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ABSTRACT

Elghariani, Ali Ph.D., Purdue University, December 2014. Application of Integer
Quadratic Programming in Detection of High-Dimensional Wireless Systems . Major
Professor: Michael Zoltowski.

High-dimensional wireless systems have recently generated a great deal of interest

due to their ability to accommodate increasing demands for high transmission data

rates with high communication reliability. Examples of such large-scale systems in-

clude single-input, single-output symbol spread OFDM system, large-scale single-user

multi-input multi-output (MIMO) OFDM systems, and large-scale multiuser MIMO

systems. In these systems, the number of symbols required to be jointly detected at

the receiver is relatively large. The challenge with the practical realization of these

systems is to design a detection scheme that provides high communication reliabil-

ity with reasonable computational complexity, even as the number of simultaneously

transmitted independent communication signals becomes very large.

Most of the optimal or near-optimal detection techniques that have been proposed

in the literature of relatively low-dimensional wireless systems, such as MIMO systems

in which number of antennas is less than 10, become problematic for high-dimensional

detection problems. That is, their performance degrades or the computational com-

plexity becomes prohibitive, especially when higher-order QAM constellations are

employed.

In the first part of this thesis, we propose a near-optimal detection technique

which offers a flexible trade-off between complexity and performance. The proposed

technique formulates the detection problem in terms of Integer Quadratic Program-

ming (IQP), which is then solved through a controlled Branch and Bound (BB) search

tree algorithm. In addition to providing good performance, an important feature of



xiv

this approach is that its computational complexity remains roughly the same even as

we increase the constellation order from 4-QAM to 256-QAM. The performance of

the proposed algorithm is investigated for both symbol spread OFDM systems and

large-scale MIMO systems with both frequency selective and flat fading channels.

The second part of this work focuses on a reduced complexity version of IQP

referred to as relaxed quadratic programming (QP). In particular, QP is used to

reformulate two widely used detection schemes for MIMO OFDM: (1) Successive In-

terference Cancellation (SIC) and (2) Iterative Detecting and Decoding (IDD). First,

SIC-based algorithms are derived via a QP formulation in contrast to using a linear

MMSE detector at each stage. The resulting QP-SIC algorithms offer lower compu-

tational complexity than the SIC schemes that employ linear MMSE at each stage,

especially when the dimension of the received signal vector is high. Three versions

of QP-SIC are proposed based on various trade-offs between complexity and receiver

performance; each of the three QP-SIC algorithms outperforms existing SIC tech-

niques. Second, IDD-based algorithms are developed using a QP detector. We show

how the soft information, in terms of the Log Likelihood Ratio (LLR), can be ex-

tracted from the QP detector. Further, the procedure for incorporating the a-priori

information that is passed from the channel decoder to the QP detector is developed.

Simulation results are presented demonstrating that the use of QP in IDD offers im-

proved performance at the cost of a reasonable increase in complexity compared to

linear detectors.



1

1. INTRODUCTION

1.1 Integer Quadratic Programming for Signal Detection

The field of mixed-integer nonlinear programming (MINLP) optimization has ap-

plications in many areas of engineering, applied mathematics, applied science, and

operations research [1]. MINLP problems basically involve general constraints and

nonlinear objective functions with both continuous and integer variables. The ap-

plications of MINLP are extensively surveyed in [2] and the references therein. The

Integer quadratic programming (IQP) problem is a subclass of MINLP problems,

where the objective function is quadratic and all variables are restricted to be inte-

gers.

There has been an interest in applying IQP in the area of communication and

signal processing, such as filter design [3], cognitive radios [4], and network routing

and scheduling [5]. Binary IQP problems, in which all variables belong to {0, 1} set,

have received a considerable amount of attention in research because of their sim-

plicity in dealing with 0 and 1 variables and the potential of lower computational

complexity [6], [7]. In wireless detection problems, this can fit several communication

systems in which the mapped signal is BPSK or QPSK.

A known algorithm that is used to solve integer programming problems is the

Branch and Bound (BB) algorithm, which was first proposed by Land and Doig [8].

BB algorithm is based on relaxing the integer constraints of the IQP problem, then

through a systematic recursive search, variables are successively forced to take in-

teger values using branching rules [9]. This is done in a tree-structured manner ,

the details of which can be seen in section 2.4. Each node of this tree represents a

subproblem which can be split into two subproblems by adding two mutually exclu-

sive constraints. BB algorithm does not search the complete tree. It prunes some
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sub-trees by a bounding strategy [10] so that the searching space is reduced.

The concept of a search tree is known in the detection problems of wireless com-

munications, such as in Maximum Likelihood (ML), Sphere Decoding (SD) [11], and

QR Decomposition combined with M algorithm (QRD-M) [12], where the search is

based on enumerating all possible solutions. In this thesis, the BB search tree is

introduced in conjunction with the IQP problem which provides interesting features.

These features could contribute to complexity savings and allow easy modifications

to the algorithm. These features are [13]: 1) Every node in the search tree generates

only two sub-nodes regardless of the modulation level. 2) At each node of the tree,

the continuous solution of all variables is available, which can be utilized for obtaining

a quick suboptimal solution. 3) No tracing back at the end of the search tree to get

the final solution, which consumes fewer memory spaces. 4) No need to reach the end

leaf of the tree to find the solution. Several nodes could be pruned based on the rules

of BB algorithm (see section 2.4 ) and as such, the solution could be found before the

last layer of the tree.

There has been little research presented in relevant literature that uses IQP based

on BB algorithm in wireless communication detection problems. The work in [14]

uses BB algorithm for a conventional small MIMO, such as: 4×4, and shows promis-

ing results that motivated us to continue exploring this technique. It shows that the

complexity of using BB algorithm is more computationally efficient than the sphere

decoder algorithm at a low SNR regime and at high QAM modulation orders. An-

other work in [15], which uses binary IQP formulation with BB for QPSK 4×4 MIMO

in a spatial multiplexing setting. It shows an interesting complexity reduction when

preprocessing techniques are employed.

1.2 Spread OFDM System

Orthogonal Frequency Division Multiplexing (OFDM) is being considered as a

promising transmission technique to combat frequency selectivity of the wireless
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channel. It has already been accepted for several wireless communication standards,

such as digital audio/video broadcasting (DAB/DVB), wireless local area networks

(WLAN) [16], and Advanced Long Term Evolution (LTE) [17]. OFDM transforms

a frequency selective fading channel into a large number of flat fading subchannels

which leads to easy equalization and symbol decoding. However, one of the disadvan-

tages of OFDM is that it does not fully exploit the frequency diversity inherent in the

frequency selective channel. This is due to the fact that each symbol is transmitted

over a single subcarrier independently, and as a result, if this subcarrier experiences

a deep fade, the modulated symbol through this subcarrier is most likely to be unre-

liably detected at the receiver.

There has been a fair amount of research that works towards alleviating this prob-

lem. The use of error-correcting codes (ECC) across OFDM subcarriers is a known

technique for achieving frequency diversity in OFDM [16], but at the expense of some

data rate reduction. It is known as Coded-OFDM (COFDM), and is used in DVBT

and WLAN standards [16]. The other technique that increases the frequency diversity

of OFDM is the use of symbol spreading over all or part of OFDM subcarriers. This

is called Spread OFDM (SOFDM) [18], [19], [20], [21]. The idea is to spread the gen-

erated data symbols across all subcarriers so that each subcarrier modulates a linear

combination of all the data symbols. The Spreading process can be done through a

unitary matrix, such as Hadamard or Vandermonde spreading matrices [22].

Unlike the conventional OFDM system, the effective channel matrix of the spread

OFDM system, in frequency domain, is no longer diagonal due to the spreading trans-

formation. This in turn complicates the equalization process of the spread OFDM

signal. Therefore, the detection problems of the SOFDM system is considered as a

high-dimensional problem in which the number of jointly detected symbols at the

receiver is approximately the same as the number of OFDM subcarriers used in the

system, which is practically in the order of 256, 512, and 1024. Most of the work

presented in the literature regarding signal detection of SOFDM was based on linear

detection techniques, such as in [18], [23], and [20], which improves the frequency



4

diversity of the SOFDM system compared to the non spread system; however, the

frequency diversity is still not efficiently exploited. To fully exploit the diversity po-

tential of the SOFDM, an optimal detection technique is required, such as Maximum

Likelihood detector (ML) or Sphere Decoding (SD) [11], but these techniques would

entail prohibitive complexity which makes them impractical for real systems, espe-

cially when the number of OFDM subcarriers is large. Different techniques have been

proposed in the literature for achieving near-ML performance with reduced complex-

ity, such as reduced complexity SD and QRD-M [12] techniques. Most of this work

focuses on MIMO systems and shows efficacy for small dimensions, where the number

of transmit antennas is less than 10, and also where the order of modulation is small,

such as QPSK and 16QAM. Work in [22] shows that a Local ML (LML) detector can

provide a lower bit error rate than MMSE when QPSK symbol mapping is used.

In this work, we formulate the detection problem in terms of IQP, which is

then solved through BB search tree algorithm. Then we introduce simplified tech-

niques that approximate integer solutions with reduced complexity and also yield

sub-optimal performance that is better than the MMSE and LML (see chapters 2 &

4).

1.3 Large-Scale MIMO Systems

Large-scale MIMO is an emerging technology that uses tens to hundreds of anten-

nas compared to a small MIMO that uses less than 10 antennas. The more antennas

the transmitter/receiver is equipped with, the better the performance in terms of

data rate, link reliability, and spectral efficiency [24]. When the number of antennas

at the transmitter and receiver are nt and nr, respectively, the point-to-point system

diversity scales up to the multiplication of both nt and nr, and the achievable rate

could increase by a factor min(nt, nr) [24], [25]. In addition, large-scale MIMO has

the potential to reduce the operational power consumption at the base station in the

multiuser scenario [26], [27].
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As shown in [24], the large-scale MIMO systems are attracting a lot of attention in

the research community. There are some theoretical concepts that highly motivated

the research in this field, such as the asymptotic of random matrix theory, and the

applicability of the law of large numbers [28]. These concepts could provide more

insight into the analysis of these systems. For example, when nt and nr are large, the

distribution of the singular values of the channel matrix H approaches a deterministic

and
1

nt
HHH ≈ I [24], [29].

Similar to the small MIMO systems, large-scale MIMO can always be combined

with OFDM technology (MIMO-OFDM) to achieve higher data rates and spectral

efficiency without increasing bandwidth, which makes it more attractive for high data

rate wireless applications.

Given the aforementioned benefits, a large-scale MIMO system poses challenges

in several design aspects of the MIMO system, such as channel estimation, hard-

ware implementation, and detection complexity [24]. In MIMO systems, generally

the detector is often the bottleneck for the overall performance and complexity, and

it is obviously exacerbated in the large-scale case. There have been many linear

detectors and near Maximum Likelihood (ML) detectors proposed in the literature

of conventional (small) MIMO systems; however, they become noncompetitive when

used to serve large-scale systems. One reason is because their computational com-

plexity becomes exponential, such as in the case of Sphere Decoding (SD) and its

variants [30], [31], [32]. Another reason is because the performance worsens as the

number of antennas increases, as in the cases of minimum mean square error (MMSE),

MMSE with ordered successive interference cancellation (MMSE-OSIC) [33], Chase

type detector [34], QR Decomposition combined with M-algorithm (QRDM) [35],

and Fixed Sphere Decoder (FSD) [36], [37]. Various algorithms have been presented

in the literature that exhibit a large-system behavior where the BER performance

improves and becomes increasingly closer to ML performance as the number of an-

tennas increases. A family of low complexity detectors termed Likelihood Ascent

Search (LAS) detectors have been proposed in [38], [39], [40], [30] for large-scale
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MIMO systems. They are based on successively searching the local neighborhood of

some good initial vectors, such as MMSE vector. LAS detectors show near single

antenna AWGN performance when hundreds of antennas are used with an average

per-received vector complexity of O(n2
r), where nr = nt and nt and nr denote the

number of transmit and receive antennas, respectively. LAS detectors have also been

generalized for higher order modulations and showed increased performance as the

number of antennas increases. However, they still suffer from performance deterio-

ration as the modulation order increases. They also require hundreds of antennas

to achieve near-optimum performance. This number increases as the modulation

level increases [39]. Another neighborhood search algorithm that is based on reactive

tabu search (RTS) [41] has also been proposed for large-scale MIMO systems with

various QAMs in [42], [36], [43]. This algorithm is a heuristic-based combinatorial

optimization technique which achieves near-ML performance with much lower com-

plexity compared to ML and SD. However, its computational complexity scales up

significantly with increasing QAM modulation levels accompanied with performance

deterioration. There are a few other detection algorithms that have been presented

for large-scale MIMO systems and shown to achieve near-optimal performance, but

only for {−1,+1, } alphabet, such as the work in [32], and in [44].

In this work, we further the idea of utilizing IQP formulation of the ML problem

to formulate a large-scale MIMO detection problem in both frequency selective and

flat fading channels. Although the concept of using IQP was also used in a previous

work [14], using BB algorithm in a small MIMO detection, our work extends the idea

by proposing a controlled size search tree algorithm using BB technique to solve the

IQP problem so that it can easily accommodate a large-scale MIMO system with

various QAM levels. In addition, we propose other versions of the QP algorithm,

which can provide more flexible trade-offs between complexity and performance. The

advantages of our proposed algorithms are: (i) complexity is flexible as it depends

on two main parameters: the selected depth and width of the search tree, and (ii)

complexity is nearly independent of the selected modulation order. Simulation results
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demonstrate that our proposed algorithms outperform most of the existing large-scale

detection algorithms.

1.3.1 Successive Interference Cancellation Detectors

Successive interference cancellations (SIC) detectors [33], [45], [25] are known de-

tectors in MIMO systems. They are classified as non-linear detectors with a proven

performance superior to linear detectors [33]. However, they require more compu-

tational complexity than their linear counterparts to achieve this performance. The

basic idea of SIC is to cancel out the effect of the already-detected symbol(s) by

subtracting it(them) out from the received signal vector, which leads to a modified

received vector in which fewer interferers are present [33]. The general drawback of

all SIC is error propagation, because some of the estimated symbols are not reli-

able, which in turn impair the subsequent symbols estimates [46]. To mitigate this

problem, ranking symbols based on certain reliability measure were introduced in the

literature of SIC [33], [47]. One such technique is called V-BLAST, which improves

the performance of the SIC detector using channel power ordering [33]; it detects data

symbols with the greatest channel power first, and then cancels out its effect on the

remaining data streams. It can be seen as an ordered SIC with either zero forcing

(ZF) or minimum mean-square-error (MMSE) criterion for interference nulling.

A fair amount of research has been presented utilizing the concept of SIC. Most of

this work focuses on MMSE with ordered SIC, because MMSE is more accurate than

ZF. The work in [47] shows that the original V-BLAST ordered SIC can be further

improved if Log-Likelihood Ratio (LLR) reliability ordering is used instead of channel

power ordering. Furthermore, it depicts that the complexity can be reduced if sym-

bol grouping is introduced using a multi-stage MMSE detector, however, the bit error

rate (BER) performance is penalized as the number of symbols per group increases,

leading to a higher BER. For instance, in this reference, if the number of stages is

one, the technique boils down to the conventional MMSE detector, and if the number
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of stages equal to the number of symbols, the technique becomes the conventional

MMSE V-BLAST. In [48], [46], another SIC approach was proposed, in multi-user

MIMO, to reduce the effect of error propagation issue in SIC. It is based on the con-

cept of multi-feedback, which is similar to the conventional SIC technique bu puts

extra constraints on the MMSE estimated symbol. That is, if the MMSE estimated

point lies within the shadow area of the constellation lines, then before canceling out

its effect, the algorithm searches several constellation points from the constellation

set and chooses the most appropriate point that minimizes the Euclidean distance

rule. It shows that as the width of the shadow area increased, the performance im-

proved, but as a result, more computational complexity was incurred. Most of the

SIC techniques proposed are designed for small MIMO systems and rely on ZF or

MMSE detectors because of their low complexity.

In massive MIMO systems where a large number of transmit and receive antennas

is required, more interferers are present and subsequently, SIC process requires more

efficient detectors that can combat the error propagation issue. Moreover, complexity

is an important issue when it comes to large MIMO systems, as most of the proposed

techniques require a large number of pseudo-inverse computations each time a new

symbol is detected, though there has been some work in this regard to reduce the

number of matrix inversions [49], [50], [51]. This is a huge burden on the receiver

when number of antennas grows large.

In this thesis, we exploit the formulation of a QP, which can be obtained by re-

laxing the constraints of the IQP problem, to propose a new SIC algorithm that suits

a large-scale MIMO system and can provide better performance together with low

computational complexity compared to the existing techniques. We extend the appli-

cability of this technique to other high-dimensional systems, such as SOFDM system

since the detection problem is similar to the large-scale MIMO case.
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1.3.2 Iterative Detection and Decoding

During the last decade, inspired by the development in turbo codes [52], there

were a number of important advances made using the concept of joint equalization

and decoding in which traditional equalization methods and decoding methods ex-

change soft information in an iterative fashion until convergence is achieved [53], [54].

This technique actually contrasts the conventional way that implements the equalizer

and channel decoder separately, that is, a channel equalizer produces hard decision

symbols which are then passed to a channel decoder that uses a certain error correct-

ing strategy to improve final data quality.

Previous work shows that addressing joint equalization and decoding based on

an optimal criteria, such as MAP provides the best performance, but it is usually

impractically complex [55]. It has been presented for small systems with a small

constellation size, such as in [56] and the references therein. Various approaches

and techniques have been considered to implement this joint detection and decoding

process using low complexity equalizers, in particular linear equalizers, such as ZF,

MMSE, and decision feedback (DFE) [56], [57], [58], [55].

In this thesis, we propose an alternative equalization technique that could replace

the linear MMSE equalizer in the joint detection and decoding receiver that can pro-

vide better performance with a penalty of some complexity increase. We propose to

use QP detector in the turbo equalization type receiver. The challenges in using QP

in the turbo equalization setting are: first, how to incorporate prior information in

the form of LLR provided by the channel decoder into the QP optimization problem,

and second, how we can make QP detector provide soft information in the form of

LLR with reasonable complexity so that it can be passed to the channel decoder.

1.4 Outline

The rest of the thesis proceeds as follows: chapters 2 and 3 show the application

of IQP using BB algorithm in the detection problems of SOFDM and large-scale
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MIMO OFDM systems. Chapter 4 demonstrates the application of various QP based

algorithms in a large-scale MIMO system with a flat fading channel. Chapter 5

proposes a new successive interference cancellation technique using QP formulation.

Chapter 6 focuses on implementing iterative detection and decoding type of receiver

for SOFDM using an MMSE equalizer, while chapter 7 implements iterative detection

and decoding for the MIMO OFDM system using a QP detector. Finally, concluding

remarks and a summary of this work are provided in chapter 8.
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2. INTEGER QUADRATIC PROGRAMMING

APPROACH FOR SPREAD OFDM SYSTEMS

Spread OFDM (SOFDM) is introduced in [59], [60], and [21] to increase frequency

diversity in OFDM systems. The idea is to spread the data symbols across all sub-

carriers so that each subcarrier contains a linear combination of all the data symbols.

In order to fully exploit the diversity potential of SOFDM, an optimal detection tech-

nique is required, such as ML. Unfortunately, the computational complexity of the

ML makes it impractical for real systems, especially when a large number of sub-

carriers is adopted. Various other techniques have been proposed for making ML

detection less complex and more practical, such as [61], [62]. Most of that work fo-

cused on small-dimensional detection problems. In this work, we consider SOFDM

with a large number of subcarriers (e.g. 128, 256).

