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ABSTRACT 

The gradual decline in global oil reserves and presence of ever so stringent emissions 

rules around the world, have created an urgent need for the production of 

automobiles with improved fuel economy. HEVs (hybrid electric vehicles) have 

proved a viable option to guarantying improved fuel economy and reduced 

emissions.The fuel consumption benefits which can be realised when utilising HEV 

architecture are dependent on how much braking energy is regenerated, and how 

well the regenerated energy is utilized. The challenge in developing an HEV control 

strategy lies in the satisfaction of often conflicting control constraints involving fuel 

consumption, emissions and driveability without over-depleting the battery state of 

charge at the end of the defined driving cycle. 

To this effect, a number of power management strategies have been proposed in 

literature. This paper presents a comprehensive review of theseliteratures, focusing 

primarily on contributions in the aspect of parallel hybrid electric vehicle modelling 

and control. As part of this treatise, exploitable research gaps are also identified. This 

paper prides itself as a comprehensive reference for researchers in the field of hybrid 

electric vehicle development, control and optimization. 

 

Index Terms: - Heuristic control, Hybrid electric vehicle, Regenerative braking, 

Optimization of brake energy recovery, dynamic programming, optimal control, HEV 

control, vehicle modelling, Parallel HEV, ECMS, Model predictive control, GPS 
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1 INTRODUCTION 

The gradual decline of global oil reserves, in addition to stringent emission 

regulations around the world, has made even more critical the need for improved 

vehicular fuel economy [1-3]. In recent years, the scientific community and industries 

alike have proposed a variety of innovations to face this challenge, coming up with 

new solutions from the viewpoint of hybrid powertrain architectures. Hybrid electric 

vehicles(HEVs) are able to address this problem by introducing a powertrain with an 

additional propulsion system, which consists in its simplest form of an electrical 

energy storage unit (an electric battery), an electric torque actuator (an electric 

motor) and a device which couples together the electric driveline and the thermal 

driveline. The additional driveline allows for greater flexibility in engine use while 

ensuring fulfilment of the power request at the wheels. 

In comparison to conventional vehicles, HEVs offer a number of advantages. The 

most popular of such advantages is the possibility of downsizing the original internal 

combustion engine whilst meeting the power demand at the wheels. This advantage 

is brought about by the capability of the hybrid powertrain to deliver power to the 

wheels from both the internal combustion engine and the electric motor at the same 

time, thus resulting in reduced fuel consumption [4, 5]. The introduction of an 

electric driveline in an HEV also allows for the regeneration of kinetic braking energy, 

which would otherwise be lost to mechanical brakes in conventional vehicles.  

Crucial to achieving the aforementioned advantages is a real time control strategy 

capable of coordinating the on-board power sources in order to maximise fuel 

economy and reduce emissions. To date, a number of energy management strategies 

have been proposed in literature. This treatise presents a comprehensive review of 

these literatures, focusing primarily on contributions in the aspect of parallel hybrid 

electric vehicle modelling and control. As part of this treatise, exploitable research 

gaps are also identified.  

The contributions in this paper are elucidated as follows: First, investigations are 

made in to emergence of HEVs with particular emphasis on: the factors driving its 

development, its industrial evolution and advantages. Next, several HEV 

configurations are discussed in light of their characteristics and applications. 

Thereafter, HEV modelling techniques are briefly discussed with a view to 

highlighting the relative importance of each approach.  Afterwards, HEV control 

strategies are reviewed at depth on two main tiers: HEV offline control strategies and 

HEV online control strategies. This detailed appraisal is aimed at highlighting the 

control structure of the reviewed techniques, its novelty, as well as contributions 
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towards the satisfaction of several optimisation objectives, which includes but are 

not limited to: reduction of fuel consumption and emissions, charge sustenance, 

optimisation of braking energy regeneration, and improvement of vehicle drivability. 

Finally, exploitable research gaps which form the main inspiration for the studies 

contained in this thesis are identified and discussed. 

 

2 EMERGENCE OF HYBRID ELECTRIC VEHICLES 

In recent years, several determinants including stringent emission regulations and 

limitation in conventional vehicles have created an eminent and urgent need for the 

production of automobiles such as hybrid electric vehicles with improved fuel 

economy. 

To contextualise the transition from conventional vehicles to HEVs, this section 

investigates the emergence of HEVs with particular emphasis on: the factors driving 

its development, its industrial evolution and advantages. 

 

2.1 Vehicle emission regulations 

Increasing concerns of fossil fuels availability in the long term and environmental 

pollution have focused considerable attention on the problem of efficient energy 

utilisation in automobiles [7-11]. In response to these concerns, regulators around 

the world have set out various stringent emissions targets to curb regulated 

emissions (hydrocarbons, nitrogen oxides, carbon monoxide and particulate matter). 

