The reference inputs ur = [vr(t), ωr(t)]
T can be calculated as follows:

vr(t) = ±
√
ẋ2
r(t) + ẏ2

r(t) (2.17)

ωr(t) =
ẋr(t)ÿr(t)− ẏr(t)ẍr(t)

ẋ2
r(t) + ẏ2

r(t)
(2.18)

A linearized model is obtained by computing an error model with respect to a reference

trajectory. Re-write the nonlinear model (2.4) and the reference trajectory in the general

form:

q̇ = f(q, u) (2.19)

q̇r = f(qr, ur) (2.20)

By expanding the robot model (2.19) in Taylor series around the reference trajectory (qr, ur)

and discarding the high order terms, then

q̇ = f(qr, ur) +
∂f(q, u)

∂q

∣∣∣∣
q = qr
u = ur

(q − qr) +
∂f(q, u)

∂u

∣∣∣∣
q = qr
u = ur

(u− ur) (2.21)

or

q̇ = f(qr, ur) + fq(q − qr) + fu(u− ur) (2.22)

where fq and fu are the Jacobian matrices of f with respect to q and u respectively, evaluated

around the reference trajectory (qr, ur). Subtracting (2.20) from (2.22) will get

q̇e = fqqe + fuue (2.23)
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where qe = q− qr and ue = u− ur, and the Jacobian matrices fq and fu can be obtained as:

fq =


0 0 −vr sinφr

0 0 −vr cosφr

0 0 0

 , fu =


cosφr 0

sinφr 0

0 1


Then, equation (2.23) can be written as:

q̇e =


0 0 −vr sinφr

0 0 −vr cosφr

0 0 0



x− xr
y − yr
φ− φr

+


cosφr 0

sinφr 0

0 1


v − vr
ω − ωr

 = A(t)qe +B(t)ue (2.24)

Since the linearized system is time varying, then a necessary and sufficient controllability

condition is that the controllability Gramian is nonsingular (Luca et al., 2001). A simple

analysis can start with determining the state tracking error ê = [xe(t), ye(t), φe(t)]
T as shown

in Figure 2.3, such that:

ê =


xe

ye

φe

 =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1



x− xr
y − yr
φ− φr

 (2.25)

The associated tracking error is obtained by differentiating equation (2.25), then:

Figure 2.3: Trajectory tracking problem
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˙̂e =


ẋe

ẏe

φ̇e

 =


ωye − v + vr cosφe

−ωxe + vr sinφe

ωr − ω

 (2.26)

Introducing the following new inputs:

u1 = −v + vr cosφe

u2 = ωr − ω
(2.27)

then equation (2.26) can be represented as:

˙̂e =


0 ω 0

−ω 0 0

0 0 0



xe

ye

φe

+


0

sinφe

0

 vr +


1 0

0 0

0 1


u1

u2

 (2.28)

Linearizing equation (2.28) around the reference trajectory (ê = 0, u = 0) will yield the

following time-varying system:

˙̂e =


0 ωr(t) 0

−ωr(t) 0 vr(t)

0 0 0

 e+


1 0

0 0

0 1


u1

u2

 (2.29)

If vr and ωr are constant, the system (2.29) becomes time-invariant. Check the controllability

of that system by calculating the matrix Cx as mentioned in (2.9), then:

Cx =


1 0 0 0 −ω2

r vrωr

0 0 −ωr vr 0 0

0 1 0 0 0 0


In this case, the system (2.29) is controllable either if vr or ωr are nonzero, and the rank of

the controllability matrix is 3. This implies that smooth stabilization is possible and linear

controllers can be used to achieve the stabilization for feasible trajectories, as long as they

do not come to stop.

Then, the trajectory tracking problem can be defined as follows:
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Definition 2.4 (Trajectory tracking). The trajectory tracking problem under the assumption

that the reference robot is not as rest (vr = ωr = 0) when t→∞ is to find a feedback control

law u = [v, ω]T , such that

lim
t→∞

(qr − q0) = 0,

with an initial posture q0(0).

2.3.5 Differentially-Driven WMR Control

In this section, a brief literature review for a trajectory tracking problem of a differentially-

driven WMR is presented. The control of WMR requires the ability of the controller to

overcome robot nonlinearities as well as the nonholonomic constraint, so that the robot

can be stabilized with sound robustness. During the past decades, many researchers work

on those challenges. Though numerous control algorithms are found in the literature, the

controller design is still challenging. Many control algorithms have been developed to solve

the WMR control problem. Lyapunov based method is presented in (Kanayama et al., 1990;

Samson, 1993; Blažič, 2011). Dynamic feedback linearization is applied in (d’Andréa Novel

et al., 1995; Oriolo et al., 2002; Chwa, 2010). Sliding mode control is presented in (Yang and

Kim, 1999; Koubaa et al., 2013). In (Oya et al., 2003) researchers proposed controllers by

converting the system into a chained form. MPC is proposed in (Lim et al., 2008; Klančar

and Škrjanc, 2007; Kuhne et al., 2004).

An important issue in the controllers mentioned above is that they are designed based on

the robot kinematics only. However, in case of high speed movements and/or heavy weights,

it becomes necessary to consider robot dynamics in addition to its kinematics (Martins

et al., 2008). The common concept of considering both dynamics and kinematics is the

backstepping technique. The steps of backstepping control are:

1. Design the velocity controller based on the kinematic system (as mentioned above);

2. Design a feedback velocity-following controller based on robot dynamics that the

robot’s actual velocities converge to the velocities generated by the first controller;

and
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3. Calculate the required torques (which will be the control signals) that drive the robot

to follow the desired trajectory.

Most of the dynamic controllers found in literature generate torques as a control signals

(Fierro and Lewis, 1995; Das and Kar, 2006). The drawback of these controllers is that

most of the commercial robots receive velocity commands as control signals. Therefore, in

(De La Cruz and Carelli, 2006; Martins et al., 2008; Taheri-Kalani and Khosrowjerdi, 2014)

they presented dynamic controllers with velocities considered as control inputs.

The main problem with the controllers based on dynamics and kinematics is their com-

plexity compared to those based on kinematics only. The complexity comes from considering

both kinematics and dynamics, and due to some unknown parameters and some paramet-

ric uncertainties such as lateral and longitudinal slipping. Some of these parameters are

unknown. So, the controller should be enhanced to estimate and identify these unknown

parameters. Fuzzy control, neural networks and adaptive control are efficient to estimate

these parameters and uncertainties and to solve the trajectory tracking problem.

From a review of the literature, the following results are summarized for the problem of

nonholnmomic WMR trajectory tracking and point stabilization:

� The robot model is nonlinear, multi-variable, and nonholonomic;

� A nonholonomic WMR is controllable and its equilibrium point can be made Lyapunov

stable, but cannot be made asymptotically stable by a smooth static state feedback

(Campion et al., 1991);

� In posture stabilization: it is either necessary to avoid the continuity requirement

and/or to use a time-varying control law (Campion et al., 1991);

� Nonholonomic WMRs can track a pre-defined trajectory and smooth stabilization

is possible as long as the desired reference linear and angular velocities vr or ωr are

nonzero (Oriolo et al., 2002);

� It has been shown that nonholonomic WMRs are not input-state linearizable. How-

ever, they are input-output linearizable (Yun and Yamamoto, 1992; Shojaei et al.,

2013);
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� The trajectory tracking problem is easier to solve and more important than posture

stabilization (Klančar and Škrjanc, 2007);

� Controller design based on kinematic model is efficient in case of low speeds;

� In case of heavy weights and higher speeds, dynamic model should be considered in

controller design; and

� Most of the WMRs use velocities commands as control input signals.

2.4 Model Predictive Control (MPC)

2.4.1 Overview

Recently, MPC, also known as receding horizon control (RHC), received a great attention

in the control community, due to its ability to solve multi-variable constrained problems.

Although it has been used for a long time in some industrial processes such as oil refinery,

biomedical industry, and chemical plants (Pan and Wang, 2012), MPC applied recently

with UAVs (Mahony et al., 2012; Abdolhosseini et al., 2013; Hafez et al., 2014) and WMRs

(Klančar and Škrjanc, 2007; Lim et al., 2008).

The importance of applying MPC in the control community comes from its ability to

handle the states and inputs constraints, and real-time predication, optimizing and correcting

the feedback. Compared to the conventional control methods that use pre-computed control

laws, MPC family is based on iterative, finite horizon optimization of a plant model to obtain

an estimate of its future behavior. An optimization problem based on a performance cost

function is then solved to choose an optimal sequence of controls from all feasible sequences.

The first control input of this optimal sequence is then applied to the feedback control loop,

and the whole procedure is repeated at each subsequent time step. Figure 2.4 shows the

basic structure of MPC. The main key principle of building an MPC controller can be

summarized as follows (Lazar, 2006):

� Calculate the predictions of the future system behavior based on the explicit use of

plant model;
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Figure 2.4: Basic structure of MPC (Camacho and Bordons, 2007)

� Optimize the objective function subject to constraints, results in the optimal sequence

of controls; and

� Use the receding horizon strategy, in which only the first element of the optimal se-

quence of controls is applied on-line.

In order to reduce the computational burden, MPC uses both a control horizon and a

prediction horizon. The control horizon determines the number of actuation signals to find.

On the other hand, the prediction horizon determines how far the behavior of the system is

predicted.

The MPC methodology involves solving an on-line open loop finite horizon optimal

control problem subject to input, state, and/or output constraints. As shown in Figure 2.5,

at a time t, the system model and the measured variables (outputs) are used to predict

the future behavior of the controlled plant over the prediction horizon Np. Usually, the

system’s future response is expected to return to a desired set point by following a reference

trajectory from the current states. The difference between the predicted output and the

reference trajectory is called predicted error. A finite horizon optimal control problem with

a performance index (usually be minimizing the predicted control input and the predicted

error) is solved on-line and an optimal control input u∗(t) over a control horizon Nc (usually

Nc ≤ Np), which minimizes the predicted error, is obtained. Only the first element of u∗(t)

is implemented to the plant. All the other elements are discarded. Then, at the next time
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Figure 2.5: MPC scheme

interval, the whole procedure is repeated.

The previous methodology can be mathematically formulated as follows: Consider the

following discrete-time linear system:

x(k + 1) = Ax(k) +Bu(k) (2.30)

where x(k) ∈ Rn and u(k) ∈ Rm, n is the number of states and m is the number of control

inputs. A ∈ Rn×n, and B ∈ Rn×m. Then, at each time interval k, MPC can be formulated

as the following optimization problem

min
u(·)

J(Np,Nc)(xk) (2.31)

subject to

x(k + i|k) = Ax(k + i− 1|k) +Bu(k + i− 1|k),

x(k + i|k) ∈ X ,

u(k + i|k) ∈ U

(2.32)

The performance index J can be defined as:

J(Np,Nc)(xk) =xT (k +Np)Px(k +Np) +

Np−1∑
i=1

xT (k + i|k)Qx(k + i|k)

+
Nc∑
i=0

uT (k + i|k)Ru(k + i|k)

(2.33)

23



where P ∈ Rn×n, Q ∈ Rn×n and R ∈ Rm×m are the three positive semi-definite weighting

matrices with P > 0, Q > 0 and R > 0. The weighting coefficients of P , Q, and R reflecting

the relative importance of the final state error cost, the intermediate state error cost, and

the control input error cost, respectively. X ⊂ Rn are the state constraints. U ⊂ Rm are

the input constraints. Usually, U = {u ∈ Rm : umin ≤ u ≤ umax}. umin and umax are

known constants in Rm. The first term on the right hand side of equation (2.33) is called

the terminal state penalty, the second term is called the state penalty and the last term is

called the control penalty.

In nonlinear systems, MPC concept is still the same. Consider the following continuous

time nonlinear system:

ẋ(t) = f(x(t), u(t)) (2.34)

where x(t) ∈ Rn and u(t) ∈ Rm, n is the number of states and m is the number of control

inputs. As in the linear case, MPC can be formulated as the following optimization problem

(Xie, 2007):

min
u(·)

J(x(t), u(·)) (2.35)

subject to

ẋ(t) = f(x(t), u(t)),

xmin ≤ x(s;x(t), t) ≤ xmax, t ≤ s ≤ t+ Th,

umin ≤ u(s) ≤ umax, t ≤ s ≤ t+ Th

(2.36)

The performance index J can be defined as:

JTh(x(t), u(·)) =

t+Th∫
t

(‖x̄(s;x(t), t)‖2
Q + ‖u(s)‖2

R)ds+ ‖x̄(t+ Th;x(t), t)‖2
P (2.37)

where Th represent both the prediction and the control horizons.

The advantages of MPC can be summarized as (Camacho and Bordons, 2007; Hafez,

2014):

� It can deal with multi-variable and nonlinear systems;

� It is very useful when future references are known;
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� Higher efficiency based on the minimization of the cost function;

� It allows operation within constraints; and

� It can handle multiple systems easily by merging them into the objective function;

However, the main disadvantages of MPC are (Hafez, 2014):

� As the system complexity increases, the on-line calculations of the control law become

less feasible;

� Its computational time is high especially in real-time applications;

� In case of closed-loop systems, it is difficult to predict the controller performance; and

� Theoretical results regarding stability and robustness are not easily applied to general

cases.

2.4.2 WMRs Control Based on MPC

Although MPC is not a new control approach, but a few works deal with control of WMRs

by means of MPC are found in the literature. MPC can be classified into nonlinear model

predictive control (NMPC) and LMPC.

van Essen and Nijmeijer (2001) presented an NMPC with time varying weights which

is applied for both trajectory tracking and posture stabilization, simulation results are pre-

sented. Gu and Hu (2004) used a stabilizing NMPC to achieve simultaneous tracking a

pre-defined trajectory. Stability is addressed in this work by forcing the terminal state to

move into a terminal state region through adding a stability term to the cost function.

Simulation results are presented. Seyr and Jakubek (2005) presented an NMPC algorithm

considering side slip and tangential wheel slip. Predicted future position errors are minimized

by numerical computation of an optimal sequence of control inputs using pre-specified shape

functions based on a Gauss-Newton algorithm. Simulation results are presented. Kühne

et al. (2005) presented both NMPC and LMPC approaches for trajectory tracking of a

differentially-driven WMR. The results show that the computational effort of NMPC is
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much higher than in the case of LMPC. Xie and Fierro (2008) developed a first-state con-

tractive (FSC) MPC for trajectory tracking and point stabilization. Stability is guaranteed

by adding a first-state contractive constraint at the beginning of the prediction horizon. Sim-

ulation results are presented. Lim et al. (2008) proposed an NMPC approach to be applied

for trajectory tracking and obstacle avoidance of a single WMR. A nonlinear-programming

problem is solved on-line, and simulation results were presented. Kanjanawanishkul et al.

(2009) also presented an NMPC approach for trajectory tracking of a differentially-driven

WMR and experimental results are presented. Ma et al. (2012) presented an NMPC ap-

proach based on both dynamics and kinematics. Stability is guaranteed by adding a terminal

state penalty to the cost function and constraining the terminal state to a terminal region.

The terminal region and its corresponding local controller are developed based on T-S fuzzy

model. Simulation results are presented.

As noticed above, applying NMPC in real-time application is very few. In NMPC, a

nonlinear programming problem to be solved on-line, which is usually non-convex. As a

result, the computational time increases. Therefore, the main demerit of using NMPC is

that the computational burden is much higher. Consequently, applying NMPC to a single

WMR or a team of robots is limited in real-time applications.

To avoid the computational efforts problem associated with NMPC, LMPC approach is

proposed. Kuhne et al. (2004) and Lages and Alves (2006) presented a linear time-varying

(LTV) description of the robot model based on linearizing the error dynamics between the

reference trajectory and the actual one. The states of the linearized system are the errors in

the position in x and y directions and the error in the orientation angle φ. The control law

is derived by the optimization of a quadratic cost function. Simulation and experimental re-

sults are presented. Jiang et al. (2005) presented a combination between LMPC and a fuzzy

control. LMPC is used to predict the position and the orientation of the robot and the fuzzy

control is used to deal with the nonlinear characteristics of the system. Experimental results

are presented. In (Klančar and Škrjanc, 2007), LMPC is applied for single WMR trajectory

tracking problem based on linearizing the error dynamics model between the reference tra-

jectory and the actual one. The objective function is to minimize the difference between the

future trajectory-following errors of the robot and the reference trajectory. The control law
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is explicitly obtained without using any optimization solver, while the bounded velocity and

acceleration constraints are considered in the low-level controller implemented in the robot.

Experimental results showed the effectiveness of the proposed control law compared to a

state-tracking controller presented in (Kanayama et al., 1990). In (Maurovic et al., 2011),

the authors presented an explicit LMPC scheme, where the solution of the minimization

problem can be calculated off-line and expressed as a piecewise affine function of the current

state of the robot, thus avoiding the need for on-line minimization. By obtaining such opti-

mal controller, which has a form of a look-up table, there is no need for expensive and large

computational infrastructure. Experimental results are presented. However, since all the

computations are calculated off-line, then this method cannot guarantee that the robot can

continue tracking the desired trajectory in case of sudden situations such as fault occurrence

and facing any obstacles.

As noticed above, using LMPC was based on an LTV model, meaning that, at each

sample, model states are changed. As a result, applying LMPC is possible for trajectory

tracking of WMRs. However, with increasing the number of robots, the computational

effort will be a great challenge.

2.5 Cooperative Control of WMRs

Cooperative multi-agent system is composed of agents that can operate together to perform

some global task. In this sense, such a control issue is referred as cooperative control, which

highlights the cooperation function of the agents during operation. Formation control of

multiple agents can be considered as a special cooperative operation. The objective of

formation is to keep certain shape with constant relative distances between the agents during

mission execution. As a result, shape and position are the two important characteristics of

a formation configuration. The following definition describes the meaning of formation.

Definition 2.5 (Formation). A formation is a network of agents interconnected via their

controller specifications that dictate the relationship each agent must maintain with respect to

its neighbors. The interconnections between agents are modeled as edges in a directed acyclic

graph, labeled by a given relationship (Tanner et al., 2004).
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A group of robots can take different formation shapes, the most common shapes are

line, triangle, diamond, wedge, etc. Besides the shape, each robot in the team must have a

specific position in the formation. There are three major techniques for formation position

as mentioned in (Balch and Arkin, 1998), a unit-center-referenced, a leader referenced, and

a neighbor-referenced as shown in Figure 2.6.

In the unit-centered-referenced position, each robot maintains its own position relative

to a center point. This center is the average of the x and y positions of all the robots involved

in the formation. In the leader-reference position, each robot (except the leader) determines

its formation position relative to the lead robot. In the neighbor-referenced position, each

robot maintain its desired position with respect to one other predetermined robot.

2.5.1 Cooperative Control Strategies

Various approaches and strategies have been proposed for the formation control. The most

common approaches are virtual structure, behavior-based, leader-follower, graph-based, and

artificial potential approaches (see Zhang and Mehrjerdi, 2013, and the references therein).

Figure 2.7 illustrates the block diagram for these strategies.

The virtual structure approach is proposed by Lewis and Tan (1997), and studied in

(Beard et al., 2001; Egerstedt and Hu, 2001; Ren and Beard, 2004; Ghommam et al., 2010;

Liu and Jia, 2012). The main idea is that the entire formation is treated as a single entity as

shown in Figure 2.8, and the desired motion is assigned to the virtual structure that traces

trajectories for each member in the formation to follow. The advantages of this approach

are the simplicity since it is easy to prescribe the coordinated behavior of the whole team.

(a) Unit-center-referenced (b) Leader-referenced (c) Neighbor-referenced

Figure 2.6: Formation position determination by different referencing techniques
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Figure 2.7: Formation strategies for multiple robots

Moreover, during maneuvers, it is easy to maintain the formation and the rigid geometric

relationships among the robots. However, its main disadvantage is the centralization that

needs more communication loads.