In this thesis, we are inspired by a few research papers that used an IQP for-

mulation in combination with the BB algorithm for MIMO signal detection, such

as [14], [15], and [63]. The main observation in these research papers is that using

IQP with BB can make the complexity independent of the type of QAM constella-

tion adopted. In this thesis, we use their work and explore several other important

features in the formulation of the IQP problems as well as the structure of the BB

search tree, which we then utilize for further complexity reduction and to provide

flexible trade-off between performance and complexity.

In this chapter, an IQP detection approach based on the BB search tree algo-

rithm is introduced to a SOFDM system. The formulation of the detection problem

is presented and the bit error rate (BER) performance and complexity are studied

using the standard BB algorithm. Furthermore, a preprocessing procedure and some

modifications to the standard BB algorithm are proposed.
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2.1 Spread OFDM System Model

The idea behind the SOFDM is to spread the data symbols across all OFDM car-

riers prior to modulation such that each carrier contains a linear combination of all

of the data symbols. Thus, if several carriers are lost due to spectral null, it may still

be possible to retrieve all of the transmitted symbols [19]. This is in contrast to the

conventional OFDM where the symbol is lost if the carrier modulating it was nulled

by the channel. Figure 2.1 shows the block diagram representation of the SOFDM.

The mapped symbols x̃ = [x̃0, . . . , x̃Nb−1]T ∈ CNb×1, are modulated from the informa-

Fig. 2.1. Block diagram representation of the SOFDM

tion data bits after binary phase shift keying (BPSK), quadrature phase shift keying

(QPSK), or any other quadrature amplitude modulation (QAM). Each x̃i is taken

from a finite constellation χ̃ (x̃i ∈ χ̃) with normalized energy, E[x̃x̃H ] = INb . Nb is

the number of data symbols, E[.] is the expectation operator, (.)H is the conjugate

transpose operation and IN is the identity matrix of size N . These Nb symbols will be

spread across all OFDM subcarriers, N , using the spreading matrix, D̃, of size N×Nb,

which could be real (e.g Hadamard Matrix [64]) or complex (e.g. Vandermonde [22]).

Thus, the resulting spread symbols vector, Xspr, will be as follows:

Xspr = D̃x̃ (2.1)

where the vector Xspr = [Xspr0 , ..., XsprN−1
]T . There are two cases of interest in the

SOFDM. The first one is when Nb = N , which is known as the full spread OFDM [22],

and the other case is when Nb < N , which is known as the partial spread OFDM

(i.e. partially loaded OFDM system) [22]. The resulting spread symbols are then
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modulated onto N OFDM carriers through inverse FFT (IFFT) process to yield the

time domain symbols

xspr = IFFT(Xspr) = FHXspr = FHD̃x̃ (2.2)

where F is the unitary Fourier Matrix and its elements can be generated from

Fi,k =
1√
N

exp
−j2πik
N , i,k = 0, 1, 2, ..., N − 1 (2.3)

After parallel to serial conversion, the xspr sequence will be appended with cyclic

prefix (CP) symbols as a guard interval in order to avoid inter-symbol-interference

(ISI) and inter-carrier-interference (ICI). The time length of this CP should be greater

than the expected delay spread of the channel. The complex baseband signal is

then up converted and sent over a multipath wireless channel with channel impulse

response length Lch, that is, the number of channel taps. We are assuming that the

channel is a frequency selective fading channel and it is a constant during one OFDM

block (block-fading channel [65]). In this thesis, we refer to one spread OFDM block

as a block that contains N + CP symbols. The radio channel is assumed to exhibit

Rayleigh fading with channel impulse response h = [h0, h1, , hLch−1]. Each component

of h is identically independent distributed (i.i.d) complex Gaussian with zero mean

and unit variance (E[|hi|2] = σ2
h = 1). The assumptions are also that h remains

constant during one OFDM block and that it is perfectly known at the receiver. The

additive white Gaussian noise n = [n0, n1, , nN−1], which is a zero mean complex

normal random vector with variance σ2
n, will be added at the receiver.

The discrete time convolution of xspr with the channel impulse response h can be

represented as a circular convolution due to the presence of CP. Thus, the received

symbols vector (r), before FFT is applied, can be written in a matrix form as

r = Hcxspr + n (2.4)

where Hc is a circulant matrix over N samples of interest and each column of Hc is

a circular shift by one relative to the previous column, with the first column formed
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from the zero padded impulse response of the channel h. Now when applying FFT

operation to r and using (2.2) and (2.4), the received vector in frequency domain can

be derived as follows:

Fr = FHcxspr + Fn

Fr = FHcF
HD̃x̃ + Fn

ỹ = H̃D̃x̃ + ṽ

(2.5)

where H̃ is a diagonal matrix of eigenvalues of Hc [66], ỹ = Fr, and ṽ = Fn. The

unitary Fourier Matrix F does not alter the statistics of h or n. ỹ represents the

received symbols vector in the frequency domain after the FFT operation, where

ỹ = [y0, . . . , yN−1]T ∈ CN×1. H̃ is a complex diagonal matrix whose diagonal entries

are N points DFT of frequency selective channel vector h. In this chapter, we consider

the case of full spread OFDM, where Nb = N .

2.2 Linear MMSE Detection for Spread OFDM

MMSE is a linear suboptimal detection technique that is based on minimizing

the mean square error between the estimated and the actual data symbols. It is

characterized by its low complexity compared to the ML technique and it is unlike

zero forcing detectors because it uses a filter matrix that takes noise variance into

consideration. To find the matrix, W, that minimizes the mean square error, the

following optimization problem needs to be solved:

argmin
W

E[(x̃−WH ỹ)2] (2.6)

The solution to (2.6) is given as follows [67]:

WH = (GHG +
INb

SNR
)−1GH (2.7)

where G = H̃D̃, with dimension of N×Nb. In the above equations, SNR refers to the

received signal-to-noise ratio, which equals to 1/σ2
v , because the energy per symbol

is normalized to 1. D̃ is a unitary spreading matrix and the covariance of H̃ is IN .
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Using W from (2.7) and substituting the values of G and SNR, the resulted MMSE

estimate is as follows:

x̃mmse = WH ỹ (2.8)

x̃mmse = (D̃
H

H̃
H

H̃D̃ + σ2
vIN)D̃

H
H̃
H

ỹ (2.9)

ˆ̃xmmse = Q[x̃mmse] (2.10)

whereQ[.] denotes the quantization (slicing) function to the appropriate constellation.

The performance of SOFDM using the MMSE detector has been studied extensively

with various spreading matrices in [22]. In this chapter, the MMSE performance will

be compared to the performance of our proposed technique. In addition, the linear

MMSE detector will also be utilized as a preprocessing technique for the proposed

modifications to the standard Branch and Bound algorithm as shown in Section 2.5.1.

2.3 Formulating IQP Detection Problem

Given the set of all possible transmitted symbol vectors as χ̃N , the optimal detec-

tor rule chooses one of these possible symbol vectors that maximizes the a posteriori

probability given the observation vector ỹ and the channel matrix H̃ [68]. More

explicitly :

ˆ̃x = arg max
x̃∈χ̃N

p(x̃|ỹ, H̃) (2.11)

Equation (2.11) is known as the Maximum A posteriori Probability (MAP) detec-

tion rule. Applying the standard assumption, that all possible symbols vectors are

equiprobable, the MAP problem becomes an ML problem. Further, by assuming the

noise to be white and Gaussian, the ML problem can be easily shown to become

equivalent to a squared Euclidean distance minimization problem. That is,

ˆ̃xk = argmin
x̃∈χ̃N

‖ ỹ− H̃D̃x̃ ‖2
2 (2.12)
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For the detection problem to be solved efficiently, it is usually advantageous to convert

the complex system in (2.5) into a real representation model. It can be easily shown

that (2.5) can be rewritten into an equivalent real system as

y = HDx + v (2.13)

where

y =

<{ỹ}
={ỹ}

 ,x =

<{x̃}
={x̃}

 ,v =

<{ṽ}
={ṽ}

 (2.14)

H =

<{H̃} −={H̃}
={H̃} <{H̃}

 ,D =

<{D̃} −={D̃}
={D̃} <{D̃}

 (2.15)

Then the equivalent ML detection problem for the real model can be written as

x̂ = arg min
x∈χ2N

‖ y −HDx ‖2 (2.16)

where set χ = {−
√

C + 1, ..,−3,−1, 1, 3, ..,
√

C − 1}, C is the QAM constellation

size. Each element of this real set can be transformed into a positive integer via the

following linear transformation:

z =
x + (

√
C− 1)

2
(2.17)

The norm 2 term in 2.16 can be simplified using the above linear transformation as

follows:

‖ y−HDx ‖2= (y−HD(2z− (
√

C− 1)))T (y−HD(2z− (
√

M− 1)))

= yTy + (2z− (
√

C− 1))TDTHTHD(2z− (
√

C− 1))− 2yTHD(2z− (
√

C− 1))

when substituting the simplified norm 2 term back into (2.16) and removing the

terms that do not depend on z, the ML problem is reformulated to the following

optimization problem:

ẑ = arg min
z∈Ω2N

f(z) =
1

2
zTQ z + bTz (2.18)
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where set Ω = {0, 1, 2, 3, ..,
√

C − 1} , Q = DTHTHD, b = −DTHT (y + (
√
C −

1)HD1)/2, and 1 is a column vector of ones and length 2N . Table 2.1 shows the

elements of the two sets (χ and Ω) for various QAM constellation levels. Therefore,

the exhaustive search of all possible transmitted vectors in (2.16) becomes an IQP

problem, as in (2.18).

Table 2.1 Elements of χ and Ω Sets

Modulation level
√
C χ Ω

4-QAM 2 {−1, 1} {0, 1}

16-QAM 4 {−3,−1, 1, 3} {0, 1, 2, 3}

64-QAM 8 {−7,−5,−3,−1, 1, 3, 5, 7} {0, 1, 2, 3, 4, 5, 6, 7}

256-QAM 16 {−15,−13, ..., 13, 15} {0, 1, 2, 3, ..., 14, 15}

2.4 Standard Branch and Bound Algorithm for Solving IQP

Branch and Bound Algorithm is a general search tree-based algorithm [9] that can

be used to find the exact solution of combinatorial optimization problems or any NP-

hard problems, such as ML [10]. It is based on solving a relaxed constraint problem

in a recursive way until either its integer solution is found, or it is proven that the

problem has no optimal integer solution. The BB algorithm consists of three major

rules [10]: the branching rule, the bounding rule, and the search strategy rule. The

branching rule divides the solution set into several non-overlapping subsets, which

helps to narrow the search and prune several nodes in the tree. The bounding rule

determines whether to continue branching certain nodes in the search tree or not.

This means that, in the minimization problem, such as (2.18), whenever a node has

a cost function that is greater than any known upper bound, this node is pruned

from any further expansion because it cannot provide any better solution. Note also

that in the minimization problems, BB algorithm has non-decreasing node cost along
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any path from the root node to the leaf node; that is, any parent node should have

a cost function that is no greater than its child node [10]. The search strategy rule

determines the sequence in which the nodes of the tree should be explored. Though

there have been several strategies presented in relevant literature, we focus mainly on

the Breadth First (BF) strategy [69], which is a search strategy that visits the nodes

of the tree in a level-by-level manner, meaning that it does not explore any nodes

from level L of the tree until it finishes exploring nodes from level L − 1. We focus

on this strategy because it suits our proposed algorithms in this thesis, specifically in

this chapter and the next one.

The detailed procedures of using BB to solve problem (2.18) are as follows: the

BB algorithm starts with solving a relaxed version of problem (2.18), removing the

integer constraints on the variables and allowing them to be included in the real set.

This process makes the problem much easier to solve as it becomes convex, provided

that Q is non-negative definite. Thus problem (2.18), after relaxing the constraints,

can be expressed as:

min
z

{1

2
zTQ z + bTz}

subject to 0 ≤ z ≤ (
√
C − 1)1

(2.19)

where 0 represents 2N × 1 vector of all zeros and the constraints 0 ≤ z ≤ (
√
C − 1)1

represents the box constrains of all elements of z, that is, each element(symbol) of z is

lower bounded by 0 and upper bounded by
√
C−1. This form of convex optimization

problem is well known and can be solved iteratively by various algorithms, such as

the Interior Point (IP) method [70], [71], or the Active Set (AS) method [70], though

it was shown in [71] that the IP method is more suitable for such problems, especially

when the size of the problem is large. Solving (2.19) provides a 2N dimensional

solution vector z(0) = [z
(0)
1 , . . . , z

(0)
2N ]T ∈ R2N and a scalar cost function value f (0),

where superscript (0) refers to node 0 in the BB search tree as depicted in Fig. 2.2.

If all elements of z(0) satisfy the integer constraints, then z(0) is the optimum solution

for problems (2.19) and consequently an optimum integer solution for (2.18) and

the BB search tree is terminated. Otherwise, f (0) is a lower bound to the optimal
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cost of problem (2.18) and the branching is needed on the fractional variable which

splits the problem (2.19) into two subproblems by adding two mutually exclusive

and exhaustive constraints, as in (2.20) and (2.21). The new subproblems are called

children node problems and the original problem is called the parent node problem.

The new constraints divide the feasible set of the parent node into two disjoint subsets:

minimize
z

{1

2
zTQ z + bTz}

subject to lb ≤ z ≤ ub

zi ≤
⌊
z

(0)
i

⌋ (2.20)

minimize
z

{1

2
zTQ z + bTz}

subject to lb ≤ z ≤ ub

zi ≥
⌈
z

(0)
i

⌉ (2.21)

where where zi is called the branching variable at index i, where i ∈ {1, 2, . . . , 2N},

and
⌊
z

(0)
i

⌋
(
⌈
z

(0)
i

⌉
) denotes the largest (smallest) integer smaller (greater) than or

equal to z
(0)
i . Solving these new subproblems return (z(1) , f (1)) and (z(2) , f (2)) for

nodes 1 and 2 respectively. Subproblems (2.20) and (2.21) are also solved in the

same way as problem (2.19) using interior point algorithm. If the solution to these

subproblems does not satisfy the integer constraint, each of them will be branched

into two more subproblems and the process of branching will continue in the order

shown in Fig. 2.2 until the optimal integer solution is found.

The advantage of the BB search algorithm is that it does not search the complete

tree, as some subtrees are pruned according to these rules, 1) the node is pruned (and

hence the subtree below it) whenever its solution satisfies the integer constraints,

and 2)the node is pruned (and hence the subtree below it) whenever its cost value is

greater than a known upper bound, f (up). Every time an integer solution is found, a

corresponding upper bound is calculated and the minimum bound is kept as the so-far

best upper bound” . When the upper bound is properly chosen, many subtrees will

be pruned and, hence, the computational complexity will be significantly reduced. A

summary of the BB algorithm for solving IQP problem is presented in Table 3.1
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Fig. 2.2. Representation of Breath First Branch and Bound search tree

2.4.1 Interior Point Algorithm for Node Problem

The Interior Point (IP) method is an algorithm that finds a point where the

Karush-Kuhn-Tucker (KKT) conditions hold. It does this through successive de-

scent iterations, where each iteration is a Newton-like step. In the problem at hand,

(2.19), IP solves a simple bounded convex optimization problem of size N , where the

objective function is quadratic and the constraints are only subjected to lower and

upper bounds. In our formulation, each variable in the optimization problem is lower

bounded by zero and upper bounded by
√
C − 1. A summary of the IP algorithm

that solves (2.19) can be found in [71], [72].

In practice, the interior-point method converges in a number of iterations which

is almost a constant, independent of the problem dimension [73].
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Table 2.2 BB Algorithm Summary

1 Initialize a LIST with the root node problem

2 Initialize upper bound f (up) =∞

3 WHILE (LIST is not empty) DO

4 Pop a sub-problem from the LIST and solve it to get z(j)

and f (j), where j is the node number, j = 0, 1, 2, . . .

5 if f (j) > f (up) or z(j)is infeasible,

delete the current problem from the LIST

elseif z(j) is satisfying all integer constraints,

update the ”best so far” integer solution as z(j) and the

”best so far” upper bound as f (j) and then

delete the current problem from the LIST

else branch the current problem into two new

sub-problems and push them on the LIST, and then

delete the current problem from the LIST

6 END WHILE

2.4.2 Complexity Analysis

Each node of the BB tree requires solving a quadratic programming problem of

the form of (2.19) with size 2N , and solving a quadratic programming problem re-

quires an iterative algorithm, such as the IP algorithm mentioned in section 2.4.1.

From [71] and [70], each iteration of the IP method boils down to solving a system of

linear equations, where it is required to perform a matrix inversion of the same size in

every iteration. Therefore, the complexity of one iteration is in the order of O(N)3).

We focus here on the number of multiplication operations as a measure for the com-
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putational complexity. Thus, with n iterations, the complexity of one node rises to

the order of O(nN3). In practice, the interior point algorithm converges in a number

of iterations which is almost a constant, independent of the problem dimension [73].

It is a complexity advantage, especially when N is large. In considering the total

number of visited nodes in the BB search tree as Nv, the total expected complexity

for detecting one received vector becomes O(NvnN
3). It is important to note that

the only variable that can change in the complexity formula is the number of vis-

ited nodes, Nv, which is estimated through simulation experiments. In the SOFDM

system, N is usually large, in the order of 32, 64, 256, 1024, ..., which means that the

complexity could be very large, though it is not exponential like ML or SD [32]. In

the next section and the next chapter, we propose techniques to further reduce the

computational complexity per each received vector.

2.4.3 Simulation Results

The simulation experiments in this section were conducted to investigate the per-

formance of SOFDM when BB is applied. It is assumed that the QPSK and QAM

data symbols are transmitted on 32 OFDM carriers across complex Gaussian multi-

path channels of length Lch = 8 with perfect knowledge of the channel at the receiver.

To prove the optimality of the BB algorithm on solving an IQP problem, the BER

performance of SOFDM using BB has been compared to ML and SD algorithms. We

have investigated the cases of N = 4 and N = 8 only, as it is computationally pro-

hibitive to simulate ML and SD algorithms with a larger N , such as 16, 32, especially

with higher QAM levels. It can be observed from Figs 2.3 and 2.4 that the perfor-

mance of the SOFDM system using the BB algorithm agrees with the performance

of the conventional optimum algorithms, SD and ML.

Fig. 2.5 shows the computational complexity of BB in terms of multiplication

operations at low SNR (SNR = 10dB). It shows that the complexity of BB algorithm

at various QAM levels grows slowly compared to the exponential growth of SD and
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ML algorithms. Although it is not simulated here, it is expected that the complexity

of standard BB grows exponentially when N becomes large.

Fig. 2.6 shows the performance of QPSK SOFDM, at N = 32 OFDM carriers,

using the BB algorithm compared to the performance of the linear MMSE detector.

It can be discerned from the figure that there is a huge improvement in diversity and

BER performance when compared to the non-spread and MMSE spread cases.
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Fig. 2.3. BER performance of 16QAM SOFDM using BB, SD, and ML : (a) N = 4,

(b) N = 8
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Fig. 2.4. BER performance of SOFDM (N = 4) using BB, SD, and ML : (a) 64 QAM,

(b) 256 QAM
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Fig. 2.6. BER performance of SOFDM using standard BB Algorithm (N=32)

2.5 Reduced Complexity Search Algorithm

The two major factors that contribute to the complexity of the BB algorithm

are the number of visited nodes by the search tree and the complexity pertaining
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to each node of the tree, which is basically the iterative solution of the constrained

optimization problem using the IP algorithm (section 2.4.1). Our proposed techniques

in this chapter aim at reducing the computational complexity of the BB algorithm by

reducing the number of visited nodes. To achieve this goal, we applied two strategies.