Figure 1 provides a comparison of the EU CO2 passenger car standards with similar 

regulations around the world. This chart converts all regulatory programs to the 

European test cycle (NEDC – New European Driving Cycle) for comparative reasons. 
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Figure 1: Comparison of global CO2 regulations for passenger cars, in terms of NEDC 

gCO2/km (Source: [12]) 

According to Figure 1, Europe has the most progressive emissions legislation to date 

with an intended target of 95 grams of CO2 per km in 2020. This figure represents a 

27% reduction from the 2015 level and a 50% reduction from the 2010 level. In the 

US, a CO2 target of 109 grams per km is intended for 2020 (~ 50% of the level in 

2010). Similar targets have also been set in Asian countries: Japan (105 g/km by 

2020), China (117 g/km by 2020) and India (113 g/km by 2020). 

Meeting these standards is non-trivial, and requires the adoption of new 

technologies to reduce energy loss and increase efficiency within the internal 

combustion engine and vehicle powertrain. Over the last 20 years, the scientific 

community and industries alike have proposed a variety of innovations to face this 

challenge, developing solutions such as turbo chargers to improve fuel efficiency and 

catalytic converters to remove harmful gases. Whilst these technologies have directly 

contributed to huge improvements in automotive technology, the ever rising 

emissions levels (due to the increasing number of cars on the road) necessitates a 

new and drastic technology, with the potential to: 

1. Optimise existing internal combustion engines without compromising on the 

performance of the vehicle [13]. 
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2. Optimise energy demand for operation of the vehicle accessory system (42-

volt electric system, low energy lighting, etc.) [14]. 

3. Reduce losses due to aerodynamic drag, rolling resistance and braking losses 

due to vehicle inertia [13]. 

 

2.2 Limitations in baseline vehicles 

Conventional vehicles powered by internal combustion engines have dominated 

ground transport due to their long driving range, fuelling ease, ease of extraction and 

low cost compared to other vehicular technologies [15]. In recent years, internal 

combustion engines have achieved thermal efficiencies up to 25% for spark-ignition 

engines and 30% for compression-ignition engines [5]. However, internal combustion 

engines seldom operate at their peak efficiencies (located in the low engine speed, 

high engine torque area), for the following reasons: 

1. Energy losses within the engine itself: The theoretical peak efficiency of a heat 

engine is limited by the air standard cycle, which employs the Otto cycle for 

reciprocating the engine. Attaining the theoretical peak efficiency is practically 

impossible for at least two reasons; the first being the loss of heat through the 

walls of the cylinder and the second being the compression of fuel at limited 

compression ratios due to knock.  

2. Highly dynamic utilisation which is typical of road cycles, where vehicle speed 

and torque request vary continuously and rapidly.  

3. Working gas is air 

4. Inertia effects 

The resultant effect of these shortcomings results in less than optimal fuel 

consumption and increased emissions, which is harmful to health.  

HEVs are able to compensate for some of these short comings of the internal 

combustion engine, and simultaneously meet the requirements for vehicle 

performance and environmental protection, by introducing a powertrain with an 

additional propulsion system, constituted in its simplest form by an electric energy 

storage unit (electric battery), an electric torque actuator (electric motor) and a 

device which couples together the electric and thermal drivelines. It is a culmination 

of mechanical, electrical, electronic and power engineering technologies embracing 

the best of both conventional ICE vehicles and electric vehicles (EVs). The additional 

driveline allows for greater flexibility in engine use, while ensuring the fulfilment of 

the power request at the wheels. 
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2.3 Industrial evolution of hybrid electric vehicles (HEVs) 

The development of the first hybrid car is reported to be in 1899 by the Pieper 

establishment of Liege, Belgium [16]. In 1900, Dr Ferdinand Porsche developed the 

world’s first series hybrid electric vehicle where 2 water-cooled combustion engines 

with a cumulative capacity of 5 hp were used to generate electricity to run the wheel 

hub motors. The main aim of these motors was to assist the weakly powered 

gasoline engines. This concept was however short-lived due to the associated cost. In 

1995, hybrid electric vehicles experienced a renewed interest from competing 

manufactures, owing to its potential for fuel and emissions reduction. As a result, 

several variations to the hybrid electric vehicle technology, as explained below, were 

developed: micro HEVs, mild HEVs, full HEVs and plug-in HEVs [17].   

1. Micro HEVs: In micro HEVs, the electric motor, in the form of a small 

integrated alternator / starter, is used to shut down the engine when the 

vehicle comes to a complete stop, and start it up when the driver releases the 

brake pedal. Once in motion, the vehicle is propelled by the internal 

combustion engine (ICE). Examples of micro HEVs on the road today are the 

BMW 1 and 3 series, Fiat 500, SMART car, Peugeot Citroen C3, Ford Focus and 

Transit, and Mercedes-Benz A-class [18]. 

 

2. Mild HEVs: The mild HEV is very similar to a micro HEV, but with an increased 

size of the integrated alternator / starter motor and a battery which permits 

power assist during vehicle propulsion. Typical fuel efficiency increase for mild 

HEVs are around 20 - 25% for real-world driving compared to a non-hybrid. 

Examples of mild HEVs on the market include the BMW 7 Series ActiveHybrid, 

Buick LaCrosse with eAssist, Chevrolet Malibu with eAssist, Honda Civic and 

Insight Hybrid, and the Mercedes-Benz S400 BlueHybrid[18]. 