Inspired by formation behaviors in nature like schooling and flocking, the behavior-

based formation control approach is proposed. In this approach, several desired behaviors

are prescribed for each vehicle and the final control is derived from a weighting of the relative

importance of each behavior. Possible behaviors can be goal seeking, obstacles and collision

avoidance, and formation keeping, as shown in Figure 2.9. The advantage of this approach

are the decentralization and it can be implemented with less communications. However, it is

difficult to do mathematical analysis for robustness and stability. Behavior-based approach

is studied in (Sugihara and Suzuki, 1996; Lawton and Beard, 2002; Lawton et al., 2003;

Figure 2.8: Virtual structure approach
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Figure 2.9: Behavior-based approach

Takahashi et al., 2004; Antonelli et al., 2009).

In the leader-follower method (De La Cruz and Carelli, 2006; Sira-Ramı́rez and Castro-

Linares, 2010; Klančar et al., 2011), one of the robots is assigned as a leader, while other

robots are followers. During motion, only the leader’s motion and the desired relative posi-

tions between the leader and the followers are required. Once the motion of leader is given,

local control law on each follower can achieve the desired relative position of the follower

with respect to the leader. Thereby the desired formation of the entire system is achieved

and maintained. Consequently, the formation control problem can be viewed as a natural

extension of the traditional single WMR trajectory tracking problem (Li et al., 2004). Based

on this fact, many approaches commonly used in trajectory tracking of WMR are applied

to design a control law for the leader-follower approach. In addition, a few works present

both the path planning and formation control problems together (Garrido et al., 2011; Saska

et al., 2014). Figure 2.10 shows a scheme of the leader-follower approach where the follower

should follow the leader maintaining the desired formation (ld - φd) where ld is the desired

formation distance and φd represent the desired formation angle.

The graph-based approach was proposed by Desai et al. (1998) and studied in (Fax and

Murray, 2004; Jin and Murray, 2004; Dong and Guo, 2007). In this approach, formation can

be described by graphs, and the main purpose of these graphs are to give a mathematical

representation of the structure of the robots network. Each robot treated as a vertex, and

the edges that connect the vertices represent the information flow from one vertex to an-

other. The graph represents the allowed information flow between the agents. Graph-based
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Figure 2.10: Leader-follower approach

approach have many advantages such as decentralization, and the team can keep a suitable

behavior even in the presence of varying communication topology. However, the main dis-

advantage is that agents can only get information from their neighbors.

Formation control based on artificial potential field is studied in (Ogren et al., 2004; Ge

and Fua, 2005; Masoud, 2007; Do, 2008). The main idea is to use the artificial potentials

to define the interaction control forces between neighboring agents, and designed to enforce

the inter-agent spacing. The main advantages of this approach that it can be extended to

use in collision avoidance of agents. Nevertheless, it suffers instability due to the delays in

the communication channels.

2.5.2 Cooperative Control Classes

The cooperation between groups of robots requires sharing information between team mem-

bers via a good communication network, allowing them to act as one unit, and execute the

assigned mission. Each robot can make its decision. However, having a cooperative decision

algorithm allows efficient mission execution, and increases the ability of the team to tolerate

any fault may occur to one more members of the team of robots.

Classes of cooperative control are defined as different control techniques used in control-

ling a group of multiple robots (Hafez, 2014). From this point of view, two main classes

are considered; a centralized control and a distributed/decentralized control (Zhang and

31



Mehrjerdi, 2013).

In the centralized control (De La Cruz and Carelli, 2006; Mehrjerdi et al., 2011), a group

of cooperative robots receives the control commands from a powerful core unit. This unit

can be either a robot in the formation with large computing capability, or a ground control

station equipped by large computing and communication equipment. The core unit can com-

municate with the robots in the team. It receives information from all members, optimize

vehicle coordination, monitor mission accomplishment, and accommodate individual vehicle

faults. Centralized control is characterized by the presence of global information, centralized

organization structure, and high computational performance. However, centralized approach

is less robust, high cost, and highly sensitive to failure. Moreover, with increasing the num-

ber of robots, centralized control become inefficient due to the communication limits. As a

result, applying centralized control is limited in real-time missions.

To solve these problems, decentralized control was developed; each robot can communi-

cate and share information with the other team members, and can only achieve its specified

task as part of the global mission. Decentralized control characterized by local information

and decentralized organization structure. It has many advantages such as scalability, robust-

ness to individual faults, less communication load and computational power of the robots’

controllers. However, it lacks the good performance of the centralized approach. Figure 2.11

illustrates the difference between centralized and decentralized control approaches.

2.5.3 Cooperative Control of WMRs Based on MPC

Most recently, and due its ability to handle constraints and optimization, MPC has paid

more attentions in the field of formation control of multiple robots. When applying MPC

(a) Centralized control (b) Decntralized control

Figure 2.11: Comparison between centralized and decentralized control approaches
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to a team of robots, two approaches are considered, a centralized MPC and a decentral-

ized/distributed MPC.

In the centralized MPC, a group of cooperative robots receives the control commands

from one centralized decision maker; it may be either a robot in the formation or a ground

station (as mentioned in Section 2.5.2). A single cost function established for the whole

formation, the complete system is modeled, and all the control inputs are computed in one

optimization problem for the entire robots system. With this strategy, the size of the state

variables depends typically on the number of robots. The control horizon becomes larger,

and the number of design variables, of which the system has to find their value, increases

rapidly. Although short prediction horizons are desirable from a computational point of

view, long prediction horizons are required for closed-loop stability and good performance.

Therefore, the main disadvantage of using a centralized MPC is the huge computational

effort due to the required on-line optimization. As a result, applying centralized MPC is so

limited in real-time missions.

Decentralized/distributed MPC is proposed to avoid the computational effort problem of

the centralized MPC (Dunbar and Murray, 2006; Chen et al., 2010; Wang et al., 2011). The

idea is the same as the classical decentralized control (mentioned in Section 2.5.2) but with

increasing the overall performance, based on applying MPC to each robot in the team. Each

robot has the ability to make its own decision, taking into account its objective in addition

to the objective of the whole team. Decentralized/distributed MPC has the advantage of

combining the merits of decentralized control and MPC.

2.6 Fault Tolerant Cooperative Control (FTCC)

WMRs are designed to achieve their missions with higher efficiency, and with more safety

and reliability. To achieve this objective, FTCC algorithms are designed to maintain safe

operation and tolerate the effect of components malfunctions. Since this section is related

to FTCC, then some basic definitions should be clarified.

Definition 2.6 (Fault). A fault is an unpermitted deviation of at least one characteristic

property (feature) of the system from the acceptable, usual, standard condition (Isermann,
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2006).

Based on this definition, a fault corresponds to an abnormal behavior, in which it may

not affect the overall function of the robot, but may eventually lead to failure. A fault may

be small or hidden, and therefore undetectable. Faults can be classified into actuator, sensor,

and system faults.

Actuator faults are usually characterized as the deviation between the expected actuator

output and the actual one. They may result from aging or worn-out of actuator components,

which leads to a bias or loss of effectiveness of the actuator. In addition, stuck of the actuator

elements at a fixed value is one of the reasons of actuator faults. If the actuator stuck, any

change in the actuator input will not cause any response at the actuator output. As a result,

the control system of this actuator can be considered as an open-loop control system. Since

the actuator is the component that carry out the control actions in a control system, faults

in the actuator will have significant impact to the performance of the entire system.

Sensor faults refer to those situations that result in incorrect readings of the sensors.

They may be due to aging, loss of effectiveness in the sensory elements, or unknown bias

of the sensor output resulting from poor calibration or drift from their originally calibrated

operating conditions, Sensor faults may also happened due to unexpected changes in the

dynamic characteristics of the sensory elements, or broken connections in the sensory circuits.

Since the signal from sensors often carry the most crucial information in any feedback control

system, the state of the health of sensors is extremely important for a reliable operation of

the controlled system.

From the control point of view, sensor is considered as a passive element in the control

system. Therefore, using multiple sensors is one of the common strategies to increase the

reliability of the sensory measurements. Unlike sensor, actuator is an active element in the

control system, it carry out the control action to the system. Therefore, it is difficult to

use multiple actuators for the same control signal. Consequently, this makes the design of

FTCS more difficult.

Plant or system faults are caused by changes in the plant parameters or its dynamic

characteristics due to aging or worn-out of its components. Therefore, plant/system faults

are generally described as large changes in system parameters.

34



Definition 2.7 (Failure). A failure is a permanent interruption of a system’s ability to

perform a required function under specified operating conditions (Isermann, 2006).

Based on the above definition, a failure is an event that terminates the functioning of a

unit in the system. So, an actuator is declared failed when it cannot be controlled any more.

Most Recently, FTCC has received researchers’ attention. In addition to maintaining

a formation shape during task executions under normal conditions, it would be great that

robots possess a fault-tolerance capability in the presence of faults. Thus, the healthy robots

can react correspondingly to eliminate the negative effect on the mission completion. Oth-

erwise, the formation will be broken while the mission accomplishment becomes impossible

(Chamseddine et al., 2012).

FTCC can be achieved by appropriately re-assigning the task and re-coordinating the

motion. Two cases need to be taken into account within the FTCC scheme:

� The robot cannot accomplish its assigned task in the presence of a severe fault. Thus,

the mission should be re-assigned to the remaining healthy robots. As a result, the

formation shape should be reconfigured according to the new assignment; and

� The robot can still complete the mission with degraded performance in the presence

of faults. In this case, the other healthy robots will reconfigure their controllers con-

sidering the capability of the faulty robot.

During a formation mission, it is important for the robots to independently detect and isolate

faults. Therefore, each robot should have its FDD unit which aims to detect the abnormal

behaviors due to a component fault, determine the fault type and the exact location of the

failed component, and identify the severity of the fault (Chamseddine et al., 2014). Then,

the robot controller can be reconfigured to accommodate the fault based on the up-to-date

information obtained from the FDD unit.

The existing FDD approaches can be classified into model-based and model-free (data-

based) approaches. Since most of control techniques are model-based, then model-based

approaches are the most common. The general idea of the model-based FDD approach is

that when a component of a system fails, the system behavior will change from the nominal

case. By measuring relevant signals on the system, it is possible to observe this behavior
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change and thereby infer that a fault has occurred. If the specific component that has failed

should be identified, it is necessary to have a good description of the system such that the

faulty behavior can be related to the component.

FDD and fault-tolerant control (FTC) techniques have been extensively investigated

over the last three decades (see Zhang and Jiang, 2008; Yu and Jiang, 2015, and the references

therein). Several interesting results have been presented for a WMR. In (Dixon et al., 2001),

the kinematic and dynamic models of a WMR in the event of faults such as a change in

wheel radius, or general kinematic disturbances induced by slipping and skidding faults is

presented. A torque filtering technique is applied to develop a prediction error based fault

detection signal. In (Duan et al., 2006), an adaptive particle filter is developed to detect

and diagnose sensor faults for WMR, and experimental results are presented. Roumeliotis

et al. (1998) developed a bank of Kalman filters for FDD purposes. However, FTC design

is not addressed in this work. Further references related to FDD and FTC of WMRs under

sensor and actuator faults can be found in (Duan et al., 2005).

FTCC has not yet been fully investigated in the literature. In (Mead et al., 2009), the

authors present an FTCC strategy under actuator faults of terrestrial robots. In this study,

the formation recovery according to fault occurrence is achieved through an auction-based

algorithm. In (Chamseddine et al., 2012), the FTCC problem for a team of UAVs are

considered. The formation recovery algorithm is proposed based on a trajectory re-planning

technique. In the fault-free case, a differential flatness method is applied for each vehicle

to plan its trajectory. Once an actuator fault occurs, by virtue of a centralized manner, a

formation supervisor commands all the UAVs to re-plan their trajectories within the physical

constraints of the faulty vehicle. In (Thumati et al., 2012), the FTCC of a team WMRs is

investigated. Faults are counteracted by adding an extra term to the basic control law, which

is a function of the fault dynamics, and recovered by a neural network. This work focuses

on determining how to tolerate the individual fault of the team members; nevertheless the

formation reconfiguration is omitted. In (Xu et al., 2014), an adaptive FTC algorithm for

a team of UAVs subject to permanent and intermittent actuator faults is presented. The

fault is modeled as a disturbance signal. The fault is estimated by an observer and therefore

accommodated by a compensator to be added into the normal controller. However, the
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formation reconfiguration is not addressed. In (Yang et al., 2015), if an actuator fault occurs

in a team of UAVs, then the other healthy members start reconfiguring the formation to

reach the target point. In (Yu et al., 2016), FTCC scheme is considered for multiple UAVs.

Feasible references in response to actuator faults can be generated by considering the health

status of the team. While the FTCC gains can converge within finite time to facilitate

the fault accommodation by applying the auxiliary integrated regressor matrix and vector

method. This work can be seen as a motion re-coordination technique to keep the formation

in presence of actuator fault.

From the existing literature, the following points are summarized for the FDD and

FTCC problems of WMRs:

� Most of FDD algorithms developed for WMRs are mainly focus on sensor faults, not

actuator faults.

� The existing FTCC studies mainly focus on the communication faults (Izadi et al.,

2013; Yang et al., 2014), the obstacle avoidance problem to avoid the collision of the

faulty robot (Lie and Go, 2011; Saber and Murray, 2003), and FTC of the individual

team members (Thumati et al., 2012);

� Very few works investigate the case of severe actuator fault occurrence and deter-

mine how to accommodate the fault effect on the whole formation configuration (Yang

et al., 2015). This case has two main challenges: how to generate the new formation

configuration, and how to reconfigure the formation to the new one;

� Many studies focus on motion re-coordination (Chamseddine et al., 2012; Yu et al.,

2016); and

� Most of the proposed approaches have not yet been validated in the real-time experi-

ments.

During formation reconfiguration, sudden changes have occurred to the robots’ control in-

puts. If these inputs are not bounded, the robots behavior become unstable, the formation

may be broken, the and the robots may collide. Therefore, recently formation reconfiguration

is formulated as an optimal control problem considering dynamic and algebraic constraints,
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hence intelligence optimization methods can be utilized to obtain the optimal solution (Duan

et al., 2013). In (Furukawa et al., 2003) a time optimal control of multiple WMRs is pre-

sented based on the CPTD. Since time is assumed to be fixed in this work, it is not always

possible to obtain the optimal solution within the given time. In (Xiong et al., 2007), an

improved genetic algorithm (GA) for formation reconfiguration of multiple UAVs is devel-

oped, while time is an optimization parameter to be minimized. In (Duan et al., 2013),

an approach combining PSO and GA is exploited for formation reconfiguration of multiple

UAVs, within the control inputs, the collision avoidance and communications constraints.

it is noted that all the optimal formation reconfiguration approaches in the above mentioned

references have not yet validated in the real-time experiments.

2.7 Experimental Setup

The development of control algorithms for trajectory tracking and cooperative control of

WMRs are increasing rapidly in the last decades. The simulations and real-time imple-

mentation validate the ability of the proposed control algorithms to achieve the desired

performance, and guarantee the stability, safety and reliability.

In order to validate the proposed control algorithms presented in this thesis, these control

strategies are implemented on a team of WMRs. This work is performed in the Networked

Autonomous Vehicles Laboratory (NAV Lab) in the Department of Mechanical and Indus-

trial Engineering, Concordia University. The experimental testbed includes:

� Quanser ground vehicles (QGV) with its control architecture;

� A ground station PC with QuaRC software used as a high level controller and wireless

network; and

� The vision system.

Since the experiments are taking place indoor in the absence of GPS, so the high-level

controller implemented on a ground station PC receives the states of the QGVs from the

OptiTrack camera system. The high-level controller uses this information to calculate the

desired pulse width modulation (PWM) to be sent to the QGVs’ driving motors. Figure
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2.12 shows the setup of the laboratory.

In all numerical simulations and experimental testing cases, the units used are m for

position, deg for orientation, m/s for linear velocity, and rad/s for angular velocity. The

desktop PC used in numerical simulations has a processor Intel(R) Core(TM) i7-3770 CPU

@ 3.40 GHz, 4 GB RAM, and the operating system is Windows 7 Enterprise 64-bit. All the

videos of the experiments performed in this thesis can be found in the NAV Lab YouTube

Channel (NAV Laboratory, 2016).

2.7.1 QGV Description and its Control System Architecture

The differentially-driven WMR available in the NAV Lab is the Quanser QGV as shown in

Figure 2.13. Quanser QGV is a two wheeled differentially-driven robot with a four degrees

of freedom robotic manipulator. The front wheels of radius r = 7.8 cm are active and

independent in performing driving and steering of the mobile robot. They are mounted on

an axle of length h = 40 cm. The rear wheel is a dummy one and added at 30 cm from the

front axle to improve robot’s stability.

The QGV control module is comprised of a data acquisition board (HiQ DAQ) and

an embedded Gumstix computer where QuaRC is the Quanser’s real-time control software.

Together with the Gumstix embedded computer, the HiQ controls the vehicle by reading

Figure 2.12: Laboratory setup
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on-board sensors and sending motor commands. The motor speed controller is connected

to two PWM servo outputs on the HiQ. The on-board Gumstix computer runs QuaRC,

which allows rapidly developing and deploying controllers designed in MATLAB/Simulink

environment for QGV real-time control. Runtime sensors measurement, data logging, and

parameter tuning are supported between the ground host computer and the QGV (Quanser,

Inc., 2012).

2.7.2 Ground Station

The ground station consists of a PC with the QuaRC and MATLAB/Simulink Softwares.

The PC used to communicate with the robots and the sensors. Through a wireless network,

the ground station communicates with the WMRs, where the PC works as a high-level

controller, it generates the optimum control inputs and convert it to the desired PWM,

then send it via the wireless link to the low-level controllers implemented on the robots (HiQ

DAQ and the Gumstix on-board computer). The PC also connected to the OptiTrack camera

system through a USB cables to collect the robots’ motion states during the experiments.

The desktop PC used in the experiments has a processor Intel(R) Core(TM) i5-5460 CPU

@ 3.20 GHz, 8 GB RAM, and the operating system is Windows 7 Enterprise 64-bit.

2.7.3 Vision System

Twenty-four V100:R2 cameras which offer integrated image capture, processing, and motion

tracking in a compact package constitute the OptiTrack’s optical motion tracking system.

Figure 2.13: Quanser QGV with the communication module
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The capability of customizing cameras with user-changeable M12 lenses and OptiTrack’s

exclusive Filter Switcher technology cameras has let V100:R2 cameras deliver one of the

world’s premier optical tracking value propositions. The V100:R2 is capable of capturing

fast moving objects with its global shutter imager and 100 FPS capture speed. By max-

imizing its 640 × 480 VGA resolution through advanced image processing algorithms, the

V100:R2 can also track markers down to sub-millimeter movements with repeatable accuracy

(NaturalPoint, Inc., 2016). The OptiTrack system is connected to the ground station via

USB cables. Figure 2.14 shows the V100:R2 camera.

Figure 2.14: V100:R2 camera used for measuring robots’ states (NaturalPoint, Inc., 2016)
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Chapter 3

Cooperative Control and Obstacle

Avoidance of Multiple WMRs

This chapter explains the development of a control algorithm based on a combination of

dynamic feedback linearization and LMPC. This algorithm is able to solve the trajectory

tracking problem as well as the cooperative control of a team of WMRs. As mentioned

in Section 2.5.1, applying an NMPC with WMRs has a problem of computational time

in real-time implementation. Nevertheless, the applied LMPC in the literature was time-

varying, results in almost solving the computational time problem in a single WMR case,

but with increasing the number of robots, the computational burden problem still exists.

