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ABSTRACT 

Space Division Multiple Access(SDMA) based technique as a subclass of Multiple Input 

Multiple Output (MIMO) systems achieves high spectral efficiency through bandwidth reuse 

by multiple users. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) 

mitigates the impairments of the propagation channel. The combination of SDMA and 

OFDM has emerged as a most competitive technology for future wireless communication 

system. In the SDMA uplink, multiple users communicate simultaneously with a multiple 

antenna Base Station (BS) sharing the same frequency band by exploring their unique user 

specific-special spatial signature. Different Multiuser Detection (MUD) schemes have been 

proposed at the BS receiver to identify users correctly by mitigating the multiuser 

interference. However, most of the classical MUDs fail to separate the users signals in the 

over load scenario, where the number of users exceed the number of receiving antennas. On 

the other hand, due to exhaustive search mechanism, the optimal Maximum Likelihood (ML) 

detector is limited by high computational complexity, which increases exponentially with 

increasing number of simultaneous users. Hence, cost function minimization based Minimum 

Error Rate (MER) detectors are preferred, which basically minimize the probability of error 

by iteratively updating receiver’s weights using adaptive algorithms such as Steepest Descent 

(SD), Conjugate Gradient (CG) etc.  

The first part of research proposes Optimization Techniques (OTs) aided MER 

detectors to overcome the shortfalls of the CG based MER detectors. Popular metaheuristic 

search algorithms like Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution 

Algorithm (ADEA) and Invasive Weed Optimization (IWO), which rely on an intelligent 

search of a large but finite solution space using statistical methods, have been applied for 

finding the optimal weight vectors for MER MUD. Further, it is observed in an overload 

SDMA–OFDM system that the channel output phasor constellation often becomes linearly 

non-separable. With increasing the number of users, the receiver weight optimization task 

turns out to be more difficult due to the exponentially increased number of dimensions of the 

weight matrix. As a result, MUD becomes a challenging multidimensional optimization 

problem. Therefore, signal classification requires a nonlinear solution. Considering this, the 

second part of research work suggests Artificial Neural Network (ANN) based MUDs on the 

standard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks for 



[viii] 

SDMA–OFDM system as the ANNs are well known non-linear classifiers. It is observed that, 

ANN detectors can provide additional complexity gain as they approximate the channel state 

information in training phase before detecting the signals in testing phase. Moreover, 

multiuser detection process becomes more challenging when the users are transmitting high 

order modulated signals because the signal processing has to be accomplished in a complex 

multidimensional space. Hence, the research work exploits new complex valued NN based 

MUDs to overcome the limitations of real-valued NN models. It is observed that the complex 

valued RBF MUD provides near optimal performance at a significantly lower complexity 

especially under high user loads. In view of obtaining an improved mapping of input and 

outputs, new activation functions have been incorporated. Suitable modifications of 

conventional Back Propagation (BP) and Gradient Descent (GD) training algorithms have 

been done for complex NN training. Extensive simulation studies are made in MATLAB 

environment to prove the efficacy of the proposed MUD schemes for SDMA–OFDM system 

considering standard wireless channel models. Further, detection of images over wireless 

link, when several users are transmitting simultaneously sharing the same spectral resource is 

investigated. Significant performance improvement over classical Minimum Mean Square 

Error (MMSE), complexity gain over ML and sustenance in the overload scenario are the 

significant achievements of the proposed soft computing based MUDs.  

Key words:Space Division Multiple Access, Orthogonal Frequency Division Multiplexing, 

Multiuser Detection, Bit Error Rate, Minimum Mean Square Error, Maximum Likelihood, 

Minimum Bit Error Rate, Minimum Symbol Error Rate, Conjugate Gradient, Optimization 

techniques, Adaptive Genetic Algorithm, Adaptive Differential Evolution Algorithm, Invasive 

Weed Optimization, Neural Networks, Multilayer Perceptron, Radial Basis Function. 
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Wireless communication has become gradually more important worldwide not only for 

professional applications but also for many fields in our daily routine. In early 90s, a mobile 

telephone was a quite expensive gadget, whereas today almost everyone has a personal 

mobile. A clear example of this may be found in the Indian telecom industry, which has a 

high pace of market liberalization and growth since 1990s and now it has become the world's 

most competitive telecom markets with the inclusion of 3G services. The average growth of 

this industry is around twenty five times in just ten years. The number of subscribers in the 

year of 2001 is under 37 million, and it has increased to 960.9 million by the year of 

2012. India has the largest mobile phone user base and the annual income from it has is 

around USD 33,350 million. Nowadays, the mobile users use it not only for voice calls but 

also for high bandwidth applications such as, MMS services, video calling, accessing high 

speed internet support etc. The 4G technology is already developed to provide next 

generation internet support (IPv6, VOIP and Mobile IP), high capacity, seamless integrated 

services and coverage. With such an expansion in the mobile communication networks, the 

demand for design of robust communication system with high performance quality of service 

(QoS) increases. 

Wireless channel is an unguided dielectric media and hence the frequency ranges it 

can support are ideally infinite. Still due to many reasons, full available spectrum cannot be 

utilized. Bandwidth limitations, propagation loss, noise and interference make the wireless 

channel a narrow pipe that does not readily accommodate rapid flow of data. The propagation 

conditions in such environments are frequency selective due to dispersive multipath nature of 

wireless channels and hence Inter Symbol Interference (ISI) is introduced. OFDM is a 

parallel transmission scheme that distributes a serial data stream with high data rate into a set 

of low data rate parallel sub streams by modulating with orthogonal subcarriers. As these low 

data rate symbols undergo flat fading in radio environment, the ISI effect of the channel can 

be mitigated. In this technique, though the spectra of the individual orthogonal subcarriers 

overlap, the information can be completely recovered without any interference from other 

subcarriers. OFDM is extensively utilized in many applications like European Digital Audio 

Broadcasting (DAB), 3GPP Long Term Evolution (LTE) system, Wireless Local Area 

Network (WLAN) of IEEE 802.11a/g standard and WiMAX of IEEE 802.16 standard. On the 

other hand, the ever increasing demand for wireless communication system requires a high 

spectral efficiency. As a subclass of MIMO arrangements, SDMA techniques allow sharing 

of frequency band simultaneously by many subscribers in different geographical locations. 
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This can overcome the scarcity of spectral resources of wireless communication systems. In 

SDMA system, each of the users is equipped with a single antenna and the base station is 

equipped with multiple antennas. Each user will have their own spatial signature, and by 

using this, the Base Station (BS) receiver can detect multiple user’s signals. Generally, a 

multiuser system like SDMA suffers from the Multiuser Interference (MUI), whenever a 

receiver observes signals from multiple transmitters. Due to MUI, a strong user’s signal 

source may influence the reception of weak one. This problem can be solved by incorporating 

Multiuser Detection (MUD) at the receiver. The MUD is one of the receiver design 

technology used for detecting desired user signal by eliminating interference from 

neighborhood user’s signal. The detection problem in the SDMA system becomes more 

challenging as the complexity grows exponentially while increasing number of users. So 

research continues in this field to design better MUD schemes maintaining a tradeoff between 

complexity and performance.   

This chapter begins with a brief literature survey on the development of the SDMA–

OFDM system and existing MUD techniques as presented in Section 1.1. An exposition of 

the principal motivation behind the work undertaken in the thesis is discussed in Section 1.2. 

The research contributions have been outlined in Section 1.3. At the end, the layout of the 

thesis is presented in Section 1.4.  

1.1 Literature review  

The wireless channel is characterized by multipath propagation, where the transmitted signal 

arrives at the receiver using various paths of different lengths including Line of Sight (LOS) 

path. These multiple versions of the transmitted signals reach the receiver at different time 

instants. These reflected or delayed waves interfere with the direct wave and cause ISI, which 

results significant degradation of network performance. This problem can be solved by means 

of frequency diversity, which relies on the principle that signals are transmitted on different 

frequencies so that the multipath propagation in the media is exploited. Transmitting signals 

over different frequencies are referred as multicarrier transmission. One special case of 

multicarrier transmission is the OFDM scheme, which is first proposed by R. W. Chang [1]. 

However, this synthesis model using sinusoidal subcarrier generators and demodulators 

imposes high implementation complexity. As a design alternative, Weinstein and Ebert [2] 

suggested the OFDM modulation and demodulation processes using the Discrete Fourier 

Transform (DFT), which significantly reduces the implementation complexity of OFDM. 
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Since the development of OFDM, it has received a great interest by researchers and it is 

successfully incorporated in several applications like high-speed modems, digital mobile 

communications, high-density recording and so on [3, 4]. OFDM modulation technique is 

also adopted by IEEE 802.11a/g wireless LAN [5, 6]. The operation and detailed study about 

the OFDM is presented in several literatures [7–9]. 

In recent past, the MIMO technique has become potentially attractive for achieving 

high data rates in wireless communication systems. Among various contributions, a 

fundamental breakthrough for MIMO technology came in the late 1980’s with a pioneer work 

presented by Winters [10, 11]. The MIMO system has significant advantages compared to 

Single Input Single Output (SISO) system, as it may provide either diversity gain or 

throughput gain. In the spatial diversity techniques, the Space Time Trellis Coding (STTC) 

proposed by Tarokh et al. [12] and the Space Time Block Coding (STBC) proposed by 

Alamouti [13] are well-accepted schemes. Compared to STTC, the structural complexity of 

STBC is less and it also provides full diversity gain. As the space time codes are basically 

intended for diversity gain, these don’t offer any throughput gain with respect to a SISO 

system. Hence, these codes are excellent for improving the link quality by combating deep 

fades. The multiplexing gain can be improved by using Bell Labs Layered Space Time 

(BLAST) architectures. Foschini proposed Diagonal BLAST (D–BLAST) architecture by 

transmitting several independent data streams through different transmitting antennas [14]. 

This is further modified in Vertical BLAST (V–BLAST), by G. D. Golden [15]. Several 

important contributions on the properties of MIMO systems are made during the 1990’s, and 

the area is still drawing considerable research attention [16–19]. Interestingly, as the OFDM 

provides resistance from ISI and the MIMO provide high system throughput, the combination 

of these two techniques has become a promising solution in 3G and 4G standards. This 

inspired numerous further contributions in the area of MIMO–OFDM system [20–24]. On the 

other hand, the SDMA system is a special architecture of MIMO that allows multiple users to 

share the same bandwidth simultaneously in different geographical locations. The multiple 

users of the system are distinguished by their unique user specific Channel Impulse Response 

(CIR), which solves the capacity problem of the SDMA–OFDM system [35–30].  

At the receiving end of the SDMA–OFDM systems, estimating Channel State Information 

(CSI) is required for coherent demodulation and data detection. In order to obtain CSI, blind 

and training based channel estimation techniques can be applied. In blind channel estimation 

technique, CSI is estimated by channel statistics without any knowledge of the transmitted 
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data. But it suffers from slow convergence because of the time varying nature of channels 

[31–35]. In training based estimation techniques, training symbols that are also called as 

pilots are inserted in all of the subcarriers of OFDM symbols with specific period or inserted 

in each OFDM symbol [36–40]. Compared to blind estimation, pilot-based channel 

estimation techniques provide better performance in fast fading and time varying channels. 

Further, as the pilot tones directly affect the performance of channel estimation algorithms, 

several researches also concentrated on designing optimal training symbols [41–45]. Once the 

CSI is known at the receiver, the transmitted signals of all users can be detected using various 

MUD schemes. In recent past, there has been a significant attention paid towards developing 

efficient MUD techniques. The linear detectors like Zero Forcing (ZF) and Minimum Mean 

Square Error (MMSE) detect signals with the aid of a linear combiner [28, 46]. The linear 

detectors cannot mitigate the nonlinear degradation caused by the fading channel, because the 

channel’s output phasor constellation often becomes linearly non-separable. Hence, these 

detectors result high residual error. On the other hand, the nonlinear and computationally 

intensive Maximum Likelihood (ML) detector is capable of achieving optimal performance 

through an exhaustive search, which prohibits its usage in practical systems [28, 46]. 

Considering the tradeoff between complexity and performance, some non-linear MUD 

techniques like Successive Interference Cancellation (SIC) [16, 47], Parallel Interference 

Cancellation (PIC) [28], Sphere Decoding (SD) [48–50] and QR Decomposition (QRD) [51–

53] MUDs are introduced. Modifications of SD [54–57] and QRD [58–60] techniques are 

also proposed in several literatures. Among all these developments, the MMSE based QRDM 

technique is widely accepted as it exploits MMSE metric instead of the ML metric, which 

leads to enhanced performance with less complexity [60]. However, all these MUDs either 

fail to detect users in overload or rank deficient scenarios, where the number of users is more 

than the number of receiving antennas, or suffer from high complexity. Hence, S. Chen et al. 

proposed Minimum Bit Error Rate (MBER) MUD by minimizing BER directly rather than 

minimizing mean square error for CDMA system to support in overload condition [61]. 

Conjugate Gradient (CG) algorithm is used for updating receiver’s adaptable weights [62]. 

However, it requires proper selection of initial solutions and differentiable cost functions. 

These drawbacks can be eliminated by incorporating metaheuristic Optimization Techniques 

(OTs), as they start the search process from random positions. M. Y. Alias et al. proposed 

Genetic Algorithm (GA) based MBER MUD and implemented it for the SDMA–OFDM 

system [63, 64]. Subsequently, the MBER MUD algorithm was modified using other well 

known OTs like Particle Swarm Optimization (PSO) [65, 66] and Differential Evolution 
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Algorithm (DEA) [67]. The MBER MUD technique is basically designed for Binary Shift 

Keying (BPSK) modulation scheme. As the next generation communication systems also 

require high throughput, the OTs are directly used for detection of higher order modulated 

signal using the ML cost function [68–70]. But these techniques result high complexity 

especially in block fading channels. Therefore, J. Zhang et al. proposed an another Minimum 

Error Rate (MER) detection technique depending on Minimum Symbol Error Rate (MSER) 

for detecting Quadrature Amplitude Modulation (QAM) signals [71, 72]. 

Most of the discussed classical detectors assume that the channel is perfectly known 

at the receiver’s end, whereas practical systems need estimation of the channel state 

information, which imposes an additional complexity. This problem can be resolved directly 

by employing highly nonlinear classifiers such as Artificial Neural Networks (ANNs) [73–

75]. During past decade, ANNs are extensively utilized as multiuser detectors for CDMA 

system [76–80], but these are not yet applied for the SDMA–OFDM system [30]. Among 

various ANNs, the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF) are 

considered to be simple but powerful tools in the area of pattern classification. These models 

can perform complex mapping between its input and output space and are capable of forming 

decision regions separated by nonlinear decision boundaries. Generally, the real valued NN 

models fail to transfer the complete complex input information to the output layer. Therefore, 

subsequently several complex NN models are also developed. Especially, the complex valued 

MLP [81–83] and complex valued RBF [84–88] models are used for solving adaptive 

equalization problems when both input and desired signals are complex valued.    

Progressive image transmission over noisy channel using image compression 

techniques is another active research area in recent past. For image compression, Embedded 

Zero Wavelet (EZW) coding proposed by Shapiro [89] can be used efficiently for fast 

execution. Later, Said and Pearlman modified the underlying principles of EZW technique 

and proposed Set Partitioning Hierarchical Tree (SPIHT) coding for achieving better results 

[90]. The SPIHT coding will convert a two dimensional image into compressed binary bit 

streams. As wireless channels often suffer from multipath fading, shadowing and ISI, the 

transmission of compressed image is a major concern due to error prone environment. The 

transmission error may lead to degrade the received image quality. By incorporating efficient 

MUD techniques, these degraded images can be recovered at the BS receiver. Such kind of 

progressive image transmission and detection analysis has been already studied for space 

time coded MIMO–OFDM system in the literatures [91, 92].  
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1.2 Motivation of the thesis 

In a classical wireless transmission scenario, the transmitted signal arrives at the receiver 

using various paths of different lengths. If the maximum path delay is more than the symbol 

period, then ISI will occur. Since the multiple versions of the signal interfere with each other, 

it becomes extremely difficult to extract the original information. This problem can be solved 

by multicarrier transmission scheme like OFDM. OFDM generates orthogonal parallel 

symbols, whose delay spread is a significantly shorter fraction of a symbol period. As a result 

it is less sensitive from ISI [93]. On the other hand, the evolution of wireless communications 

from pure telephony to multimedia platforms offering high data rate applications led to the 

enhancement of early propagation models. This goal can be achieved by incorporating 

multiple antennas at both the transmitting and receiving ends, which is often called as MIMO 

system [94, 95]. As the OFDM and MIMO techniques have their own merits, the 

combination, that is MIMO–OFDM, can offer a reliable communication with high data rate 

[96–100]. Further, as the number of mobile users increasing drastically, bandwidth has 

become an extremely scarce resource. This emphasizes the need for transmission schemes 

offering high spectral efficiency. The spectral efficiency can be achieved by the SDMA based 

MIMO system, which allows multiple users to share a single frequency band simultaneously, 

where multiple users are distinguished by their own spatial signature. Hence, the SDMA–

OFDM system results in highly efficient reliable data [101, 102].  The SDMA like multiuser 

systems often suffer from Multiuser Interference (MUI) also called as Multiple Access 

Interference (MAI). In a mobile cellular network system, MUI arises due to the sum of 

interference resulting from multiple transmissions in a cell or from neighboring cells. High 

capacity requirements by supporting more users need to be achieved suppressing the MUI. 

Such interference can be suppressed through Multiuser Detection (MUD). MUD technique 

jointly detects multiple users, which are transmitting simultaneously through the same 

wireless media.  

During the past few decades, an extensive research has been carried out for designing 

efficient MUD techniques. Amongst those, the conventional linear detectors are simple but 

are interference limited. The linear detectors cannot mitigate the nonlinear degradation 

caused by the fading channel, hence these detectors result high residual error. In addition to 

that, as the number of users increases, the MUI also increases, which in turn degrades the Bit 

Error Rate (BER) performance of the receiver. Considering these points, the linear detectors 

cannot achieve the full potential of detection process. On the other hand, the optimal 
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nonlinear detectors possess high complexity, which restricts them in practical 

implementation. Hence, extensive research attention is drawn for designing efficient sub-

optimal detection techniques with a trade-off between complexity and performance. 

However, most of the sub-optimal detectors fail to detect users in overload scenario. In such a 

case, the MIMO channel matrix becomes singular, and hence rendering the degree of 

freedom of the detector insufficiently high for detecting the signals of all the transmitters in 

its vicinity. This will drastically degrade the performance of various classical detectors. The 

prime objective of the present research is to minimize the Bit Error Rate (BER). However, 

the classical linear Minimum Mean Square Error (MMSE) detector minimizes Mean Square 

Error (MSE), which may not give guarantee that the BER also minimizes. By contrast, the 

MER MUDs like MBER and MSER directly minimize the probability of error by optimizing 

the receiver weights [64, 65]. Earlier, gradient descent algorithms are used for weight 

optimization of MER detectors, which have certain limitations. Considering all these issues, 

this research work is motivated towards the development of new improved MER MUDs, in 

which intelligent search algorithms will be utilized for locating optimal weights. Therefore, 

the improved MER MUDs can offer better performance with low computational complexity 

and also supports in overload conditions.  

The process of the MUD can be basically considered as a pattern classification 

problem, where the optimal decision boundary is highly nonlinear. Taking this into 

consideration, Artificial Neural Network (ANN) or simply Neural Network (NN) models can 

offer a much better solution to MUD problem due to their highly nonlinear pattern 

classification capability. In recent past, NNs based MUD techniques have been applied 

successfully to the Code Division Multiple Access (CDMA) system achieving better 

performance than conventional linear techniques [103–105]. The ANNs are parallel 

distributed structures in which many simple interconnected elements (neurons) 

simultaneously process information and adapt themselves to learn from past patterns. 

Attractive properties of NNs relevant to the MUD problem are robustness, finite memory and 

nonlinear classification ability. With these motivations, the present work investigates the 

feasibility of employing the NNs especially Multilayer Perceptron (MLP) model and Radial 

Basis Function (RBF) models for solving the MUD problem in the SDMA–OFDM system.  

Thus, the prime objective of the proposed work is to develop some soft computing 

based MUDs to achieve a near optimal performance considering the complexity and over 

load issues in a multiuser scenario of the SDMA–OFDM system.  
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1.3 Contribution of the thesis 

The present work aims at developing efficient soft computing based MUD schemes with 

reduced computational complexity for the SDMA–OFDM system, which will be suitable for 

easier implementation in practical applications. The first part of the research focuses on 

proposing OTs aided Minimum Error Rate (MER) detectors with proper selection of control 

parameters. Second part of research introduces the development of NN based MUD schemes. 

Suitable modifications of the activation functions of neurons and training algorithms are 

incorporated considering the communication system parameters. Applications of the 

proposed detectors result near optimal performance at reduced complexity even in the critical 

overload scenario of an uplink SDMA–OFDM system. Further, for challenging multimedia 

applications limited by the fading channel conditions and spectrum allocation, the proposed 

MUDs prove to be successful in reconstruction of images when all the users are transmitting 

simultaneously. Details of the research contribution are discussed below.  

Advantages and limitation of classical linear and nonlinear MUD schemes are 

analyzed through simulation based performance evaluations. Standard MIMO channel 

models representing indoor, outdoor and fixed wireless scenarios are considered to prove the 

robustness of the proposed MUD schemes. The classical MMSE detector minimizes the 

Mean Square Error (MSE), which may not give guarantee that the BER also minimizes. Also 

it fails to detect users in the overload scenario. So the CG based MER MUDs like MBER and 

MSER ones are preferred as they can directly minimize the probability of error by optimizing 

the receiver weights. In MER MUD schemes, global optimum solution needs to be found for 

receiver weights to achieve a near optimal performance. But as the higher the number of 

users to be supported, the optimization task becomes more challenging due to exponentially 

increased number of dimensions to be estimated. The higher computational complexity poses 

major problem.  Hence, this research work suggests using popular metaheuristic OTs such as 

Adaptive Genetic Algorithms (AGA), Adaptive Differential Evolution Algorithm (ADEA) 

and Invasive Weed Optimization (IWO) for providing solution to this challenging 

multidimensional optimization problem. However, as the control parameters of these search 

algorithms greatly influence the system performance, selection of control parameters is 

suitably done based on system performance. Development of these OTs aided MER MUD 

schemes have been suggested with the following considerations:  

 The classical GA uses fixed values of cross-over and mutation probabilities. If these 

values are low, then the GA search strategy requires large number of generations, 
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otherwise if these values are high it may cause the disruption of the near optimal solutions 

when a population is at the verge of approaching a globally optimal solution. So an 

adaptive GA is suggested which chooses lower values of cross-over and mutation 

probabilities for low fitness solutions and higher values for high fitness solutions. Thus, 

the high values help in faster convergence while the low values prevent the GA from 

getting stuck at a local optimum before approaching the global optimal solution. 

 Unlike the classical DEA, the adaptive DEA uses a self-adaptive control mechanism, 

which changes the mutation factor and crossover probability during each evolution or 

generation in order to achieve improved performance with faster speed of convergence. 

 The IWO allows all of the individuals to participate in the reproduction process. 

Sometimes, it is also possible that the individuals with the lower fitness carry more useful 

information compared to the fitter individuals. Hence, this algorithm, gives a chance to 

the less fit plants also to reproduce and if the seeds produced by them have good finesses 

in the colony, they can survive. Fitter individuals produce more seeds than less fit 

individuals, which tends to improve the convergence of the algorithm.  

In the overload SDMA–OFDM system, the channel’s output phasor constellation 

often becomes linearly non separable. Hence, application of Artificial Neural Networks 

(ANNs) is suggested for MUD at the BS receiver as these models are known as nonlinear 

classifiers and can exhibit massive parallism. NNs size, weight matrix etc are defined based 

on the uplink SDMA system parameters. Besides that, most of the classical detectors assume 

that the channel dynamics are perfectly known at the receiver’s end, whereas in practical 

systems, estimation of channel response imposes additional complexities. But, as the NN 

models approximate channel parameters in training phase and can subsequently detect signals 

in testing phase, these may become a good substitute for classical detectors. The developed 

NN based MUDs are adaptive in nature as they can adapt to unknown time varying channel 

conditions through training. The proposed NN based detectors have been designed on both 

standard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks. 

Generally, as the response of the MLP and RBF models are always real valued, these models 

can be incorporated for detection of lower order modulated signals such as BPSK. However, 

as high throughput is also a major requirement, the transmission of higher order symbols such 

as M–Quadrature Amplitude Modulation (QAM) is essential. While transmitting such higher 

order modulated signals, the nonlinear channel degradation affects both the In-phase and 

Quadrature components of the transmitted symbols. In order to extend the NN models to 
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detect such signals, processing has to be done in a complex multidimensional space. 

Therefore, this research work significantly contributes to development of complex valued 

NNs, again on both MLP and RBF frame work changing the nonlinear activation functions of 

neuron nodes. The conventional BP and GD Algorithm cannot be directly applied for training 

free parameters of the proposed new NN models. Hence, suitable modifications have been 

included in those algorithms while estimating the local gradient of errors considering the 

complex output response. Development of the proposed complex valued NN detectors is 

based on the following considerations: 

 The Complex MLP (CMLP) can be viewed as an extension to the MLP, which can 

process both real and imaginary components of the transmitted signals. The complex 

response can be achieved by expanding the sigmoid activation function into both real and 

imaginary components such that the function becomes analytic and bounded everywhere 

in the complex plane. With such modification, the CMLP is expected to a better nonlinear 

mapping between input and output when higher order signals are transmitted.  

 The real valued RBF network uses Gaussian activation functions. The proposed complex 

valued RBF (CRBF) has replaced it with sech activation function, whose behavior is 

similar to Gaussian approximation but it is capable of generating complex response 

corresponding to complex input signals directly. Further, by splitting it into real and 

imaginary components, the error gradient computation can be made more economical.   

As observed from the exhaustive simulation studies under taken in this research, the 

proposed NN based adaptive MUD schemes have resulted near optimal performances, a 

significant performance gain over classical MMSE, faster learning and low computational 

complexity. But it is observed that the gains obtained her are entirely channel dependent.  

The task of image transmission in a SDMA–OFDM wireless communication system 

is really a challenging problem due to limited bandwidth, vulnerability of wireless links and 

noisy channel. As the SDMA–OFDM system doesn’t provide any transmitting diversity, 

detection becomes a more difficult task when number of users interfering with each other 

increases. Hence, reliable image transmission through wireless channels has drawn 

considerable research attention. As an extension of this research work, the proposed soft 

computing based MUD schemes are utilized for image reconstruction when all users in the 

system are transmitting progressive images simultaneously. The techniques suggested here 

can be implemented for real time image traffic over a radio link in the SDMA–OFDM 

system. 
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1.4 Thesis layout 

The rest of the thesis is organized as follows. 

Chapter–2: Introduction to SDMA–OFDM System and Comparison of Classical MUD 

Schemes 

This chapter introduces the basic SDMA–OFDM wireless communication system along with 

mathematical expressions for multiuser signal transmission and reception. As the mobile 

radio channel plays a major role in deciding the performance of the system, its statistical 

properties are analyzed and standard models for frequency selective wireless MIMO channels 

are presented. Afterwards, the operating principles of MUD and expressions for such 

detection process are discussed. Some of the classical linear and nonlinear MUD schemes 

with their merits and demerits have been explained. The probability of error functions for in 

both the basics of MBER and MSER MUDs are also derived, which form the basis of the 

following proposed MUD schemes. Performance comparisons of all classical MUDs are 

analyzed based on the simulation study.   

Chapter–3: Proposed Metaheuristic Optimization Techniques Aided Minimum Error 

Rate MUD Schemes 

This chapter discusses in detail about the applications of popular Metaheuristic OTs like 

Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution Algorithm (ADEA) and 

Invasive Weed Optimization (IWO) for determining the optimal solution in MER detection 

problems. A detail study on control parameters of OTs, which influence the performance of 

MBER/MSER MUDs, is included here and accordingly selection of control parameters is 

suggested. The chapter concludes with results of simulation study which includes the 

comparison of proposed OTs aided MER detectors with the classical MUD schemes based on 

Bit Error Rate (BER) performance, convergence analysis and computational complexity 

analysis.   

Chapter–4: Proposed Neural Network Based Adaptive MUD Schemes 

This chapter proposes efficient MUD schemes based on feed forward NN topologies (both 

MLP and RBF) and modification of existing training algorithms to faster adapt the network 

parameters. The fundamental concept of using NNs for MUD design has been described. The 

limitations of real valued NN models while detecting higher order modulated signals are 

discussed and the necessity of complex valued NN models for processing of such signals is 
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also explained. For the NN models, selection of number of nodes in input, hidden and output 

layers according to the order of SDMA–OFDM system is chosen based on BER performance 

and an empirical relationship between number of hidden nodes and number of users is 

established. Finally, the efficacy of the proposed NN based adaptive MUD schemes are 

proved through performance and complexity analysis using simulation based study.  

Chapter–5: Progressive Image Transmission and Detection Using Proposed MUD 

Schemes 

This chapter validates the proposed MUD schemes presented in Chapter–3 and Chapter–4 by 

successfully reconstructing images (both gray scale and colored), when all the users are 

transmitting different images simultaneously. The basic system model used to transmit 

images and the process of image coding and decoding by the SPIHT algorithm are explained 

in detail. The chapter ends with a comparison of all proposed MUD schemes (OTs aided 

MER and NN based MUDs) while visualizing the reconstructed images and calculating their 

statistical parameters. The widely used statistical parameters for an image quality analysis 

metrics are Bias, Standard Deviation Difference (SDD), Root Mean Square Error (RMSE), 

Peak Signal to Noise Ratio Correlation Coefficient (CC) and (PSNR), which are presented in 

a tabular form for comparative analysis.  

Chapter–6: Conclusions and Future Scope of Research 

This chapter summarizes the research work undertaken in the thesis. Limitations of the 

present work and a few points on future scope of research are presented at the end. 
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Two major technical challenges in the design of wireless communication system are the 

impairments of the propagation channel and better spectral efficiency. OFDM, which 

transforms a frequency selective channel in a set of frequency flat channels, can mitigate the 

channel impairments [7–9]. On the other hand, SDMA based techniques as a subclass of 

MIMO systems enables multiple users to share the same bandwidth simultaneously. Thus 

SDMA technique has the advantages of improving the capacity of wireless systems with the 

expense of the requiring robust detection in the receiver. The SDMA can differentiate 

multiple users by exploiting their unique user specific spatial signature even when they are in 

the same frequency/time slots [25–30]. The spatial signature in a SDMA is like spreading 

code in the conventional CDMA. Multiuser Detection (MUD) techniques known from 

CDMA can be applied in SDMA–OFDM receivers to mitigate Multiple Access Interference 

(MAI), which causes performance degradation. MUD refers to the scenario in which a single 

receiver jointly detects multiple simultaneous transmissions. In MUD scheme, multiuser 

information available in the MAI term is used to demodulate the signal and will not be treated 

it like a noise term. This concept is similar to the exploiting multipath for diversity. In the 

recent past, designing efficient MUDs which have the property of minimizing the bit error 

probability while being realistic from the computational complexity point of view has 

attracted lot of attention amongst researchers.  The overview of MUD schemes is presented 

by Sergio Verdu in the early 1980’s [47].  

This chapter introduces MIMO, OFDM and SDMA–OFDM, in Section 2.1, Section 

2.2 and Section 2.3 respectively. The wireless MIMO channel characteristics and basic 

channel estimation techniques are briefed in Section 2.4 and Section 2.5 respectively. Some 

classical linear and nonlinear MUD schemes are discussed in Section 2.6 and their 

performances have been compared using simulation study as presented in Section 2.7. 

Finally, this chapter concludes with a summary as given in Section 2.8. 

2.1 Multiple Input–Multiple Output (MIMO) system 

Basically, the MIMO system has been categorized as Space Division Multiplexing (SDM) 

and Space Division Multiple Access (SDMA) for achieving different design goals in various 

wireless applications.  

2.1.1 Space Division Multiplexing (SDM)  

This system employs multiple antennas at both transmitting and receiving antennas as shown 

in Figure 2.1. The multiple transmitting antennas are used for either diversity gain or 
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throughput gain (data rate gain). In the context of diversity techniques, multiple replicas of 

the information are transmitted through different paths, hence the SDM system is capable of 

exploiting both transmitter and receiver diversity to achieve reliable communications. The 

antennas are spaced as far apart as possible, so that the signals transmitted to or received by 

the different antennas experience independent fading and hence the highest possible diversity 

gain can be attained. Space Time Trellis Coding (STTC) [12] and Space Time Block Coding 

(STBC) [13] techniques are widely used to achieve the maximum possible diversity gain. 

However, the BER performance improvement is often obtained at the expense of a data rate 

loss, since STBCs and STTCs may not result additional throughput gain. As a design 

alternative, a specific class of SDM system was developed for improving multiplexing gain 

by transmitting different signal streams independently over each of the transmit antennas. 

This class of MIMO techniques is renowned as the Bell Labs Layered Space-Time (BLAST) 

scheme [14, 15]. The BLAST architecture aims to increase the system throughput in terms of 

the data rate that can be transmitted in a limited bandwidth.  

 

Figure 2.1: SDM system model 

2.1.2 Space Division Multiple Access (SDMA)  

In contrast to the multiplexing schemes, the SDMA employs multiple users each equipped 

with a single transmitting antenna and an array of base station antennas [30]. SDMA exploits 

the unique user specific spatial signature constituted by their channel transfer function or 

equivalently Channel Impulse Response (CIR) for separating user’s signals. This allows the 

system to support multiple users within the same frequency band and/or time slot, given that 

their CIRs are sufficiently different and are accurately measured. Spatially separated user’s 

data streams can simultaneously access the channel in the same frequency band, provided that 
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the locations of transmit and receive antennas are appropriately chosen. Figure 2.2 illustrates 

A SDMA uplink transmission scenario, where each of the L simultaneous users is equipped 

with a single transmissions antennas, while the receiver capitalizes on a P–element antenna 

front end.    

 

Figure 2.2: SDMA uplink system model 

2.2 Orthogonal Frequency Division Multiplexing (OFDM) technique  

2.2.1 Need for multicarrier transmission: 

The system performance of high data rate wireless communication suffers from multipath 
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2.2.2 Importance of being orthogonal: 

The main concept of the OFDM technique depends on the orthogonality among the sub-

carriers. This orthogonality occurs when all these subcarriers have integer number of cycles 

over a symbol period. As all the carriers are sine/cosine waves, if the area under the product 

of two sinusoidal signals of different frequencies is zero then those two signals are orthogonal 

to each other. In such an orthogonal system, the spectrum of each subcarrier has a null at the 

center frequency of all other subcarriers, which results no interference between the 

subcarriers. This idea is the key idea behind OFDM [9]. Unlike Frequency Division 

Multiplexing (FDM), OFDM uses the spectrum much more efficiently by spacing the sub 

channels close together as shown in Figure 2.3. The orthogonality allows simultaneous 

transmission on a number of sub-carriers in a tight frequency space without interference from 

each other as seen in Figure 2.4.  

