1,474 research outputs found

    Vehicle Parameters Estimation and Driver Behavior Classification for Adaptive Shift Strategy of Heavy Duty Vehicles

    Get PDF
    Commercial vehicles fulfill the majority of inland freight transportation in the United States, and they are very large consumers of fuels. The increasingly stringent regulation on greenhouse-gas emission has driven manufacturers to adopt new fuel efficient technologies. Among others, advanced transmission control strategy can provide tangible improvement with low incremental cost. An adaptive shift strategy is proposed in this work to optimize the shift maps on-the-fly based on the road load and driver behavior while reducing the initial calibration efforts. In addition, the adaptive shift strategy provides the fleet owner a mean to select a tradeoff between fuel economy and drivability, since the drivers are often not the owner of the vehicle. In an attempt to develop the adaptive shift strategy, the vehicle parameters and driver behavior need to be evaluated first. Therefore, three research questions are addressed in this dissertation: (i) vehicle parameters estimation; (ii) driver behavior classification; (iii) online shift strategy adaption. In vehicle parameters estimation, a model-based vehicle rolling resistance and aerodynamic drag coefficient online estimator is proposed. A new Weighted Recursive Least Square algorithm was developed. It uses a supervisor to extracts data during the constant-speed event and saves the average road load at each speed segment. The algorithm was tested in the simulation with real-world driving data. The results have shown a more robust performance compared with the original Recursive Least Square algorithm, and high accuracy of aerodynamic drag estimation. To classify the driver behavior, a driver score algorithm was proposed. A new method is developed to represent the time-series driving data into events represented by symbolic data. The algorithm is tested with real-world driving data and shows a high classification accuracy across different vehicles and driving cycles. Finally, a new adaptive shift scheme was developed, which synthesizes the information about vehicle parameters and driver score developed in the previous steps. The driver score is used as a proxy to match the driving characteristics in real time. Drivability objective is included in the optimization through a torque reserve and it is subsequently evaluated via a newly developed metric. The impact of the shift maps on the objective drivability and fuel economy metrics is evaluated quantitatively in the vehicle simulation. The algorithms proposed in this dissertation are developed with practical implementation in mind. The methods can reduce the initial calibration effort and provide the fleet owner a mean to select an appropriate tradeoff between fuel economy and drivability depending on the vocation

    Modelling and control of hybrid electric vehicles (a comprehensive review)

    Get PDF
    The gradual decline in global oil reserves and presence of ever so stringent emissions rules around the world, have created an urgent need for the production of automobiles with improved fuel economy. HEVs (hybrid electric vehicles) have proved a viable option to guarantying improved fuel economy and reduced emissions.The fuel consumption benefits which can be realised when utilising HEV architecture are dependent on how much braking energy is regenerated, and how well the regenerated energy is utilized. The challenge in developing an HEV control strategy lies in the satisfaction of often conflicting control constraints involving fuel consumption, emissions and driveability without over-depleting the battery state of charge at the end of the defined driving cycle.To this effect, a number of power management strategies have been proposed in literature. This paper presents a comprehensive review of these literatures, focusing primarily on contributions in the aspect of parallel hybrid electric vehicle modelling and control. As part of this treatise, exploitable research gaps are also identified. This paper prides itself as a comprehensive reference for researchers in the field of hybrid electric vehicle development, control and optimization

    Application of fuzzy logic for power management in hybrid vehicles

    Get PDF
    The increasing number of cars may be causing serious effects to the environment and to humans, such as pollution, global warming, and depletion of oil reserves, among others. This situation encourages the research for new energy forms and devices with higher energy efficiency. The adoption of hybrid propulsion technology has contributed, considerably, to reducing gases such as oxides of carbon, nitrogen and sulfur and the reduction of particulate materials. Beyond, the hybrid electric vehicle (HEV) maintains the characteristics attributed to conventional vehicles such as performance, safety and reliability. The term "hybrid” derives from the combination of two or more power sources, and the most common combination is through of an internal combustion engine (ICE), commonly used in conventional vehicles, together with the battery and electric motor (EM) used in EVs (Electric Vehicles). In general, the main reason to use electric hybrid architecture is the additional degree of freedom due to the presence of an additional energy source, which implies that, at each instant, the power required by the vehicle can be provided by one of these sources, or a combination of both. Choose the correct combination is usually a complex task. For a HEV present satisfactory operation (performance and emission reduction) is important that the architecture and components of HEVs are optimized, and occurs an appropriate choice of power management strategy. In this work is carried out the development and analysis of power management strategies in a HEV to minimize its fuel consumption and consequently emissions. Is developed one management strategy using fuzzy systems, and its results is analyzed varying the vehicle mass. The results of this work allow to view when it is triggered each propulsion system, and to analyze the consumption of fuel for each power management strategy3324452455CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESNão temNão te

    Modelling and control of the braking system of the electric Polaris Ranger all-terrain-vehicle

    Get PDF
    I mezzi ATV sono impiegati in attività forestali, di sorveglianza e soccorso. Si è vista recentemente la nascita di ATV elettrici, sinonimo di pulizia e risparmio. La possibilità di rendere questi veicoli completamente autonomi ha stimolato l'interesse del settore automotive. L' ABS in particolare, che finora è diffusa solo tra i veicoli stradali è stata introdotta e studiata. Modelli matematici per la simulazione dell'impianto frenante sono stati derivati, come base per il futuroope

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Optimal slip control for tractors with feedback of drive torque

