48,007 research outputs found

    The application of ANFIS prediction models for thermal error compensation on CNC machine tools

    Get PDF
    Thermal errors can have significant effects on CNC machine tool accuracy. The errors come from thermal deformations of the machine elements caused by heat sources within the machine structure or from ambient temperature change. The effect of temperature can be reduced by error avoidance or numerical compensation. The performance of a thermal error compensation system essentially depends upon the accuracy and robustness of the thermal error model and its input measurements. This paper first reviews different methods of designing thermal error models, before concentrating on employing an adaptive neuro fuzzy inference system (ANFIS) to design two thermal prediction models: ANFIS by dividing the data space into rectangular sub-spaces (ANFIS-Grid model) and ANFIS by using the fuzzy c-means clustering method (ANFIS-FCM model). Grey system theory is used to obtain the influence ranking of all possible temperature sensors on the thermal response of the machine structure. All the influence weightings of the thermal sensors are clustered into groups using the fuzzy c-means (FCM) clustering method, the groups then being further reduced by correlation analysis. A study of a small CNC milling machine is used to provide training data for the proposed models and then to provide independent testing data sets. The results of the study show that the ANFIS-FCM model is superior in terms of the accuracy of its predictive ability with the benefit of fewer rules. The residual value of the proposed model is smaller than ±4 μm. This combined methodology can provide improved accuracy and robustness of a thermal error compensation system

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    New Insights into History Matching via Sequential Monte Carlo

    Get PDF
    The aim of the history matching method is to locate non-implausible regions of the parameter space of complex deterministic or stochastic models by matching model outputs with data. It does this via a series of waves where at each wave an emulator is fitted to a small number of training samples. An implausibility measure is defined which takes into account the closeness of simulated and observed outputs as well as emulator uncertainty. As the waves progress, the emulator becomes more accurate so that training samples are more concentrated on promising regions of the space and poorer parts of the space are rejected with more confidence. Whilst history matching has proved to be useful, existing implementations are not fully automated and some ad-hoc choices are made during the process, which involves user intervention and is time consuming. This occurs especially when the non-implausible region becomes small and it is difficult to sample this space uniformly to generate new training points. In this article we develop a sequential Monte Carlo (SMC) algorithm for implementation which is semi-automated. Our novel SMC approach reveals that the history matching method yields a non-implausible distribution that can be multi-modal, highly irregular and very difficult to sample uniformly. Our SMC approach offers a much more reliable sampling of the non-implausible space, which requires additional computation compared to other approaches used in the literature

    Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera

    Get PDF
    Thermal errors are often quoted as being the largest contributor to CNC machine tool errors, but they can be effectively reduced using error compensation. The performance of a thermal error compensation system depends on the accuracy and robustness of the thermal error model and the quality of the inputs to the model. The location of temperature measurement must provide a representative measurement of the change in temperature that will affect the machine structure. The number of sensors and their locations are not always intuitive and the time required to identify the optimal locations is often prohibitive, resulting in compromise and poor results. In this paper, a new intelligent compensation system for reducing thermal errors of machine tools using data obtained from a thermal imaging camera is introduced. Different groups of key temperature points were identified from thermal images using a novel schema based on a Grey model GM (0, N) and Fuzzy c-means (FCM) clustering method. An Adaptive Neuro-Fuzzy Inference System with Fuzzy c-means clustering (FCM-ANFIS) was employed to design the thermal prediction model. In order to optimise the approach, a parametric study was carried out by changing the number of inputs and number of membership functions to the FCM-ANFIS model, and comparing the relative robustness of the designs. According to the results, the FCM-ANFIS model with four inputs and six membership functions achieves the best performance in terms of the accuracy of its predictive ability. The residual value of the model is smaller than ± 2 μm, which represents a 95% reduction in the thermally-induced error on the machine. Finally, the proposed method is shown to compare favourably against an Artificial Neural Network (ANN) model

    A Constructive, Incremental-Learning Network for Mixture Modeling and Classification

    Full text link
    Gaussian ARTMAP (GAM) is a supervised-learning adaptive resonance theory (ART) network that uses Gaussian-defined receptive fields. Like other ART networks, GAM incrementally learns and constructs a representation of sufficient complexity to solve a problem it is trained on. GAM's representation is a Gaussian mixture model of the input space, with learned mappings from the mixture components to output classes. We show a close relationship between GAM and the well-known Expectation-Maximization (EM) approach to mixture-modeling. GAM outperforms an EM classification algorithm on a classification benchmark, thereby demonstrating the advantage of the ART match criterion for regulating learning, and the ARTMAP match tracking operation for incorporate environmental feedback in supervised learning situations.Office of Naval Research (N00014-95-1-0409

    A Constructive, Incremental-Learning Network for Mixture Modeling and Classification

    Full text link
    Gaussian ARTMAP (GAM) is a supervised-learning adaptive resonance theory (ART) network that uses Gaussian-defined receptive fields. Like other ART networks, GAM incrementally learns and constructs a representation of sufficient complexity to solve a problem it is trained on. GAM's representation is a Gaussian mixture model of the input space, with learned mappings from the mixture components to output classes. We show a close relationship between GAM and the well-known Expectation-Maximization (EM) approach to mixture-modeling. GAM outperforms an EM classification algorithm on a classification benchmark, thereby demonstrating the advantage of the ART match criterion for regulating learning, and the ARTMAP match tracking operation for incorporate environmental feedback in supervised learning situations.Office of Naval Research (N00014-95-1-0409
    corecore