 

3. Full HEVs: In full HEVs, the electric motor and batteries are significantly bigger 

than that of the micro HEVs and mild HEVs. As such, depending on the vehicle 

power demand, the electric motor can be used as the sole power source. 

Compared to micro HEVs and mild HEVs, full HEVs have much smaller engines 

and require more sophisticated energy management systems. Typical fuel 

efficiency increase for full HEVs are around 40 - 45% for real-world driving 

compared to a non-hybrid. Examples of full HEVs on the road today are the 
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Chevrolet Tahoe Hybrid, Toyota Prius and Camry Hybrid, Ford C-Max, Honda 

CR-Z, and Kia Optima Hybrid. 

 

4. Plug-in HEVs (PHEVs): PHEVs essentially possess the same configuration as full 

HEVs but with the addition of an external electric grid charging plug, much 

bigger electrical components (electric motor and battery) and a downsized 

engine. Owing to the high capacity electrical components, PHEVs are able to 

run on electric power for long periods of time. Examples of PHEVs on the road 

today are the Chevy Volt, Ford C-Max Energi and Fusion Energi, Fisker Karma, 

Porsche Panamera S E-Hybrid, and Toyota Prius Plug-in. 

In December 1997, the Toyota Prius became the first mass-produced hybrid electric 

passenger vehicle in the world [19]. Being one of the most successful HEVs in the 

market, Toyota Prius uses a complex hybrid powertrain called the Toyota hybrid 

system. Since its original introduction, Toyota Prius has undergone several 

improvements in engine and powertrain.  For example, in 2004 the highly efficient 

THS II Prius was introduced with an efficient gasoline engine which runs on the 

Atkinson cycle as well as a powerful permanent magnet AC synchronous motor. With 

a combined parallel and series hybrid configuration, Toyota Prius utilises the 

advantages of both the series and parallel systems [20]. In 2010, Toyota Prius was 

equipped with an improved drivetrain called the Toyota hybrid synergy drivetrain 

which showed better fuel economy and driving performance as compared to its 

predecessors [19]. In the Toyota hybrid synergy drivetrain, the primary motor acts as 

a mechanical assist to the ICE and also as a generator to recharge the batteries 

during regenerative braking. The secondary motor acts as a generator that extracts 

power from the engine to trickle charge the batteries. The resultant power split 

system is known as the electronic continuously variable transmission because of its 

ability to shift gears and drive wheels without the use of clutches or hydraulic 

systems.  

 

2.4 Advantages of hybrid electric vehicles (HEVs) 

In comparison to conventional vehicles, HEVs offer a number of advantages. One of 

such advantage is the possibility of downsizing the original internal combustion 

engine whilst still meeting the power demand at the wheels. This advantage is 

brought about by the capability of the hybrid powertrain to deliver power to the 

wheels from both the internal combustion engine and the electric motor at the same 
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time, thus resulting in reduced fuel consumption [4, 5]. The introduction of an 

electric driveline in an HEV also allows for: 

1. The regeneration of kinetic braking energy, which would otherwise be lost as 

heat to mechanical brakes in conventional vehicles [21-23]. 

2. The possibility of powering the wheels through the electric propulsion system 

alone when the torque request at the wheels is low.  

In full HEVs, fuel consumption during idling can be eliminated by use of the engine 

shut off/start up feature [24].  

Aside from fuel consumption related advantages, HEVs also present the possibility of 

cranking the engine with the electric motor, which allows for the removal of the 

starter motor from the powertrain. This new cranking procedure allows for a faster, 

smoother and a more improved cranking technique, as in the case of inertia cranking 

[6].  

Crucial to achieving the aforementioned advantages is a real-time control strategy 

capable of coordinating the on-board power sources in order to maximise fuel 

economy and reduce emissions.  

 

3 HEV CONFIGURATIONS 

In principal today, there are two types of hybrid electric system configurations 

(“series hybrid” and “parallel hybrid”) currently in use by automotive engineers [25, 

26]. The dissimilarities that separate HEVs into these categories lie in the design of 

the power flow from the sources of energy. Power flow in series HEV is passed down 

to the transmission only over a single path (electrical path) [27]. Parallel HEVs allow 

power flow through two paths (electrical and mechanical path) from the energy 

sources to the transmission [27]. 

 

3.1 Series hybrid electric vehicle 

The series hybrid electric system is a classification given to vehicles where an energy 

transformer is placed in series with one or more electric motors for traction of the 

vehicle. The main function of the internal combustion engine in this case is to 

generate electricity for the battery, which in turn feeds power to the traction motor 

either directly or via an electric generator. This HEV configuration permits no direct 

mechanical connection between the internal combustion engine and the propelling 

wheels. Consequently, the internal combustion engine (ICE) can be controlled 



Page 9 of 98 
 

independent of the vehicle power demand and close to its peak-efficiency region. 

The series hybrid electric vehicle could thus be described as being powered primarily 

by the electric motor and secondarily by the internal combustion engine.  Detailed in 

Figure 2 is a schematic of the series HEV configuration.  