One strategy is based on applying preprocessing procedures prior to the BB algorithm.

The other strategy is to work directly inside of the BB search tree and perform some

approximations to simplify the computations.

2.5.1 Complexity Reduction Using Preprocessing

One of the important parameters that speeds up the BB search tree is the good

choice of the starting upper bound, f (up). To get a good estimate of f (up), it is

required to have a good initial integer solution. In the problem at hand, the linear

MMSE solution is a good choice for estimating the initial solution of the symbols

vector, z, because it has a linear complexity and gives a good estimate, especially at

a high SNR. Therefore, in this strategy, we propose to use the linear MMSE as a

suboptimal detector prior to applying the standard BB algorithm as shown in Fig.

2.7. The point of this proposal is to have an initial integer solution to all variables

so that we can help the BB search algorithm avoid this step, which may cost several

node computations. In fact, finding the first integer solution costs the standard BB

algorithm a large number of nodes to be solved on average. Thus, the MMSE detected

symbols from (2.10) are used to estimate the starting upper bound of the BB search

tree as follows:

f (up) =‖ y− H̃D̃ˆ̃xmmse ‖2 (2.22)

This initial fup gets updated inside the search tree as soon as a better integer solution

is found (see section (2.4)). The advantages of using this initial upper bound are: 1)

it is a one-time calculation needed for the whole tree, and 2) it works as a tight bound,

especially at a high SNR regime, which results in the pruning of a large number of

nodes. For instance, in one simulation experiment of QPSK SOFDM with N = 32 at
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Fig. 2.7. BB with MMSE as a preprocessing step

SNR = 20 dB, the number of visited nodes declined from around 90000 to 80 nodes.

This preprocessing step does not seem to prune the search tree nodes as efficiently

at low SNR as it does at high SNR. This is due to the fact that at low SNR,

symbols are erroneously estimated, and as a consequence, the MMSE bound becomes

inaccurate. It can also be said that, on the one hand, this preprocessing step provides

a noticeable complexity reduction at high SNR, but on the other hand, it makes the

detection complexity an SNR dependent.

2.5.2 Complexity Reduction by Forcing BB to Stop at an Intermediate

Level of the Search Tree

The motivation for this proposal comes from several points that are related to

the features of the standard BB algorithm. As the BB search proceeds down the

tree, some nodes are pruned and some nodes are further explored but diverge from

the optimum integer solution. The rest of the nodes are also explored but converge

gradually to the optimum integer solution. With this and the availability of the

continuous solutions in every node in mind, it can naturally be suggested that a

suboptimal integer solution can be obtained at each level of the search tree. This can

be achieved by applying a hard decision decoding (i.e. quantization to the nearest

integer set Ω) to the most converged solution in that level of the tree.

This process of quantization can occur at any level of the tree between the root
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node (level L = 0) and the end level of the tree. When the quantization is performed

at level L, all the steps prior to this level follow the rules of the standard BB (see

section 2.4). The steps are as follows:

1) Predefine the level L at which BB search tree should stop.

2) Follow the standard BB algorithm until level L.

3) At level L, find z(j) and f (j) for all j live nodes.

4) Choose z(j) that corresponds to the minimum cost function f (j).

5) Quantize the chosen z(j) to the nearest integer constellation set Ω (see Table 2.1).

Let the number of the live nodes in the stopping level equal m. The solution and the

objective function values of these nodes in this level are z(j) and f (j), respectively,

where j = 1, ...,m. Thus, the suboptimal integer solution at the level L is

z = Q(z(i))

i = argmin
j

(f (j)) j = 1, ....,m
(2.23)

A special case of the above proposed technique occurs when the quantization is per-

formed at level 0, that is, at the root node problem (2.19). In this case, the detection

problem is reduced to a Quadratic Programming detector (QP) [74], [75], [76]. Then

the suboptimal integer solution is thus expressed as

z = Q(z(0)) (2.24)

2.5.3 Simulation Results

In this section, we evaluate bit error rate (BER) performance of the SOFDM using

the reduced complexity BB technique with different QAM modulations and OFDM

subcarriers. The SOFDM symbols (N) are transmitted across a complex Gaussian

multipath channel of length Lch = 8. It is also assumed that the channel is perfectly

known at the receiver and the algebraically structured Vandermonde spreading ma-

trix [22] is used throughout the simulation unless otherwise mentioned. The solutions

to the node problems of the BB algorithm are obtained through the use of the MAT-

LAB function ”quadprog” by specifying the interior point method in the function’s
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options.

The performance of the SOFDM using BB with MMSE preprocessing is shown

in Fig. 2.8 when 32 subcarriers are used in the QPSK SOFDM system. This figure

shows that using BB with MMSE preprocessing keeps the optimum performance and

the frequency diversity as the standard BB (which was shown to provide the ML

performance in section 2.4.3). The advantage of using MMSE preprocessing becomes

apparent with regards to computational complexity. Table 2.3 shows the number of

visited nodes (Nv) required by both the standard BB and the BB with the prepro-

cessing step (at N = 32 carriers), where it clearly manifests the complexity saved at

moderate to high SNR. The drawback, however, is that the complexity becomes a

SNR dependent.

Though the MMSE as a preprocessing step with BB shows better complexity per-

formance compared to the standard BB, it can still become computationally expensive

when N grows large, such as when N = 128 and 256. Therefore, the second proposed

technique, based on performing quantization at certain levels of the BB tree, can

provide more flexibility as well as a trade-off between BER performance and com-

plexity. Fig. 2.9 shows the BER performance of QPSK SOFDM for various values of

L when N = 32 subcarriers. This figure demonstrates the fact that the performance

increases as the quantization is implemented at a deeper level of the BB tree. For

instance, BER performance of BB at L = 16 is better than that at L = 5, and both

are superior than the case of L = 0. Note also that the performance at the root node

level (L = 0) is better than the MMSE performance. Fig. 2.10 demonstrates the

same performance improvement as the level of BB increases, but for 16QAM symbol

mapping.

Due to the fact that as the level L gets deeper in the tree, more nodes in the BB

tree are explored and consequently, more complexity is experienced. Thus, choosing

L = 0 is the best choice for the SOFDM when a large N is adopted. Performing

quantization at L = 0 attains better performance than the MMSE and LML [22].

Fig. 2.11 shows the improvement of BB at L = 0 compared to the MMSE and LML
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techniques for the 16QAM modulation SOFDM symbols. Fig. 2.12 illustrates further

the BER performance improvements due to quantization at the root node level for

various QAM modulations at 256 OFDM subcarriers. Fig. 2.13 shows the corre-

sponding complexity comparison.

Fig. 2.14 reveals that in the case of full spread OFDM, the choice of spreading

matrices does affect BER performance, especially at a high SNR regime, which is

unlike the case of MMSE [22].
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Fig. 2.8. BER of QPSK SOFDM with BB and MMSE as a preprocessing step (N=32

OFDM carriers)

Table 2.3 Complexity in terms of Number of Visited Nodes for QPSK SOFDM with

N = 32

method 5dB 15dB 20dB

Standard BB 150000 100000 90000

MMSE-BB 40000 950 80

BB with L = 0 1 1 1

BB with L = 5 60 20 15
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3. A CONTROLLED SIZE SEARCH TREE ALGORITHM

FOR MIMO OFDM SYSTEMS

Most of the optimal or near-optimal detection techniques that have been proposed

in the literature for small MIMO systems [77], [31], [78] become problematic when

extended to serve large-scale MIMO systems. This is partly because the incurred

complexity is high, especially when a higher QAM modulation level is used. In this

chapter, we continue working with the IQP and BB algorithms for signal detection

(see section (2.5)). However, the focus here is on their application to MIMO OFDM

signal detection, specifically, in MIMO OFDM systems with a large number of anten-

nas at both the transmitter and receiver (the so-called Large-Scale MIMO systems).

We exploit the similarity between the large MIMO system model and the SOFDM

model in (2.5), where the detection problem in both systems can be considered as a

large dimensional problem.

In chapter 2, in order to accommodate a large number of jointly detected symbols

with reduced complexity, we proposed a MMSE preprocessing step and an early ter-

mination of the BB search tree at level L. Furthermore, in this chapter, we adopt the

concept of the M -algorithm (widely used in QRD-M [35] MIMO detection problems)

in the BB search tree for further complexity reduction. The goal is to make the size

of the BB search tree controlled in both depth, through parameter L, and in width,

through parameter M . This accelerates the computations and provides flexible trade-

offs between complexity and performance. The advantages of this proposal are: (i)

complexity is flexible, as it depends on two main parameters, the selected depth and

width of the search tree, (ii) complexity is almost independent of the selected mod-

ulation order, and iii) this detector can be efficiently extended to provide the soft

information represented in Log Likelihood Ratio (LLR). In this chapter, we focus on
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systems employing a large MIMO in conjunction with OFDM modulation in a spatial

multiplexing setup and frequency selective fading channel.

3.1 System Model

Consider a MMO OFDM system with nt transmit antennas and nr receive an-

tennas as shown in Fig. 3.1, with a single OFDM modulator per antenna. At the

transmitter side, the information is generated in the source and mapped into symbols

of a different alphabet ( QPSK, 16QAM, 64QAM, etc). The mapped complex sym-

bols are then demultiplexed into nt separate data streams. Each stream is subjected

to OFDM modulation, after serial-to-parallel conversion, using N points IFFT. The

generated time domain OFDM symbol from the ith transmit branch is subjected to

a parallel-to-serial conversion and cyclic prefix (CP) insertion with a length greater

than or equal to the length of the channel impulse response. This is done to avoid

inter-symbol-interference (ISI) impairments. The wireless channel is assumed in this

work as a quasi-static frequency selective fading channel [65], meaning the channel

remains constant during the transmission of one OFDM symbol (or block). The chan-

nel impulse response between the ith transmit antenna and the jth receive antenna

is a frequency selective with Lch channel paths, that is, hj,i = [hj,i,0, . . . , hj,i,Lch−1].

Each channel path is modeled as an independent complex Gaussian random variable

with zero mean and unity variance. Let the frequency domain transmitted signal

sequence from the ith transmit antenna represented by xi = [xi,1, . . . , xi,k, . . . , xi,N ],

where k = 1, 2, . . . , N represents the kth OFDM subcarrier. The frequency domain

received data symbols at the jth receive antenna can be expressed as

yj =
nt∑
i=1

Hi,jxi + vj (3.1)

where Hi,j is an N ×N diagonal matrix composed of the DFT values of the channel

between the ith transmit antenna and the jth receive antenna and vj represents the

AWGN vector of N × 1 dimension at the jth receive antenna with variance σ2 per

each element. Eq. (3.1) shows that the received vector yj at the jth receive antenna
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is a superposition of the transmit signals from all of the nt transmit antennas.

To obtain the per carrier MIMO OFDM received signal vector model from all

transmit antennas, let the signal transmitted on the kth subcarrier from all anten-

nas be represented as an nt dimensional vector x̃k = [x1,k, x2,k, . . . , xnt,k]
T ∈ Cnt×1,

where, for instance, x1,k is the transmitted symbol from antenna 1 at the kth OFDM

subcarrier and (.)T is the transpose operation. Similarly, after the CP removal and

FFT operation, the received signal at all receive antennas can also be expressed as an

nr dimensional vector ỹk = [y1,k, . . . ,ynr,k]
T ∈ Cnr×1. Thus, given the knowledge of

the Channel State Information at the receiver (CSI), the MIMO OFDM signal model

is

ỹk = H̃kx̃k + ṽk (3.2)

H̃k =


H1,1,k · · · H1,nt,k

...
. . .

...

Hnr,1,k · · · Hnr,nt,k

 , ṽk =


v1,k

...

vnr,k


where Hj,i,k is the kth DFT value of the channel hi,j, x̃k = [x1,k, . . . , xnt,k]

T is nt × 1

transmitted vector from nt antennas, yk = [y1,k, . . . , ynr,k]
T is nr × 1 received vector

at all nr antennas and ṽ k is the nr dimensional vector represents zero mean com-

plex AWGN with covariance matrix E[ṽkṽ
H
k ] = σ2Inr , where (.)H is the hermitian

operation. Note that the channel state information is available at the receiver, but

not at the transmitter. Consequently, the transmit power is equally allocated among

all transmit antennas. This chapter treats spatial multiplexing MIMO, where inde-

pendent data streams are mapped to distinct OFDM symbols and are transmitted

simultaneously from transmit antennas.
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Fig. 3.1. MIMO OFDM system block diagram

3.2 Controlled Size BB Search Algorithm

3.2.1 Formulation of the Problem

The system model in (3.2) is similar to the model of the SOFDM system in (2.5),

because both of them are interference channel models. Thus the ML problem of (3.2)

can be expressed as

ˆ̃xk = argmin
x̃k∈χ̃nt

‖ ỹk − H̃kx̃k ‖2
2 (3.3)

where χ̃nt is the set of all possible nt-dimensional complex candidate symbol vectors

of the nt transmitted vector at the kth OFDM tone, X̃ k. And similar to (2.13), (3.2)

can be rewritten into an equivalent real system as

yk = Hkxk + vk (3.4)

where

yk =

<{ỹk}
={ỹk}

 ,x k =

<{x̃k}
={x̃k}

 ,vk =

<{ṽk}
={ṽk}

 (3.5)

Hk =

<{H̃k} −={H̃k}

={H̃k} <{H̃k}

 (3.6)

Thus, the equivalent ML detection problem for the real model can also be written as:

x̂k = arg min
xk∈χ2nt

‖ yk −Hkxk ‖2 (3.7)
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where set χ = {−
√

C + 1, ..,−3,−1, 1, 3, ..,
√

C−1}, C is the QAM constellation size.

Following the same steps in section (2.3), The MIMO OFDM detection problem can

be formulated as

ẑk = arg min
zk∈Ω2nt

f(zk) = {1

2
zTkQ zk + bTzk} (3.8)

where set Ω = {0, 1, 2, ..,
√

C− 1}, and

Qk = HT
kHk

b = −HT
k (yk + (

√
C − 1)Hk1)/2

1 = [1, 1, . . . , 1]T , colomn vector of dimension (2nt × 1)

(3.9)

As shown in Section 2.4, problem (3.8) can be solved using the BB algorithm (see

chapter 2), which starts by relaxing (3.8) into the following problem:

ẑk = argmin
zk

{1

2
zTkQ zk + bTzk}

0 ≤ zk ≤ (
√
C − 1)1

(3.10)

In addition to the techniques proposed in chapter 2, we propose further complexity

reduction processing that suit MIMO OFDM systems. This is discussed in the fol-

lowing section. For the sake of simplicity, from now on, we omit the subscript k that

indicates the kth OFDM subcarrier in (3.4), (3.8), and (3.10).

3.2.2 Proposed Technique

Consider a general node (n) in the BB search tree (see Fig. 2.2), with the as-

sumption that it is not pruned. Exploring this node will result in two more nodes; we

denote them as (n+ 1) and (n+ 2). Based on the BB rules of minimization [9], [79],

(i) f (n) ≤ min(f (n+1), f (n+2)), and (ii) S(n+1)⋂ S(n+2) = ∅ and S(n+1)⋃ S(n+2) ⊆ S(n),

where S(n) represents the feasible set of node (n), (S(n+1), and S(n+2) are similarly

defined). This means that if the optimal integer solution lies in S(n+2), for instance,

it will not be in S(n+1), therefore, f(n+2) < f(n+1). Now if we assume that node (n+ 2)

is not pruned, then exploring it produces two more nodes; we call them (n + 3) and
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(n + 4). If for instance the feasible solution lies in S(n+3) and not in S(n+4), then

f(n+3) < f(n+4). The idea here is that as we proceed down the tree and perform split-

ting (branching), the BB algorithm successively pushes variables to become integers

in the path that leads to the optimum integer solution. This means that the values of

the variables in these nodes steadily approach integers. Also, the objective function

values of the nodes in this path converge steadily, while that of the other paths may

diverge. Therefore, as we come closer to the node of the optimum integer solution,

the absolute value of the difference between the estimated value of each variable zi

and its quantized (rounded) version becomes smaller and smaller. It follows that

‖ z(n+3) − bz(n+3)e ‖∞

≤ ‖ z(n+2) − bz(n+2)e ‖∞

≤ ‖ z(n) − bz(n)e ‖∞

(3.11)

where ‖ x − y ‖∞ := max(|x1 − y1|, . . . |xn − yn|) and bxe is the rounding operation

of x to the nearest integer.

Based on the above analysis, and by adopting the BF strategy in exploring the

nodes of the BB tree, we propose three different ways to reduce the size of the search

tree:

1) Search tree depth Reduction : which we put forth in section 2.5.2 for SOFDM

system. In this proposal, we force the BB search tree to stop at a predefined level, L

(0 ≤ L < 2Nt), even if the optimum integer solution has not yet been reached. Denote

the number of nodes in level L to be m. Thus, the solution and the corresponding

cost function values of the nodes in this level are z
(j)
L and f

(j)
L , respectively, where

j = 1, ...,m. Therefore, the near-optimum integer solution becomes the quantized

(rounded) version of the solution that corresponds to the minimum cost function

value in level L:

z = Q[z
(j)
L ]

j = argmin
j

(f
(j)
L ) j = 1, ....,m

(3.12)

2) Search tree width Reduction : In this proposal, we adopt the concept of the

M -Algorithm [80], which is a breadth-first algorithm widely used in QRD-M MIMO
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detection [81]. The idea is to keep the most M probable nodes that may lead to

the optimum solution for further exploration while the remaining nodes are discarded

(pruned). The selection criteria is based on the objective function values of these

nodes as a metric.

3) Search tree depth and width Reduction : in which the depth and width

reduction strategies mentioned above are now combined. As the BB search tree

proceeds downwards, only M nodes per level are retained and the last level of the

tree becomes L, and the near-optimal solution is found as follows:

z = Q[z
(j)
L ]

j = argmin
j

(f
(j)
L ) j = 1, . . . ,M ,M < m

(3.13)

For example, when using this proposed combined reduction strategy with L = 3 and

M = 2, the search tree in Fig. 2.2 is reduced to the one shown in Fig. 3.2. Note

that in the sequel, we refer to our proposed algorithm as BB(L,M), where L is the

stopping level of the search tree and M is the number of nodes maintained in each

level.

Fig. 3.2. Reduced search BB tree
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3.2.3 Interior Point Algorithm for Node Problem

As mentioned in section 2.4.1, interior point algorithm can solve a quadratic opti-

mization problem in successive descent iterations where each iteration is a Newton-like

step. This algorithm suits large problems well because the number of iterations it

takes is approximately independent of the problem size [73]. The ultimate goal in

using IP algorithm is to solve the relaxed QP, such as (3.10), and then quantization

operation is applied to this optimum real solution to get the integer solution that is

appropriate for the selected constellation. Therefore, we suggest in this section to

perform early termination to the IP algorithm for the sake of speeding up computa-

tions. Normally, the last couple of iterations of IP is performed to reach a level of

convergence within 10−4 or smaller, thus, it is logical to perform early terminations

to avoid unnecessary iterations. Then the quantization operation is performed. To

implement this modification, we use one of the following to intervene the standard IP

algorithm:

1) Force IP iteration to terminate at a predefined number of iterations.

2) Relax the tolerance criteria so that the algorithm can terminate quickly.

Simulation results illustrate that this proposed simplification does not significantly

penalize BER performance.