Using feedback linearization, the nonlinearity problem is solved and robot model becomes

linear time invariant (LTI) with new control inputs. On the other hand, LMPC is applied

to the linearized model to perform the trajectory tracking as well as the entire formation

mission. The main advantage is that the robot model becomes LTI, so applying MPC with

multiple robots becomes possible and the computational time problem can be overcame.

This chapter is organized as follows. First, feedback linearization of WMRs and devel-

oping the linearized model of the robot is presented. Next, the proposed control algorithm

is applied to achieve the trajectory tracking of a single WMR, and a stability analysis of

the control algorithm is illustrated. Following, formation control of multiple WMRs based

on the proposed algorithm is applied in a distributed manner. Then, an obstacle avoidance

algorithm is added to the proposed control algorithm. In addition, a cooperative control of
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UAVs and WMRs for forest monitoring and fire detection is presented to emphasize the

effectiveness of the proposed formation control algorithm in such a real life application. Fi-

nally, to validate the effectiveness of the proposed algorithms, simulation and experimental

results are presented.

3.1 Feedback Linearization of WMRs

Feedback linearization is a common approach used with nonlinear systems. The concept is

to make use of algebraic transformation of nonlinear system dynamics to an equivalent linear

system, so that linear control laws can be applied to nonlinear systems. Generally speaking,

there are two types of linearization (Tzafestas, 2014):

� Input-state linearization: In this case, the required is to find a state transformation

z = z(x) and an input/transformation u = u(x, υ), where υ is the new manipulable

input. The purpose of this transformation is to bring the system ẋ = f(x, u) to the

linear system ż = Az +Bυ; and

� Input-output linearization: in which the basic idea is if one has a system ẋ = f(x, u)

with output y = h(x), then the basic feature of this system is that the output y is con-

nected to u only indirectly through x. Therefore, to achieve input-output linearization,

one must find a direct relationship between the input and the output of the system.

This may be done by successive differentiation of the output until all inputs appear in

the resulting derivative equations.

Feedback linearization was used for solving the trajectory tracking problem of WMRs. In

(Oriolo et al., 2002), feedback linearization is applied to the kinematic model of the robot,

while a proportional derivative (PD) control law is used to solve the trajectory tracking

problem. In (Shojaei et al., 2009), a combination of adaptive control and feedback lineariza-

tion are applied for a single robot trajectory tracking. In (d’Andréa Novel et al., 1995), a

trajectory tracking problem of different types of WMRs solved by means of feedback lin-

earization based on static and dynamic state feedback laws. In (Chwa, 2010), the author

proposed a tracking controller using a backstepping-like feedback linearization. They applied
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the feedback linearization in for both the kinematic and the dynamic models in a cascaded

manner.

3.1.1 Input-State Linearization of WMRs

As mentioned in Section 2.3.2, differentially-driven WMR kinematic model presented in

(2.4) belongs to the driftless affine systems that described by the following form:

q̇ =
m∑
i=1

gi(q)ui (3.1)

Theorem 3.1. System (3.1) is not input-state linearizable by a smooth state feedback.

Proof. If the system is input state linearizable, then it has to satisfy the following two

conditions: the accessibility rank condition and the involutivity condition (Nijmeijer and der

Schaft, 1990). As mentioned in Section 2.3.2, the system (3.1) satisfied the accessibility rank

condition. Now, we will show that this system does not satisfy the involutivity condition.

As mentioned in Section 2.3.2, differentially-driven WMRs have two vector fields g1 and

g2 where:

g1 =


cosφ

sinφ

0

 , g2 =


0

0

1


and it results the following two-dimensional distribution:

∆ = {g1, g2} =




cosφ

sinφ

0

 ,


0

0

1




This distribution is nonsingular because for any (x, y, φ), the resulting vector space ∆(x, y, φ)

is two-dimensional. The involutivity of ∆ can be found by finding the Lie bracket of g1 and

g2 as mentioned in (2.13), and the result is the matrix

∆ =


cosφ 0 sinφ

sinφ 0 − cosφ

0 1 0
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which has det ∆ = 1 6= 0 and rank = 3 ≥ 2. Then, the third vector field (results from the

Lie bracket) is linearly independent of g1 and g2. Consequently the distribution ∆ is not

involutive.

3.1.2 Input-Output Linearization of WMRs

Although the differentially-driven WMR is not input-state linearizable, it may be input-

output linearizable and decoupled depending on the choice of the outputs. Two types of

feedback are commonly employed for the purpose of linearization: static state feedback and

dynamic state feedback. The dynamic state feedback is more general and includes the static

state feedback as a special case. Consequently, the conditions for the dynamic state feedback

are more complicated (Yun and Yamamoto, 1992).

For a differentially-driven WMRs, they are input-output linearizable with any static

feedback of the form:

ϕ = α(q) + β(q)u (3.2)

However, for exact linearization, the input-output linearization may be achieved by using a

dynamic feedback linearization (Yun and Yamamoto, 1992; Oriolo et al., 2002).

For a driftless nonlinear system (2.4) which can be re-written in the following compact

form:

q̇ = S(q)ϕ q ∈ Rε, ϕ ∈ Rm (3.3)

the input-output feedback linearization can be achieved by using a dynamic feedback com-

pensator of the form (Oriolo et al., 2002):

ξ̇ = a(q, ξ) + b(q, ξ)u

ϕ = c(q, ξ) + d(q, ξ)u
(3.4)

with state ξ ∈ Rn and input u ∈ Rm. Therefore the system (3.3) and (3.4) is equivalent to

a linear system under a state transformation z = T (q, ξ).

The first step is the definition of an output vector δ, with δ ∈ Rm. Since a differentially-

driven WMR has two inputs v and ω, it is natural to select an output equation with its

two independent components, the coordinates of point q as δ = [x, y]T . Following the steps
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presented in (Oriolo et al., 2002), and start by differentiating with respect to time yields:

δ̇ =

ẋ
ẏ

 =

cosφ 0

sinφ 0

v
ω

 (3.5)

Equation (3.5) shows that only v affects δ̇, while the angular velocity ω cannot be recov-

ered from this first-order differential information. To proceed, adding an integrator ξ on the

linear velocity input, thus

v = ξ, ξ̇ = a, (3.6)

where a is the linear acceleration of the WMR. Differentiating again, one obtains

δ̈ = ξ̇

cosφ

sinφ

+ ξφ̇

− sinφ

cosφ

 =

cosφ −ξ sinφ

sinφ ξ cosφ

a
ω

 (3.7)

Assuming that the matrix multiplying the modified input (a,ω) is nonsingular if ξ 6= 0,

then it is obtained that: a
ω

 =

cosφ −ξ sinφ

sinφ ξ cosφ

−1

δ̈ (3.8)

Defining δ̈ as

δ̈ =

δ̈1

δ̈2

 =

u1

u2

 = u (3.9)

where u is the new control input vector. Then, equation (3.8) can be written as:a
ω

 =
1

ξ

ξ cosφ ξ sinφ

− sinφ cosφ

u1

u2

 (3.10)

The resulting dynamic compensator is:

ξ̇ = u1 cosφ+ u2 sinφ

v = ξ

ω =
u2 cosφ− u1 sinφ

ξ

(3.11)
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Then, the new coordinates are:

z1 = x

z2 = y

z3 = ẋ = ξ cosφ

z4 = ẏ = ξ sinφ

(3.12)

The above equation can be rewritten as:

z̈1 = u1

z̈2 = u2

(3.13)

Representing the new linearized model as a state space system as ż = Adz + Bdu, then

the equivalent linear model is:

ż =


ż1

ż2

ż3

ż4

 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0




z1

z2

z3

z4

+


0 0

0 0

1 0

0 1


u1

u2

 (3.14)

where z ∈ Rnl and u ∈ Rml are the vectors of the robot’s states and control inputs, respec-

tively. Ad ∈ Rnl × Rnl , and Bd ∈ Rnl × Rml are the state and input matrices, respectively.

nl and ml are the number of states and control inputs, respectively.

The dynamic compensator (3.11) has a singularity at v = 0. This singularity in the

dynamic extension process is structural for nonholonomic robots (De Luca and Benedetto,

1993). This singularity can be avoided when designing the control laws on the linear model.

Next, a sufficient conditions for avoiding the singularity are presented based on Theorem 1

in (Oriolo et al., 2002).

Theorem 3.2. Let a nonholonmic robot (2.4) and (3.3) is input-output linearizable by means

of a dynamic feedback linearization. Then a dynamic compensator (3.11) is applied. Let the

nonholonomic robot track a reference trajectory xr(t), yr(t), then the tracking error compo-

nents are:

xe = xr − x, ye = yr − y
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Let, λi1,λi2 with i = {1, 2}, be the eigenvalues of the closed-loop dynamics of the error

components. Assume that λi1 < λi2 < 0 and λi2 is sufficiently small. Then if

min
t≥0

∥∥∥∥∥∥
ẋr(t)
ẏr(t)

∥∥∥∥∥∥ >
∥∥∥∥∥∥
ẋe(0)

ẏe(0)

∥∥∥∥∥∥ (3.15)

with ẋe(0) 6= 0 and ẏe(0) 6= 0, then the singularity ξ will be avoided

Proof. For

|ξ| =

∥∥∥∥∥∥
ẋ
ẏ

∥∥∥∥∥∥ =

∥∥∥∥∥∥
ẋr − ẋe
ẏr − ẏe

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥
ẋd
ẏd

∥∥∥∥∥∥−
∥∥∥∥∥∥
ẋe
ẏe

∥∥∥∥∥∥ (3.16)

ξ = 0 is avoided if

min
t≥0

∥∥∥∥∥∥
ẋr(t)
ẏr(t)

∥∥∥∥∥∥ >
∥∥∥∥∥∥
ẋe(τ)

ẏe(τ)

∥∥∥∥∥∥ , ∀τ ≥ 0 (3.17)

Using the solution of the closed loop error dynamics

ẋe(t) = a11e
λ11t + a12e

λ12t

ẏe(t) = a21e
λ21t + a22e

λ22t

where ajk with j = {1, 2} and k = {1, 2} are constants depend on the chosen eigenvalues, it

is shown that the norm of the velocity error is upper bounded by its value at t = 0.

3.2 Single Robot Trajectory Tracking

A combination of the feedforward action with a feedback control is required to solve the

trajectory tracking problem. This section presents how to solve the trajectory tracking

problem for a single robot based on the combination of both feedforward and feedback

actions.

3.2.1 Feedforward Commands Generation

Assume a given reference trajectory (xr(t), yr(t)) defined in a time interval t ∈ [0, T ], then

the feedforward command generation involves generating the desired reference velocities vr(t)
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and ωr(t) as follows:

vr(t) = ±
√
ẋ2
r(t) + ẏ2

r(t) (3.18)

ωr(t) =
ÿr(t)ẋr(t)− ẍr(t)ẏr(t)

ẋ2
r(t) + ẏ2

r(t)
(3.19)

where the sign ± depends on the robot direction,i.e. + for the forward motion, - for the

reverse motion.

The reference angle θr(t) can be defined as:

φr(t) = arctan 2(ẏr(t), ẋr(t)) +Kdπ, Kd = 0, 1 (3.20)

where arctan 2 is the four-quadrant inverse tangent function. Kd defines the driving direction.

0 for forward motion, and 1 for reverse.

3.2.2 Feedback Control Design

After obtaining the linearized model based on feedback linearization, the trajectory tracking

controller is applied using an LMPC strategy to simply the controller design for such WMR

nonlinear system. Figure 3.1 presents the overall control system block diagram. The outputs

of the LMPC are the optimum values of the control inputs u1 and u2. These signals should

be fed to the dynamic compensator (3.11) in order to obtain the actual control inputs v and

ω which fed to the robot to track the reference trajectory.

Writing the system (3.14) in discrete form as:

z(k + 1) = Az(k) +Bu(k) (3.21)

Figure 3.1: Control system block diagram for a single robot
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with:

A = I + AdTs,

B = BdTs

where Ts is the sampling time, A ∈ Rnl × Rnl , and B ∈ Rnl × Rml are the state and input

matrices, respectively.

Assuming that all states are measurable, then the objective function for a robot J to be

minimized can be stated as a quadratic cost function of the states and the inputs as:

min
u(.)

J =

Np−1∑
i=1

zTe (k + i|k)Qze(k + i|k) +
Nc∑
i=0

uT (k + i|k)Ru(k + i|k) (3.22)

subject to

ze(k + i|k) = Aze(k + i− 1|k) +Bu(k + i− 1|k),

ze(k + i|k) ∈ Z,

u(k + i|k) ∈ U

(3.23)

where ze is state error to be minimized, Np and Nc denote both the prediction and control

horizons respectively. Q ∈ Rnl × Rnl and R ∈ Rml × Rml are the weighting matrices with

Q > 0 and R > 0. Z ⊂ Rml is the state constraints. U ⊂ Rnl is the input constraints.

Usually, U = {u ∈ Rnl : umin ≤ u ≤ umax}. umin and umax are known constants in Rml .

The first term on the right hand side of equation (3.22) is called the state penalty and the

second term is called control penalty.

The control goal is to find u(k) which drives the system (3.21) toward the equilibrium in

which ze(k) = 0 and u(k) = 0.

To re-write the objective function in a quadratic form, the following vectors can be

defined:

ẑe(k + 1) =


ze(k + 1|k)

ze(k + 2|k)
...

ze(k +Np|k)

 , û(k) =


u(k|k)

u(k + 1|k)
...

u(k +Np − 1|k)
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where ẑe ∈ Rnl×Np and û ∈ Rml×Np . Equation (3.22) can be written as:

J(k) = ẑTe (k + 1)Q̂ẑe + ûT (k)R̂û (3.24)

with

Q̂ =


Q 0 . . . 0

0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

 , R̂ =


R 0 . . . 0

0 R . . . 0
...

...
. . .

...

0 0 . . . R


where Q̂ ∈ Rnl×Np × Rnl×Np and R̂ ∈ Rml×Np × Rml×Np .

So, from (3.21), ẑe(k + 1) can be written as:

ẑe(k + 1) = Â(k)ze(k|k) + B̂(k)û(k) (3.25)

with

Â(k) =


A(k|k)

A(k|k)A(k + 1|k)
...

ρ(k, 0)


and

B̂(k) =


B(k|k) 0 . . . 0

A(k + 1|k)B(k|k) B(k + 1|k) . . . 0
...

...
. . .

...

ρ(k, 1)B(k|k) ρ(k, 1)B(k + 1|k) . . . B(k +Np − 1|k)


where Â ∈ Rnl×Np × Rnl and B̂ ∈ Rnl×Np × Rml×Np , and ρ(k, r) is defined as:

ρ(k, r) =

Np−1∏
r=i

A(k + r|k)

Finally, the objective function can be written in a standard quadratic form as:

J(k) = 0.5ûT (k)H(k)û(k) + fT (k)û(k) (3.26)
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where

H(k) = 2(B̂T (k)Q̂B̂(k) + R̂), H(k) ∈ Rml×Np × Rml×Np

f(k) = 2B̂T (k)Q̂Â(k)z(k|k), f(k) ∈ Rml×Np

The matrix H is the Hessian matrix, and it must be positive definite. It presents the

quadratic part of the objective function, while the vector f represents the linear part.

Remark 3.1. In real-time implementation, ẋ and ẏ are calculated by numerically differen-

tiating (x, y).

Remark 3.2. The necessary condition for combining both the feedforward and the feedback

control actions is that vr(t) 6= 0. If it happened at a specific time t, the robot will rotate with

the angular velocity ωr(t) (Klančar and Škrjanc, 2007).

Remark 3.3. For exact trajectory tracking, the initial value of the state of the dynamic

compensator ξ should be equals to the initial value of the velocity of the reference trajectory

vr (Oriolo et al., 2002), i.e.

ξ(0) = vr(0) = ẋr(0) cosφr(0) + ẏr(0) sinφr(0)

Remark 3.4. Using this method, it is not required to compute the desired orientation φr(t)

3.2.3 Stability Analysis

In this section, a stability analysis for the proposed MPC algorithm will be presented. The

following theorem discuss the MPC stability.

Theorem 3.3. Suppose the following assumptions hold for a nominal controller L(ze), a

terminal state weight Ω(ze) and a terminal state domain Z

1. Aze +BL(ze) ∈ Z, ∀z ∈ Z

2. 0 ∈ Z

3. Ω(Aze +BL(ze))− Ω(ze) ≤ −zTe Qze − LT (ze)RL(ze), ∀ze ∈ Z

4. Ω(0) = 0, Ω � 0
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5. L(ze) ∈ U , ∀ze ∈ Z

Then, assuming the feasibility at the initial state, then the optimization problem presented

in (3.22) will be updated to guarantee asymptotic stability as follow:

min
u(.)

J(k) =

Np−1∑
i=1

zTe (k+i|k)Qze(k+i|k)+
Nc∑
i=0

uT (k+i|k)Ru(k+i|k)+Ω(ze(k+Np|k)) (3.27)

subject to

ze(k + i|k) = Aze(k + i− 1|k) +Bu(k + i− 1|k),

ze(k + i|k) ∈ Z,

u(k + i|k) ∈ U

(3.28)

Proof. Based on using the objective function J(k) as a Lyapunov function, let us denote

the optimal cost as J∗(k). Then, the optimal cost at time k is obtained with the control

sequence [u∗(k|k) u∗(k + 1|k) . . . u∗(k + Np − 1|k)], where the notation * related to the

optimal solution. So, at time k + 1, the feasible solution is [u∗(k + 1|k) u∗(k + 2|k) . . .

u∗(k + Np − 1|k) L(z∗e(k + Np|k))] where z∗e(k + Np|k) ∈ Z. According to Assumption 5, it

is clear that L(z∗e(k +Np|k)) satisfies the control constraint. Also Assumption 1 satisfy the

terminal state constraint. Then the cost using this control sequence will be

J(k + 1) =

Np−1∑
i=1

z∗Te (k + i+ 1|k)Qze(k + i+ 1|k) +
Nc∑
i=0

u∗T (k + i+ 1|k)Ru(k + i+ 1|k)

+ zTe (k +Np|k)Qze(k +Np|k) + LT (ze(k +Np|k))RL(ze(k +Np|k))

+ Ω(ze(k +Np + 1|k))

=

Np−1∑
i=1

z∗Te (k + i+ 1|k)Qze(k + i+ 1|k) +
Nc∑
i=0

u∗T (k + i+ 1|k)Ru(k + i+ 1|k)

+ Ω(z∗e(k +Np|k)) + Ω(ze(k +Np + 1|k))− Ω(z∗e(k +Np|k))

+ z∗Te (k +Np|k)Qze(k +Np|k) + LT (ze(k +Np|k))RL(ze(k +Np|k))

− zTe (k|k)Qze(k|k)− u∗T (k|k)RuT (k|k)

(3.29)

Some terms are added and subtracted to get an expression of J(k + 1) containing J(k).

The first line of last equality now is the optimal cost at time k, i.e., J∗(k). According to
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Assumption 3, the sum of the second and the third lines in the last equality is negative, so:

J(k + 1) ≤ J∗(k)− zTe (k|k)Qze − u∗T (k|k)Ru∗(k|k) (3.30)

Since J(k + 1) ≥ J∗(k + 1), then

J∗(k + 1) ≤ J∗(k)− zTe (k|k)Qze − u∗T (k|k)Ru∗(k|k) (3.31)

which means that hence x(k) converges to the origin, then J∗(k) will be in a decaying

sequence.

More details of this proof can be found in (Mayne et al., 2000; Lofberg, 2000), also the

methods to choose Z, L(ze), and Ω(ze) can be found in (Lofberg, 2000).

3.3 Formation Controller

After the design of the proposed control algorithm, and being implemented to a single robot.

This algorithm is applied to a team of WMRs to perform a specific formation configuration.