 

Figure 2: Series hybrid electric vehicle 

Internal combustion engines used in series HEVs are generally small compared to 

those used in conventional vehicles and only account for less than 50% of the 

maximum power needed for propelling the vehicle. Several automotive companies 

e.g. Mitsubishi, Volvo and BMW, have explored the possibility of series hybrid 

electric vehicle development. Despite these in-depth researches, commercial 

application of the series hybrid electric vehicle development is still very limited to 

heavy duty vehicles. Although series hybrid electric vehicles tend to have a high 

efficiency at its engine operation, this benefit is quickly outweighed when we 

consider the fact that it often requires very powerful and expensive batteries, with a 

high energy density to operate. The powerful batteries are needed because in most 

cases, the motor may have to produce 50% of the required total power demand on 

its own [27, 28]. 

 

3.2 Parallel hybrid electric vehicle 

In the parallel HEV configuration, both the engine and the electric motor are able to 

work independently or co-operatively to provide traction. In this configuration, the 

engine is mechanically connected to the driving wheels via a gearbox. In this 
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instance, the electric motor is used to support the engine during accelerations. 

Depending on the power of the motor, it could also be used as the sole power source 

of the vehicle in idling situations and during start-ups. The engine used in the parallel 

hybrid electric vehicle configuration is usually bigger than those used in the series 

configuration, while the electric motor is comparatively smaller and less powerful. 

The possibility for direct energy flow from the ICE to the wheels enables the parallel 

HEV to switch to the most efficient operating point by using the ICE, whenever it can 

operate around the peak-efficiency region. This is due to the parallel connection 

between the electric motor and the internal combustion engine, which implies that 

the capacities of the ICE and the electric motor can be varied, without changing the 

total driving capacity of the vehicle [28]. Detailed in Figure 3 is a schematic of the 

parallel HEV configuration. Parallel HEVs come in two sub configurations: the pre-

transmission parallel and the post-transmission parallel.   

In the pre-transmission parallel HEV configuration, the gearbox is located on the 

main drive shaft, which implies that the gear speed ratios do apply to both the 

engine and the electric motor. In this configuration, the power summation occurs at 

the gear box. Consequently, torque from the electric motor is added to the engine 

torque at the input shaft of the gearbox. In the post transmission parallel HEV 

configuration, the gearbox is situated on the engine shaft before the torque splitter 

and the electric motor. This implies that the gear speed ratios only apply to the 

engine. In this configuration, the electric motor torque is usually added to the engine 

torque at the output shaft of the gearbox. If a motor only transmission is required on 

a parallel HEV configuration, the use of a disconnecting device such as a clutch can 

be employed to disengage the gear, while running the electric motor independently. 
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Figure 3: Parallel hybrid electric vehicle 

 

3.3 Recent developments in hybrid power trains 

HEV development today is mostly aimed towards the use of series hybrid electric 

systems in heavy-duty vehicles, primarily in buses and the use of parallel hybrid 

electric systems for light duty vehicles. Specifically, the development of parallel 

hybrid electric vehicles have focused on implementation of optimal and sub-optimal 

control algorithms which enable the internal combustion engine to run only in areas 

of high efficiency, thus mitigating the lack of ICE speed controllability, due to its 

mechanical connection with the wheels. 

In a comparative sense, parallel HEVs have received more research attention 

compared to series HEVs and this is as a result of the flexibility in its powertrain 

design as well as the elimination of the need for a large traction motor in the parallel 

HEV configuration. One of such development has been the implementation of the 

parallel hybrid technology on an all-wheel drive vehicle, as shown in Figure 4. This 

sort of application is most beneficial if the internal combustion engine is used to 

power the rear wheels, while the electric motor is used to power the front wheels. 

Configuring the setup this way means that the high vehicle weight borne by the front 

wheels of the vehicle is used advantageously during regenerative braking, thus 

leading to high braking energy recapture. 
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Figure 4: All wheel drive parallel hybrid electric vehicle 

The all-wheel drive parallel hybrid electric vehicle configuration also offers an 

advantage with respect to vehicle longitudinal stability control in slippery conditions. 

Another recent product of parallel HEV research and development is the series-

parallel hybrid electric vehicle configuration.  This design depends primarily on the 

presence of two electric motors and a connection between both, which can be either 

mechanical or electrical. Where mechanical connections are used between the 

electric motors, this is done using a planetary gear power splitting device. The series-

parallel configuration offers the advantage and possibility of having the engine 

completely decoupled from the vehicle, thus making it possible for the vehicle to be 

powered using just the electric motors [29]. It also offers the possibility of operating 

the ICE around its peak-efficiency region due to flexibility in both torque and speed 

changeability at the ICE output.  These advantages becomes partially offset when 

energy losses during conversion of mechanical energy to electrical energy is taken 

into account.  Although there exist a number of series-parallel hybrid electric vehicle 

configurations, it is worth highlighting the Toyota THS design which was first 

pioneered on the Toyota Prius, as shown in Figure 5. 
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Figure 5: Series-Parallel hybrid electric vehicle 

4 HEV MODELLING APPROACHES 

There exist at least 3 main stages of computational modelling currently employed in 

the development of HEVs. These stages are: 

 Detailed Modelling which is performed during the research and early 

development stages of the HEV. This sort of modelling centres mainly on 

single powertrain components such as internal combustion engine and 

electric motor. This type of modelling is aimed at providing detailed 

information about specific characteristics of the component being modelled. 