3.2.4 Complexity Analysis

Similar to our analysis in section 2.4.2, the complexity of one IP iteration is in

the order of O(n3
t ), and it is escalated to nO(n3

t ) for n iterations. This in turn leads

to a total complexity of O(Nvnn
3
t ) per each received vector, where Nv is the number

of visited nodes in the BB search tree. n is usually << nt and Nv is a function of L

and M values of the BB tree. Our simulation shows that, approximately, Nv ≤ LM .

Moreover, using the early termination idea for an IP algorithm, n could be reduced to
n

2
without a major loss in BER performance, as will be seen in the simulation results.

The complexity of MMSE-OSIC is also in the order of more than O(n3
t ) because it
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performs matrix inversion and orders the channel matrix columns for each symbol of

the received vector. In large-scale MIMO systems, the QRD-M algorithm has two

complexity challenges, one is that its complexity approaches exponential, especially

when 64 and 256 QAM is used. The other complexity issue is that QRD-M requires

sorting procedures in each level of the search tree for MC elements, which is very

large compared to our proposed algorithm, which requires sorting only 2M elements

in each level.

3.2.5 Simulation Results

In this section, we show simulation results for an uncoded MIMO OFDM system in

a frequency selective block fading channel with N = 128 OFDM subcarriers, Lch = 8

taps, which is assumed to be perfectly known at the receiver, and nt = nr = 20 for

various QAM levels. We refer to our algorithm as BB( L,M ).

Fig. 3.3 and Fig. 3.4 demonstrate how BB( L,M ) works for 20 × 20 MIMO

OFDM systems. Fig. 3.3 shows that, as expected, the deeper the stopping level, L,

the better the BER performance. The smallest value of L in BB is the root node level,

where L = 0. The BER performance of BB(0,1) can provide a roughly 5 dB gain

over MMSE detector at 10−2 BER. When the stopping level is fixed, say, at 16 and

the number of explored nodes per level, M , varies, we observe that as M increases

from 2 to 4, a clear improvement in BER can be seen, especially at high SNR. While,

on the other hand, if M increases further from 4 to 6 and then to 8, hardly any

noticeable improvement in the performance can be seen, as shown in Fig. 3.4. This

is the benefit of incorporating an M-Algorithm [80] in the BB search tree. It avoids

exploring unnecessary nodes in the search tree while preventing major performance

loss.

Fig. 3.5 shows the performance comparison between BB(L,M) and other exist-

ing techniques, such as, MMSE-OSIC [33], MMSE-chase [82], MMSE-LAS [38], and

QRD-M. BB(0,1) performs better than MMSE-chase and MMSE-LAS, but worse
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than V-BLAST. Increasing L to 4 and restricting M to 4 makes BB(4,4) clearly out-

perform V-BLAST. It can also be observed that BB(8,4) can achieve lower BER than

QRD-M with M = 16. Interestingly, this figure shows that QRD-M with M = 16

could not achieve ML performance as is usually claimed in small MIMO systems.In

other words, the minimum value of M ( which makes QRD-M achieves ML perfor-

mance) is equal the number of constellation points [83], [84]. To see this contrast, the

results in this figure can be compared to the results of the conventional MIMO case

in Fig. 3.7.

Fig 3.6 represents the plot of uncoded BER performance as a function of the

number of antennas(nt = nr) at 20 dB average SNR. It can be observed that, like

MMSE-LAS [38], BB(L,M) can successfully pick up some of the diversity of the sys-

tem as the number of antennas increases, though with better performance. Detectors

that use MMSE, such as linear MMSE and V-BLAST, could not handle the increase

in the number of antennas and therefore, this results in no increase in the BER per-

formance as nt increases (similar to the BPSK modulated large-scale MIMO results

provided in [38]).

Predicting the ML/SD performance is prohibitively complex for large-scale MIMO

systems. Therefore, to assess how well our algorithm performs w.r.t. to the ML, we

compare its performance to ML/SD and QRD-M with M =16 in a small 16QAM

(4 × 4) MIMO OFDM setup. As shown in in Fig. 3.7, we see clearly that full BB

yields the ML/SD performance, while BB(8,2), which explores only 16 nodes, can get

near-ML performance.

Fig. 3.8 demonstrates our suggestion that when performing early termination of

the IP algorithm, no major loss in performance is experienced. For instance, the

performance degradation in achieving an uncoded BER of 10−2 is 0 dB for 16QAM

20× 20 MIMO OFDM for both cases of BB(0,1) and BB(4,4). At a BER of 10−3, a

loss of about 0.5 dB is incurred for BB(0,1) as a penalty for reducing the IP iterations

from 9 to 4, while it is a little less than 0.5 dB for BB(4,4) when the IP iterations

are reduced from 10 to 5. Note that the minimum number of IP iterations required
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so that no major performance loss is encountered could change depending on the

constellation size.

Fig. 3.9 demonstrates the application of the BB(L,M) algorithm for different QAM

modulation orders and various values of L and M when a 20× 20 MIMO OFDM sys-

tem is used. As was analyzed in section 3.2.3, the computational complexity depends

mainly on the number of visited nodes (Nv) and the number of iterations of the IP

algorithm per node (n). Thus, Fig. 3.10 shows the computational complexity of

20× 20 MIMO OFDM when the size of the BB search tree is BB(0,1) and BB(4,4).

It can be observed that for BB(0,1) the complexity of all the QAM levels considered

is nearly the same.
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3.3 Application of the Proposed Technique for the Detection of Over-

loaded MIMO Systems

A MIMO system is called overloaded when the number of spatially multiplexed

signals (or the number transmit antennas) is greater than the number of receive an-

tennas, i.e., nt > nr [85]. the MIMO channel matrix in this system becomes a fat

matrix and the system becomes underdetermined. Linear detectors, such as ZF and

MMSE cannot do well in an overloaded MIMO, even at high SNR, ecause they fail

to exploit the available MIMO diversity [85], [86]. In general, the difficulty caused by

the overloaded MIMO detection problem stems from the underdetermined system, in

which the number of interference signals exceeds the number of receive antennas [87].

An overloaded system is a practical system, one that is used, for example, in a ter-

restrial mobile system where there is a minimal number of antennas needed at the

receiver [87]. Previous work has been done to improve the detection performance of

the overloaded MIMO system using Genetic Algorithm (GA) optimization, such as

in [85], [87], [86]. In this section we utilize the proposed controlled search tree al-

gorithm BB(L,M) to provide exact and near-ML performance for a small overloaded

MIMO system.

We consider an overloaded MIMO system with nt transmit and nr receive an-

tennas where nt > nr. The transmitted signals are assumed to be an independent

multistream of data (Spatial Multiplexing) using QPSK modulation. The received

signal vector r ∈ Cnr×1 is

r = H̃s + n (3.14)

where H̃ is an (nr×nt) flat fading channel matrix whose entries are independent and

identically distributed (i.i.d) complex Gaussian distributed variables. We assume per-

fect channel estimation is available at the receiver. s denotes a transmitted signal

vector of length nt at a particular time instant. The entries of the vector n ∈ Cnr×1

are i.i.d complex Gaussian random variables with zero mean and a variance of σ2.

The same formulation procedures presented in section 3.2.1 will be applied for model
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(3.14).

Simulation experiments for a system of 6 transmit antennas and 3 to 4 receive an-

tennas is used to evaluate the symbol error rate (SER) performance of this overloaded

MIMO system. Fig. 3.11 shows the degraded performance resulting from MMSE de-

tector, which is just a high error floor. On the other hand, using BB(8,4) can improve

system performance and exploit some of the MIMO diversity. BB(12,M), where the

stopping level is L = 12 and M is kept unrestricted, can achieve the ML performance.

Fig. 3.11 also shows the SER performance for an overloaded MIMO system but for

a 6 × 4 setting. Full BB algorithm achieves the exact ML performance. Similar to

the previous results in section 3.2.5, the SER performance improves as the value of L

increases from 4 to 6 and then to 8; in all cases, they outperform MMSE performance.
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4. APPLICATION OF QP ALGORITHMS IN

LARGE-SCALE MIMO SYSTEMS

The use of a large number of antennas at the transmitter and receiver becomes of

interest in MIMO systems due to the possibility of gaining high spectral efficiencies

without the need for increasing bandwidth [88], [89], [24].

In this chapter, three potential algorithms are proposed for a large-scale MIMO

detection problem. They can provide near single antenna AWGN performance with

only tens of antennas and with nearly constant average complexity over all modula-

tion orders. The first algorithm is simply the conventional quadratic programming

detector that was already studied in the previous chapters. We show in this chapter

that it provides better performance than the LAS detector with no major increase in

average complexity. We also show that its complexity does not grow significantly from

a low order to a high order modulation. QP detectors are also studied in conventional

MIMO systems [76], [90], [78]; however, we note a lack of performance studies in rel-

evant literature for this type of detector in large-scale MIMO systems. Therefore, we

present the QP detector’s performance and complexity analysis, and point out that it

is one of the detectors that exhibits large-system behavior. Thus, any other algorithm

based on QP can have the same behavior in a large-scale system.

The second proposed algorithm improves the performance of the first algorithm

with a minor complexity increase. The improvement is based on the use of a two-stage

quadratic programming detector with a successive interference cancellation strategy

that utilizes a shadow area constraint [48] to measure symbols reliability. Finally, the

third algorithm uses the already proposed technique, namely a controlled size search

tree algorithm, where a few nodes are explored in the BB tree based on two criteria:

one reduces the depth of the BB tree and the other reduces the width of the BB

tree. Although the complexity of this algorithm is still high when nt is large at all
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SNRs, we were able to reduced it dramatically (although, only at high SNR regime)

by applying a new pruning rule based on the duality gap between the integer problem

and its relaxed problem. The contribution of this chapter can be summarized in the

following points:

• We present the application of QP-based detection algorithms in a large-scale

MIMO system with uncoded BER performance results that have not been re-

ported so far. These results are reported for QPSK, 16QAM, 64QAM, and

256QAM modulations.

• In addition to the conventional QP detector, two new algorithms are proposed

to enhance the performance with various complexity trade-offs. The idea of our

new proposed algorithms has not been used before in conjunction with a QP

detector; therefore, we point out their advantages in boosting the performance

of large-scale MIMO systems.

• We show that the complexity of the proposed algorithms does not change sig-

nificantly across various QAM modulation orders. In addition, there is no mod-

ification or extension needed to implement these algorithms in various QAMs.

• The performance of the three algorithms exceeds the performance of LAS and

RTS algorithms at higher QAM orders with even lower complexity, especially

with the first and the second algorithms.

• The computational complexity of the standard QP detector can be reduced

with no major performance loss using a few interior-point iterations (e.g. two

iterations when QPSK is used).

• The complexity of the proposed algorithms is analyzed and compared with other

large-scale MIMO detectors.
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4.1 System Model

Consider a MIMO system with a flat fading channel with nt transmit antennas and

nr receive antennas employing spatial multiplexing (V-BLAST) transmission. At the

transmitter side, the information is generated in the source and mapped to symbols of

different alphabets. The mapped complex symbols are demultiplexed into nt separate

independent data streams with a transmitted signal vector x̃ = [x̃1, . . . , x̃nt ]
T ∈ Cnt×1.

The general MIMO channel model is

ỹ = H̃x̃ + ñ (4.1)

where ỹ = [ỹ1, . . . , ỹnr ]
T ∈ Cnr×1 is the received signal vector at all nr antennas,

H̃ ∈ Cnr×nt denotes the flat fading channel gain matrix whose entries are modeled as

CN (0, 1), and ñ represents the receiver AWGN noise vector whose entries are modeled

as i.i.d CN (0, σ2). The tilde symbol in (4.1) is made to distinguish the complex model

from the real model that will be shown in the next section. We assume ideal channel

estimation and synchronization at the receiver end.

4.2 Formulation of the Problem

Formulation procedures similar to those done in chapter 3 are repeated except

that the channel is characterized by a flat fading. Thus, the ML problem of model

(4.1), which is equivalent to Euclidean distance minimization, can be expressed as

ˆ̃x = argmin
x̃∈χ̃nt

‖ ỹ− H̃x̃ ‖2
2 (4.2)

where χ̃nt is the set of all possible nt-dimensional complex candidate vectors of the

transmitted vector x̃. The equivalent real system model of (4.1) is:

y = Hx + v (4.3)

where

y =

<{ỹ}
={ỹ}

 ,x =

<{x̃}
={x̃}

 ,n =

<{ñ}
={ñ}

 (4.4)
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H =

<{H̃} −={H̃}
={H̃} <{H̃}

 (4.5)

In this real-valued system model, the real part of the complex data symbols is

mapped to [x1, . . . , xNt] and the imaginary part of these symbols is mapped to

[xNt+1, . . . , x2Nt]. Now the equivalent ML detection problem of the real model is

x̂ = argmin
x∈χ2nt

‖ y−Hx ‖2
2 (4.6)

where, set χ = {−
√

C+1, ..,−1, 1, ...,
√

C−1}, C is the QAM constellation size. Each

element of this real set can be transformed to a positive integer using the following

linear transformation: z = x+(
√
C−1)

2
. Norm 2 term in (4.6) can be simplified and the

ML problem can be reformed as

ẑ = arg min
z∈Ω2nt

{1

2
zTQ z + bTz} (4.7)

where

Ω = {0, 1, 2, ..,
√

C− 1}

Q = HTH, is a symmetric positive semidefinite matrix

b = −HT (y + (
√
C − 1)H1)/2

1 = [1, 1, . . . , 1]T , colomn vector of dimension(2nt × 1)

(4.8)

4.3 Proposed Algorithms

4.3.1 Algorithm I: Quadratic Programming Detector

One way to solve (4.7) is to use standard QP solvers that rely on relaxing the

integer constraints. Thus, problem (4.7) becomes:

argmin
z

1

2
zTQ z + bTz

subject to 0 ≤ z ≤ (
√
C − 1)1

(4.9)

where 0 represents 2nt× 1 vector of all zeros and the constraints 0 ≤ z ≤ (
√
C − 1)1

represents the box constraints of all elements of z, i.e. each element (symbol) of z is
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lower bounded by 0 and upper bounded by
√
C − 1. This form of an optimization

problem is a convex QP minimization problem. A unique global continuous solution

z∗ can be obtained using efficient interior-point solvers with reduced computational

complexity [71]. The importance of using an interior-point solver is that in practice,

the interior-point algorithm converges in a number of iterations that is constant, in-

dependent of the problem dimension [73]. This becomes attractive from a complexity

point of view, especially when the number of antennas increases. Solving (4.9) pro-

vides a 2nt dimensional solution vector z∗ = [z
(∗)
1 , . . . , z

(∗)
2N ]T ∈ R2nt and a scalar cost

function value f(z∗). If all elements of z(∗) satisfy the integer constraints, then z(∗)

is the optimum solution for problems (4.7) and (4.9). In general, the integer solution

of (4.9) is provided by quantizing z(∗) to the nearest constellation set Ω, that is :

zi = Q[z∗i ], i = 1, 2, . . . , 2nt (4.10)

where, Q[.] is a quantization function to the appropriate constellation levels of the

set Ω. In the next subsections, we propose to improve the performance of the QP

detector in a large MIMO system through performing further analysis of the problem

(4.9) using first, two-stage QP detection with interference cancellation, and second,

the concept of the Branch and Bound search tree algorithm [9], [91], [92].

4.3.2 Algorithm II: Two-Stage Quadratic Programming Detector

The idea of this algorithm is to implement two stages of QP detection with in-

terference cancellation to further improve the detection of the unreliable symbols

(non-integer variables of z∗ found in (4.9)). One drawback of algorithm I is that all

symbols are quantized simultaneously, irrespective of their reliabilities. Therefore, in

this algorithm, a shadow area between positive integers of the constellation set, Ω, is

proposed before performing quantization in (4.10). Any z∗i that falls in this shadow

area will be considered unreliable. In other words, the unreliable symbols are selected

based on the following: from the solution of (4.9), the variables with fractions that

are far from their nearest integers by a value greater than or equal to δ are considered
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noisy and, therefore, need another stage of QP detection. We denote the positions of

these unreliable symbols by the set of indices J . On the other hand, the variables

with small fractions (< δ), or those with purely integers, can be quantized and con-

sidered the optimum integer for both (4.9) and (4.7). Thus, their effects need to be

canceled out so that the solution of the noisy variables can be improved. The set of

indices represents the positions of these integer variables is denoted as I, which can

be estimated using the following criteria:

I = {i ∈ {1, 2, . . . , 2nt} |‖ z∗ − bz∗e ‖∞ ≤ δ} (4.11)

where, ‖ x − y ‖∞ := max(|x1 − y1|, . . . |xn − yn|), bxe is the rounding operation of

x to the nearest integer, and 0 < δ < 0.5 is a measure of how close each element

from (4.9) to its nearest integer. The maximum value of δ is 0.5 because the integer

feasible set Ω in (4.8) is made up of consecutive positive numbers.

Consider, for example, that the ith value of z∗ from (4.9) is an integer or satisfies

the condition in (4.11), that is, |zi − bzi∗e| ≤ δ. In order to perform an interference

cancellation for this symbol in the second QP stage formulation, the new modified

received vector becomes ȳ = y−xigi, where xi = 2zi−(
√
C−1), and gi represents the

ith column of H. Now with one symbol zi, which is assumed known, the new reduced

ML problem can be formulated with a new norm 2 term as ‖ ȳ − H̄x̄ ‖2
2, where

H̄ = H[i] is obtained by omitting ith column of matrix H. Similarly, x̄ is obtained

by omitting ith element of x. This can be generalized if more than one symbol are

integers or satisfying the condition in (4.11). That is, simply replace the index i by

I. To obtain the reduced size QP after the interference cancellation step, the same

formulation procedures that are shown to get (4.7), (4.8) can be repeated, but for

‖ ȳ− H̄x̄ ‖2
2. This yields the following QP problem:

argmin
z̄

1

2
z̄T Q̄ z̄ + b̄

T
z̄

subject to 0̄ ≤ z̄ ≤ (
√
C − 1)1̄

(4.12)
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where,

Q̄ = H̄
T
H̄, is a symmetric positive semidefinite matrix

b̄ = −H̄
T

(ȳ + (
√
C − 1)H̄1̄)/2

1̄ = [1, 1, . . . , 1]T , colomn vector of length(2nt − |I|)

(4.13)

and |I| is the cardinality of the set I. In order to avoid recomputing Q̄ and b̄ in

(4.13), we further simplify them to be evaluated in terms of the Q and b as follows:

Q̄ = Q(J ,J )

b̄ = Q(I,J )Tz(I) + b(J )
(4.14)

where Q(I,J ) denotes the submatrix composed of rows I and columns J of Q for sets

I and J . Also, b(J ) denotes a subvector consisting of elements of b corresponding

to the indices of set J .

Note that unlike the conventional successive interference cancellation techniques

[33], [47], this algorithm provides symbol ordering that is based on the non-integral

measure, δ, that indicates how many reliable or unreliable received symbols there are.