 

Figure 2.3: Comparison of OFDM spectrum with FDM 

 

Figure 2.4: Consecutive OFDM subcarriers in time domain 
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Further, the simulated power spectrum of the OFDM signal is depicted in Figure 2.5, 

which is estimated over averaging 1000 frames each consisting 128 subcarriers with 1 MHz 

symbol rate. The signal mapper used in this simulation is 4–QAM. In this figure, we can 

observe that the peak power is comparatively high over the average power, which can be 

eliminated efficiently by using Peak to Average Power Ratio (PAPR) techniques [9]. 

 

Figure 2.5: Spectrum of an OFDM signal 

2.2.3 Cyclic prefix:  

In OFDM system, the Cyclic Prefix (CP) is placed between two consecutive OFDM symbols 

to preserve the orthogonality of the sub-carriers. The duration of CP is selected to be larger 

than max to avoid interference of one OFDM symbol on the consecutive one, which is called 

as ISI [9]. As depicted in Figure 2.6, a copy of the end of the OFDM symbols (NCP) is added 

before the data stream (NC). The length of the CP should be adjustable and must be set for a 

bandwidth efficient system. 

 

Figure 2.6: Representation of cyclic prefix in the OFDM symbols 
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(a) 

 

(b) 

Figure 2.7: Schematic diagram of: (a) OFDM modulator (b) OFDM demodulator 
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subjected to an Inverse Fast Fourier Transform (IFFT) to produce a time domain symbol 
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After OFDM modulation, a CP is inserted to suppress ICI. The CP is a copy of the 

last part of the OFDM symbol, which is prepended to the OFDM symbol. This makes the 

symbol periodic and helps in identifying frames correctly. Then the parallel data is converted 

to serial data and transmitted through the wireless channel.  At the receiver’s end, the serial 

data is converted back to parallel form and CP is removed. Finally, the time domain received 

symbol ( )pY n  is passed through the Fast Fourier Transform (FFT) block for extracting the 

frequency spectrum and then parallel data is converted back to serial form.  

( ) { ( )}, 1,2,...p p Cy k FFT Y n n N 
 (2.3) 

2.3 Overview of SDMA–OFDM system model 

Figure 2.8 demonstrates the uplink transmission of the SDMA–OFDM system model [74]. In 

this figure, each of the L simultaneous users is equipped with a single transmitting antenna 

and the base station is equipped with a P element antenna array. Each user accesses the entire 

frequency band with subcarrier spreading. This scenario can improve capacity of the system. 

The received signal ‘y[s, k]’ at the kth subcarrier of the sth OFDM block can be characterized 

by the super position of L independently transmitted user signals. The SDMA–OFDM frame 

structure consisting NF number of OFDM frames, where each frame with NC + NG subcarriers 

is shown in Figure 2.9. Thus, the received signal corrupted with Additive White Gaussian 

Noise (AWGN) and the noise less received signal at each frequency bin can be expressed 

respectively in vector form as:  

[ , ] [ , ] [ , ] [ , ]s k s k s k s k y H x n   (2.4) 

y Hx  (2.5) 

Hereafter, the indices [s, k] are omitted for the sake of notational convenience. In the above 

equation   1
1 2, ,...,

T P
P= y y y y  ,   1

1 2, ,...,
T L

L= x x x x  and   1
1 2, ,...,

T P
P= n n n n  are 

the received, transmitted and the noise vectors respectively. The noise vector is assumed to be 

uncorrelated and exhibits zero mean and 2
n variance. Hence, [ ] 0E n  , 2 2[ ] nE n   and the 

auto co-variance matrix 2[ ]H
n PE nn I . The users are assumed to be located at a sufficiently 

large distance from each other, mostly at a distance of more than a typical spacing of 10λ, so 

that the transmitted signals of the different antennas experience independent fading.  
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Figure 2.8: Block diagram of the SDMA–OFDM system with L users and P receiving antennas 
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Figure 2.9: SDMA–OFDM frame structure 

Further, in eq. (2.4), P LH  represents the frequency domain channel matrix, which is 

expressed as: 

1,1 1,2 1,

2,1 2,2 2,L

,1 ,2 ,

L

P P P L

H H … H

H H … H
=

H H … H

 
 
 
 
 
 

   
H  (2.6) 

where HP,L is the channel gain between the Pth receiving antenna and Lth user link. The lth 

(l=1, 2,…,L) column of channel matrix H is often referred to as the spatial signature of the lth 

user across the receive antenna array. Further, the channel link between pth receiving antenna 

and lth user at each sub-carrier in a multipath channel is expressed as: 

,
1

( ) , 1,2,..., , 1,2,..., , 1,2,...,
M

p l p,l C
m= C

-i2πkm
H = h m exp k = N p = P l = L

N

 
 
 

  (2.7) 

where CN represents the IFFT length, M is number of propagation paths and ,p lh is time 

domain channel gain of link between pth receiving antenna and lth user. The data bit stream 

, 1, 2,...,l l Lb of the L mobile users is then encoded by the L independent FEC encoders and 

interleavers. The resultant coded bit streams c
lb  are then mapped to higher order modulation 
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OFDM Subcarriers

Number

of Users

 

 



1s  2s  3s  s S 1Fs N 
Fs N

1k  2k  3k  k K 1C G

k

N N


 

1l 

2l 

l L

C G

k

N N






Chapter – 2: Introduction to SDMA–OFDM System and Comparison of Classical MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[24] 
 

symbols xl, The FEC encoder, Interleaver and signal mapper together can often called as Bit 

Interleaved Coded Modulation (BICM). The higher order symbols xl are then modulated by 

the IFFT based OFDM modulators and transmitted over the MIMO channel. At the receiving 

end, each of the received symbols (i.e. , 1,2,...,p p Py ) is first demodulated using FFT 

based OFDM demodulator and then forwarded to the multiuser detection block to estimate 

transmitted symbols ˆ lx . These estimated symbols are then converted to bit streams using the 

signal demapper.  The detected bits ˆc
lb  are forwarded to the L independent bit interleavers and 

FEC decoders to produce detected bit streams l̂b .  

2.4 Wireless MIMO channel characteristics  

In a classical wireless transmission scenario, the transmitted signal arrives at the receiver 

using various paths of different angles and/or different time delays and/or different 

frequencies. As a result, the received signal power changes in space (due to angle spread) 

and/or frequency (due to delay spread) and/or time (due to Doppler spread) through the 

random superposition of the impinging multi-path components. This random changes in 

signal level is known as multipath fading [93]. This multi-path fading effect predominantly 

impairs signal transmission in wireless medium and severely influence the quality and 

reliability of wireless communication. Additionally, the wireless channel is also subjected to 

some other losses like propagation loss, shadowing and Doppler spread [94]. Hence, 

designing a wireless channel model considering these affects is an extremely challenging 

task. Further, the constraints posed by limited power, scarce spectrum and the requirement of 

high data rate make the channel modeling more complex.  

2.4.1 Design of MIMO channels 

The design of channel matrix will play a major role to determine the performance of the 

communication system. Several methods could be considered to approximate the statistics of 

the channel matrix elements. One of them is to characterize the channel matrix based on 

geometrical structure of the arrays and the transmit environment. Another way is to use a 

statistical model of the channel parameters and geographical conditions. The second approach 

often results a more appropriate. The channel can be modeled in a point-to-point 

SDMA/MIMO system with L number of transmitting users and P number of receiving 

antennas under fading channels as [17, 19]: 
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1/2 1/2
r w tH R H R  (2.8) 

Hw denotes the i.i.d. fading channel with no spatial correlation. The components of Hw are 

complex Gaussian random variables with zero mean and unit variance. Rr and Rt represent 

the spatial correlations across the receiving antennas and transmitting antennas respectively, 

which are modeled as: 

2* 1*

* 2*

1 2 3

1

1

1
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r r r
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r r r

  
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 
 
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 
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


  


R   

where r   and t ( 0 , 1r t   ) are the correlation coefficients at the receiver and the 

transmitter respectively.  

When there is no spatial correlation, that is 0r t   , then the resultant channel 

matrix H become Hw. Further, the Hermitian matrices 1/2
rR and 1/2

tR can be decomposed as: 

1/2 1/2 *
r r r rU U R  

1/2 1/2 *
t t t tU U R   

where Ur  and Ut  are unitary matrices. 

r and t are diagonal matrices with diagonal elements (Eigen values) denoted by λ. 

2.4.2 MIMO channel capacity 

When the channel is unknown at the receiving end with uniform power allocation across all 

the NT number of transmitting antennas, then the MIMO channel capacity can be expresses as 

[21]: 

*log
T

SNR
C

N
 I HH  (2.9) 



Chapter – 2: Introduction to SDMA–OFDM System and Comparison of Classical MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[26] 
 

where SNR denotes the signal to noise ratio at the receiver, that is, the transmitter transmits 

under the constraint E SNR   x x .  

The channel capacity under a uniform power constraint may be express from an Eigen 

value decomposition of TNHH / , as:  

1

log(1 ) ( )
RN

i
i

C SNR C


      

where 1 2 1 2[ , ,..., ], ...
R RN N         denotes the Eigen values of TNHH / and  

NR represents the number of receiving antennas.  

The performance gains of MIMO technology at different antenna configurations with 

respect to the capacity in bits/s/Hz is shown in Figure 2.10 under Rayleigh fading channel. In 

this simulation, a highly scattered environment is considered. The Capacity of a MIMO 

channel with NT transmit antenna and NR receive antenna is analyzed. The power in parallel 

channel is distributed using water-filling algorithm. From this figure, it is observed that at a 

target receive Eb/No value of 15 decibels (dB) the conventional Single Input Single Output 

(SISO) system, that is, NT = 1 and NR = 1, can provide a data rate up to 5.681 bits/s/Hz. 

However, while considering NT = 4 and NR = 4, the capacity gets increased to 15.854 

bits/s/Hz. This increase in capacity is realized for no additional power or bandwidth 

expenditure compared to a SISO system. 

 

Figure 2.10: Capacity versus Eb/No for different antenna configurations 
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2.4.3 Empirical MIMO channel models 

Actual wireless environments are too complex to model accurately. In practice, most 

simulation studies use empirical models that have been developed based on measurement 

data taken in various real environments. In order to design an accurate channel model, 

sufficient knowledge about the characteristics of reflectors, including their placement and 

movement, and the power of the reflected signal is essential. The channel model may also 

vary with the antenna configuration along with the number of transmitting and receiving 

antennas. Different channel models may be valid with respect to their applications in indoor 

and outdoor environment. Considering all these, several empirical channel models have been 

developed during the past few decades. Among various contributions, Okumura conducted 

extensive measurements and developed free space path loss based on the attenuation between 

base station and mobile stations [106]. This model is further improvised by Hata by means of 

some empirical data [107]. The Hata model can well approximates the Okumura model for 

distances greater than 1km. This model is basically proposed for large cells. However, both 

these models are intended for low frequency applications, that is 150–1500 MHz band. As the 

demand for high frequency applications is increasing, the European Cooperative for 

Scientific and Technical (COST) research extended the Hata model to 2 GHz frequency band 

in COST 231 Model [108]. Simultaneously, Ikegami [109] and Walfisch [110] designed 

some channel models for urban areas. Further, Erceg characterized channel model for macro 

cells at 1.9 GHz band [111]. Thus, depending upon channel conditions, different models have 

been developed.  

Considering MIMO applications, in this research, three standard wireless channel 

models are used for the simulation studies. The channel models investigated throughout this 

research are MIMO Rayleigh fading [71, 72], Stanford University Interim (SUI) [112] and 

Shortened Wireless Asynchronous Transfer Mode (SWATM) [30], which are suitable for 

outdoor, fixed wireless and indoor applications respectively. The detail impulse responses 

and the statistical parameters of these channel models are discussed in Appendix A. The 

channel parameters of MIMO Rayleigh fading, SUI and SWATM are presented in Table A.1, 

Table A.2 and Table A. 3 respectively. Figure 2.11 (a), Figure 2.11 (b) and Figure 2.11 (c) 

show the frequency response of the channel link between User–1 and Receiving Antenna–1 

during transmission of one OFDM frame including the guard symbols, for three different 

channel conditions. Here, it is shown that the SWATM channel has more deep fades 

compared to other two because it is has more delay spread.  
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                                              (a)                                                                                     (b) 

 

     (c) 

Figure 2.11: Frequency response of channel link between User-1 and Receiving Antenna-1 under various 

channel conditions (a) MIMO Rayleigh fading (b) SUI (c) SWATM  

2.5 MIMO–OFDM channel estimation, a brief overview: 

The channel state information can be obtained through training, blind and semi blind channel 

estimation techniques. The blind channel estimation is based on the statistical information of 

the channel and certain properties of the transmitted signals [31–35]. The training-based 

channel estimation is based on the training data (pilots) sent from the transmitter that is 

known a priori at the receiver [36–40]. Though the former has the advantage of not having 

overhead loss, it is only applicable to slow time–varying channels due to its need for a long 
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data record. In general, the mobile wireless applications are fast time–varying and hence the 

training based channel estimation is a preferable one. Further, the semi–blind channel 

techniques are hybrid of blind and training estimation techniques, which utilizes pilots and 

other natural constraints to perform channel estimation. This section introduces a brief 

description about training based channel estimation approach to the MIMO–OFDM system. 

Estimation theory is a division of statistical signal processing, which approximates the 

channel parameters based on the measured data. In the channel estimation theory, as the 

channel matrix H is unknown at the receiving end of the SDMA–OFDM system, it should be 

estimated with training symbols tx  and its corresponding response symbols ty , where the 

response symbols can be expressed as: 

t t t y Hx n  (2.10) 

where tx   is the L × TN training matrix, tn is the P × TN noise matrix and ty is the P × TN  

response matrix of the training matrix. In the above equation TN should be more than L (TN

L). The most generally used estimation techniques are Least Squares (LS) and Minimum 

Mean Square Error (MMSE), which are discussed below. 

2.5.1 Least Square (LS) estimator 

The LS estimator estimates Ĥ  with an assumption that there is no noise component, that is, 

ˆ
t ty Hx .The LS estimator minimizes the Euclidean norm of the squared error, that is

ˆ
t tHx y , which results: 

   2ˆ ˆ ˆH

t t t t t t   Hx y Hx y Hx y  

                     
ˆ ˆ ˆ ˆH H H H H H

t t t t t t t t   x H Hx x H y y Hx y y  

The minimum of the above equation is found by taking its derivative and equating it to zero, 

that is: 

 ˆ ˆ ˆ ˆ ˆ 0H H H H H H
t t t t t t t t     x H Hx x H y y Hx y y H  

ˆ2 2 0H H
t t t t x x H x y  

Therefore, ˆ
LSH will be given by 
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  1ˆ H H
LS t t t t


H x x x y  (2.11) 

The term   1H H
t t t


x x x is called pseudo–inverse of matrix tx , and denoted by †

tx . 

2.5.2 Minimum Mean Square Error (MMSE) estimator 

The MMSE estimator estimates Ĥ by minimizing the Mean Square Error (MSE), with a 

linear combiner. It can be expressed as: 

ˆ
MMSE tH Ay  (2.12) 

where A is obtained so that the MSE = 
2ˆ

MMSEE    
H H  is minimized. 

2
arg min tE    A

A H Ay  

The estimation error can be express as: 

   H

t tE     H Ay H Ay  

   
H H H H H H

t t t tE      H H H Ay y A H y A Ay  

   
H

H Hy Hy yR R R R   A A A A  

where HR is the auto covariance matrix of H , yR  is the auto covariance matrix of y and HyR

is the cross covariance matrix between H and y . The optimal value of A can be found from 

0  A . 

2 2Hy yR R = 0

  


A

A
 

1
Hy yR RA  

From eq. (2.12), 

1
MMSE Hy y tR RH y  (2.13) 

 HH H
Hy t t H tR E E R        Hy H Hx n x  



Chapter – 2: Introduction to SDMA–OFDM System and Comparison of Classical MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[31] 
 

   HH
y t t t tR E E         yy Hx n Hx n  

      
2H

t H t n PR  x x I  

HyR and yR are assumed to be known at the estimator. Then eq. (2.13) will be: 

  12H H
MMSE H t t H t n P tR R 


 H x x x I y  (2.14) 

Figure 2.12 (a) and (b) shows the comparison of frequency response of actual CSI with LS 

and MMSE estimated channels respectively for a 2×2 SDMA–OFDM system. As shown in 

this figure, the MMSE estimates more accurate compared to the LS estimator, since it 

assumes a prior knowledge about the noise and the channel covariance. 

 

                                              (a)                                                                                     (b) 

Figure 2.12: Frequency response of the SUI channel link between User-1 and Receiving Antenna-1 using: 

(a) LS estimator (b) MMSE estimator 

2.6 Classical Multiuser Detection (MUD) schemes  

Multiuser detection is one of the receiver design technology that detects the desired user 

signal by eliminating noise and interference from neighborhood user’s signal. Generally, in 

SDMA system, the BS receiver often suffers from the multi user interference due to the 

influence of a strong user signal source on the reception of weak user signal [46]. Several 

MUD techniques are used to overcome this problem over the last fifteen years [46–72]. Using 

the multiuser detection process, the estimated signal vector x̂  can be expressed as: 
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ˆ Hx w y  (2.15) 

where w is the P × L dimension weight matrix. The broad classification of MUD schemes is 

presented in Figure 2.13.  

 

Figure 2.13: Classification of MUD schemes 

Descriptions of some of the classical MUDs are given as follows. Among various 

classical MUD schemes, the linear Zero Forcing (ZF) and Minimum Mean Square Error 

(MMSE) MUDs exhibit low complexity at the cost of limited performance. 

2.6.1 Zero Forcing  (ZF) MUD 

The ZF MUD scheme involves a linear transformation between the output signal and 

estimated channel. The transmitted signal is detected form the least square error
2y Hx as: 

2
( ) ( )H   y Hx y Hx y Hx  

                   2 2H H+  H y H Hx  

The optimal minima of x can be obtained from
2

0x   y Hx . Hence, 

2 2 = 0H H+ H y H Hx  

  1
ˆ H H
x H H H y  (2.16) 

In the above equation   1 †H H
H H H H , where †Ĥ is the pseudo inverse of H. 

2.6.2 Minimum Mean Square Error (MMSE) MUD 

The linear MMSE MUD scheme assumes a priori knowledge of noise variance and channel 

covariance. In this MMSE MUD, the weight matrix ‘w’ can be expressed by minimizing the 

mean square error, i.e.
2ˆMSE E    x x , where x̂  is the estimate of x. Hence, 

Multiuser Detection
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   2ˆ =
H

E E         
H Hx x w y x w y x   

The optimal value of Hw can be obtained from
2ˆ 0E      x x w . This yield: 

1H
yy yxR Rw   (2.17) 

where H
yyR E    yy is the auto covariance of y and H

yxR E    yx  is the cross covariance of 

y and x, those are given by [56]: 

 2H
yy n PR  H H I  (2.18) 

H
yxR  H  (2.19) 

Replacing yyR and yxR in eq. (2.17), 

2 1( 2 )H H H
n P  w H H I H    

2 1ˆ ( 2 )H H
n P  x H H I H y   (2.20) 

where  (.)H indicates Hermitian transpose and IP is P-dimensional identity matrix. In the above 

equation, if SNR is high then 2
n will become negligible. Hence, at higher SNR values the 

performance of ZF and MMSE MUDs are almost equal.  

In general, the received signal contains residual interference which is not Gaussian 

distributed due to multiuser interference. But these linear detectors assume that the received 

signal is corrupted by AWGN only. In addition to that, the linear detectors fail to mitigate the 

nonlinear degradation caused by the wireless radio environment. Hence, the requirement of a 

non-linear detector is essential to detect users appropriately. 

2.6.3 Maximum Likelihood (ML) MUD 

The ML detector uses the Maximum a Posteriori (MAP) detection when all the users are 

equally likely to transmit. The ML detector supporting L simultaneous transmitting users, 

invokes a total of 2mL metric evaluations in order to detect the possible transmitted symbol 

vector x̂ , where m denotes the number of bits per symbol. This detector calculates the 

Euclidean distance for all possible transmitted signal vectors and estimates the signals as 

expressed here [28, 46]: 
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 2ˆ arg min , 1,2,...,2mL
uu

u  x y Hx  (2.21) 

where u is the set of total metric evaluations associated with the specific modulation order 

and 1,..., ,
TL

u u ux x    x = 1,2,...,2mLu  is a possible transmitted symbol. This optimal detector 

uses an exhaustive search for finding the most likely transmitted user’s signal. 

2.6.4 Ordered Successive Interference Cancellation (OSIC) MUD 

This algorithm provides improved performance over both the linear ZF and MMSE MUDs at 

the cost of increased computational complexity [16, 47]. Rather than jointly decoding all 

users at a time, this nonlinear detection scheme first detects the user with strongest SNR, and 

cancels its effect from the overall received signal vector. Then, it proceeds to detect the next 

strongest user. Thus, the iterative detection of the OSIC algorithm is described as follows: 

Initialization: Initialize 1r r at iteration i=1 

Ordering: The optimal detection order by choosing the row with minimum Euclidian norm 

(strongest SNR).i.e. most reliable signal is determined. 

†
1 G H  (For Zero Forcing Receiver) 

2 1
1 ( )H H

n P  G H H I H  (For MMSE Receiver) 

2
argmin ( ) , 1,2,...,i i l

l
k l L G  

Nulling: The strongest transmit signal by nulling out all the weaker transmit signals is 

estimated. 

 
i i

k i k
w G  

Detection: The transmitted signal identified in the previous step is detected and decision is 

taken. 

i i

T
k k iy r w  

Slicing: The value of the strongest transmit signal by slicing to the nearest signal constellation 

value is detected. 

ˆ ( )
i ik ka Q y  
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Interference Cancellation: The effect of the detected signal from the received signal vector is 

cancelled to reduce the detection complexity for the remaining signals, i.e. removing 

interference from ˆ
ika is done.  

1 ˆ ( )
i ii i k kr r a   H  

Recursion: 
†

1 ii k G H  (For Zero Forcing Receiver) 

1
1 ( )H i H

i i i n L i 
  G H H I H  (For MMSE Receiver) 

1

2

1 1
{ ,....., }
arg min ( )

i

i i l
l k k

k  


 G  

1i i   

Instead of detecting all users in a sequential manner, the OSIC MUD detects users in 

an iterative manner. The basic idea of OSIC MUD scheme is based on the principle of 

removing the effects of the interfering users during each detection stage. Though this detector 

is a nonlinear one, it has a problem of error propagation, which occurs due to the erroneously 

detected signals of the previous stages. In order to mitigate the effects of error propagation, 

design of new nonlinear detector, which detects all users simultaneously rather than detecting 

iteratively, is suggested.  

2.6.5 QR Decomposition –M (QRD–M) MUD 

The complexity of ML detection is increases exponentially with the constellation size and the 

number of users. This drawback can be overcome by decomposing the channel matrix H in to 

two separate matrices such that H QR , where Q is a ( )P P  unitary matrix, i.e. H Q Q I

and R  is ( )P L  upper triangular matrix [51–53]. From eq. (2.4) 

= = y Hx n QRx n   (2.22) 

H H Q y Rx Q n   

  y Rx n   

1,1 1,2 1,1 1 1

2,2 2,2 2 2

,

0

0 0

L

L

P LP L P

R R Ry x n

R Ry x n

Ry x n

      
      
       
      
      

      

 
 

     
 

  



Chapter – 2: Introduction to SDMA–OFDM System and Comparison of Classical MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[36] 
 

where Rp,l is the (p, l)th component of R . The statistical properties of n  and n  are equal. 

Therefore, the ML detection problem given in eq. (2.21) can be reformulated as: 

 ˆ arg min R 
x

x y x   

     

2

,
1

arg min
L L

p p l l
p l p 

    
  
 

x
y R x   

In the above expression, . denotes the absolute value. Let us assume, 

2

,
1

ˆ( )
L L

p p l l
p l p

d
 

  x y R x  (2.23) 

Here, d is partial Euclidian distance. When the decision is made on symbols from Lx to kx ,

1 k L  , the above expression can be generalized as: 

2

,( )
L L

k p p l l
p k l p

d
 

  x y R x  (2.24) 

where 1[ , ,..., ]T
k k Lx = x x x  of length 1L k  . In order to approach the ML performance, a 

fairly large ‘M’ number of branches are needed to be taken for QRD–M detector. The 

maximum value of ‘M’ can be constellation size of modulation used. For example, in 16–

QAM modulated system, M can be taken up to 16. The tree structure using of the QRD–M 

algorithm for a 4×4 SDMA–OFDM system with 4–QAM is depicted in Figure 2.14. The 

QRD–M algorithm provides near ML detection performance with comparatively low 

complexity. It is basically a breadth first tree traversal algorithm. At each detection layer, 

QRD–M algorithm keeps M reliable nodes instead of deciding the symbol. Detection is done 

after processing all layers. The concept of QRD–M is basically to apply the tree search in 

order to detect the symbols in a sequential manner. Starting from the first layer i.e. i = L, the 

algorithm calculates Euclidean distance for all possible values of ˆiy  using eq. (2.24). The 

metrics of these points or nodes are then ordered, and only M nodes with the smallest metrics 

are retained and the rest of the list is deleted.  The same process is applied to the next layer 

nodes, and this process continues to the last layer i.e. i = 1. To achieve near ML detection 

performance for QRD–M algorithm, M should be large enough for the selected paths to 

include the correct one. For example in Figure 2.14, the number of stages in the signal tree is 
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4. The number of survived branches M is equal to 4, and the solid line and solid bold line 

denotes the searched branch and the survived branch, respectively. 

 

Figure 2.14: Tree structure of QRD-M (M = 4) algorithm for 4×4 SDMA–OFDM system with 4-QAM 

2.6.6 Minimum Bit Error Rate (MBER) MUD 

The MBER technique detects users iteratively by minimizing the probability of error PE, 

which is a function of wl [63]. Here, wl is the weight vector associated with user ‘l’. Hence, 

the user ˆlx can be determined by: 

ˆ H
l lx w y   (2.25) 

The probability of error for BPSK modulation, providing lth users transmitting symbol

   1, 1lb , is characterized at the receiver end of the SDMA–OFDM system as: 

     ( ) Pr sgn( ). 0l l lP bw x   

 Pr 0lz  

where lz   is the decision boundary for BPSK,   represents real component and lx   is the 

estimated symbol of the lth user form the noiseless received symbol y , that is, 

 H
lx w y   (2.26) 

The Probability Density Function (PDF) of the decision variable lz for all the possible 

transmitted symbol vectors, which are Gaussian distributed and equiprobable, is   

   
2

=1

sgn1
( ; ) = exp

22π

b

l

k kN
l l l

z l l HH
k n l lb n l l

z b
p z

σN σ

  
 
 
 


x

w
w ww w

  (2.27) 

4i L 

3i 

2i 

1i 
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Here Nb is the number of equiprobable trail vectors. i.e. Nb=2L. The erroneous decision occurs 

under the area of the PDF in the interval ( ,0) for a real valued transmitted symbol, which 

is quantified as: 

0
( ) ( ; )

lE l z l l lP = p z dz
w w   

Assuming, 
   sgn k k

l l l

k H
n l l

z b
t

σ

 


x

w w
 

The probability of error in eq. (2.27) becomes 

 2
0

=1

1
( ) = exp

22π

bN
k

E l k
kb

t
P dt

N 

 
  
 

 w   (2.28) 

 
=1

1
= ( )

bN

k l
kb

Q c
N  w  

where ( )k lc w  is given by  

       sgn sgn
( )

k k k H
l l l l k

k l H H
n l l n l l

b b
c

σ σ

 
 

x w y
w

w w w w
  

Finally, The MBER solution from the probability of error is defined as: 

( ) argmin ( )
l

l MBER E lP
w

w w  (2.29) 

In general, an iterative strategy based on the steepest descent gradient method may be used 

for finding the MBER solution. According to this method, the linear SDMA MUD’s weight 

vector wl is iteratively updated until the specific SDMA MUD weight vector that exhibits the 

lowest BER is arrived. The MMSE weights may be taken as initial weights. In each step, the 

weight vector is updated according to a specific step size μ in the direction opposite to the 

gradient of the BER cost function. The BER is independent of the magnitude of the MUD’s 

weight vector, and hence the knowledge of the orientation of the detector’s weight vector is 

sufficient for defining the decision boundary of the linear MBER detector [63]. The gradient 

of the cost function is derived as: 
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1

1
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( ) 22

b
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l kl l l l

w E l l kH H
kl l n l lb n
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(2.30)

 

The CG algorithm [61] is used for updating the weights, which is summarized as:  

Initialization: Choose step size η > 0 and termination scalar β > 0. Set iteration i =1.  

 
2 1( ) ( 2 )H

l n P li   w HH I H   (MMSE Weight) 

  ( ) ( ( ))E li P i d w  

Loop: If, ( ( )) ( ( ( ))) ( ( ))T
E l E l E lP i P i P i     w w w : go to stop else,  
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

 
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

w
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( 1) ( ) ( ( 1))l E li i P i   d d w  

i = i+1, go to Loop. 

2.6.7  Minimum Symbol Error Rate (MSER) MUD 

The MBER MUD mentioned in previous section is basically designed for BPSK modulation 

scheme, whereas the MSER MUD is developed for detection of square type QAM signals 

[71, 72].  Let, the symbols of M–QAM are assumed as: 

 , , + ,1 ,m n m n m nS s s z jz m n M   
 

 (2.31) 

where  , 2 1m n ms z m M      and  , 2 1m n ns z n M     . Let, x is a (L × Nsb) - 

dimensional trail vector symbols, where ( 1)2m L
sbN  , user l of x is transmitting +m nz jz

always and rest of the users are transmitting all possible symbols from set ‘S’. The PDF of the 

real-part ,l R
x , conditioned both on lw  is a Gaussian mixture and ,l R mzx is: 

   , ,
, ,, ,

1

1
, ,

l m n l m n

M

l R l l R ll R z l R z
n

f f
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

  
x x
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Here, lx  is the estimated symbol of the lth user form the noiseless received symbol y . Let, if

1 1+z jz  is transmitted from user l, then the probability of error for the real part of ,l Rx is 

characterized by , 1 1l R z x , i.e., 

   , 1, 1 1
, , ,,1

,


 
   

l Rl R
E R l l R l l Rl R zz z

P f d
xx

w x x w x   (2.32) 

                           
,

1

1
erfc ( )

2

sbN

R i l
isb

C
N 

    w   

where erfc(.) denotes the complementary error function, and , ( )R i lC w  is defined as:  

, 1
1 , ,

,

( 1)
( ) l Rl R i z

R i l H
n l l

z
C




 


x
x

w
w w

 (2.33) 

Due to the symmetry of the symbol set given in eq. (2.31), the probability of error is identical 

for , 1l R zx  and ,l R M
zx , and the probability of error for , , 2,3,..., 1l R mz m M  x is 

twice that of , 1l R zx . Since all symbols of M–QAM are equally likely transmitted, the total 

error probability of the real-part of ,l Rx is given as: 

, ,
1

1
( ) [ ( )]




 

bN

E R l R i l
isb

M
P erfc C

M N
w w    

In the square type M–QAM modulation, the real and imaginary parts are symmetric each 

other, hence the total error probability is given by: 

2
, ,( ) 2 ( ) ( ) E l E R l E R lP P Pw w w    (2.34) 

Subsequently, the MSER solution ,ˆ l MSERw  is defined as the weight vector that minimizes the 

SER using ( )E lP w , which is given by: 

,ˆ arg min ( )l MSER E l
lw

Pw w  (2.35) 

Similarly, the weight vector for all rest of the users can be evaluated iteratively. After finding 

weights of all users the transmitted signals can be determined using eq. (2.15). 
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2.7 Simulation study and performance analysis 

This section presents simulation study and results by comparing the performances of classical 

linear and nonlinear MUD techniques in the SDMA–OFDM system. All the classical MUD 

schemes have been investigated when all the users are transmitting 4–QAM signals. Further, 

as the MBER MUD is basically designed for BPSK modulation, performance of this detector 

is investigated when all the users are transmitting BPSK signals. The parameters of the 

standard wireless channels used in simulation analysis are presented in Appendix A. The 

performances of these detectors are evaluated with an assumption that the receiver has a 

perfect knowledge about the statistics of the wireless channel. The rest of the simulation 

parameters are provided in Table 2.1.  

Table 2.1: Basic simulation parameters of the SDMA–OFDM with classical MUDs 

Parameters Value

Number of Sub-carrier  128 

Length of Guard Band 32 

Number of OFDM Frames 1000 

Number of Receiving Antennas (P) 4 

Number of Users (L) 4

Conjugate Gradient algorithm 

Learning Rate (η)   0.08 

Error Precision (β) 0.0001

Initial condition MMSE solution 

FEC Code 

FEC Scheme Convolutional code 

Code rate 1/2 

polynomial (133, 171)

Figure 2.15 shows the average BER performance of all users using various MUD 

techniques under different channel conditions. It is observed that, the responses of all 

detectors are varying according to the different channel conditions and their parameters. 

Here, the maximum delay spread ( max ) normalized with sampling frequency with respect to 

MIMO Rayleigh fading, SUI and SWATM channels are 1, 4 and 11.12 respectively. As the 

resulting ISI is proportional to the max , the channel with high max is subjected to more 

interference. Hence, the detection in SWATM channel environment as shown in Figure 2.14 

(c) while compared to the other two channels is poor.  
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(a) 

(b) 

(c) 

Figure 2.15: Average BER performance of all users using various classical MUDs under different channel 

conditions (a) MIMO Rayleigh fading (b) SUI (c) SWATM 
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It is inferred from the Figure 2.15 that being linear detectors, the ZF and MMSE 

MUDs cannot mitigate multiuser interference adequately, hence these result in poor BER 

performance. It is also observed that the performance of ZF and MMSE detectors are almost 

same at higher SNR values because the noise variance is negligible at higher SNR values. On 

the other hand, the performance of the ML MUD is optimal as it uses an exhaustive search 

for finding the most likely transmitted signals. The nonlinear successive ZF and MMSE 

detectors may outperform the linear ZF and MMSE detectors, but the performance is still sub 

optimal when compared with ML detector. By incorporating the tree search algorithm based 

non linear detector such as QRD–M scheme, a significant improvement in performance is 

noticed and also it is achieving a near optimal performance. The number of survival branches 

considered in this tree search is four. 

The improvement in average BER of all four users while varying number of survived 

branches of QRD–M detector is shown in Figure 2.16, where the number of survival branches 

(M) of the QRD–M algorithm is varied from 2 to 4. As the number of reliable nodes 

increases, the possibility of reaching the optimal solution also increases. Specifically, to 

maintain BER level of 10−4, the QRD–M with M = 4 has around 4.5 dB and 8 dB Eb/No gain 

over the QRD–M with M = 3 and 2 respectively, and the QRD–M with M = 4 has a 

performance close to the optimal ML detector.  

Figure 2.16: Average BER performance of all users using QRD–M detector communicating over the 

SWATM channel for different number of branches (M) 

Though the ML detector is optimal one, the complexity is very intensive as shown in 

Table 2.2. This table compares the complexity of the optimal ML with near optimal QRD–M 
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detector on the basis of multiplications, addition and compares operations. This analysis is 

done considering 1000 OFDM symbols each having 128 subcarriers. From Figure 2.16 and 

Table 2.2, it is found that the complexity of the QRD–M detector (M = 4) is much less and 

the performance is closed compared to ML detector. Thus, the value of M is to be chosen 

maintaining a tradeoff between complexity and BER performance.  