 Software in the Loop (SIL) modelling which is carried out at a later stage of the 

HEV development cycle, but usually before any hardware production is made. 

The employment of SIL today has become popular in HEV control system 

development. 

 Hardware in the loop (HIL) modelling, which is carried out once the production 

of controllers has been completed and validated. 

Three typical approaches exist for HEV modelling at the detailed modelling stage of 

the development process: the kinematic or backward approach, the quasi static or 

forward approach, and the dynamic approach [26]. 
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4.1 Kinematic approach 

The kinematic approach as shown in Figure 6,is a backward methodology where the 

input variables are the speed of the vehicle and the grade angle of the road. In this 

method, the engine speed is determined using simple kinematic relationships 

starting from the wheel revolution speed and the total transmission ratio of the 

driveline. The tractive torque that should be provided to the wheels to drive the 

vehicle according to the chosen speed profile can be calculated from the main 

vehicle characteristics e.g. (vehicle mass, aerodynamic drag and rolling resistance). 

 

Figure 6: Information flow in a kinematic or backward HEV model. Source [26] 

The calculated engine torque and speed is then used alongside with a statistical fuel 

consumption model to produce an instantaneous fuel consumption or emissions rate 

prediction [30]. The kinematic approach assumes that the vehicle meets the target 

performance, so that the vehicle speed is supposedly known a priori; thus enjoying 

the advantage of simplicity and low computational cost [31].  The backward or 

kinematic modelling method ensures that the driving speed profile will be exactly 

followed. However, there exist no guarantees that the given vehicle will actually be 

able to meet the desired speed trace, since the power request is directly computed 

from the speed and not checked against the actual powertrain capabilities. Typically 

in simulation, the kinematic approach includes a “fail-safe” feature which stops the 

simulation run if the required torque exceeds the maximum torque available (from 

the electric motor and engine).  Another flaw of this modelling technique is its 

negligence of thermal transient behaviour of engines which are noticeable after an 

engine cold start.  

The simplification of transient conditions as a sequence of stationary states limits this 

modelling method to an option considerable mainly for preliminary estimation of 

vehicle fuel consumption and emissions [26]. 
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4.1.1 Quasi static approach 

The quasi-static approach of HEV modelling as shown in Figure 7 makes use of a 

driver model typically a PID which compares that target vehicle speed (driving cycle 

speed), with the actual speed profile of the vehicle and then generates a power 

demand profile which is needed to follow the target vehicle speed profile. This 

power demand profile is generated by solving the differential motion equation of the 

vehicle [31]. Once the propulsion torque and speed of the engine have been 

determined, instantaneous fuel consumption can be estimated using a statistical 

engine model as already explained in the kinematic or backward approach. 

 

Figure 7: Information flow in a quasi-static powertrain model. Source [26] 

The suitability and accuracy of the quasi-static modelling approach depends very 

much on the nature of simulation studies to be conducted. The quasi-static 

modelling approach provides reasonable accuracy when it comes to the evaluation of 

the fuel consumption and NOx of a vehicle equipped with conventional powertrain. 

For pollutants like soot, the acceleration transients and related “turbo-lag” 

phenomena significantly contribute to the cycle cumulative emissions, thus 

necessitating a more detailed engine simulation model which is capable of properly 

capturing engine transient behaviour in more detail [32]. 

 

4.1.2 Dynamic modelling approach 

In the dynamic modelling approach, the internal combustion engine behaviour 

during transients is also modelled in addition to the longitudinal vehicle dynamics. 

The engine transient behaviour is modelled by means of a detailed one dimensional 

fluid dynamic model. For example, the intake and exhaust systems of the internal 

combustion engine in the dynamic modelling approach are represented as a network 

of ducts connected by the junctions that represent either physical joints between the 
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ducts, such as area changes or volumes or subsystems such as the engine cylinder. 

Solutions to the equations governing the conservation of mass, momentum and 

energy flow for each element of the network can then be obtained using a finite 

difference technique. This makes it possible for highly dynamic events such as abrupt 

vehicle accelerations to be properly and reliably simulated with reasonable accuracy. 

The implementation of dynamic modelling comes with a huge time and 

computational burden and as such its application is often limited to research areas 

which deal with internal combustion engine development [33], [34], [35].  

From a control development stand point, the quasi-static approach is preferred since 

it maintains the physical causality of the vehicle system, and allows for the possibility 

of using the same controller inputs/outputs in the simulator as well as on the real 

vehicle. 

