6 research outputs found

    Application of integer quadratic programming in detection of high-dimensional wireless systems

    Get PDF
    High-dimensional wireless systems have recently generated a great deal of interest due to their ability to accommodate increasing demands for high transmission data rates with high communication reliability. Examples of such large-scale systems include single-input, single-output symbol spread OFDM system, large-scale single-user multi-input multi-output (MIMO) OFDM systems, and large-scale multiuser MIMO systems. In these systems, the number of symbols required to be jointly detected at the receiver is relatively large. The challenge with the practical realization of these systems is to design a detection scheme that provides high communication reliability with reasonable computational complexity, even as the number of simultaneously transmitted independent communication signals becomes very large.^ Most of the optimal or near-optimal detection techniques that have been proposed in the literature of relatively low-dimensional wireless systems, such as MIMO systems in which number of antennas is less than 10, become problematic for high-dimensional detection problems. That is, their performance degrades or the computational complexity becomes prohibitive, especially when higher-order QAM constellations are employed.^ In the first part of this thesis, we propose a near-optimal detection technique which offers a flexible trade-off between complexity and performance. The proposed technique formulates the detection problem in terms of Integer Quadratic Programming (IQP), which is then solved through a controlled Branch and Bound (BB) search tree algorithm. In addition to providing good performance, an important feature of this approach is that its computational complexity remains roughly the same even as we increase the constellation order from 4-QAM to 256-QAM. The performance of the proposed algorithm is investigated for both symbol spread OFDM systems and large-scale MIMO systems with both frequency selective and at fading channels.^ The second part of this work focuses on a reduced complexity version of IQP referred to as relaxed quadratic programming (QP). In particular, QP is used to reformulate two widely used detection schemes for MIMO OFDM: (1) Successive Interference Cancellation (SIC) and (2) Iterative Detecting and Decoding (IDD). First, SIC-based algorithms are derived via a QP formulation in contrast to using a linear MMSE detector at each stage. The resulting QP-SIC algorithms offer lower computational complexity than the SIC schemes that employ linear MMSE at each stage, especially when the dimension of the received signal vector is high. Three versions of QP-SIC are proposed based on various trade-offs between complexity and receiver performance; each of the three QP-SIC algorithms outperforms existing SIC techniques. Second, IDD-based algorithms are developed using a QP detector. We show how the soft information, in terms of the Log Likelihood Ratio (LLR), can be extracted from the QP detector. Further, the procedure for incorporating the a-priori information that is passed from the channel decoder to the QP detector is developed. Simulation results are presented demonstrating that the use of QP in IDD offers improved performance at the cost of a reasonable increase in complexity compared to linear detectors

    Convergence of packet communications over the evolved mobile networks; signal processing and protocol performance

    Get PDF
    In this thesis, the convergence of packet communications over the evolved mobile networks is studied. The Long Term Evolution (LTE) process is dominating the Third Generation Partnership Project (3GPP) in order to bring technologies to the markets in the spirit of continuous innovation. The global markets of mobile information services are growing towards the Mobile Information Society. The thesis begins with the principles and theories of the multiple-access transmission schemes, transmitter receiver techniques and signal processing algorithms. Next, packet communications and Internet protocols are referred from the IETF standards with the characteristics of mobile communications in the focus. The mobile network architecture and protocols bind together the evolved packet system of Internet communications to the radio access network technologies. Specifics of the traffic models are shortly visited for their statistical meaning in the radio performance analysis. Radio resource management algorithms and protocols, also procedures, are covered addressing their relevance for the system performance. Throughout these Chapters, the commonalities and differentiators of the WCDMA, WCDMA/HSPA and LTE are covered. The main outcome of the thesis is the performance analysis of the LTE technology beginning from the early discoveries to the analysis of various system features and finally converging to an extensive system analysis campaign. The system performance is analysed with the characteristics of voice over the Internet and best effort traffic of the Internet. These traffic classes represent the majority of the mobile traffic in the converged packet networks, and yet they are simple enough for a fair and generic analysis of technologies. The thesis consists of publications and inventions created by the author that proposed several improvements to the 3G technologies towards the LTE. In the system analysis, the LTE showed by the factor of at least 2.5 to 3 times higher system measures compared to the WCDMA/HSPA reference. The WCDMA/HSPA networks are currently available with over 400 million subscribers and showing increasing growth, in the meanwhile the first LTE roll-outs are scheduled to begin in 2010. Sophisticated 3G LTE mobile devices are expected to appear fluently for all consumer segments in the following years

    Adaptive Baseband Pro cessing and Configurable Hardware for Wireless Communication