The parameter δ in (4.11) is a design parameter and needs to be optimized. When

δ is chosen to be very small (e.g. δ < 0.1), a large number of variables fall into

the second QP stage because they don’t pass the condition in (4.11). In this case,

the interference cancellation cannot do much in improving detection performance of

the first QP, especially at low SNR. When δ is large (e.g. δ > 0.4), most of the

symbols will pass the integer condition, even though they might be far from their

nearest integers. With this δ , interference cancellation may improve the detection

of some symbols, especially at a high SNR regime. In this algorithm, δ is optimized

based on both minimum BER and complexity across various SNR using simulation

experiments, since the analytical optimization seems cumbersome. We found that the

optimum δ is around 0.2 to 0.3 for various QAM levels. A summary of the Algorithm

II steps is shown in Table 4.1.
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Table 4.1 Two-stage QP Algorithm

1 Input: Q, b

2 z∗ = quadprog(Q,b) from (4.9)

3 Find I that satisfies ‖ z∗ − bz∗e ‖∞ ≤ δ

4 z(I) = Q[z∗(I)]

5 Find set of indices J

6 Find Q̄ = Q(J ,J ), and

7 b̄ = Q(I,J )Tz(I) + b(J )

8 z∗(J ) = quadprog(Q̄, b̄) from (4.12)

9 z(J ) = Q[z∗(J )]

4.3.3 Algorithm III: Controlled Size Branch and Bound Algorithm

The proposed algorithm in chapter 3, BB(L,M) is used here for the sake of com-

parison with other algorithms that are widely used for the detection of large-scale

MIMO systems. In addition, for faster simulation time and a reduced number of

visited nodes (hence lower computations), we further propose another approximation

in conjunction with the BB(L,M) search tree. This approximation depends on the

duality gap between the relaxed problem and the integer problem of any node in the

tree. The duality gap is defined as the difference between the objective function val-

ues of these two problems. The key idea is that whenever this gap is small (based on

some criteria), we can approximate the relaxed continuous solution to be the integer

solution using the basic rounding. This adds one more pruning rule to the BB algo-

rithm because more integer solutions will be available. Hence, it reduces the number

of visited nodes significantly, especially at high SNR. Following the same notation in

this section, we denote the optimum continuous solution of the relaxed problem of a

node k by z(k) and its objective function value as f(z(k)), where k = 0, 1, 2, . . . , Nv
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and Nv is the number of visited nodes in the search tree. Similarly, we denote the

optimum integer solution of the same node, k, by Q[z(k)], and its objective function

value as f(Q[z(k)]). Thus, the approximation can be represented as

z(k) =

Q[z(k)] if |f(z(k))− f(Q[z(k)])| ≤ |αf(z(k))|

z(k) otherwise

 (4.15)

where |(.)| represents the absolute value operation, and α is a small number ∈ (0, 1).

The larger the α, the lower the performance and the complexity is reduced. Note

that this approximation is different from the one presented in [14] which prunes the

node only if its objective value is close to the best available upper bound so far.

4.4 Complexity Analysis

The main ingredient of the computations of the QP detector is the interior-point

algorithm, which finds a point where the Karush-Kuhn-Tucker (KKT) conditions hold

for the optimization problem (4.9) in an iterative manner. As shown in [71] and [70],

each iteration of the interior-point algorithm boils down to solving a system of linear

equations where it is required to perform a matrix inversion of the same size in every

iteration. Therefore, the complexity of one interior-point iteration is in the order

of O(n3
t ), and becomes nO(n3

t ) for n iterations. In practice, the interior point con-

verges in a number of iterations which is almost always a constant, independent of the

problem dimension [73]. This is one of the reasons why the interior-point is selected

for high dimensional optimization problems. From our simulation experiments, we

found that when using the standard interior point algorithm, the average number of

iterations required for various number of antennas is 6,7, 8, and 9, when the symbol

mapping is QPSK, 16QAM , 64QAM, and 256QAM, respectively. In this work, we

further reduce the number of iterations to 2, 4, 5, and 6 without major performance

loss. The idea here is that the algorithm makes, in every iteration, a huge step towards

convergence to the optimum continuous solution. Since the aim of the QP detector

is to find the integer solution, an early termination to the algorithm, achieved by re-
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laxing the tolerance constraints of the convergence before applying quantization step

in (4.10), can speed up the convergence to the integer solution without major loss in

the performance.

The second algorithm requires more computations than the first algorithm, due to

the presence of the second round of QP. Fortunately, the problem size of the second

QP is much smaller than the first, especially for medium to high SNR and when the δ

parameter is optimized. This makes the computational complexity of algorithm I and

II is nearly the same when the number of antennas becomes large. The interior-point

algorithm in the second QP requires complexity in the order of O(n(|J |)3). There-

fore, the total complexity of algorithm II is in the order of O(nn3
t + n(|J |)3). Based

on algorithms I and II, the difference in computations for various modulation orders

arises from the different number of iterations of the interior-point algorithm, which,

for example, can be at most 3 times between 256QAM and QPSK cases.

Finally, as shown in chapter 3, the controlled size BB algorithm needs more com-

putations compared to the first two algorithms because of the computations needed

in every node of the small tree. Thus, the total complexity can be of the order of

O(Nvnn
3
t ) per received vector, where Nv is the number of visited nodes in the pro-

posed BB search tree. In large-scale MIMO systems, n << nt and Nv is a function of

both L and M values of the tree (approximately, from simulations, Nv ≈ LM at low

SNR, whereas Nv � LM at high SNR).

For various QAM modulations, the complexity of the proposed algorithms does

not change significantly. In fact, the small variations in complexity are due to the

difference in the number of interior-point iterations required for each modulation case,

which is at most 3 times between the cases of QPSK and 256QAM. This is an im-

portant advantage for the QP-based detectors compared to other algorithms in the

literature of large-scale MIMO such as, RTS and R3TS [43], and Fixed Complexity

SD [37], which require a large variation in complexity when the modulation order

changes from low to high (e.g. it is in the order of 100 times between QPSK and

64QAM for R3TS [43], and more for FSD).
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As shown in [38], the complexity per received vector of MMSE-LAS is in the or-

der of O(n3
t ) + O(n3

t ); one O(n3
t ) due to the MMSE initial vector, and one O(n3

t )

due to the LAS procedures. Therefore, clearly the extra complexity needed by QP

over MMSE-LAS mainly arises from the number of interior-point iterations, n, of QP

detector. Moreover, BB(L,M) requires approximately nNv times the complexity of

MMSE-LAS.

4.5 Simulation results

In this section, we show simulation results for an uncoded large-scale MIMO sys-

tem in a block flat fading channel with nt = nr for various QAM modulation levels,

assuming perfect knowledge of channel state information at the receiver. We refer to

our proposed algorithms as QP for algorithm I, 2QP for the two-stage QP detector

(algorithm II), and BB(L,M) for the third algorithm that uses the controlled size

BB search tree. We compare our proposed algorithms with other detectors including

MMSE, MMSE-OSIC, MMSE-LAS, and MIV-LAS. MIV-LAS is a LAS algorithm

that uses three initial input vectors, such as matched filter (MF), zero forcing (ZF),

and MMSE. Since the performance gain from using multiple symbol update LAS al-

gorithm [30] over MMSE-LAS is small, we limit our comparison to MIV-LAS and

MMSE-LAS only. In the following BER performance figures, the x-axis represents

the average received SNR per received antenna in dB, and the y-axis represents the

average BER resulting from more than 1000 channel realizations of Monti Carlo sim-

ulations per each SNR. For fair comparison between various detection techniques, all

implementation is done using real system model shown in (4.3)
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4.5.1 Optimizing δ in Algorithm II and the Number of Iterations of the

Interior Point Algorithm

Figs. 4.1 and 4.2 demonstrate, in the case of QPSK modulation, that the choice

of parameter δ can significantly improve the performance of a 2QP detector over the

conventional QP detector. In this particular example of 32× 32, it can be said that

the vale of δ between 0.25 and 0.3 provides the best performance over other values.

For instance, when δ = 0.25 or 0.3, 2QP has a 2 dB improvement over QP at 10−3

BER. Given that the size of the first QP problem is 2nt, the computational complex-

ity of the second stage of QP is far below that of the first stage, especially at medium

to high SNR. The size of the second QP problem decreases as the value of δ increases

(see Fig. 4.2). This makes the computational complexity of the 2QP detector very

close to the QP detector. For example, in the QPSK case with nt = 32, at 10−3

BER for δ = 0.25, the average size of the second stage of QP is 5 variables compared

to 64 variables in the first stage. For various QAM modulations, various SNRs, and

different nt, Fig. 4.3 demonstrates that the value of δ = 0.25 can be a good optimized

value, and thus, it is used in the 2QP detector over the rest of the simulation results.

As we mentioned in Section 4.2, the main computational burden in a QP de-

tector comes from the iterative interior point solver. We proposed to reduce its com-

putations by forcing the algorithm to perform early termination, thus reducing the

number of iterations. We performed simulation experiments using both QP and 2QP

detectors for QPSK and 16 QAM modulations with various interior point iterations.

Figs. 4.4-a and 4.4-b show that 2 and 4 iterations for QPSK and 16QAM modula-

tions, respectively, are the minimum numbers that guarantee no major loss in BER

performance. The same reduction procedures were done for 64QAM and 256QAM

where the minimum number of iterations was 5 for 64QAM and 6 for 256QAM. These

numbers are used in the rest of the simulation experiments.
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4.5.2 Uncoded BER Performance vs. SNR

We choose a relatively large number of antennas, such as nt = 32, to demonstrate

the performance of our proposed techniques. In Figs. 4.5 and 4.6, we present the
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Fig. 4.3. BER performance vs. δ of the Two-stage QP detector at various QAM modula-

tions

average uncoded BER performance for 32×32 MIMO with QPSK, 16QAM, 64QAM,

and 256QAM modulations. In a 2QP detector, δ = 0.25, and in the BB(L,M) detec-

tor, α = 0.01 for QPSK, α = 0.001 for 16QAM, and α = 0.0001 for both 64QAM and

256 QAM. From Figs. 4.5 and 4.6, the following observations can be made:

• Figs. 4.5 and 4.6 clearly show that both 2QP and BB(L,M) algorithms improve

the performance of the QP detector at all displayed SNRs and at all QAM modu-

lation orders. Interestingly, when comparing 2QP with BB(L,M), say BB(16,2),

in Fig. 4.5-a, the 2QP algorithm performs better than BB(16,2) in QPSK (+

0.5 dB at 10−3 BER), but then it steadily becomes worse than BB(16,2) as the

modulation order increases, see Figs. 4.6 c and d. In 256QAM,for instance,

2QP is worse than BB(16,2) by 5 dB at 10−3 BER. As we will see in the rest of

simulation results later, this may change at a larger number of antennas, such

as > 40 for 16QAM and > 100 for 256QAM .
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• A more detailed illustration of the BB(L,M) algorithm is shown in Fig. 4.7

for 16QAM, as an example only. It shows that as the depth of the BB search

tree, L, increases, the performance increases, along with diversity. For instance,

BB(16,2) outperforms BB(2,4) with 2 dB at 10−3 BER, with a cost of about a

4-times increase in complexity. On the other hand, increasing the width of the

BB search tree cannot always provide improved performance. The same figure

shows that BB(16,4) has the same BER as BB(16,6); however, the benefit is

that BB(16,4) has a lower number of visited nodes.

• Fig. 4.5 a shows that LAS detectors perform better than the QP detector when

QPSK is used, especially at SNR < 15 dB. It also shows that the 2QP algorithm

outperforms MMSE-LAS and MIV-LAS at all displayed SNRs. Performance

changes as the modulation order moved to high levels, at which point all three

proposed algorithms outperform LAS algorithms with at least 4 dB at BER

= 10−3. Moreover, the QP algorithm, which provides an upper bound BER

performance to the other two proposed techniques, when used for 256 QAM,

can provide a 5 dB improvement over LAS algorithms at BER = 10−2.

• Although the RTS algorithm performs better than the proposed algorithms in

QPSK, with about 1 dB closer to the single antenna AWGN bound (see Fig. 4.5

a), its performance tends to deteriorate at higher QAM modulations, such as

16QAM, 64QAM, and 256QAM, especially at high SNR, as shown in Fig. 4.5

b and Figs. 4.6 c & d. The performance of RTS was improved using a hybrid

of RTS and Belief Propagation (BP) (RTS-BP) in [93], but this only achieved a

1.6 dB improvement at 10−3 BER (see Fig. 3 in [93]), while our 2QP algorithm

provides a 2 dB improvement and BB(32,4) provides a 4 dB improvement over

the RTS.

• It is worth mentioning that the performance of our proposed algorithms can

be further improved by combining any one of them with any of the LAS algo-

rithms, meaning that the starting initial vector of any LAS detector can be the
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vector results from QP, 2QP, or BB(L,M) detectors. The simulation results for

this claim are not extensively shown here, but two examples for 2QP with LAS

using QPSK, and BB(32,4) with LAS using 16QAM are depicted in Figs. 4.5-b

and 4.7, respectively. The improvement of the combination over conventional

2QP and BB(32,4) are clearly shown.

Table 4.2 presents a sample of a complexity computation at relatively low SNR that is

required to achieve 10−2 BER. The important observations are as follows: (i) there is

no significant increase in the computational complexity of QP and 2QP detectors over

MMSE-LAS detector; however, performance is substantially improved, especially at

higher QAM modulations. For example QP has a 5 dB improvement at 256QAM,

see Fig. 4.6 d. (ii) As the modulation order increases, the performance increase of

3MIV-LAS over MMSE-LAS does not pay off complexity added. And (iii) At fixed

nt = nr, complexity of QP, 2QP, and BB(L,M) does not change significantly from

QPSK to 256 QAM. The complexity of BB(4,4) and BB(16,2) in Table II, which is

measured at a relatively low SNR (10−2 BER), is reduced significantly at a high SNR.

For example, at an SNR that achieves 10−4 BER for 256QAM 64×64, the complexity

of BB(4,4) drops from 203×106 to 25×106, and that of BB(16,2) drops from 404×106

to 46×106. This huge reduction in the complexity is due to the efficacy of the duality

gap pruning rule at high SNR.

4.5.3 Uncoded BER Performance vs. nt

In Figs. 4.8, 4.9, 4.10, we plot an uncoded BER performance as a function of

nt = nr, for various detectors at an average received SNR of 15 dB, 26 dB, and 39 dB

for QPSK, 16QAM and 256QAM, respectively. We compare the proposed algorithms

against MMSE-LAS, RTS, MMSE-OSIC, and QRDM. Other LAS algorithms are not

simulated here because their improvement over MMSE-LAS is small, especially at

higher QAM modulations. MF and MMSE are also plotted for reference. The values
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Table 4.2 Avg. Complexity in terms of # of real operations ×106 at 10−2 BER.

QPSK 16QAM 256QAM

Algorithm 32× 32 64× 64 32× 32 64× 64 32× 32 64× 64

MMSE-LAS 0.524 4.194 0.528 4.210 0.786 6.291

3MIV-LAS 1.25 10.06 1.27 10.10 1.88 15.09

RTS 0.68 1.36 6.5 12.56 80.23 118.34

QP 0.786 6.291 1.04 8.385 1.575 12.58

2QP 0.798 6.371 1.11 9.25 1.70 14.027

BB(4,4) 8.79 69.37 12.66 103.28 25.52 203.20

BB(16,2) 17.59 136.74 25.32 203.57 50.51 404.40

FSD [36], [43] 8.59 138.74 4599.53 * * *

of δ and α are the same as mentioned above. The main observations from the simu-

lation results of this section are as follows:

• Figs. 4.8, 4.9, 4.10 demonstrate that at higher QAM orders (16QAM and

256QAM), our proposed algorithms outperform the MMSE-LAS algorithm at

all displayed nt. However, in the case of QPSK, MMSE-LAS provides better

performance than QP and BB(4,4) only at nt ≥ 30 and nt ≥ 40, respectively.

Note that in this particular case, as more levels are considered in the BB(L,M)

algorithm, the crossover point between MMSE-LAS and BB(L,M) moves to the

right of the figure (see Fig. 4.8).

• Since the inherent search strategy of RTS is more effective than LAS [36], we

can see clearly from Figs. 4.8, 4.9, and 4.10 that RTS outperforms LAS at all

displayed dimensions. It also outperforms our proposed algorithms when QPSK

modulation is used. However, when RTS is compared to the QP-based algo-
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rithms at higher QAM orders, it only outperforms our proposed techniques at a

certain range of nts, this range gets smaller as we move to a higher modulation.

• An interesting result regarding the 2QP algorithm, across various QAM mod-

ulations, is that although it requires lower complexity than BB(L,M), it has

superior performance. For example, in the QPSK modulation, it outperforms

BB(4,4) and BB(16,2) when nt > 10 and nt > 28, respectively. At higher QAM

modulations, the value of nt at which 2QP starts to outperform BB(L,M) is

increased (see Figs. 4.9, and 4.10). For example, at nt > 40 and nt > 100 ,

2QP outperforms BB(16,2) for 16QAM and 256QAM, respectively.

• We also observe a flooring behavior with respect to BB(L,M) performance. This

is due to the fact that while we increase nt = nr, we keep the same depth of the

BB tree, which is not enough to further reduce errors. This effect can be reduced

if the depth of the BB is made to adaptively increase with nt, For instance, Fig.

4.8 shows that when BB(16,2) is replaced by BB(2nt,2), the flooring effect is

reduced.

• V-BLAST successive interference cancellation with ordering, MMSE-OSIC, per-

forms well only at smaller nt; using QPSK, it performs better than QP at

nt ≤ 12; using 16QAM, it performs better than QP and 2QP at nt ≤ 16;

using 256QAM, interestingly, it performs better than QP, 2QP, and BB(4,4)

at nt ≤ 45; however it requires more computations. In general, MMSE-OSIC

starts to exhibit a high error floor as nt increases. This can be explained due to

the larger interference generated by larger nt. This fallsin line with the results

showed in [38] for BPSK.

• The performance of reduced complexity search tree algorithms that are exten-

sively studied in conventional MIMO detection problems, such as Fixed SD

(FSD) [37], K-best SD, and QRDM, demonstrate poor performance in large-

scale MIMO systems [94]. We present here, as an example, the performance
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of the QRDM algorithm, as we were able to simulate this algorithm for nt up

to 60 for both QPSK (with M=4) and 16QAM (with M=16) cases (but not

for 256QAM). We show that QRDM (with M = QAM size) can provide the

best performance at Nt < 10, which is the ML performance; however, as nt

gets higher, the BER performance deteriorates due to the fact that the reduced

search space becomes very small compared to the ML space.

An important conclusion from the comparison of the three proposed algorithms is

that at medium to high SNR with a large number of antennas (e.g. at nt ≥ 40) and

with low modulation order, such as QPSK and 16QAM, the 2QP algorithm seems to

be the winner algorithm in terms of complexity and performance, while at a higher

modulation order, such as 256QAM, BB(L,M) with L ≥ 16 is the best choice. Also,

at medium to high SNR, but at small nt = nr, BB(L,M) is always the best choice,

especially in terms of performance.