    Get PDF
    Traction efficiency of tractors barely reaches 50 % in field operations. On the other hand, modern trends in agriculture show growth of the global tractor markets and at the same time increased demands for greenhouse gas emission reduction as well as energy efficiency due to increasing fuel costs. Engine power of farm tractors is growing at 1.8 kW per year reaching today about 500 kW for the highest traction class machines. The problem of effective use of energy has become crucial. Existing slip control approaches for tractors do not fulfil this requirement due to fixed reference set-point. The present work suggests an optimal control scheme based on set-point optimization and on assessment of soil conditions, namely, wheel-ground parameter identification using fuzzy-logic-assisted adaptive unscented Kalman filter.:List of figures VIII List of tables IX Keywords XI List of abbreviations XII List of mathematical symbols XIII Indices XV 1 Introduction 1 1.1 Problem description and challenges 1 1.1.1 Development of agricultural industry 1 1.1.2 Power flows and energy efficiency of a farm tractor 2 1.2 Motivation 9 1.3 Purpose and approach 12 1.3.1 Purpose and goals 12 1.3.2 Brief description of methodology 14 1.3.2.1 Drive torque feedback 14 1.3.2.2 Measurement signals 15 1.3.2.3 Identification of traction parameters 15 1.3.2.4 Definition of optimal slip 15 1.4 Outline 16 2 State of the art in traction management and parameter estimation 17 2.1 Slip control for farm tractors 17 2.2 Acquisition of drive torque feedback 23 2.3 Tire-ground parameter estimation 25 2.3.1 Kalman filter 25 2.3.2 Extended Kalman filter 27 2.3.3 Unscented Kalman filter 27 2.3.4 Adaptation algorithms for Kalman filter 29 3 Modelling vehicle dynamics for traction control 31 3.1 Tire-soil interaction 31 3.1.1 Forces in wheel-ground contact 32 3.1.1.1 Vertical force 32 3.1.1.2 Tire-ground surface geometry 34 3.1.2 Longitudinal force 36 3.1.3 Zero-slip condition 37 3.1.3.1 Soil shear stress 38 3.1.3.2 Rolling resistance 39 3.2 Vehicle body and wheels 40 3.2.1 Short description of Multi-Body-Simulation 40 3.2.2 Vehicle body and wheel models 42 3.2.3 Wheel structure 43 3.3 Stochastic input signals 45 3.3.1 Influence of trend and low-frequency components 47 3.3.2 Modelling stochastic signals 49 3.4 Further components and general view of tractor model 53 3.4.1 Generator, intermediate circuit, electrical motors and braking resistor 53 3.4.2 Diesel engine 55 4 Identification of traction parameters 56 4.1 Description of identification approaches 56 4.2 Vehicle model 58 4.2.1 Vehicle longitudinal dynamics 58 4.2.2 Wheel rotational dynamics 59 4.2.3 Tire dynamic rolling radius and inner rolling resistance coefficient 60 4.2.4 Whole model 61 4.3 Static methods of parameter identification 63 4.4 Adaptation mechanism of the unscented Kalman filter 63 4.5 Fuzzy supervisor for the adaptive unscented Kalman filter 66 4.5.1 Structure of the fuzzy supervisor 67 4.5.2 Stability analysis of the adaptive unscented Kalman filter with the fuzzy supervisor 69 5 Optimal slip control 73 5.1 Approaches for slip control by means of traction control system 73 5.1.1 Feedback compensation law 73 5.1.2 Sliding mode control 74 5.1.3 Funnel control 77 5.1.4 Lyapunov-Candidate-Function-based control, other approaches and choice of algorithm 78 5.2 General description of optimal slip control algorithm 79 5.3 Estimation of traction force characteristic curves 82 5.4 Optimal slip set-point computation 85 6 Verification of identification and optimal slip control systems 91 6.1 Simulation results 91 6.1.1 Identification of traction parameters 91 6.1.1.1 Comparison of extended Kalman filter and unscented Kalman filter 92 6.1.1.2 Comparison of ordinary and adaptive unscented Kalman filters 96 6.1.1.3 Comparison of the adaptive unscented Kalman filter with the fuzzy supervisor and static methods 99 6.1.1.4 Description of soil conditions 100 6.1.1.5 Identification of traction parameters under changing soil conditions 101 6.1.2 Approximation of characteristic curves 102 6.1.3 Slip control with reference of 10% 103 6.1.4 Comparison of operating with fixed and optimal slip reference 104 6.2 Experimental verification 108 6.2.1 Setup and description of the experiments 108 6.2.2 Virtual slip control without load machine 109 6.2.3 Virtual slip control with load machine 113 7 Summary, conclusions and future challenges 122 7.1 Summary of results and discussion 122 7.2 Contributions of the dissertation 123 7.3 Future challenges 123 Bibliography 125 A Measurement systems 137 A.1 Measurement of vehicle velocity 137 A.2 Measurement of wheel speed 138 A.3 Measurement or estimation of wheel vertical load 139 A.4 Measurement of draft force 140 A.5 Further possible measurement systems 141 B Basic probability theoretical notions 142 B.1 Brief description of the theory of stochastic processes 142 B.2 Properties of stochastic signals 144 B.3 Bayesian filtering 145 C Modelling stochastic draft force and field microprofile 147 D Approximation of kappa-curves 152 E Simulation parameters 15

    Integrated automotive control:robust design and automated tuning of automotive controllers

    Get PDF
    corecore