    Get PDF
    The world of information is literally at one’s fingertips, allowing access to previously unimaginable amounts of data, thanks to advances in wireless communication. The growing demand for high speed data has necessitated theuse of wider bandwidths, and wireless technologies such as Multiple-InputMultiple-Output (MIMO) have been adopted to increase spectral efficiency.These advanced communication technologies require sophisticated signal processing, often leading to higher power consumption and reduced battery life.Therefore, increasing energy efficiency of baseband hardware for MIMO signal processing has become extremely vital. High Quality of Service (QoS)requirements invariably lead to a larger number of computations and a higherpower dissipation. However, recognizing the dynamic nature of the wirelesscommunication medium in which only some channel scenarios require complexsignal processing, and that not all situations call for high data rates, allowsthe use of an adaptive channel aware signal processing strategy to provide adesired QoS. Information such as interference conditions, coherence bandwidthand Signal to Noise Ratio (SNR) can be used to reduce algorithmic computations in favorable channels. Hardware circuits which run these algorithmsneed flexibility and easy reconfigurability to switch between multiple designsfor different parameters. These parameters can be used to tune the operations of different components in a receiver based on feedback from the digitalbaseband. This dissertation focuses on the optimization of digital basebandcircuitry of receivers which use feedback to trade power and performance. Aco-optimization approach, where designs are optimized starting from the algorithmic stage through the hardware architectural stage to the final circuitimplementation is adopted to realize energy efficient digital baseband hardwarefor mobile 4G devices. These concepts are also extended to the next generation5G systems where the energy efficiency of the base station is improved.This work includes six papers that examine digital circuits in MIMO wireless receivers. Several key blocks in these receiver include analog circuits thathave residual non-linearities, leading to signal intermodulation and distortion.Paper-I introduces a digital technique to detect such non-linearities and calibrate analog circuits to improve signal quality. The concept of a digital nonlinearity tuning system developed in Paper-I is implemented and demonstratedin hardware. The performance of this implementation is tested with an analogchannel select filter, and results are presented in Paper-II. MIMO systems suchas the ones used in 4G, may employ QR Decomposition (QRD) processors tosimplify the implementation of tree search based signal detectors. However,the small form factor of the mobile device increases spatial correlation, whichis detrimental to signal multiplexing. Consequently, a QRD processor capableof handling high spatial correlation is presented in Paper-III. The algorithm and hardware implementation are optimized for carrier aggregation, which increases requirements on signal processing throughput, leading to higher powerdissipation. Paper-IV presents a method to perform channel-aware processingwith a simple interpolation strategy to adaptively reduce QRD computationcount. Channel properties such as coherence bandwidth and SNR are used toreduce multiplications by 40% to 80%. These concepts are extended to usetime domain correlation properties, and a full QRD processor for 4G systemsfabricated in 28 nm FD-SOI technology is presented in Paper-V. The designis implemented with a configurable architecture and measurements show thatcircuit tuning results in a highly energy efficient processor, requiring 0.2 nJ to1.3 nJ for each QRD. Finally, these adaptive channel-aware signal processingconcepts are examined in the scope of the next generation of communicationsystems. Massive MIMO systems increase spectral efficiency by using a largenumber of antennas at the base station. Consequently, the signal processingat the base station has a high computational count. Paper-VI presents a configurable detection scheme which reduces this complexity by using techniquessuch as selective user detection and interpolation based signal processing. Hardware is optimized for resource sharing, resulting in a highly reconfigurable andenergy efficient uplink signal detector

    On Development of Some Soft Computing Based Multiuser Detection Techniques for SDMA–OFDM Wireless Communication System

    Get PDF
    Space Division Multiple Access(SDMA) based technique as a subclass of Multiple Input Multiple Output (MIMO) systems achieves high spectral efficiency through bandwidth reuse by multiple users. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) mitigates the impairments of the propagation channel. The combination of SDMA and OFDM has emerged as a most competitive technology for future wireless communication system. In the SDMA uplink, multiple users communicate simultaneously with a multiple antenna Base Station (BS) sharing the same frequency band by exploring their unique user specific-special spatial signature. Different Multiuser Detection (MUD) schemes have been proposed at the BS receiver to identify users correctly by mitigating the multiuser interference. However, most of the classical MUDs fail to separate the users signals in the over load scenario, where the number of users exceed the number of receiving antennas. On the other hand, due to exhaustive search mechanism, the optimal Maximum Likelihood (ML) detector is limited by high computational complexity, which increases exponentially with increasing number of simultaneous users. Hence, cost function minimization based Minimum Error Rate (MER) detectors are preferred, which basically minimize the probability of error by iteratively updating receiver’s weights using adaptive algorithms such as Steepest Descent (SD), Conjugate Gradient (CG) etc. The first part of research proposes Optimization Techniques (OTs) aided MER detectors to overcome the shortfalls of the CG based MER detectors. Popular metaheuristic search algorithms like Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution Algorithm (ADEA) and Invasive Weed Optimization (IWO), which rely on an intelligent search of a large but finite solution space using statistical methods, have been applied for finding the optimal weight vectors for MER MUD. Further, it is observed in an overload SDMA–OFDM system that the channel output phasor constellation often becomes linearly non-separable. With increasing the number of users, the receiver weight optimization task turns out to be more difficult due to the exponentially increased number of dimensions of the weight matrix. As a result, MUD becomes a challenging multidimensional optimization problem. Therefore, signal classification requires a nonlinear solution. Considering this, the second part of research work suggests Artificial Neural Network (ANN) based MUDs on thestandard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks fo

    Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé
    corecore