 

5 HEV CONTROL STRATEGIES 

HEVs have been shown to significantly improve automotive fuel economy and reduce 

emissions, whilst still meeting the vehicle power demand, maintaining satisfactory 

vehicle performance, and driver-feel [36]. Regardless of the HEV configuration in 

question, employing the right power split between the energy sources (ICE and 

electric motor) is crucial to the achievement of an improved fuel economy and 

reduced emissions. To this endeavour, several power split control strategies have 

been proposed, evaluated and employed to different HEV configurations. Typically, 

inputs to the power-split controller of HEVs often include vehicle power demand, 

vehicle speed or acceleration, battery state of charge, present road load, and on 

occasion, ”intelligent” future traffic conditions from the Global Positioning System 

(GPS). The controller outputs signal contains a set of control decisions which specify 

whether the HEV should operate in any of the following modes: 

1. Engine only mode (ICE operates alone) 

2. Assist mode (ICE and electric motor operates) 

3. Electric motor only mode (Electric motor operates alone) 

4. Regenerative mode (Electric motor is used for kinetic energy recovery) 

5. Trickle charge mode (Engine produces power used in charging the battery) 

Minimisation of fuel consumption and emissions without a compromise of vehicle 

performance, and battery state of charge are often the main control objectives of 

most HEV control strategies. HEV control strategies can be broadly classified into 
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online control strategies and offline control strategies as shown in the control 

strategy classification chart in Figure 8. 

 

Figure 8: HEV control strategy classification 

Although there have been several papers and research publications which have 

contributed to the compilation of reviews on HEV control strategies, this area of 

research is continuously advancing and with the introduction of newer techniques, 

there is need for an up to date review. The main objective of this section is not only 

to contribute to the growing list of review discussions, but also to identify relevant 

research gaps in the field. 
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5.1 HEV offline control strategies 

Optimisation based control strategies decide the control signals either by minimising 

the sum of the objective function over time (global optimisation) or by 

instantaneously minimising the objective function (local optimisation).  

The effectiveness of a global optimal control technique relies solely on the 

knowledge of the entire driving cycle a priori, and since this is usually difficult to 

determine in real-time, global optimal techniques are usually referred to as “non-

causal” which cannot be applied in real-time, but are useful as a control benchmark 

to which all other causal real-time controllers can be compared. Linear programming, 

dynamic programming and genetic algorithms etc., have been applied as global 

optimisation techniques for optimal energy management of HEVs. 

 

5.1.1 Linear programming 

Using linear programming, the non-linear fuel consumption model of an HEV is 

approximated and solved for a global optimal solution [37]. Linear programming has 

been applied successfully to automotive energy management problems. For example 

in the study of Kleimaieret. al.[38], a convex optimisation technique for the analysis 

of propulsion capabilities using linear programming was proposed as shown in Figure 

9. Pisuet. al.[39] designed a stable and robust controller using linear matrix 

inequalities, to minimise fuel consumption.  
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Figure 9: Structure of linear optimisation method (redrawn from [38]) 

 

5.1.2 Dynamic programming 

The dynamic programming technique is a technique originally developed by Richard 

Bellman, which aims to find optimal control policies using a multi-stage decision 

process. As defined by Bellman, the principle of optimality can be expressed verbally 

thus: 

An optimal control policy has the property that no matter what the previous 

decision (i.e., controls) have been, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from those previous decisions 

[40]. 
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Dynamic programming algorithm is a discrete multi-stage optimisation problem in 

which a decision based on the optimisation criterion is chosen from a finite number 

of decision variables at each time step. Bellman’s dynamic programming algorithm 

can be applied using 2 methods: the backward recursive method and the forward 

method. In the backward recursive method, the optimal sequence of control 

variables is obtained proceeding backwards from the final state and choosing at each 

time step the path that minimises the cost-to-go (integral cost from that time step 

until the final state). By symmetry, most dynamic programming problems solved 

using the backward recursive method could also be solved using the forward 

dynamic programming technique. Although both techniques do lead to the same set 

of optimal control policies for the entire problem, there is a difference in the “by-

products” produced by both methods. When solving a problem using the backward 

dynamic programming technique, the by-products obtained are the optimal values 

from every state in every stage to the end; whereas in solving a problem using 

forward dynamic programming, the corresponding by-products would be the optimal 

values from the initial states(s) in the first stage to every state in the remaining 

stages. 

Dynamic programming has the advantage of being applied to both linear and non-

linear systems as well as constrained and unconstrained problems. It also suffers two 

setbacks: its reliance on prior knowledge of the full driving cycle, and the curse of 

dimensionality which amplifies the computational burden. Consequently, control 

results from dynamic programming are only useful as optimal benchmarks for other 

controllers, or basis for the development and improvement of other sub-optimal 

controllers. In Shenet. al.[41], an effort was made to reduce the computation time of 

the dynamic programming approach, through the use of a forward search algorithm. 