4.5.4 Turbo Coded BER Performance

In this subsection, we evaluate the turbo coded BER performance of the QP-based

detectors compared to MMSE, MMSE-LAS, and RTS detectors. In this simulation,

a 32×32 MIMO system is examined with 16QAM and a 1/3 rate turbo decoder of 10

iterations. ±1 output valued vector from all detectors is fed as an input to the turbo

decoder. In Fig. 4.11, the 2QP detector perform close to the RTS detector with less

than 0.5 dB difference, even though the RTS performance is superior in the uncoded

case. It can also be seen that turbo coded QP exceeds the coded BER performance

of MMSE-LAS and MMSE with 1 dB and 2 dB, respectively. The nt = nr = 32 with

16QAM and rate-1/3 turbo coded corresponds to 32 × 1/3 × 4 = 42.67 bit/sec/Hz

spectral efficiency. The minimum SNR required to achieve this capacity is shown

in Fig. 4.11 , which is 3.25 dB. This is obtained from plotting the value of ergodic

capacity expression, from [95], against average received SNR. Therefore, at coded

BER 10−3, the 2QP and RTS detectors are about 14 dB away from the capacity.
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The advantages of turbo coded QP and 2QP detectors becomes clearer at high QAM

modulations, such as 256 QAM, as shown in Fig. 4.12
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5. QP-SUCCESSIVE INTERFERENCE CANCELLATION

APPROACH FOR LARGE-SCALE MIMO OFDM

SYSTEMS

In this chapter, we focus on a reduced complexity version of IQP, referred to as relaxed

quadratic programming (QP). We exploit the formulation of this problem to propose

a new low complexity successive interference cancellation (SIC) technique that suits

a large-scale MIMO OFDM system in a spatial multiplexing setup. In a large-scale

MIMO system, a large number of transmit and receive antennas is required, and more

interferers are present; therefore, the SIC process requires more efficient detectors that

can combat the error propagation issue. Moreover, computational complexity is an

important issue to consider when it comes to implementing a detection technique

for this large MIMO system, as most of the proposed SIC techniques require a large

number of pseudo inverse computations each time a new symbol is detected, putting

a huge burden on the receiver complexity. The proposed technique in this chapter

formulates SIC procedures using QP formulation (QP-SIC) in a symbol-by-symbol or

group-by-group manner.

Three versions of the QP-SIC technique are introduced in this chapter with various

performance and complexity trade-offs. Simulation results show that the proposed

schemes significantly outperform the existing SIC schemes. They also show that these

proposed algorithms improve the system diversity as the number of antennas increases

and it gradually approaches the AWGN single antenna performance. We refer to the

three versions of QP-SIC as Algorithm I, Algorithm II, and Algorithm III. Algorithm

I performs symbol-by-symbol SIC and within each iteration of symbol detection and

nulling, only a linear operation is required and no matrix inversion operation is per-

formed. Algorithm II improves the performance gained by Algorithm I via performing

SIC in a grouping manner and using QP detector for each group. Finally, Algorithm
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III is similar to Algorithm II, though instead it performs SIC procedures only for

selected groups, which in turn saves more computational complexity. In all of the

aforementioned algorithms, an initial MMSE estimation is required to help in both

the symbol ordering and interference cancellation processes. The reliability ordering

is implemented based on approximated LLR evaluation [47].

Proposed schemes will be compared against some of the known SIC schemes in

both performance and complexity. We extend the applicability of this technique to

the Spread OFDM (SOFDM) system since the detection problem is similar to the

massive MIMO case.

5.1 System Description

5.1.1 System Model

We consider a MMO-OFDM system model similar to the one presented in chapter

3, with nt transmit antennas and nr receive antennas, and a single OFDM modulator

per each antenna. At the transmit side, the information is generated in the source

and mapped to symbols of a different alphabet (we focus here on QPSK mapping).

The mapped complex symbols are then demultiplexed into nt separate data streams.

Each stream is subjected to OFDM modulation, after serial to parallel conversion,

using the N -points IFFT module. At the receiver side, the CP is removed and the

received signal is subjected to FFT operation. With perfect knowledge of the Channel

State Information (CSI) at the receiver, the per tone MIMO OFDM signal model can

be expressed as

ỹk = H̃kx̃k + ṽk (5.1)
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5.1.2 Linear MMSE Detector

MMSE detection is a linear process that assumes a priori knowledge of noise

variance and channel covariance. The idea is to design an nr × nt matrix, W, based

on the MMSE criterion as follows:

argmin
W

E
[∣∣x̃−WH ỹ

∣∣2] (5.2)

where the WH ỹ term represents the MMSE estimation of x̃. Thus, W in MMSE

sense can be expressed as [22]

W = R−1
ỹ H (5.3)

where Rỹ denotes the autocorrelation matrix of ỹ

Rỹ = (H̃H̃
H

+ σ2
vInt)

−1 (5.4)

Therefore, the estimated MMSE vector can be written as

ˆ̃x = H̃
H

(H̃H̃
H

+ σ2
vInt)

−1ỹ (5.5)

where ˆ̃x ∈ Cnt×1. The corresponding real-valued representation of ˆ̃x can be expressed

as

x̂ =
[
<{ˆ̃x} ={ˆ̃x}

] T

(5.6)

where, x̂ = [x̂1, . . . , x̂2nt ]
T ∈ R(2nt×1). The initial MMSE solution, b, is obtained by

quantizing x̂ to the set {−1, 1} as follows;

b = Q[x̂] (5.7)

where Q[.] denotes the quantization (slicing) function. Vector b can be transformed

to a binary representation, which will be used later in the proposed SIC algorithms,

as follows:

a = (b + 1)/2, a ∈ {0, 1}2nt (5.8)
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5.1.3 Quadratic Programming Detector

To formulate the detection problem as a quadratic programming, let’s use the

corresponding real-valued model of (5.1) as

y = Hx + v (5.9)

where

y =

<{ỹ}
={ỹ}

 ,x =

<{x̃}
={x̃}

 ,v =

<{ṽ}
={ṽ}

 (5.10)

H =

<{H̃} −={H̃}
={H̃} <{H̃}

 (5.11)

The maximum likelihood (ML) detection problem of x can be expressed as:

x̂ = argmin
x∈χ2nt

‖ y−Hx ‖2 (5.12)

where, the set χ = {−1, 1} for the case of QPSK constellation. Using the same

procedures and transformation shown in section 3.2.1, we get the following IQP op-

timization problem

argmin
z

1

2
zTQ z + cTz

z ∈ {0, 1}2nt

(5.13)

where

Q = HTH

c = −HT (y + H1)/2

z =
(x + 1)

2

1 = [1, 1, . . . , 1]T , colomn vector of dimension(2nt × 1)

(5.14)

When relaxing the constraints of z, equation (5.13) becomes

argmin
z

1

2
zTQ z + cTz

0 ≤ z ≤ 1

(5.15)
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Problem (5.15) seeks to minimize a quadratic objective function over a convex feasible

region. Therefore, it is a convex QP minimization problem. A unique global solution

z∗ can be obtained using efficient interior-point (IP) solvers with reduced computa-

tional complexity [71]. The solution of (5.15) is then quantized to the nearest element

in the binary set {0, 1}, that is :

zi = Q[z∗i ], i = 1, 2, . . . , 2nt (5.16)

5.2 Proposed SIC Algorithms

Each of the proposed SIC algorithms is comprised of two main steps. The first

one is to order the reliability of the received symbols based on their LLR measure

using the initial MMSE estimate vector given by (5.6). The second step performs SIC

for the ordered symbols using QP formulation.

5.2.1 Reliability Ordering using LLR

The a posteriori log-likelihood ratios (LLR) of bit bi based on the MMSE infor-

mation in (5.6) can be evaluated as follows:

LLR(bi) = ln
p(bi = +1|x̂)

p(bi = −1|x̂)
, ∀i = 1, . . . , 2nt (5.17)

Using Bayes’ rule and considering equal priors (i.e. p(bi = −1) = p(bi = +1)), Eq.

(5.17) can be equivalently written as:

LLR(bi) = ln
p(x̂|bi = +1)

p(x̂|bi = −1)
, ∀i = 1, . . . , 2nt (5.18)

The optimum LLR for each bit can be evaluated using the maximum a posteriori

(MAP) algorithm, but the complexity could be very high, especially when nt is large.

This is due to the fact that x̂ depends on the entire block of bits, which can be

explained from the LLR(bi) expression [47], [96] :

LLR(bi) = ln

∑
b+
i

p(x̂|b+
i )p(b+

i )∑
b−
i

p(x̂|b−i )p(b−i )
, ∀i = 1, . . . , 2nt, (5.19)



87

where b+
i and b−i are 2nt-length binary vectors with the ith entries being +1 and 1,

respectively, whereas p(b+
i ) and p(b−i ) are their corresponding probabilities. In this

work, we follow the same assumption in [47], [46], where real elements of x̂ in (5.6)

are assumed to be independently identically distributed (iid) random variables that

can be modeled as Gaussian distributions with mean µ and variance σ2 as follows:

p(x̂i|bi) =
1√

2πσ2
.
[
e(x̂i−µ)2/2σ2

]
(5.20)

Thus, LLR(bi) can be simplified to :

LLR(bi) = ln
p(x̂i|bi = +1)

p(x̂i|bi = −1)
, ∀i = 1, . . . , 2nt, (5.21)

and by substituting (5.20) into (5.21) we get:

LLR(bi) =

[
µ+1 − µ−1

σ2

]
x̂i = γix̂i (5.22)

where µ+1 and µ−1 are the means when bi = +1 and −1, respectively. γi represents

the instantaneous signal-to-interference-plus-noise ratio, which we are not considering

it in computing LLR, as it may require extra computations for each LLR(bi), see [47]

for more details on the difference in performance between either considering γi and

x̂i or x̂i only. In sum, it does not contribute much to the LLR value, especially when

SNR is high and when the number of antennas gets large. Thus, we resort only to the

absolute value of x̂i to measure the reliability of bit bi. The resulting LLR reliability

measurement for all bits can be represented as :

LLR(bi) = x̂i, ∀i = 1, . . . , 2nt, (5.23)

5.2.2 QP-SIC Algorithm I

The proposed algorithm starts by computing the reliability measure for each bit

using (5.23), considering that the initial MMSE estimate is available from (5.6). Then

all bits are ordered and indexed according to the value of |LLR|. Let the order index

set J = {k1, k2, . . . , k2nt} be a permutation of the integers 1, 2, . . . , 2nt specifying the
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order in which components of |LLR| vector are ordered from the most reliable bit to

the least reliable bit. Without loss of generality, the lower index k1 is assigned to the

highest value of |LLR|, and the highest index k2nt is assigned to the lowest value of

|LLR|, see Fig. 5.1 for illustration.

Unlike most of the SIC techniques, this proposal tackles the least reliable bit first

and then the second least reliable bit and so on until it reaches the last bit, which is

the highest reliable bit based on (5.23). In the first iteration (m = 2nt), it formulates

the QP problem (5.24) (shown below) for the least reliable bit (with the index k2nt)

through canceling out the effects of all other bits, assuming that they are reliable

and their values are obtained from the MMSE solution in (5.8). The second iteration

(m = 2nt−1) formulates another QP problem for the second least reliable bit (with the

index k2nt−1) by canceling out the effects of bits that have indices (k1, k2, . . . , k2nt−2)

using their MMSE values from (5.8).In addition, it also cancel out the effect of the

bit positioned at the index k2nt by using its QP value from the previous iteration.

The same process continues for the remaining bits until the last bit, which is indexed

by k1 and the iteration number (m = 1), where, in this case, the QP is formulated

by canceling out the effects of all previous bits that were evaluated via (5.24). Thus,

based on the general formulation of QP detection in (5.15), the formulation of QP

for each bit is expressed as follows:

argmin
z(m)

1

2
z(m)2q(m) + c(m)z(m)

0 ≤ z(m) ≤ 1

m = 2nt, 2nt − 1, . . . , 2, 1

(5.24)

where z(m) is a variable representing the bit that has index km . The process of

interference cancellation is included in forming quantities q(m) and c(m) as follows:

q(m) = Q(km, km)

c(m) = Q(J̄ (m), km)Ta(J̄ (m)) + c(km)

J̄ (m) = {J\km}

m = 2nt, 2nt − 1, . . . , 2, 1

(5.25)
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where Q(km, km) is the diagonal element of Q matrix in (5.14) that corresponds to

the bit of index km and c(km) is the element of vector c that corresponds to the bit of

index km from (5.14). J̄ (m) denotes the complementary set of indices other than index

km, and a(J̄ (m)) is the vector of already known bits for which their effects need to be

canceled out. This vector is updated in each iteration of m with the new detected

value, z(m), from (5.24) until all bits from the initial MMSE solution are replaced

by their QP values. Note that (5.25) can be obtained using (5.15) and the initial

MMSE solution in (5.8). Now problem (5.24) is a quadratic constraint problem in

one variable and can be easily solved through exploiting the binary property of z = z2

when z ∈ {0, 1}. Thus, (5.24) can be reduced to

argmin
z(m)

z(m)

(
1

2
q(m) + c(m)

)
z(m) ∈ {0, 1}

m = 2nt, 2nt − 1, . . . , 2, 1

(5.26)

The sign of the term
(

1
2
q(m) + c(m)

)
can be used to force the variable z(m) to be 0 or

1 according to the following criterion:

z(m) =

0
(

1
2
q(m) + c(m)

)
≥ 0

1
(

1
2
q(m) + c(m)

)
< 0

 (5.27)

This simplification avoids the need to perform any operation of matrix inversion or

matrix multiplication, and therefore, it becomes more attractive from a complexity

implementation point of view. A summary of Algorithm I procedures is shown in

Table 5.1.
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Fig. 5.1. Example of ordering and grouping in the proposed algorithms (nt = 8

Antennas and, 2nt = 16 QPSK bits)

Table 5.1 QP-SIC Algorithm I

1 Find the initial MMSE vector in binary form, a.

2 Estimate LLR

3 Order |LLR| vector and identify the indices

of ordered bit positions set, J

4 for m = 2nt : −1 : 1

Force z(m) according to criteria (5.27)

update the initial estimated vector a with a(J (m)) = z(m)

end

6 Reorder bit positions to their original sequence
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5.2.3 QP-SIC Algorithm II

In this algorithm, we propose to perform SIC in a grouping manner instead of a

bit-by-bit manner, which was shown in Algorithm I. Thus, after performing ordering

and indexing steps, the ordered bits are divided into a number of groups, M (1 <

M < 2nt), where the number of bits per group, Ng, is equal to 2nt/M bits. These

generated groups are ordered in accordance with the order index set J . That is, group

number 1 contains the most reliable bits (highest |LLR| values), and group number

M contains the least reliable bits and so on, as shown in illustration example in Fig

(5.1). The set of indices for each group is referred to as J (m), where m = 1, 2, ..,M

and
⋃M
m=1 J

(m) = J . Also, we refer to the complement set of ordered grouped indices

as J̄ (m), where J̄ (m) = J\J (m) and J̄ (m)
⋃
J (m) = J . Note that when M = 2nt, Ng = 1

bit and Algorithm II simplifies to Algorithm I, whereas M = 1 group corresponds to

no SIC and hence all symbols are detected jointly using a conventional QP detector

in (5.15).

The QP problem is formulated for each group starting with the least reliable group

(m = M) and then with the second least reliable group m = M − 1, and so on till we

reach the first group (m = 1), as follows:

argmin
z(m)

1

2
z(m)TQ (m) z(m) + c(m)Tz(m)

0 ≤ z(m) ≤ 1

m = M,M − 1, . . . , 1

(5.28)

where vectors 0 and 1 are of length Ng. Note that in Algorithm I, m refers to a single

index, while here in Algorithm II, it refers to a group of indices. The interference

cancellation process in each iteration, m, is included in the construction of Q(m) and

c(m) as follows:

Q(m) = Q(J (m), J (m))

c(m) = Q(J̄ (m), J (m))Ta(J̄ (m)) + c(J (m))

J̄ (m) = {J\J (m)}

m = M,M − 1, . . . , 1

(5.29)
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Fig. 5.2. Algorithm II illustration with 4 groups (nt = 8 Antennas, and, 2nt = 16

QPSK bits)

where Q(J (m), J (m)) represents the Q matrix in (5.14) with columns and rows cor-

responding to indices of the set J (m), and c(J (m)) represents the elements of c that

correspond to the indices of the set J (m). The vector a(J̄ (m)) denotes the vector of

detected bits that correspond to the indices of the set J̄ (m). This vector is updated

in each iteration of m with z(m) in the corresponding indices until all initial MMSE is

updated with values from grouped QP in (5.28), see Fig. (5.2) for an illustration of

the algorithm. That is, at the first iteration, where m = M , a(J̄ (m)) consists of the

initial MMSE solution that corresponds to indices of the set J̄ (m), while the second

iteration, where m = M−1, a(J̄ (m)) consists partly of the previously detected bits us-

ing QP (at m = M) and partly of the initial MMSE solution. This process continues

until the last iteration (m = 1), where a(J̄ (m)) consists of all the previous detected

bits from QP in (5.28) in groups m = M,M − 1, . . . , 2. A summary of Algorithm II

is presented in Table 5.2.

Detecting each group of bits in this proposed SIC requires solving an optimiza-
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Table 5.2 QP-SIC Algorithm II

1 Find the initial MMSE vector in binary form, a.

2 Estimate LLR

3 Order |LLR| vector and identify the indices

of ordered bit positions set, J

4 Select number of groups, M , and accordingly Ng =
2nt
M

5 for m = M : −1 : 1

construct Q(m), c(m)

z(m) = QP(Q(m), c(m))

update the initial estimated vector a with a(J (m)) = z(m)

end

6 Reorder bit positions to their original sequence

tion problem of the form (5.28), which cannot be solved in a closed form solution

as in the case of (5.24). Hence, we will use the same iterative algorithm that was

used in the previous chapters: interior-point (IP), which solves the problem efficiently

and with low complexity. We once again attempt to reduce the number of iterations

that the IP algorithm requires to solve the QP problem (as stated in section 3.2.3)

by performing early termination to the algorithm. In the case of QPSK mapping,

where the quantized set is ∈ {0, 1}, the early termination to the IP algorithm with

two iterations provides no major loss in BER performance. This may be due to the

fact that in QPSK mapping, the quantization operation is confined to a small set of

{0, 1}, which reduces the approximation error.
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5.2.4 QP-SIC Algorithm III

To reduce the complexity of computations in Algorithm II, we propose to modify

it so that the successive group cancellation is performed only for a few groups, say

K groups, instead of M , where 1 < K < M , as shown in Fig. 5.1. The bits in

the rest of the groups (from 1 to M −K) are deemed reliable and correctly received

based on their initial MMSE solution evaluated from (5.8). This is due to the fact

that bits in groups 1 to M − K are considered highly reliable compared to bits in

groups M−K+1 to M based on their LLR measure. An illustration is shown in Fig.

(5.1), where M = 4 groups, and therefore, if we let K = 2, then groups 3 and 4 are

detected using Algorithm II, while groups 1 and 2 keep their initial MMSE solution as

the final detected values. This algorithm speeds up the computations with negligible

performance loss compared to Algorithm II, as we will see in the simulation results.

This proposed algorithm suits high-dimensional systems well, such as the large MIMO

and SOFDM systems. Note that when K = 1, the idea in this algorithm becomes

similar to a previous work done in [97] for small MIMO with soft detection. However,

that work uses ML criteria instead of QP, which is too complex to be implemented

in our problem setup.

5.3 Complexity Analysis

Following the same analysis done in chapters 2 and 3, QP detection complexity

can be evaluated using the complexity of the Interior Point algorithm. Each iteration

of IP boils down to solving a system of linear equations, where it is required to

perform matrix inversion of the same size in every iteration. The complexity of one

iteration is in the order of O(N3
g ) where Ng < nt. Thus, with n iterations, the

complexity rises to the order of O(nN3
g ). In practice, the IP algorithm converges

in a number of iterations that is almost a constant, independent of the problem

dimension [73]. As will be shown in the simulation results, the number of iterations,

n, can be reduced to 2 iterations in the case of QPSK mapping without major loss
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in BER performance. Regarding Algorithm II, Equation (5.28) is required to be

solved M times, which leads to a total complexity of O(MnN3
g ). Moreover, the

initial MMSE estimation in (5.5) adds complexity in the order of O(n3
t ), which is

only required one time per each received vector. Thus, the total complexity per each

received vector becomes O(n3
t ) +O(MnN3

g ). This complexity can be further reduced

to O(n3
t ) + O(2MN3

g ), as pointed out in section 5.2.3. In the case of Algorithm III,

the complexity becomes O(n3
t ) + O(KnN3

g ), while in the case of Algorithm I, where

Ng = 1, the total complexity is approximately O(n3
t ).