Consider jth robot in a team of robots moving in a specific formation within a leader-

follower scheme, j ∈ {l, 1, 2, . . . , N} denotes the formation configuration of the leader l and

N followers. The leader l should track a predefined trajectory (xr(t), yr(t)) defined in a

time interval t ∈ [0, T ] (as mentioned in Section 3.2), while followers N should follow the

leader maintaining a desired formation configuration (ld − φd) between them and the leader

as shown in Figure 3.2, where ld and φd are the follower’s relative distance and angle with

respect to the leader.

Given the leader position, and as long as the formation configuration ld−φd is given and

fixed, then the followers’ position will be unique. So, the formation among team members

can be represented by ld − φd. To achieve the desired formation based on the algorithm

presented in Section 3.2, it is necessary to find the followers’ reference trajectories that they

must follow to maintain the desired formation configuration between them and the leader

based on the leader position and the desired formation data as shown in Figure 3.3.

As noticed, the ld − φd configuration is a polar coordinates representation of the fol-
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Figure 3.2: Leader-follower formation geometry

lower’s relative position. So, to apply the proposed control algorithm, the follower’s relative

position should be represented in Cartesian coordinates (X,Y). Also, representing the for-

mation control in polar coordinates will lead to a singularity (Li et al., 2004).

To represent the system in Cartesian coordinates, let ldx and ldy be the projection of l

along x and y coordinates, thus:

ldx = −(xl − xf ) cosφl − (yl − yf ) sinφl, (3.32)

ldy = (xl − xf ) sinφl − (yl − yf ) cosφl, (3.33)

Figure 3.3: Formation control principle
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also;

ldx = ld cosφd, (3.34)

ldy = ld sinφd. (3.35)

From Eqs. (3.32) and Eq. (3.33), the desired follower position will be:

xfr = xl + ldx cosφl − ldy sinφl, (3.36)

yfr = yl + ldx sinφl + ldy cosφl. (3.37)

and consequently:

ẋfr = ẋl − ldx sin(φl)φ̇l − ldy cos(φl)φ̇l, (3.38)

ẏfr = ẏl + ldx cos(φl)φ̇l − ldy sin(φl)φ̇l. (3.39)

To achieve the desired formation, each follower controller should be constrained by the

following condition:

lim
t→∞

(zfr(t)− zf (t)) = 0 ∀N < j (3.40)

where zfr(t) = [xfr , yf , ẋfr , ẏfr ]
T that can be obtained from equations (3.36) to (3.39).

Now, the reference trajectory with each follower relative to the leader can be calculated,

and then the proposed algorithm presented in Section 3.2 for a single robot can be applied

to each robot in the team. Each robot uses its local information provided by its sensors

as well as the leader position to accomplish the formation mission. Therefore, the leader-

follower configuration can be implemented in a distributed manner based on the robots’ local

information.

3.4 Obstacle Avoidance Algorithm

Another challenge for formation control is to ensure that the robots should move safely in

a semi-structured environment. During task execution, robots are expected to operate in a

cluttered environment. Therefore, the robot must be equipped by a sensing module to indi-

cate the location of nearby obstacles, and send these data to an obstacle avoidance algorithm.
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This algorithm will get the robot to avoid the surrounding obstacles. Obstacle avoidance

algorithms can be classified into motion planning control and reactive control (Rodŕıguez-

Seda et al., 2014). In a motion planning control, the controller determines the obstacle-free

trajectory that the robot must follow based on obstacles’ positions. Therefore, this method

is not efficient when the robot facing a moving obstacles. On the other side, reactive control

strategy is based on the sensory information, so the control inputs are computed on-line

as the obstacles are detected to avoid them. Moreover, using a reactive control strategies

allow the robot to avoid the moving obstacles also. Therefore, reactive methods are pre-

ferred when working in dynamic environments. Several methods such as a potential field

(Khatib, 1986), the tangential escape (Ferreira et al., 2006) and the mechanical impedance

with virtual force (Rampinelli et al., 2010) are examples of the reactive control method that

applied with WMRs. All these methods assumes a perfect obstacle sensing.

This section presents how the system can avoid the obstacles based on the sensory infor-

mation about the surrounding environment. The following assumptions are asserted for the

obstacle avoidance algorithm:

Assumption 3.1. Each robot has an on-board sensing system that can detect the other robots

based on distance measurements.

Assumption 3.2. The maximum range of sensors is greater than the distance dmax (see

Figure 3.4).

Assumption 3.3. Robots’ sensors have reliable sensing.

The reactive obstacle avoidance algorithm presented here is similar to (Rampinelli et al.,

2010), where the mechanical impedance principle is used. The main concept is to link the

movement of each robot in formation to a virtual repulsive forces based on its interaction

with the surrounding environment. Then, the linear and angular velocities of the robot are

changed in response to this repulsive force. The value of that repulsive force can be given as

follows:

F =

C(dmax − d)H if d < dmax

0 if d ≥ dmax,

(3.41)
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Figure 3.4: Robot-obstacles interaction during robot motion (Rampinelli et al., 2010)

where d is the actual distance between the robot and the closest obstacle, dmax is the maxi-

mum robot-obstacle distance, H is a positive integer, and C is a constant corresponding to

system calibration and given by:

Fmax = C(dmax − dmin)s, (3.42)

where dmin is the minimum acceptable robot-obstacle distance to avoid the collision, s is a

positive integer, and Fmax is the maximum value of virtual force.

In case of robot movement in environment containing many obstacles, each robot gen-

erates two fictitious forces FR and FL that relate to the closest right and left obstacles to

the robot, respectively. As observed in Figure 3.4, dR, αR, dL and αL are the distances and

angles associated to the right and left obstacles, respectively. Replacing F and d in (3.41) by

FR and dR, FL and dL, then the values both the right and left repulsive forces are calculated.

The relationship between the fictitious forces and the corrections in the linear and angular

velocities vc and ωc respectively necessary to avoid the obstacles are given by:

vc = Z−1(FR sinαR + FL sinαL),

ωc = Z−1(FR − FL),
(3.43)

where Z represents the mechanical impedance of the environment defined as:

Z = Is2 +Bs+K,

where I, B and K are positive constants representing the inertia, the damping and the elas-

ticity of the dynamics of the robot-environment interaction, respectively. The whole control
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system block diagram for the team of robots including the obstacle avoidance algorithm is

shown in Figure 3.5.

Remark 3.5. The above mentioned strategy is applied to each robot in the formation indi-

vidually as shown in Figure 3.5.

3.5 Cooperative Control of UAVs-WMRs for Forest

Monitoring and Fire Detection

In recent years, research in cooperative unmanned systems have received growing attention

in both civilian and military applications. One of these applications is the forest monitoring

and fire detection.

Forest fire detection becomes very important in the whole world, especially in North

America (Yuan et al., 2015). Approximately 27 million acres have been consumed because

of wild-land fires during 2005-2007 (Kumar et al., 2011). As a result, a lot of people have

been displaced causing great financial loss. Apart from this socio-economic loss, smoke-

related effects on human and wildlife are dominant concerns.

Figure 3.5: Overall control system block diagram for the whole team
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UAVs can play a very important role in forest fire detection and fighting. They provide

reliability in extreme operational conditions and monotonous repeated tasks for longer du-

ration, enabling long-term data gathering and situational awareness (Kumar et al., 2011).

Usually, UAVs have limited payload since the main features of UAV design is to be smaller

with better maneuverability for easy use and operation. As a result, they have a limited

battery life, and consequently limited running time. This problem arises especially with the

rotary-wing UAVs due to its higher power consumption during mission execution. On the

other hand, WMRs offer high payload and longer running time. Accordingly, WMRs can

be used to transport UAVs from a central ground station to a safety spot close enough

for UAVs to take-off for mission execution, and return to its landing platform on WMRs.

During monitoring and fire detection mission, it is of great importance for UAVs to capture

images using on-board CCD cameras, thermal and infrared cameras. These images need

a powerful processor for on-line data analysis and image processing, which is difficult to

embed on the UAVs due to their payload limitation. Therefore, WMRs can be used as

local ground stations for UAVs during mission execution, since WMRs have more payload

capabilities to carry the required equipment for the purpose of fire fighting.

To emphasize the effectiveness of the proposed formation control algorithm, it is imple-

mented on a team of WMRs to pair with a team on UAVs for forest monitoring and fire

detection application in order to avoid the problems of limited payload and running time

associated with the UAVs.

To achieve the forest monitoring and fire detection with a team of UAVs-WMRs, the

following scenario presented in Figure 3.6 is proposed:

i. A team of M WMRs moving within a leader-follower approach will transport the team

of N UAVs from the central ground station to their assigned search area, M = N .

ii. The UAV team takes-off and start the search and coverage mission. The team is also

moving in a leader-follower scheme.

iii. Once a fire is detected by ith UAV, it will send a fire alarm to the remaining UAVs

team members and the leader WMR. Afterward, the sensory data will be sent from all

UAVs to the leader WMR assigned as the local mobile ground station. Based on these
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data, the leader WMR controller will re-plan the UAVs reference trajectory and the

new formation reconfiguration based on calculating the fire spread model. Eventually,

the leader WMR will send the new information to the UAV leader.

iv. The UAV team reconfigures its formation according to the new situation, following

the fire perimeter to detect, monitor, and provide updated on-line information about

the fire spread, area burnt and still burning.

3.6 Simulation Results

To verify the proposed control strategies presented in this chapter, a team WMRs are used

in simulation to validate the effectiveness of the proposed control algorithm. All the values

adopted for the control system parameters are shown in Table 3.1.

The weighting matrices Q and R of MPC are selected as:

Q =


1 0 0 0

0 1 0 0

0 0 0.8 0

0 0 0 0.8

 , R = I2×2 × 0.1

Figure 3.6: Cooperative forest monitoring and fire detection block diagram
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Table 3.1: Formation controller parameters

Parameter Value Parameter Value

p 5 c 2

Ts 0.05 sec Fmax 1.5

dmax 1.5 m dmin 0.5 m

s 3 I 0.15 N.s2/rad

B 1.3 N.s/rad K 1.2 N/m

Different cases have been carried out in the simulation to prove the robustness of the

proposed controller. These cases are:

� Single robot trajectory tracking;

� Cooperative control in obstacle-free environment;

� Cooperative control in a cluttered environment when the team facing static and moving

obstacles; and

� Cooperative control of UAVs - WMRs for forest monitoring and fire detection mission.

3.6.1 Case 1: Single Robot Trajectory Tracking

In this case, single robot tracks an ∞-shaped trajectory. The robot initial position is

(xo, yo) = (1, 0.7). The simulation time is 30 sec, and the reference trajectory defined by:

xr(t) = 1.1 + 0.7 sin

(
2π

30

)
t (3.44)

yr(t) = 0.9 + 0.7 sin

(
4π

30

)
t (3.45)

Simulation results show the effectiveness of the proposed control algorithm. Figure 3.7

shows that the robot can track the reference trajectory, while Figure 3.8 shows that the

proposed control algorithm converge the actual position and orientation to the reference

one. Also, it can be observed from Figure 3.9 that the objective function converges to zero.
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Figure 3.7: Comparison between actual and reference trajectories during simulation
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3.6.2 Case 2: Cooperative Control in an Obstacle-Free Environ-

ment

In this case, a team of three WMRs performing a triangular formation. The leader’s initial

position is ql(0) = [1.1,−0.1, 100◦]T . The leader tracks a reference trajectory defined as:

xr(t) = cos(0.25t) (3.46)

xr(t) = sin(0.25t) (3.47)

The initial positions of the followers are q1(0) = [0.8,−0.1, 100◦]T and q2(0) = [1.35,−0.1,

100◦]T , respectively. The desired formation with respect to the leader is 0.5 m and 135◦ for

the first follower, and 0.5 m and 225◦ for the second one. The simulation time is 23 sec.

Figures 3.10, 3.11, and 3.12 demonstrate the simulation results. From these results, it

is clear that the team of WMRs are performing the desired formation. In Figure 3.10, the

three WMRs are performing a triangular formation with the desired configuration, while

Figures 3.11 and 3.12 show that the followers converge to the desired value of formation

distance ld and angle φd, respectively.
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Figure 3.10: Triangular formation of a team of three WMRs during simulation
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Figure 3.12: Desired formation angles between the leader and the followers during simulation

3.6.3 Case 3: A Team of Cooperative WMRs Facing Static Ob-

stacles

In this case, a team of three WMRs performing a triangular formation should navigate in

a partially structured environment containing ten static obstacles, each one is 1 m × 1 m.

The leader’s initial position is ql(0) = [1,−1, π/3]T . The first follower’s initial position is

q1(0) = [0,−6, π/3]T , and its desired formation with respect to the leader is 6.5 m and 140◦.

While the second follower’s initial position is q2(0) = [−5, 2, π/3]T and its desired formation

with respect to the leader is 6.5 m and 220◦. The simulation time is 80 sec.

Simulation results are presented in Figures 3.13 to 3.15. it is clear that the team of

WMRs are performing the desired formation and avoiding the obstacles that may face

during the mission. In Figure 3.13, the three WMRs are performing a triangular formation

with the desired configuration avoiding the obstacles located in the environment. Obstacles

1 and 2 are located 1.5 m away from the leader and the first and second follower respectively

(which is equal to dmax), so neither the leader nor the followers are affected by these obstacles.

Obstacles 3, 4, 5 and 6 are near the first and second followers, so the repulsive forces generated
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cause a change in both the linear and angular velocities of the robots to avoid the obstacles.

Obstacles 7, 8, 9 and 10 are far away from the robots, so no change in the robots movement.

Figure 3.14 shows the linear and angular velocities of the robots. As shown, the effect of

vc and ωc appears for the first and second followers at t = 28 and 18 sec respectively in order

to avoid the detected obstacles. Moreover, Figure 3.15 shows that the constraint presented

in Eq. (3.40) is achieved, except during the obstacle avoidance. Once the robots passed over

the obstacles, the error in the desired formation converges to zero.

3.6.4 Case 4: A Team of Cooperative WMRs Facing Moving Ob-

stacles

In this case, a team of three WMRs performing a triangular formation facing moving ob-

stacles. It is assumed that there are two obstacles moving toward the followers. As the first

case, each obstacle is 1 m × 1 m. The Cartesian equation presenting the path of the obstacle

facing the first follower is defined as:
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Figure 3.13: Desired formation of a team of two WMRs in the presence of static obstacles
during simulation
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Figure 3.15: Errors in the desired formation of the followers when facing static obstacles
during simulation
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xobs1 = 32− 0.2t,

yobs1 = 6− 0.2t
(3.48)

and for the obstacle facing the second follower:

xobs2 = 18− 0.2t,

yobs2 = 10− 0.2t
(3.49)

Figures 3.16 to 3.18 present the simulation results. It is clear that the team of WMRs

are performing the desired formation and avoiding the moving obstacles as shown in Figure

3.16. In Figure 3.17, the linear and angular velocities of the robots are illustrated. As

shown, the effect of vc and ωc appears for the first and second followers at t = 50 and 30 sec,

respectively in order to avoid the moving obstacles. Furthermore, Figure 3.18 presents the

distance between each robot and its nearest obstacle. Once each robot detects the obstacle

and the distance d between them becomes less than the maximum allowable distance dmax,

each robot tries to avoid the obstacle and the distance between them does not exceed the

minimum acceptable distance dmin as shown in the figure.
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Figure 3.16: Triangular formation within moving obstacles
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Figure 3.17: Linear and angular velocities of the robots facing moving obstacles
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3.6.5 Case 5: Cooperative Control of UAVs - WMRs for Forest

Monitoring and Fire Detection Mission

In this case, a team consisting of three UAVs and three WMRs executes a forest mon-

itoring and fire detection mission. The WMR leader robot’s initial position is q1(0) =

[17.5,−43, π/3]T . The first follower’s initial position is q1(0) = [15,−47.33, π/4]T , and its

desired formation with respect to the leader is 5 m and 150◦. The second follower’s initial

position is q2(0) = [20,−47, π/3]T and its desired formation with respect to the leader is 5

m and 210◦. The UAVs desired formation during search and coverage with respect to their

leader is 5 m and 150◦ for the first UAV, and 0.5 m and 210◦ for the second one. It is

assumed that the first follower UAV detects a fire spot after 70 sec of mission starting.

Figure 3.19 illustrates the formation of the team during mission execution. As can be

seen, the team of WMRs start the mission by carrying the UAVs until the nearest point

(marked with the � marker) to the assigned search area. The UAV team takes-off and start

the search mission. The first follower UAV detects a fire spot with coordinates (0,-25,0).

The leader WMR plans the reference trajectory that the UAVs must follow according to the

fire spread model. The UAV starts to reconfigure its formation to follow the new trajectory

at the instant marked with the (/) black marker. The UAV team surrounds the fire spot

following the elliptic trajectory with formation angle 120◦.

Figures 3.20 and 3.21 show the effectiveness of the proposed WMRs formation controller.

As can be seen, the follower WMRs maintain the desired formation distances and angles

between them and the leader, respectively.

3.7 Experimental Results

To validate the performance and robustness of the proposed control algorithms, experimental

tests are preformed, The following cases to be presented:

� Single robot trajectory tracking;

� Cooperative control in obstacle-free environment; and

� Cooperative control in a cluttered environment when the team facing static obstacles.
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Figure 3.19: Formation of the WMRs-UAVs team during forest monitoring and fire detection
mission
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Figure 3.20: Desired formation distances between the leader WMR and their followers during
forest monitoring and fire detection mission
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Figure 3.21: Desired formation angles between the leader WMR and their followers during
forest monitoring and fire detection mission

3.7.1 Case 1: Single Robot Trajectory Tracking

In this case, two experiments are performed; tracking an ∞-shape, and tracking a square

shape trajectories. In the first case, a single robot tracks an∞-shaped trajectory. The robot

initial position is (xo, yo) = (−0.16,−0.2), while the reference trajectory defined by:

xr(t) = 0.7 sin

(
2π

30

)
t (3.50)

xr(t) = 0.7 sin

(
4π

30

)
t (3.51)

In the second experiment, the robot tracks a square shaped trajectory. The robot initial

position is (xo, yo) = (−1.03, 1.1). The time of both experiments are 30 sec and 40 sec,

respectively.

As can be seen in Figures 3.22 to 3.25, the proposed control algorithm exhibits good

performance in real-time, and able to compensate the vision system delay, and the noisy

data. In Figure 3.22, and Figure 3.24, the robot able to track the reference trajectories,

Figure 3.23 shows that robot states converge to the reference states during tracking the ∞-

shaped trajectory, while Figure 3.25 illustrates that the error in robot posture converge to

zero.
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Figure 3.22: Experimental testing of tracking an ∞-shaped trajectory
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Figure 3.24: Experimental testing of tracking a square shape trajectory
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Figure 3.25: Error in robot posture during tracking a square shape trajectory in real-time
experiment
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3.7.2 Case 2: Cooperative Control in an Obstacle-Free Environ-

ment

In this experiment, three WMRs perform a triangular formation. The initial position of the

leader is ql(0) = [−0.05,−2.05, 100◦]T . The leader tracks a reference trajectory defined as:

xr(t) = cos(0.25t)− 0.1 (3.52)

yr(t) = sin(0.25t)− 0.6 (3.53)

The initial positions of the followers are q1(0) = [−0.55,−2.8, 100◦]T and q2(0) = [−0.75,

−1.32, 100◦]T , respectively. The desired formation with respect to the leader is 0.75 m and

225◦ for the first follower, and 0.75 m and 135◦ for the second one.

