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ABSTRACT 

Janakiraman, Vaishnavi, M.S.E.E., Department of Electrical Engineering, Wright State 

University, 2022. Fault-Tolerant Control of Autonomous Ground Vehicles under Actuator 

and Sensor Faults 

Unmanned ground vehicles have a wide range of potential applications including 

autonomous driving, military surveillance, emergency responses, and agricultural robotics, 

etc. Since such autonomous vehicles need to operate reliably at all times, despite the 

possible occurrence of faulty behaviors in some system components, the development of 

fault-tolerant control schemes is a crucial step in ensuring reliable and safe operations. In 

this research, a fault-tolerant control scheme is developed for a nonlinear ground vehicle 

model with possible occurrence of both actuator faults in the form of loss of effectiveness 

(LOE) and sensor bias faults.  Based on the vehicle and fault models under consideration, 

the unknown fault parameters are estimated online using adaptive estimation methods.  The 

estimated fault parameters are used for accommodating the fault effect to maintain 

satisfactory control performance even in the presence of faults. Real-time algorithm 

implementation and demonstration using the Qbot2e ground robot by Quanser are 

conducted to show the effectiveness of the fault-tolerant control algorithm. 
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1 INTRODUCTION 

1.1  Fault Diagnosis, Estimation and Accommodation (An Overview) 
 

Faults are the undesirable changes in the normal functioning behavior of the robot. Faults 

can potentially degrade the robot’s performance, or even lead to unstable or unsafe 

behaviors. Faults can be categorized as hardware and software faults. Software faults are 

bugs in the control algorithm and software code. As described in [1,5], hardware faults can 

be categorized into three subcategories: 

• Sensor faults corrupt the system measurements, causing a deviation between actual 

and sensed input/output variables, 

• Actuator faults represent discrepancies between commanded input and actual input 

to the system, 

• Process/component faults are physical failures of the system components which 

lead to changes in the normal system dynamics. 

In this research, we focus on actuator and sensor faults in ground robotic systems. These 

faults can cause degraded path-following capabilities of the robot, or even catastrophic 

effects. To ensure safe and reliable operations of the robotic systems, fault-tolerant control 

algorithms must be developed to accommodate the undesirable effects of the faults, so that 

acceptable control performance is maintained even in the presence of such faults. 

To detect and accommodate several types of faults in the system, the fault-tolerant control 

procedure is further subdivided into three main steps:  
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➢ Fault Detection and Isolation determines the occurrence of the faults in the system 

components and localize the specific faulty components.  

➢ Fault Estimation provides an estimate of the fault size. Fault estimation helps in 

determining the nature of the fault and thus facilitates the design of the 

accommodation strategies. 

➢ Fault Accommodation corrects the fault effects using the fault information obtained 

from the above two steps, hence recovering the tracking performance of the control 

system. 

1.2 Literature Survey 
 

Unmanned ground vehicles are autonomous robots that operate automatically without the 

human intervention. It has various applications including military surveillance, emergency 

rescue, manufacturing, and areas where human intervention should be minimized. They 

can conduct operations by observing the environment and taking actions to adapt to 

environmental changes.  Important components of the control system for ground vehicles 

include path planning, obstacle avoidance, trajectory following, fault detection and fault 

accommodation, etc. 

Faults are undesired changes in the ground robotic system components which are hard to 

avoid given the hostile environment conditions. Depending on the condition of the fault, 

various methods have been proposed for fault detection and accommodation of ground 

robots, which can be sub divided into three main categories: 

1. Data-driven methods which provide feature extraction and data classification for 

detecting the faulty behaviors. It includes neural network-based model or 
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reinforcement learning algorithms. In [7], fault-tolerant control design of wheeled 

planetary rover was presented. A nominal mode controller is used for trajectory 

tracking, and the impact of faults due to failure in the steering joints in the system was 

analyzed. The algorithm presented in [11] identifies faults in wheeled mobile robots by 

using multiple parallel Kalman Filters as estimators and comparing with the 

backpropagation neural network for fault detection and accommodation. Kalman filters 

are used for parameter estimation, and the neural network model is trained to process 

the residuals to determine which type of mechanical and sensor faults have occurred.  

2. Model-based methods which uses a specific system model for fault detection and 

accommodation. In [6], the researcher has presented the use of Multiple Model 

Adaptive Estimation (MMAE) for identifying different types of faults and a particle 

filter-based approach for fault estimation. A backstepping sliding mode controller is 

proposed to improve the performance of the inductive machine in the presence of faults 

in [12]. Parity space and observer-based fault diagnosis approaches with applications 

to ground vehicle are presented in [14]. This model-based method is extremely specific 

to the model making it exceedingly difficult to process with a generic type of 

application limiting it to a specific application. 

3.  Knowledge based fault detection and diagnosis (FDD) methods [15-18], which are a 

hybrid of the first two categories involve helping a trade-off between the two 

approaches in providing best solution for FDD. The hybrid approach for FDD provides 

solution to overcome lack of data issues and thus increase the FDD accuracy. The 

design of active fault-tolerant control methods for electrical vehicles is presented in 

[15]. It  uses a baseline controller, a FDD mechanism to accommodate the fault 
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occurred due to actuator and decision mechanism to achieve better performance after 

the fault is detected and accommodated. Similar method also called as fault-tolerant 

cooperative control  for wheeled mobile robots are used to estimate the fault presence 

in an autonomous mobile robot to enhance the fault-tolerance performance of the 

system using FDD mechanism using both the data-driven and model- based methods 

for its operation [16]. Triple-step approach-based fault tolerant control (FTC) in [17], 

does dual purpose of first finding the uncertainties in the mobile vehicles to retain the 

stability followed by providing high-safety for the closed-loop driver system using 

model predictive control method and the data-driven method for sample collection. 

Detailed study on FDD based learning is discussed in [18], which focuses on different 

attributes of Multi-Robot System (MRS) along with various FDD approaches providing 

a detailed insight to the FDD for MRS. The 4WDW- EV system model is used along 

with the data collection at every sample period for fault estimation. Fault Detection and 

Diagnosis (FDD) based mechanism as described in the above papers, has many 

challenges to distinguish the fault types in the system due to the degraded performance 

and diagnosing the root cause of the faults. 

1.3 Research Objectives and Contributions 
 

The papers discussed above presented very interesting and powerful fault diagnosis and 

fault-tolerant control methods for ground robots. However, there exist limited results that 

consider simultaneous actuator and sensor faults in ground vehicles. For instance, only bias 

actuator faults were considered in recent work [22] with an assumption that the bias faults 

in the left and right wheels are of the same value. Additionally, fault-tolerant control 
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methods that explicitly integrates the tasks of the fault diagnosis and fault accommodation 

are still lacking. 