On the other hand, the complexity of MMSE-VBLAST is in the order of more

than O(n3
t ); more specifically, it is O(n3

t ) +O((nt − 1)3) +O((nt − 2)3) + . . . because

it performs matrix inversion and ordering of the channel matrix columns each time

one symbol is detected and its effect is canceled out. In a large MIMO system, this

complexity becomes more burdensome because nt, nt− 1, nt− 2, nt− 3, . . . , and even

nt/2 are considerably large. The complexity of MF-SIC [48] is even greater than the

complexity of MMSE V-BLAST [33] because, in addition to performing MMSE-SIC,

MS-SIC is required to perform a partial ML search each time the MMSE estimated

symbols lie within the shadow area of the constellation. This extra computation is

higher, especially at low SNR [46].

5.4 Simulation Results

In this section, we provide results for BER performance and complexity analy-

sis of the proposed algorithm compared to MMSE V-BLAST [33] and MF-SIC [48]

in a large-scale MIMO OFDM system. We consider a spatial multiplexing MIMO-

OFDM system with QPSK modulation in a frequency selective fading channel of

length Lch = 8 that is assumed perfectly known at the receiver (for the sake of sim-

plicity, we assume uniform tap spacing). The number of OFDM subcarriers, N , used

in this simulation is 128. In the following figures, the three variants of QP-SIC are

referred to as Alg. I, Alg. II, and Alg. III. The AWGN single antenna BER perfor-
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mance describes the performance with an interference-free scenario.

Fig. 5.3 compares the uncoded BER performance of our proposed algorithm (QP-

SIC) with MMSE V-BLAST and MF-SIC in a 100 × 100 MIMO-OFDM system. In

this simulation experiment, both MF-SIC and MMSE V-BLAST techniques use LLR

ratio for reliability ordering. We also compare against the original MMSE V-BLAST,

which uses channel power for symbol ordering. It can be seen that QP-SIC Alg. I

outperforms both techniques, especially at an SNR that is greater than 10 dB. This

performance improvement of Alg. I is accompanied by lower computational com-

plexity compared to MF-SIC and MMSE V-BLAST, as it can be depicted from Fig.

5.4. For instance, when nt = 50, Alg. I requires about 10 times fewer computations

compared to other techniques, while at nt = 100, it requires about 50 times fewer

computations. This is due to the fact that QP-SIC Alg. I requires a one-time com-

putation of matrix inversion, while both MF-SIC and MMSE V-BLAST algorithms

require multiple psuedoinverse computations per each received vector (i.e. in every

step of SIC, one matrix inversion is needed). Moreover, Alg. I attains this perfor-

mance improvement with only a one-time reliability ordering, unlike MF-SIC and

MMSE V-BLAST, where the reliability ordering is done dynamically; that is, order-

ing is done every time a symbol is detected and its effect is canceled out. Of course,

this adds extra complexity to those techniques.

Fig. 5.3 also shows the performance improvement of Alg. II and III over Alg. I

when grouping is implemented in QP-SIC procedures. Alg. II with M = 20 and Alg.

III with M = 20 and K = 10 (i.e only the 10 least reliable groups perform QP-SIC

using Alg. II and the rest use their initial MMSE solution) perform almost the same;

however, Alg. III saves some computations, as can be seen in Fig. 5.4.

Fig. 5.5 and Fig. 5.6 show that QP-SIC can improve the diversity of the system as

the number of antennas increases, which is similar to the results provided in [38], [44]

for a large MIMO system. This illustrates the large system behavior of the proposed

algorithms, where the performance moves towards the single antenna AWGN perfor-

mance. Fig. 5.5 shows that when using 300× 300, the performance of Alg. I can be
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of 2-3 dB away from the single antenna AWGN bound. This gap is reduced when

Alg. II is used, as depicted in Fig. 5.6. Similarly, Fig. 5.7 shows that when
1

2
rate

convolutional channel coding is applied, algorithms I and II can provide performance

that is ≤ 1 dB away from the coded single antenna AWGN bound at 10−6 BER with

even fewer antennas, such as to 50× 50 and 100× 100.

In all of tree proposed algorithms, the SIC idea was based on starting with the

least reliable bit or group of bits, as shown in equations (5.24) and (5.28), where

m = 2nt : −1 : 1 in Alg. I and m = M : −1 : 1 in Alg. II. Fig. 5.8 demonstrates that

this claim is better than performing QP-SIC procedures starting from the highest

reliable to bit or group of bits to the least, that is, letting the order be m = 1 : 1 : 2nt

in Alg.I and m = 1 : 1 : M in Alg. II.

Fig. 5.9 shows that when performing the standard interior point algorithm to

solve the QP problem in (5.28), the required number of iterations is nearly constant

for various SNR and various problem sizes. Therefore, towards reducing the compu-

tational complexity of (5.28) of QP-SIC Alg. II, we perform early termination to the

IP algorithm, as was suggested in Chapter 3. Fig. 5.10 and Fig. 5.11 show that in

QPSK mapping with various group sizes in MIMO OFDM setting, two iterations of

IP algorithm result in no loss in BER performance at various SNR values.
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5.5 Application of QP-SIC to Spread OFDM Systems

Consider a single antenna Spread OFDM (SOFDM) system as described in Chap-

ter 1, with N complex data symbols generated based on QPSK constellation mapping.

The frequency domain SOFDM signal model can be represented as:

ỹ = H̃D̃x̃ + ṽ (5.30)

where H̃ ∈ CN×N is a complex diagonal matrix whose diagonal entries are N points

FFT of the time domain frequency selective channel vector h = [h1, . . . , hLch−1] and ṽ

is the frequency domain AWGN with mean zero and covariance matrix σ2
vIN . Apply-

ing a linear MMSE detector in (5.5) to a Spread OFDM system in (5.30), by replacing

nt with N , and H̃ with the effective channel matrix H̃D̃, we get :

ˆ̃x = D̃
H

H̃
H

(H̃D̃D̃
H

H̃
H

+ σ2
vIN)−1ỹ (5.31)

Equation (5.31) can be further simplified using the properties of unitary matrix (i.e.

D̃D̃
H

= IN) as follows:

ˆ̃x = D̃
H

H̃
H

(H̃H̃
H

+ σ2
vIN)−1ỹ (5.32)

this provides interesting complexity reduction because the H̃ matrix is diagonal and

so is H̃H̃
H

. This makes (5.31) easy to compute.

Conversely, applying ordered SIC using MMSE V-BLAST to the Spread OFDM

in (5.30) can be computationally expensive. Each iteration of SIC reduces the size of

both the H̃ and D̃ matrices by one column, which makes D̃D̃
H

no longer an identity

matrix, and therefore, equation (5.32) cannot be used in the subsequent iterations of

MMSE V-BLAST. Instead, (5.31) is used, but it requires matrix inversion in every

step of nulling and interference cancellation, hence requiring more computations. In

fact, applying QP-SIC to this system provides interesting complexity saving because

the initial MMSE, which is required for the QP-SIC algorithm, can be estimated

using a diagonal matrix inversion (the term (H̃H̃
H

+ σ2
vIN)−1 in (5.32)). The rest of

the procedures of QP-SIC require either linear complexity, as in Algorithm I, or QP
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complexity of a smaller size, as in Algorithms II and III.

Using the same manner and definition in section 5.2, the same procedures are

applied to the SOFDM system, except taking into account the following changes in

formulating the quadratic programming problem; Q = DTHTHD ; c = −DTHT (y+

HD1)/2; and z = [z1, . . . , z2N ]T ∈ R(2N×1). Also, the initial MMSE estimation vector

becomes x̂ = [x̂1, . . . , x̂2N ]T ∈ R(2N×1).

Fig. 5.12 shows the BER performance for QPSK SOFDM using QP-SIC Algorithm

I and II compared to MMSE V-BLAST. At various group settings, Alg. II outperforms

MMSE V-BLAST, while Alg. I has a slightly higher BER than V-BLAST starting

from SNR around 13 dB. However, the complexity saving of Alg. I and II is better

than V-BLAST, as depicted in Fig. 5.13. Fig. 5.14 shows that Alg. III provides the

best trade-off for the SOFDM system in terms of both performance and complexity.

It shows that for an SOFDM system with N =256, Alg. III can save about 87 % of

the computational complexity of Alg. II by performing SIC of one group only (K=1)

out of 8 groups. This saving in computation is penalized by only less than 0.5 dB

SNR at a higher SNR regime.
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6. MMSE-ITERATIVE DETECTION AND DECODING

FOR SPREAD OFDM SYSTEMS

In this chapter, we introduce the iterative detection and decoding (turbo equalization)

technique for the SOFDM system using an MMSE equalizer and a channel decoder,

where the MMSE equalizer and the channel decoder exchange soft information in an

iterative fashion to improve detection performance. BER performance is investigated

with both full and partial spread OFDM scenarios and also with and without channel

decoding. Simulation results show improved performance, especially at low SNR

regime. Also, more improvement can be obtained using the partial SOFDM scenario.

6.1 Spread OFDM System Model

Fig. 6.1 shows the overall system that consists of a channel encoder, an interleaver

(
∏

) and a SOFDM modulator at the transmitter side, and an iterative channel equal-

ization and decoding at the receiver side. The interleaved encoded bits are mapped

to Nb QPSK symbols, according to Table 6.1. Each symbol is spread over N OFDM

subcarriers using a spreading matrix, D. This means that after the IFFT process,

each subcarrier modulates a linear combination of all symbols. Note that Nb ≤ N ,

and they are only equal when the full spread scenario is considered. Thus, the re-

ceived signal vector in the frequency domain, after CP removal and inverse FFT, can

be expressed as

ỹ = H̃D̃x̃ + ṽ (6.1)

where x̃ = [x1, . . . , xN ]T ∈ CN×1, xi ∈ χ̃, is the transmitted symbol taken from a

finite constellation alphabet, χ̃ = {α1, α2, α3, α4}, as in Table 6.1, with E[x̃H x̃] = IN ,

and ỹ = [y1, . . . , yN ]T ∈ CN is the received vector. H̃ is a complex diagonal matrix

whose diagonal entries are N points FFT of the frequency selective channel, which
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is the same as modeled in chapter 2. D̃ is the spreading matrix, which could be real

(e.g. Hadamard matrix) or complex (e.g. Vandermonde) with size N × N and v is

the zero mean AWGN with covariance σ2IN . The MMSE estimator that minimizes

Fig. 6.1. Block diagram representation of an SOFDM system with turbo equalization

Table 6.1 QPSK Alphabet and Mapping

k 1 2 3 4

(αk,1, αk,2) (0, 0) (1, 0) (0, 1) (1, 1)

αk (1+i√
2

) (−1+i√
2

) (1−i√
2

) (−1−i√
2

)
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E

[∣∣∣x̃− ˆ̃x
∣∣∣2] is derived in [98] based on the available a priori information, and the

resulting MMSE estimate is as follows:

ˆ̃x = E(x̃) + fH(ỹ− E(ỹ)) (6.2)

where

f = cov(ỹ, ỹ)−1cov(ỹ, x̃)

From the received signal model in (6.1)

cov(ỹ, ỹ) = H̃D̃cov(x̃, x̃)(H̃D̃)H + σ2IN

cov(ỹ, x̃) = cov(x̃, x̃)(H̃D̃)H

E(ỹ) = H̃D̃E(x̃)

Here, we assume that symbols constituting the vector x̃ are independent. This as-

sumption is supported by the fact that QPSK symbols are generated from the in-

terleaved bits. Therefore, the covariance matrix, V = cov(x̃, x̃), is non-zero only

in the diagonal (i.e. V = diag[v1, . . . , vN ] where vi = cov(xi, xi)). E(x̃) = m =

[m1,m2, . . . ,mN−1] represents the vector of all means of symbols such that mi =

E(xi). The estimated MMSE vector in (6.2) becomes

x̂ = m + V(H̃D̃)H [(H̃D̃)V(H̃D̃)H + σ2IN ]−1(ỹ− H̃D̃m) (6.3)

Equation (6.3) shows that the prior mean and variance of each symbol are required

to estimate the symbol. If, however, no prior information is available, then E(x̃) = 0

and V = IN and the MMSE estimator becomes the standard form, as in [60]. This is

always the case in the first iteration of the turbo equalization.

The importance of turbo equalization lies not only in the iterative process, but

also in the process of exchanging soft information between both the equalizer and

the decoder. This soft information provides new information about a certain sym-

bol gathered from the rest of the symbols except the symbol itself, which is called

extrinsic information [54]. In other words, the extrinsic information exchanged be-

tween the equalizer and the decoder about a particular symbol is independent from



110

a priori information of that symbol. Therefore, MMSE estimation in (6.3) needs to

be implemented in a symbol-by-symbol manner, as follows:

x̂i = E(xi) + fHi (ỹ− E(ỹ)) (6.4)

where

fi = cov(ỹ, ỹ)−1cov(ỹ, xi) = ((H̃D̃)V(H̃D̃)H + σ2IN)−1vi(H̃D̃)i

(H̃D̃)i represents the ith column of the resulting matrix H̃D̃.

6.2 Soft-In Soft-Out MMSE Equalizer

The soft information is generally represented as a Log-likelihood Ratio (LLR) per

bit. Thus, for a QPSK symbol, xi, that consists of 2 bits (let’s refer to them as

(ci,1, ci,2)), the soft information per bit is expressed as follows:

La(ci,j) = ln
p(ci,j = 0)

p(ci,j = 1)
, j = 1, 2 (6.5)

This is called a priori information about bit ci,j. At the output of the MMSE equal-

izer, the estimated value of each x̂i is mapped to an extrinsic information (LE(ci,j)),

which can be expressed in terms of a posterior and a priori information as follows:

LE(ci,j) = ln
p(ci,j = 0|x̂i)
p(ci,j = 1|x̂i)

− L(ci,j) = ln
p(x̂i|ci,j = 0)

p(x̂i|ci,j = 1)

= ln

∑
∀αk:αk,j=0 p(x̂i|xi = αk)p(ci,l = αk,l)∑
∀αk:αk,j=1 p(x̂i|xi = αk)p(ci,l = αk,l)

(6.6)

where j, l = {1, 2} and j 6= l. It is apparent that the a posteriori LLR of the

bit (ci,j) in (6.6) is conditioned only on the symbol x̂i rather than on the entire

estimated x̂ vector because we use the same simplification as was used in [54] and [57],

which allows for easier calculation of the extrinsic LLR. Equation 6.6 also shows that

calculating the extrinsic information per bit requires the knowledge of the distribution

of p(x̂i|xi = αk). This conditional probability is modeled as a complex Gaussian

density function with mean and variance, µi,k and σi,k, respectively, as follows:

p(x̂i|xi = αk) =
1

πσ2
i,k

.e

|xi−µi,k|2
σ2
i,k (6.7)
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Now, by substituting (6.7) in (6.6), the extrinsic LLR of each bit of the ith symbol

becomes:

LE(ci,1) = ln
p(x̂i|xi = α1)p(ci,2 = 0) + p(x̂i|xi = α3)p(ci,2 = 1)

p(x̂i|xi = α2)p(ci,2 = 0) + p(x̂i|xi = α4)p(ci,2 = 0)
(6.8)

where α1 and α3 represent the case of ci,1 = 0 (i.e. the first bit in the symbol xi is 0)

and α2 and α4 represent the case of ci,1 = 1. The same thing is done for the extrinsic

LLR of the second bit of the QPSK symbol:

LE(ci,2) = ln
p(x̂i|xi = α1)p(ci,2 = 0) + p(x̂i|xi = α2)p(ci,2 = 1)

p(x̂i|xi = α3)p(ci,2 = 0) + p(x̂i|xi = α4)p(ci,2 = 0)
(6.9)

Each extrinsic LLR becomes a function of both µi,k and σi,k, which can be evaluated

as follows [57] using (6.4) and (6.7):

µi,k = E[x̂i|xi = αk] = mi + fHi (H̃D̃)i(αk −mi) (6.10)

σi,k = cov(x̂i, x̂i|xi = αk) = v2
i ti(1− viti) (6.11)

where

ti = (H̃D̃)Hi [(H̃D̃)V(H̃D̃)H + σ2IN ]−1(H̃D̃)i

Finally, the extrinsic information LE can be expressed as:

LE(ci,1) =

√
8<(x̂i)

vi(1− viti)
(6.12)

LE(ci,2) =

√
8=(x̂i)

vi(1− viti)
(6.13)

This extrinsic soft information from the MMSE equalizer will be transformed as a

priori information to the channel decoder using a de-interleaver (
∏−1) module (see

Fig. 6.1). The soft input soft output decoder uses these a priori LLR to generate

a posteriori information for each bit (bi,j), and it is referred to as Lpost(bi,j). The

corresponding extrinsic information output from the decoder is

LE(bi,j) = Lpost(bi,j)− La(bi,j) (6.14)
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The interleaved version of the LE(bi,j) produces La(ci,j), which is considered as a

priori information to the equalizer. La(ci,j) is then used to calculate the prior mean

and variance of the new estimated symbol in the new iteration as follows [54]:

mi =
tanh(La(ci,1)/2) + i tanh(La(ci,2)/2)√

2
(6.15)

vi = 1− |mi|2 (6.16)

As it was pointed out in the previous section and also in several turbo equalization

papers, such as in [54] and in [99], the extrinsic information of a certain symbol xi

should be independent of the a priori information of that particular symbol. One

way to comply with this assumption is to put mi = 0 and vi = 1 in (6.4) for this

particular symbol and keep the rest. This means that x̂i uses a priori information

of xi that comes from all other symbols except the ith symbol. Therefore, equation

(6.4) can be reformulated to reflect this manipulation as follows [55] :

x̂i = fHi [ỹ− H̃D̃m +mi(H̃D̃)i] (6.17)

fHi = (H̃D̃)Hi [(H̃D̃)V(H̃D̃)H + σ2IN + (1− vi)(H̃D̃)i(H̃D̃)Hi ]−1

It is important to note that with this manipulation, the values of mi and vi in (6.17)

are the computed values from (6.15) and (6.16) and not mi = 0 and vi = 1.

6.3 Low Complexity Formulation Using Matrix Inversion Lemma

The drawback of estimating MMSE symbols in turbo equalization using (6.17)

is that, for symbol-by-symbol estimation, it is required to perform matrix inversion

for the term [(H̃D̃)V(H̃D̃)H + σ2IN + (1− vi)(H̃D̃)i(H̃D̃)H ] for all symbols in every

iteration. This requires large computational complexity, especially for large N , such

as 256, 512, etc. In this work, we utilize the matrix inversion lemma and the manip-

ulation in [57] to simplify the formula so that the matrix inversion can be performed

once for all symbols in every iteration:

x̂i =
1

(1 + ti(1− vi))
[timi + (H̃D̃)Hi [(H̃D̃)V(H̃D̃)H + σ2IN ]−1(ỹ− H̃D̃m)] (6.18)
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Another possible simplification, though this may result in a loss of BER performance,

is to replace the diagonal matrix of all variance, V, with v̄IN where v̄ is a constant,

which could be the average value of all variances, i.e v̄ = 1
N

∑N
i=1 vi, or the maximum

value of all variance. Provided that D̃ is a unitary matrix, and with this manipulation

of matrix V, (6.18) can be further reduced to the following:

x̂i =
1

(1 + ti(1− vi))
[timi +

1

v̄
(H̃D̃)Hi [H̃H̃

H
+
σ2

v̄
IN ]−1(y− H̃D̃m)] (6.19)

where the term [H̃H̃
H

+ σ2

v̄
IN ] is a diagonal matrix and can be easily inverted.
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6.4 Simulation Results

In this section, we consider the SOFDM system with N = 128 subcarriers. The

generated bits of information at the source are encoded using 1
2

rate convolutional

coding. The resulted bits are interleaved and mapped to QPSK symbols. Before

transmission, these symbols are spread across N OFDM subcarriers using the van-

dermonde spreading matrix and OFDM modulation. The frequency selective fading

channel is simulated using 16 channel taps. Perfect channel knowledge at the receiver

is assumed, and therefore, no pilots are used in the simulation. Also, in this simula-

tion, both full spread OFDM scenario with Nb = N = 128, and partial spread OFDM

scenario with Nb = N
2

= 64 are examined.