Table 2.2: Complexity comparison between ML and QRD–M detectors 

ML QRD-M=4      QRD-M=3      QRD-M=2 

Multiplecations 4096 164 128 92 

Aditions / Subtractions 1004 196 148 100 

Compare operations 256 52 40 28 

In Figure 2.17, the BER performance of all different users using CG MBER MUD is 

compared with classical MMSE and ML detectors in the SDMA–OFDM system equipped 

with four users and four receiving antennas. Parameters of the CG algorithm are given in 

Table 2.1 [64]. In this figure, it is found that the BER performance of CG MBER MUD is 

consistently outperforming the MMSE detector as the CG MBER directly minimizes the 

probability of error. By contrast, as the MMSE MUD minimizes MSE rather than probability 

of error, it may not give assure minimization of the probability of error. It is observed that, at 

a 10-4 BER level, the CG MBER detector has around 4.5 dB Eb/No gain over MMSE one. 

Figure 2.17: Comparison of the average BER performance of all users using MBER MUD with respect to 

MMSE and ML detectors under MIMO fading channel model 
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   (a) 

   (b) 

Figure 2.18: Average BER performance of all users using the MMSE and CG MBER MUDs in the 

SDMA–OFDM system equipped with L = 4 while varying the numbers of users under the SUI channel 

condition (a) MMSE MUD (b) CG MBER MUD 

As it is required to observe the detector’s performance for increasing load condition, 

the average BER performances of all users using MMSE and CG MBER MUDs are shown in 

Figure 2.18 (a) and Figure 2.18 (b) respectively. Here, when the SDMA–OFDM system is 

supporting a different number of users keeping number of receiving antennas fixed at four, 

the BER performance degrades while the number of users increases due to the additional 

imposition of the multiuser interference. In the absence of multiuser interference, when only 
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one user is communicating with four receiving antennas, the performances of MMSE and CG 

MBER are almost similar and close to the performance of single user–single receiving 

antenna system communicating over the AWGN channel. However, under multiuser 

interference environment, the MMSE MUD as shown in Figure 2.18 (a) can only support a 

maximum number of users that is equal to the number of receiving antennas, which is four in 

this case. Once the number of users exceeds the number of receiver antennas, the MMSE 

MUD becomes incapable of differentiating the users, which results in the high residual BER 

as seen in this figure. By contrast, the MBER MUD performs significantly better since it 

directly minimizes the probability of error. Hence, it is capable of supporting more users than 

the number of BS receiver antennas as seen in Figure 2.18 (b). 

2.8 Summary:  

In this chapter, the basic background of this research work including MIMO system, OFDM 

scheme and SDMA–OFDM system model is presented. Detection schemes may be invoked 

for the sake of separating different users at the BS in an uplink SDMA system. Different 

classical multiuser detection techniques have been introduced. The performance evaluation of 

all MUD techniques based on simulation study has been carried out over three typical 

wireless channel environments in order to shown their adaptability and robustness. The 

advantages and drawbacks of the linear detection techniques like ZF and MMSE along with 

some nonlinear detection techniques like ML, OSIC, and QRD–M MUD schemes have been 

explained. It is observed that, the performance the ML detector is optimal at the cost of 

additional complexity, especially in the context of a high number of users and for higher 

order modulation schemes. Also, the ZF and MMSE detectors exhibit low complexity at a 

cost of performance. The nonlinear successive detection technique outperforms the liner 

techniques, but still its performance is sub-optimal due to error propagation problem. Further, 

the tree search based QRD–M is achieving near optimal performance with low complexity 

compared with the optimal ML one. However, all these MUD schemes fail to differentiate 

users in the critical overload scenario, when the number of users exceed number of BS 

receiving antenna. Keeping BER minimization rather than MSE as the prime objective, 

receiver design incorporating MBER MUD has been preferred as this can sustain in overload 

scenario. The gradient descent algorithm such as CG can be used for updating receiver 

weights in the MBER MUD scheme. However, as the CG algorithm requires derivative 

information and the initial solutions of weights. So a new direction of research for optimizing 

the receiver weights has been proposed in the next chapter.  
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As discussed in Chapter–2, the Minimum Error Rate (MER) MUDs such as Minimum Bit 

Error Rate (MBER) and Minimum Symbol Error Rate (MSER) directly minimize the 

probability of error rather than MSE. The MER MUDs uses the probability of error function 

as cost function, which is defined by the receiver weight vector. The weight vector can be 

adaptively updated using the gradient descent algorithms as discussed in the previous chapter 

such that the gradient of the probability of error is minimized. The traditional gradient 

descent methods work on a strategy that generates variations of the design parameters using 

derivative information. The new parameter is accepted only if it reduces the cost value [62]. 

This method is sometimes named as the greedy search. The greedy search converges fast but 

can be trapped by local minima. Besides that, these techniques also require proper selection 

of initial condition of the weight vectors along with differentiable and continuous cost 

functions. Another parameter that affects the performance of these techniques is the step size, 

which is used for updating the receiver weights in the direction opposite to the BER gradient. 

The choice of this step size must be appropriate. If the step-size is too high it may not allow 

convergence to the minimum BER level, else if the step size is too low it will require large 

number of iterations for attaining minimum BER level. These problems can be eliminated by 

running several vectors simultaneously. This is the principle idea for the family of 

metaheuristic Optimization Techniques (OTs). A metaheuristic is as an iterative generation 

process which guides a subordinate heuristic by combining intelligently different concepts for 

exploring the search space. The OTs does not require derivatives of the cost function and thus 

can deal with discontinuous cost functions. These techniques update weight vectors from 

random positions and converge the cost function directly to global minima. Hence, the OTs 

has been recognized as an effective alternative to gradient search algorithms [63–72]. This 

chapter suggests the development of new OTs aided MER MUD schemes for SDMA–OFDM 

system using popular intelligent search algorithms like Adaptive Genetic Algorithm (AGA), 

Adaptive Differential Evolution Algorithm (ADEA) and Invasive Weed Optimization (IWO). 

In order to establish the context and motivation for this research work undertaken 

clearly, the details of OTs for MBER/MSER MUD schemes are discussed in the following 

sections. Hence, Section 3.1, Section 3.2 and Section 3.3 elaborate the proposed adaptive GA, 

adaptive DEA and IWO assisted MBER/MSER MUDs respectively. Section 3.4 presents the 

details of the simulation study and performance comparison of proposed OTs aided MER 

detectors with conventional MMSE and ML ones. Finally, this chapter concludes with 

Section 3.5. 
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3.1 Adaptive Genetic Algorithm (AGA) aided MER MUD 

GA is an optimization algorithm inspired by the well-known biological processes of genetics 

and evolution.  The basic concept of GAs is deliberated according to the principles first laid 

down by Charles Darwin of survival of the fittest. The idea of evolutionary computing was 

introduced by Rechenberg in 1960 in his research work “Evolutionary strategies”. 

Figure 3.1: Flowchart of the working principle for an adaptive genetic algorithm  
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Later, Prof. J. Holland introduced the concept of GA in the mid-sixties and published an 

achievement “Adaptation in Natural and Artificial System” in 1975 [113]. GAs have been 

widely studied, experimented and applied in many engineering problems such as the area of 

networking and communication [114–119]. Further, in order to maintain diversity in the 

population and sustaining the convergence of the GA, some Adaptive GAs (AGAs) are 

proposed [120–124]. AGA uses three basic operators similar to natural genetic operators such 

as selection, crossover and mutation. Figure 3.1 shows the flow chart of the AGA employed 

for the MBER/MSER MUD’s weights optimization. The procedure adopted here for the 

MBER/MSER MUD’s weights optimization is summarized below. 

i. Initialization: The GA algorithm starts with initializing a population containing Ng

number of individual chromosomes randomly, where each individual consists of P number of 

variables or genes. The value of P is selected according to number of receiving antennas 

equipped in the SDMA–OFDM system. The variable in each population is represented by the 

fixed length two dimensional binary arrays, which store the real and imaginary part of the 

receiver’s weight values. Each individual population represents a legitimate solution to the 

given optimization problem. The solution of MMSE MUD can be included in the initial 

population for the sake of expediting the search as well as for reducing the complexity of the 

search. The total population of Ng chromosome, each consisting of P number of variables, 

can be represented as:   

1 11 12 1

2 21 22 2

1 2g g g g

P

P

N N N N P

Cr g g g

Cr g g g
Population

Cr g g g

   
   
    
   
   
      




    


(3.1) 

The pth problem variable or gene is coded in a binary substring of length Sl. The string 

length of each chromosome is P × Sl. The lower bound and upper bound of the variable

, 1, 2,..., , 1, 2,...,np gg n N p P 
 

is represented as  0,0,...,0ming  and  1,1,...,1maxg 

respectively each of length Sl. Accordingly, the string npg  decodes to a solution ,n p
lw , which 

denotes pth element of the receiver weight vector for the lth user, as follows: 

, decoded value of string
2 1l

n p max min
l min npS

g g
g g


  


w (3.2) 

Thus, the decoded nth individual is expressed as , , ,1 , ,2 , ,[ , ,..., ] , 1,2,..., g n g n g n g n P T
l l l l gn Nw w w w . 
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ii. Fitness Evaluation: Each chromosome is fed to an objective function as the input. The

cost or fitness associated with each chromosome is calculated by the objective function one at 

a time. The cost determines the fitness of an individual in the population. In a cost function 

minimization problem such as MBER or MSER, a low cost implies a high fitness. The fitness 

of the nth individual in the gth generation has been evaluated respectively for the MBER and 

MSER MUDs as follows: 

 
    

 

,

, ,

, ,=1

sgn1
=

b

Hk g n
N l l k

g n g n
MBER l Hg n g nkb

n l l

b
f Q

N σ

  
 
  


w y

w
w w

 (3.3) 
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P erfc

M N 





      
  

 x
x

w
w w

    (3.4) 

Here, all the notations are according to eq. (2.29) and (2.34) as discussed in Chapter 2. 

iii. Natural Selection: In this step, only the healthiest members of the population are allowed

to survive and proceed to the next generation while discarding the rest. In this approach, the 

cost values are sorted in order to determine the relative fitness of the chromosomes. 

iv. Mate Selection: This operation usually selects the healthy strings in a population and

forms a mating pool. The commonly used reproduction operator is the fitness proportionate 

selection operator, where a chromosome in the current population is selected with probability 

proportional to the chromosome’s cost value. Thus, the nth chromosome in the current 

population is selected with a probability proportional to pn. In a simple GA, the population 

size is usually kept fixed, hence the cumulative probability for all chromosome in the 

population must be one. Therefore, the probability for selecting nth chromosome in the 

MBER/MSER problem is: 

,
, /

/ ,
/1

1




 g

g n
g n MBER MSER
MBER MSER N g n

MBER MSERn

f
p

f
(3.5) 

The Roulette Wheel selection criterion is the most commonly used algorithm for mate 

selection [64]. The Roulette Wheel assigns a probability for each chromosome on the basis of 
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its cost. The chromosomes with low costs have a higher chance of being selected than the 

higher cost ones. The selected chromosomes are considered as parents for reproduction.  

v. Adaptive Cross-over and Mutation: Crossover is applied to the mating pool with an

expectation that the possibility of good solutions can generated by the better individual. The 

main aim of the crossover operation is to exploit the search space. This operation is 

performed by swapping some parts of two parent chromosomes with a fixed crossover 

probability Pc and produce offsprings. In a single-point crossover operator, both parental 

chromosomes are split at a randomly determined crossover point and a new offspring is 

created by appending the second part of the second parent to the first part of the first parent. 

The role of mutation in GAs has been that of restoring lost or unexplored genetic material 

into the population to prevent the premature convergence. A binary mutation changes a one 

to a zero or a zero to a one with a small fixed mutation probability Pm. For example,

00000 00010 . In this example, fourth gene has changed its value, thereby creating a new 

solution. The need for mutation is to maintain diversity in population.  

The classical GA uses fixed values of Pc and Pm. If these values are low, then the GA 

search strategy requires large number of generations otherwise if these values are high it may 

cause the disruption of the near optimal solutions when a population is at the verge of 

approaching a globally optimal solution. In contrast, the adaptive GA chooses lower values of 

Pc and Pm for low fitness solutions and higher values of Pc and Pm for high fitness solutions 

automatically [120]. The high fitness solutions help in faster convergence of the GA while 

the low fitness solutions prevent the GA from getting stuck at a local optimum. As the MER 

MUDs are the cost function minimization problems, the convergence of the population to the 

optimum solution can be obtained through the minimization of , ,ming avg gf f , where  ,g avgf  

and ,mingf denote the best and average fitness values of the current generation respectively. 

Thus, the adaptive crossover and mutation rates are described below: 

   , ,min , ,min , ,
1

2

if ,

otherwise,

    


g best g g avg g g best g avg

c

k f f f f f f
P

k
(3.6) 

   , ,min , ,min , ,
3

4

if ,

otherwise,

    


g n g g avg g g n g avg

m

k f f f f f f
P

k
(3.7)  

Here, ,g bestf  is the lower fitness value of the parent ones to be crossed in the gth generation. 

The constants k1, k2, k3 and k4 are chosen as 0.5, 0.5, 0.05 and 0.05 respectively [119].  



Chapter – 3: Proposed Metaheuristic Optimization Techniques Aided Minimum Error Rate MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[53] 

vi. Elitism: After creating new population by crossover and mutation operations, we have a

chance to lose the best chromosome from the present population.  Elitism is an operator that 

copies the best chromosome (or a few best chromosomes) in the present population to the 

new one.  

This evolution process will be repeated from selection phase until the termination 

criterion is met. The termination criterion may be either attainment maximum number of 

generations (Gg) or obtaining minimum acceptable fitness value. 

vii. Optimal Solution: After meeting termination criterion, the best individual having

minimum fitness value is taken as the optimized weight vector of user l. From this optimal 

solution, the user symbol is estimated as:  

 , ,
/ˆ arg min ( ) , 1,2,....,g gG n G n

l MBER MSER l g
n

f n N w w (3.8) 

ˆ ˆ H
l lx w y (3.9) 

Similarly, the entire optimization process is repeated for remaining (L – 1) users. 

3.2 Adaptive Differential Evolution Algorithm (ADEA) aided MER MUD 

The Differential Evaluation Algorithm (DEA) algorithm is another popular population based 

algorithm like GA that uses the similar operators such as crossover, mutation, selection, and 

reproduction to locate global optima. The DEA has a computational flexibility compared to 

GA as it defines individual variables in a decimal format rather than in a binary form. The 

main difference in finding optimal solutions is that GAs depends on crossover operation 

while DEA depends on mutation operation. This algorithm mainly has three advantages such 

as finding the true global optima regardless of the initial parameter values, fast convergence 

and using a few control parameters. The DEA is first proposed by Storn [125]. It has been 

applied to several Antenna design problems [126–129]. Further, the DEA is modified to 

Adaptive DEA (ADEA) by incorporating a self-adaptive mechanism to adjust the control 

parameters during the evolutionary process [130–134]. Figure 3.2 shows the flow chart of the 

ADEA employed for the MBER/MSER MUD’s weight optimization. The procedure adopted 

here for the MBER/MSER MUD’s weights optimization is summarized below. 

Initialization: DEA begins its search from a randomly initialized population containing Nd 

individuals each consisting P number of variables. The nth individual of the population in the 

gth generation is expressed as: 
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, , ,1 , ,2 , ,[ , , ..., ] , 1, 2,..., , 1, 2,...,  g n g n g n g n P T
l l l l d dn N g Gw w w w   (3.10) 

where, the index l refers to user and P is the number of receiving antennas.  The first 

individual has been taken from the solution of MMSE MUD. i.e.  1,1 ˆ MMSE
l lw w . 

Figure 3.2: Flowchart of working principle for an adaptive differential evolution algorithm 
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i. Adaptive Mutation and crossover: The DEA uses mutation operation as a search

mechanism to increase the search space with the aid of a fixed mutation factor F. This 

algorithm depends on the population in perturbing the candidate solutions by adding an 

appropriately scaled and randomly selected difference vector to the actual population vector. 

This can be expressed by combining three different randomly chosen vectors to produce a 

mutant vector using the adaptive mutation factor, which is according to:  

 31 2 ,, ,,   g rg r g rg n
l l l l+Fv w w w (3.11) 

where the random indexes are integers, mutually different and  1 2 3, , 1,2,..., dr r r N . The 

randomly chosen integers r1, r2 and r3 are also taken to be different from the running index n. 

The mutation factor (0,1]F   is a positive real-valued number and its controls the 

amplification of the differential variation  32 ,,  g rg r
l lw w .

 In order to increase the diversity of the perturbed parameter vectors, crossover is 

introduced. The crossover operator generates a trial vector by restoring certain parameters of 

the target vector with the resultant parameters of a randomly selected donor vector. This 

algorithm also uses a non-uniform crossover that can take child vector variables from one 

parent more often than it does from others. The crossover operator efficiently shuffles 

information with a fixed crossover probability (0,1]pC   about successful combinations to 

enable the search for a better solution space. The pth variable of the nth individual in the 

population at the gth generation is given by: 

, ,
, ,

, ,

rand (0,1) or ,

otherwise.

  
 


g n p
g n p l p p rand
l g n p

l

C p pv
u

w
(3.12) 

where rand [0,1]p  is the pth evaluation of an uniform random number and randp is a randomly 

chosen index 1,2,..., P  which ensures that , ,g n p
lu  gets at least one parameter from , ,g n p

lv .  

The adaptive DEAs uses a self-adaptive control mechanism, which changes the 

mutation factor F and crossover probability Cp during each evolution or generation in order to 

achieve best performance with high convergence speed [130]. The self-adaptive control 

parameters 1gF and 1g
pC are calculated at generation g + 1 as follows: 
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1 1 2 2 11 if ,

otherwise,

  
 


g
g

F rand F rand
F

F
(3.13) 

3 4 21
if ,

otherwise,





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

g
gp
p

rand rand
C

C
(3.14) 

where  , 1,2,3,4jrand j , are uniform pseudo-random values  0,1 , 1 and 2 are constants

that represent the probabilities to adjust F and Cp respectively. 1 , 2 , F1 and F2 are assigned 

with fixed values of 0.1,0.1,0.1 and 0.9, respectively according to [130]. The new F takes 

value from [0.1, 1.0] and the new Cp from [0, 1] randomly. The control parameter values 

1gF  and 1g
pC are obtained before the mutation operation is performed as they influence the 

mutation, crossover, and selection operations of the new population vector. 

ii. Fitness Evaluation: Each individual of the both population sets ,g n
lw and ,g n

lu  is fed to an 

objective function as input. The fitness value determines the fitness of those individuals in the 

population. The fitness of the nth individual in the gth generation of ,g n
lw and ,g n

lu  for the 

MBER MUD has been evaluated as: 
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Similarly, the fitness of the nth individual in the gth generation of ,g n
lw and ,g n

lu  for the MSER 

MUD has been evaluated as: 

 
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Here, all the notations are according to eq. (2.29) and (2.34) as discussed in Chapter 2. 
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iii. Selection: In order to keep the fixed population throughout all generations, the selection

operator compares the cost function performance of the target vector ,g n
lw with the trial vector 

,g n
lu and better one is carried to the next generation. If the target vector is still better, it is 

retained in the population. More specifically, the selection procedure may be described as: 

, , ,
1, / /

,

,

otherwise.
  

 


g n g n g n
g n l MBER MSER MBER MSER
l g n

l

fu fwu
w

w
(3.19) 

The entire process will be repeated from mutation phase until the termination criterion is met. 

The termination criterion may be either attainment maximum number of generations (Gd) or 

obtaining minimum acceptable fitness value. 

iv. Optimal Solution: After meeting termination criterion, the best individual having

minimum fitness value is taken as the optimized weight vector of user l. From this optimal 

solution, the user symbol is estimated as:  

 ,ˆ arg min ( ) , 1,2,...., dG n
l E l d

n
P n Nw w (3.20) 

ˆ ˆ H
l lx w y (3.21) 

 Similarly, the entire optimization process is repeated for finding the optimal weight 

vectors of the remaining (L – 1) users. 

3.3 Invasive Weed Optimization (IWO) aided MER MUD 1 

In recent times, the research of developing optimization algorithms is carrying out by 

inspiring from ecological phenomena. The IWO algorithm is also such an algorithm proposed 

by Mehrabian et al. [135]. The IWO algorithm has become good alternative to the other 

optimization algorithms due it its fast convergence and its affordable complexity in a number 

of different application domains. This algorithm is already applied efficiently in several 

antenna design problems [136–139]. This algorithm is basically motivated from a common 

phenomenon in agriculture that the colonization of invasive weeds. The term weed refers to a 

robust wild plant that grows in gardens or fields of crops and prevents the growth of actual 

plant. The basic steps involved to model and simulate IWO algorithm are initialization, 

reproduction, spatial distribution and competitive exclusion. 

1This part of research is included in the paper published by International Journal of Communication Systems, Wiley, entitled as “Minimum 

Symbol Error Rate Multiuser Detection Using an Effective Invasive Weed Optimization for MIMO/SDMA–OFDM System” 
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The IWO allows all of the individuals to participate in the reproduction process. 

Sometimes, it is also possible that some of the individuals with the lower fitness carry more 

useful information than the fitter ones. This algorithm, gives a chance to the less fit plants to 

reproduce and if the seeds produced by them have good finesses in the colony, they can 

survive. Fitter individuals produce more seeds than less fit individuals, which tends to 

improve the convergence of the algorithm. Hence, the IWO algorithm can be efficiently used 

for determining optimal solution in MER MUD scheme [140]. Figure 3.3 shows the flow 

chart of the IWO employed for the MBER/MSER MUD’s weights optimization. The process 

of this optimization technique for determining weight vector of User–l is summarized below.  

Figure 3.3: Flowchart of working principle for an invasive weed optimization algorithm 
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i. Initialization: The initial population containing NI individuals each consisting P number

of variables is generated randomly. The nth individual in the population of ith iteration is 

represented as , , ,1 , ,2 , ,ˆ ˆ ˆ ˆ[ , , ..., ]i n i n i n i n P T
l l l lw w w w , where P is the number of receiving antennas in 

the SDMA–OFDM system. Each individual in the population is a complex decimal array 

rather than a binary array as used in GA. In the initial population, the solution of the MMSE 

MUD is included for the sake of prompt search. i.e.  1,1 ˆ MMSE
l lw w . 

ii. Fitness Evaluation: Each individual will be assigned with its corresponding fitness value,

which is obtained from the fitness function, and become a plant. The fitness of the nth 

individual in the ith iteration has been evaluated respectively for the MBER and MSER 

MUDs as: 

    
 

,

,

, ,=1

sgn1
=

  
 
  


b

Hk i n
N l l k

i n
MBER Hi n i nkb

n l l

b
f Q

N σ

w y

w w
 (3.22) 

 
, 1

1 , ,, , 2 , ,
, , ,

, ,1

( 1)1
2 ( ) ( ), where ( )







        
  


sb

l R

N
l R i zi n i n i n i n

MSER E R l E R l E R l Hi n i nisb
n l l

zM
f P P P erfc

M N

x
x

w w w
w w

 (3.23) 

Here, all the notations are according to eq. (2.29) and (2.34) as discussed in Chapter 2. 

Reproduction and spatial dispersal: Each of these plants produces seeds and these numbers 

of seeds are proportional to its fitness value. All plants in the colony are arranged in an 

ascending order using their fitness values and each is assigned with an individual rank. The 

plant with minimum fitness value is assigned with 1st rank and it will produce maximum 

number of seeds (Smax). Similarly, the nth plant in the colony will produce Sn number of seeds, 

which lies in between Smax and Smin as shown in Figure 3.4.   

Fig. 3.4: Seed reproduction in a weed colony 
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 Following the fitness evaluation process, in the reproduction stage, the nth plant will 

generate Sn number of seeds with zero mean and iter  standard deviation. These new seeds 

will be distributed over the entire search space. The Standard Deviation (SD) will start form 

i  at initial iteration and it will become f  while iteration reaches to maximum number of 

iterations ‘Imax’. Thus, the standard deviation at each iteration can be expressed as [135]:  

 
r

max
iter i f f

max

I iter

I
   

 
   
 

  (3.24) 

where r is the nonlinear modulation index, which decides the convergence speed.   

iii. Competitive exclusion: The fitness of each seed in the new colony ‘ ˆ , 1, 2,..., ,l
s ss Nw

where Ns > NI is again evaluated and among them the best NI number of seeds will be 

retained in the colony by discarding remaining (Ns – NI) seeds.  

 This process will be repeated from fitness evaluation phase until the termination 

criterion is met. The termination criterion may be either attainment maximum number of 

iterations (Imax) or obtaining minimum acceptable fitness value.  

iv. Optimal Solution: After meeting termination criterion, the best individual having

minimum fitness value is taken as the optimized weight vector of user l. From this optimal 

solution, the user symbol is estimated as:  

 max ,ˆ arg min ( ) , 1,2,...., I n
l E l I

n
P n Nw w (3.25) 

ˆ ˆ H
l lx w y (3.26) 

Similarly, the entire optimization process is repeated for finding the optimal weight vectors of 

the remaining (L – 1) users. 

3.4 Simulation study and performance analysis 

An extensive simulation study has been undertaken for comparing the performances of the 

proposed AGA, ADEA and IWO assisted MER detection techniques with the classical MUD 

techniques. The signal mapper used for the MBER MUD is BPSK and the signal mapper 

used for the MSER MUD is 4–QAM/16–QAM. In the SDMA–OFDM systems uplink 

module, each user’s data is protected with their individual half rate Convolutional encoders 
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consisting polynomials (133, 171) in octal notation. The simulations for MBER MUDs and 

MSER MUDs are averaged over 1000 and 100 OFDM frames respectively, where each 

OFDM frame consisting 128 subcarriers along with a cyclic prefix of length 32. The 

simulation model of SDMA–OFDM system for MUD is shown in Figure 3.5. The 

performance evaluation is in general carried out for the SDMA–OFDM system with four 

users and four receiving antennas and the BER is averaged over all users. The performance of 

the MER detection techniques are also discussed for three system conditions, namely under 

load, full load and over load assuming that the channel transfer functions are perfectly known 

at the receiver’s end. The number of receiving antennas (P) is fixed at four and the number of 

users (L) considered are three, four and six according to under load, full load and over load 

scenarios respectively. The standard MIMO wireless used in these investigations are as 

described in Appendix A. The efficacy of the proposed MUD techniques is evaluated through 

the BER performance, convergence speed and complexity analysis. The BER for each user is 

calculated by varying the Eb/No value, the convergence speed is evaluated through the rate of 

minimizing the cost value over number of iterations and the complexity of each detector is 

estimated through number of Cost Function (CF) evaluations and computational operations. 

The details of the simulation study have been separately addressed for MBER and MSER 

MUD techniques in the subsequent subsection.   

Figure 3.5: Simulation model of the SDMA–OFDM system for multiuser detection using proposed OTs 

aided MER schemes 
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3.4.1 Results and discussion for OTs aided MBER MUD 

3.4.1.1 Selection of control parameters 

It is observed that the various control parameters of the OTs affect significantly the MUD 

performance and hence these are chosen according to the performance of the SDMA–OFDM 

system model, rather than selecting them arbitrarily. The following subsections describe the 

modality for selection of those.  

A. AGA control parameters: The performance of the AGA is mainly influenced by the 

basic parameters such as crossover probability (Pc), mutation probability (Pm), number of 

generations (Gg) and population count (Ng). So, the effect of those four parameters on the 

performance is studied in detailed and their selection is done accordingly. 

   (a)   (b) 

Figure 3.6: Performance comparison between GA and AGA aided MBER MUDs (a) BER performance 

(b) Convergence speed
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and Pm = 0.01 are chosen for GA MBER MUD while comparing with the AGA MBER 
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GA. Specifically, the AGA MBER detector has around 1 dB Eb/No gain over the classical GA 

MBER detector at 10-5 BER level as shown in Figure 3. 6 (a).   

The effect of GA’s generation index (Gg) and population count (Ng) on the BER 

performance of the AGA MBER MUD is illustrated in Figure 3.7 by varying Gg and Ng at a 

fixed Eb/No value of 15 dB. Here, while increasing both Gg and Ng, the BER gets reduced and 

it reaches a minimum BER that around 10-4 level at Gg = 50 and Ng = 50. This is due to the 

fact that the possibility of finding global solution improves with a large solution space. 

Increasing the solution space further there is no added improvement in BER, moreover it 

imposes additional complexity. Hence, these parameters are chosen with the value of 50. The 

control parameters required for the AGA MBER detector are summarized in Table 3.1. 

Figure 3.7: BER performance comparison of AGA MBER MUD while varying Ng and Gg at 15 dB Eb/No 
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B. ADEA control parameters: Differential evolution algorithm has the important  control 

parameters like the mutation factor (F), crossover probability (CP), population size (Nd) and 

number of generations (Gd), which influence the performance of MBER MUD. So, the effect 

of those parameters on the performance is studied in detaile and their selection is done. 

Figure 3.8: BER performance comparison of the ADEA MBER MUD while varying Cp and F at 15 dB 

Eb/No  

Figure 3.9: Convergence speed comparison of ADEA MBER MUD while varying CP and F at 15 dB Eb/No 
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The effect of the mutation factor (F) and the crossover probability (CP) on the 

performance of ADE assisted MBER MUD is discussed in Figure 3.8 and Figure 3.9. The 

average BER performance of the DEA aided MBER MUD is studied for 0.1 ≤ F ≤ 0.8 and 

0.1 ≤ CP ≤ 0.8 at a fixed Eb/No value of 15 dB using SUI channel model is shown in Figure 

3.8. The BER performance of the system is very poor at the operating point (CP, F) = (0.8, 

0.8), because the algorithm converges to a local minimum rather than global one without 

thoroughly exploring the entire solution space. It is further observed in figure 3.9, though the 

BER performance is optimal at the operating point (CP, F) = (0.1, 0.1), its convergence speed 

will be very slow.  The cost value of User-1 is evaluated for different combinations of CP and 

F by varying number of generations keeping Nd is fixed at 50. Here, the number of 

generations required for achieving the minimum cost value is monotonically decreased upon 

increasing both the CP and F. The operating point (CP, F) = (0.8, 0.8) results faster 

convergence of the algorithm and it reaches the minimum cost level with less number of 

generations (Gd ≈ 28). At the lower operating point (CP, F) = (0.1, 0.1), the convergence 

speed of the algorithm is much slow, it takes more number of generations (Gd > 50) to 

converge. So a tradeoff between complexity and system performance is thought of and an 

operating point (CP, F) of (0.5, 0.5) value is considered as initial CP and F for ADEA based 

MBER MUD technique. 

  (a)   (b) 

Figure 3.10: Performance comparison between DEA and ADEA MBER MUDs (a) BER performance (b) 

Convergence speed 

In Figure 3.10, we have compared the performance and convergence speed of the 

proposed adaptive DEA MBER MUD technique with classical DEA aided MBER MUD, 

where both F and CP are adapted according to eq. (3.13) and (3.14) respectively. The average 

0 2 4 6 8 10 12 14 16

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
it

 E
rr

or
 R

at
e

DEA - MBER
ADEA - MBER

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of Generations G
d

C
os

t v
al

ue

 

DEA-MBER
ADEA-MBER



Chapter – 3: Proposed Metaheuristic Optimization Techniques Aided Minimum Error Rate MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[66] 

BER of all users is calculated over the same SUI channel model keeping both Gd and Nd are 

fixed at 50. The ADEA outperforms the classical DEA in terms of both BER performance 

and convergence speed. Specifically, the ADEA MBER detector has around 1.5 dB Eb/No 

gain over the classical one at 10-5 BER floor.   

Further, Figure 3.11 shows the BER performance of User–1 using ADEA MBER 

MUD for different values of population size and number of generations at a fixed Eb/No value 

of 15 dB. In is observer that, while increasing Gd and Nd, the BER level is reduced and 

attended a minimum level at Gd = 45 and Nd = 50. Since there is no further improvement in 

BER value beyond this complexity level, the Gd  and Nd  values are fixed at (45, 50). Thus, all 

the control parameters for the ADEA MBER detector are summarized in Table 3.2.  

Figure 3.11: BER performance comparison of ADEA MBER MUD while varying Nd and Gd at 15 dB 

Eb/No  

Table 3.2: Simulation parameters of ADEA MBER MUD 
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C. IWO algorithm control parameters: The influencing control parameters of the IWO 

based MBER MUD are the maximum number of seeds generated by a plant (Smax), initial 

standard deviation ( i ), Final standard deviation ( f ), nonlinear modulation index (r), 

population size (NI) and maximum number of iterations (Imax). These parameter values should 

be chosen carefully in order to achieve proper value of the SD, so that the algorithm results 

faster converge to the optimal solution.  

Table 3.3 shows the complexity and performance variation of the IWO MBER MUD 

varying Smax from 2 to 8. Here, the complexity refers to the number of seed per iteration and 

the performance refers to the cost value of User–1 keeping Eb/No value fixed at 15 dB. It is 

observed that while increasing the value of Smax beyond 5, there is no further improvement in 

performance despite of introducing an extra complexity. Hence, Smax is chosen to be 5. 

Table 3.3: Effect of Smax on complexity and performance of the IWO MBER MUD at 15 dB Eb/No 

Smax Seed per iteration Cost Value 

2 58 0.0097

3 64 0.0045

4 76 0.0038

5 85 0.0031

6 102 0.0031

7 120 0.0031

8 137 0.0031

The selection of initial standard deviation ( i ) and final standard deviation ( f ), 

which affects the convergence as shown in Figure 3.12. So, both of these parameters should 

be chosen carefully to locate the optimal solution. The IWO algorithm requires a high initial 

standard deviation to explore the entire search area, aggressively. The final SD should be 

much smaller than the variable precision value of the solution, such that the change in SD 

doesn’t affect the final error value. Hence, when i  =10% of the dynamic range of entire 

search space (i.e. 0.1) and f  =0.001% of the dynamic range of entire search space (i.e. 

0.00001), the search strategy stats with large i , then  decreases SD in a nonlinear fashion 

while increasing iterations and it finally terminates with a small f . Among different 

combinations of i  and f investigated here, the combination with ( i , f ) = (0.1, 0.00001) 

provides the best performance with high convergence speed, because this combination 

ensures a high possibility of locating optimal solution.  
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Figure 3.12: Convergence speed comparisons of IWO MBER MUD for different combinations of initial 

and final standard deviations  

The effect of the maximum number of iterations (Imax) and seed count NI on the 

performance of the IWO MBER MUD with respect to BER level is illustrated in Figure 3.13 

at a fixed Eb/No value of 15 dB. In this figure the BER of User–1 is plotted while varying Imax 
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minimum BER level with Imax = 40 and NI = 50 as possibility of finding a global solution 

increases with the larger solution space. Increasing both the Imax and NI beyond this values 

results no further improvement in performance and moreover that it adds to the complexity.  