Figures 3.26 to 3.28 present the experimental results of this case. From these results, it

is clear that the team of WMRs are performing the desired formation. In Figure 3.26, the

followers maintain the desired configuration with respect to the leader, while Figures 3.27

and 3.28 show that the formation configuration converge to the desired values ld and angle

φd, respectively, achieving the constraint presented in (3.40).
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Figure 3.26: Triangular formation of a team of WMRs during experiment
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Figure 3.27: Desired formation distances between the leader and the followers during exper-
iment
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Figure 3.28: Desired formation angles between the leader and the followers during experiment
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3.7.3 Case 3: Cooperative Control in a Cluttered Environment

In this case a team of WMRs consists of a leader and a follower performing a desired for-

mation in the presence of obstacles. The leader’s initial position is ql(0) = [0.05,−1.8, 20◦]T ,

while the follower initial position q1(0) = [−0.8,−0.92, 60◦]T and the desired formation con-

figuration is 1 m and 135◦ with respect to the leader.

Figures 3.29 to 3.31 present the experimental results. From these results of this case, it

is clear that the team of WMRs are performing the desired formation and the follower avoid

the obstacle that it face during the formation mission. In Figure 3.29, the follower maintains

the desired configuration with respect to the leader except during avoiding the obstacle,

once the follower avoid the obstacle, it continue following the leader maintaining the desired

formation configuration. Figure 3.30 shows the effect of the virtual force on the linear and

angular velocities of the follower. As shown, during the time interval t ∈ [16.65, 21.65] sec,

the virtual repulsive force F to be generated, according to this force vc and ωc are calculated

and added to the original v and ω respectively. Furthermore, Figure 3.31 shows that the

constraint presented in (3.40) is achieved, except during the obstacle avoidance.
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Figure 3.29: Experimental result when a team of two WMRs performing a desired formation
in the presence of obstacle
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Figure 3.30: The effect of the virtual force on the linear and angular velocities of the robots
during experiment
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Figure 3.31: Errors in the desired formation of the follower during experiment
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Figure 3.32 shows snapshots of the real experiment performed in the laboratory. When

t = 6 sec, the robots perform the desired formation configuration. When t = 17 sec, the

follower detects the obstacle and start avoiding it. At t = 22 sec, the follower completely

avoid the obstacle and continue the mission. When t = 36 sec, the leader and the follower

continue the planned mission.

(a) t = 6 sec (b) t = 17 sec (c) t = 22 sec (d) t = 36 sec

Figure 3.32: Snapshots of the obstacle avoidance experiment

80



Chapter 4

FTCC of Multiple WMRs Under

Actuator Faults

This chapter presents the development of an FTCC algorithm for a team of WMRs in the

presence of actuator faults. The main purpose of the FTCC algorithm is to:

� Re-assign the formation mission on the healthy members if one or more robots subject

to severe faults and cannot complete the mission;

� Let the team continue the mission with degraded performance if one or more robots

subject to a fault but still able to complete the mission; and

� Avoid the potential collision between the healthy robots and the faulty one if it gets

out from the formation due to severe fault occurrence.

As a result, the FTCC algorithm consists of:

� The FDD scheme in order to detect and diagnose the actuator fault;

� The decision-making algorithm in which the mission is either re-coordinated or re-

assigned based on the degree of severity of the occurred fault; and

� The collision avoidance algorithm.

In case of severe fault occurrence, there are two main challenges; how to generate the new

formation configuration, and how to reconfigure the formation to the new one. As mentioned
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in Chapter 2, during formation reconfiguration, sudden changes have occurred to the robots’

control inputs. If these inputs are not bounded, the robots behavior become unstable, the

formation may be broken, and the robots may collide. Since MPC is adopted as the WMRs’

controllers as presented in Chapter 3, the second problem can be solved considering the

input constraints during reconfiguration. Therefore, in this Chapter, the first problem is

considered based on two techniques: i) the Graph Theory; and ii) formulating the FTCC

problem as an optimal assignment problem, where a Hungarian algorithm is applied to solve

it. To obtain the information of the actuator faults, the TSKF is used, where the faults are

modeled as losses in the effectiveness of the robots’ driving motors. The advantage of the

TSKF is to simultaneously estimate the states and fault parameters for the FDD purpose.

This chapter is organized as follows. First, the design of FDD scheme is presented. Next,

the decision-making algorithm including both task re-assignment and motion re-coordination

is illustrated. Finally, simulation and experimental results are presented to validate the

effectiveness of the proposed algorithms.

Remark 4.1. The obstacle avoidance algorithm presented in Section 3.4 is applied here to

achieve the collision avoidance with the faulty robots.

4.1 Fault Detection and Diagnosis Scheme (FDD)

For safe, reliable and secured mission execution, WMRs should have an FDD algorithm

capable of monitoring actuators’ health without requiring any sensors. This is very important

since better knowledge of the fault location, type, and amplitude greatly helps in minimizing

the fault effects on the system behavior (Chamseddine et al., 2014).

As a result, the main purpose of the FDD algorithm is to:

� Detect the abnormal behaviors of a process due to a component failure;

� Eventually isolate the exact location of the failed component; and

� Identify the fault type and its severity.

As mentioned in Section 2.3.1, differentially-driven WMRs are equipped with two motors.

According to the value of the optimum control inputs given from MPC, the angular velocities
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of the driving motors can be calculated according to Eq. (2.6). The angular velocities are

converted to the corresponding applied voltage, then the motors are driven corresponding

to this applied voltage.

The basic idea of the FDD scheme is to estimate the loss of effectiveness of the motors

based on the difference between the actual values of the motors’ angular velocities and the

theoretical ones (obtained form the robot controller) as shown in Figure 4.1. Therefore, if

there is a difference between them, there is a loss of effectiveness of the robot actuator, and

the value of this loss of effectiveness should be estimated. It is modeled as a random bias,

and the TSKF is used to detect and estimate the value of this bias.

Assumption 4.1. Each robot in the formation has its own FDD scheme. Therefore, each

robot can detect the occurred faults and estimate their loss of effectiveness

4.1.1 Robot Actuator Modeling

DC motors are widely used in robotic applications and are the main type of actuators used

in mobile robots. Since the TSKF is considered as a model-based FDD, modeling of the

DC motor is needed first.

In general, the torque T generated by a DC motor is proportional to the armature current

and the strength of the magnetic field. Assuming that the magnetic field is constant and,

therefore, that the motor torque is proportional only to the armature current i by the torque

constant kt as:

T = kti. (4.1)

Figure 4.1: Control system block diagram for each robot including the FDD unit
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The back emf, e, is proportional to the angular velocity of the shaft by a back emf

constant ke

e = keω. (4.2)

Usually, the motor torque and back emf constants are equal, then let kt = ke = Kc.

Therefore, the governing equations of the driving motor are:

Im
dω

dt
+ bω = Kci, (4.3)

La
di

dt
+Rai = E −Kcω, (4.4)

where Im is the moment of inertia, b is the motor viscous friction constant, La is the induc-

tance, Ra is the armature resistance, and E is the applied voltage.

The governing equations above can be expressed in state-space representation by choos-

ing the rotational speed and electric current as two state variables. The applied voltage is

treated as the input and the rotational speed is chosen as the output, then the governing

equations can be written as:ω̇
i̇

 =

− b
Im

Kc

Im

−Kc

La
−Ra

La

ω
i

+

 0

1
La

E,
ω =

[
1 0

]ω
i

 (4.5)

The state-space model in (4.5) can be extended for the two driving motors as follows:
ω̇R

i̇R

ω̇L

i̇L

 =


− b
Im

Kc

Im
0 0

−Kc

La
−Ra

La
0 0

0 0 − b
Im

Kc

Im

0 0 −Kc

La
−Ra

La




ωR

iR

ωL

iL

+


0 0

1
La

0

0 0

0 1
La


ER
EL

 ,

ωR
ωL

 =

1 0 0 0

0 0 1 0



ωR

iR

ωL

iL



(4.6)
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where the subscripts R and L denote for the right and left motors respectively. The DC

motor dynamics is shown in Figure 4.2.

4.1.2 The Two-Stage Kalman Filter (TSKF) Design

In 1960, Rudolf E. Kálmán introduced his approach to linear filtering based on the method

of minimum variance (Kalman, 1960). Compared to existing filtering techniques at that

time, the Kalman filter, though usually more computationally intense, offered performance

improvements and ease of implementation on a digital computer due to its recursive formu-

lation. Moreover, the Kalman filter processes all available measurement data or information

that can be provided to it, regardless of their precision, on the basis of their stochastic de-

scriptions, in order to generate an overall best estimate of the parameter considered (Ducard,

2007).

Although a mathematical model for the robot actuators has been developed to describe

their behavior, but this model will never be perfect, leaving many effects unmodeled (such

as the effect of the friction forces and slippage between the robots’ wheels and the ground).

Furthermore, several parameters of the model will not be known exactly, and the sensor

measurement data will be corrupted by noise and biases. For all those reasons, Kalman fil-

tering techniques are good choice to consider such system dynamics and measurement noises,

errors, and uncertainties.

Compared to the regular Kalman filter, the TSKF has the advantage of simultaneously

estimate both states and fault parameters, for the purpose of fault detection, isolation, and

identification as well as providing full-state estimation for state feedback-based controllers

when state vector is not available through measurements (Chamseddine et al., 2014).

Figure 4.2: DC motor block diagram
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The first step to develop the TSKF is representing the mathematical model of the robot

actuators described in Eq. (4.6) in the following discrete formula:

xk+1 = Akxk +Bkuk + wxk

yk+1 = Ckxx+1 + υk+1

(4.7)

where xk ∈ Rnd , uk ∈ Rmd , and yk+1 ∈ Rpd . nd, md, and pd are the state, control, and output

variables respectively. nd = 4, md = 2, and pd = 2. wxk and υk+1 are white noise sequences

of uncorrelated Gaussian random vectors with zero means and covariance matrices Qx
k and

Rk, respectively.

When applying the Kalman filtering techniques to any process, the accurate model of

the process dynamics is required. However, in practical cases, the system dynamics may be

affected by a constant bias. If this bias is not integrated with the model, then a performance

degradation of the filter may be occurred. Considering a bias vector wyk ∈ RPr , then the

model presented in (4.7) can be written as:

xk+1 = Akxk +Bkuk + Fwyk + wxk

wyk+1 = wyk + υwk

yk+1 = Ckxx+1 + υk+1

(4.8)

where υw is an uncorrelated Gaussian random vector with zero mean and covariance matrix

Qw
k . To estimate the bias vector wyk, it should be augmented into the state vector to make

an augmented state vector which is estimated by using the augmented state Kalman filter

(ASKF). The drawback of the ASKF is the computational burden (Chamseddine et al.,

2014), since the dimension of the augmented state vector is nd + Pr. As a result, Keller and

Darouach (1997) try to avoid this drawback by using two parallel reduced-order filters which

optimally implement the augmented state filter. The proposed algorithm is called TSKF.

In the field of FDD, the effectiveness of actuators is estimated as the augmented random

bias vector. For a team of N robots, When ith actuator fails in the robot j, then the control

inputs are represented by:

ujiF = uji(1− γjik ) 0 ≤ γjik ≤ 1, i = 1, . . . ,md, j = 1, . . . , N (4.9)
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where γjik represents the loss of control effectiveness in ith actuator of the jth robot. If γjik

= 0, then control input is normal; if γjik = 1, then uji is outage; and if 0 < γjik < 1, then

there is a partial loss of control effectiveness in uji . In this thesis, partial actuator fault is

considered, then the state equation of the driving motors in (4.6) with partial actuator faults

for each robot can be written as follows (Zhang and Jiang, 2002):

xk+1 = Akxk +Bkuk +
[
b1γ

1
k b2γ

2
k . . . bmγ

md
k

]

u1
k

u2
k

...

umd
k

+ wxk (4.10)

or in compact form as,

xk+1 = Akxk +Bkuk −BkUkγk + wxk (4.11)

where:

Uk =


u1
k 0 . . . 0

0 u2
k . . . 0

...
...

. . . 0

0 0 . . . umd
k

 , γk =


γ1
k

γ2
k

...

γmd
k


In the absence of the knowledge of the loss of effectiveness factor γk, it can be modeled

as a random bias vector:

γk+1 = γk + wxk . (4.12)

The bias augmented discrete linear state-space model then has the following form:

xk+1 = Akxk +Bkuk + Ekγk + wxk (4.13)

γk+1 = γk + wxk (4.14)

yk+1 = Ckxk+1 + υk+1 (4.15)

The minimum variance solution to estimate the true values of the biases (the fault pa-

rameters) and states are obtained by applying the two-stage Kalman filter as follows (Zhang

and Jiang, 2002):
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The fault parameter estimator:

γ̂k+1|k = γ̂k|k (4.16)

P γ
k+1|k = P γ

k|k +Qγ
k (4.17)

γ̂k+1|k+1 = γ̂k+1|k +Kγ
k+1(r̃k+1 −Hk+1|kγ̂k|k) (4.18)

Kγ
k+1 = P γ

k+1|kH
T
k+1|k(Hk+1|kP

γ
k+1|kH

T
k+1|kS̃k+1)−1 (4.19)

P γ
k+1|k+1 = (I −Kγ

k+1Hk+1|k)P
γ
k+1|k (4.20)

The fault-free state estimator:

x̃k+1|k = Akx̃k|k +Bkuk +Wkγ̂k|k − Vk+1|kγ̂k|k (4.21)

P̃ x
k+1|k = AkP̃

x
k|kA

T
k +Qx

k +WkP
γ
k|kW

T
k − Vk+1|kP

γ
k+1|kV

T
k+1|k (4.22)

x̃k+1|k+1 = x̃k+1|k + K̃x
k+1(yk+1 − Ck+1x̃k+1|k) (4.23)

K̃x
k+1 = P̃k+1|k + CT

k+1(Ck+1P̃
x
k+1|kC

T
k+1 +Rk+1)−1 (4.24)

P̃ x
k+1|k+1 = (I − K̃x

k+1Ck+1)P̃ x
k+1|k (4.25)

The filter residual and its covariance:

r̃k+1 = yk+1 − Ck+1x̃k+1|k (4.26)

S̃k+1 = Ck+1P̃
x
k+1|kC

T
k+1 +Rk+1 (4.27)

The coupling equations:

Wk = AkVk|k −BkUk (4.28)

Vk+1|k = WkP
γ
k|k(P

γ
k+1|k)

−1 (4.29)

Hk+1|k = Ck+1Vk+1|k (4.30)

Vk+1|k+1 = Vk+1|k − K̃x
k+1Hk+1|k (4.31)

The compensated error and covariance estimator:

x̂k+1|k+1 = x̃k+1|k+1 + Vk+1|k+1γ̂k+1|k+1 (4.32)

Pk+1|k+1 = P̃ x
k+1|k+1 + Vk+1|k+1P

γ
k+1|k+1V

T
k+1|k+1 (4.33)

The previous equations can be divided into two parts: the time-update equations and

the measurement-update equations. The time-update equations, distinguished by the sub-

scription (k + 1|k), are responsible to obtain a priori estimate by moving the state and
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error covariances one step ahead in the time domain. The measurement-update equations,

distinguished by the subscription (k + 1|k + 1), are responsible to obtain a priori estimates

through feedbacking measurements into the a priori estimates. The time-update equations

are used for prediction, while measurement-update equations are used for correction. The

whole prediction-correction process is used to estimate the states as close as possible to their

real values. Figure 4.3 shows a schematic flow diagram of the two-stage Kalman filter.

4.2 Decision Making Algorithm

To facilitate the re-assignment, the proposed algorithms are implemented in a decentralized

manner. The following assumptions are made for the FTCC algorithm:

Assumption 4.2. There is no loss of communications between robots. Each robot in the

team receives the position of other team members, i.e. each robot knows the position of other

robots in the formation.

The basic idea of the FTCC algorithm is to deal with the actuator faults in one or more

robots according to the fault magnitude information γji ,

0 ≤ γji ≤ 1 i = 1, . . . ,md, j = 1, . . . , N (4.34)

estimated by the above TSKF based FDD scheme to the faulty robot j.

Depending on the fault severity levels, the following situations may take place:

� If γji = 0, then all robots are fault-free. So all robots continue the planned mission.

Figure 4.3: TSKF schematic diagram
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� If γ̄ ≤ γji ≤ 1, then one or more robots are subject to severe actuator faults, and they

are unable to complete the mission. So the remaining healthy robots start reconfiguring

their formation. i.e, each robot switches to a new desired formation.

� If 0 < γji < γ̄, the mission can still be completed with degraded performance in the

event of actuator faults in the robot team.

where γ̄ is the critical value of the loss of effectiveness, the fault can be considered as a severe

fault if the loss of effectiveness is equal to γ̄ or higher. It is worth mentioning that γ̄ is varied

depending on the type of robot, and the type of mission.

4.2.1 Task Re-Assignment Algorithm Based on the Graph Theory

The formation reconfiguration is investigated based on Graph Theory (Desai et al., 1999).

Considering that the internal behavior of the team is described by the pair (r,H), where r

describes the formation shape, and H is the control graph representing the control strategy

used by each robot. Graphs are made of edges and vertices. Each vertex in the graph

corresponds to a robot, and the edges describe the dependencies of each robot on the adjacent

robots.

According to this theory, the control graph H is represented as an N × N adjacency

matrix G, where N is the number of robots in the formation. The elements of matrix G are

either 0 or 1. 1 in the (i, j) entry represents an direct edge from robot i to robot j, and

0 represents no edge between the robot i and j which means that the motion of robot j is

independent on robot i.

Remark 4.2. Every directed edge in the graph goes from a lower vertex label to a higher

vertex label.

The appearance of a 1 in a column for a robot defines its controller as (Desai et al., 1999):

∑
columns

1′s =


0 leader

1 follower with l − ψ control

2 follower with l − l control
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where l−ψ control means that one robot follows another by controlling the relative distances

between them (as a leader-follower case), and l− l control means that the robot maintaining

a specified distance from two robots.

To apply the Graph Theory, the initial and final formation configurations are represented

by the adjacency matrices G and H respectively. The transition from one control graph to

another is presented by a transition matrix T , where T = H−G. There are 3 possible values

of the (i, j) elements in the matrix T
0 no edge connection between i and j

−1 the edge connection needs to be broken

1 new edge needs to be established.

It is noted that the matrices G and H have the same dimensions, but the matrix H

represent the formation configuration of the healthy robots. So, it is assumed that during

formation reconfiguration the faulty robots still exist but there is no edge connection between

them and the other robots, i.e. the element of the columns represent the faulty robots will

be zeros. So, the matrix T can be calculated and the remaining robots start reconfiguring

their formation shape. Figure 4.4 presents the idea of FTCC based on the Graph Theory.

Remark 4.3. The Graph Theory focuses on the problem of achieving the desired formation,

not how to generate the reconfigured formation. So, it is assumed that the final formation

shape is known and each robot already knows its location in all faulty cases. i.e. all the

Figure 4.4: Task re-assignment mechanism based on the Graph Theory
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possible formation reconfigurations are already embedded in each robot controller. The main

advantage of this algorithm is the decentralization, where each robot can take its own decision

according to the received fault information as shown in Figure 4.4. However, with increasing

the number of robots, the system will be complicated to apply in real-time. Accordingly,

another method is proposed to avoid this drawback as will be explained later.

4.2.2 Task Re-Assignment Based on the Optimal Assignment

In case of severe fault occurrence, the FTCC problem is solved as an assignment problem.

The basic idea of optimal assignment is to ensure that during formation reconfiguration one

and only one robot should be assigned to a unique place in the new formation shape. Figure

4.5 explains the proposed algorithm.

Once the leader receives the fault decision from the FDD unit, the leader knows that

the remaining number of followers is F = N − 1. The leader sends a new formation shape

S parametrized by a vector r in Cartesian coordinates relative to the leader position. The

desired formation of F followers is assumed as slots to be filled, whilst each follower needs

to be assigned to only one of the slots. This can be formulated as an optimal assignment

problem, where the cost function cij = c(Fi, Sj) decides the cost of assigning the robot Fi to

slot Sj. The cost considered herein is to minimize the distance between the follower and the

assigned slot. Also the leader has a pre-defined formation shape according to the number

of remaining robots. Figure 4.6 shows the possible formation shapes for six robots or fewer.