The objective of this research is to address some of the limitations in the existing research 

works. Firstly, it considers simultaneous actuator faults and sensor faults in the ground 

vehicle. Also, the actuator faults in two wheels are allowed to be of different sizes making 

it more general and suitable for real-time situations. Secondly, fault diagnosis and 

accommodation tasks are seamlessly integrated by using adaptive parameter estimation 

techniques. The algorithms are implemented using a real-time testing environment to 

demonstrate the effectiveness of the fault-tolerant system. 

1.4  Thesis Organization 
 

This research is documented in the following order: 

• Chapter 1: This chapter gives an introduction to the Fault Diagnosis, Estimation 

and Accommodation. It also involves a literature survey and research objectives of 

this thesis.  

• Chapter 2: This chapter briefly explains the hardware and software parts which 

was used during the process of research. It also describes the robotic system as well 

as the Vicon camera system used for the thesis. 

• Chapter 3: This presents the problem statement for the research. It provides an 

insight to the thesis scope before deep diving to the accomplishments. 

• Chapter 4: This chapter presents the adaptive fault parameter estimation algorithm 

for different types of faults in the ground vehicle. It describes the implementation 
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of the fault-tolerant and fault diagnosis algorithm while dealing with all the faults 

encountered in the system. 

• Chapter 5: This chapter shows the real-time experimental results validating the 

effectiveness of the fault-tolerant control algorithm. 

• Chapter 6: This last chapter provides some conclusions and remarks about possible 

directions for future research. 
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2 HARDWARE AND SOFTWARE 

2.1 QBot2e Ground Robot Hardware 

This research involves the usage of a ground robot by Quanser also referred to as QBot2e. 

It is a nonholonomic wheeled mobile robot incorporating ground vehicle with Microsoft 

Kinect sensor along with Quanser embedded target [3]. QBot2e is interfaced with the 

MATLAB/Simulink with the QUARC software on the target machine. The Hardware-In-

Loop (HIL) block set is the block which handles reading the sensors and writing to the 

outputs. The RGB and depth image data are collected from the Kinect sensor (not used in 

this research). The controllers are developed using the Simulink model with QUARC on 

the host computer, and their models are downloaded to the target which is the Unmanned 

Ground Vehicle (QBot2e) for it to perform the desired actions as specified by the Simulink 

model. 

This communication between the host computer and the target is shown diagrammatically 

as follows: 

 

Figure 1: Communication between host computer and the target 
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The Unmanned Ground Robot has various parts on it which conduct different operations 

for the robot to follow the desired objective and extract maximum information out of it for 

better functioning and robust capabilities. Hardware components included in the robot are 

listed in the following table. 

  

QBot2e Hardware and Software 

Components 

Description 

Two Central Drive wheels (Right and left drive 

wheels) 

The two wheels are independently driven 

forward or backward for easy maneuverability. 

Castors (Front and Back) It is used to stabilize and alignment 

adjustments making the vehicle more stable 

and predictable under various terrain 

conditions. 

Microsoft X-box Kinect Vision Sensor Helps extract the depth information from 

capturing the motion of the robot and is also 

using Robot Operating System (ROS) 

providing indoor navigation feature. 

Integrated Bumpers (Right, left and front) It is used to absorb the vibrations caused by the 

motors preventing damage due to obstacle 

hitting to the other components in the robotic 

applications. 
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Cliff Sensors Mechanical cliff sensors are used to alert the 

controller of the robot if it has reached the drop 

off when it runs on the ground. 

HIL Initialize Block Configures drives and hardware interface with 

the QBot2e. 

HIL Read and Write Block It used the read sensory data to drive the 

motors of the robot. 

Video 3D capture It captures the depth and RGB data which can 

be used for SLAM 

Video Compressed Display It helps in transmitting the RGBD data 

extracted to the PC from QBot2e for further 

working with the data collected. 

  

 

2.2  Vicon 

The Vicon camera system is expertized to provide a tailored motion capture system for 

capturing the motion of the ground robot. It has various applications in fields like life 

science, media and entertainment, virtual reality based on location, and engineering 

education. 

This platform provides high accuracy positioning system to capture the optical data of the 

robot when in motion. These four cameras emit infrared light from LED array and the 

positioning of the object is specified using markers set during the Vicon calibration 

process. Vicon is also used in the quadrotor system to calculate attitude estimates for roll 
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and pitch angles. For the ground robot used in this research, the Vicon system provides 

measurements for the pose of the vehicle, including positions in the X-Y coordinate and 

the heading angle. 

   

Figure 2: Quanser QBot2e Ground robot with Xbox Kinect and LIDAR from front (left) and 

side (right) 

 

The ground station or the PC is made to communicate with the ground vehicle and the 

Vicon system using a wireless network. These cameras are designed to capture the position 

and altitude of the ground robot. The process starts with creating an object inside the Vicon 

Tracker 2.0 software so that the environment identifies the robot, and this makes it easy for 

differentiating between the objects inside the boundary (see Figure 3). 
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Figure 3: Vicon camera system visualization through Vicon tracker 2.0 

 

Figure 4: Vicon Tracker 2.0 showing Ground robot using Vicon cameras. 
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The blocks inside the Simulink model brings in the data collected by the camera and 

extracts x, y and yaw angles which is then compared with the reference signals coming 

from the trajectory generation block for tracking purposes. 

 

Figure 5: Simulink model showing Vicon system connected to MATLAB to extract poses of 

the robot. 
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3 PROBLEM FORMULATION 

Let us consider the equation of kinematic model represented by the following state space 

model: 

𝑥̇ =  
(𝑉𝑟

𝑎 + 𝑉𝑙
𝑎) 𝑐𝑜𝑠𝜑

2
 

𝑦̇ =  
(𝑉𝑟

𝑎 + 𝑉𝑙
𝑎) 𝑠𝑖𝑛𝜑

2
                                                       (1) 

𝜑̇ =  
(𝑉𝑟

𝑎 + 𝑉𝑙
𝑎) 

𝑑
           

where x, 𝑦 and φ are the position and the heading angle of the robot, 𝑉𝑟
𝑎 and 𝑉𝑙

𝑎 are the 

velocities of the robot right and left wheels, and d is the distance between left and right 

wheels. 

In this research, we consider loss of effectiveness actuator faults and sensor bias faults in 

the ground vehicle. 