Figure 3.13: BER performance comparison of IWO MBER MUD while varying NI and Imax at 15 dB 
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Figure 3.14(a) shows the variation of Standard Deviation (SD) while changing the 

nonlinear modulation index following eq. (3.24). In this figure, the SD is reduced from the 

initial SD to the final SD with different velocities. The rate of change of SD is more by 

increasing the r. At the initial iteration, this algorithm will search solution in the whole search 

space with high initial SD. As the number of iterations is increased, the SD value will fall 

gradually to reach the global optimal solution. Accordingly, the cost value also follows the 

change with increasing r as shown in Figure 3.14(b). Considering these two observations, the 

modulation index (r = 3) is chosen to achieve fast convergence. The simulation parameters 

selected for IWO aided MBER detector is summarized in Table 3.4.  

 (a)  

Figure 3.14: Rate of change in (a) Standard deviation (b) Cost value, for different valued of nonlinear 

modulation index ‘r’ while varying number of iterations 
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3.4.1.2 Performance analysis   

In this section, the average BER performance of all users using the proposed OTs assisted 

MBER techniques are compared with the conventional MMSE and ML detectors through 

simulation study as shown in Figure 3.15 under various channel conditions in order to verify 

their robustness. As we discussed in Chapter 2, the SWATM channel imposes more 

degradation compared to other two channels. Hence, the performances of all detectors in such 

a channel environment are poor as shown in Figure 3.15 (c). It is also inferred from Figure 

3.15 is that a linear detector like MMSE results in poor BER performance since it cannot 

mitigate multiuser interference adequately. On the other hand, the ML MUD one can deliver 

optimal performance with an exhaustive search mechanism. Further, unlike the linear 

detector, the nonlinear OTs aided MBER MUDs are able to mitigate the nonlinear 

degradation caused by wireless radio environment. Hence, these detectors consistently 

outperform the linear MMSE detector in such case. Specifically, at a BER level of 10-4, the 

OTs aided MBER can give 5 dB, 5 dB and 7 dB Eb/No gain approximately over MMSE under 

MIMO Rayleigh fading, SUI and SWATM channel conditions respectively. 

The average BER performance of all the users in under load, full load and over load 

scenarios considering the MIMO Rayleigh fading channel model is shown in Figure 3.16(a), 

Figure 3.16(b) and Figure 3.16(c) respectively. As the number of users (L) is increased from 

3 to 6 keeping the number of receiving antennas (P) fixed at 4, the discrepancy between the 

performances of MMSE an ML MUDs is also increases. Because, in overloaded scenarios, 

the weight matrix calculated by the MMSE algorithm becomes a singular matrix, which will 

lead to a theoretically un-resolvable detection problem. As a result the linear MMSE MUD 

gives high residual BER as seen in Figure 3.16 (c).  By contrast, the proposed OTs aided 

MBER MUDs can minimize the residual error by directly minimizing probability of error. 

Hence, it can detect users even in such a over load scenario. Further, amongst the various 

OTs used to find weight solution of MBER MUD, the IWO is performing slightly better than 

other algorithms especially in over load condition. It may be due to the fact that the IWO 

algorithm allows all of the individual plants to participate in the reproduction process, 

because sometimes it is also possible that some of the plants with the lower fitness carry more 

useful information compared to the fitter plants. This algorithm also gives a chance to the less 

fit plants to reproduce and if the seeds produced by them have good finesses in the colony, 

they can survive.  In this way fitter plants produce more seeds than less fit plants, which tend 

to improve the convergence speed of the algorithm.  
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(a)  

(b) 

(c) 

Figure 3.15: Average BER performance of all users using MMSE, OTs aided MBER and ML MUDs 

under different channel conditions (a) MIMO Rayleigh fading (b) SUI (c) SWATM 
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(a) 

(b) 

(c) 

Figure 3.16: Average BER performance of all users using MMSE, OTs aided MBER and ML MUDs 

under load conditions (a) Under Load (L = 3, P = 4) (b) Full Load (L = P = 4) (c) Over Load (L = 6, P = 4) 
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The performances of the MMSE and OTs aided MBER MUDs in the over load 

scenario is more explicitly interpreted by means of scatter plots, which displays symbols in a 

two dimensional complex plane. Figure 3.17 shows the detected symbols of the User–1  from 

the noiseless received symbols (i.e. y = Hx), when it is always transmitting ‘+1’ over one 

complete OFDM frame considering MIMO Rayleigh fading channel in the SDMA–OFDM 

system with L = 6 and P = 4. It is observed that, some of the detected symbols using the 

MMSE MUD technique are closer to the BPSK decision boundary and even some of them 

cross the decision boundary entering in the wrong half plane. Hence, the MMSE detector fails 

to detect users in overload scenario. By contrast, the detected symbols using the proposed 

AGA, ADEA, and IWO aided MBER MUDs lie far away from the decision boundary and 

close to the transmitted symbol location in the constellation diagram shown in Figure 3.17 

(b), (c) and (d), which result better user classification at the BS receiver.  

 (a)     (b) 

 (c)  (d) 

Figure 3.17: Estimated symbol distribution of User-1 from noise less received symbols using various 

MUD schemes for the case of L = 6 and P = 4 when User-1 is always transmitting +1 (a) MMSE (b) AGA 

MBER (c) ADEA MBER (d) IWO MBER 
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   (a)     (b) 

   (c)      (d) 

 (e)   (f)   

   (g)     (h)  

Figure 3.18: Estimated symbol distribution of User–1 using various MUD schemes for the case of L = 6 
and P = 4 (a, b) MMSE at Eb/No = 5, 20 dB (c, d) AGA MBER at Eb/No = 5, 20 dB  (e, f) ADEA MBER at 

Eb/No = 5, 20 dB (g, h) IWO MBER at Eb/No = 5, 20 dB 

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real
-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y

Real



Chapter – 3: Proposed Metaheuristic Optimization Techniques Aided Minimum Error Rate MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[75] 

Further, among these three detectors, it is found that the concentration of detected symbols 

using IWO MBER detector is much close to the transmitted symbol. This indicates the 

robustness of the proposed IWO algorithm in finding the optimal solution for MBER MUD to 

give the better BER performance.  

In Figure 3.18, the detected symbol constellations of the User–1 for noisy channel 

condition at different Eb/No values using MMSE and OTs aided MBER MUDs is shown for 

one complete transmission of OFDM frame with 128 symbols in the SDMA–OFDM system 

with L = 6 and P = 4 considering MIMO Rayleigh fading channel model. It is noticed that the 

MMSE and the proposed OTs aided MBER MUDs fail to classify the received symbols in 

high noise condition (5 dB Eb/No) as the received symbols are intermingled. But in practical 

scenario (20 dB Eb/No), the classification using the proposed OTs aided MBER MUD 

schemes has improved over the MMSE one as the detected symbols lie in the correct decision 

plane.    

3.4.1.3 Convergence speed  

The improved convergence speed of the IWO MBER MUD over AGA and ADEA MBER 

MUD is observed by plotting the rate of change in cost value verses number of iterations/ 

generations in Figure 3.19 under SWATM channel condition. Here, in order to compare all 

OTs, 50 generations/iterations each consisting of 50 individuals is chosen. 

Figure 3.19: Convergence speed comparison of proposed OTs aided MBER MUDs at 15 dB Eb/No 
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From Figure 3.19, it is observed that the AGA and IWO algorithms are converging smoothly, 

whereas the ADEA algorithm is converging in an uneven fashion since it is not a fitness 

proportionate algorithm. Among all these OTs, the IWO algorithm has a faster convergence 

by reaching the minimum cost value with less number of iterations compared to the AGA and 

ADEA techniques to reach a minimum cost value level.

3.4.1.4 Complexity  

The over-all complexity of the ML detector is very high especially under the block fading 

channel environment and overload scenarios. In this section, the complexity of the proposed 

OTs aided MBER MUDs is compared with the ML detector based on both Cost Function 

(CF) evaluations and computational operations (multiplication and addition) performed as 

shown in Table 3.5 and 3.6 respectively. The AGA evaluates the cost function given in eq. 

(3.3) before and after crossover operation. Hence, the Complexity of AGA MBER MUD is 

proportional to 2 × Gg × Ng. Similarly, the ADEA evaluates the cost function twice for 

computing both , ,ˆl
g n pv and , ,ˆ l

g n pw as given in eq. (3.15) and eq. (3.16). Thus, the complexity of 

the ADEA MBER MUD is proportional to 2 × Gd × Nd. The IWO algorithm evaluates 

number of seeds (NS) times cost function as given in eq. (3.22) and hence the complexity of 

the IWO MBER is proportional to NS × Imax. All these comparisons of various MUDs are 

considered for a block fading channel condition and in an overload scenarios, where the L 

users simultaneously transmit their BPSK data to the P antenna receiver over NC subcarriers 

along with NCP cyclic prefix (NCP = 128, NCP = 32). The channel is assumed to be time-

invariant over NF = 1000 consecutive OFDM frames. The FEC employed is the half rate 

Convolutional code. Further, the complexities of the MMSE and OTs aided MBER MUDs 

are compared with the ML detectors while increasing L and presented in Table 3.7. 

Table 3.5: Complexity comparison of OTs aided MBER and ML MUD schemes with respect to CF 

evaluations when L = 6 and P = 4 

MUD Technique Cost Function Evaluations Total % of ML 

AGA MBER 2 2 ( )g g C CPG N N N L     9.600×106 46.9

ADEA MBER 2 2 ( )d d C CPG N N N L     8.640×106 42.2

IWO MBER 2 ( )max S C CPI N N N L     6.528×106 31.9 

ML Detector 2 2 ( )mL
C CP FN N N    2.048×107 100



Chapter – 3: Proposed Metaheuristic Optimization Techniques Aided Minimum Error Rate MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[77] 

Table 3.6: Complexity comparison of MMSE, OTs aided MBER and ML MUD schemes with respect to 

number of computational operations when L = 6 and P =4 

MUD Operation Computational Complexity Total % of ML 

MMSE 
Multiplications 

Additions 

 22( ) 2 ( 1)(4 1) 6C CPN N PL P P P P    

2 ( 1)
2( )

( 1) ( 1)(4 1) 6C CP

P L
N N

P P P P P

  
      

 

2.384×104 

2.752×104 

6.5×10-5 

5.1×10-4 

AGA 
MBER 

Multiplications 

Additions 

Q functions 

2( )( 2 )(2 1)(2 1)mL
C CP g gN N G N P L   

2( )( 2 )(2 1) mL
C CP g gN N G N P P L   

 
2( )( 2 )(2 ) mL

C CP g gN N G N L 

4.368×109 
 

2.486×109 
 

6.144×108 

23.83 

7.02 

− 

ADEA 
MBER 

Multiplications 

Additions 

Q functions 

2( )( 2 )(2 1)(2 1)mL
C CP d dN N G N P L   

2( )( 2 )(2 1)mL
C CP d dN N G N P P L   

2( )( 2 )(2 )mL
C CP d dN N G N L 

 7.862×109 

2.238×109 
 

5.529×108 

21.42 

6.32 

− 

IWO 
MBER 

Multiplications 

Additions 

Q functions 

2( )( )(2 1)(2 1)mL
C CP I SN N G N P L   

2( )( )(2 1)mL
C CP I SN N G N P P L   

2( )( )(2 )mL
C CP I SN N G N L 

6.989×109 
 

1.691×109 
 

4.178×108 

19.04 

4.79 

− 

ML 
Detector 

Multiplications 

Additions 

2( ) ( )2mL
C CP FN N N PL P 

2( ) ( 1)2mL
C CP FN N N PL P  

3.670×1010 
 

3.539×1010 

100 

100 

Table 3.7: Complexity comparison of OTs aided MBER and ML MUD schemes with respect to CF 

evaluations while varying L keeping P fixed at four 

L AGA ADEA IWO ML 

4 6.4×106 5.76×106 5.2×106 5.12×106 

5 8×106 7.2×106 6.04×106 1.024×107 

6 9.6×106 8.64×106 7.68×106 2.048×107 

7 1.12×107 1.008×107 8.96×106 4.096×107 

8 1.28×107 1.152×107 1.024×107 8.192×107 

It is noticed from Table 3.5 and Table 3.6 that all the proposed AGA, ADEA and 

IWO MBER MUDs are computationally economical compared to the intensive ML detector 

in terms of both number of CF evaluations and computational operations. Further it is also 

observed from Table 3.7 that as the number of users increase, the complexity of the ML 

detector increases exponentially, whereas the complexity of the proposed OTs aided MUDs 

increases at a lesser rate. Among the discussed OTs, the IWO has considerable complexity 

gain compared to AGA and ADEA MBER MUDs. Finally, the advantage of using IWO 

aided MBER MUD in terms of both complexity and BER performance is summarized in 

Table 3.8. The simulation study carried out for complexity analysis is done on a PC with 3.2 

GHz i5 processor and 4 GB RAM using Matlab R2009a. 
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Table 3.8: Performance and complexity comparisons of OTs aided MBER MUDs at Eb/No values 15 dB 

Algorithm CF Evaluations
per Generation 

CPU Time 

per Symbol 

Bit Error Rate 

MIMO Rayleigh fading SUI SWATM 

AGA 100 3.1937 sec 0.000189  0.001975 7.30E-05

ADEA 100 2.5804 sec 0.000168  0.001598 6.25E-05

IWO 85 1.4711 sec 0.000129  0.001521 7.23E-05

3.4.2 Results and discussion for OTs aided MSER MUD 

In this section, the simulation results for OTs aided MSER MUD are presented for detecting 

both the 4–QAM and 16–QAM signals. Compared to the MBER MUD, the number of 

equiprobable trail vectors required in the MSER MUD for computing fitness of the cost 

function is increased form 2L to 2m (L-1), where m represents the number of bits per symbol in 

M–QAM. Proportional to that the search space in terms of number of generation/iterations 

also has to be increased in all the OTs to reach a global solution. Because a larger number of 

generation/iterations imply that, a more diverse set of individuals may be evaluated, thus 

extending the search space is also increases the chance of finding a lower-BER solution. 

Using similar kind of analysis for selection of control parameter given in Section 3.4.1.1, the 

(Gg, Ng) of AGA are chosen as (100, 100), the (Gd, Nd) of ADEA are chosen as (90, 100) and 

the (Imax, NI) of IWO are chosen as (80, 100). Similarly, for MSER with 16–QAM signals, the 

(Gg, Ng) of AGA are chosen as (200, 200), the (Gd, Nd) of ADEA are chosen as (180, 200) 

and the (Imax, NI) of IWO are chosen as (160, 200). Number of seeds (Ns) per generation in the 

IWO MSER detector is 168 and 332 corresponding to 4–QAM and 16–QAM respectively. 

The rest of the simulation parameters are according to Table 3.1, 3.2 and 3.4 corresponding to 

AGA, ADEA and IWO aided MSER MUDs respectively.  

3.4.2.1 Performance analysis  

In this context, the efficacy of the OTs is further compared while locating optimal solution 

for MSER MUD. Figure 3.20 shows the BER performance comparison of OTs aided MSER 

MUD with the conventional MMSE and ML detector in all under load, full load and over 

load scenarios. The signal mapper used is here is 4–QAM and the wireless channel model 

considered is the MIMO Rayleigh fading channel. The High-order constellations form 

clusters closer together. This assures more transmitted bits per symbol but is more susceptible 

to noise and other channel degradations. As a result the BER performance of all users during 

the detection of 4–QAM signals is poor as shown in Figure 3.20 and delivers less reliable 

data compared to the detection of BPSK signals as shown in Figure 3.16.  
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(a) 

 (b) 

(c) 

Figure 3.20: Average BER performance of all users using MMSE, OTs aided MSER and ML MUDs 

under load conditions (a) Under Load (L=3, P = 4) (b) Full Load (L = P = 4) (c) Over Load (L=6, P = 4) 
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From Figure 3.20, it is observed that the OTs are well capable of finding optimal solution for 

MSER similar to MBER MUD. Especially, the OTs aided MSER MUDs consistently 

outperforming the MMSE MUD in overload scenario as seen in Figure 3.20(c). Further, the 

BER performance of the MSER can be improved with the aid of the IWO compared to AGA 

and ADEA algorithms.  Specifically, at 10-4 target BER level, the IWO MSER MUD 

produces around 1.5 dB Eb/No gain approximately over both the AGA and ADEA aided 

MSER MUDs in over load case considering L = 6 and P = 4. 

Figure 3.21 shows the performance comparison of various MUDs used to detect 16–

QAM signals. The average BER performance of four different users using various MUDs in 

the SDMA–OFDM system with L = P = 4 is shown in Figure 3.21. As the 16–QAM symbols 

are more close to each other than 4–QAM, the BER performances of all MUDs while 

detection 16–QAM signals are further degraded as shown in Figure 3.21 than the BER 

performances of  all MUDs while detection 4–QAM signals as shown in Figure 3.20 (b). 

Specifically, at 10-4 target BER level, the IWO MSER MUD using 4–QAM as shown in 

Figure 3.20 (b) has around 4 dB Eb/No gain over the IWO MSER MUD using 16–QAM as 

shown in Figure 3.21. 

Figure 3.21: Average BER performance of all users using MMSE, OTs aided MSER and ML MUDs in 

the SDMA–OFDM system transmitting 16–QAM signals 

Further, the performance study in over load scenario is more explicitly illustrated with 

the aid of symbol constellation plots as shown in Figure 3.22 and Figure 3.23. Figure 3.22 

depicts the estimated symbol distribution of the User–1 from the noiseless received symbols 

(i.e. y = Hx) using MMSE and OTs aided MSER MUDs. The signal mapper used here is 4–
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QAM and User–1 is always transmitting ‘1+j’ over one complete OFDM frame under the 

MIMO Rayleigh fading channel condition. It is noticed from Figure 3.22 is that some of the 

detected symbols of the MMSE MUD lie on the wrong side of the decision boundary 

resulting poor performance while the detected symbols using the OTs aided MSER MUDs 

lies in the correct plane. Further, the IWO MSER detector are closely located around the 

actual transmitted symbol ‘1+j’.  

  (a)      (b) 

   (c)     (d) 

Figure 3.22: Estimated symbol distribution of User-1 from noise less received symbols using MMSE and 

OTs aided MSER MUDs for the case of L = 6 and P = 4 when User-1 is always transmitting 1+j (a) 

MMSE (b) AGA MSER (c) ADEA MSER (d) IWO MSER 

Effect of noise on the received symbol constellation and performance of various 

MUDs is studied in Figure 3.23. Here, the linear MMSE detector fails to form clusters around 

the transmitted symbols even the value of Eb/No increased from 5 to 20 dB as it cannot 

mitigate MUI in overload scenario. However, the proposed OTs aided MSER MUDs fails to 

perform the detection under higher noise condition at Eb/No = 5 dB, but the detection gets 

better at higher Eb/No case (20 dB).  
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  (a)      (b)  

 (c)    (d) 

 (e)     (f)  

 (g)      (h)   

Figure 3.23: Estimated symbol distribution of User–1 using MMSE and OTs aided MSER MUDs for the 
case of L = 6 and P = 4 (a, b) MMSE at Eb/No = 5, 20 dB (c, d) AGA MSER at Eb/No = 5, 20 dB (e, f) ADEA 

MSER at Eb/No = 5, 20 dB (g, h) IWO MSER at Eb/No = 5, 20 dB 
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The efficacy of MSER MUD while detecting higher order signals such as 16–QAM of 

User–1 is evaluated as illustrated in Figure 3.24.  These signals are communicated over the 

MIMO Rayleigh fading channel in the SDMA–OFDM system with L = 4 and P = 4 at 20 dB 

Eb/No value. In this figure, the radius of the clusters is squeezed more using the IWO based 

MSER MUD compared to other ones. Hence, IWO algorithm gets prominence for finding 

solution for MSER MUD.    

 (a)    (b) 

 (c)     (d) 

Figure 3.24: Estimated symbol distribution of User-1 using MMSE and OTs aided MSER MUDs for the 

case of L = P = 4 in the SDMA–OFDM system transmitting 16–QAM signals at 20 dB Eb/No (a) MMSE (b) 

AGA MSER (c) ADEA MSER (d) IWO MSER 

3.4.2.2 Convergence speed 

The convergence speed of the proposed OTs aided MSER MUDs are compared with respect 

to the rate of change in cost value of User–1 while increasing the number of generations/ 

iterations as shown in Figure 3.25. The signal mapper used is 4–QAM and the wireless 
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channel considered is the SWATM channel. Here, in order to compare all OTs, 100 

generations/iterations each consisting of 100 individuals is chosen. Among various OTs, the 

cost value of the IWO algorithm fall to a minimum at a faster rate compared to both the AGA 

and ADEA algorithms while finding optimal solution for the MSER MUD.  

Figure 3.25: Convergence speed comparison of proposed OTs aided MSER MUDs at 15 dB Eb/No  

3.4.2.3 Complexity  

The complexity of the MSER MUD can be compared with the ML Detector on the basis of 

number of the CF evaluations and computational operations as presented in Table 3.9 and 

3.10 respectively. The CF evaluations presented in Table 3.9 are derived from equations 

given in Table 3.6. All these comparisons for various MUD schemes are considered in a 

block-fading scenario, where the L users simultaneously transmit either 4–QAM or 16-QAM 

signals to a P–element antenna BS receiver over NC subcarriers along with NG cyclic prefix 

samples (NC = 128, NCP = 32). The channel is assumed to be time-invariant over NF = 100 

consecutive OFDM symbols. The FEC used here is the half rate Convolution coding. Further, 

the complexity of the MMSE and OTs aided MBER MUDs is compared with that of the ML 

detectors while increasing number of users and is presented in Table 3.11. Finally, the 

summarized performance comparisons of all proposed OTs while finding the solution for 

MSER problem in the SDMA–OFDM system with L = 4 and P = 4 and employing 4–QAM 

are given in Table 3.12.  
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Table 3.9: Complexity comparison of OTs aided MSER and ML MUD schemes with respect to CF 

evaluations when L = 6 and P =4 

MUD Technique 
4-QAM 16-QAM

Complexity % of ML Complexity % of ML 

AGA MSER ( 2 2 ( )g g C CPG N N N L     ) 3.84×107 29.31 1.54×108 0.0287 

ADEA MSER ( 2 2 ( )d d C CPG N N N L     ) 3.46×107 26.41 1.38×108 0.0257 

IWO MSER ( 2 ( )max S C CPI N N N L     ) 2.58×107 19.69 1.02×108 0.0189 

ML Detector ( 2 2 ( )mL
C CP FN N N    ) 1.31×108 100 5.37×1011 100 

Table 3.10: Complexity comparison of MMSE, OTs aided MSER and ML MUD schemes with respect to 

number of computational operations when L = 6 and P =4 

MUD  Operator Computational Complexity 
4-QAM 16-QAM

 Total % of ML Total % of ML

MMSE 

× 

+ 

2
2 ( )

( 1)(4 1) 6
F
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L P LN
P N N

P P

   
    

2 ( 1) ( 1)
2( )

( 1) ( 1)(4 1) 6
F

C CP

L L P LN
N N

P L P P

    
      

 

7.99×105 

6.12×105 

1.8×10-2 

1.7×10-2 

7.99×105 

6.12×105 

4.8×10-6 

4.2×10-6 

AGA 
MSER 

× 

+ 

     
( 1)

2 7
2

2

g g

C CP
m L

F

G N P
L N N
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  
  

  

     
 

2 2
2
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g g

C CP mL
F

G N LP
L N N

P P N

  
 
   

 

4.31×108 

1.03×109 

9.19 

29.10 

9.74×109 

1.33×1011 

0.0532 

0.917 

ADEA 
MSER 

× 

+ 

     
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2 7
2

2

d d

C CP m L
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G N P
L N N
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  
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3.89×108 

9.31×108 

8.72 

26.30 

9.57×109 

1.32×1011 

0.0523 

0.910 

IWO 
MSER 

× 
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     max

( 1)

7
2

2

S

C CP m L
F

I N P
L N N

P PN

  
  

  

 
   
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2
2 1
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2.92×108 

7.03×108 

6.55 

19.86 

9.17×109 

1.31×1011 

0.0501 

0.903 

ML 
Detector 

× 

+ 

   2 2 2 2mL
C CP FN N N PL P  

   2 1 2mL
C CP FN N N PL P  

4.46×109 

3.54×109 

100 

100 

1.83×1013 

1.45×1013 

100 

100 

From Table 3.9 and 3.10, it is clear that the proposed OTs especially the IWO aided MSER 

MUD are computationally economical compared to the ML one in terms of both CF 

evaluations and computational operations.  
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Table 3.11: Complexity comparison of OTs aided MSER and ML MUD schemes with respect to CF 

evaluations while varying L keeping P fixed at four 

Number of 
Users (L) AGA–MSER  ADEA–MSER IWO–MSER ML 

4 2.56×107 2.304×107 2.048×107 8.192×106 

5 3.2×107 2.88×107 2.56×107 3.2768×107 

6 3.84×107 3.456×107 3.072×107 1.3107×108 

7 4.48×107 4.032×107 3.584×107 5.2929×108 

8 5.12×107 4.608 ×107 4.096×107 2.0972×109 

Further, it is observed from Table 3.11 that as the number of users is increasing, the 

complexity of the ML detector increases exponentially, whereas the complexity of the OTs 

aided MUDs increases at a lesser rate. 

Table 3.12: Performance and complexity comparisons of OTs aided MSER MUDs at Eb/No values 15 dB 

Algorithm CF Evaluations
per Generation 

CPU Time 

 per Symbol 

Bit Error Rate  

MIMO Rayleigh fading SUI Gaussian 

AGA 200 25.895 sec 4.83E-5 0.00011 7.23E-05 

ADEA 200 20.030 sec 4.50E-5 5.86E-5 6.32E-05 

IWO 168 12.821 sec 2.98E-5 4.94E-5 4.36E-05 

3.5 Summary 

This chapter investigates various OTs based on popular heuristic search algorithms such as 

AGA, ADEA and IWO to locate the optimal solution for MER MUD schemes (both MBER 

and MSER). Extensive simulation study is done to establish the proposed schemes. The CG 

algorithm requires proper initial selection of the weights while finding the optimal weight 

vectors of the MBER cost function as discussed in Chapter–2. This lacuna can be overcome 

by using the OTs for MER MUD schemes, which rely on an intelligent search of a large but 

finite solution space using statistical methods starting from random locations and they do not 

require taking cost function derivatives. Among various OTs discussed in this chapter, the 

IWO algorithm comes out to be a clear winner in various simulation results. The IWO 

algorithm is a powerful optimization algorithm mimicking the properties of the invasive 

weeds. Implementation of the IWO is much simpler than the GA, because it uses decimal 

individuals rather than binary ones and also it doesn’t use complex operations such as 

mutation and cross over. It is also observed that the control parameters of the OTs highly 
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influence the performance of the MER MUDs. The performance the AGA is controlled by 

proper selection of Gg and Ng while the ADEA is influenced by Gd and Nd. Similarly, the 

IWO MER MUDs is highly influenced by parameters such as NI, Imax, Smax, σmax, σmin and r. 

Hence, selection of right combination of these control parameters yields a better performance. 

The simulation study also shows that proposed OTs aided MER detectors consistently 

outperform the linear MMSE MUD. Amongst the discussed MUD schemes, the IWO aided 

MER has a little edge over the AGA and ADEA aide MER MUD schemes in full load and 

over load conditions, whereas all of these exhibit almost the same performance in under load 

case. Further, the IWO algorithm outperforms the AGA and ADEA in terms of the 

convergence rate and computational complexity. The proposed OTs aided MBER/MSER 

MUDs also provide remarkable complexity gain over the exhaustive classical ML detector as 

observed in a typical block fading channel environment. Finally, the IWO algorithm emerges 

to be a good alternative for MER MUDs weight optimization in the investigated SDMA–

OFDM system in spite of having more control parameters. It is observed that, in the overload 

SDMA–OFDM system, the channel’s output phasor constellation often becomes nonlinearly 

separable. So this research in motivated to utilize better nonlinear classifiers for detection of 

multiuser signals in the SDMA–OFDM system. 



Chapter 4 
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In previous chapters, the fundamentals of classical MUD schemes and details of proposed 

OTs aided MER MUD schemes are discussed. However, most of these MUDs assume that 

the channel dynamics are perfectly known at the receiver’s end, whereas in the practical 

systems estimation of the channel response is a must, which imposes additional complexity. 

In such a condition, employing the highly nonlinear Neural Networks (NNs) [75] can become 

a good alternative as these models approximate channel parameters in training phase and 

detect signals in testing phase. During past decade, it has been already established that the 

NN models can be efficiently utilized for MUD in CDMA system [76–80], but they have not 

been applied for the SDMA–OFDM system [30]. The ongoing chapter aims to explore the 

possibility of using NN based MUDs for such a system so that these can achieve better 

performance with reduced complexity. Among various NN models, the Multilayer Perceptron 

(MLP) and Radial Basis Function (RBF) are considered to be powerful tools in the area of 

pattern classification. The MLP models can perform complex mapping between its input and 

output space and are capable of forming decision regions separated by nonlinear boundaries, 

whereas the RBF network models form clusters such as hyper spheres around the similar 

group of input signals. Both these widely used models have their own merits and limitations. 

Generally, the RBF and MLP models form mapping between real valued input and output 

signal. However, with the growth of multimedia applications, there is an increased demand 

for high bandwidth applications. Hence, most of the communication systems need to process 

complex higher order signals, as these signals are known for their bandwidth efficiency. In 

such a case, the real valued NN models may fail to transfer the complete input information to 

the output layer. Therefore, complex valued NNs such as Complex MLP (CMLP) [81–83] 

and Complex RBF (CRBF) [84–88] are developed to detect higher order signals. Thus, the 

major contribution of this chapter comprises of designing structures and suitable training 

algorithms for NN based adaptive MUDs. NN based MUDs are adaptive in nature as they 

adapt to unknown time varying channel conditions through training.  

Section 4.1 introduces the possibility of NN models as multiuser detectors for the 

SDMA–OFDM system.  Section 4.2 and 4.3 describe the real valued MLP and RBF model 

based MUDs respectively. Section 4.4 presents the necessity of complex valued NNs for 

MUD. Subsequently, Section 4.5 and 4.6 discuss the CMLP and CRBF NN MUD schemes 

respectively. Simulation study of the proposed adaptive NN MUDs and comparison with 

previously discussed classical MMSE, ML and the proposed IWO MER MUDs are presented 

in Section 4.7. Finally, summary of this chapter is provided in Section 4.8. 
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4.1 Neural network as multiuser detector for the SDMA–OFDM system  

Artificial Neural Network (ANN) or simply Neural Network (NN) is a massively parallel 

distributed processing system inspired from the biological neural system made up of highly 

interconnected neural computing elements such as neurons that have the ability to learn and 

thereby acquire knowledge and make it available for use [75].   

Since the evolution of NNs, these models are vastly utilizing in several applications 

like machine vision, pattern detection, signal filtering, data segmentation, data compression, 

optimization, classification, complex mapping etc. These models are already well established 

for signal detection and channel equalization in several communication systems [141, 142], 

since these are also pattern classification problems. Generally, in multiuser systems, the 

multiple user’s signals gets corrupted with noise and these noisy signals need to be classified 

at the receiver appropriately. When signal classification in a communication system requires 

a nonlinear solution, NN can provide better solution. NNs also exhibit high parallelism and 

adaptability to system parameters. Hence, these models have become an attractive alternative 

to the classical MUDs. Thus, in recent past, the NN models are extensively utilized for MUD 

for CDMA system. Especially, the NN models like MLP and RBF based MUDs are drawing 

considerable research attention [76–80]. However, in the present research, the NN based 

MUD schemes are applied for another famous multiuser system such as the SDMA–OFDM 

[143, 144]. Both these MLP and RBF networks have their own mechanisms for nonlinear 

classification. The classification mechanism in a simple two-dimension case is shown in 

Figure 4.1. The MLP network classifies the input pattern with arbitrarily shaped nonlinear 

decision boundaries as shown in Figure 4.1 (a), whereas the RBF networks classifies the 

input pattern with clusters in form of hyper surfaces or ellipse as shown in Figure 4.1 (b).    

 (a)    (b) 

Figure 4.1: Classification mechanisms in two dimension space: (a) MLP network (b) RBF network 
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As described in Chapter–2, the received signal in the SDMA–OFDM system from eq. 

(2.4) is expressed as:  

 y Hx n  

The linear detector estimates signal using a linear function such as: 

ˆ H
l lx w y

However, incorporating such a linear detector may allow residual interference and it will fail 

to mitigate the nonlinear degradation caused by the error prone radio environment. Therefore, 

incorporating a nonlinear detector is essential to improve detector classification ability. As 

the NNs models are massively parallel and highly nonlinear, these can become a possible 

alternative to detect signals of multiple users appropriately. In order to derive the MUD task 

in terms of NNs, it is essential to define an appropriate Lyapunov energy function 

corresponding to a specific optimality criterion. This optimality has to be minimized 

iteratively so that the lowest energy state will yield the desired estimate. The derivation of the 

Lyapunov function converts the minimization problem into a set of ordinary differential 

equations [145]. Based on this derivative information, appropriate synaptic weights and input 

excitations are chosen for the design of NN models. The Lyapunov energy function for MUD 

of the SDMA–OFDM system can be defined as: 

where


   2

1

1
ˆ,

2

L

l l l l
l

E e e x x (4.1)

Here,  ˆlx   represents estimated signal of lth user. The commonly used nonlinear activation 

functions in the NN models are tanh and Gaussian functions, which are given as follows:  

  
 

 
1 exp( 2 )

( ) tanh
1 exp( 2 )

l
l l

l

y
y y

y
(4.2)

 


 
  

 

2

2( ) exp , with 0l
l

y
y (4.3) 

During MUD process, training symbols are periodically sent to the network and detection is 

accomplished by minimizing the Lyapunov function as given in eq. (4.1). The performance of 

the NN MUDs is mainly depends on the tracking ability of the training algorithm employed.
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Figure 4.2: NN based multiuser detector for the SDMA–OFDM system with L number of users and P 

number of receiving antennas 

The configuration of an NN based multiuser detector is shown in Figure 4.2. In the 

NN based MUD process, the model is designed according to the SDMA structure and then 

the corresponding model is trained using training symbols. After the training, the well trained 

NN model is switched to the testing mode and it can be used as a multiuser detector. The 

process of training a NN involves the adjustment of the weights between each pair of the 

individual neurons and corresponding biases until a close approximation of the desired output 

is achieved. During network training, an adaptive algorithm has to be applied recursively to 

update the free parameters of the network based on the error obtained. In this figure, a known 

sequence ty  is given as an input to the NN model and its response is available at the output 

layer. By comparing this with desired response d, the error signal is computed.  

4.2 Multilayer Perceptron (MLP) based MUD scheme 2

Among various NN models, the feed forward MLP model is considered as a very general 

model for the nonlinear processing of real valued signals [73]. It consists of at least three 

layers of neurons such as an input layer, one or more hidden layers and an output layer. The 

hidden and output layers may have a non-linear activation function. The MLP network can be 

trained with the conventional Back Propagation (BP) algorithm, which is a supervised 

learning algorithm that uses two passes through the network to calculate the change in 

network weights. In the forward pass, the weights are fixed and the input vector is propagated 

through the network to produce an output. 