Figure 4.5: Task re-assignment algorithm based on the optimal assignment
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The optimal assignment problem can be mathematically formulated as follows:

Definition 4.1. Let F = {F1, F2, . . . , FnR
} denote the healthy followers and S = {S1, S2, . . . ,

SnR
} denote the slots. Given an nR × nR cost matrix where the element at the ith row and

the jth column corresponds to the cost of assigning the ith follower to the jth slot, find a

permutation π of {1, 2, . . . , nR} for which

nR∑
i=1

c(FiSπ(i)) (4.35)

is a minimum.

Let xij = 1 denote Fi occupying Sj and 0 otherwise. Then the optimization objective

function is

min

nR∑
i=1

nR∑
j=1

cijxij, (4.36)

subject to
nR∑
i=1

xij = 1 ∀j,
nR∑
j=1

xij = 1 ∀i (4.37)

The above constraints presented in Eq. (4.37) ensure unique assignment, i.e., one robot

occupies one and only one slot. Many algorithms are presented in operations research and

network theory. The most common algorithm is the Hungarian algorithm that reduces the

complexity of finding the optimal assignment from combinatorial to polynomial in time

(Papadimitriou and Steiglitz, 1998). The input to this algorithm is the nR× nR cost matrix

Figure 4.6: Possible formation shapes for six or fewer WMRs
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which is defined in Definition 4.1. The solution can be obtained using a bipartite graph

where there are nR vertices representing the healthy followers, nR vertices representing the

slots, and edges connect the followers and slots where each edge has a non-negative cost cij.

The Hungarian algorithm obtains the set of edges that minimize the sum of edge costs such

that there is an edge connecting each follower to a unique slot.

4.2.3 Motion Re-Coordination

In case of faulty robot is still able to complete the mission, the other healthy robots should

reconfigure their controllers within the capability of the faulty robot. The problem that

the leader tracks a pre-defined trajectory. So, the pre-defined trajectory should be updated

considering this faulty situation.

The idea of motion re-coordination is that: once the leader receives the faulty signal

from the faulty robot and it is able to complete the mission regardless the fault, then the

leader will re-generate its desired trajectory corresponding to the fault severity γji , i.e. it

re-generates the values of xr, yr, ẋr, and ẏr as follows:

z̃r =
[
x̃r ỹr ˜̇xr ˜̇yr

]T
= (1− γji) [xr yr ẋr ẏr]

T (4.38)

where x̃r, ỹr, ˜̇xr, and ˜̇yr are the states of the re-planned trajectory.

The leader controller will get the leader to converge to the new trajectory. That means

that the leader controller should be reconfigured to meet the following objective:

lim
t→∞

(z̃r(t)− zl(t)) = 0, (4.39)

Following the steps presented in Section 3.3, the followers’ controllers will ensure the

followers to follow the leader as required in Eq. (3.40) considering the new capabilities of the

leader and the faulty robot. Consequently, the performance of the whole team will be de-

graded due to the fault. Thus, the mission can still continue but with degraded performance.

Such a control strategy is referred as to graceful performance degradation as proposed in

(Zhang and Jiang, 2003) for single vehicle cases. The FTCC strategies for a team of WMRs

presented in Sections 4.2.2 and 4.2.3 are summarized in Algorithm 4.1.

94



Algorithm 4.1 FTCC strategy for a team of WMRs

1: for each follower do

2: detect γji

3: send γji to the leader

4: if 0 < γji < γ̄ then

5: for the leader do

6: receive γji from the faulty robot

7: regenerate the new reference trajectory states z̃r

8: follow the new reference trajectory

9: end for

10: for each healthy follower do

11: update the reference trajectory states according to the new capabilities of the

leader and the desired formation.

12: end for

13: end if

14: if γ̄ ≤ γji ≤ 1 then

15: for the leader do

16: determine the remaining number of the healthy robots F = N − 1

17: send the new formation data S to the followers

18: end for

19: for each healthy follower do

20: calculate the cost matrix c

21: apply the Hungarian algorithm

22: assign to the corresponding slot

23: end for

24: end if

25: end for

4.3 Numerical Validation via Simulation

To verify the proposed control strategies presented in this Chapter, a team WMRs are used

in simulation to validate the effectiveness of the proposed control algorithm. All the values

adopted for the FTCC control system parameters are shown in Table 4.1.
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Table 4.1: FTCC control system parameters

Parameter Value Parameter Value

Im 1.07 gm.cm2 b 3.5077*10−6 N.m.s

kb 0.0235 V/rad/sec kt 0.0235 N.m/Amp

Ra 2.06 ohm La 0.238 mH

Remark 4.4. All the values of the robots’ control system parameters as well as the collision

avoidance algorithm parameters are the same as those mentioned in Table 3.1.

The covariance matrices for the TSKF are set to:

Qx =

0.01× I2×2 02×2

02×2 0.01× I2×2

 ,
Rx = 0.01× I2×2,

Qγ = 0.001× I2×2

Different cases have been carried out to prove the robustness of the proposed algorithms.

These cases are:

� Case 1: A severe fault occurs in the leader robot, in which the Graph Theory is applied;

� Case 2: A severe fault occurs in the second follower, while the optimal assignment is

applied; and

� Case 3: A fault occurs in the second follower, however it can still complete the mission.

Remark 4.5. As mentioned in Remark 4.3, FTCC based on the Graph theory is difficult to

apply in real-time experiment. Therefore, Case 1 will be investigated only in simulation, On

the other hand, Cases 2 and 3 will be validated later in real-time experiments. As a result,

FDD algorithm will be investigated in simulation and real-experiments only in Cases 2 and

3. While, in case 1, only the task re-assignment will be assessed, assuming that the fault is

already detected and diagnosed.

Remark 4.6. In this thesis, it is assumed that critical value of the loss of effectiveness γ̄ is

0.65.
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4.3.1 Case 1: A Severe Fault Occurs in the Leader Robot, While

the Graph Theory is Applied

Simulation Scenario

In this case, a team of four WMRs performs a diamond formation as shown in Figure 4.7(a).

The leader’s initial position is ql(0) = [1,−1, π/3]T . The first follower’s initial position is

q1(0) = [−5,−7, π/3]T , and its desired formation with respect to the leader is F d
1 is 5

√
2

m and 225◦. The second follower’s initial position is q2(0) = [−5, 3, π/3]T and its desired

formation with respect to the leader is F d
2 is 5

√
2 m and 135◦. The third follower’s initial

position is q3(0) = [−9,−2, π/3]T and its desired formation with respect to the leader is F d
3

is 5 m and 180◦. The initial control graph of the team is shown in Figure 4.7(b). Based on

this initial control graph, the matrix G will be:

G =


0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0


It is assumed that the left actuator of the leader suffers a severe fault (γlL = 0.9 (90%)

at time instant t = 80 sec, which leads to the mission incompletion.

(a) Initial formation configuration (b) Initial control graph

Figure 4.7: Simulation Scenario of Case 1
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Task Re-Assignment Results

Assuming that the fault is detected and diagnosed, the leader sends the fault data to the

rest of robots. Then, it will be separated from the formation. Under this fault situation, the

formation reconfigured to a triangular formation.

Based on the embedded data in each robot controller, the first follower will replace the

leader, and the third follower will replace the first one as shown in Figure 4.8(b). As a result,

the matrix H will be:

H =


0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0


and the transition matrix T is:

T =


0 −1 −1 −1

0 0 1 1

0 0 0 0

0 0 0 0


meaning that the first follower will establish new edge connections with the second and third

followers, while the leader robot will break all the edge connections with the other robots.

Figures 4.9 and 4.10 illustrate the robots’ trajectories during mission execution. As

shown in these figures, the first follower will replace the leader, and the third follower will

(a) Initial control graph (b) Final control graph

Figure 4.8: Initial and final control graphs of Case 1
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Figure 4.9: Robots’ trajectories during mission execution in Case 1
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replace the first one. Figure 4.9 shows the effectiveness of formation controller in both fault-

free and faulty cases. It is clear that the robots converge to their desired trajectories. Figure

4.10 presents snapshots of the team formation configuration during mission execution which

indicate fault-free, reconfiguration, and after fault occurrence stages.

4.3.2 Case 2: A Severe Fault Occurs in the Second Follower, While

the Optimal Assignment is Applied

Simulation Scenario

In this case, the following scenario is considered. A team of five WMRs performs a triangular

formation as shown in Figure 4.11. The leader’s initial position is ql(0) = [1,−1, π/3]T .

The first follower’s initial position is q1(0) = [−2,−3, π/3]T , and its desired formation with

respect to the leader F d
1 is 2

√
2 m and 225◦. The second follower’s initial position is q2(0) =

[−2, 2, π/3]T and its desired formation with respect to the leader F d
2 is 2

√
2 m and 135◦.

The third follower’s initial position is q3(0) = [−4,−5, π/3]T and its desired formation with

respect to the leader F d
3 is 4

√
2 m and 225◦. The fourth follower’s initial position is x4(0) =

[−4, 4, π/3]T and its desired formation with respect to the leader F d
4 is 4

√
2 m and 135◦.

It is assumed that the right actuator of the second follower suffers a severe fault (γ2R =

0.85 (85%) as shown in Figure 4.12) at time instant t = 45 sec, which leads to the mission

incompletion.

Figure 4.11: The configuration of WMR formation during simulation of Cases 2 and 3

100



FDD Results

According to the faulty situation, the value of the loss of effectiveness of the actuators in

the second follower are detected, and the fault magnitude is estimated by the proposed

FDD scheme as showed in Figure 4.12. As can be viewed in Figure 4.12, the estimate of

γ2R converges to the real value 0.85 after 2 seconds of the fault occurrence with a steady-

state error of almost 0.0065. Also, the estimate of γ2L remains close to zero. As shown in

Figure 4.13, at t = 45 sec, the right motor of the second follower is subjected to a severe

fault, resulting in a loss of its effectiveness by about 85%. Due to this faulty situation, and

according to the proposed FTCC algorithm, the robot starts getting out from the formation,

and stops accordingly.

Task Re-assignment Results

Once the fault is detected and diagnosed, the second follower is separated from the formation

sending a signal to the leader. Under this fault situation, the leader sends new formation

data to the remaining three followers as desired slots’ coordinates with respect to the leader

position. These data are:

S1 = [−2,−2], S2 = [−2, 2], S3 = [−4, 0]

Subsequently, the embedded Hungarian algorithm in each follower builds the cost matrix

which is the distance between each follower and each slot. The updated cost matrix is:

c =


c11 c12 c13

c31 c32 c33

c41 c42 c43

 =


0 4 2

√
2

2
√

2 2
√

10 4

2
√

10 2
√

2 4


According to the Hungarian algorithm, the optimum assignment is:

1 0 0

0 0 1

0 1 0
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Figure 4.12: The true and estimated values of the loss of effectiveness of the second follower’s
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which means that the first follower is assigned to slot S1 (i.e the first follower will not change

its location), the third follower is assigned to the slot S3, and the fourth robot to the slot

S2, as shown in Figure 4.14.

Figures 4.15 and 4.16 illustrate the robots’ trajectories during mission execution. Ac-

cording to the fault situation, and based on the results obtained from the Hungarian algo-

rithm, the third and the fourth followers start changing their positions with respect to the

leader to change the whole formation to be a diamond shape. Figure 4.15 shows the effec-

tiveness of formation controller in both fault-free and faulty cases. It is clear that the robots

converge to the desired trajectories in the fault-free case and the healthy robots change their

positions and follow a new formation pattern. Figure 4.16 presents snapshots of the team

formation configuration during mission execution which indicate fault-free, reconfiguration,

and after fault occurrence stages.

4.3.3 Case 3: A Fault Occurs in the Second Follower, However it

Can Still Complete the Mission

Following the same initial configuration scenario of Case 2 (shown in Figure 4.11), it is

assumed in this case that the right actuator of the second follower encounters a fault (γ2R

= 0.35 (35%) as shown in Figure 4.17) at time instant t = 45 sec. However it is still able to

continue the mission with degraded performance.

Figure 4.14: (a) Initial formation, (b) Desired formation, (c) Final formation
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FDD Results

According to this situation, FDD scheme isolates the fault and estimate the value of the loss

of effectiveness of the faulty actuator of the second follower as shown in Figure 4.17. As can

be viewed in Figure 4.17, the estimate of the fault magnitude by means of the two-stage

Kalman filter converges to the real value of 0.35 (35%) after 3 sec of the fault occurrence

with a steady-state error of almost 0.007. Also, the estimate of γ2L remains close to zero.

From Figure 4.18, at t = 45 sec, the right motor of the second follower is subjected to a

fault, leading to a loss of its effectiveness by about 35%. The robot continues the motion

with 65% of its capability.

Motion Re-Coordination Results

Once the fault is detected and diagnosed, the second follower sends the value of the loss of

effectiveness γ2R to the leader. Consequently, the leader updates the reference trajectory

states according to Eq. (4.38). As shown in Figure 4.19, once the second robot subject to a

fault in its right motor, it tries to compensate this fault and continue the mission.

With comparison of Figure 4.15 and Figure 4.19, and knowing that the simulation time

is the same for both cases, it can be noticed that in Case 2, the leader travels a distance

less than Case 1. That is due to the fact that the leader (and the other team members)

reduces their capabilities by considering the fault occurred at the second follower and its

reduced capability. If not, the other four robots will continue the mission with their normal

capabilities, but the second follower cannot keep the desired formation relative to the leader.

4.4 Experimental Results Analysis

Due to the space limitation in the laboratory, the experiment is performed with one leader

and two followers only. In the experiments, the team of three WMRs performs a triangular

formation.

The leader’s initial position is ql(0) = [−0.19,−1.92, 100◦]T . The initial positions of the

followers are q1(0) = [−0.69,−2.45, 100◦]T and q2(0) = [−0.69,−1.474, 100◦]T , respectively.
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Figure 4.17: The true and estimated values of the loss of effectiveness of the second follower’s
actuators in Case 3
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Figure 4.18: The output of the right actuator in Case 3
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The desired formation with respect to the leader is 0.75 m and 225◦ for the first follower,

and 0.75 m and 135◦ for the second one. As the same in Cases 2 and 3 in numerical

simulation, severe fault and non-severe fault occurred in the second follower. The leader

tracks a reference trajectory defined as:

xr(t) = cos(0.25t)− 0.1 (4.40)

yr(t) = sin(0.25t)− 0.6 (4.41)

4.4.1 Analysis of Experimental Results of Case 1

In this case, at time instant t = 12 sec, a severe fault is injected to the left motor of the

second follower, leading to mission incompletion of this robot.

FDD Results

Under this faulty situation, FDD algorithm detects the fault occurred at the left motor

of the second robot, and estimates the value of the loss of effectiveness γ2L . Figure 4.20
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shows that the two-stage Kalman filter can estimate the real value of loss of effectiveness

γ2L within 2 sec of fault occurrence. Also, the estimate of the fault magnitude of the loss

of effectiveness of the right actuator γ2R remains close to zero. As can be seen from Figure

4.21, the left motor of the second follower is subject to a severe fault, leading to a loss of

its effectiveness by about 92%. The robot cannot continue its planned mission and gets out

from the formation.

Task Re-assignment Results

Once the fault is detected and diagnosed, the second follower stops and sends a signal to

the leader. Under this fault situation, the leader sends new formation command to the

remaining healthy robot. According to the possible formation patterns presented in Figure

4.6, new formation data are sent to the first follower which is 0.75 m and 270◦. Figure

4.22 illustrates the robots’ trajectories during mission execution. As can be observed, the

team starts the formation in a triangular shape, and ending in the form of line formation

due to the fault occurrence of the fault in the second follower robot at 12 sec. Moreover,

Figure 4.23 illustrates the desired formation angle of the first follower. From Figure 4.23,

the first follower starts reconfiguring its formation once it receives the new desired formation

command.
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Figure 4.20: The true and estimated values of the loss of effectiveness γ2L in Case 1
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Figure 4.23: Desired formation angle of the first follower showing the formation reconfigu-
ration according the faulty situation in Case 1

Figure 4.24 presents snapshots of the real experiment. When t = 9 sec, the robots still

perform the desired formation configuration in the normal condition. When t = 13 sec, the

first follower receives the new formation data, and starts reconfiguring its position relative

to the leader according to the new situation. At t = 16 sec, the second follower completely

gets out from the formation, and the remaining two followers continue the mission, while the

first follower changes its position corresponding to the new formation configuration with a

parallel motion pattern. When t = 32 sec, the leader and the first follower ends the planned

mission.

(a) t = 9 sec (b) t = 14 sec (c) t = 19 sec (d) t = 32 sec

Figure 4.24: Snapshots of the experiment in Case 1
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4.4.2 Analysis of Experimental Results of Case 2

In this scenario, at time instant t = 13 sec, a fault is injected to the left motor of the second

follower. The loss of effectiveness of the left motor is about 38%. So, the second follower is

still capable of continuing the mission but with degraded performance.

FDD Results

Under this situation, the fault is detected and the value of the loss of effectiveness γ2L is

estimated by means of the FDD algorithm. It is illustrated in Figure 4.25 that the two-stage

Kalman filter can estimate the real value of the loss of effectiveness γ2L within 2 sec of fault

occurrence. Also, the estimate of γ2R remains close to zero. Based on Figure 4.26, the left

motor of the second follower is subject to a fault, resulting in a loss of its effectiveness by

about 38%. The robot continues its planned mission with 62% of its capability.

Motion Re-Coordination Results

Based on FDD result, the second follower sends the fault information to the leader. As a

result, and according to Eq. (4.38), the leader updates the reference trajectory states. From

Figure 4.27, the second follower tries to accommodate this fault and continue the mission,

together with leader and the first follower.
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Figure 4.25: The true and estimated values of the loss of effectiveness γ2L in Case 2
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Figure 4.26: The output of the left motor in Case 2
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Figure 4.27: Robots’ trajectories during mission execution considering the fault occurred in
the second follower in Case 2
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As can be observed from Figure 4.28, the proposed motion re-coordination is achieved.

All the robots after 15 sec reduce the linear velocities by incorporating the fault occurred in

the second follower. Each robot moves only with about 62% of its capability. If the healthy

robots do not reduce their capabilities, then the desired formation configuration cannot be

maintained due to the degraded capability of the faulty robot. Therefore, it reduces but

with expected formation performance should be achieved in such a case.
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Figure 4.28: Robots’ linear velocities during mission execution considering the fault occurred
in the second follower in Case 2
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Chapter 5

FTCC of Multiple WMRs Based on

Particle Swarm Optimization (PSO)

In this chapter, an FTCC algorithm based on time optimal formation reconfiguration is

presented. As mentioned in Chapter 4, there are two main challenges in case of severe fault

occurrence; i) how to generate the new formation configuration, which is already solved

by the optimal assignment (as presented in Section 4.2.1); and ii) how to reconfigure the

formation to the new one.

As mentioned in Chapter 2, during formation reconfiguration, sudden changes have oc-

curred to the robots’ control inputs. If these inputs are not bounded, the robots behavior

will become unstable, the formation may be broken, and the robots may collide. In Chapter

4, MPC is adopted as the WMRs’ controllers. Then, the control inputs’ constraints can be

considered. In case of using any other controllers rather than MPC, the control inputs can’t

be bounded.

To solve this problem, formation reconfiguration stage is formulated as an optimal con-

trol problem considering dynamic and algebraic constraints, hence intelligence optimization

methods can be utilized to obtain the optimal solution. The objective is to achieve the

proposed formation configuration within minimum time considering the control inputs con-

straints and avoiding the collision among team members. A hybrid approach based on

CPTD and PSO is adopted to solve this problem.

This chapter is organized as follows. First, the design of the nonlinear controller that
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achieves the desired formation in fault-free case is presented. Second, the proposed FTCC

algorithm is illustrated. Finally, simulation and experimental results are presented to vali-

date the effectiveness of the proposed algorithm.