Loss of effectiveness in the actuator results in partial failure of the motors driving the left 

and right wheels. Specially, the effect of the LOE actuator fault is described by: 

𝑉𝑟
𝑎= 𝑉𝑟

𝑐+ β (t − 𝑇𝑟
𝛼) 𝛼𝑟  𝑉𝑟

𝑐                                               (2) 

𝑉𝑙
𝑎= 𝑉𝑙

𝑐+ β (t − 𝑇𝑙
𝛼) 𝛼𝑙  𝑉𝑙

𝑐                                                (3) 

where 𝑉𝑟
𝑎 and 𝑉𝑙

𝑎  are the actual velocities of the right and left wheels respectively as 

defined in  (1), 𝑉𝑟
𝑐 and 𝑉𝑙

𝑐 are the commanded velocities for the right and left wheels 

respectively, 𝛼𝑟 and 𝛼𝑙   represent the unknown parameters of actuator faults due to loss of 

effectiveness. The functions β (t − 𝑇𝑟
𝛼) and β (t − 𝑇𝑙

𝛼) describe the fault time profiles of 
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the actuator faults with  𝑇𝑟
𝛼and 𝑇𝑙

𝛼 representing the unknown time instants when the faults 

occur. For simplicity, in this research we only consider abrupt faults. In other words, we 

assume the fault time profiles can be modelled as: 

β (t − 𝑇𝑟
𝛼) = {

0,   if t <  𝑇𝑟
𝛼

1,    if t ≥  𝑇𝑟
𝛼               (4) 

β (t − 𝑇𝑙
𝛼) = {

0,   if t <  𝑇𝑙
𝛼

1,    if t ≥  𝑇𝑙
𝛼               (5) 

Therefore, In the absence of actuator faults in the system (nominal case), the actual 

velocities of the right and left wheels are represented as: 

𝑉𝑟
𝑎= 𝑉𝑟

𝑐                                                             (6) 

𝑉𝑙
𝑎= 𝑉𝑙

𝑐                                                             (7) 

In other words, the actual wheel velocities and the commanded velocities are equal to each 

other, representing a healthy robot. 

In the presence of actuator faults (i.e., for t ≥  𝑇𝑟
𝛼 or t ≥  𝑇𝑙

𝛼), we have 

𝑉𝑟
𝑎= 𝛼𝑟𝑉𝑟

𝑐+ 𝑉𝑟
𝑐                                                         (8) 

 𝑉𝑙
𝑎= 𝛼𝑙𝑉𝑙

𝑐 + 𝑉𝑙
𝑐                                                        (9) 

The special case of  𝛼𝑟 𝑜𝑟 𝛼𝑙  = 0 represents a healthy motor for the right or left wheel of 

the robot. This research focuses on partial loss of effectiveness of the actuators by 

specifying -1<𝛼𝑟 ≤ 0 and -1<𝛼𝑙 ≤ 0 . 

Additionally, we consider constant bias sensor faults in the robotic system described by 

𝑉𝑟
𝑠= 𝑉𝑟

𝑎+ β (t − 𝑇𝑟
𝑏) 𝑏𝑟                                                (10) 
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𝑉𝑙
𝑠= 𝑉𝑙

𝑎+ β (t − 𝑇𝑙
𝑏) 𝑏𝑙                                                 (11) 

where 𝑉𝑟
𝑎 and 𝑉𝑙

𝑎  are the actual velocities for right and left wheels respectively as defined 

in (1), 𝑉𝑟
𝑠 and 𝑉𝑙

𝑠 are the measured velocities for the wheels,  β (t − 𝑇𝑟
𝑏) and β (t − 𝑇𝑙

𝑏)  

are fault time profile functions of the sensor fault which occur at unknown time instants 

𝑇𝑟
𝑏and 𝑇𝑙

𝑏 respectively. Again, each fault time profile function is assumed to be a step 

function representing an abrupt fault. Also, the unknown constants 𝑏𝑟 and 𝑏𝑙 represent the 

unknown sensor biases in right and left wheels, respectively. 

The objective of this research is to develop adaptive fault parameter estimation and fault-

tolerant control algorithms to accommodate the effect of actuator and sensor faults in the 

robotic system and maintain acceptable control performance even in the presence of the 

faults under consideration.  
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4 ADAPTIVE FAULT PARAMETER ESTIMATION 

ALGORITHM  

The unknown fault parameters can be estimated to provide the fault information, which 

can be used to compensate for the fault effects. The estimation methods can possibly be 

online or offline. Online parameter estimation methods operate in a real time manner to 

immediately process new sensor data samples when they become available, whereas offline 

estimation methods involve two different steps including collecting all the data and 

processing the data batch together for parameter estimation. Thus, online parameter 

estimation algorithms are in general more efficient and less computationally expensive 

when compared to the offline estimation methods. 

The design of online adaptive estimation methods involves three consecutive steps: 

• Selection of an appropriate parameterization of the plant model, so that the model 

is linear in the unknown parameters. 

• Develop an online estimation model. 

• Design and analysis of adaptive laws for estimating the unknown plant parameter 

vector.  

In this research, the fault parameter estimation algorithm is designed by comparing the 

positions and the heading angle of the robot measured by the Vicon system with the 

corresponding estimates generated by an adaptive estimation scheme. The estimated fault 

magnitude is utilized by the controller to adjust the control signal to compensate for the 

fault effects. 
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4.1 Sensor bias Adaptive Estimation Algorithm 

Sensor faults represent faulty measurement values provided by the sensors. There could be 

various reasons for the sensor faults including broken contact with the robot or adverse 

environmental factors, leading to sensor related faults in the robot functioning. Sensor 

faults in the robot system can possibly degrade the control performance or even lead to 

stability and safety issues. 

Let us consider the robotic system dynamics described in (1) and the sensor fault model 

given by (10) and (11). In the presence of a sensor bias fault in the encoder measuring the 

right wheel velocity, the robotic system model can be rewritten as: 

𝑥̇ =  
(𝑉𝑟

𝑠 + 𝑉𝑙
𝑠) 𝑐𝑜𝑠𝜑

2
− 𝑏𝑟   (

 𝑐𝑜𝑠𝜑

2
)  

𝑦̇ =  
(𝑉𝑟

𝑠 + 𝑉𝑙
𝑠) 𝑠𝑖𝑛𝜑

2
− 𝑏𝑟 (

𝑠𝑖𝑛𝜑

2
)                                         (12) 

𝜑̇ =  
(𝑉𝑟

𝑠 − 𝑉𝑙
𝑠) 

𝑑
− 𝑏𝑟  (

1

𝑑
)                                                      (13) 

 

By using the series-parallel estimation model [2], the adaptive fault parameter estimator is 

designed as follows:  

[
𝑥̇̂
𝑦̇̂
] = [

−𝑎𝑚(𝑥̂ − 𝑥)
−𝑎𝑚(𝑦̂ − 𝑦)

] + 

[
 
 
 