Dynamic programming (DP) features prominently in HEV energy management 

studies [41-62]. In this section, some notable examples of its application on HEVs are 

reviewed. Brahma et. al. [42], applied dynamic programming to achieve a real-time 

optimal split between the ICE and electric motor of a series HEV. They suggested that 

by using the discrete state formulation approach of dynamic programming, 

computational efficiency can be further improved. Similarly, Lin et. al.[46] found that 

optimal control rules could be extracted from dynamic programming, and used to 

near-optimally adapt a rule-based controller. The resulting improvement in fuel 

economy for different levels of heuristic controller modification is detailed in Table 1, 

for the UDDSHDV cycle. 
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 Fuel Economy (MPG) 

Conventional 10.63 

Preliminary Rule-Based 12.56 

New Shift Control 13.02 

New Power Split Control 13.17 

New Recharging Control 13.24 

Dynamic Programming 13.63 

Table 1: Fuel economy comparison over UDDSHDV cycle (source [46]) 

In another study by Lin et. al. [44], a simple approach  for extracting heuristic control 

rules from dynamic programming (based on the ratio of power request to 

transmission speed) was formulated. Simulation results from this study showed that, 

by properly analysing control results from dynamic programming, an improved rule-

based control strategy could be developed. In this study, heuristic control rules were 

extracted from one driving cycle and used to near-optimally control 7 other driving 

cycles. Obtained simulation results (Table 2) showed a 50 – 70% reduction in 

performance gap between the optimal controller (DP controller) and the improved 

rule-based controller. The combination of dynamic programming and rule-based 

control strategies for real-time charge-sustaining control of HEVs, have also been 

considered in Lin et. al. [44, 46] and Kumet. al. [60]. In Kumet. al. [60], the control 

steps are articulated as follows: dynamic programming is first used to obtain a global 

optimal solution to the formulated energy management problem. Next, battery SOC 

for the remaining trip distance is estimated using the energy-to-distance ratio (EDR). 

An adaptive supervisory powertrain controller is applied subsequently, to reduce fuel 

consumption and emissions based on results from the EDR and catalyst temperature 

system. 

In Perez et. al.[63], a finite horizon dynamical optimisation problem is formulated 

and solved using dynamic programming, with the objective of maintaining battery 

energy levels within the prescribed range without affecting the battery state of 

health. 
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FE 

(mi/gal) 

NOx 

(g/mi) 

PM 

(g/mi) 

Performance Measure 

g/mi 
Improvement 

% 

Preliminary  Rule-Based 15.31 4.43 0.36 671.23 0% 

New Rule-Based 14.61 3.02 0.30 582.18 13.27% 

DP (Fuel Economy  & 

Emissions) 
15.41 2.78 0.26 526.67 21.54% 

a. Results over the WVUSUB cycle (Suburban driving) 

 
FE 

(mi/gal) 

NOx 

(g/mi) 

PM 

(g/mi) 

Performance Measure 

g/mi 
Improvement 

% 

Preliminary  Rule-Based 12.84 7.29 0.51 948.83 0% 

New Rule-Based 12.72 6.31 0.49 896.00 5.57% 

DP (Fuel Economy  & 

Emissions) 
12.97 6.17 0.44 847.67 10.66% 

b. Results over the WVUNITER driving cycles (Interstate driving) 

 
FE 

(mi/gal) 

NOx 

(g/mi) 

PM 

(g/mi) 

Performance Measure 

g/mi 
Improvement 

% 

Preliminary  Rule-Based 16.18 3.87 0.33 621.22 0% 

New Rule-Based 15.09 2.49 0.23 494.12 20.46% 

DP (Fuel Economy  & 

Emissions) 
16.63 2.04 0.16 403.58 35.03% 

c. Results over the WVUCITY driving cycles (City driving) 

Table 2: Fuel economy and emissions evaluation for a dynamic programming 

inspired rule-base controller (source [44]) 

 

Gong et. al. [64], investigated two variations of the dynamic programming algorithm 

(conventional dynamic programming and two-scale dynamic programming) on a 

charge-depleting plug-in HEV. In the two-scale dynamic programming algorithm, the 
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electric mode of the operation is used first for the known trip distance. The rest of 

the distance is divided into different segments of known length and for each 

segment; fuel consumption and SOC level (Figure 10) are calculated. Finally, spatial 

domain optimisation is performed to find the optimal solution. Results from this 

study show that compared to the conventional dynamic programming algorithm 

which is very computationally expensive, a near-optimal fuel economy (3.7% less 

than optimal fuel economy) could be achieved using the two-scale dynamic 

programming algorithm. The two-scale dynamic programming algorithm was further 

used to develop an efficient on board control strategy in another study by Gong et. 

al. [48].  

 

Figure 10: Trip segmentation on road segment (source [64]) 

 

5.1.3 Stochastic control strategy 

Stochastic control is a framework developed to model and solve optimisation 

problems involving uncertainties. In this strategy, an infinite-horizon stochastic 

dynamic optimisation problem is formulated. The vehicular power demand is 

modelled as a random Markov process. Using the Markov driver, future power 

demand is predicted based on current transition probabilities. The optimal control 

strategy is then obtained using stochastic dynamic programming (SDP) [65-68]. The 

obtained control policy is in the form of a stationary full-state feedback, optimised 

over a family of driving patterns; that can be directly implemented in a vehicle. In 

contrast to dynamic programming which optimises the control policy over a given 

driving cycle, stochastic dynamic programming optimises the control policy over a 
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family of diverse driving patterns. Though relatively new, the concept of stochastic 

energy management in HEVs has attracted considerable attention worth reviewing. 