5.1 Nonlinear Formation Controller in Fault-Free Case

The nonlinear controller presented here is similar to (Li et al., 2004) and (Tao and Shan,

2014). Let a team of j differentially-driven WMRs moving within a leader-follower scheme,

where j ∈ {l, 1, 2, . . . , N} denotes the formation configuration of the leader l and N followers.

As mentioned in Section 3.3, the leader l should track a predefined trajectory (xr(t), yr(t))

in a time interval t ∈ [0, T ]. On the other hand, the followers N should follow the leader

maintaining a desired formation configuration (ld− φd) relative to the leader where ld and φ

are the follower’s relative distance and angle with respect to the leader.

Let lx and ly be the projection of ld along x and y coordinates, thus:

lx = −(xl − xf ) cosφl − (yl − yf ) sinφl (5.1)

ly = (xl − xf ) sinφl − (yl − yf ) cosφl (5.2)

Also, the desired formation configuration can be presented along the x and y axes as:

ldx = ld cosφd (5.3)

ldy = ld sinφd (5.4)

Differentiating Eqs. (5.1), (5.2), (5.3), and (5.4) achieves:

l̇x = (xl − xf ) sin(φl)ωl − (ẋl − ẋf ) cosφl − (yl − yf ) cos(φl)ωl − (ẏl − ẏf ) sinφl

= lyωl − ẋl cosφl − ẏl sinφl + ẋf cosφl + ẏf sinφl

(5.5)

l̇y = (xl − xf ) cos(φl)ωl + (ẋl − ẋf ) sinφl + (yl − yf ) sin(φl)ωl − (ẏl − ẏf ) cosφl

= −lxωl + ẋl sinφl − ẏl cosφl − ẋf sinφl + ẏf cosφl

(5.6)
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From the kinematics of the differentially-driven WMR, it is known that:

v = ẋ cosφ+ ẏ sinφ (5.7)

and the nonholonomic constraint of the differentially-driven WMRs is presented as:

ẋ sinφ− ẏ cosφ = 0 (5.8)

Using Eqs. (5.7) and (5.8), one can obtain:

l̇x = lyωl − vl + ẋf cosφl + ẏf sinφl (5.9)

l̇y = −lxωl − ẋf sinφl + ẏf cosφl (5.10)

An error variable φe = φf−φl is defined to represent the difference between the leader and

follower orientation angles. Substituting the error in Eqs. (5.9) and (5.10), and employing

the trigonometric identities, then:

l̇x = lyωl − vl + ẋf cos(φf − φe) + ẏf sin(φf − φe)

= lyωl − vl + (ẋf cosφf + ẏf sinφf ) cosφe + (ẋf sinφf − ẏf cosφf ) sinφe

= lyωl − vl + vf cosφe

(5.11)

l̇y = −lxωl − ẋf sin(φf − φe) + ẏf cos(φf − φe)

= −lxωl − (ẋf sinφf − ẏf cosφf ) cosφe + (ẋf cosφf − ẏf sinφf ) sinφe

= −lxωl + vf sinφe

(5.12)

To achieve the desired formation, it is required to design a control law to get vf and ωf

to ensure that lx and ly converge to the desired values ldx and ldy, i.e.,

lim
t→∞

(ldx(t)− lx(t)) = 0 (5.13)

lim
t→∞

(ldy(t)− ly(t)) = 0 (5.14)

Considering the formation errors xe = ldx− lx and ye = ldy − ly, then the control objective

is to design a control law for xe, ye and φe asymptotically stable. Since the desired formation
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configuration (ld − φd) is constant during the mission execution, l̇dx = l̇dy = 0. As a result,

the error dynamics is written as:

ẋe = l̇dx − l̇x = −lyωl + vl − vf cosφ (5.15)

ẏe = l̇dy − l̇y = lxωl − vf sinφ (5.16)

φ̇e = φf − φl (5.17)

When ly = ldy − ye and lx = ldx − xe, then the error dynamics can be represented as:

ẋe = yeωl − l sinφdωl − vf cosφe + vl (5.18)

ẏe = −xeωl + l cosφdωl − vf sinφe (5.19)

φ̇e = φf − φl (5.20)

Define new variables f1 and f2, where:

f1 = −l sinφdωl + vl (5.21)

f2 = l cosφdωl (5.22)

then the error dynamics can be further written as:

ẋe = yeωl − vf cosφe + f1 (5.23)

ẏe = −xeωl − vf sinφe + f2 (5.24)

φ̇e = φf − φl (5.25)

Finally, the control law is designed as:

vf = (k1xe + ωlye + f1) cosφe − (−k2ye + ωlxe − f2) sinφe (5.26)

ωf = (−k1xe − ωlye − f1) sinφe − (−k2ye + ωlxe − f2) cosφe (5.27)

where k1 > 0 and k2 > 0 are the controller gains.
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5.2 FTCC Algorithm

In case of severe fault occurrence, the main purpose of the FTCC is to:

1. Detect and diagnose the actuator fault;

2. Re-assign the formation mission on the healthy members if one or more robots cannot

complete the mission due to severe faults;

3. Reconfigure the formation according to the re-assigned mission within the robots’ input

constraints; and

4. Avoid the collision between the team members during reconfiguration.

As illustrated in Figure 5.1, the FTCC scheme consists of:

1. The FDD scheme in order to detect and diagnose the value of loss of effectiveness of

actuator faults;

2. The task re-assignment and decision making mechanism in which the mission is re-

assigned based on the new situation; and

3. The formation reconfiguration algorithm within constraints of the robots’ control in-

puts and collision avoidance.

Figure 5.1: Task re-assignment mechanism
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Remark 5.1. The FDD unit and the task re-assignment and decision making algorithm

presented in Chapter 4 are applied to achieve the first and second objectives of the FTCC

algorithm. Here, the formation reconfiguration algorithm considering the control inputs’ and

collision avoidance constraints will be presented.

After deciding the optimal formation configuration (by means of the optimal assignment),

the team members start reconfiguring their positions. The objective is to achieve the desired

formation configuration in minimum time, considering the control inputs constraints and

avoiding the collision during reconfiguration.

PSO is a population based stochastic optimization technique that mimic the behavior

of a colony or swarm of insects, a flock of birds; or a school of fish. The PSO algorithm

mimics the behavior of these social organisms. The word particle denotes, for example, a

bee in a colony or a bird in a flock. Each particle in a swarm behaves in a distributed way

using its own intelligence and the group intelligence of the swarm. As such, if one particle

discovers a good path to food, the rest of the swarm will also be able to follow the good path

instantly even if their location is far away in the swarm (Rao, 2009). The PSO algorithm

was originally proposed by Eberhart and Kennedy (1995).

PSO algorithm initiates a random population of potential solutions to search an optimal

solution within the optimization problem hyperspace (Arora, 2012). A single potential solu-

tion is called particle. Each particle p in the swarm is assumed to have two characteristics:

a position and a velocity. Each particle keeps tracking its own current position and its best

solution (in terms of the food source or objective function value) achieved during running

the algorithm. According to the philosophy of PSO, each particle stores not only its current

value but also its best value achieved so far. This best value is called the local best and

is denoted by xp. In addition, each particle tracks the best position for the entire swarm,

which is called the global best and denoted by xG. PSO algorithm consists of changing the

velocity of each particle in each iteration towards xp and xG (Arora, 2012).

Compared to other stochastic optimization technique such as GA, PSO has an attractive

feature is that it has fewer algorithmic parameters to specify and adjust. It does not use

any of the GAs’ evolutionary operators such as crossover and mutation. Also, the algorithm

does not require binary number encoding or decoding. Thus, it is easier to implement on
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the computer. Moreover, PSO can find the optimal solution with a fast convergence speed.

PSO has been successfully applied to many classes of problems, such as mechanical and

structural optimization and multi-objective optimization, artificial neural network training,

and fuzzy system control (Arora, 2012).

Recalling Section 2.3.1, the robots’ control inputs are continuous. However, PSO cannot

solve the objective function with continuous control inputs. In this case, the control inputs

should be piecewise linearized to replace the continuous ones. CPTD method is thereby

adopted to obtain the approximate objective function and the constraints to simplify the

problem for the PSO.

5.2.1 Problem Formulation

As mentioned in Section 2.3.1, the posture of each healthy robot is defined as:

qi = [xi, yi, φi]
T ∈ R3, ∀i ∈ {1, 2, . . . , F}.

where F represents the number of the remaining healthy robots.

The mathematical model of the robot presented in Eq. (2.4) can be represented in the

following compact form:

q̇i(t) = f(t, qi(t), ui(t)), t ∈ [0, T ], ∀i ∈ {1, 2, . . . , F}, (5.28)

where T is time of reconfiguration. Therefore, for the whole team of healthy robots, define

the state and control inputs vectors as:

X = [qT1 , q
T
2 , . . . , q

T
F ] ∈ R3F ,

U = [u1, u2, . . . , uF ] = {U(t)|∀t ∈ [0, T ]},

and the formation system dynamics can be described as:

Ẋ(t) = f(t,X(t), U(t)), t ∈ [0, T ]. (5.29)

Given the continuous control inputs U and the initial state X(0) = X0, the state of the

whole system at any time t ∈ [0, T ] can be determined uniquely in the following form:
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X(t) = X(0) +

∫ t−

0

f(τ,X(τ), U(τ))dτ. (5.30)

According to Eq. (5.30), the state X(t) can be defined only by the control inputs U in

the form of X(t|U).

5.2.2 Objective Function and Constraints

According to (Furukawa et al., 2003), the standard canonical form of the objective function

can be expressed as:

J(U) = Φ0(X(T |U)) +

∫ T

0

L0(t,X(t|U), U(t))dt, (5.31)

and the general form of the M equality and inequality constraints is given by:

gi(U) = Φi(X(τi|U)) +

∫ τi

0

Li(t,X(t|U), U(t))dt ≤ 0,∀i ∈ {1, . . . ,M}. (5.32)

The time optimal control problem for the whole formation can be formulated as finding

the optimum control inputs U and the terminal time T to minimize the objective function

J(U) such that:

min
U,T

J(U), (5.33)

J(U) = T, (5.34)

subject to the following constraints:

(i) The primary constraints:

Umin ≤ U(t) ≤ Umax,∀t ∈ [0, T ], (5.35)

T > 0. (5.36)

(ii) The free terminal constraints, which means that at T , the team should reach the desired

formation configuration. This constraint can be represented as:
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g1(U, T ) =
F∑
i=2

{qi − q1 − Fdnew} = 0, ∀i = {2, . . . , F}, (5.37)

where Fdnew is the new desired formation between the leader robot denoted by 1, and

the followers denoted by {2, . . . , F}.

(iii) The collision avoidance constraint: The distance between any two robots i and j can

be defined as:

di,j(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2. (5.38)

To avoid the collision, di,j(t) must be greater than the safety collision distance D, then

the collision avoidance constraint can be presented as:

di,j(t) ≥ D, ∀t ∈ [0, T ], ∀i, j ∈ {1, . . . , F}, i 6= j. (5.39)

5.2.3 CPTD Method

The idea of CPTD is to approximate the control inputs ui by a piecewise function of a set

of static parameters. The optimum time spectrum T is partitioned into n time intervals,

and the time of each interval in ∆t. The sets of static parameters and time-step interval are

considered as the design variables of the optimization problem, while the objective function

is minimized by PSO. The detailed procedure the steps of CPTD are:

Step 1 Dividing the time T : The optimum time T is divided into n intervals, n ∈ {1, 2, . . . }

intervals, each of time ∆t ∈ R+, thus,

T = n∆t. (5.40)

According to the corresponding control inputs at each time interval, the states of the system

are found by integrating Eq. (2.4).

Step 2 The piecewise linearization of the m control inputs: For the n time intervals, define

m× n constants for the ith healthy robot as:

Ωi = {σij ∈ Rm|∀j ∈ {1, . . . , n}}, ∀i ∈ {1, . . . , F}. (5.41)
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Then, each continuous control inputs for the ith robot can be approximated by a piecewise

function as:

ûi(t;n,Ωi) =
n∑
j=1

σjλj(t) ≡ ui(t), (5.42)

where λj(t) is given by:

λj(t) =

1 (j − 1)∆t ≤ t ≤ j∆t

0 otherwise.

(5.43)

Eq. (5.43) guarantees that the robots stop when they reach the desired formation configu-

ration.

Define the set of all piecewise constants for all healthy robots as Ω = {Ω1, . . . ,ΩF}. Then,

the set of approximated control inputs can be expressed as:

Û(t;n,Ω) = {û1(t, n,Ω1), . . . , ûF (t;n,ΩF )}. (5.44)

The objective turns to obtain the parameter set Ω. In real-time implementation, it is im-

portant to choose an appropriate value for n. Increasing n will exponentially increase the

computational time, while reducing n will cause loss of accuracy (Furukawa et al., 2003).

Step 3 Re-formulating the objective function and constraints: Since Ω and ∆t become the

new design variables which replace the original ones u and T , the objective function and its

constraints should be re-formulated to fit for the following optimization problem:

J ≡ min
Ω,∆t

n∆t, (5.45)

subject to:

0 < ∆t, (5.46)

(umin)i ≤ σij ≤ (umax)i, ∀j ∈ {1, . . . , n},∀i ∈ {1, . . . , F}, (5.47)

ĝ1(Ω,∆t) =
F∑
i=2

{qi − q1 − Fdnew} = 0 (5.48)

di,j(∆t) ≥ D, ∀i, j ∈ {1, . . . , F}, i 6= j. (5.49)
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Numerically, this problem can be regarded as a nonlinear constrained problem, in which PSO

algorithm is applied. Figure 5.2 illustrates the proposed formation reconfiguration algorithm.

5.2.4 PSO Algorithm

Based on the above description, the objective is to obtain the optimum values of σij and ∆t.

The PSO can be executed as the following steps:

Step 1 Construction of the vector of particles’ positions: For each robot i, the set of m×n

control parameters Ωi is

Ωi = [σ11 σ21 . . . σm1 σ12 σ22 . . . σm2 . . . . . . σ1n σ2n . . . σmn]

Thus, the particle position including the time ∆t can be expressed as x = [Ω1 Ω2 . . . ΩF ∆t],

where the length of x is (Ndv = m× n×F + 1). The particles’ position vector therefore can

be written as:

x = [σ1
11 σ

1
21 . . . σ

1
m1 . . . σ

1
1n σ

1
2n . . . σ1

mn σ
2
11σ

2
21 . . . σ

2
m1 . . . σ

2
1n σ

2
2n . . . σ2

mn . . .

. . . σF11 σ
F
21 . . . σ

F
m1 . . . σ

F
1n σ

F
2n . . . σFmn ∆t]

Step 2 Initialization: Select the number of particles in swarm Np, the cognitive and social

parameters c1, c2 respectively. Usually, (Np = 5Ndv to 10Ndv), c1, c2 can be chosen between

0 and 4. Select the maximum number of iterations kmax. Set the initial velocity of each

Figure 5.2: Time optimal formation reconfiguration controller block diagram
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particle v(i,0) to 0. Set the iteration Counter k to 1. Using a random procedure, an initial

random population of particles is generated based on the following:

x
(i,0)
j = XjL + rij(XjU −XjL),∀j = {1, . . . , Ndv}, ∀i = {1, . . . , Np}, (5.50)

where rij is a uniformly distributed random number between 0 and 1. rij is generated for

each design variable in each particle. XjL and XjU represent the lower and upper bounds of

each design variable, respectively.

Step 3 Cost function calculation: To use PSO, the problem should be solved as an un-

constrained problem. Therefore all constraints presented in Eqs. (5.35) to (5.39) should be

included in the objective function. The objective function is formulated as:

J = min
Ω,∆t

n∆t+ ρ · ĝ1(Ω,∆t) +
F−1∑
i=1

F∑
j=i+1

[ρij ·max(0, D − di,j(t))], (5.51)

where ρ and ρij are the punishment constant coefficients. After calculating J , the local best

solution for each particle xp and the global best solution xG are evaluated.

Step 4 Velocity calculation: Calculate the velocity of each particle as:

v(i,k+1) = ωv(i,k) + c1r1(x(i,k)
p − x(i,k)) + c2r2(x

(k)
G − x

(i,k)),∀i = {1, . . . , Np}, (5.52)

where ω is the inertia weight which enables the swarm to converge more accurately and

efficiently (Rao, 2009). ω can be calculated as:

ωk =

(
ωmax −

ωmax − ωmin
kmax

)
k, (5.53)

where ωmin and ωmax are the initial and final values of the inertia weight with a commonly

used values 0.4 and 0.9, respectively.

Step 5 Update the new positions of particles : The new position of each particles is:

x(i,k+1) = x(i,k) + v(i,k+1),∀i = {1, . . . , Np}. (5.54)
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Step 6 Update the solution: Calculate the objective function at all new positions.

Step 7 Terminate criterion: Check for convergence of the iterative process. If the stopping

criterion is satisfied, stop. Otherwise, set k = k + 1 and go to step 3.

The PSO procedure is illustrated in Figure 5.3, while the overall FTCC strategy is summa-

rized in Algorithm 5.1.

Remark 5.2. In this thesis, the stopping criterion is selected such that if the cost function

does not change in 20 consecutive iterations, then terminate the iteration process.

Algorithm 5.1 Task re-assignment and formation reconfiguration strategy for a team of
WMRs

1: for each follower do

2: detect detect γji

3: send detect γji to the leader

4: if γ̄ ≤ γji ≤ 1 then

5: for the leader do

6: determine the remaining number of the healthy robots F = N − 1

7: send the new formation data S to the followers

8: end for

9: for each healthy follower do

10: calculate the cost matrix c

11: apply the Hungarian algorithm

12: assign to the corresponding slot

13: end for

14: end if

15: end for

16: Start the PSO procedure

17: Obtain the optimum solution

18: for each healthy robot do

19: receive the optimum control inputs

20: integrate Eq. (2.4)

21: perform the formation reconfiguration

22: end for
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Figure 5.3: PSO flow chart

5.3 Numerical Validation via Simulation

To verify the proposed control strategies in this chapter, a group of WMRs are used in

simulation to validate the effectiveness of the proposed control algorithm. All the values

adopted for the controller parameters are shown in Table 5.1.

During simulation, a team of five WMRs perform a triangular formation with the same

scenario presented in Section 4.3.2.

According to the assignment results, the healthy robots start reconfiguring their positions
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Table 5.1: Control system parameters for the FTCC algorithm based on PSO

Parameter Value Parameter Value

ωmax 0.5 rad/s ωmin -0.5 rad/s

vmin 0 vmax 0.5 m/s

c1 2 c2 2

kmax 2000 Np 300

D 0.5 m

to achieve the new formation. The proposed CPTD-PSO algorithm is capable of generating

the optimum control inputs. Figures 5.4 and 5.5 illustrate the robots’ trajectories during

mission execution. On the basis of the Hungarian Algorithm, the 3rd and the 4th followers

start changing their positions with respect to the leader to change the whole formation shape

to be a diamond one. Figure 5.4 shows the effectiveness of proposed algorithm in both fault-

free and faulty case. It’s clear that the robots converge to the desired trajectories in the

fault-free case, and healthy robots change their positions according to the results obtained

from the Hungarian algorithm and the integrated CPTD-PSO approach. The (�) marker in-

dicates the position of the robots just before the formation reconfiguration. Figure 5.5 gives

snapshots of the formation of the team during mission execution indicating the fault-free,

reconfiguration, and after fault occurrence stages.

Figure 5.6 illustrates the robots’ trajectories during the reconfiguration stage only.

Within a maximum distance of 4 m, each robot reaches the final formation configuration.

Also. it is evident that during reconfiguration the robots achieve the collision avoidance

constraint presented in Eq. (5.39).