(𝑉𝑟

𝑠 + 𝑉𝑙
𝑠) 𝑐𝑜𝑠𝜑

2
(𝑉𝑟

𝑠 + 𝑉𝑙
𝑠) 𝑠𝑖𝑛𝜑

2 ]
 
 
 
−  𝑏̂𝑟

1  [
(
 𝑐𝑜𝑠𝜑

2
) 

(
𝑠𝑖𝑛𝜑

2
) 

]                     (14) 

𝜑̇̂ = −𝑎𝑚(𝜑̂ − 𝜑) +
(𝑉𝑟

𝑠 − 𝑉𝑙
𝑠) 

𝑑
 − 𝑏̂𝑟

2   (
1

𝑑
)                                          (15) 
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where 𝑎𝑚 > 0 is a design constant, 𝑥̂, 𝑦̂ and φ̂ are the estimated robot position and heading 

angle respectively, 𝑏̂𝑟
1 and 𝑏̂𝑟

2 are the estimated sensor bias generated based on the robotic 

position and heading angle, respectively. 

Based on the Lyapunov stability theory [2], the adaptive algorithms for the two adaptive 

fault estimators given above are designed as follows: 

𝑏̇̂𝑟
1 = 𝛾1 [

(
− 𝑐𝑜𝑠𝜑

2
) 

(
−𝑠𝑖𝑛𝜑

2
) 

]

′

[
(𝑥 − 𝑥̂)

(𝑦 − 𝑦̂)
]                                       (16) 

𝑏̇̂𝑟
2 = 𝛾2 (−

1

𝑑
) (𝜑 − 𝜑̂)                                                       (17) 

where 𝛾1 > 0 and 𝛾2 > 0  are the learning rates. Additionally, (𝑥 − 𝑥̂) and (𝑦 − 𝑦̂) are 

position estimation errors and  (𝜑 − 𝜑̂) is the heading angle estimation error, 

respectively. 

Analogously, with regard to the sensor bias fault in the left wheel encoder, the adaptive 

fault estimators and the adaptive algorithms are designed as: 

[
𝑥̇̂
𝑦̇̂
] = [

−𝑎𝑚(𝑥̂ − 𝑥)
−𝑎𝑚(𝑦̂ − 𝑦)

] + 

[
 
 
 
(𝑉𝑟

𝑠 + 𝑉𝑙
𝑠) 𝑐𝑜𝑠𝜑

2
(𝑉𝑟

𝑠 + 𝑉𝑙
𝑠) 𝑠𝑖𝑛𝜑

2 ]
 
 
 
−  𝑏̂𝑙

1  [
(
 𝑐𝑜𝑠𝜑

2
) 

(
𝑠𝑖𝑛𝜑

2
) 

]             (18) 

𝜑̇̂ = −𝑎𝑚(𝜑̂ − 𝜑) + 
(𝑉𝑟

𝑠 − 𝑉𝑙
𝑠) 

𝑑
+ 𝑏̂𝑙

2  (
1

𝑑
)                                            (19) 
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𝑏̇̂𝑙
1 = 𝛾1 [

(
−𝑐𝑜𝑠𝜑

2
) 

(
−𝑠𝑖𝑛𝜑

2
) 

]

′

[
(𝑥 − 𝑥̂)

(𝑦 − 𝑦̂)
]                                              (20) 

𝑏̇̂𝑙
2 = 𝛾2 (

1

𝑑
) (𝜑 − 𝜑̂)                                                                 (21) 

where 𝑎𝑚 > 0 is a design constant, 𝑥̂, 𝑦̂ and φ̂ are the estimated robot position and heading 

angle, respectively, (𝑏̂𝑙
1  and 𝑏̂𝑙

2 ) are the estimated sensor bias generated based on the 

robotic position and heading angle, respectively. Additionally, 𝛾1 and 𝛾2 are the learning 

rates, (𝑥 − 𝑥̂) and (𝑦 − 𝑦̂) are position estimation errors and  (𝜑 − 𝜑̂) is the heading 

angle estimation error, respectively. 

Note that the regressor term 
1

𝑑
 in the adaptive algorithms (17) and (21) has opposite 

signs. As a result, in the presence of a sensor fault in the right wheel encoder, the 

matched estimator described in (14) and (15) will provide the correct estimation, 

while the unmatched estimators (18) and (19) designed for the sensor bias in the left 

wheel encoder will generate estimators with different signs.  

Based on this observation, the final estimated values for sensor bias  𝑏𝑟 and 𝑏𝑙 are 

designed as: 

𝑏̂𝑟  =  
𝑏̂𝑟

1 + 𝑏̂𝑟
2

2
                                                                  (22) 

𝑏̂𝑙  =  
𝑏̂𝑙

1 + 𝑏̂𝑙
2

2
                                                                  (23) 
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where, 𝑏̂𝑟 and 𝑏̂𝑙  are the final sensor bias estimates that will be used for fault 

accommodation, 𝑏̂𝑟
1 and 𝑏̂𝑟

2 are the estimates provided by estimators (14) and (15), 

respectively. Similarly, 𝑏̂𝑙
1  and  𝑏̂𝑙

2  are generated by estimators (18) and (19). 

Remarks: In the presence of a bias 𝑏𝑟 is in the right wheel encoder, both 𝑏̂𝑟
1 and 𝑏̂𝑟

2 will 

converge to values around the actual value of 𝑏𝑟 . Therefore, the average 𝑏̂𝑟 would 

provide a robust estimation around its true value. However, the estimates 𝑏̂𝑙
1  and  𝑏̂𝑙

2 , 

generated by the unmatched estimators have opposite signs. As a result, the average 

𝑏̂𝑙 given by (23) would converge to a value around zero. Hence, the sensor fault can be 

successfully isolated. 

