23,831 research outputs found

    Adaptive hit or miss transform

    Get PDF
    International audienceThe Hit or Miss Transform is a fundamental morphological operator, and can be used for template matching. In this paper, we present a framework for adaptive Hit or Miss Transform, where structuring elements are adaptive with respect to the input image itself. We illustrate the difference between the new adaptive Hit or Miss Transform and the classical Hit or Miss Transform. As an example of its usefulness, we show how the new adaptive Hit or Miss Transform can detect particles in single molecule imaging

    Vector Quantization Video Encoder Using Hierarchical Cache Memory Scheme

    Get PDF
    A system compresses image blocks via successive hierarchical stages and motion encoders which employ caches updated by stack replacement algorithms. Initially, a background detector compares the present image block with a corresponding previously encoded image block and if similar, the background detector terminates the encoding procedure by setting a flag bit. Otherwise, the image block is decomposed into smaller present image subblocks. The smaller present image subblocks are each compared with a corresponding previously encoded image subblock of comparable size within the present image block. When a present image subblock is similar to a corresponding previously encoded image subblock, then the procedure is terminated by setting a flag bit. Alternatively, the present image subblock is forwarded to a motion encoder where it is compared with displaced image subblocks, which are formed by displacing previously encoded image subblocks by motion vectors that are stored in a cache, to derive a first distortion vector. When the first distortion vector is below a first threshold TM, the procedure is terminated and the present image subblock is encoded by setting flag bit and a cache index corresponding to the first distortion vector. Alternatively, the present image subblock is passed to a block matching encoder where it is compared with other previously encoded image subblocks to derive a second distortion vector. When the second distortion vector is below a second threshold Tm, the procedure is terminated by setting a flag bit, by generating the second distortion vector, and by updating the cache.Georgia Tech Research Corporatio

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    Distributed Selfish Coaching

    Full text link
    Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node's resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage at each node. Motivated by content networking applications -- including web caching, CDNs, and P2P -- this paper extends our previous work on the on-line version of the problem, which was conducted under a game-theoretic framework, and limited to object replication. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache management policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that on-line cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. To appear in a substantial manner, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the "outlier" characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes. Our framework utilizes a simple control-theoretic approach to dynamically parameterize the cache management scheme. We show performance evaluation results that quantify the benefits from instantiating such a framework, which could be substantial under skewed demand profiles.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067); EU IST (CASCADAS and E-NEXT); Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230
    corecore