2This part of research is included in the paper published by Neural computing and Applications, Springer, entitled as “Neural network-based 
adaptive multiuser detection schemes in SDMA–OFDM system for wireless application” 
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An output error is calculated from the difference between actual output and the desired 

output. This error is then propagated backwards through the network, making changes to the 

weights as required. The details of this algorithm are presented in Appendix B. The 

architecture of MLP model used for MUD in the SDMA–OFDM system is shown in Figure 

4.3, which consists of an input layer of 2P units, one hidden layer of HN neurons and an 

output layer of L neurons. Here, P and L are equal to number of receiving antenna and 

number of users in the SDMA–OFDM system respectively. These layers have feed forward 

connections between neurons. Each neuron in the hidden has a summer along with a non-

linear activation. Hence, the resultant output at hth node in the hidden layer is expressed as: 

2

1

' , 1, 2,...,
P

h hk k h N
k

z U y b h H


 
   

 
 (4.4) 

In the above equation ', 1, 2,..., 2ky k P  consist of real and imaginary components of

, 1,2,...,py p P , that is: 

2 1 ' ( ), 1,2,...,p py y p P  

2 ' ( ), 1,2,...,p py y p P   

Here,   and   represent real and imaginary components respectively. The output layer has 

a simple summation operator. Hence, the resultant output at lth node in the output layer is 

expressed as: 

1

ˆ , 1,2,...,
NH

l lh h l
h

x V z b l L


   (4.5) 

where  hkU  denotes a weight associated between the hidden node h and input node k, 

lhV
   

denotes a weight associated between the output node l and hidden node h, 

hb     denotes bias of the hth hidden node, 

lb     denotes bias of the lth output node, 

( )t  denotes a nonlinear function such as bi-polar sigmoid, that is ( ) tanh( )t t    

'( )t  denote derivative of ( )t , if ( )t is tanh(t), then,  

 2'( ) 1 tanh ( )t t   (4.6) 
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Figure 4.3: Schematic diagram of proposed MLP based MUD scheme for the SDMA–OFDM system 

4.2.1 Network training procedure for MLP MUD 

In the MLP network training process, an iterative algorithm like the conventional BP 

algorithm that minimizes an empirical error function can be used efficiently to update 

connection weights and biases [73]. The procedure is summarized below.  

a. Initialize randomly all connection weights and thresholds such as ( )hkU i , ( )lhV i , ( )hb i and

( )lb i at iteration i (=1).  

b. Compute the hidden vector ( )hz i  and output vector ( )t
lx i  from eq. (4.4) and eq. (4.5) 

respectively using training vector ( )t
ky i .

c. Compute the error term ( )le i  of each output node as: 

( ) ( ) ( ), 1,2,...,t
l l le i d i x i l L     

d. However, the back propagation algorithm requires the calculation error gradient δ at each

layer. Thus, the error gradient at lth node of output layer and hth node of hidden layer are

given respectively:

 ' , 1, 2,...,t
l l le x l L  

 ' , 1, 2,...,T
h lh l h N

l

V z h H   

Here, (.)T represents Transpose.   

e. Update the network weights of hidden and output nodes according to eq. (B.3) and (B.4):
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( 1) ( ) ( ) ( )t
hk hk h kU i U i i y i     

( 1) ( ) ( )h h hb i b i i     

( 1) ( ) ( ) ( )lh lh l hV i V i i z i     

( 1) ( ) ( )l l lb i b i i  

where µ is the learning rate parameter, which should be chosen in between zero and one. 

f. Compute the total error
2

( ) ( )td i x i  and proceed for the computation to the next 

iteration (i +1) from Step b until this error is less than a defined value or specific 

convergence criteria is met. 

4.3 Radial Basis Function (RBF) based MUD scheme 3  

RBF networks are popular in several classification problems for their close relation with 

Bayesian estimators due to the Gaussian activation function. This activation depends on the 

distance between the input vector and the centre. By properly selecting the number of hidden 

neurons, approximately 2L, where L is the number of users in the SDMA–OFDM system, and 

by training all free parameters accurately, the RBF is able to detect users appropriately. Due 

to their ability to form complex nonlinear mapping, the RBF network is considered for MUD 

in CDMA system. Generally, the RBF model uses Gradient Descent (GD) algorithm for 

network training to update all network parameters at a time [85]. The details of this algorithm 

are presented in Appendix D. 

Figure 4.4: Schematic diagram of proposed RBF based MUD scheme for the SDMA–OFDM system  

3This part of research is included in the paper published by International Journal of Electronics, Taylor and Francis, entitled as “Neural 
Network–based multiuser detection for SDMA–OFDM system over IEEE 802.11n indoor wireless local area network channel models” 
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The architecture of RBF model is a three layer feed forward network, which consists 

of an input layer of P number of input units, an output layer of L number of neurons and the 

hidden layer with HN number of neurons existing between input and output layers as shown 

in Figure 4.4. The values of P and L are corresponding to number of receiving antennas and 

number of users in the SDMA–OFDM system respectively. The inter connection between 

input layer and hidden layer forms hypothetical connection and between the hidden and 

output layer forms weighted connections. In general, the RBF network incorporate Gaussian 

activation functions, hence the output of each neuron in the hidden layer is expressed as: 



 
   

 
 

2

2exp , 1,2,...,
2

h
h N

h

z h H
y C

(4.7) 

where hC is the (P×1) dimensional complex-valued center and h  is the spread parameter of 

the hth hidden neuron. The neurons in the output layer are simple summing elements. Hence, 

the output of each neuron of output layer is calculated as: 

1

ˆ , 1,2,...,
NH

l lh h
h

W z l L


 x (4.8)

4.3.1 Network training procedure for RBF MUD 

In the RBF network training process, an iterative algorithm like Gradient Descent (GD) that 

minimizes an empirical error function can be used to update free parameters of the network 

[85]. The procedure of this algorithm is summarized below.  

a. Initialize randomly all the network free parameters such as ( )lhW i , ( )hC i   and ( )h i   at 

iteration i (=1). The network centers can be initialized using k-means clustering

algorithm, which is presented in Appendix D.

b. Compute the hidden vector ( )hz i  and output vector ( )t
lx i  from eq. (4.7) and eq. (4.8) 

respectively using training vector ( )t
py i . 

c. Compute the error term ( )le i  of each output node as: 

( ) ( ) ( ), 1,2,...,t
l l le i d i x i l L     

d. Update the weights, centers and spreads according to eq. (D.2), (D.4) and (D.6):
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  ( 1) ( )lh lh w h lW i W i z e

   
  

 
      

 
 2
1 1

( 1) ( )
P PR It tlh h

h h c p h p h
p ph

W z
C i C i e y C j y C

  



  

2

3
( 1) ( )

t
h

h h s lh h
h

y C
n n eW z

where w ,c  and s  are the weight, center and spread learning parameters respectively. 

e. Compute the total error
2

( ) ( )td i x i  and proceed for the computation to the next 

iteration  (i +1) from Step b until this error is less than a defined value or specific 

convergence criteria is met. 

4.4 Necessity of complex valued neural networks   

In recent past, several researches have proved that the real valued NNs can be effectively 

incorporated in several equalization and MUD problems when the signals are lower ordered 

ones. However, the SDMA–OFDM system with higher order signal mapper has to process 

complex valued desired signals. In addition to that, to exploit effectiveness of digital radio 

links, the high-power amplifiers of the transmitter introduces nonlinearities, which cause 

degradation of the received signal. This degradation may affect both amplitude and phase of 

the signal. It is well known that the signals like M–QAM are very sensitive to nonlinear 

distortion which causes spectral spreading, Inter Symbol Interference (ISI), constellation 

warping and IQ imbalance [146]. Therefore, the classical real valued NNs cannot be applied 

directly because these models cannot mitigate the impairment of phase distortion. In order to 

extend the real valued NN models to complex valued NN models, the neurons should be 

modeled with complex activation function and processing has to be done in a complex 

multidimensional space. This basic approach motivated the development of several 

algorithms for equalization of communication using complex-valued NNs [81–88].  

While extending the nonlinear real valued activation function to nonlinear complex 

valued activation function through a standard procedure of analytic continuation, the obtained 

complex function may become unbounded in the complex plane. To solve this problem, the 

classical real valued activation function ( )t can be written in the complex form as:  

   ( ) ( ) ( )F t t j t       (4.9) 
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The complex function F(t) is always bounded for all t and behaves in a similar 

manner to its real valued counterpart. The magnitude plots of the real and complex valued 

activation function for both tanh and Gaussian approximations are plotted in Figure 4.5. 

However, as F(t) is complex in nature, the standard BP and GD algorithms cannot be used 

directly. For NNs with above complex activation function and complex inputs, a suitable 

training algorithm are developed in the proceeding sections such that the NN based MUDs 

are well suited to deal with the complex-valued signals. 

   (a)           (b) 

 (c)             (d) 

Figure 4.5. Magnitude plot of activation functions used in different NN models (a) Real valued MLP (b) 

Complex valued MLP (c) Real valued RBF (d) Complex valued RBF 

4.5 Complex MLP (CMLP) based MUD scheme  

The classical MLP network requires both input and desired response to be real valued. 

However, if the signals of the SDMA–OFDM system are in complex form, it fails to transfer 

the complete input information to the output layer. In such cases, as the response of the 

neurons in the CMLP model is complex and hence it can be efficiently used as a multiuser 
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detector. During the network training process, the CMLP MUD with complex signals and 

weights employs complex BP algorithm for selecting the network parameters [147, 148].  

Figure 4.6: Schematic diagram of proposed CMLP based MUD scheme for the SDMA–OFDM system 

The architecture of MLP shown in Figure 4.6 consists of an input layer of P units, one 

hidden layer of HN neurons and an output layer of L neurons. In the CMLP, the classical real-

valued sigmoid function is extended to the complex plane such that it is bounded everywhere. 

The resultant complex activation function can be expresses as: 

   TANH( ) ( ) ( )t t j t       (4.10)

The nonlinear activation function ( )t is tanh(t). The behavior of this activation function in 

the complex plane is plotted in Figure 4.5(b). Each neuron in the hidden and output layer has 

a nonlinear activation and a summation operator. Hence, the resultant output at hth node in the 

hidden layer can be expressed as: 

1 1

, 1,2,...,
P P

h hp p h hp p h N
p p

z U y b j U y b h H 
 

      
                     

  (4.11) 

The resultant output at lth node in the output layer is expressed as: 

1 1

ˆ , 1,2,...,
N NH H

l lh h l lh h l
h h

x V z b j V z b l L 
 

      
            

      
  (4.12) 

where  hpU  denotes a weight associated between the hidden node h and input node p, 

lhV
  

denotes a weight associated between the output node l and hidden node h, 

lhV1z

2z

1y

Py

1x̂

ˆLx
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hb    denotes bias of the hth hidden node, 

lb   denotes bias of the lth output node, 

4.5.1 Development of the complex BP algorithm for CMLP network training 

Figure 4.7: Training model of CMLP network 

During the proposed CMLP network training, the conventional BP algorithm cannot be 

applied directly as all connection weights and biases are complex in form. For BP algorithm 

to be applied for CMLP network training, it is required to compute the gradient of the 

instantaneous error with respect to real and imaginary components of all network weights and 

biases. Thus, the modifications incorporated in this algorithm are derived as follows.  

Figure 4.7 represents a typical training model of CMLP model with Q number of 

layers each consisting n neurons. Let, q
ng is the activation output of the nth neuron in the qth 

layer, then the net activation value of the nth neuron in the qth layer is given by: 

1
1

0

, 1,2,..., , 1,2,...,
qN

q q q
n nm m q

m

s W g n N q Q






  

where  TANHq q
n ng s , and n = 0 refers to the bias input: i.e. 0 1qg  . Also, when q = 0, then 

0
0, 1,2,...,ng n N  refers the input signal. Assuming q q q

n n ng u jv  ,  

  
1

1 1

0

qN
q qR qI q q
n nm nm m m

m

s W jW u jv


 



  

QW

Layer 1 Layer 2 Layer 1Q  Layer Q

2
1s

2
2s

2

2
Ns

1
1
Qs 

1

1

Q

QNs 



1
2
Qs 

Q

QNs

2
Qs

1
Qs

1
1s

1
2s

1

1
Ns

2W
1

1
Qg 

1
2
Qg 

1

1

Q

QNg 



1
Qg

2
Qg

Q

QNg

2
1g

2
2g

2

2
Ng

1
1g

1
2g

1

1
Ng



Chapter – 4: Proposed Neural Network Based Adaptive MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[101] 

   
1

1 1 1 1

0

qN
qR q qI q qR q qI q

nm m nm m nm m nm m
m

W u W v j W v W u


   



   

The superscripts R and I corresponds to real and imaginary values respectively. In the 

complex BP algorithm, the network weights are adjusted such that the error in the output 

layer is minimized. Hence, the sum squared global instantaneous error at the output layer ‘Q’ 

is expressed as:  



  2

1

1
2

QN

n
n

E e

where 1 2Q
n n n Qe = d g , n= , ,...,N and nd is the desired response. The gradient of E with 

respect to ngq is: 

q
n q qR qIg

n n n

E E E
E j

g g g

  
   

  
(4.13) 

Similarly, the gradient of E with respect to n
qs is: 

q
n q qR qIs

n n n

E E E
E j

s s s

  
   

  
(4.14) 

From eq. (4.13) and eq. (4.14), the error gradient of nth neuron in the qth layer is derived as: 

qR qI
q n n
n qR qR qI qI

n n n n

E g E g
j

g s g s
    

 
   

   ' 'qR qI qR qR qI qI
n n n n n nj e s je s        

Since the weight vector in complex valued, the gradient of instantaneous error can be 

obtained by calculating the gradient of the error with respect to both the real and imaginary 

components of the q
nmW , which is according to:  

  
   

  
q
nm q qR qIW

nm nm nm

E E E
E j

W W W

Using the chain rule, 
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   
 

    

qR qI
n n

qR qR qR qI qR
nm n nm n nm

s sE E E
W s W s W

   
 
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qR qI
n n

qI qR qI qI qI
nm n nm n nm

s sE E E
W s W s W

In the above equations 

      
    
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1 1 1 1; ; ;

qR qI qR qI
q q q qn n n n
m m m mqR qR qI qI

nm nm nm nm

s s s s
u v v u

W W W W

  
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
1 1qR q qI q

n m n mqR
nm

E
u v
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  
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
1 1( )qR q qI q

n m n mqI
nm

E
v u

W
 

From above equations  q
nmW
E can be obtained as: 

              1 1 1 1
q
nm

qR q qI q qR q qI q
n m n m n m n mW

E u v j v u  

              
   1qR qI q

n n mj g

               1q q
m ng

where (.)* denote the complex conjugate. The correction q
nmW applied to q

nmW is defined by 

delta rule as: 

q
nm

q
nm W

W E    (4.15)

where μ is the learning parameter.  

The generalized error gradient for , 1, ...,1q Q Q  and 1,2,..., qn N as: 

for

for 1,...,1
q+1

n

q N
n *(q+1) q+1

rn r
r=1

e , q = Q

e =
W δ , q = Q









(4.16) 

   ' 'q qR qR qI qI
n n n n nδ = e s + je s  (4.17)
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4.5.2 Network training procedure for CMLP MUD  

In the CMLP network training process, an iterative algorithm like the complex BP algorithm 

that minimizes an empirical error function can be used efficiently to update connection 

weights and biases [147, 148]. The procedure is summarized below.  

a. Initialize randomly all connection weights and thresholds such as ( )hpU i , ( )lhV i , ( )hb i and

( )lb i at iteration i (=1).  

b. Compute the hidden vector ( )hz i  and output vector ( )t
lx i  from eq. (4.11) and eq. (4.12) 

respectively from the training symbol ( )t
ky i .

c. Compute the error term ( )le i  of each output node as: 

( ) ( ) ( ), 1,2,...,t
l l le i d i x i l L     

d. However, the BP algorithm requires the error gradient δ at each layer. Thus, the error

gradient at lth node of output layer and hth node of hidden layer are given respectively:

   ( ) ' ( ) ( ) ' ( )t t
l l l l le x j e x       

   ' ( ) ' ( )H H
h lh l h lh l h

l l

V z j V z               
   
 

Here, (.)H represents Hermitian transpose.   

e. Update the weights and biases of hidden nodes and output nodes are from:

( 1) ( ) ( ) ( )H
hp hp h pU i U i i y i     

( 1) ( ) ( )h h hb i b i i    

( 1) ( ) ( ) ( )H
lh lh l hV i V i i z i    

( 1) ( ) ( )l l lb i b i i  

where µ is the learning rate parameter, which should be in between zero and one. 

f. Compute the total error 
2

( ) ( )td i x i  and proceed for the computation to next iteration (i

+1) from Step b until this error is less than a defined value or specific convergence

criteria is met.
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4.6 Complex RBF (CRBF) based MUD scheme 4

Figure 4.8: Schematic diagram of proposed CRBF based MUD scheme for the SDMA–OFDM system 

In general, the RBF network uses Gaussian activation function, which produces always a real 

valued response. If the available and desired signals are in complex form, then this network 

fails to transfer the complete complex input information to the output layer. Hence, R. 

Savitha et al. proposed a Complex RBF (CRBF) model with sech activation function to solve 

various adaptive signal processing problems [149–151]. The behavior of the sech function is 

same as Gaussian approximation and it also able to generate complex response. Further, in 

this research, this activation function is expanded by splitting it in to two independent 

components to respond individually for real and imaginary inputs in order to make it 

computationally economical while evaluating error gradient. The architecture of CRBF 

model is as same as real valued RBF with three layer feed forward network, which consists 

an input layer of P number of input units, an output layer of L number of neurons and a 

hidden layer of HN number of neurons as shown in Figure 4.8. The inter connection between 

input layer and hidden layer forms hypothetical connection and between hidden and output 

layer forms weighted connections. The CRBF network processes complex valued signals and 

produces outputs in a bounded complex plane. The resultant activation function is defined as:  

   SECH( ) ( ) ( )t t j t       (4.18)

Here, the nonlinear activation function ( )t is the sech(t) function and the behavior of 

the this function is plotted in Figure 4.5(d). In the CRBF network, each neuron in the hidden 

has a complex nonlinear activation function as given in eq. (4.18). 

4This part of research is included in the paper accepted by IET Communications, entitled as “An Efficient Complex Radial Basis Function 
Model for Multiuser Detection in an SDMA/MIMO – OFDM System” 
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Hence, the resultant output at hth node in the hidden layer can be expressed as: 

        ( ) ( ) ( ) ( ) , 1,2,...,R T R I T I
h h h h h Nz V y C j V y C h H (4.19) 

where Vh and Ch are the (P × 1) dimensional complex-valued scaling factor and centers of the 

hth hidden neuron respectively. The neurons in the output layer are simple summing elements. 

Hence, the output of each neuron in the output layer is: 

1

ˆ , 1,2,...,
NH

l lh h
h

x W z l L


  (4.20) 

4.6.1 Development of the complex GD algorithm for CRBF network training 

During the proposed CRBF network training, the classical GD algorithm cannot be applied 

directly, since all network free parameters are in complex form. For GD algorithm to be 

applied for CRBF network training, it is required to compute the gradient of the instantaneous 

error with respect to real and imaginary components of all network free parameters. The 

complex GD algorithm computes the instantaneous gradient of the squared error 
2

le and 

updates the network free parameters in the opposite direction of their respective gradients. 

Let q be the network parameter (it might be W, C or V ) at iteration i then the updated 

parameter at iteration i +1 be according to: 




    

1i i t i i
i

E
q q q q

q
(4.21) 

where t  is the momentum parameter and. The sum squared error is defined as: 



   2

1

1
, where

2

L
t

l l l l
l

E e e d x

Assuming h h hz u jv  , the response vector t
lx  corresponding to the training vector

, 1,2,...,t
py p P , is expressed as: 

   
1 1

N NH H
t R I
l lh h lh lh h h

h h

x W z W jW u jv
 

    

   
1

NH
R I R I

lh h lh h lh h lh h
h

W u W v j W v W u


   
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Since the weight vector in complex valued, the gradient of the instantaneous error can be 

obtained by calculating the gradient of the error with respect to both the real and imaginary 

components of the Wlh, which is according to:  

  
   

  lhW R I
lh lh lh

E E E
E j

W W W

Using the chain rule, 

   
 

    

tR tI
l l

R tR R tI R
lh l lh l lh

x xE E E
W x W x W

; 
   

 
    

tR tI
l l

I tR I tI I
lh l lh l lh

x xE E E
W x W x W

In the above equations 

 
   

 
;R I

tR tI
l l

E E
e e

x x

   
    

   
; ; ;

tR tI tR tI
l l l l

h h h hR R I I
lh lh lh lh

x x x x
u v v u

W W W W

 
      

 
; ( )R I R I

h h h hR I
lh lh

E E
e u e v e v e u

W W

Using above solutions 
lhW E  can obtain that: 

  
lhW l hE e z (4.22)

From eq. (4.21) and (4.22) the update of weight is defined as: 

   
lhlh w WW E

  lh w l hW e z (4.23)

where (.)* denotes the complex conjugate and w is the learning parameter of weight. 

Similarly, the update of Vh requires calculation of gradient of error with respect to real and 

imaginary components of Vh. 

  
   

  hV R I
h h h

E E E
E j

V V V
(4.24) 
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Using the chain rule, 

             
                   

tR tR tI tI
l h l h l h l h

R tR R R tI R R
h l h h h h l h h h h

E E x u x v E x u x v
V x u V v V x u V v V

  

        
' ( ) ( ) ( )R T t R t R R R I I

h h h lh lhR
h

E
V y C y C e W e W

V
(4.25) 

             
                   

tR tR tI tI
l h l h l h l h

I tR I I tI I I
h l h h h h l h h h h

E E x u x v E x u x v
V x u V v V x u V v V

 

        
' ( ) ( ) ( )I T t I t I I R R I

h h h lh lhI
h

E
V y C y C e W e W

V
(4.26) 

From eq. (2.24)–eq. (2.26) above solutions, the update of scaling factor is determined as: 

   
hh v VV E

   
   

 



     
   

' ( ) ( ) ( )

' ( ) ( ) ( )

R T t R t R R R I I
h v h h h lh lh

I T t I t I I R R I
h h h lh lh

V V y C y C e W e W

V y C y C e W e W
(4.27)

Here, V  is the learning parameter of scaling factor. If secht t ( ) ( )  then the derivative is

tanh secht t t  '( ) ( ) ( ) . Further, the update of Ch requires gradient of error with respect to 

real and imaginary components of Ch. 

  
   

  hC R I
h h h

E E E
E j

C C C
(4.28)

Using chain rule, 

             
                   

tR tR tI tI
l h l h l h l h

R tR R R tI R R
h l h h h h l h h h h

E E x u x v E x u x v
C x u C v C x u C v C

      
' ( ) ( )R T t R R R R I I

h h lh lhR
h

E
V y C V e W e W

C
(4.29)

             
                   

tR tR tI tI
l h l h l h l h

I tR I I tI I I
h l h h h h l h h h h

E E x u x v E x u x v
C x u C v C x u C v C
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      
' ( ) ( )I T t I I I R R I

h h lh lhI
h

E
V y C V e W e W

C
(4.30)

From eq. (4.28)–eq. (4.30) the update of center is defined as:

   
hh c CC E

   
   

cμ 



     
  

' ( ) ( )

' ( ) ( )

R T t R R R R I I
h h h lh lh

I T t I I I R R I
h h lh lh

C V y C V e W e W

V y C V e W e W
(4.31)

where c  learning parameter of center. 

4.6.2 Network training procedure for CRBF MUD  

In the complex CRBF training process, an iterative algorithm such as complex GD that 

minimizing an empirical error function is used efficiently to update network free parameters, 

which is summarized as given below:  

a. Initialize randomly all connection weights and thresholds such as ( )lhW i , ( )hC i and ( )hV i

at iteration I (=1).

b. Compute ( )hz i  and ( )t
lx i  from eq. (4.19) and eq. (4.20) respectively from the training 

symbol ( )t
ky i .

c. Compute the error term ( )le i  of each output node as: 

( ) ( ) ( ), 1,2,...,t
l l le i d i x i l L     

d. Update the weights, centers and scaling factors according to:

   ( 1) ( ) ( )lh lh lhW i W i W i

   ( 1) ( ) ( )h h hC i C i C i

   ( 1) ( ) ( )h h hV i V i V i

e. Compute the total error 
2

( ) ( )td i x i  and proceed for the computation to next iteration

(i +1) from Step b until this error is less than a defined value or specific convergence

criteria is met.
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4.7 Simulation study and performance analysis  

In this section, the proposed NN model based adaptive MUD schemes have been examined 

under different channel conditions as presented in Appendix A. Simulation results obtained 

by using MLP and RBF MUDs are compared to that of the conventional MMSE, ML and the 

proposed IWO aided MBER MUDs. Similarly, simulation results obtained by using CMLP 

and CRBF MUDs are compared to that of the conventional MMSE, ML and the proposed 

IWO aided MSER MUDs. All these simulations are considered for the SDMA–OFDM 

system and simulation parameters of the system are according to the parameters given in 

Section 2.7 of Chapter 2.  

4.7.1 Results and discussion for real valued NN based MUDs 

The simulation parameters of NN models are selected based on the SDMA–OFDM system 

parameters. The number of input and output neurons of the NN models are considered 

according to number of receiving antennas (P) and number of users (L) in the SDMA–OFDM 

system respectively. As the input and output dimension are kept constant, the only factor that 

influences the performance NN based MUDs for SDMA–OFDM system is the selection of 

the number of hidden nodes (HN). Figure 4.9 shows the BER performance of MLP and RBF 

aided MUDs in the SDMA–OFDM system while varying number of hidden neurons. In this 

figure, it is observed that, as the number of hidden neurons increases from 4 to 24, the 

performance of MLP detector does not improve much, whereas the performance of RBF 

MUD is significantly enhanced. This is due to the fact that the MLP network outputs are 

decided by all the neurons and the RBF network outputs are determined by specified hidden 

units in certain local receptive fields. Also, the MLP forms arbitrarily shaped decision 

boundaries while the RBF forms decision in form of hyper spheres around the clusters. 

Hence, the RBF network cannot perform well unless sufficient number of hidden neurons is 

taken. It is illustrated that with 16 hidden neurons, both the networks performing at their best. 

From this, it is empirically shown that HN can be based on number of users in the SDMA–

OFDM system, i.e. HN = 2L, to maintain a good performance level. Similarly, during network 

training, the learning rate parameters are to be chosen carefully. If the values of the learning 

rate parameters are too high it may not allow convergence to the minimum MSE level, else if 

the learning rate parameters are too low it will require a high number of iterations for 

attaining minimum MSE level. Therefore, they must be selected trough exhaustive trial and 

error studies. Thus, the simulation parameters selected for NN based detectors are 

summarized in Table 4.1.  
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       (a)   (b) 

Figure 4.9: Average BER performance of NN model based MUDs for the case of L = P = 4 with a variable 

number of hidden neurons (a) MLP detector (b) RBF detector 

Table 4.1: Simulation parameters of NN based MUD schemes 

Parameter Value

Number of input nodes 4  (size of P) 

Number of output nodes 4  (size of L) 

Number of hidden nodes 16 (size of 2L) 

MLP learning algorithm Back propagation 

Average number of training symbols taken for MLP (NM) 5000 

RBF learning algorithm  Gradient descent 

Average number of training symbols taken for RBF (NRB) 3000 

MLP weight learning rate (η) 0.1

RBF weight learning rate (µw ) 0.08 

RBF center learning rate (µc ) 0.03 

RBF spread learning rate (µs ) 0.05 

RBF initial center selection algorithm k-means clustering 

4.7.1.1 Performance analysis  

Figure 4.10 illustrates the average Bit Error Rate (BER) performance of four different users 

communicating over different channel conditions in the SDMA–OFDM system employing 

four receiving antennas while varying Eb/No. It is inferred from this figure that, the NN model 

based MUD schemes are consistently outperforming both the classical MMSE and the 

proposed IWO MBER MUD schemes.  
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(a) 

(b) 

(c) 

Figure 4.10: Average BER performance of all users using MMSE, IWO aided MBER, NN model based 

and ML MUDs under different channel conditions (a) MIMO Rayleigh fading (b) SUI (c) SWATM 

0 2 4 6 8 10 12 14 16 18 20

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
it 

E
rr

or
 R

at
e

MMSE
IWO MBER
MLP
RBF
ML

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
it 

E
rr

or
 R

at
e

MMSE
IWO MBER
MLP
RBF
ML

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
it 

E
rr

or
 R

at
e

MMSE
IWO MBER
MLP
RBF
ML



Chapter – 4: Proposed Neural Network Based Adaptive MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[112] 

Further, comparing the MLP, the RBF MUD with sufficient number of hidden units is 

effective and it has significant improvement in performance for all three different channel 

conditions. This improvement is achieved since the Gaussian activation can better 

approximate the Gaussian noise distribution and the spread parameter can better approximate 

the noise variance. However, as the MLP is a simple nonlinear input-output mapper, its 

performance does not match the performance of the RBF. Specifically, at 10-4 BER level the 

RBF detector has about 0.5, 2 and 4 dB Eb/No gains compared to MLP MUD with respect to 

MIMO Rayleigh fading, SUI and SWATM channels respectively. Similarly, the RBF 

detector has about 0.5, 3 and 4 dB Eb/No gains compared to MBER detector while users have 

communicated over MIMO Rayleigh fading, SUI and SWATM channels respectively 

maintaining the same BER level. 

Figure 4.11: Average BER performance of all users using MMSE, IWO MBER and NNs MUD schemes in 

the SDMA–OFDM system with P = 4 and increasing L at 15 dB Eb/No 

Robustness of proposed NN MUD schemes is further illustrated through simulation of 

the SDMA–OFDM system with different load conditions. Figure 4.11 shows the average 

BER of all users using various detectors at a fixed Eb/No of value 15 dB, when the system is 

supporting different number of users keeping number of receiving antennas fixed at four 

under SUI channel condition. Here, as the number of users increases, the resultant BER 

becomes worse due to the impairment of added MUI. Especially, when the number of users 

exceeds the number of receiving antennas as in the case of overload scenario, the BER 

performance is severely affected because in this case the receiver will lose its degree of 

freedom to detect the users. As a result, the performance of the linear MMSE detector fails 

totally and the nonlinear MBER detector performs well compared to MMSE MUD. Further, 
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even in such a high load conditions, the NN model based MUDs especially the RBF MUD 

has considerable performance gain. More specifically, the MBER, MLP and RBF MUDs are 

able to detect users when L = 8 at the cost of 0.0124, 0.003742 and 0.0008189 BERs 

respectively.  

The performance of the SDMA–OFDM system in overload scenario can be more 

explicitly investigated through constellation diagrams as shown in Figure 4.12 and 4.13. 

Figure 4.12 depicts the detected symbol distribution of the User–1 from the noiseless 

received symbols using various MUDs while it is always transmitting ‘+1’ over one complete 

OFDM frame under MIMO Rayleigh fading channel. It is observed from this figure is that, 

though the detected symbols using the IWO aided MBER MUD lie close to the actual 

transmitted symbol they spread over the imaginary plane, because this detector cannot correct 

the arbitrary phase shift of the output symbols automatically. However, due to adaptability, 

the NN based MUDs use phase correction mechanism during the network training and hence 

these can continually correct the arbitrary phase shift of output symbols. Thus, the detected 

symbols form close clusters around the actual transmitted symbol. Further, as the RBF has 

better approximation capabilities, the detected symbols are exactly overlapped on the actual 

symbol. Similarly, the analysis of constellation plots is further elaborated in presence of noise 

(i.e. Eb/No= 20 dB) as shown in Figure 4.13. This figure shows detected symbol distribution 

of User–1, when it is transmitting all possible symbols of the BPSK scheme. This figure 

again provides evidence of better approximation capability of RBF detector over IWO MBER 

MUD, as it forms close clusters around the actual transmitted symbols while the detected 

symbols of the IWO MBER MUD are found to be widely distributed. 

  (a)     (b)    (c) 

Figure 4.12: Estimated symbol distribution of User-1 from noise less received symbols using various 

MUD schemes for the case of L = 6 and P = 4 when User–1 is always transmitting +1 (a) IWO MBER (b) 

MLP (c) RBF 
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         (a)                                                        (b)      (c) 

Figure 4.13: Estimated symbol distribution of User–1 using various MUD schemes for the case of L = 6 

and P = 4 at 15 dB Eb/No (a) IWO MBER (b) MLP (c) RBF 

4.7.1.2 Convergence speed   

In the training phase, the NN learns the forward relation between input and output. The 

forward learning error in terms of MSE is shown in Figure 4.14 to analyze convergence speed 

of the neural network models. In this figure, the MSE plots of MLP and RBF based MUDs at 

15 dB Eb/No are presented considering the SWATM channel as given in Appendix A. It is 

shown that, the RBF MUD is faster than that of MLP MUD in tracking the network free 

parameters since the RBF has good tracking ability compared to MLP. Due to this faster 

tracking, the RBF reaches the minimum MSE level with less number of training symbols 

compared to that of MLP network.  It is confirmed that the RBF network is trained much 

rapidly and the network parameters are updated accordingly. 

Figure 4.14: Convergence speed comparison of NN based MUDs at 15 dB Eb/No 
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4.7.1.3 Complexity   

Similar to Section 3.4.1.4, the over-all complexity of the proposed NN MUDs is compared 

with the ML detector based on both computational operations (multiplication and addition) 

and Cost Function (CF) evaluations as given in Table 4.2 and 4.3 respectively. The 

complexity of NNs mainly depends on the number of training samples fed to the network 

model to reach the minimum MSE level. Hence, the complexities of MLP and RBF MUDs 

are proportional to NM × (NC + NCP) and NRB × (NC + NCP) respectively, where NM and NRB are 

number of training symbols for MLP and RBF models respectively. All these comparisons of 

various MUD schemes are considered for a block-fading channel condition and in an 

overload scenarios, where the L users simultaneously transmit their BPSK data to the P  

antenna receiver over NC subcarriers along with NCP cyclic prefix (NC = 128, NCP = 32). The 

channel is assumed to be time-invariant over NF = 1000 consecutive OFDM symbols. The 

FEC scheme employed here is the ½ rate Convolutional coding. The number of training 

symbols NM and NRB are taken as 5000 and 3000 respectively as mentioned in Table 4.1.  