Figures 5.7 and 5.8 exhibit the optimal control inputs for the healthy robots during recon-

figuration. It is observed that the PSO algorithm can satisfy the control inputs’ constraints

presented in Eq. (5.35). Also, it is shown that the time of each interval ∆t is almost 2.75

sec. As can be seen from Figure 5.9, the distances between all robots including the faulty

one are greater than the safety distance D meaning that the proposed algorithm achieves

the collision avoidance constraint presented in Eq. (5.39). It is revealed in Figure 5.10 the

objective function converges to the minimum value within a 457 iterations. Note that the

computational time of the algorithm consumes only 15 sec.
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Figure 5.4: Robots’ trajectories during mission execution in simulation
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Figure 5.5: Snapshot of the formation of the team during simulation
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Figure 5.6: Robots’ trajectories during formation reconfiguration during simulation
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Figure 5.7: Robots’ linear velocities during reconfiguration in simulation
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Figure 5.8: Robots’ angular velocities during reconfiguration
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Figure 5.10: The objective function history along the number of iterations during simulation

5.4 Experimental Results Assessment

Due to the space limitation in the laboratory, and since the FDD scheme and the task re-

assignment algorithm are already validated in Chapter 4, only three robots are used in the

experiment considering the formation reconfiguration stage only. i.e., it is assumed that the

team consists of four robots, while one of them (the virtual one) subject to severe fault, then

the other three robots start reconfigure their formation. Therefore the experiment started

from the reconfiguration stage with three robots as shown in Figure 5.11.

Once the first follower (the virtual one) is subject to a severe fault, it separated from

the formation due to the actuator fault. the leader sends new formation commands to the

Figure 5.11: The configuration of robots during the experiment
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remaining three followers as slots’ coordinates with respect to the leader position. These

data are:

S1 = [0.65,−0.65], S2 = [−0.65,−0.65].

According to the Hungarian algorithm, the second follower remains in its position, while

the third one changes its position to fill the first slot.

According to the assignment results, the three healthy robots start reconfiguring their

positions to achieve the new formation. The optimal control inputs are generated by the

developed algorithm. Figures 5.12 and 5.13 illustrate the robots’ trajectories during recon-

figuration. Based on the assignment results, third follower starts change its position relative

to the leader such that the whole formation shaped can be maintained. It is evidenced that

within a maximum distance of 2 m, each robot reaches the final formation configuration.

Figures 5.14 and 5.15 show the optimal control inputs for the robots during reconfigu-

ration. The CPTD-PSO algorithm can satisfy the control inputs’ constraints presented in

Eq. (5.35). Also, the time of each interval ∆t is almost 2 sec. As can be seen from Figure

5.16, the distances between all robots are greater than the safety distance D achieving the

collision avoidance constraint in Eq. (5.39).
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Figure 5.12: Robots’ trajectories during the experiment
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Figure 5.13: Snapshot of the formation of the team during the experiment
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Figure 5.14: Robots’ linear velocities during the experiment
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Figure 5.15: Robots’ angular velocities during the experiment
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Figure 5.16: Distances between robots during the experiment
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Figure 5.17 illustrates snapshots of the real experiment. Initially, when t = 1 sec, the

robots are in their positions. at t = 6 sec, the robots are still moving to achieve the new

configuration; when t = 10 sec, the robots have successfully completed the desired formation

configuration.

(a) t = 1 s (b) t = 9 s (c) t = 10 s

Figure 5.17: Snapshots of the experiment
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this dissertation, cooperative control strategies of WMRs in normal and faulty cases

are presented. Different algorithms are proposed step by step to address some drawbacks

of the preceding algorithms. These algorithms are verified in numerical simulations and

real-time experiments, while more emphasis has been placed on experimentally verifying the

developed approaches through indoor testing. The successful implementation of the proposed

algorithms is considered as a key aspect of the overall contribution.

In Chapter 3, the problems of trajectory tracking, as well as formation control of multiple

WMRs are addressed. A novel algorithm combining both dynamic feedback linearization

and LMPC is presented. The advantage of the developed algorithm is that by using feedback

linearization, a nonlinear problem is solved and the robot model becomes LTI with new

control inputs. Moreover, LMPC is applied to the linearized model such that the optimum

control inputs are generated to perform the trajectory tracking as well as the entire formation

mission. Based on such a control design strategy, the computational burden associated

with MPC (especially with increasing the number of robots) can be significantly reduced

since the model is LTI. The proposed algorithm is accompanied by a theoretical proof of

stability. Compared to the relevant works, this algorithm can be applied in real-time since

the computational burden issue has been avoided. An obstacle avoidance algorithm based

on the mechanical impedance concept is adopted to each robot controller, allowing working
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in cluttered environments. To prove the applicability of the proposed control algorithm in

real applications, a team of WMRs is paired with a team of UAVs for forest monitoring

and fire detection application. In this scheme, the problem of limited running time and

limited payload of UAVs can be avoided. Another advantage of this algorithm lies in that

communication efforts between the UAVs and the ground station can be decreased, since the

WMR leader is identified as the local mobile ground station during gathering data about

the fire evolution. This saves more UAVs power, and allows rapid analysis of the data

collected by the UAVs. Finally, the proposed control policies are validated by presenting

the simulations results and experimental results in different cases.

FTCC of WMRs is investigated in Chapter 4. Compared to the existing studies in

the literature, this work provides a new solution for FTCC problem with integration of the

FDD function and experimental testing validation. FDD of actuator faults in the team

has been achieved by the TSKF algorithm and integrated with the FTCC strategy to form

an active FTCC framework. The proposed FTCC scheme is capable of i) reconfiguring

the formation if one or more robots are faulty and cannot complete the mission; and ii) re-

coordinating the motion of each robot in the team if one or more robots subject to fault but

can still continue the mission with degraded performance. Furthermore, both the numerical

and experimental results exemplify that the formation system is stabilized, converges to the

desired formation and reconfigures the formation shape in the presence of severe actuator

faults, and re-coordinate the mission in the event of non-severe faults. In case of severe fault

occurrence, two methods are used. The Graph Theory approach, and the optimal assignment.

Although the FTCC algorithm based on the Graph Theory is simple, decentralized, and can

deal with the case of the faulty leader since all robots have a prior knowledge of all possible

fault cases. However, it is difficult to implement in real-time especially with increasing

the number of robots. On the other hand, formulating the FTCC problem as an optimal

assignment can solve the previously mentioned demerits.

In Chapter 5, the problem of FTCC is further studied. Based on a combination of

CPTD and PSO, an FTCC scheme is proposed to reconfigure the formation when one or

more robots cannot complete the mission due to severe faults. The proposed algorithm has

three major advantages: i) it is simple and can be implemented in real-time; ii) there is
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no need to use a specific controller such as MPC to handle the robots’ constraints since the

reconfiguration problem is formulated as a constrained optimization problem; and iii) the

collision avoidance is explicitly considered in the design procedure. Therefore, there is no

need to add a collision avoidance algorithm, resulting in less complexity of the robot control

system. Moreover, any other constraint can be directly added to the problem according

to the mission specifications. From the aspect of computational burden, it is favorable to

apply the proposed algorithm in real-time applications since PSO converges rapidly to the

optimum solution. Simulation and experimental results have validated the applicability of

the proposed scheme.

6.2 Future Works

Despite various degrees of success have been achieved in this thesis work, cooperative control

of WMRs is still very challenging. Since optimal control strategies like MPC is highly de-

sired in multi-vehicle cooperation, then learning-based model predictive control (LBMPC)

is considered as a promising approach. Most recently, LBMPC has been applied to a team

of UAVs but not applied yet to the WMRs. LBMPC combines techniques from statisti-

cal learning, which provides an improvement in the performance, with control tools which

guarantee stability, robustness, and safety. The idea is that the robots can learn their un-

modeled dynamics using the learning algorithm at every time step and the updated system

is controlled by the MPC to achieve the desired formation configuration.

In this dissertation, only robot kinematics are considered. With increasing the robots’

weight and speed, robot dynamics cannot be ignored. Designing MPC controllers to handle

robot dynamics to form a two-layer MPC approach could be further investigated.

More studies on FTCC are still needed. Sensor and the communication faults/failures

are not considered in this thesis, although they are very important from the aspect of sys-

tem’s safety. Different decision making algorithms rather than the optimal assignment can

be used. For example, fuzzy logic can be considered as an excellent option. Moreover, the

case of the faulty leader needs further investigation.
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6.3 Publications

6.3.1 Journal Publications

Kamel, M. A., Yu, X., and Zhang, Y. M. (2016). Fault-tolerant cooperative control design

of multiple wheeled mobile robots. Submitted to IEEE Transactions on Control Systems

Technology (Under review).

6.3.2 Conference Publications

Kamel, M. A., Yu, X., and Zhang, Y. M. (2016). Fault-tolerant cooperative control of

WMRs under actuator faults based on particle swarm optimization. In International Con-

ference on Control and Fault-Tolerant Systems (SysTol) (accepted and to be presented).

Kamel, M. A., Yu, X., and Zhang, Y. M. (2016). Design of fault-tolerant cooperative con-

trol algorithm applied to WMRs against actuator faults. In American Control Conference

(ACC), pages 7092–7097.

Ghamry, K. A., Dong, Y., Kamel, M. A., and Zhang, Y. M. (2016). Real-time autonomous
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Saska, M., Vonásek, V., Krajńık, T., and Přeučil, L. (2014). Coordination and navigation of

heterogeneous mav-ugv formations localized by a hawk-eye-like approach under a model

predictive control scheme. The International Journal of Robotics Research, 33(10):1393–

1412.

152



Schwartz, I. (2000). Primus: autonomous driving robot for military applications. In

AeroSense 2000, pages 313–323. International Society for Optics and Photonics.

Seyr, M. and Jakubek, S. (2005). Mobile robot predictive trajectory tracking. In Interna-

tional Conference on Informatics in Control (ICINCO), pages 112–119.

Shojaei, K., Shahri, A. M., and Tabibian, B. (2013). Design and implementation of an inverse

dynamics controller for uncertain nonholonomic robotic systems. Journal of Intelligent &

Robotic Systems, 71(1):65–83.

Shojaei, K., Tarakameh, A., and Shahri, A. M. (2009). Adaptive trajectory tracking of wmrs

based on feedback linearization technique. In International Conference on Mechatronics

and Automation (ICMA), pages 729–734.

Sira-Ramı́rez, H. and Castro-Linares, R. (2010). Trajectory tracking for non-holonomic cars:

A linear approach to controlled leader-follower formation. In 49th IEEE Conference on

Decision and Control (CDC), pages 546–551.

Sugihara, K. and Suzuki, I. (1996). Distributed algorithms for formation of geometric pat-

terns with many mobile robots. Journal of Robotic Systems, 13(3):127–139.

Taheri-Kalani, J. and Khosrowjerdi, M. J. (2014). Adaptive trajectory tracking control

of wheeled mobile robots with disturbance observer. International Journal of Adaptive

Control and Signal Processing, 28(1):14–27.

Takahashi, H., Nishi, H., and Ohnishi, K. (2004). Autonomous decentralized control for

formation of multiple mobile robots considering ability of robot. IEEE Transactions on

Industrial Electronics, 51(6):1272–1279.

Tanner, H. G., Loizou, S. G., and Kyriakopoulos, K. J. (2003). Nonholonomic navigation

and control of cooperating mobile manipulators. IEEE Transactions on Robotics and

Automation, 19(1):53–64.

Tanner, H. G., Pappas, G. J., and Kumar, V. (2004). Leader-to-formation stability. IEEE

Transactions on Robotics and Automation, 20(3):443–455.

153



Tao, P. and Shan, L. (2014). Formation control of multiple wheeled mobile robots via

leader-follower approach. In Chinese Control and Decision Conference (CCDC), pages

4215–4220.

Thorpe, C., Hebert, M. H., Kanade, T., and Shafer, S. A. (1988). Vision and navigation

for the carnegie-mellon navlab. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 10(3):362–373.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale,

J., Halpenny, M., and Hoffmann, G. (2006). Stanley: The robot that won the darpa grand

challenge. Journal of field Robotics, 23(9):661–692.

Thumati, B. T., Dierks, T., and Sarangapani, J. (2012). A model-based fault tolerant control

design for nonholonomic mobile robots in formation. The Journal of Defense Modeling

and Simulation: Applications, Methodology, Technology, 9(1):17–31.

Tzafestas, S. G. (2014). Introduction to Mobile Robot Control. Elsevier.

van Essen, H. A. and Nijmeijer, H. (2001). Non-linear model predictive control for con-

strained mobile robots. In European Control Conference (ECC), pages 1157–1162.

Wang, J. and Xin, M. (2013). Integrated optimal formation control of multiple unmanned

aerial vehicles. IEEE Transactions on Control Systems Technology, 21(5):1731–1744.

Wang, Z., He, Y., and Han, J. (2011). Distributed receding horizon formation control for

multi-vehicle systems with relative model. In IFAC World Congress, pages 13576–13581.

Xie, F. (2007). Model predictive control of nonholonomic mobile robots. PhD thesis, Okla-

homa State University.

Xie, F. and Fierro, R. (2008). First-state contractive model predictive control of nonholo-

nomic mobile robots. In American Control Conference (ACC), pages 3494–3499.

Xiong, W., Chen, Z., and Zhou, R. (2007). Optimization for multiple flight vehicles formation

reconfiguration using hybrid genetic algorithm. In Chinese Guidance, Navigation and

Control Conference, pages 501–506.

154



Xu, Q., Yang, H., Jiang, B., Zhou, D., and Zhang, Y. M. (2014). Fault tolerant formations

control of UAVs subject to permanent and intermittent faults. Journal of Intelligent &

Robotic Systems, 73(1-4):589–602.

Yang, H., Jiang, B., Yang, H., and Zhang, K. (2015). Cooperative control reconfiguration in

multiple quadrotor systems with actuator faults. In IFAC Symposium on Fault Detection,

Supervision and Safety for Technical Processes (SAFEPROCESS), pages 386–391.

Yang, H., Jiang, B., and Zhang, Y. M. (2014). Fault-tolerant shortest connection topology

design for formation control. International Journal of Control, Automation and Systems,

12(1):29–36.

Yang, J.-M. and Kim, J.-H. (1999). Sliding mode control for trajectory tracking of nonholo-

nomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, 15(3):578–

587.

Yu, X. and Jiang, J. (2015). A survey of fault-tolerant controllers based on safety-related

issues. Annual Reviews in Control, 39(1):46–57.

Yu, X., Liu, Z., and Zhang, Y. M. (2016). Fault-tolerant formation control of multiple UAVs

in the presence of actuator faults. International Journal of Robust and Nonlinear Control,

26(12):2668–2685.

Yuan, C., Zhang, Y. M., and Liu, Z. (2015). A survey on technologies for automatic forest

fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing

techniques. Canadian Journal of Forest Research, 45(7):783–792.

Yun, X. and Yamamoto, Y. (1992). On feedback linearization of mobile robots. Technical

Reports (CIS), page 503.

Zhang, Y. M. and Jiang, J. (2002). Active fault-tolerant control system against partial

actuator failures. IEE Proceedings-Control Theory and Applications, 149(1):95–104.

Zhang, Y. M. and Jiang, J. (2003). Fault tolerant control system design with explicit con-

sideration of performance degradation. IEEE Transactions on Aerospace and Electronic

Systems, 39(3):838–848.

155



Zhang, Y. M. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant

control systems. Annual Reviews in Control, 32(2):229–252.

Zhang, Y. M. and Mehrjerdi, H. (2013). A survey on multiple unmanned vehicles formation

control and coordination: Normal and fault situations. In International Conference on

Unmanned Aircraft Systems (ICUAS), pages 1087–1096.

156


	Abstract
	Acknowledgments
	Dedication
	Contents
	List of Figures
	List of Tables
	Nomenclature
	List of Abbreviations
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Thesis Objective
	1.4 Research Contributions
	1.5 Thesis Outline

	2 Background, Literature Review, and Preliminaries
	2.1 Basic Motion Tasks of a Single Wheeled Mobile Robot (WMR)
	2.2 Nonholonomic WMRs
	2.3 Differentially-Driven WMR
	2.3.1 Kinematic Model of a Differentially-Driven WMR
	2.3.2 Controllability and Stabilization at a Point
	2.3.3 Brockett's Theorem
	2.3.4 Controllability and Stabilization about a Trajectory
	2.3.5 Differentially-Driven WMR Control

	2.4 Model Predictive Control (MPC)
	2.4.1 Overview
	2.4.2 WMRs Control Based on MPC

	2.5 Cooperative Control of WMRs
	2.5.1 Cooperative Control Strategies
	2.5.2 Cooperative Control Classes
	2.5.3 Cooperative Control of WMRs Based on MPC

	2.6 Fault Tolerant Cooperative Control (FTCC)
	2.7 Experimental Setup
	2.7.1 QGV Description and its Control System Architecture
	2.7.2 Ground Station
	2.7.3 Vision System


	3 Cooperative Control and Obstacle Avoidance of Multiple WMRs
	3.1 Feedback Linearization of WMRs
	3.1.1 Input-State Linearization of WMRs
	3.1.2 Input-Output Linearization of WMRs

	3.2 Single Robot Trajectory Tracking
	3.2.1 Feedforward Commands Generation
	3.2.2 Feedback Control Design
	3.2.3 Stability Analysis

	3.3 Formation Controller
	3.4 Obstacle Avoidance Algorithm
	3.5 Cooperative Control of UAVs-WMRs for Forest Monitoring and Fire Detection
	3.6 Simulation Results
	3.6.1 Case 1: Single Robot Trajectory Tracking
	3.6.2 Case 2: Cooperative Control in an Obstacle-Free Environment
	3.6.3 Case 3: A Team of Cooperative WMRs Facing Static Obstacles
	3.6.4 Case 4: A Team of Cooperative WMRs Facing Moving Obstacles
	3.6.5 Case 5: Cooperative Control of UAVs - WMRs for Forest Monitoring and Fire Detection Mission

	3.7 Experimental Results
	3.7.1 Case 1: Single Robot Trajectory Tracking
	3.7.2 Case 2: Cooperative Control in an Obstacle-Free Environment
	3.7.3 Case 3: Cooperative Control in a Cluttered Environment


	4 FTCC of Multiple WMRs Under Actuator Faults
	4.1 Fault Detection and Diagnosis Scheme (FDD)
	4.1.1 Robot Actuator Modeling
	4.1.2 The Two-Stage Kalman Filter (TSKF) Design

	4.2 Decision Making Algorithm
	4.2.1 Task Re-Assignment Algorithm Based on the Graph Theory
	4.2.2 Task Re-Assignment Based on the Optimal Assignment
	4.2.3 Motion Re-Coordination

	4.3 Numerical Validation via Simulation
	4.3.1 Case 1: A Severe Fault Occurs in the Leader Robot, While the Graph Theory is Applied
	4.3.2 Case 2: A Severe Fault Occurs in the Second Follower, While the Optimal Assignment is Applied
	4.3.3 Case 3: A Fault Occurs in the Second Follower, However it Can Still Complete the Mission

	4.4 Experimental Results Analysis
	4.4.1 Analysis of Experimental Results of Case 1
	4.4.2 Analysis of Experimental Results of Case 2


	5 FTCC of Multiple WMRs Based on Particle Swarm Optimization (PSO)
	5.1 Nonlinear Formation Controller in Fault-Free Case
	5.2 FTCC Algorithm
	5.2.1 Problem Formulation
	5.2.2 Objective Function and Constraints
	5.2.3 CPTD Method
	5.2.4 PSO Algorithm

	5.3 Numerical Validation via Simulation
	5.4 Experimental Results Assessment

	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works
	6.3 Publications
	6.3.1 Journal Publications
	6.3.2 Conference Publications


	Bibliography