 

4.2 Loss of Effectiveness Adaptive Estimation Algorithm 

Let us consider the robotic system dynamics described in (1) and the LOE actuator fault 

model given by (2) and (3). In the presence of a loss of effective fault in the motor driving 

the right wheel, the robotic system model can be rewritten as: 

𝑥̇ =  
(𝑉𝑟

𝑐 + 𝑉𝑙
𝑐) 𝑐𝑜𝑠𝜑

2
 + 𝛼𝑟  (

 𝑉𝑟
𝑐𝑐𝑜𝑠𝜑

2
)         

𝑦̇ =  
(𝑉𝑟

𝑐 + 𝑉𝑙
𝑐) 𝑠𝑖𝑛𝜑

2
+ 𝛼𝑟  (

𝑉𝑟
𝑐𝑠𝑖𝑛𝜑

2
)                                           (24) 

𝜑̇ =  
(𝑉𝑟

𝑐+𝑉𝑙
𝑐) 

𝑑
+ 𝛼𝑟  (

𝑉𝑟
𝑐

𝑑
)                                                                     (25)  
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By using series-parallel adaptive estimation model [2], the adaptive fault parameter 

estimator is designed as follows:  

[
𝑥̇̂
𝑦̇̂
] = [

−𝑎𝑚(𝑥̂ − 𝑥)
−𝑎𝑚(𝑦̂ − 𝑦)

] + [

(𝑉𝑟
𝑐 + 𝑉𝑙

𝑐) 𝑐𝑜𝑠𝜑

2
(𝑉𝑟

𝑐 + 𝑉𝑙
𝑐) 𝑠𝑖𝑛𝜑

2

] +  𝛼̂𝑟
1  [

(
 𝑉𝑟

𝑐𝑐𝑜𝑠𝜑

2
) 

(
𝑉𝑟

𝑐𝑠𝑖𝑛𝜑

2
) 

]        (25) 

𝜑̇̂ = −𝑎𝑚(𝜑̂ − 𝜑) +
(𝑉𝑟

𝑎 − 𝑉𝑙
𝑎) 

𝑑
 + 𝛼̂𝑟

2  (
𝑉𝑟

𝑐

𝑑
)                                     (26) 

where 𝑎𝑚 > 0 is a design constant, 𝑥̂, 𝑦̂ and φ̂ are the estimated robot position and heading 

angle, respectively, 𝛼̂𝑟
1 and 𝛼̂𝑟

2  are the estimates of the loss of effectiveness fault parameter 

generated based on the robotic position and heading angle, respectively. 

Based on the Lyapunov stability theory [2], the adaptive algorithms for the two adaptive 

fault estimators given above are designed as: 

𝛼̇̂𝑟
1 = 𝛾1 [

(
 𝑉𝑟

𝑐𝑐𝑜𝑠𝜑

2
) 

(
𝑉𝑟

𝑐𝑠𝑖𝑛𝜑

2
) 

]

′

[
(𝑥 − 𝑥̂)

(𝑦 − 𝑦̂)
]                                      (27) 

𝛼̇̂𝑟
2 = 𝛾2 (

𝑉𝑟
𝑐

𝑑
) (𝜑 − 𝜑̂)                                                           (28) 

where 𝛾1 > 0 and 𝛾2 > 0  are the learning rates. Additionally, (𝑥 − 𝑥̂) and (𝑦 − 𝑦̂) are 

position estimation errors and  (𝜑 − 𝜑̂) is the heading angle estimation error, 

respectively. 

Analogously, with regard to the LOE actuator fault in the left wheel motor, the adaptive 

fault estimators are designed as: 
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[
𝑥̇̂
𝑦̇̂
] = [

−𝑎𝑚(𝑥̂ − 𝑥)
−𝑎𝑚(𝑦̂ − 𝑦)

] + [

(𝑉𝑟
𝑐 + 𝑉𝑙

𝑐) 𝑐𝑜𝑠𝜑

2
(𝑉𝑟

𝑐 + 𝑉𝑙
𝑐) 𝑠𝑖𝑛𝜑

2

] +  𝛼̂𝑙
1   

[
 
 
 
 (

 𝑉𝑙
𝑐𝑐𝑜𝑠𝜑

2
) 

(
𝑉𝑙

𝑐𝑠𝑖𝑛𝜑

2
) 

]
 
 
 
 

       (29) 

𝜑̇̂ = −𝑎𝑚(𝜑̂ − 𝜑) + 
(𝑉𝑟

𝑐 − 𝑉𝑙
𝑐) 

𝑑
− 𝛼̂𝑙

2   (
𝑉𝑙

𝑐

𝑑
)                                       (30) 

𝛼̇̂𝑙
1 = 𝛾1

[
 
 
 
 (

 𝑉𝑙
𝑐𝑐𝑜𝑠𝜑

2
) 

(
𝑉𝑙

𝑐𝑠𝑖𝑛𝜑

2
) 

]
 
 
 
 
′

[
(𝑥 − 𝑥̂)

(𝑦 − 𝑦̂)
]                                                                (31) 

𝛼̇̂𝑙
2 = 𝛾2 (

−𝑉𝑙
𝑐

𝑑
) (𝜑 − 𝜑̂)                                                                                (32) 

 

where 𝑎𝑚 > 0 is a design constant, 𝑥̂, 𝑦̂ and φ̂ are the estimated robot position and heading 

angle, respectively, 𝛼̂𝑙
1 and 𝛼̂𝑙

2  are the estimated loss of effectiveness fault parameter 

generated based on the robotic position and heading angle, respectively. Additionally, 

𝛾1 and 𝛾2  are the learning rates, (𝑥 − 𝑥̂) and (𝑦 − 𝑦̂) are position estimation errors, and  

(𝜑 − 𝜑̂) is the heading angle estimation error. 

Note that the regressor term 
1

𝑑
 in the adaptive estimators (26) and (30) has opposite signs. 

As a result, in the presence of a LOE actuator fault in right wheel motor, the matched 

estimator described in (25) and (26) will provide the correct estimation, while the estimates, 

𝛼̂𝑙
1 and 𝛼̂𝑙

2 generated by the unmatched estimators (29) and (30) designed for the LOE 

actuator fault in the left wheel motor will have different signs.  
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Based on this observation, the final estimated values for the LOE fault parameter  

𝛼𝑟 and 𝛼𝑙   are designed as: 

𝛼̂𝑟 = 
𝛼̂𝑟

1   +  𝛼̂𝑟
2  

2
                                                   (31) 

𝛼̂𝑙 = 
𝛼̂𝑙

1   +  𝛼̂𝑙
2   

2
                                                    (32) 

Remarks: In the presence of a LOE fault in the right wheel motor, both 𝛼̂𝑟
1 , 𝛼̂𝑟

2 will 

converge to the values around 𝛼𝑟 . Therefore, the average 𝛼̂𝑟 would provide a robust 

estimation around its true value. However, the estimates 𝛼̂𝑙
1 and  𝛼̂𝑙

2 generated by the 

unmatched estimators (29) and (30) have opposite signs. As a result, the average 𝛼̂𝑙 given 

by (32) would converge to a value around zero. Hence, the LOE actuator fault can be 

successfully isolated. 
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5 EXPERIMENTAL RESULTS 

In this chapter, the implementation and evaluation of adaptive fault-tolerant control 

algorithms are described. Real-time experimental results are shown to illustrate the 

effectiveness of the algorithm. 

5.1 MATLAB Implementation 
  

The architecture of the fault-tolerant control scheme is shown in Figure 6. It consists of 

four main components: trajectory generation, PID controller, the ground vehicle including 

the actuators and sensors, and the adaptive fault parameter estimation mechanism. The fault 

parameter estimates are provided to the PID controller for accommodating the fault effects. 