Table 4.2: Complexity comparison of MMSE, IWO MBER, NN and ML MUD schemes with respect to 

number of computational operations when L = 6 and P = 4 

MUD  Operation Computational Complexity Total 
% of 
ML 

MMSE 

Multiplications 

Additions 

 22( ) 2 ( 1)(4 1) 6C CPN N PL P P P P    

2 ( 1)
2( )

( 1) ( 1)(4 1) 6C CP

P L
N N

P P P P P

  
      

 

 

2.384×104 

2.752×104 

 

6.5×10-5 

5.1×10-4 

IWO 
MBER 

Multiplications 

Additions 

Q functions 

2( )( )(2 1)(2 1)mL
C CP I SN N G N P L   

2( )( )(2 1)mL
C CP I SN N G N P P L   

2( )( )(2 )mL
C CP I SN N G N L 

6.989×109 
 

1.691×109 
 

4.178×108 

19.04 

4.79 

− 

MLP 

Multiplications 

Additions 

Tansig 

 
  

 
6 4 2 2

2
2

M N

C CP

F N

N H P L L
N N

N H P L

    
 
  

    4 2 3
2

(2 )

M N
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F N

N H P L L
N N

N H P L

    
  

  

   2 C CP N M FN N H N N 

7.862×109 

2.238×109 

3.072×107 

21.42 

6.32 

− 

RBF 

Multiplications 

Additions 

Exponentials 

     2 2 3 9 1C CP N RB FN N H N P L N P L       
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   2 C CP N RB FN N H N N 

5.939×109 
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ML  
Multiplications 
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Table 4.3: Complexity comparison of IWO MBER, NN and ML MUD schemes with respect to CF 

evaluations when L = 6 and P = 4 

MUD Technique C F Evaluations Total % of ML 

IWO MBER 2 ( )max S C CPI N N N L      6.528×106 31.9 

MLP 2 ( )M C CPN N N    1.6×106 7.8125 

RBF 2 ( )R C CPN N N   9.6×105 4.6875 

ML  2 2 ( )mL
C CP FN N N     2.048×107 100 

From Table 4.2 and Table 4.3, it is noticed that the complexities of the proposed NN based 

MUD schemes are a small fraction of the complexity imposed by the optimal ML MUD.  

4.7.2 Results and discussion for complex valued NN based MUDs 

In this section, the simulation results using complex valued NNs based MUDs are presented 

for detecting higher order signals (4–QAM and 16–QAM). In the higher order constellations, 

as the number of bits per symbols is more, the number of equiprobable transmitting vectors is 

more compared to BPSK constellations. Hence, the complex NN models may require 

comparatively more training symbols than real valued NNs in order to reach minimum MSE 

level. The rest of the simulation parameters of complex valued NNs are chosen according the 

parameters of the SDMA–OFDM system and are summarized in Table 4.4. 

Table 4.4: Simulation parameters of complex valued NN based MUD schemes 

Parameter Value

Number of Input nodes 4  (size of P) 

Number of Output nodes 4  (size of L) 

Number of Hidden nodes 16 (size of 2L) 

CMLP learning algorithm Complex BP 

Average number of training symbols taken for CMLP using 4-QAM (NCM) 12000 

Average number of training symbols taken for CMLP using 16-QAM (NCM) 30000 

CRBF learning algorithm  Complex GD 

Average number of training symbols  taken for CRBF using 4-QAM (NCR) 10000 

Average number of training symbols taken for CMLP using 16-QAM (NCR) 20000 

CMLP Weight Learning Rate (η) 0.15

CRBF Weight Learning Rate (µw ) 0.1 

CRBF Center Learning Rate (µc ) 0.02 

CRBF Scaling factor’s  Learning Rate (µv ) 0.08 

CRBF initial center selection algorithm k-means clustering 
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4.7.2.1 Performance analysis 

Figure 4.15 presents the BER comparison of complex valued NN model based MUDs with 

MMSE, ML and IWO MSER detectors in the SDMA–OFDM system while transmitting the 

4–QAM signals. Here, as the real valued NNs cannot correct the arbitrary phase degradation 

and hence these detector exhibits a high error floor. On the other hand, the complex valued 

NN based MUDs achieve improved BER performance because these models can correct both 

amplitude and phase degradations simultaneously. In addition to that, as the complex NN 

models are also highly nonlinear classifiers, these are able to achieve significant performance 

gain over the MMSE and IWO MSER MUDs. Especially, the performance gain of the CRBF 

MUD is quite remarkable compared to the MMSE, MSER and CMLP MUDs and exhibits a 

performance close to the optimal ML detector. Specifically, at a target BER level of 10-4, the 

CRBF has around 3 dB Eb/No gain approximately over both the MSER and CMLP MUDs. 

Similar observations are made when simulations are performed for detection of 16–QAM 

signals as shown in Figure 4.16. The robustness of proposed complex valued NN MUD 

schemes is further analyzed through simulation of the SDMA–OFDM system under different 

load conditions as shown in Figure 4.17. This figure shows the average BER of various 

detectors, when the system is supporting different number of users under SUI channel 

condition keeping number of receiving antennas fixed at four. It is observed that, irrespective 

to any load conditions (i.e. L > P or L = P or L < P), the CRBF detector provides a better 

performance compared to MMSE, CMLP and IWO MSER MUDs.  

Figure 4.15: Average BER performance of all users using various MUDs, when the SDMA–OFDM with L 

= P = 4 is transmitting 4-QAM signals 

0 5 10 15 20
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No in dB

B
it

 E
rr

or
 r

at
e

MLP MUD
RBF MUD
MMSE
IWO-MSER
CMLP MUD
CRBF MUD
ML



Chapter – 4: Proposed Neural Network Based Adaptive MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[118] 

Figure 4.16: Average BER performance of all users using various MUDs, when the SDMA–OFDM with L 

= P = 4 is transmitting 16-QAM signals 

Figure 4.17: Average BER performance of all users using MMSE, IWO MSER and complex NN MUD 

schemes in the SDMA–OFDM system with P = 4 and increasing L at 15 dB Eb/No  

The performance of SDMA–OFDM system in overload scenario (L = 6, P = 4) can be 

further illustrated through constellation diagrams as shown in Figure 4.18 and 4.19. Figure 

4.18 depicts the detected symbol distribution of the User–1 from the noiseless received 

symbols using various MUDs while it is always transmitting ‘1+j’ over one complete OFDM 

frame under MIMO Rayleigh fading channel. It is observed from this figure is that the 

complex valued NNs are able to correct automatically the distortion in both real and 
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imaginary components of the 4–QAM symbol distributions. Further, comparing MLP, the 

CRBF one better approximates the real and imaginary parts of the detector output to the 

desired values.  

The constellation plots are further elaborated in presence of noise (i.e. Eb/No= 15 dB) 

as presented in Figure 4.19 considering the practical scenario, where the User–1 is 

transmitting all possible 4–QAM symbols. This figure provides evidence of satisfactory 

approximation capability of CRBF detector. Similar observations are made in Figure 4.20 

when detecting 16–QAM symbols, which are transmitted through User–1 of the SDMA–

OFDM system with L = P = 4. 

   (a)   (b)    (c) 

Figure 4.18: Estimated symbol distribution of User-1 from noise less received symbols using various 

MUD schemes for the case of L = 6 and P = 4 when User-1 is always transmitting 1+j  (a) IWO MSER (b) 

CMLP (c) CRBF       

   (a)    (b)    (c) 

Figure 4.19: Estimated symbol distribution of User–1 using various MUDs for the case of L = 6 and P = 4 

when User–1 is transmitting 4–QAM signals at 15 dB Eb/No (a) IWO MSER (b) CMLP (c) CRBF  
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 (a)    (b)    (c) 

Figure 4.20: Estimated symbol distribution of User–1 using various MUDs for the case of L = 4 and P = 4 

when User–1 is transmitting 16–QAM signals at 15 dB Eb/No (a) IWO MSER (b) CMLP (c) CRBF 

4.7.2.2 Convergence speed    

The MSE plots of various NN models in training phase are shown in Figure 4.21 when all 

users are transmitting 4–QAM signals over SWATM channel at 15 dB Eb/No. In this figure, 

as the real valued NN models cannot mitigate distortion in imaginary component, these 

curved are not converging to minimum MSE level, whereas the input-output relation can be 

learned sufficiently in case of complex NN models. As a result, the convergence of MSE 

using CMLP and CRBF are stable and faster while reaching a minimum level. These results 

imply that the complex NN parameters are properly learned. Among all these NN MUDs, the 

proposed CRBF MUD works well in all benchmark testing by reaching a minimum level of 

MSE with less number of training symbols.  

Figure 4.21: Convergence speed comparison of real and complex valued NN based MUDs at 15 dB Eb /No 
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4.7.2.3 Complexity   

Similar to the comparisons given in Table 4.2 and Table 4.3, the complexity of the complex 

valued NN based MUDs is compared with the ML detector on the basis of number of 

computational operations and the CF evaluations and presented in Table 4.5 and 4.6 

respectively. All these comparisons for various MUD schemes are considered in a block-

fading scenario, where the L users simultaneously transmit their 4–QAM/16–QAM data to a 

P antenna receiver over NC subcarriers along with NCP cyclic prefix (NC = 128, NCP = 32). The 

channel is assumed to be time-invariant over NF = 100 consecutive OFDM symbols. The FEC 

used here is the ½ rate convolution coding. The number of training symbols NCM and NCR are 

taken as 12000 and 10000 respectively for 4–QAM signals. Similarly, the number of training 

symbols NCM and NCR are taken as 30000 and 20000 respectively for 16–QAM signal. 

Table 4.5: Complexity comparison of MMSE, IWO MSER, complex valued NN and ML MUD schemes 

with respect to number of computational operations when L = 6 and P = 4  

MUD  Operation Computational Complexity 
4–QAM 16–QAM

 Total % of ML Total % of ML 
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Table 4.6: Complexity comparison of IWO MSER, complex valued NN and ML MUD schemes with 

respect to CF evaluations when L = 6 and P = 4 

MUD Technique 
4-QAM 16-QAM

Complexity % of ML Complexity % of ML 

IWO MSER ( 2 ( )max S C CPI N N N L     ) 2.58×107 19.69 1.02×108 0.0189 

CMLP ( 2 ( )CM C CPN N N   ) 3.84×106 2.93 9.6×106 1.79×10-3 

CRBF ( 2 ( )CR C CPN N N   ) 3.2×106 2.44 6.4×106 1.19×10-3 

ML Detector ( 2 2 ( )mL
C CP FN N N    ) 1.31×108 100 5.37×1011 100 

From Table 4.5 and Table 4.6, it is noticed that the complexities of the proposed complex 

valued NN based MUD schemes are a small fraction of the complexity imposed by the 

optimal ML MUD. Thus, these detectors have a clear edge over the computationally 

exhaustive ML one.  

4.8 Summary 

This chapter has contributed to the development of adaptive MUD schemes using both real 

and complex valued NN models for the SDMA–OFDM wireless communication system. The 

efficacy of these detectors and the appropriate training algorithms are also discussed in detail. 

The performances of these detectors are compared with the linear MMSE, optimal ML and 

proposed sub optimal IWO assisted MER MUD schemes in terms of the BER performance, 

convergence speed and complexity analysis. Among various NN models, the two well known 

nonlinear classifiers such as MLP and RBF are considered for classification of real valued 

signals. It is observed that, the RBF networks and MLP networks have distinct behaviors. 

The initial states of the RBF network can be determined a prior to network training, but the 

MLP network always use randomly generated parameters initially. With the selection of 

sufficient number of hidden neurons, the RBF network can work efficiently for signal 

classification at BS receiver. From extensive simulation study, it is observed that the real 

valued NN models are not suitable for higher ordered signal as these models cannot mitigate 

phase distortion caused by the channel environment. In such case, the complex valued NNs 

such as the proposed CMLP and CRBF can be good alternatives as these models can 

simultaneously correct the amplitude and phase distortions of the transmitted signals. 

Activation functions of the neurons have been selected for nonlinear mapping of complex 

input and output in both the CMLP and CRBF structures. Suitable modifications for the BP 

and GD algorithm have been incorporated to train the CMLP and CRBF models respectively. 
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These make the weight vectors to converge to the optimal solutions with minimum number of 

training symbols. It is observed that, the CRBF MUD is found to be more effective since its 

activation function better approximates the Gaussian noise distribution and it does better non-

linear mapping of input and output. The NN based adaptive MUD techniques are preferred 

due to their great complexity gain over the exhaustive ML one. Thus, the proposed CRBF 

comes out to be clear winner as it gives a BER performance close to the optimal ML for 

MUD in the SDMA–OFDM systems, especially for channels with nonlinear distortion and in 

the critical overload scenarios. However, while the number of users in the system increases, 

the number of hidden nodes in the neural structure HN has to be increased accordingly to 

maintain a near optimal performance of the detector.  



Chapter 5 

Progressive Image Transmission and  

Detection Using Proposed 

 MUD Schemes



Chapter – 5: Progressive Image Transmission and Detection Using Proposed MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[125] 

In previous two chapters, new MUD schemes using OTs aided MER and NN based adaptive 

models are proposed for the SDMA–OFDM wireless communication system. In this chapter, 

all the proposed MUD schemes are validated by reconstructing images efficiently at the 

receiving end of the SDMA–OFDM system, when all users in the system simultaneously 

transmitting individual images through wireless fading channels. Recently, progressive image 

transmission over noisy channel using Set Partitioning Hierarchical Tree (SPIHT) [90] 

coding has become an active field of research. The SPIHT coding will convert a two 

dimensional image into compressed binary bit streams. This algorithm uses Discrete Wavelet 

Transform (DWT) for de-correlation to remove special redundancy. As wireless 

communication channels often suffer from multipath fading, shadowing and ISI, the 

transmission of such a compressed image is a major concern due to the error prone 

propagation environment. Transmission errors may degrade the received image quality a lot. 

By incorporating an efficient MUD at the receiving end, these degraded images can be 

recovered. This kind of image transmission and detection analysis is extensively studied for 

space time coded MIMO–OFDM system in the literatures [91, 92]. Unlike SDM/MIMO, the 

SDMA is basically designed for improving capacity gain but not for achieving transmit 

diversity. Hence, image transmission and detection in SDMA–OFDM system is quite 

challenging compare to SDM/MIMO system. However, this research work attempts to 

investigate the image transmission and recovery using both the proposed OTs aided MER and 

NN based MUD techniques for SDMA–OFDM system and proposed suitable image 

detection schemes.  

This chapter describes the image compression technique such as Set Partitioning in 

Hierarchical Trees (SPIHT) algorithm with its advantages over another classical image 

compression technique such as Embedded Zero tree Wavelet (EZW) algorithm in Section 5.1. 

In the SPIHT algorithm, the coefficient ordering for progressive image transmission, the 

basic objectives of set partitioning used in SPIHT and set partitioning rules are also 

discussed. Application of this algorithm for the typical SDMA–OFDM system model used in 

image transmission is presented in Section 5.2. Further, Section 5.3 introduces various 

statistical parameters for image quality analysis such as Bias, Standard Deviation Difference 

(SDD), Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR) and 

Correlation Coefficient (CC). Image reconstruction using proposed MUD schemes is 

analyzed through simulation study and described in Section 5.4. Finally, summary of the 

chapter is presented in Section 5.5.  
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5.1 SPIHT image coding for progressive image transmission 

With the recent development of the multimedia applications, the total amount of image data 

accessed and exchanged by users has grown enormously. Hence, the research for 

compression of still image has grown extremely. Compression algorithms are to be reversible 

or lossless, which means that the images reconstructed from the coded bit stream are identical 

to the originals. The classical image compression scheme consists of a decorrelator, followed 

by a quantizer and an entropy coding stage. The purpose of the decorrelator is to remove the 

spatial redundancy. Hence, it must be tailored to the specific characteristics of the data to be 

compressed. The commonly used decorrelators are Discrete Cosine Transforms (DCTs) and 

Discrete Wavelet Transforms (DWTs). Compared to DCT, the DWT decorrelators are 

advantageous since it was noticed that a full-frame DWT allows long-range correlation to be 

effectively removed, whereas in DCTs, the full-frame processing leads to a spread of energy 

in the transformed plane due to the fact that these are not suitable for the analysis of non-

stationary signals. Once a signal has been decorrelated, it is necessary to find a compact 

representation of its coefficients, which may be in form of sparse data. Eventually, an entropy 

coding algorithm is used to map such coefficients into code words in a way that the average 

codeword length is minimized. One of such classical coding technique which uses DWT 

decorrelators is the EZW introduced by Shapiro [89]. This technique has become popular as 

it offers good performance, is extremely fast in both producing the embedded bit stream and 

fast in execution.  With this embedded bit stream, the image can be decompressed and 

reconstructed if the reception of code bits is stopped at any point of transmission. Therefore, 

such an image transmission is called as progressive image transmission.  

Later, Said and Pearlman proposed a modified form of the EZW algorithm, that is, the 

Set Partitioning in Hierarchical Trees (SPIHT) [90]. SPIHT algorithm carries the significant 

strengths of EZW and orders transmitted coefficients across similar sub bands. This 

algorithm also identifies every significant coefficient and partitions the set of coefficients into 

subsets of insignificant coefficients. This algorithm achieves improved performance over 

EZW algorithm, because of its ability to distinguish the insignificant coefficient groups.  

5.1.1 Coefficient ordering for progressive image transmission 

Initially, the image is defined by a set of pixel values 
1 2,p pi  , where (p1, p2) is the pixel co-

ordinate. The transformation of hierarchical sub bands (Ex. Wavelet) for the pixel i is 

expressed in a general form as:  
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( )k i    (5.1) 

where i, k and Ω are the original image array, transformed coefficient array and unitary 

hierarchical sub band transformations respectively. Both the coefficient array and the original 

image array have the same dimensions. The encoder transmits the coefficients and the 

decoder updates itself according to the received bit stream. It is possible to reconstruct an 

approximated form of image î  from the approximated coefficient array k̂ , by the inverse

transformation as given by: 

 1 ˆî k  (5.2) 

At the decoder, the mean squared reconstruction error of the image is given by: 

 
1 2 1 2

1 2

2

2

, ,

ˆ 1ˆ ˆ( )m p p p p
p p

i i
E i i i i

N N


    (5.3) 

where N is total number of pixels and 
21

,p pi is the pixel intensity at the location (p1, p2). The 

sub band transformation is considered as lossless, and hence the mean square error is 

transformation invariant, that is: 

1 2 1 2

1 2

2

, ,

1ˆ ˆˆ( ) ( ) ( )m m p p p p
p p

E i i E k k k k
N

     (5.4) 

where 
21

,p pk  is the transform coefficient at the location (p1, p2). Initially, the decoder sets

21
,

ˆ 0p pk   for all coefficients, and if exact value of the coefficient 
21

,p pk is sent to the decoder, 

then the mean-square error given in (5.4) reduces by  21

2

,
ˆ

p pk N . This implies in an 

embedded bit stream, the large valued coefficients should be transmitted initially as they 

provide better reconstruction quality by decreasing the mean square error at a greater extent. 

Hence, the transform coefficients should be ordered according to the magnitude in an 

embedded bit stream generation. The concept of coefficient ordering can be further extended 

to bit-planes if the coefficients are ranked according to their binary representations and the 

most significant bits are transmitted first. If the coefficients are ranked in decreasing order of 

the minimum number of bits required for its magnitude representation, then the ordering is 

done according to:   
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2 2log ( ) log ( 1) , 1, 2,...,k c k c c N    (5.5) 

where the coefficients in the ordered space are represented by kη(c). 

5.1.2 Features of set partitioning 

In set partitioning approach, the ordered information need not be explicitly transmitted. As an 

alternative, the encoder and the decoder follow the same execution path and if the decoder 

receives the results of magnitude comparisons from the encoder, then it can recover the 

ordered information from the execution path. In set partitioning, no explicit sorting of 

coefficients is also done. Instead, for a given value of n, the coefficients are examined only if 

they fall within
1 2

1
,2 2n n

p pc   . Given the generic set Tm, the significance of Tm with respect 

to the nth bit plane is defined as: 

1 2
1 2

,
,

max 2
m

n
p p

p p T
c


 (5.6)

If this condition is not satisfied, then the subset Tm is insignificant and if the condition is 

satisfied, then the subset Tm is further partitioned to determine insignificant and significant 

subsets. The significant subsets are repetitively partitioned till single significant coefficients 

are identified. The set partitioning algorithm relies on the tree structure, often referred as 

spatial orientation tree, which includes the hierarchy, as shown in Figure 5.1. Based on the 

spatial orientation tree, the set partitioning algorithm defines some particular sets of wavelet 

coefficients, which are used for sorting the coefficients according to their significance. The 

spatial orientation tree establishes the sub band spatial relationship in the form of a recursive 

four-band split composed by a pyramid. Each node of the tree corresponds to a pixel and is 

identified by its pixel coordinate. Each of these nodes has four offspring at the same position 

in the same orientation pyramid in the next finer level, as clearly shown by arrows in the 

figure. The only exceptional case is the LL sub band existing at the highest level of pyramid. 

Pixels in this sub band form the root and groups of adjacent 2×2 pixels are composed. Other 

than one of the pixel, all the remaining three pixels have their four offspring in the HL, LH 

and HH sub bands of the same scale. For determining the descendant one out of the four is 

obviously left out since only three sub bands are exist. The hierarchical tree structure is used 

to examine the zero trees and the zero tree roots in EZW algorithm has similarity with the 

spatial orientation tree discussed as above. Every LL sub band pixel at the highest level has 

three offspring at the HL, LH and HH sub bands in the hierarchical tree of EZW. 
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Figure 5.1: Example of descendant trees in a three-level wavelet decomposition 

5.1.3 Set partitioning rules 

The main feature of SPIHT algorithm is a set partitioning rule that is used to divide the set of 

wavelet coefficients into significant and insignificant subsets. The rule is based on the well-

known self similarity properties of the wavelet decomposition and aims for obtaining the 

insignificant subsets with a large number of elements, so that they can be coded easily. The 

set partitioning rule is designed to work in the subband hierarchy. The objective of the set 

partitioning algorithm should be such that the subsets expected to be insignificant contain 

larger number of elements and the subsets expected to be significant contain only one 

element. Given wavelet decomposition, the set of four coefficients at the coarsest resolution 

is used to initialize the algorithm. Then, with respect to a generic coefficient denoted by the 

index (p1, p2), the following sets are defined: 

O (p1, p2): This represents off spring set and these are the offspring of the node (p1, p2). It 

consists of all the pixel coordinates.   

D (p1, p2): This represents descendants set and these are descendants of the node (p1, p2). It 

consists of all the pixel coordinates.  

L (p1, p2): This is the difference set of D (p1, p2) and O (p1, p2). It consists of the node (p1, p2) 

descendants, other than the offspring. 

H (p1, p2): It contains all spatial orientation tree roots coordinates. It belongs to the pyramid 

highest level, that is the LL sub band. 


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Based on these definitions, the set partitioning rules are given below: 

Rule – 1: The initial partition contains D (p1, p2) for each 1 2( , )p p H . 

Rule – 2: If D (p1, p2) is found significant, then it is partitioned into L (p1, p2) and four single 

element sets with 1 2( , ) ( , )i j O p p . 

Rule – 3: If L (p1, p2) is found significant, then it is partition into four sets of D (i, j), where 

1 2( , ) ( , )i j O p p . 

5.1.4 SPIHT encoding and decoding 

Initially, the set partitioning rules are on the sub band coefficients. The spatial orientation tree 

is identical for both encoder and decoder and hence there is no explicit transmission of 

ordering information, as needed in other progressive transmission schemes. So this makes the 

algorithm more coding efficient compared to the previous techniques. In this algorithm, the 

order of the splitting pass is stored by means of three ordered lists, namely 

 List of Insignificant Pixels (LPI)

 List of Significant Pixels (LSP)

 List of Insignificant Sets (LIS)

In all these lists, each entry is identified by a coordinate (p1, p2). In LIP and LSP, the

entry represents individual pixels, whereas in LIS, the entry represents either the set D (p1, p2) 

or the set L (p1, p2). As an initialization step, the number of magnitude refinement passes (n)  

is determined from the maximum magnitude of the coefficients. Initially, all pixels are treated 

as insignificant. The initialization is followed by three major passes–the sorting pass, the 

magnitude refinement pass and the quantization step update pass, which are iteratively 

repeated in this order till the least significant refinement bits are transmitted. During the 

sorting pass, the pixels in the LIP, which were insignificant till the previous pass, are tested 

and those that become significant are moved to the LSP. Similarly, the sets in LIS are 

examined in order for significance and those which are found to be significant are removed 

from the list and partitioned. The new subsets with more than one element are added to the 

LIS and the single pixels are added to LIP or the LSP by depending upon their significance. 

During the magnitude refinement pass, the pixels in the LSP are encoded for nth
 
most 

significant bit. The encoding algorithm used in the SPIHT can be summarized in the 

following steps: 
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Step – 1: Initialization:

Output   
1 22 , 1 2log max ( , )   p pn c p p ;  

Set the LSP as an empty list, that is, LSP = {Ø}, add all 1 2( , )p p H to the LIP and only the 

three with descendants also to the LIS = {D (p1, p2)}.  

Step – 2: Sorting pass: 

Step–2.1: For each entry in the LIP, the significance is tested (“1” if significant, “0” if 

not significant). If it found as significant, remove it from the LIP and add to the LSP.  

Step–2.2: For each entry in the LIS, the significance is tested. If it found significant, 

output is its sign. Perform the set partitioning using the Rule–2 or Rule–3, depending 

upon whether it is the D (p1, p2) set or the L (p1, p2) set. According to the significance, 

update the LIS, LIP and LSP.  

Step – 3: Refinement pass: 

For each (p1, p2) in the LSP, except those included in the last sorting pass, output the nth bit of 

c(p1, p2). 

Step – 4: Quantization step update: 

In this pass, n is reduced by 1 and the Steps 2, 3 and 4 are repeated until n = 0. 

The decoder steps are exactly identical. Only the output from the encoder will be 

replaced by the input to the decoder. 

5.2 Proposed SDMA–OFDM system model for image transmission 

Figure 5.2 demonstrates the proposed SDMA–OFDM system uplink model for progressive 

image transmission. In this figure, each of the four simultaneous users (Mobile Stations 

(MS)) is equipped with a single transmitting antenna and the base station receiver is equipped 

with a four element antenna array. In this system, each of the four users transmits a unique 

gray scale image. The image from each user is first fed to the embedded SPIHT image coder 

to produce a sequence of bit stream. The data bit stream bl (l = 1, 2,…, 4) of the four mobile 

users are then encoded by the four independent FEC encoders. The resultant coded bit 

streams c
lb  is then mapped to higher order xl, which are modulated by the IFFT based OFDM 

modulators and transmitted over the MIMO channel. At the base station receiver, the 

received symbol vector yp (p = 1, 2,…, 4) is forwarded to the MUD block. Then the detected 
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soft bits ˆ c
lb  are generated, which are forwarded to the four independent FEC decoders to 

produce detected bit streams ˆ
lb . Further, the received data stream of each user is fed to their 

individual SPIHT decoder to recover the transmitted image. The mathematical representation 

of the transmitted symbols, received symbols and the MIMO channel models are according to 

the representation given in Section 2.3. 

Figure 5.2: Block diagram of the SDMA-OFDM system used for image transmission with L = P = 4 

In the SDMA–OFDM system, if the transmitted images are RGB images instead of 

gray scale images, then RGB image encoders and decoders are incorporated as shown in 

Figure 5.3. The RGB image encoders and decoders use three separated SPIHT algorithms for 

three color frames. Generally, a color image (RGB image) is characterized by a correlation 

between the neighboring pixels of each color channel. The correlation can be reduced by 

transforming RGB plane into a de-correlated color space such as luminance and chrominance 

plane (YCRCB). The three de-correlated planes will feed into independent SPIHT image 

coders to produce sequence of bit streams. Now the three independent data streams are 

converted into a single data stream as: ,1 ,1 ,1 , , ,[ , , , ..., , , ]
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the size of encoded data stream from each SPIHT coder. Then, similar to gray scale image 

transmission, the transmitted data bit stream bl (l = 1, 2,…, 4) of the four mobile users is 

encoded and transmitted through MIMO channel. The received symbol vector yp (p = 1, 2,…, 

4) is then forwarded to the MUD block and recovered. The FEC decoded data stream ˆ
lb  of

each user is splited for YCRCB planes and forwarded through independent SPIHT decoders. 

Further, the colored image can be obtained by converting this YCRCB plane to RGB plane. 

(a) 

(b) 

Figure 5.3: (a) RGB Image encoder (b) RGB Image decoder 

5.3 Statistical parameters for image quality analysis   

Image transmission over wireless media requires some sort of image compression as well as 

channel coding. Even though, the compressed image is more sensitive towards channel fading 

and noisy environment, which can be overcome by using various proposed MUDs discussed 

in the previous chapters. The quality of the reconstructed image can be evaluated through 

some statistical parameters like Bias, Standard Deviation Difference (SDD), Root Mean 

Square Error (RMSE), Correlation Coefficient (CC), Peak Signal to Noise Ratio (PSNR) etc. 

The mathematical description about these parameters is given below. Let A and B are 

transmitted and reconstructed images respectively of size m × n then:   

Bias: The bias refers to the difference in radiance between the means of the original and 

reconstructed images and the value of the difference relative to the mean of the original 

image. The smaller Bias represents better image quality. 

 , ,

1
( , )

m n m n
Bias A B A B

m n
 

   (5.7) 

lb
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Standard Deviation Difference (SDD):  The standard deviation of the difference image is 

relative to the mean of the original image, which indicates the level of the error at any pixel. 

The smaller SDD represents better image quality. Let C is the difference image between A 

and B then: 

 
1/2

2

, ,

1 1
( ) , where

m n m n
SDD C C C C C

m n m n
      

  (5.8) 

Root Mean Square Error (RMSE): The RMSR is a frequently used measure of the difference 

between the reconstructed image B and the actual image A. These individual differences are 

also called residuals, and the RMSE serves to aggregate them into a single measure of 

predictive power. The RMSE of a model prediction with respect to the estimated variable B is 

defined as the square root of the mean squared error: 

 2

,m n
B A

RMSE
m n







(5.9) 

Correlation Coefficient (CC): The CC represents how similar is the features of the 

reconstructed image with the original image. The CC is defined as:   

  
, ,,

2 2
, ,, ,

( )( )
( , )

( ) ( )

m n m nm n

m n m nm n m n

A A B B
CC A B

A A B B

 


 


 

(5.10) 

where A  and B stand for the mean values of the corresponding images. The CC is calculated 

globally for the entire image. The result of this equation shows similarity in the small 

structures between the original and reconstructed images. 

PSNR: The PSNR is the ratio between peak power of an image and the power of noisy image 

that due to reliability of its representation. The PSNR is the most commonly used quality 

measure for reconstructed compressed images. The higher PSNR represents better image 

quality. The PSNR is most simply defined using the mean squared error (MSE) as given 

below: 

2

10

255
( ) logPSNR dB dB

MSE

 
  

 
(5.11) 
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Each of the test images is compressed using the efficient SPIHT coder with a bit rate of 2 bpp 

(bits per pixel). In the SPIHT technique, “bior 4.4” is used to get the wavelet coefficients and 

then the coefficients are processed as per the SPIHT algorithm to generate an embedded bit 

stream. The stream length of image is Ne = 131072. The entire user’s data is protected with 

their individual half rate Convolutional Encoders consisting polynomials (133, 171) in octal 

notation. Thus, after FEC the stream length is 262144. The symbol mapper chosen for all 

these simulations is a BPSK modulator. Hence, a total of 2048 OFDM frames each of 128 

sub carrier length along with a guard interval of length 32 symbols are employed for 

transmitting a single image. The wireless MIMO channel considered here is the SUI channel 

mode as presented in Appendix A. This channel is assumed to be OFDM symbol-invariant, 

which means the channel multipath delays are assumed to be constant over the transmission 

of one OFDM symbol.  

In the beginning of the simulation study, the reconstructed image of the MMSE 

detector while varying Eb/No is shown in Figure 5.5. The features of the original images may 

not restored in the reconstructed image at Eb/No = 10 dB due to the influence of the noise in 

the channel. By increasing the signal power (Eb/No = 20 dB) the quality of the reconstructed 

image gets improved. 

         (a)                                                    (b)                                                       (c) 

Figure 5.5: Reconstructed Kid image using MMSE MUD at different values of Eb/No (a) Eb/No = 10 dB (b) 

Eb/No = 15 dB (c) Eb/No =  20 dB 

Figure 5.6 depicts the rate distortion plot with respect to PSNR value while increasing 

bpp. The reconstructed images at three different bpp values are shown pictorially in Figure 

5.7. The images are reconstructed at 15 dB Eb/No using MMSE detectors. It is observed that, 

at lower bpp values the reconstruction performance is very poor since compression is more 

and these compressed images are more prone to channel noise. On the other hand, as the bpp 
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value increases, the total number of bits require to represent an image also increases, which 

requires high bandwidth though the reconstruction is good. Explicitly, the total number of 

bits require to represent a gray scale image of size 256×256 are 32768, 131072 and 524288 at 

bpp = 0.5, 2, 8 respectively. Hence, bpp value is chosen as 2 in rest of simulations 

considering the tradeoff between the performance and band width.   

Figure 5.6: PSNR of Kid image while varying bits per pixels at 15 dB Eb/No 

         (a)                                                    (b)                                                       (c) 

Figure 5.7: Reconstructed Kid image using MMSE MUD at different compression rates (a) bpp = 0.5 (b) 

bpp = 2 (c) bpp = 8 

Figure 5.8 to Figure 5.11 depict the reconstructed image of User–1 to User–4 

respectively, using classical MMSE, ML, proposed OTs aided MBER and proposed NN 

based MUD schemes under multiuser environment.  All of these images are transmitted 

through the SUI channel as given in Appendix A at 15 dB Eb/No.  
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.8: Reconstructed Kid image using various MUDs (a) MMSE (b) AGA MBER (c) ADEA MBER 

(d) IWO MBER (e) MLP (f) RBF (g) ML    
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.9: Reconstructed Lena image using various MUDs (a) MMSE (b) AGA MBER (c) ADEA MBER 

(d) IWO MBER (e) MLP (f) RBF (g) ML    
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.10: Reconstructed Cameraman image using various MUDs (a) MMSE (b) AGA MBER (c) 

ADEA MBER (d) IWO MBER (e) MLP (f) RBF (g) ML   
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.11: Reconstructed Peppers image using various MUDs (a) MMSE (b) AGA MBER (c) ADEA 

MBER (d) IWO MBER (e) MLP (f) RBF (g) ML    
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From Figure 5.8 to 5.11, it is noticed that, the spectral quality gets improved from MMSE to 

optimal ML detectors. The MMSE detector produced blurred pictures due to poor detection 

ability while the ML detector is preserving more spectral details. Although the reconstruction 

performance of the restored images using OTs aided MBER MUDs are better compared to 

the MMSE one, the severe impulsive-like noise still exists in these image. However, the 

reconstructed images using NN based MUDs especially RBF MUD are more correlated with 

the image reconstructed by the optimal ML detector as these model is a better nonlinear 

classifier.   

In Figure 5.8–Figure 5.11, the visual comparisons of the reconstructed images using 

various MUD techniques are illustrated for the SDMA–OFDM system. Further, in Table 5.1–

Table 5.4, the comparison between actual and reconstructed images using various MUD 

schemes by means of some statistical parameters for image quality analysis are provided for 

all four user in the SDMA–OFDM system at 15 dB Eb/No value.   