Fig. 6.2 shows simulation results of BER for the SOFDM system when 3 iterations

of turbo equalization is implemented at the receiver. It can be said that turbo equal-

ization works well with a SOFDM system and clearly outperforms coded SOFDM,

which obviously suffers from high error rate at low SNR. At BER of 10−2, for in-

stance, the first iteration of turbo equalization saves more than 2.5 dB relative to the

coded case, and even more with the second and third iterations. The performance

of turbo case with 3 iteration is still worse than the uncoded case at around 0 dB

SNR. Furthermore, implementing turbo equalization with the partial spread case

of Nb = 64 greatly improves the performance at low SNR, but the penalty is the

decrease in data rate. This is due to the fact that using 1
2

rate spreading and 1
2

rate

convolutional decoding results in an overall rate of 1
4
.

Fig. 6.3 shows the performance comparison between model (6.18), which is more

accurate in terms of prior variance calculation, and model (6.19), which is an approx-

imated version of (6.18). The advantage of using model (6.19) is that it avoids matrix

inversion computations; it does only a matrix inversion for a diagonal matrix, which

is a low computational operation. On the other hand, however, using model (6.19)

does not show improvement of performance from iteration to iteration at low SNR,

only at high SNR.
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We also investigated the performance of the MMSE equalizer in the setup of turbo

equalization when there is no channel decoding is used. That is, the extrinsic informa-

tion generated from the MMSE equalizer, in the current iteration, is fed back again

to the equalizer and then used to calculate prior means and variances of the next

iteration. The BER performance of this setup is shown in Fig. 6.4. It shows that

although there is an improvement from iteration to iteration, the apparent improve-

ment occurs only at the moderate to high SNR region (SNR > 8 dB).

Next, we investigate various scenarios for implementing a channel equalizer and a

channel decoder in the SOFDM system, see Fig. 6.5. Scenario I represents the case

of no turbo equalization, that is, independent equalization and decoding. Scenario

II represents turbo equalization but with separate channel decoding, and scenario

III represents the joint equalization and decoding (iterative detection and decoding).

BER performance comparison for these three scenarios is presented in Fig. 6.6. It can

be observed that scenario III, which is the joint detection and decoding technique,

provides the best performance. However, scenario II, which iterates around the equal-

izer only and uses the channel decoder only once, could achieve the performance of

scenario III at high SNR.



116

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No, dB

B
E

R

QPSK  SOFDM , N=128

 

 

Uncoded full SOFDM
Coded full SOFDM
itr#1
itr #2  
itr #3

Partial
SOFDM

Full
SOFDM

Fig. 6.2. BER of QPSK of SOFDM system with turbo equalization

0 2 4 6 8 10 12 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No, dB

B
E

R

QPSK SOFDM  N=128

 

 

Model (5.19) itr#1
Model (5.19) itr#2
Model (5.19) itr#3
Model (5.18) itr#1
Model (5.18) itr#2
Model (5.18) itr#3

Fig. 6.3. BER comparison between the model (6.18) and its approximation (6.19) for

a QPSK SOFDM system with turbo equalization



117

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No, dB

B
E

R

QPSK  SOFDM , N=128

 

 

itr #1
itr #2
itr #3
itr #1
itr #2
itr #3

Iterative
detection
and  decoding

Iterative
detection only

Fig. 6.4. BER comparison with and without a channel decoding for a QPSK SOFDM

system

Fig. 6.5. Different scenarios for channel equalization and decoding



118

0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No, dB

B
it 

E
rr

or
 R

at
e

Spread OFDM , N=128

 

 

Scenario III  itr#1
Scenario III  itr #2  
Scenario III  itr #3
Scenario I
Scenario II (3 itrs TE)

Fig. 6.6. BER comparison of different scenarios for channel equalization and decoding



119

7. QP-ITERATIVE DETECTION AND DECODING IN A

LARGE-SCALE MIMO SYSTEM

In Chapter 5, iterative detection and decoding (IDD) was implemented using a linear

MMSE detector for the SOFDM system. In this chapter, the aim is to develop an

IDD-type technique using the QP detector. The QP-based detectors were studied

in the previous chapters in large dimensional systems using BB(L,M), two-stage QP,

and QP-SIC algorithms. When the MMSE was used to derive the IDD, prior in-

formation that passed from the channel decoder was incorporated by updating the

mean and variance of each symbol. These updates were then used to provide a better

MMSE estimate and better LLR information. However, the following challenges are

presented when a QP detector is used in an IDD setting: 1) How to incorporate prior

information, in the form of LLR, provided by a channel decoder into the QP opti-

mization problem, and 2) How to make the QP detector provide soft information, in

the form of LLR, to be used by the channel decoder. Addressing these challenges with

implementation and performance study is presented in this chapter using a MIMO

system in a spatial multiplexing setup.

We use the same technique in [100] to incorporate a priori information into the

QP optimization problem, although with reduced number of optimization problems

needed to compute the LLR of all bits through the use of local neighborhood solutions

of the QP solution. A receiver block diagram with turbo equalization is shown in Fig.

7.1.

The focus of this chapter is on a flat fading spatial multiplexing MIMO system.

The model that will be used for this system is the equivalent real model, as in (5.9),

except that the channel is flat fading:

y = Hx + v (7.1)
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Fig. 7.1. Receiver side of a MIMO system with IDD using a QP detector

The information is generated in the source and randomly interleaved and convolu-

tionally encoded. Then it is mapped to symbols of different alphabets (we focus in

this chapter on the QPSK mapping).

7.1 Incorporating Prior Information into a QP Detector

Consider QPSK symbols, mapped from coded and interleaved bits, to be transmit-

ted over a MIMO flat fading channel. At the receiver side the complex channel model

is transformed to a real equivalent one, as shown in (5.10) and (5.11). The real part of

the complex data symbols is mapped to [x1, . . . , xnt ], and the imaginary part of these

symbols is mapped to [xnt+1, . . . , x2nt ], where bit xi ∈ {−1,+1} ,∀i = 1, . . . , 2nt.

Therefore, the a posteriori LLR for bit xi is

Lpost(xi) = ln
p(xi = +1|y,H)

p(xi = −1|y,H)
, ∀i = 1, . . . , 2nt (7.2)

Using Bayes’ theorem, Eq. (7.2) can be equivalently written as

Lpost(xi) = ln
∑

x∈χ
x+1
i

p(y|x,H)P(x)− ln
∑

x∈χ
x−1
i

p(y|x,H)P(x)
(7.3)
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where χx±1
i

is the set of all possible vectors of x satisfying xi = ±1. P(x) is the vector

of a priori probabilities, which in the case of turbo equalization, is delivered by the

outer channel decoder in the form of an a priori LLR ratio as follows:

La(xi) = ln
p(xi = +1)

p(xi = −1)
, ∀i = 1, . . . , 2nt (7.4)

If the noise in the system is considered white Gaussian, the probability density func-

tion p(y|x,H) can be represented by 1√
2πσ2

exp
(
−||y−Hx||2/2σ2

)
. This can be used

in (7.3), and with the aid of max-log approximation from [101], ln(
∑

i exp(φi)) ≈

maxi {φi}, Eq. (7.3) can be simplified to the following:

Lpost(xi) ≈ min
x∈χ

x−1
i

{
1

2σ2
||y−Hx||2 − ln[P(x)]

}
−

min
x∈χ

x+1
i

{
1

2σ2
||y−Hx||2 − ln[P(x)]

} (7.5)

In order to find the relation between the vector of a priori probability P(x) and the

a priori LLR La, we use the following:

1) the fact that p(xi = +1) =
exp(La(xi))

(1 + exp(La(xi)))
and p(xi = −1) =

1

(1 + exp(La(xi)))
.

They can can be derived based on Eq. (7.4)).

2) adopt the same assumption in [101] and [54], where symbols xi, i = 1, ..., 2nt, are

assumed statistically independent across spatial streams due to the interleaver in the

transmitter, so that we can model P(x) using P(x) =
∏2nt

i=1 P(xi).

3) by some manipulations, we can express the relation between P(x) and La, as

in [102]:

ln(P(x)) = A+
2Nt∑
i=1

xi
La(xi)

2

where A is a constant that does not depend on xi. Substituting this relation back

into (7.5) and ignoring constant terms that does not depend on bit xi, Eq. (7.5) can

be written as

Lpost(xi) ≈ min
x∈χ−1

xi

{
1

2σ2
||y−Hx||2 − 1

2
xTLa

}
−

min
x∈χ+1

xi

{
1

2σ2
||y−Hx||2 − 1

2
xTLa

} (7.6)

where x = [x1, . . . , x2nt ]
T is the vector of all interleaved bits, and La = [La(1), . . . , La(2nt)]

T

is the vector of LLR ratios of all interleaved bits.
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Consider one term from (7.6) and perform the same quadratic programming formu-

lation procedures done in section 3.2.1:

min
x∈χ−1

ci,j

{
1

2σ2
||y−Hx||2 − 1

2
xTLa

}
= min

x∈χ−1
ci,j

{
||y−Hx||2 − σ2xTLa

}
= min

z∈Ω0
zi

{1

2
zTQz + bT z}

(7.7)

where, Ω = {0, 1}2nt ,

Q = HTH,

z =
x + 1

2

b = −1

2
HT (y + H1)− σ2

4
La

The result of (7.7) can be applied to (7.6), in addition to relaxing integer con-

straints. Therefore, (7.6) can be expressed in the following form:

Lpost(xi) ≈ min
06z61,zi=0

{1

2
zTQz + bT z}−

min
06z61,zi=1

{1

2
zTQz + bT z}

(7.8)

Eq (7.8) shows that to evaluate LLR per one bit, it is required to solve two QP

problems of length 2nt − 1 each. Although the computation of each QP problem

can be reduced based on reducing interior-point iterations to as low as 2 iterations

with QPSK, the LLR computations for all 2nt bits require a total number of 4nt

QP problems to solve, which are large computations. Thus, we follow the same idea

in [100], where we solve 2nt + 1 QP problems instead of 4nt. The idea is to solve the

following problem without any bit constraints

z̆ = argmin
06z61

1

2
zTQ z + bTz (7.9)

then the same problem is solved again 2nt times, but with bit constraints based on

the results from z̆ as follows:

min
z

1

2
zTQ z + bTz

st 0 6 z 6 1,

zi = xor(z̆i, 1) i = 1, . . . , 2nt

(7.10)
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The cost function of the minimization problems in (7.9) and (7.10) are used to find

Lpost(xi) in (7.8). As shown in [54], the exchange of extrinsic information between

the channel detector and channel decoder is more effective in improving performance

of the turbo equalization receiver. Thus, the required extrinsic information can be

calculated as follows:

Le(xi) = Lpost(xi)− La(xi) (7.11)

7.2 Reduced Complexity Algorithm

Although the above technique may suit the conventional small MIMO systems

because the size of the QP is small, it is not computationally efficient for a large-scale

MIMO system. For instance, if nt = 64 with a QPSK modulation, 129 QP optimiza-

tion problems are needed to be solved to evaluate the LLR of 128 bits (i.e. using (7.9)

and (7.10)). Therefore, in this section, we reduce the complexity of this technique

by exploiting the neighborhood set of solutions of the vector z̆ (from (7.9)), as follows:

• Solve QP problem (7.9) one time to find z̆

• Find the closest neighborhood solutions to z̆

• Construct a list of solutions using both z̆ and its neighbors

• Use (7.6) to compute Lpost(x)

• Use (7.11) to compute Le(x)

The construction of neighborhood solutions can be done according to the following

way. Let the alphabet set in the case of QPSK modulation be Ω = {0, 1}, Thus,

the symbol neighborhood to a symbol {0} (i.e. N (0)) is {1}, and N (1) is {0}. The

vector neighborhood to z̆ is the vector that differs from z̆ in just one coordinate,
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hence there will be 2nt neighbor vectors to z̆. Let the neighbor vectors be zneighbors =

[z(1), . . . , z(j), . . . , z(2nt)], where z(j) = [z
(j)
1 , . . . , z

(j)
i , . . . , z

(j)
2nt ]

T , i, j = 1, . . . , 2nt, and

z
(j)
i =

 z̆i for i 6= j

N (z̆i) for i = j

 (7.12)

7.3 Simulation Results

The simulation of this section is implemented using a soft-in soft-out 1/2 rate

convolution channel decoder that is based on the BCJR algorithm. Note that in the

transmit side a convolutional encoder (rate R = 1/2, generator polynomials [133 171],

and constraint length 7) is used with a random interleaver and a QPSK large-scale

MIMO system with nt = nr = 16 and 64. The number of iterations represents the

number of times the soft-input soft-output MIMO detector and the soft-input soft-

output channel decoder are used.

Fig. 7.2 demonstrates the BER performance of three iterations of IDD when a

soft-in soft-out QP detector is used. It can be seen that as the number of iterations

increases, a lower BER is obtained for both cases of nt = 16 and nt = 64, though

the difference in performance between nt = 16 and nt = 64 can be seen clearly at

higher iteration numbers, such as iteration 3. The uncoded and convolutionally coded

MIMO cases are also plotted in the same figure to point out the advantages of IDD,

especially at a low SNR regime. The convolutional coded performance of 16× 16 and

64 × 64 MIMO in Fig. 7.2 represents the case where a hard decision QP detector is

followed by a hard decision Viterbi decoder. As expected, the performance difference

between the hard decision and the soft decision (represented by iteration number 1

of IDD) is about 2 dB. Note that in this figure, the large system behavior between

16 × 16 and 64 × 64 can be observed in both uncoded and coded cases; however,

when IDD is used, the large system behavior can be observed only in higher iteration

numbers.

The performance of our proposed technique for reducing LLR computations is
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shown in Fig. 7.3, with nt = 16 and nt = 64. In this figure, QP refers to the

technique that uses (7.9) and (7.10) to compute LLR, while the proposed technique

refers to using (7.9) with the set of neighborhood solutions. When nt is relatively

small, such as 16, the performance of the two techniques become very close as the

number of iterations increases, such as the case of iteration 3 in Fig. 7.3 a. While on

the other hand, for a relatively large nt, such as 64, the performance of the proposed

technique is quite similar to the QP technique. It becomes even slightly better at the

third iteration, as shown in Fig. 7.3 b. This may be due to the large system effect

that appears more clearly in our proposed technique at nt = 64 because it combines

a QP technique with some sort of neighborhood search technique [38] in computing

LLR.
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8. SUMMARY

This dissertation presents the use of integer quadratic programming (IQP) in de-

tection problems of high-dimensional wireless systems, such as the SOFDM system

and the large-scale MIMO system. An ML detection problem for these systems is

reformulated in terms of an integer quadratic optimization problem, which is solved

recursively using the BB search tree algorithm. This technique was able to gain the

ML performance and diversity with a reasonable complexity when the number of an-

tennas is small in a MIMO system, and also when the number of OFDM subcarriers

is relatively small in the SOFDM system.

Computational complexity of IQP with BB in an SOFDM system increases as the

number of OFDM subcarriers increases. However, at a fixed number of subcarriers,

the increase in complexity is not significant when SOFDM system varies its modula-

tion order from low QAM, such as QPSK, to high QAM, such as 256 QAM. This is

in contrast to the ML and SD techniques. Furthermore, when an MMSE detector is

used as a preprocessing step for BB, complexity saving occurs at a high SNR regime

due to the fact that several nodes have been pruned in the BB tree. Also, when

the BB search tree is forced to stop at various levels and a quantization operation is

performed on the most probable node, a flexible trade-off between performance and

complexity is gained.

The complexity of joint symbol detection in SOFDM using IQP is considered very

high, especially for a large number of OFDM subcarriers. Therefore, forcing BB to

stop at the root node level (L = 0) is more suitable from a complexity point of view.

In addition, the BER performance shows that using BB with L = 0 is enough to pro-

vide better performance and diversity compared to the MMSE and LML techniques

at large N , such as N = 256.

To speed up the search of the BB tree, a controlled size BB search tree algorithm
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is proposed with flexible trade-offs between complexity and performance. This pro-

posed technique is referred to as BB(L,M), where L is the layer at which the search

tree stops and M is the number of nodes retained per each layer. At different values

of L and M, BB(L,M) outperforms existing techniques such as MMSE-OSIC, MMSE

chase, MMSE-LAS, and QRD-M in large-scale MIMO OFDM systems. It also shows

its efficacy in providing near-ML diversity and performance in the overloaded MIMO

systems when QPSK modulation is used.

The performance of the BB(L,M) detector and the two-stage QP detectors are

investigated in a large-scale MIMO system with a flat fading channel. Their per-

formance was superior than the existing LAS and RTS algorithms as the number of

antennas increases, especially when the modulation level is 64QAM or greater. The

BB(L,M) algorithm performs better than the two-stage QP algorithm when a rela-

tively small number of antennas is considered or when a large value of L is chosen

(e.g. > 16). on the other hand, however, the two-stage QP algorithm requires much

less computational complexity compared to BB(L,M), especially at large nt = nr.

The QP detector shows interesting results when used to reformulate SIC detection

schemes in a large-scale MIMO OFDM system. It offers both lower computational

complexity and better BER performance compared to the existing widely used SIC

techniques. In fact, three versions of this technique are proposed with flexible trade-

offs between complexity and BER performance, as each of the three QP-SIC algo-

rithms outperforms the existing SIC techniques. QP-SIC is able to demonstrate the

large system behavior at a large number of antennas. It shows its ability to contin-

uously extract more diversity from the system as the number of antennas increases.

It shows near single antenna AWGN performance within 2 dB at BER 10(−3) when

nt = 300.

QP is also used to derive a turbo equalization based receiver algorithm. More

specifically, a QP detector is developed so that it can provide soft information suit-

able for use by the channel decoder, and also can accept soft information that is

passed from the channel decoder. Simulation results demonstrate that the use of QP
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in turbo equalization improves performance at the cost of a reasonable increase in

complexity when compared to linear detectors.

Since the focus of the last part of this thesis was on the application of using QP

techniques to formulate SIC and IDD techniques with QPSK symbol mapping, fu-

ture work is aimed at developing these proposed techniques for higher QAM levels.

Straightforward extension may not be applicable because unlike the case of QPSK

mapping, in higher QAM modulation, the real and imaginary parts of the complex

symbol represent more than one bit.

Throughout this thesis, the channel is assumed perfectly known at the receiver

and also time invariant within each block of transmission. However, in a fast-fading

channel, Doppler spread caused by user mobility destroys the orthogonality among

subcarriers, which in turn leads to intercarrier interference (ICI) and degrades system

performance. Thus, a BER performance study using this type of channel with the

techniques proposed in this thesis would be required.

Finally, it is important to examine the performance of the proposed algorithms in

this thesis in other high-dimensional wireless systems, such as full rate non-orthogonal

space time block codes (non-orthogonal STBC) and large-scale multi user detection

systems.
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