 

Figure 6: Schematic diagram of Simulink model designed for the thesis 

A simple trajectory generation algorithm is implemented, generating way points leading to 

a circular trajectory. A simple proportional controller is used as the controller component. 



25 
 

The algorithms implemented in the component of adaptive fault parameter estimation are 

described in Section 4. 

The LOE faults and sensor bias faults are simulated based on (2)-(3) and (10)-(11), 

respectively. All the algorithms were implemented using MATLAB/Simulink enhanced 

with the Quarc real-time control software from Quanser [5]. 

5.2 Nominal control performance (Without faults) 
 

This is the condition when the robot operates without any faults occurring to the system. 

In other words, the robot is in the fault-free condition where all the system components are 

working properly. The nominal PID controller is responsible for generating desired vehicle 

velocity and heading angle commands for the robot to move in a circular trajectory 

provided by the trajectory generation block. The velocity and heading angle commands 

specifies the desired velocities for the right and left wheels of the robot. The tracking 

performance of the robot is shown in Figure 7 and Figure 8.  

 

Figure 7: Tracking trajectory with the nominal controller for fault-free case. 
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Figure 8: Poses of the robot (x, y and psi angles) 

 

As it can be seen from Figure 7, the robot tracks the desired trajectory very closely in the 

fault-free condition. The pose of the robot is also shown in Figure 8 for the nominal case 

where at approximately t=70 seconds and t=190 seconds, the heading angle switches from 

−π to π to satisfy -π ≤ 𝜑 ≤ π. 

5.3 Adaptive estimation with simulated faults 
 

To observe the effects of different types of faults on the robot, faults are injected artificially 

through the real-time control software to simulate the fault effects. The following fault 

scenarios are considered: (1) fault-free; (2) single sensor fault in one of the encoders; (3) 

sensor faults in both encoders of the robot simultaneously; (4) loss of effectiveness in a 

single wheel motor; (5) loss of effectiveness in two robot wheels; (6) simultaneous actuator 

(LOE) and sensor faults in the robotic system, and (7) simultaneous faults in both the two 

motors and two encoders. 
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We will be discussing every case in detail, explaining the experimental results of the fault-

tolerant control scheme. The trajectories of the ground robot with and without fault 

accommodation will be compared, demonstrating the effectiveness of algorithms. 

5.3.1 Fault-Free Condition 
 

In this case all the control system components are free of faults. The experimental results 

of the adaptive fault parameter estimation algorithm are shown in Figure 9-10. It can be 

seen from Figure 9 that the sensor bias estimates both reach values around zero. 

Additionally, it is observed that LOE estimates have a very small value of approximately 

-0.05 instead of zero, which represents about 5% LOE.  Note that this is caused due to 

modelling uncertainties in the system. Therefore, all the fault parameter estimates are 

very small, indicating the estimation results at the fault-free conditions are satisfactory. 

 

Figure 9a and Figure 9b: Adaptive sensor bias estimates for fault-free condition. 

 



28 
 

 

Figure 10a and Figure 10b: Adaptive actuator LOE fault parameter estimates for fault-free 

condition. 

 

 

Figure 11: Trajectory performance of the fault-tolerant control scheme for fault-free case 

 

Furthermore, Figure 11 shows the trajectory tracking performance with the fault-tolerant 

control scheme, where the controller commands to the motor are adjusted using the fault 

parameter estimates, as shown in Figure 6. As it can be seen from Figure 11 and Figure 7, 
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the tracking performances are very similar, which illustrates the effectiveness of the fault-

tolerant control scheme in fault-free condition. 

5.3.2 Sensor faults 
 

1. Single sensor fault- sensor bias 𝒃𝒓= 0.07 

This is the case when one of the encoder sensors of the robot is subjected to a bias fault. 

Specifically, the fault is injected at t=50 seconds to the right wheel encoder of the robot 

with a value of 0.07.  

 

Figure 12a and Figure 12b: Adaptive sensor bias estimates for single sensor fault in the right 

wheel encoder. 

 

Figure 12 shows the estimated sensor bias generated by the adaptive algorithm. It can be 

seen that the estimated sensor bias for the right wheel encoder converges to a value of 0.07 

while the bias estimates for the left wheel is approximately around zero. 
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Additionally, the actuator LOE fault parameter estimates are given in Figure 13. As we can 

see, the estimates take very small values that are similar to the fault-free case shown in 

Figure 10. Thus, the sensor bias fault in the right wheel encoder can be successfully 

identified. 

  

 

Figure 13a and Figure 13b: Adaptive actuator LOE fault parameter estimates for single 

sensor fault in right wheel encoder. 
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Figure 14a and Figure 14b: Circular trajectory tracking for single sensor fault condition with 

and without accommodation. 

 

Figure 15a and Figure 15b: Position x with respect to time with and without accommodation 

for single sensor fault in right wheel encoder. 

 



32 
 

 

Figure 16a and Figure 16b: Position y with respect to time with and without accommodation 

for single sensor fault in right wheel encoder. 

Figure 14 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 

shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  

As can be seen from Figure 14(b), the robot’s actual trajectory without accommodation is 

way off the desired reference trajectory. In contrast, it is observed from Figure 14(a) that 

the tracking performance is successfully recovered, illustrating the effectiveness of the 

adaptive fault accommodation method. 

Figure 15 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 15(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 15(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 16 shows 
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comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 

2. Simultaneous sensor faults (𝒃𝒓=0.08 and 𝒃𝒍=-0.02) 

This is the case when both of the encoder sensors of the robot are subjected to a bias fault. 

Specifically, the faults are injected at t=50 seconds and t=100 seconds to right wheel and 

left wheel encoders of the robot, respectively, with each sensor bias being 0.08 and -0.02 

respectively.  

 

Figure 17a and Figure 17b: Adaptive sensor bias estimates for sensor fault in both encoders 

 

Figure 17 shows the estimated sensor biases generated by the adaptive algorithm. It can 

be seen that the estimated sensor biases for the right wheel and left wheel encoders 

converges to a value of 0.08 and -0.02 respectively. Additionally, the actuator LOE fault 

parameter estimates are given in Figure 18. As we can see, the estimates take very small 

values that are similar to the fault-free case shown in Figure 10. Thus, the sensor bias 

fault in both the right and left wheel encoders can be successfully identified. 
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Figure 18a and Figure 16b: Adaptive actuator LOE fault parameter estimates for sensor 

fault in both encoders. 