Table 5.1: Performance comparison of MMSE, OTs aided MBER, NN and ML MUD schemes based on 

statistical parameters while reconstructing Kid image  

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 2.2871 46.157 2132.098 0.772 11.079 

AGA MBER 1.3907 41.083 1693.036 0.826 17.024 

ADEA MBER 0.2754 27.275 744.0275 0.921 20.666 

IWO MBER 0.1954 19.353 374.5447 0.961 22.326 

MLP 0.0938 14.313 280.6799 0.971 31.177 

RBF 0.0937 1.6753 204.8943 0.976 34.971 

ML 0.0039 1.0427 1.087147 0.999 47.768 

Table 5.2: Performance comparison of MMSE, OTs aided MBER, NN and ML MUD schemes based on 

statistical parameters while reconstructing Lena image 

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 0.1286 22.708 515.6853 0.903 21.470 

AGA MBER 0.0466 7.0464 49.65385 0.938 27.877 

ADEA MBER 0.0016 5.2078 27.12151 0.964 31.767 

IWO MBER 0.0009 1.4312 3.310033 0.991 33.521 

MLP 0.0003 1.4292 2.048375 0.995 39.029 

RBF 0.0003 0.1819 2.042692 0.999 41.029 

ML 0.0002 0.1387 1.924197 0.999 45.029 
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Table 5.3: Performance comparison of MMSE, OTs aided MBER, NN and ML MUD schemes based on 

statistical parameters while reconstructing Cameraman image 

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 0.0917 7.2761 52.9497 0.980 33.80837 

AGA MBER 0.0312 4.1148 16.9320 0.993 40.56111 

ADEA MBER 0.0177 3.2164 6.35622 0.998 42.81202 

IWO MBER 0.0136 2.1239 4.51119 0.999 42.81202 

MLP 0.0027 1.8519 3.42946 0.999 42.81202 

RBF 0.0021 1.8448 3.40318 0.999 42.81202 

ML 0.0003 0.1239 1.53628 0.999 42.81202 

Table 5.4: Performance comparison of MMSE, OTs aided MBER, NN and ML MUD schemes based on 

statistical parameters while reconstructing Peppers image 

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 2.328 51.187 2625.57 0.593 9.458214 

AGA MBER 0.259 29.159 850.299 0.844 12.66148 

ADEA MBER 0.100 25.846 668.072 0.878 14.00151 

IWO MBER 0.094 20.973 439.882 0.921 14.81834 

MLP 0.065 13.369 178.749 0.968 22.82056 

RBF 0.034 4.3146 18.6165 0.997 26.18914 

ML 0.005 2.0428 4.17309 0.999 41.92629 

From Table 5.1–Table 5.4, it is observed that the recovered image using MMSE MUD 

suffers from highly spectral distortion by providing low correlation with actual transmitted 

image. It is also noticed that the Bias, SDD, RMSE, CC and PSNR of the proposed NN based 

detector are better than the classical MMSE and proposed OTs aided MBER detectors and 

close to the optimal ML detector. 

Figure 5.12 describes the performance evaluation through PSNR curves while varying 

Eb/No values for all four users in the SDMA–OFDM system. It is observed that, the peak 

PSNR values of the four users are different, as each of these individual users undergoes 

through individual channel fading. At any Eb/No value, the PSNR values of the proposed NN 

based MUDs always have substantial improvement over the MMSE and OTs aided MBER 

detectors. Hence, the NN based MUDs have better image restoring capability and reconstruct 

images which are more correlated with the images reconstructed by the optimal ML 

detectors.    
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   (a)      (b) 

   (c)     (d) 

Figure 5.12: PSNR of reconstructed images using various MUDs for all four different users (a) Kid (b) 

Lena (c) Cameraman (d) Peppers 

5.4.2 Results and discussion for color image transmission 

In this section, the MMSE, ML, proposed OTs aided MSER and complex valued NN based 

MUDs are utilized for reconstructing color images. In this case, 256×256 pixel size standard 

RGB Kid, RGB Lena, RGB Cameraman and RGB Peppers images as shown in Figure 5.13 

are considered to be transmitted through User–1, User–2, User–3 and User–4 of the SDMA–

OFDM system respectively.  All of these images are transmitted through the MIMO Rayleigh 

fading channel as given in Appendix A at 15 dB Eb/No. The color images have three planes 

namely Red (R), Green (G) and Blue (B) planes. Hence, each of the test images is first 

compressed using three separate SPIHT coders with a bit rate of 2 bpp for those. In the 

SPIHT technique, “bior 4.4” is used to get the wavelet coefficients and then the coefficients 
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are processed as per the SPIHT algorithm to get an embedded bit stream. Initially, the R, G 

and B planes are converted to Y, CR and CB planes. The stream length of each bit stream 

among Y, CR and CB planes is Ne=131072. Total stream length of all three planes is 393216. 

This entire data is protected with their individual half rate Convolutional Encoders consisting 

polynomials (133, 171) in octal notation. Thus, after FEC the stream length is 786432. The 

symbol mapper chosen for all these simulations is a 4–QAM modulator. Hence, 3072 OFDM 

frames each of 128 sub carrier length along with a cyclic prefix of length 32 symbols are 

employed. The channel is also assumed to be OFDM symbol-invariant, which means the 

channel multi path delays are constant over the transmission of one OFDM symbol.  

  (a)   (b) 

 (c)   (d) 

Figure 5.13: 256×256 pixel size RGB test images transmitted through four different users in the SDMA–

OFDM system (a) RGB Kid (b) RGB Lena (c) RGB Cameraman (d) RGB Peppers 

Figure 5.14 to Figure 5.17 depict the reconstructed images of User–1 to User–4 

respectively, using classical MMSE, ML, proposed OTs aided MSER and proposed complex 

valued NN based MUD schemes under multiuser environment.  
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.14: Reconstructed RGB Kid image using various MUDs (a) MMSE (b) AGA MSER (c) ADEA 

MSER (d) IWO MSER (e) CMLP (f) CRBF (g) ML    
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.15: Reconstructed RGB Lena image using various MUDs (a) MMSE (b) AGA MSER (c) ADEA 

MSER (d) IWO MSER (e) CMLP (f) CRBF (g) ML    
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.16: The reconstructed RGB Cameraman image using various MUDs (a) MMSE (b) AGA MSER 

(c) ADEA MSER (d) IWO MSER (e) CMLP (f) CRBF (g) ML    
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   (a)    (b) 

   (c)     (d) 

   (e)     (f) 

(g) 

Figure 5.17: Reconstructed RGB Peppers image using various MUDs (a) MMSE (b) AGA MSER (c) 

ADEA MSER (d) IWO MSER (e) CMLP (f) CRBF (g) ML    
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Figure 5.14–Figure 5.17 show the visual comparison among the reconstructed images using 

various MUD schemes at 15 dB Eb/No. The enhancement in the spectral quality is observed 

clearly from MMSE detector to ML detector.  Here, the inability of the MMSE detector is 

once again evident through a noisy reconstructed image. On the other hand, the proposed 

complex valued NN based MUDs especially the CRBF, restore images accurately and 

preserving more spatial details compared to the MMSE and OTs aided MSER MUDs. 

However, under low fading environment, the visual comparisons may not be distinguishable, 

for example like the reconstructed image of User–3 as shown in Figure 5.16.  Therefore, 

comparisons based on statistical parameters like Bias, SD, RMSE, CC and PSNR may be 

more accurate. The comparisons of all MUDs with respect to these statistical parameters are 

presented in Table 5.5–Table 5.8 at 15 dB Eb/No value. From these tables, it is found that the 

ML has the best performance, while the MMSE performs the worst. It is also observed that, 

the average values of these parameters for all three planes using the proposed CRBF detector 

are better than the MMSE and OTs aided MSER detectors and close to optimal ML detector.  

Table 5.5: Performance comparison of MMSE, OTs aided MSER, complex valued NN and ML MUD 

schemes based on statistical parameters while reconstructing RGB Kid image  

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 78.5105 62.923 21535.85 0.455 2.574 

AGA MSER 1.53611 55.787 3170.079 0.609 9.102 

ADEA MSER 1.41948 40.238 1672.297 0.789 10.11 

IWO MSER 0.17168 19.451 625.3441 0.814 10.81 

CMLP 0.00328 1.3179 3.472037 0.921 20.59 

CRBF 0.00283 0.1601 1.737453 0.966 28.98 

ML 0.00075 0.0411 1.692936 0.999 45.73 

Table 5.6: Performance comparison of MMSE, OTs aided MSER, complex valued NN and ML MUD 

schemes based on statistical parameters while reconstructing RGB Lena image 

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 1.174 48.669 2492.739 0.631 10.2412 

AGA MSER 0.136 23.035 474.8325 0.851 13.3366 

ADEA MSER 0.131 19.717 472.4277 0.883 14.8022 

IWO MSER 0.038 19.493 309.2142 0.888 16.1038 

CMLP 0.011 17.561 164.7168 0.915 24.8608 

CRBF 0.004 12.277 5.582896 0.943 31.0146 

ML 0.001 1.7582 3.152403 0.999 43.3221 
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Table 5.7: Performance comparison of MMSE, OTs aided MSER, complex valued NN and ML MUD 

schemes based on statistical parameters while reconstructing RGB Cameraman image 

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 0.0012 9.044 209.59 0.963 31.4732 

AGA MSER 0.0828 7.470 83.379 0.984 38.2432 

ADEA MSER 0.0338 6.125 67.407 0.991 38.2432 

IWO MSER 0.0203 3.963 55.737 0.994 38.2432 

CMLP 0.0177 3.129 17.166 0.998 38.2432 

CRBF 0.0107 3.122 9.7905 0.998 38.2432 

ML 0.0107 0.144 9.7459 0.999 38.2432 

Table 5.8: Performance comparison of MMSE, OTs aided MSER, complex valued NN and ML MUD 

schemes based on statistical parameters while reconstructing RGB Peppers image 

MUD Bias  SDD RMSE CC PSNR in dB 

MMSE 4.359 71.963 5698.83 0.361 3.4292 

AGA MSER 2.292 39.279 1547.76 0.629 12.695 

ADEA MSER 1.164 35.147 1290.75 0.662 13.748 

IWO MSER 1.057 28.654 828.225 0.831 14.381 

CMLP 0.076 10.276 111.344 0.974 23.682 

CRBF 0.028 3.6485 17.1873 0.997 30.449 

ML 0.002 1.0854 1.19081 0.999 43.983 

Similar to the Figure 5.12, Figure 5.18 shows the PSNR of all reconstructed images 

while varying Eb/No value in the 4×4 SDMA–OFDM system. Here, the PSNR value of each 

image is averaged for all three planes (R, G and B). It is observed that, the peak PSNR values 

of the four images are different as each individual user undergoes separate channel fading. 

Precisely, the peak PSNR values of the RGB Kid, RGB Lena, RGB Cameraman and RGB 

Peppers images using the MMSE MUD are obtained at 22, 20, 12, 20 dB Eb/No values 

respectively. Among various MUDs, the PSNR loss is more in case of MMSE MUD and less 

in case of ML MUD. Further, it can also seen that, the proposed NN based adaptive MUDs 

provide better PSNR gain over the MMSE and OTs aided MSER detectors for all users at the 

same Eb/No value. As a result the complex NN based MUDs has better image restoring 

capability. Particularly, the CRBF MUD provides a reconstructed image which is more 

correlated to the images reconstructed by the optimal ML detector.    
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  (a)    (b) 

   (c)   (d) 

Figure 5.18: PSNR of reconstructed images using various MUDs for all four different users (a) RGB Kid 

(b) RGB Lena (c) RGB Cameraman (d) RGB Peppers 

5.5 Summary 

This chapter gives insights into the suitability of the proposed OTs aided MER and NN based 

MUD schemes through reconstruction of both gray scale and colored images transmitted by 

multiple users simultaneously through wireless channels. A progressive image transmission 

over noisy channel environment using SPIHT coding is addressed in the beginning of the 

chapter. It is observed that, in the SPIHT algorithm, by increasing the number of bits per 

pixel, the reconstruction performance gets better and at the same time it require high 

bandwidth. So, a compromise between bandwidth and performance has been thought over. 

This study has also pointed out the potentialities of multi resolution analysis for lossy 

0 5 10 15 20 25
-10

0

10

20

30

40

50

Eb/No in dB

PS
N

R
 in

 d
B

ML
CRBF
CMLP
IWO MSER
ADEA MSER
AGA MSER
MMSE

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Eb/No in dB

PS
N

R
 in

 d
B

ML
CRBF
CMLP
IWO MSER
ADEA MSER
AGA MSER
MMSE

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

Eb/No in dB

PS
N

R
 in

 d
B

ML
CRBF
CMLP
IWO MSER
ADEA MSER
AGA MSER
MMSE

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

20

30

40

50

Eb/No in dB

PS
N

R
 in

 d
B

ML
CRBF
CMLP
IWO MSER
ADEA MSER
AGA MSER
MMSE



Chapter – 5: Progressive Image Transmission and Detection Using Proposed MUD Schemes 
--------------------------------------------------------------------------------------------------------------------------------------- 

[153] 

compression of still images at different rates. In order to show the efficacy of various 

detectors in a multiuser environment, a SDMA–OFDM system with four users is considered, 

where all four users are transmitting separate images. In the simulation study, image 

reconstruction is studied using various MUDs like MMSE, ML, proposed OTs aided MER 

and NN models considering a practical scenario by choosing fixed Eb/No value of 15 dB. 

From simulation results, it is found that the ML detector has the best reconstructed image, 

while the MMSE performs the worst. Further, the reconstructed images of the OTs aided 

MER MUDs are usable images but still require improvement of image quality. On the other 

hand, the visual and the statistical parameter comparisons of the reconstructed images using 

NN based MUDs especially RBF and CRBF are found to be qualitatively better than the 

MMSE and OTs aided MER detectors by preserving more spectral details. The parameters of 

statistical comparison metrics considered here are the Bias, SDD, RMSE, CC and PSNR. 

Though, the performance of ML detector is optimal, as it imposes quite exhaustive 

complexity, the RBF and CRBF MUDs offer best receiving solution for fixed wireless 

SDMA–OFDM systems. The suggested nonlinear MUDs can be suitably implemented for 

real time image traffic over a radio link in future communication systems.  



Chapter 6 

Conclusions and Future 

 Scope of Research 
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Evolution of WiMAX and 4G networks along with the exponential growth in the number of 

users has required a system with high spectral efficiency. A promising solution for the same 

can be achieved by the combination of OFDM with SDMA. In the uplink of SDMA–OFDM 

system, multiple users communicate with a multiple antenna base station simultaneously on 

the same frequency band using their own spatial signature. However, there is a chance of 

correlation among different users due to the channel multipath distortion at the receiver, 

which is known as Multiple Access Interference (MAI). MAI degrades the performance of 

the system and hence design of multiuser detector under such situation has become an ever 

challenging issue. The research undertaken in this thesis is primarily concerned with the 

development of efficient MUD schemes for SDMA–OFDM wireless communication system. 

The performance evaluation has been carried out over the standard MIMO Rayleigh fading, 

SUI and SWATM channel models in order to investigate almost realistic performance 

utilizing proposed MUD schemes.

Achievements of the undertaken research are highlighted 6.1. Section 6.2 discusses 

some of the limitations of the present work and points out the future scope of research. 

6.1 Summary of the thesis 

The work presented in this thesis starts with comparison of performances of some classical 

linear and nonlinear MUDs applied to SDMA–OFDM system. Further, the proposed OTs 

aided MER and NN based MUDs are tested for their suitability under various user loads. 

Comparison with optimal ML and linear MMSE detectors in terms of system performance 

and complexity analysis has been a major attempt to prove the efficacy of the proposed MUD 

schemes. Detailed achievements of the research are presented chapter wise as below.  

Chapter–2 of the thesis provides details of the SDMA–OFDM system model a brief 

comparison between all classical MUD schemes. The performance the ML detector is found 

to be optimal at the cost of dramatically increased complexity, especially in context of a high 

number of users and higher order modulation schemes. By contrast, the linear ZF and MMSE 

exhibit low complexity while suffering from performance loss. Therefore, several other 

nonlinear MUDs are studied to make a tradeoff between performance and complexity. 

However, all these techniques fail to detect users in overload scenario. In such a condition, it 

is found that the CG aided MBER MUD is a better alternative. But the CG algorithm requires 

initial weights and differentiable cost functions, hence a new research direction to overcome 

these limitations is thought.  
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 Chapter–3 is entirely devoted to discuss one of the major contributions of the work 

undertaken relating to the design of novel MUD schemes, that is the design of OTs aided 

MER MUD schemes. Metaheuristic OTs like AGA, ADEA and IWO algorithms are 

considered for MER weight optimization. The extensive simulation study shows that the 

proposed MUDs are superior in performance over MMSE and require less computational 

complexity compared to ML detector. Further it is also observed that, the performance of 

these OTs is greatly influenced by selection of control parameters. The performance AGA is 

influenced by Pc, Pm, Gg and Ng while ADEA is influenced by Cp, F, Gd and Nd. Similarly, 

the IWO MER MUDs is subjective to the parameters like NI, Imax, Smax, σmax, σmin and m. 

Selecting right combination of these control parameters yields a better performance. Hence, 

development of suitable methods for selection of control parameters has been included in this 

chapter. Among all the discussed OTs, the IWO algorithm is found to be better as it allows all 

of the individuals to participate in the reproduction process. Sometimes, it may be also 

possible that the individuals with the lower fitness may carry more useful information 

compared to the fitter individuals. Hence, this algorithm, gives a chance to the less fit plants 

to reproduce and if the seeds produced by them have good finesses in the colony, they can 

survive. Fitter individuals produce more seeds than less fit individuals, which improves the 

convergence and performance over the AGA and ADEA algorithms.  

Chapter–4 of the thesis provides another major contribution of this work through the 

design of NN based MUD schemes. As the NN models are highly nonlinear classifiers, these 

are well suited for detection of the multiuser signals, which are corrupted by nonlinear 

channel distortion. In the NN family, the real valued MLP and RBF models are used for 

multiuser signal detection when all the users are transmitting BPSK signals. However, in 

several communication systems, the available signals are in complex form when the system is 

communicating higher order signals like M–QAM. In this case, the classical real valued NN 

models cannot be applied directly because it requires real valued inputs and activation 

functions. In order to extend the real valued NN models to complex signals, the activation 

function and training algorithms should be redefined. In the CMLP model, the sigmoid 

function is divided in to two components for responding to the real and imaginary portions of 

the input signals individually. For CRBF model, the ‘sech’ activation function is preferred 

over Gaussian function, because the Gaussian function always results real valued response. 

The conventional BP and GD algorithms used for updating the real valued NNs cannot be 

directly applied for complex valued NN models. Hence, suitable modifications have been 
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incorporated to these algorithms. The extensive simulation study shows that the proposed 

OTs aided MER and NN based MUDs are superior in performance compared to MMSE and 

OTs aided MER MUDs. The performance improvement of these MUDs over the MMSE in 

full load (L = P = 4) condition at 10–4 BER is given in Table 6.1.  

Table 6.1: Performance comparisons of OTs aided MER and NN MUDs in terms of Eb/No gain (in dBs) 

Channel 
AGA ADEA IWO 

Real Valued 
NNs 

Complex Valued 
NNs 

MBER MSER MBER MSER MBER MSER MLP RBF CMLP CRBF 

MIMO 
Rayleigh 

4.5 5.1  4.55 5.1  4.6  5.3  4.6 5.1  6.7  9  

SUI 4.1  4.2  4.2  4.25 4.2  4.1  7.1 9.05 4.7  6.8  

SWATM 6.8  7.6  6.8  7.5  6.9  7.7 9.8 13.5 8.3  11.6 

In the complexity analysis, the percentage of complexity require for OTs aided MER 

MUDs in terms of computational operations is compared with the computationally exhaustive 

ML detector and presented in Table 6.2 when L = 6 and P = 4.  

Table 6.2: Complexity comparisons of OTs aided MER and NN MUDs in terms of computational 

operations 

MUD Technique Percentage of complexity 

AGA 
MBER 15.43 

MSER 19.145 

ADEA 
MBER 13.87 

MSER  17.51 

IWO 
MBER 12.95 

MSER 13.205 

Real Valued 
NNS 

MLP 13.87 

RBF 8.985 

Complex 
Valued NNS 

MLP 17.51 

RBF  16.49 

Chapter–5 illustrates the ability of the proposed MUDs while reconstructing both gray 

scale and colored images, which are transmitted by multiple users simultaneously through 

wireless channels. A comparative analysis among all proposed and the classical MUD 

schemes based on some statistical parameters like Bias, SDD, RMSE, CC and PSNR. The 

SPIHT algorithm is considered for image compression and coding as it performs better than 
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the classical EZW technique. From simulation results, it is observed that the ML detector 

produces the best restored image, while the MMSE performs the worst. The reconstructed 

images of the OTs aided MER MUDs are usable images but still require improvement. 

Finally, both the visual and the statistical parameter comparisons of the NN MUDs are found 

to be qualitatively better than the MMSE and OTs aided MER detectors.  

Finally, the general inference derived from the extensive simulation study is that the 

proposed NN based MUDs, especially the RBF and CRBF detectors, are efficient in terms of 

BER performance, faster convergence and computational complexity. Besides that, the NN 

base detectors has additional complexity gain over classical MMSE, ML and proposed OTs 

aided MER detectors, because these detectors do channel approximation and signal detection 

simultaneously. As the ML detector is a highly complex one, the RBF and CRBF MUDs are 

found to be the suitable alternative for MUD in the SDMA–OFDM system.  

6.2 Limitations and future scope of research 

 The NN based adaptive MUDs, proposed in the thesis are training based. Sometimes,

depending on the channel severity, the use of long training sequences and/or frequent

repetition of training for estimation of channel parameters may significantly reduce the

information transmission rate resulting in the loss of bandwidth efficiency. So blind NN

based adaptive MUD techniques for SDMA–OFDM may be tried to solve this issue.

 In this research, the classical BP and GD algorithms are used for training the NN

parameters, whereas these algorithms require differentiable activation functions. Hence,

selection of appropriate nonlinear activation function of neuron node to suit the

requirements in detection of high order modulated signals is a challenging task. So the

free parameters of the NN updating with metaheuristic OT based algorithms may be

attempted and a new class of hybrid MUDs for SDMA–OFDM system can be developed.

 Investigation of robust video transmission scheme for SDMA–OFDM system with the

proposed soft computing based MUDs may be tried in view of future streaming

multimedia requirements with improved video quality.

 In the SDMA based system, when the users are in close proximity, there is a chance of

experiencing Co-channel Interference (CCI). So CCI cancellation schemes may be

incorporated with the detectors at the BS receiver to improve the system performance

further.



[159] 

Dissemination of Work:

International Journals: 

1. Kala Praveen Bagadi and Susmita Das, “Multiuser Detection in SDMA-OFDM Wireless Communication

System Using Complex Multilayer Perceptron Neural Network,” Wireless Personal Communications,

Springer Publication, DOI: 10.1007/s11277-013-1492-2.

2. Kala Praveen Bagadi and Susmita Das, “An efficient complex radial basis function model for multiuser

detection in an SDMA/MIMO–OFDM system”, IET Communications, vol.7, no. 13, pp. 1394-1404, 2013.

3. Kala Praveen Bagadi and Susmita Das, “Minimum symbol error rate multiuser detection using an effective

invasive weed optimization for MIMO/SDMA–OFDM system”, International Journal of Communication

Systems, Wiley, doi: 10.1002/dac.2579, 2013.

4. Kala Praveen Bagadi and Susmita Das, “Comparative analysis of multiuser detection techniques in SDMA–

OFDM system over the correlated MIMO channel model for IEEE 802.16n,” International Journal of

Information Engineering, American V–king Scientific Publishing LTD, vol. 3, no. 1, pp.18–24, 2013.

5. Kala Praveen Bagadi and Susmita Das, “Neural network–based multiuser detection for SDMA–OFDM

system over IEEE 802.11n indoor wireless local area network channel models” International Journal of

Electronics, Taylor & Francis, vol. 100, no. 10, pp. 1332-1347, 2013.

6. Kala Praveen Bagadi and Susmita Das, “Neural network-based adaptive multiuser detection schemes in

SDMA–OFDM system for wireless application,” Neural Computing and Application, Springer, vol. 23, no.

3-4, pp. 1071-1082, 2013.

7. Bagadi K Praveen, Susmita Das and Sridhar K, “Image transmission over space time coded MIMO–OFDM

system with punctured turbo codes”, International Journal of Computer Applications,  Foundation of

Computer Science, vol. 51, no. 15, pp. 1–6, 2012.

8. Kala Praveen Bagadi and Susmita Das, “MIMO–OFDM channel estimation using pilot carriers”,

International Journal of Computer Applications,  Foundation of Computer Science, vol. 2, pp. 81–86, 2010.

Conferences Proceedings: 

1. Kala Praveen Bagadi, Susmita das and Sathyam Bonala, “RBF Network Based Receiver Design for

Multiuser Detection in SDMA–OFDM System”, Proceedings of Annual IEEE India Conference,  Kochi,

India, December 7th–9th, pp. 01–04, 2012. doi: 10.1109/INDCON.2012.6420794.

2. Kala Praveen Bagadi and Susmita Das, “Complex Multi Layered Perceptron Model Based Receiver Design

for Multiuser Detection in SDMA-OFDM System”, AIP Proceedings of the Sixth Global Conference on

Power Control and Optimization, Las Vegas, USA, August 6th–8th, pp. 227–233, 2012. doi:

http://dx.doi.org/10.1063/1.4768 992.

3. Kala Praveen Bagadi and Susmita Das, “Comparison of Neural based Multiuser Detection Techniques for

SDMA based Wireless Communication System,” Proceedings of IEEE Students Conference Engineering

and Systems, Allahabad, India, March 16th–18th, pp. 01–05, 2012. doi: 10.1109/SCES.2012.6199033.



[160] 

4. Kala Praveen Bagadi and Susmita Das, “Neural network based multiuser detection techniques in SDMA-

OFDM system,” Proceedings of Annual IEEE India Conference, Hyderabad, India, December 16th–18th, pp.

01–04, 2011. doi: 10.1109/INDCON.2011.6139436

5. Susmita das, and Kala Praveen Bagadi, “Comparative Analysis of Various Multiuser Detection Techniques

in SDMA-OFDM System over the Correlated MIMO Channel Model for IEEE 802.16n,” Proceedings of

World Acadamy of Science, Engineering and Technology, Issue 77, pp. 663-667, June 2011, Paris, France.

6. Kala Praveen Bagadi and Susmita Das, “Low Complexity near Optimal Multiuser Detection Scheme for

SDMA-OFDM System,” Proceedings of  IEEE International Conference on Devices and Communications,

Ranchi, India,  February 24th–25th, pp. 01–05, 2011. doi: 10.1109/ICDECOM.2011.5738463

7. Kala Praveen Bagadi and Susmita Das, “Channel Estimation and Multiuser Detection Techniques in

SDMA-OFDM System,” Proceedings of International Conference on Information, Signals and

Communications, Ahmadabad, India, February 5th–6th, 2011.



References 



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[162] 

1. R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission”, Bell Syst.

Tech. J., vol. 45, pp. 1775–1796, Dec. 1966.

2. S. B. Weinstein and P. M. Ebert, “Data transmission by frequency-division multiplexing using the discrete

Fourier transform”, IEEE Trans. on Commun., vol. 19, pp. 628–634, Oct. 1971.

3. B. Hirosaki , “An orthogonally multiplexed QAM system using the discrete Fourier transform,” IEEE

Trans. on Commun., vol. 29, pp. 982–989, Jul. 1981.

4. B. Hirosaki, “A 19.2 Kbits Voice and Data Modem Based on Orthogonality Multiplexed QAM

Techniques”, Proc. of IEEE ICC’85, pp. 1–5, 1985.

5. IEEE Standard 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications, Nov. 18, 1997.

6. IEEE Standard 802.11a: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications: high-speed physical layer in the 5 GHz band, 1999.

7. R. V. Nee and R. Prasad, “OFDM for wireless multimedia communications”, Artech House Inc. Pub.,

London, 2000.

8. L. Hanzo, M. Munster, B. J. Choi, and T. Keller, “OFDM and MC-CDMA for broadband multi-user

communications, WLANs and broadcasting”, IEEE Press/Wiley press, Piscataway, NJ, 2003.

9. R. Prasad, “OFDM for wireless communications systems”, Artech House Inc. Pub., London, 2004.

10. J. H. Winters, “Optimum combining in digital mobile radio with co-channel interference”, IEEE J. Sel.

Areas in Commun., vol. 2, pp. 528–539, Jul. 1984.

11. J. H. Winters, “On the capacity of radio communication systems with diversity in a Rayleigh fading

environment”, IEEE J. Sel. Areas in Commun., vol. 5, pp. 871–878, Jun. 1987.

12. V. Tarokh, N. Seshadri and A. R. Calderbank, ‘‘Space-time codes for high data rate wireless

communication: Performance criterion and code construction,’’ IEEE Tran. Inf. Theory, vol. 44, pp. 744–

765, Mar. 1998.

13. S. M. Alamouti, “A simple transmit diversity technique for wireless communications”, IEEE J. Sel. Areas

in Commun., vol. 16, pp. 1451–1458, Oct. 1998.

14. G. Foschini, ‘‘Layered space-time architecture for wireless communication in a fading environment when

using multi-element antennas’’, Bell Labs Tech. J., pp. 41–59, Autumn 1996.

15. G. D. Golden, C. J. Foschini, R. Valenzuela and P.W. Wolniansky, ‘‘Detection algorithm and initial

laboratory results using the V-BLAST space-time communication’’, IEEE Electron. Lett., vol. 35, pp. 14–

16, Jan. 1999.

16. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using

multiple antennas”, Wireless Personal Commun., vol. 6, pp. 311–335, Mar. 1998.

17. G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication”, IEEE Trans. on

Commun., vol. 46, pp. 357–366, Mar. 1998.

18. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans. Telecommun., vol. 10, pp. 585–

595, Nov. 1999.

19. A. J. Paulraj, D. A. Gore, R. U. Nabar and H. Bolcskei, “An overview of MIMO communications: A key

to gigabit wireless”, Proc. of IEEE, vol. 92, pp. 198–218, Feb. 2004.



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[163] 

20. H. Bolcskei, D. Gesbert and A. J. Paulraj, “On the capacity of OFDM based spatial multiplexing system”,

IEEE Trans. on Commun., vol. 50, pp. 225–234, Feb. 2002.

21. H. Sampath, S. Talwar, J. Tellado, V. Erceg and A. J. Paulraj, “A fourth-generation MIMO–OFDM

broadband wireless system: Design, performance, and field trial results”, IEEE Commun. Mag., vol. 40,

pp. 143–149, Sep. 2002.

22. L. Giangaspero, L. Agarossi, G. Paltenghi, S. Okamura, M. Okada and S. Komaki, “Co-channel

interference cancellation based on MIMO OFDM systems”, IEEE wireless Commun., vol. 9, pp. 8–17,

Dec. 2002.

23. G. L. Stuber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram and T. G. Pratt, “Broadband MIMO –

OFDM wireless communications, “ Proc. of IEEE, vol. 92, pp. 271–294, Feb. 2004.

24. V. V. Zelst and T.C.W. Schenk, “Implementation of a MIMO OFDM based wireless LAN system”, IEEE

Trans. on Signal Process., vol. 52, pp. 483–494, Feb. 2004.

25. P. Vandenameele, L. Van der Perre, M.G.E. Engels, B. Gyselinckx and H. J. De Man, “A combined

OFDM/SDMA approach”, IEEE J. on Sel. Areas in Commun., vol. 18, pp. 2312–2321, Nov. 2000.

26. S. Thoen, L. Van der Perre, M. Engels and H. De Man, “Adaptive loading for OFDM/SDMA based

wireless network”, IEEE Trans. on Commun., vol. 50, pp. 1798–1810, Nov. 2002.

27. J. S. Blogh and L. Hanzo, “Third generation systems and intelligent wireless networking”, IEEE

Press/Wiley, England, UK, 2002.

28. L. Hanzo, M. Munster, B. J. Choi, T. Keller, “OFDM and MC–CDMA for Broadband Multi-User

Communications, WLANs and Broadcasting”, IEEE Press/Wiley, West Sussex, 2003.

29. M. Jiang and L. Hanzo, “Multiuser MIMO – OFDM using subcarrier hoping”, IEE Proc. Commun., vol.

153, pp. 802–809. Dec. 2006.

30. M. Jiang and L. Hanzo, “Multiuser MIMO – OFDM for Next–Generation Wireless Systems”, Proc. of the

IEEE, vol. 95, pp. 1430–1469, Jul. 2007.

31. J. M. F. Xavier, V. A. N. Barroso and J. M. F. Moura, “Closed–form blind channel identification and

source separation in SDMA systems through correlative coding”, IEEE J. Sel. Areas in Commun., vol. 16,

pp. 1506–1517, Oct. 1998.

32. I. Bradaric, A. P. Pertropulu and K. I. Diamantaras, “Blind MIMO FIR channel identification based on

second-order spectra correlations”, IEEE Trans. on Signal Process., vol. 51, pp. 1668–1674, Jun. 2003.

33. S. Yatawatta and A.P. Petropulu, “Blind channel estimation in MIMO OFDM system with multiuser

interference”, IEEE Trans. on Signal Process., vol. 54, pp. 1054–1068, Mar. 2006.

34. F. Gao and A. Nallanathan, “Blind channel estimation for MIMO OFDM system via non-redundant linear

precoding”, IEEE Trans. on Signal Process., vol. 55, pp. 784 – 789, Jan. 2007.

35. C. C. Tu and B. Champagne, “Blind recursive subspace–based identification of time–varying wideband

MIMO channels”, IEEE Trans. on Veh. Technol., vol. 61, pp. 662–674, Feb. 2012.

36. M. Biguesh and A. B. Gerhman, “Training based MIMO channel estimation: A study of estimation

tradeoffs and optimal training signals”, IEEE Tran. on Signal Process., vol. 54, pp. 884–893, Mar. 2006.

37. X. Dai, “Pilot – aided OFDM/SDMA channel estimation with unknown timing offset”, IEE Proc.

Commun., vol. 153, pp. 352 – 398, Jun. 2006.



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[164] 

38. M. Jiang, J. Akhtman and L. Hanzo, “Iterative joint channel estimation and multiuser detection for

multiple antenna aided OFDM systems”, IEEE Trans. Wireless Commun., vol. 6, pp. 2904–2914, Aug.

2007.  

39. J. Zhang, L. Hanzo and X. Mu, “Joint decision directed channel and noise variance estimation for MIMO

OFDM/SDMA systems based on expectation conditional maximization”, IEEE Tans. on Veh. Technol.,

vol. 60, pp. 2139–2151, Jun. 2011.

40. X. Lu, J. Xu and G. Lin, “Channel estimation techniques based on short preamble and pilot MIMO–

OFDM systems”, Inter. J. of Dig. Cont. Technol. and its Appl., vol. 6, pp. 449–456, Jul. 2012.

41. G. Kang, Y. Yang, P. Zhang, P. Hasselbach and A. Klein, “Pilot Deign for inter cell interference

mitigation in MIMO OFDM system”, IEEE Commun. Lett., vol. 11, pp. 237–239, Mar. 2007.

42. K. C. Hung and D. W. Lin, “Theory an deign of near optimal MIMO OFDM transmission system for

correlated multipath Rayleigh fading channels”, J. of Commun. and Net., vol. 9, pp. 150–158, Jun. 2009.