 

Figure 19a and Figure 19b: Circular trajectory with sensor faults in the encoders of the 

system. 
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Figure 20a and Figure 20b: Position x with respect to time with and without accommodation 

for single sensor fault in right wheel encoder. 

 

 

Figure 21a and Figure 21b: Position y with respect to time with and without accommodation 

for single sensor fault in right wheel encoder. 
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Figure 19 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 

shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  

As can be seen from Figure 17(b), the robot’s actual trajectory without accommodation is 

way off the desired reference trajectory. In contrast, it is observed from Figure 17(a) that 

the tracking performance is successfully recovered, by the adaptive fault accommodation 

method. 

Figure 20 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 20(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 20(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 21 shows 

comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 

 

5.3.3 Actuator faults due to loss of effectiveness 
 

1. Loss of effectiveness- single fault (𝜶𝒓=-0.6) 

This is the case when one of the motors of the robot is subjected to an actuator LOE fault. 

Specifically, the fault is injected at t=50 seconds to the right wheel motor of the robot with 

a value of -0.6.  
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Figure 22a and Figure 22b: Adaptive sensor bias estimates for loss of effectiveness in single 

wheel motor. 

Figure 22 shows the estimated sensor bias generated by the adaptive algorithm. It can be 

seen that the estimated sensor bias for the right and left wheels of the robot is approximately 

zero. Additionally, the actuator LOE fault parameter estimates are given in Figure 23. As 

we can see, the estimated LOE fault for the right wheel motor converges to a value of 

approximately -0.6, while the LOE estimates for the left wheel takes very small values that 

are similar to the fault-free case shown in Figure 10. Thus, the LOE actuator fault in the 

right wheel motor can be successfully identified. 
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Figure 23a and Figure 23b: Adaptive actuator LOE fault parameter estimates loss of 

effectiveness in single wheel motor. 

 

Figure 24a and Figure 24b: Circular trajectory for a single LOE faults in system. 
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Figure 25a and Figure 25b: Position x with respect to time with and without accommodation 

for single LOE fault in right wheel encoder. 

 

Figure 26a and Figure 26b: Position y with respect to time with and without accommodation 

for single LOE fault in right wheel encoder. 

Figure 24 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 

shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  
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As can be seen from Figure 24(b), the robot’s actual trajectory without accommodation 

clearly deviates from the desired reference trajectory as a result of fault. In contrast, it is 

observed from Figure 24(a) that the tracking performance is successfully recovered, 

illustrating the effectiveness of the adaptive fault accommodation method. 

Figure 25 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 25(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 25(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 26 shows 

comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 

 

2. Loss of effectiveness-simultaneous faults (𝜶𝒓=-0.4 and 𝜶𝒍 = −𝟎. 𝟔) 

This is the case when both the motors of the robot are subjected to an actuator LOE fault. 

Specifically, the faults are injected at t=50 seconds and t=100 seconds to the right and left 

wheels motor of the robot with a value of -0.4 and -0.6, respectively.  
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Figure 27a and Figure 27b: Adaptive sensor bias estimates for loss of effectiveness in two 

robot wheels. 

 

Figure 27 shows the estimated sensor bias generated by the adaptive algorithm. It can be 

seen that the estimated sensor bias for the right and left wheels of the robot is approximately 

around zero. Additionally, the actuator LOE fault parameter estimates are given in Figure 

28. As we can see, the estimated LOE fault parameters for both the right and the left wheel 

motors converge to values around -0.4 and -0.6, respectively. Thus, the LOE actuator fault 

in both the right and left wheel motors can be successfully identified. 
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Figure 28a and Figure 28b: Adaptive actuator LOE fault parameter estimates for loss of 

effectiveness in two robot wheels. 

 

Figure 29a and Figure 29b: Tracking performance of the robot in the presence of LOE of -

0.4 in the right wheel and -0.6 in the left wheel of the robot with and without fault 

accommodation. 
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Figure 30a and Figure 30b: Position x with respect to time with and without accommodation 

for two LOE faults in both wheels of the encoder. 

 

 

Figure 31a and Figure 31b: Position y with respect to time with and without accommodation 

for two LOE faults in both wheels of the encoder. 

Figure 29 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 
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shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  

As can be seen from Figure 29(b), the robot’s actual trajectory without accommodation 

significantly degrades as a result of fault occurrence. In contrast, it is observed from Figure 

29(a) that the tracking performance is successfully recovered, by the adaptive fault 

accommodation method. 

Figure 30 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 30(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 30(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 31 shows 

comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 

 

5.3.4 Simultaneous actuator (LOE) and sensor faults 
 

1. Combinations of actuator and sensor faults (𝒃𝒓=0.07 and 𝜶𝒍=-0.6) 

This is the case when one of the motors and one of the encoder sensors of the robot are 

subjected to simultaneous actuator (LOE) and sensor faults. Specifically, a fault is injected 

at t=50 seconds to the right wheel encoder of the robot with a value of 0.07 and a fault is 

injected at t=100 seconds to the left wheel motor with a value of -0.6.  
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Figure 32a and Figure 32b: Adaptive sensor bias estimates for simultaneous actuator (LOE) 

and sensor faults. 

 

Figure 32 shows the estimated sensor biases generated by the adaptive algorithm. It can be 

seen that the estimated sensor biases for the right wheel encoder converges to a value of 

0.07, while the bias estimate for the left wheel is around zero. Additionally, the actuator 

LOE fault parameter estimates are given in Figure 33. As we can see, the estimated LOE 

fault for the right wheel motor converges to a value around -0.6, while the LOE estimates 

for left wheel takes very small values that are similar to the fault-free case shown in Figure 

10. Thus, the LOE actuator fault in the right wheel motor and the sensor bias fault in right 

wheel encoder can be successfully identified. 
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Figure 33a and Figure 33b: Adaptive actuator LOE fault parameter estimates for 

simultaneous actuator (LOE) and sensor faults. 

 

Figure 34a and Figure 34b: Circular trajectory for combinational sensor and LOE fault with 

and without accommodation. 



47 
 

 

Figure 35a and Figure 35b: Position x with respect to time with and without accommodation 

for combinational sensor and LOE faults in both wheels of the robot. 

 

Figure 36a and Figure 36b: Position y with respect to time with and without accommodation 

for combinational sensor and LOE faults in both wheels of the robot. 

Figure 34 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 
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shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  

As can be seen from Figure 34(b), the robot’s tracking performance degrades as a result 

of the faults. In contrast, it is observed from Figure 34(a) that the tracking performance is 

successfully recovered, illustrating the effectiveness of the adaptive fault accommodation 

method. 

Figure 35 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 35(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 35(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 36 shows 

comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 

5.3.5 Simultaneous faults in two encoders and two motors  

1. Combinations of two actuator and two sensor faults (𝒃𝒓=0.09 and 𝜶𝒓=-

0.6, 𝒃𝒍=-0.07 and 𝜶𝒍=-0.5) 

This is the case when both of the two motors and encoder sensors of the robot are subjected 

to simultaneous actuator (LOE) and sensor faults. Specifically, the faults are injected at 

t=50 seconds to right wheel encoder and right wheel motor of the robot with a value of 

0.09 and -0.6, respectively. Also, faults are injected at t=100 seconds to left wheel encoder 

and motor with a value of -0.07 and -0.5, respectively.  
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Figure 37a and Figure 37b: Adaptive sensor bias estimates for simultaneous faults in two 

motors and two encoders. 

 

Figure 37 shows the estimated sensor biases generated by the adaptive algorithm. It can 

be seen that the estimated sensor biases for both the right wheel and left wheel encoders 

converges to a value of 0.09 and -0.07, respectively. Additionally, the actuator LOE 

faults parameter estimates are given in Figure 38. As we can see, the estimated LOE 

faults for both the right and left wheel motors converge to a value of -0.6 and -0.5, 

respectively. Thus, the LOE actuator and sensor faults can be successfully identified. 
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Figure 38a and Figure 38b: Adaptive actuator LOE fault parameter estimates for 

simultaneous faults in both encoders and motors. 

 

 

Figure 39a and Figure 39b: Comparison of tracking performance with and without 

accommodation. 
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Figure 40a and figure 40b: Position x with respect to time with and without accommodation 

for combinational sensor and LOE faults in both encoders and motors of the robot. 

 

Figure 41a and figure 41b: Position y with respect to time with and without accommodation 

for combinational sensor and LOE faults in both encoders and motors of the robot. 

Figure 39 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 
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shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  

As can be seen from Figure 39(b), the robot’s actual trajectory without accommodation 

clearly deviates from the desired reference trajectory. In contrast, it is observed from 

Figure 39(a) that the tracking performance is successfully recovered, illustrating the 

effectiveness of the adaptive fault accommodation method. 

Figure 40 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 40(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 40(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 41 shows 

comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 

2. Combinations of two actuator and two sensor faults (𝒃𝒓=0.09 and 𝜶𝒓=-

0.7, 𝒃𝒍=0.06 and 𝜶𝒍=-0.6) 

This is the case when both of the two motors and encoder sensors of the robot are subjected 

to simultaneous actuator (LOE) and sensor faults. Specifically, the faults are injected at 

t=50 seconds to right wheel encoder and right wheel motor of the robot with a value of 

0.09 and -0.7, respectively. Also, faults are injected at t=100 seconds to left wheel encoder 

and motor with a value of 0.06 and -0.6, respectively.  
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Figure 42 and Figure 42b: Adaptive sensor bias estimates for simultaneous faults in two 

motors and two encoders. 

 

Figure 42 shows the estimated sensor biases generated by the adaptive algorithm. It can 

be seen that the estimated sensor biases for both the right wheel and left wheel encoders 

converges to a value of 0.09 and 0.06, respectively. Additionally, the actuator LOE faults 

parameter estimates are given in Figure 43. As we can see, the estimated LOE faults for 

both the right and left wheel motors converge to a value of -0.7 and -0.6, respectively. 

Thus, the LOE actuator and sensor faults can be successfully identified. 
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Figure 43 and Figure 43b: Adaptive actuator LOE fault parameter estimates for 

simultaneous faults in both encoders and motors. 

 

 

Figure 44 and Figure 44b: Comparison of tracking performance with and without 

accommodation. 
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Figure 45 and figure 45b: Position x with respect to time with and without accommodation 

for combinational sensor and LOE faults in both encoders and motors of the robot. 

 

Figure 46 and figure 46b: Position y with respect to time with and without accommodation 

for combinational sensor and LOE faults in both encoders and motors of the robot. 

Figure 44 compares the fault-tolerant control tracking performance with the case without 

fault accommodation. The red line in the plot shows the desired trajectory, and blue line 

shows the actual trajectory. These signals are plotted for a time interval of t=200 seconds.  
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As can be seen from Figure 44(b), the robot’s actual trajectory without accommodation 

clearly deviates from the desired reference trajectory. In contrast, it is observed from 

Figure 44(a) that the tracking performance is successfully recovered, illustrating the 

effectiveness of the adaptive fault accommodation method. 

Figure 45 shows the comparison between x axis plots with respect to time for cases with 

and without accommodation. The red line in the plot shows the desired trajectory, and blue 

line shows the actual trajectory. As it can be seen from Figure 45(b), The trajectory without 

accommodation shows fluctuations in the actual path due to the presence of fault in the 

encoder of the robot. In contrast from Figure 45(a) the tracking performance is smooth 

proving the effectiveness of the adaptive algorithm. Similarly, from Figure 46 shows 

comparison of fault-tolerant control performance taking y axis with respect to time to 

shows the effectiveness of the control algorithm. 
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6 CONCLUSION AND FUTURE RESEARCH 
 

6.1 Conclusion 
 

The purpose of this research is to develop and implement adaptive fault estimation and 

accommodation methods for actuator and sensor faults in ground robot. Various real-time 

experiments are conducted to verify the effectiveness of the fault-tolerant control 

algorithm. 

The important contribution of this research is the development of a fault diagnosis and 

fault-tolerant control algorithm to identify and accommodate faults in the ground vehicle 

and maintain satisfactory tracking performance even in the presence of faults. Actuator 

faults (LOE) and sensor bias faults were considered. The algorithm was able to successfully 

identify the fault type, estimate the fault parameters and accommodate the fault effects. 

Fault accommodation is conducted by taking advantage of the fault information obtained 

during the adaptive estimation stage, hence achieving a seamless integration of fault 

diagnosis and accommodation tasks. 

6.2 Future Research 
 

In this research, the robot pose measurements are provided by the Vicon system, which 

clearly is limited by its coverage area. An interesting extension is to replace the Vicon 

measurements with a SLAM system.  

SLAM is an abbreviation for Simultaneous Localization and Mapping which can be 

implemented with ROS (Robot Operating System) to provide the robot with real-time pose 

measurements solely using on-board sensors. Moreover, additional functionalities 
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including path planning, obstacle avoidance and navigation can be enabled by SLAM, 

making the robot more robust and versatile with its capabilities. 

Another interesting direction for future research is to investigate the application of artificial 

intelligence methods to the fault-tolerant control problem under consideration. For 

instance, reinforcement learning method has shown great potential for complicated control 

tasks. It would also be interesting to compare the performance of reinforcement learning 

with the adaptive fault-tolerant control method presented in this research. 
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