43. H. Minn and D. Munoz, “Pilot design for channel estimation of MIMO OFDM systems with frequency

dependent I/Q imbalances”, IEEE Trans. on Commun., vol. 58, pp. 2252–2264, Aug. 2010.

44. J. W. Kang, Y. Whang, H. Y. Lee and K. S. Kim, “Optimal pilot sequence design for multi cell MIMO –

OFDM systems”, IEEE Trans. on Wireless Commun., vol. 10, pp. 3354–3367, Oct. 2011.

45. Z. Andalibi, H. H. Nguyen and J. E. Salt, “Training design for precoded BICM–MIMO systems in block–

fading channels”, EURASIP J. on Wireless Commun. and Net., doi:10.1186/1687-1499-2012-80, 2012.

46. S. Verdu, “Multiuser Detection”, Camb. Univ. Press, Cambridge, U.K, 1998.

47. P.W. Wolniansky, G.J.Foschini, G.D. Golden and R.A. Valenzuela, “V-BLAST: an architecture for

realizing very high data rates over the rich-scattering wireless channel,” Inter. Symp. on Sig., Sys., and

Electron., pp. 295–300, 1998.

48. M. Damen, K. A. Meraim and J. C. Belfiore, “Generalized sphere decoder for asymmetrical space-time

communication architecture,” IEEE Electron. Lett., vol. 36, pp. 166–167, Jan. 2000.

49. B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans. on

Commun., vol. 51, pp. 389–399, Mar. 2003.

50. B. Hassibi and H. Vikalo, “On the sphere decoding algorithm: I expected complexity”, IEEE Trans. on

Signal Process., vol. 53, pp. 2806–2818, Aug. 2005.

51. K. J. Kim, J. Yue, R. A. Iltis and J. D. Gibson, “A QRD-M/Kalman filter-based detection and channel

estimation algorithm for MIMO–OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, pp. 710–721,

Mar. 2005.

52. M. Arar and A. Yongacoglu, “Efficient detection algorithm for 2N×2N MIMO systems using alamouti

code and QR decomposition”, IEEE Commun. Lett., vol. 10, pp. 819–821, Dec. 2006.

53. J. Cha, J. Ha and J. Kang, “Low complexity iterative QRD–M detection algorithm for V–BLAST

systems”, IEEE Electron. Lett., vol. 43, pp. 1374–1376, Nov. 2007.

54. A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner and H. Bolckei, “VLSI implementation of

MIMO detection using the sphere decoding algorithm”, IEEE J. of Solid State Cirt., vol. 40, pp. 1566–

1577, Jul. 2005.



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[165] 

55. M. El-Khamy, H. Vikalo, B. Hassibi, and R. J. McEliece, “Performance of Sphere Decoding of Block

Codes,” IEEE Trans. on Commun., vol. 57, pp. 2940–2950, Oct. 2009.

56. J. S. Kim, S. H. Moon, and I. Lee, “A New Reduced Complexity ML Detection Scheme for MIMO

Systems,” IEEE Trans. on Commun., vol. 58, pp. 1302–1310, Apr. 2010.

57. J. Jalden and P. Elia, “Sphere decoding complexity exponent for decoding full rate codes over the quasi

static MIMO channel”, IEEE Trans. on Inf. Theory, vol. 58, pp. 5785–5803, Sep. 2012.

58. H. Jian, X. Yao and Y. Shi, “A simplified QRD-M signal detection algorithm for MIMO–OFDM

systems”, J. of Electron., vol. 27, pp. 88–93, Jan. 2010.

59. K. J. Kim, M. O. Pun and R. A. Iltis, “QRD based precoded MIMO–OFDM system with reduced

feedback”, IEEE Trans. on Commun., vol. 58, pp. 394–398, Feb. 2010.

60. X. Wu, and J. S. Thompson, “A simplified unbiased MMSE metric based QRDM decoder for MIMO

systems”, 6th Inter. Conf. on Wirel. Commun., Netw. And Mobi. Compu., pp. 1–4, 2010.

61. S. Chen, A. K. Samingan, B. Malgrew and L. Hanzo, “Adaptive minimum BER linear multiuser detection

for DC–CDMA signals in multipath channels”, IEEE Trans. on Signal Process., vol. 49, pp. 1240–1247,

Jun. 2001.

62. B. Widrow and S. D. Stearns, “Adaptive Signal Processing”, Pears. Edu. Pub., New Delhi, India, 2009.

63. M. Y. Alias, A. K. Samingan, S. Chen and L. Hanzo, “Multiple Antenna Aided OFDM Employing

Minimum Bit Error Rate Multiuser Detection,” IEEE Electron. Lett., vol. 39, pp. 1769–1770, Nov. 2003.

64. M. Y. Alias, S. Chen and L. Hanzo, “Multiple–Antenna–Aided OFDM Employing Genetic-Algorithm-

Assisted Minimum Bit Error Rate Multiuser Detection,” IEEE Trans. on Veh. Technol., vol. 54, pp. 1713–

1721, Sep. 2005.

65. S. Chen, A. Livingstone and L. Hanzo, “Minimum Bit–Error Rate Design for Space–Time Equalization-

Based Multiuser Detection”, IEEE Trans. on Commun., vol. 54, pp. 824–832, May 2006.

66. H. Rehman, I. Zaka, M. Naeem, S. I. Shah and Jamil Ahmad, “Minimum Bit Error Rate Multiuser

Detection for OFDM–SDMA Using Particle Swarm Optimization”, Springer Lect. Notes in Comp. Sci.,

vol.  4681, pp. 1247–1256, 2007.

67. J. I. Ababneh, T. F. Aldalgamouni, A. A. Alqudah, “Minimum Bit Error Rate Multiuser Detection of

SDMA-OFDM System Using Differential Evolutionary Algorithm”, Proc. of IEEE 6th Inter. Conf. on 

Wireless and Mob. Comp., Net. and Commun., pp. 273–279, 2010. 

68. M. Jiang, and L. Hanzo, “Genetically enhanced TTCM assisted MMSE multi-user detection for SDMA–

OFDM,” Proc. of the IEEE 60th Veh. Technol. Conf., vol. 3, pp. 1954–1958, 2004.

69. P. A. Haris, E. Gopinathan, and C. K. Ali, “Performance of Some Metaheuristic Algorithms for Multiuser

Detection in TTCM–Assisted Rank–Deficient SDMA–OFDM System,” EURASIP J. on Wireless Commun

and Net., doi:10.1155/2010/473435, 2010.

70. P. A. Haris, E. Gopinathan, and C. K. Ali, “Artificial Bee Colony and Tabu Search Enhanced TTCM

Assisted MMSE Multi–User Detectors for Rank Deficient SDMA-OFDM System,” Wireless Personal

Commun., doi: 10.1007/s11277-011-0264-0, 2011.



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[166] 

71. J. Zhang, S. Chen, X. Mu, and L. Hanzo, “Turbo Multi-User Detection for OFDM/SDMA Systems

Relying on Differential Evolution Aided Iterative Channel Estimation,” IEEE Trans. on Commun., vol. 60,

pp. 1621–1633, Jun. 2012.

72. J. Zhang, S. Chen, X. Mu and L. Hanzo, “Differential Evolution Algorithm Aided Minimum Symbol Error

Rate Multi-user Detection for Multi-user OFDM/SDMA System,” Proc. of IEEE Vehi. Technol. Conf., pp.

1–5, 2012.

73. Kurt Hornik, “Multilayer feedforward networks are universal approximators”, Neural Networks, vol. 2, no. 

5, pp. 359–366, 1989.

74. Kurt Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural Networks, 

vol. 4, no. 2, pp. 251–257, 1991.

75. S. Haykin, “Neural networks”, Pears. Edu. Pub., Singapore 1999.

76. U. Mitra and V. Poor, “Neural network techniques for adaptive multiuser detection”, IEEE J. Sel. Areas

Commun., vol. 12, pp. 1460–1470, Dec. 1994.

77. K. B. Ko, S. Choi, C. Kang and Daesik Hong, “RBF Multiuser Detector with Channel Estimation

Capability in a Synchronous MC-CDMA System,” IEEE Trans. Neural Networks, vol. 12, pp. 1536–1539,

Nov. 2001.

78. T. C. Chuah, B. S. Sharif and O. R. Hinton, “Robust CDMA Multiuser Detection Using a Neural-Network

Approach,” IEEE Trans. Neural Networks, vol. 13, pp. 1532–1539, Nov. 2002.

79. M.G. Shayesteh and H. Amindavar, “Performance analysis of neural network detection in DS/CDMA

systems”, AEU Inter. J. of Elect. and Commun., vol. 57, pp. 220–236, 2003.

80. C. Sacchi, G. Gera, C. Regazzoni, “Neural Network-Based Techniques for Efficient Detection of Variable-

Bit-Rate Signals in MC-CDMA Systems Working over LEO Satellite Networks”, Signal Process., vol. 85,

pp. 505–522, Mar. 2005.

81. T. Kim and T. Adali, “Fully complex valued mult-layer perceptron for nonlinear signal processing”, J. of

VLSI Signal Process. Sys. for. Sig., Image and Technol., vol. 32. pp. 29–43, Aug. 2002.

82. T. Kim and T. Adali, “Approximation by fully complex multilayer perceptron”, Neural Computing, vol.

15. pp. 1641–1666, Jul. 2003.

83. R. Pandey, “Fast blind equalization using complex valued MLP”, Neural Process. Lett., vol. 21, pp. 215–

225, Jun. 2005.

84. I. Cha and S. A. Kassam, “Channel equalization using adaptive complex radial basis function networks”,

IEEE J. of Sel. Areas in Commun., vol. 13, pp. 122–131, Jan. 1995.

85. Q. Gan, P. Saratchandran, N. Sundararajan, and K. R. Subramanian, “A Complex Valued Radial Basis

Function Network for Equalization of Fast Time Varying Channels”, IEEE Trans. on Neural Networks,

vol. 10, pp. 958–960, Jul. 1999.

86. M.B. Li, G.B. Huang, P. Saratchandran and N. Sundararajan, “Complex–valued growing and pruning RBF

neural networks for communication channel equalization”,  IEE Proc. Vis. Image Signal Process., vol.

153, pp. 411–418, Aug. 2006

87. S. Chen, L. Hanzo and S. Tan, “Symmetric Complex-Valued RBF Receiver for Multiple-Antenna-Aided

Wireless Systems”, IEEE Trans. on Neural Networks, vol. 19, pp. 1658–1663, Sep. 2008.



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[167] 

88. J. M. Shapiro, “Embedded image coding using zerotrees of wavelets coefficients”, IEEE Trans. on Signal

Process., vol. 41, pp. 3445–3462, Dec. 1993.

89. A. Said, A. A. Pearlman, “A New, Fast, and Efficient Image Codec Based on Set Partitioning in

Hierarchical Trees,” IEEE Trans. on Cir. and Syst. for Video Tech., vol. 6, pp. 243–250, Jun. 1996.

90. J. Song, K. J. R. Liu, “Robust Progressive Image Transmission over OFDM System Using Space-Time

Block Codes,” IEEE Tran. on Multimedia, vol. 4, pp. 394–406, Sep. 2002.

91. Y. Sun, Z. Xiong, “Progressive Image Transmission over Space-Time Coded OFDM–Based MIMO

System with Adaptive Modulation”, IEEE Tran. on Mobile Comp., vol. 5, pp. 1016–1028, Aug. 2006.

92. T. Hwang, C. Yang, G. Wu, S. Li and G.Y. Li, “OFDM and its wireless applications: A survey”, IEEE

Trans. on Veh. Technol., vol. 58, pp. 1673–1694, May 2009.

93. E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj and H. V. Poor, “MIMO wireless

communications”, Camb. Univ. Press, Cambridge, 2007.

94. J. Mietzner, R. Scober, L. Lampe, W. H. Gerstacker and P. A. Hoeeher, “Multiple antenna techniques for

wireless communications–A comprehensive literature survey”, IEEE Commun., Sur., and Tuto., vol. 11,

Second quarter 2009.

95. B. Lu, G. Yue and X. Wang, “Performance analysis and design optimization of LDPC coded MIMO

OFDM systems”, IEEE Trans. on Signal Process., vol. 52, pp. 348–361, Feb. 2004.

96. C. Dubuc, D. Starks, T. Creasy and Y. Hou, “A MIMO-OFDM prototype for next-generation wireless

WANs”, IEEE Commun. Mag., vol. 42, pp. 82–87, Dec. 2004.

97. G. V. Rangaraj, D. Jalihal and K. Giridhar, “Exploiting multipath diversity in multiple antenna OFDM

sytems with spatially correlated channels”, IEEE Trans. on Veh. Technol., vol. 54, pp. 1372–1378, Jul.

2005.  

98. Y. Chen, E. Aktas and U.Tureli, “Optimal space frequency group codes for MIMO–OFDM system”, IEEE

Trans. on Commun., vol. 54, pp. 553–562, Mar. 2006.

99. S. H. Lee and J. Thompson, “Trade-Off of Multiplexing Streams in MIMO Broadcast Channels”, IEEE

Tans. On Commun., vol. 14, pp. 115–117, Feb. 2010.

100. C. F. Tsai, C. J. Chang, F. C. Ren and C. M. Yen, “Adaptive radio resource allocation for downlink 

OFDMA/SDMA system with multimedia traffic”, IEEE Trans. Wireless Commun., vol. 7, pp. 1734–1743, 

May 2008.  

101. L. Hanzo, Y. Akhtman, L. Wang and M. Jiang, “MIMO–OFDM for LTE, WiFi and WiMax: coherent 

verses non-coherent and co-operative turbo transceivers”, IEEE Press/Wiley, UK, 2011. 

102. Y. Isik and N, Taspinar, “Multiuser detection with neuralnetwork and PIC in CDMA systems for AWGN 

and Raykeugh fading asynchronous channels”, Wireless Pesonal Commun., vol. 43, pp. 1185–1194, Dec. 

2007. 

103. Z. W. Zheng, “Receiver Design for Uplink Multiuser Code Division Multiple Access Communication 

System Based on Neural Network,” Wireless Pesonal Commun., vol. 53, pp.  67–79, 2009. 

104. J. Wang, H. Yang, X. Hu and X. Wang, “An adaline neural network based multiuser detector improved by 

particle swarm optimization in CDMA systems,” Wireless Pesonal Commun., vol. 59, pp.  191–203, Jul. 

2011. 



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[168] 

105. N. Taspinar, and M. Cicek, “Neural Network Based Receiver for Multiuser Detection in MC-CDMA 

Systems,” Wireless Pesonal Commun., vol. 68, pp. 463–472, Jan. 2013.  

106. Y. Okumura, E. Ohmori, T. Kawano and K. Fukua, “Field strength and its variability in UHF and VHF 

land-mobile radio service,” Rev. Elect. Commun. Lab., vol. 16, Sep. 1968. 

107. M. Hata, “Empirical formula for propagation loss in land mobile radio services”, IEEE Trans. on Veh. 

Technol., vol. 29, pp. 317–325, Aug. 1980. 

108. EURO-COST-231 Revision 2, “Urban transmission loss models for mobile radio in the 900 and 1800 

MHz bands,” Sep. 1991. 

109. F. Ikegami, S. Yoshida, T. Takeuchi and M. Umehira, “Propagation factors controlling mean field strength 

on urban streets”, IEEE Trans. on Antennas Prop., vol. 32, pp. 822–829, Aug. 1984. 

110. J. Walfisch and H. L. Bertoni, "A theoretical model of UHF propagation in urban environments”, IEEE 

Trans. on Antennas and Prop., vol. 36, pp. 1788–1796, Dec. 1988. 

111. V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius and R. Bianchi, 

“An empirically based path loss model for wireless channels in suburban environments,” IEEE J. Sel. 

Areas in Commun., vol. 17, pp. 1205-1211, Jul. 1999. 

112. V. Erceg, K.V.S. Hari, M.S. Smith, D.S. Baum et al, “Channel Models for Fixed Wireless Applications”, 

Contrib. IEEE 802.16.3c-01/29r1, Feb. 2001. 

113. J. H.  Holland, “Adaptation in natural and artificial systems”, Univ. of Mich. Press, Ann Arbor, USA, 

1975. 

114. Z. Altman, R. Mittra and A. Boag, “New design of ultra wide-band communication antennas using a 

genetic algorithm”, IEEE Trans. on Antennas and Prop., vol. 45, pp. 1494–1501, Oct. 1997. 

115. S. Chen and Y. Wu, “Maximum likelihood joint channel and data estimation using genetic algorithm”, 

IEEE Trans. on Signal Process., vol. 46, pp. 1469–1473,  May 1998.  

116. X. H. Lin, Y. K. Kwok and V. K. N. Lau, “A genetic algorithm based approach to route selection and 

capacity flow assignment”, Computer Commun., vol. 26, pp. 961 – 974, Jun. 2003. 

117. G. Chakraborty, “Genetic algorithm to solve optimum TDMA transmission schedule in broadcast packet 

radio networks”, IEEE Trans. on Commun., vol. 52, pp. 765–777, May 2004.  

118. K. P. Ferentinos and T. A. Tsiligiridis, “Adaptive design optimization of wireless sensor network using 

genetic algorithms”, Computer Netw., vol. 51, pp. 1031–1051, Mar. 2007.  

119. D. Gozupek and F. Alagoz, “Genetic algorithm based scheduling in cognitive radio networks under 

interference temperature costraints”, Inter. J. of Commun. Syst., vol. 24, pp. 239–257, Feb. 2011. 

120. M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover and Mutation in Genetic 

Algorithms”, IEEE Trans. Syst. Man, and Cybernetics, vol. 24, pp. 656–667, Apr. 1994. 

121. Q. H. Wu, Y. j. Cao and J. Y. Wen, “Optimal reactive power dispatch using an adaptive genetic 

algorithm”, Inter. J. of Elect. Pow. and Ener. Syst., vol. 20, pp. 563–569, Nov. 1998. 

122. K. l. Mak, Y. S. Wong and X. X. Wang, “An adaptive genetic algoritm for manufacturing cell formation”, 

The Inter. J. of Adv. Manu. Technol., vol. 16, pp. 491 – 497, Jun. 2000.  

123. S. M. Libelli and P. Alba, “Adaptive mutation in genetic algorithms”, Soft Comp., vol. 4, pp. 76–80, 2000. 



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[169] 

124. G. Zhang, S. Wang and Y. Li, “A Self-adaptive Genetic algorithm based on the principle of searching for 

things”, J. of Computing, vol. 5, pp. 646–653, Apr. 2010. 

125. R. Storn, “Differential Evolution, A Simple and Efficient Heuristic Strategy for Global Optimization over 

Continuous Spaces”, J. of Glob. Optim., vol. 11, pp. 341–359, 1997. 

126. S. Yang, Y. B. Gan and A. Qing, “Sideband suppression in time modulated linear arrays by the differential 

evolution algorithm”, IEEE Ant. and Wireless Prop. Lett., vol. 1, pp. 173–175, 2002. 

127. D.G. Kurup, M. Himdi and A. Rydberg, “Synthesis of uniform amplitude unequally spaced antenna arrays 

using the differential evolution algorithm”, IEEE Trans. on Antennas and Prop., vol. 56, pp. 2210–2217, 

Sep. 2003. 

128. A. Massa, M. Pastorino and A. Randazzo, “Optimization of the directivity of a monopluse antenna with a 

subarray weighting by a hybrid differential evolution method”, IEEE Ant. and Wireless Prop. Lett., vol. 5, 

pp. 155–158, Dec. 2006. 

129. Y. Chen, S. Yang and Z. Nie, “The application of a modified differential evolution strategy to some array 

pattern synthesis problem”, IEEE Trans. on Antennas and Prop., vol. 56, pp. 1919–1927, Jul. 2008. 

130. J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, “Self adaptive control parameters in 

differential evolution: A comparative study on numerical benchmark problems”, IEEE Trans. on Evol. 

Comp., vol. 10, pp. 646–657, Dec. 2006. 

131. V. L. Huang, A. K. Qin and P.N. Suganthan, “Self adaptive differential algorithm for constrained real 

parameter optimization ”, IEEE Cong. on Evol. Comp., pp. 17–24, 2006. 

132. A.K. Qin, V. L. Huang and P.N. Suganthan, “Differential evolution algorithm with strategy adaptation for 

global numerical optimization”, IEEE Trans. on Evol. Comp., vol. 13, pp. 398–417, Apr. 2009. 

133. J. Zhang and A.C. Sanderson, “JADE: Adaptive differential evolution with optional external archive”, 

IEEE Trans. on Evol. Comp., vol. 13, pp. 945–958, Oct. 2009. 

134. J. Brest and M. S. Maucec, “Self adaptive differential evolution algorithm using population size reduction 

and three strategies”, Soft Computing, vol. 15, pp. 2157–2174, Nov. 2011. 

135. A. R. Mehrabian and C. Lucas, “A novel Numerical Optimization Algorithm Inspired from Weed 

Colonization”, Elsevier Ecol. Inform., vol. 1, pp. 355–366, Dec. 2006. 

136. S. Karimkashi, A. A. Kishk, “Invasive Weed Optimization and its Features in Electromagnetics”, IEEE 

Trans. on Antennas and Prop., vol. 58, pp. 1269–1278, Apr. 2010. 

137. F. M. Monavar, N. Komjani, P. Mousavi, “Application of Invasive Weed Optimization to Design a 

Broadband Patch Antenna with Symmetric Radiation Pattern”, IEEE Ant. and Wireless Prop. Lett., vol. 

10, pp. 1369–1372, 2011. 

138. S. Karimkashi, A A. Kishk, D. Kajfez, “Antenna Array Optimization Using Dipole Models for MIMO 

Applications”, IEEE Trans. on Antennas and Prop., vol. 59, pp. 1312–1316, Aug. 2011. 

139. G. G. Roy, S. Das, P. Chakraborty, P. N. Suganthan “Design of Non-Uniform Circular Antenna Arrays 

Using a Modified Invasive Weed Optimization Algorithm”, IEEE Tran. on Antennas and Prop., vol. 59, 

pp. 110–118, Jan. 2011. 



References 
--------------------------------------------------------------------------------------------------------------------------------------- 

[170] 

140. Kala Praveen Bagadi and Susmita Das, “Minimum Symbol Error Rate Multiuser Detection Using an 

Effective Invasive Weed Optimization for MIMO/SDMA – OFDM System”, Inter. J. of Commun. Syst., 

DOI: 10.1002/dac.2579, 2013. 

141. Susmita Das, “Performance of fuzzy logic-based slope tuning of neural equaliser for digital 

communication channel”, Neural Computing and Appl., vol. 21, pp. 423–432, Apr. 2012. 

142. Susmita Das, “A novel concept of embedding orthogonal basis function expansion block in a neural 

equalizer structure for digital communication channel”, Neural Computing and Appl., vol. 21, pp. 481–

488, Apr. 2012. 

143. Kala Praveen Bagadi and Susmita Das, “Neural network-based multiuser detection Schemes for SDMA–

OFDM system over IEEE 802.11n indoor wireless local area network channel models”, Inter. J. of 

Elect., vol.100, no. 10, pp. 1332–1347, 2013.

144. Kala Praveen Bagadi and Susmita Das, “Neural network-based adaptive multiuser detection Schemes in 

SDMA–OFDM system for wireless application,” Neural Computing and Appl., vol. 23, no. 3–4, pp. 1071–

1082, 2013. 

145. A. Cichocki and R. Unbehauen, “Neural Networks for solving systems of linear equations and related 

problems”, IEEE Trans. on Cir. and Syst., vol. 39, pp. 124–138, Feb. 1992. 

146. Tohru Nitta, “Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters”, Infor. Scien. 

Ref., Hershey, New York, 2009. 

147. H. Leung and S. Haykin, “The Complex Backpropagation Algorithm”, IEEE Trans. on Signal Process., 

vol. 39, pp. 2101–2104, Sep. 1991.  

148. N. Benvenuto and F. Piazza, “On the Complex Backpropagation Algorithm”, IEEE Trans. on Signal 

Process., vol. 40, pp. 967–969, Apr. 1992.  

149. R. Savitha, S.Suresh and N. Sundararajan, “A Full Complex-valued Radial Basis Function Network and its 

Learning Algorithm”, Inter. J. of Neural Syst., vol. 19, pp. 253–267, Aug. 2009. 

150. R. Savitha, S. Vigneswaran, S.Suresh and N. Sundararajan, “Adaptive Beamforming using Complex-

valued Radial Basis Function Neural Networks,” Proc. of IEEE Reg. Conf. TENCON, pp. 1–6, 2009. 

151. R. Savitha, S.Suresh and N. Sundararajan, “Complex–valued Function Approximation using a fully 

Complex-valued RBF (FC-RBF) Learning Algorithm”, Proc. of Inter. joint Conf. on Neural Net., pp. 

2819–2825, 2009. 



Appendix 



Appendix 
-------------------------------------------------------------------------------------------------------------------------------------------- 

[172] 

Appendix–A  

A. 1. MIMO Rayleigh fading channel model 

The MIMO multipath fading channel is modeled as a tapped delay line with 4 taps with non-

uniform delays [80, 81]. The gain associated with each tap is characterized by a Rayleigh 

Distribution and the maximum Doppler frequency. For each tap a set of complex zero-mean 

Gaussian distributed numbers is generated with a variance of 0.5 for the real and imaginary part, 

so that the total average power of this distribution is 1. This yields a normalized Rayleigh 

distribution for the magnitude of the complex coefficients. In a multipath environment, the 

received power r has a Rayleigh distribution, whose PDF is given by: 

2 2
( ) exp , 0

2

r r
pdf r r

 
     
 

(A. 1) 

The parameters of MIMO Rayleigh fading channel model is according to Table A. 1. The 

impulse response of this channel is shown in Figure A. 1. 

Table A. 1: MIMO Rayleigh fading Model 

Parameters Value

Number of Propagation Paths 4 

Sampling time 3 μ sec 

Delays [0, 1, 2, 3] μ sec. 

Average Path Gains [0, -5, -10, -15] (dB) 

Doppler frequency 60 Hz 

Antenna correlation uncorrelated 

Doppler spectrum type Rounded 

Figure A. 1: Impulse response of MIMO Rayleigh fading channel 
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A. 2. Stanford University Interim (SUI) channel models: 

The SUI channel models for fixed broad band wireless applications are characterized as three 

models depending on the territorial structures in propagation environment [112]. These channel 

models are namely A–Category, B–Category and C–Category. The maximum path loss category 

is the hilly terrain with moderate to heavy tree densities (A–Category). An intermediate path loss 

condition is the B–Category, which is composition of either high tree density and flat area or low 

tree density and hilly area. The minimum path loss category is mostly the flat terrain with light 

tree densities (C–Category). Considering the maximum path loss conditions, SUI–A Category 

model is chosen here and the associated parameters of the model is summarized in Table A. 2. 

The impulse response of this channel is shown in Figure A. 2. 

Table A. 2: SUI – A Channel Model Parameters 

Tap 1 Tap 2 Tap 3 Units 

Delay 0 14 20 μ sec 

Power  (Omni directional) 0 -10 -14 dB 

k- Factor (Omni directional) 1 0 0 

Doppler shift 0.4 0.3 0.5 Hz 

Sampling time 5 μ sec 

Antenna correlation 0.3 

RMS delay spread 5.24 μ sec 

Receiver antenna beam width Omni Directional 

Base station antenna beam width 1200 

This SUI Channel is modeled as multi-path, frequency selective with non-uniform delays 

and number of taps used is three.  The gain associated with first tap is characterized by a Rician 

Distribution and the gain associated with remaining two tap is characterized by a Raleigh 

Distribution. The Rayleigh distribution is according to eq. (A. 1) and the PDF of the Rician 

distribution with the received power r is given by: 

 2 2

02 2 2
( ) exp , 0

2

r Ar rA
pdf r I r

  

             
(A. 2)
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Here, I0(x) is the zero ordered modified Bessel function of the first kind. A is zero if there 

is no line of sight (LOS) component and the PDF of the received power becomes Rayleigh 

Distribution. The ratio K = A2/ (2σ2) in the Rician case represents the ratio of LOS component to 

NLOS component and is called the "K-Factor" or "Rician Factor." 

Figure A. 2: Impulse response of SUI channel 

A. 3. The Shortened Wireless Asynchronous Transfer Mode (SWATM) channel models 

The third channel that considered here is the Shortened Wireless Asynchronous Transfer Mode 

(SWATM) channel model, which is used for indoor wireless applications [8, 38]. This channel 

model’s parameters are as per the Advanced Communication Technologies and Services (ACTS) 

Median system specifications. The details of associated parameters of the channel model are 

summarized in Table A. 3.  The resulting impulse response of this channel is shown in Figure A. 

3. 

Table A. 3: The SWATM Channel Model Parameters 

Parameter Value

Sampling Time 4.44 n sec. 

Maximum Delay Spread ( max ) 48.9 n sec. 

Delays [0, 25, 48.93]  n sec. 

RMS Delay Spread 0.15276 n sec. 

Maximum Doppler frequency 2278 Hz 

Number of propagation paths 3 

Spectrum type Doppler’s rounded 
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Figure A. 3: Impulse response of SWATM channel 

The three tap SWATM channel is a truncated version of the five tap Wireless 

Asynchronous Transfer Mode (WATM) by retaining only the first three impulses. This reduces 

the total length of the impulse response, with the last path is arriving at a delay of 48.9 n sec, 

which correspond to 11 sample period. Each of the three path experiences independent Rayleigh 

fading having the normalized Doppler frequency of 1.235×10–5. 
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Appendix–B: 

B. Development of Back Propagation (BP) algorithm for MLP network training 

The typical training model of MLP is shown in Figure 4.7. This model has Q number of layers 

each consisting n neurons. Let, q
ng is the activation output of the nth neuron in the qth layer, then 

the net activation value of the nth neuron in the qth layer is given by: 

1
1

0

, 1,2,..., , 1,2,...,
qN

q q q
n nm m q

m

s W g n N q Q






  

Where,  q q
n ng s  and n = 0 refers to the bias input: i.e. 0 1qg  . Also, when q = 0, then 

0
0, 1,2,...,ng n N  refers the input signal. The BP algorithm adjusts network weights such that the 

output error is minimized. Hence, the sum-squared global instantaneous error at the output layer 

(Qth layer) is expressed as:  



  2

1

1
2

QN

n
n

E e

Where,  1 2Q
n n n Qe = d g , n = , ,...,N and nd is the desired response. The weight update q

nmW is 

proportional to the gradient of the error with respect to q
nmW . Hence, the gradient of the error with 

respect to q
nmW  can be expressed using chain rule as: 

   
  

    
q
nm

q q qR
n n n

q q q qR qW
nm n n n nm

e g sE E
E

W e g s W

In the above equation 
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
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 



' ;

q
qn
nqR

n

g
s
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ng 



1;

qR
qn

q
nm

s
W

The correction q
nmW applied to q

nmW is defined by delta rule as: 

q
nm

q
nm W

W E    (B.1)

Where, 
 
weight learning parameter. The use of minus sign is accounts for gradient descent in 

weight space. Accordingly, the use of eq. (B.1) yields: 

1q q q
nm n nW g   (B.2) 

Where, the local gradient q
n  is defined by: 

q q
q n n
n q q q qR

n n n n

e gE E

s e g s
   

   
   

  'q q
n ne s

The generalized error gradient for , 1,...,1q Q Q  and 1,2,..., qn N as: 

1
( 1) 1

1

, for

, for 1,...,1
q

n

q N
n q q

rn r
r

e q Q

e
W q Q


 




 

 



(B.3) 

 'q q q
n n ne s    (B.4) 
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Appendix–C: 

C. k-means clustering algorithm for center selection of RBF network 

The modeling of RBF network mainly depends on selection of centers and proper approximation 

of connection weights. During network training, it is essential to fix the centers of hidden 

neurons before updating connection weights.  The k-means clustering algorithm is one of 

efficient technique used to fix centers [85]. Let ( ), 1,2,...,h NC n h H denote the center vectors of 

RBF at an iteration i of the algorithm. Then, the k-means clustering algorithm proceeds as 

follows: 

a. Initialize ( )jC i with some random values. 

b. Generate a possible input vector ty randomly.

c. Find ( )th y , which denote the index of the nearest center for input vector ty using Euclidean

criterion as follows:

( ) arg min ( ) ( ) , 1,2,...,t t
h Nh

h y y i C i h H  

d. Adjust the centers of the RBF using

( ) [ ( ) ( )], if ( )
( 1)

( ) , otherise

t t
h c h

h

h

C i y i C i h h y
C i

C i

   
  



Where c is learning rate parameter that lies between zero and one. 

e. Increment i by 1, go back to step b, and continue the procedure until no noticeable changes

are observed in the centers hC . 
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Appendix–D: 

D. Development of Gradient Descent (GD) algorithm for RBF network training 

During RBF network training, the GD algorithm updates all free parameters at a time based on 

error obtained. The GD algorithm computes the instantaneous gradient of the squared error and 

updates the network free parameters in the opposite direction of their respective gradients. The 

sum squared error is defined as: 

where


   2

1

1
,

2

L
t

l l l l
l

E e e d x

Here, dl  represent desired response and , 1,2,...,t
lx l L  is the RBF network output for training 

vector , 1,2,...,t
py p P . The gradient of the weight vector can be obtained by calculating the 

gradient of the error with respect to Wlh according to: 


 

lhW
lh

E
E

W

Using chain rule  

  


  

t
l

t
lh l lh

E E x
W x W

In the above equations 


 

 t
l

E
e

x
; 





t
l

h
lh

x
z

W
(D.1)

From eq. (4.21) and (D.1), the update of weight can obtain as: 

  
lhlh w WW E

 lh w h lW z e (D.2) 
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Where, w is the weight learning parameter. Among the three control parameters (W, C and σ), 

the center control parameter is in complex form. Therefore, the update of Ch require gradient of 

error with respect to real and imaginary components of Ch. 

  
   

  hC R I
h h h

E E E
E j

C C C

using chain rule, 

    
 
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;

t t
l l

R t R I t I
h l h h l h

x xE E E E
C x C C x C
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 
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1

t P Rtl lh h
p hR

ph h

x W z
y C
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;   


 

 2
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t P Itl lh h
p hI

ph h

x W z
y C

C

     

 
      

 
 2
1 1

h

P PR It tlh h
C p h p h

p ph

W z
E e y C j y C (D.3)

From eq. (4.21) and (D.3), the update of center can obtain as: 

   
hh c CC E

   
  

 
     

 
 2
1 1

P PR It tlh h
h c p h p h

p ph

W z
C e y C j y C (D.4)

Where, c  is center learning parameter. Finally, the update of  h  require gradient of error with 

respect to h , which is defined as follows:  

 


 
h

h

E
E

Using chain rule, 

 
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 





2

3

tt
hl

lh h
h h

y Cx
W z

  

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2

3h

t
h

lh h
h

y C
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From eq. (4.21) and (D.5), we can obtain the update of spread as: 

    
hh c C E  

 



 

2

3

t
h

h s lh h
h

y C
eW z (D.6)

Where, s  is the spread learning parameter. Once all these updates are found, all these free 

parameters are updated iteratively. 
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