Using stochastic dynamic programming, Liu et. al.[69] successfully formulated a 

hybrid power optimal control strategy which uses an engine-in-loop (EIL) system to 

instantly analyse the impact of transients on engine emissions. In a study by Tate et. 

al.[70], two variations of the stochastic control strategy (infinite horizon SDP and 

shortest path SDP) were developed and implemented on a parallel HEV. As shown in 

Figure 11 and summarised in Table 3, the shortest path SDP controller was found to 

yield better results, as it offers better battery state of charge control and fewer 

parameters to be tuned.  

 

Figure 11: SOC on the HWFET using the SP-SDP controller (Source [70]) 
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 SP-SDP SDP SP-SDP improvement 

Cycle Performance Final SOC Performance 
Final 

SOC 

Performance 

(%) 

Reduction 

in Final 

SOC error 

(%) 

UDDS 

HDV 
833.58 0.4982 850.46 0.5128 2.03 85.94 

WVU 

suburban 
627.05 0.5058 654.44 0.5103 4.37 43.7 

WVU city 509.46 0.4997 536.82 0.5095 5.37 96.84 

FET 

highway 
944.14 0.5004 972.93 0.5214 3.05 98.13 

Table 3: Comparison of performance in control laws for the SP-SDP and SDP 

controller (Source [70]) 

Using the shortest path SDP method, the optimal trade-off between fuel 

consumption and tailpipe emissions was investigated on an HEV facilitated with a 

dual mode EVT [71]. Results from this study showed that even with the much 

simplified shortest path SDP, 8000 simulation hours was required to obtain an 

optimal solution to the formulated energy management problem. The shortest path 

SDP was further developed in a study by Opilaet. al.[72] to account for HEV energy 

management problems involving fuel economy and driveability. Results from this 

study showed that for the same level of drivability, the SP-SDP-based controllers 

were 11% more fuel efficient than a baseline controller over the FTP driving cycle 

(Table 4). 
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Table 4: SP-SDP controller performance over the FTP driving cycle 

SP-SDP #1 is the controller with the best corrected fuel economy without regard to 

drivability. SP-SDP #2 has the closest drivability metrics to the baseline controller, and 

is closely related to SP-SDP #1. SP-SDP #3 is selected by finding a controller with 

similar fuel economy to the baseline controller and about half the number of 

drivability events. 

Wang et. al.[73] proposed an SDP-extremum seeking algorithm with feedback 

control as shown in Figure 12. By definition, this approach leverages the global 

optimality and SOC sustainability characteristics of the SDP controller; and 

compensates its optimal control errors by introducing a real-time extremum seeking 

output feedback. The resulting effect is a real-time near-optimal and charge-

sustaining performance, as shown in Figure 13. 

Controller 

Descriptions 

Fuel Economy 

(Corrected) 

Engine 

Events 

Gear 

Events 

Final 

SOC 

Fuel Economy 

(Uncorrected) 

Baseline Controller 1.000 88 93 0.505 0.997 

SP-SDP #1- Best 

Fuel Economy 
1.119 88 106 0.504 1.117 

SP-SDP #2 Similar 

Drivetrain Activity  
1.114 88 93 0.506 1.110 

SP-SDP #3 Similar 

Fuel Economy 
1.010 34 36 0.561 0.977 
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Figure 12: The schematic diagram of the SDP-ES optimization algorithm (source [73]) 
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Figure 13: Comparison between the optimized results by SDP and SDP-ES 

(source [73]) 
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5.1.4 Genetic algorithm 

Genetic algorithm (GA) is a heuristic search algorithm for generating solutions to 

optimisation problems. This branch of artificial intelligence is inspired by Darwin’s 

theory of evolution. In order to procure an optimal solution to a problem, GA begins 

with a set of preliminary solutions (chromosomes) called population. The solutions 

from each population are chosen according to their suitability to form new and 

improved versions. Consequently, the most suitable solutions have a better chance 

of growth than weaker solutions. The process is continuously repeated until the 

desired optimisation conditions are satisfied.  Genetic algorithm is a robust and 

feasible global optimisation approach with a wide range of search space, useful for 

solving complex engineering optimisation problems characterised by non-linear, 

multimodal, non-convex objective functions.  

A number of studies have considered Genetic algorithm for energy management in 

HEVs [74-82]. Piccolo et. al.[83] applied genetic algorithm to an on-road vehicle with 

the objective of optimising an objective function involving fuel consumption and 

emissions terms. They comparatively simulated their genetic based approach with a 

conventional gradient based approach, and found that the genetic optimisation 

approach achieved a better reduction in CO emissions, while the HC and NOx 

emissions remained roughly the same (Table 5).  

 
Genetic  

Based 

Gradient 

Based 
Deviation % 

CO, (g/km) 4.53 5.18 -12.5 

NOx (g/km) 0.25 0.25 0 

HC, (g/km) 0.45 0.44 +2.2 

Fuel consumption (1/100km) 6.9 6.8 +1.4 

Table 5: Genetic algorithm results over an urban driving cycle (source [83]) 

Ippolitoet. al.[84], combined a fuzzy clustering criterion with genetic algorithm to 

compensate the performance of the proposed energy controller in dynamic and 

unpredictable driving conditions. Results from this study as detailed in Table 6 show 

that the combination of both strategies yield significant reduction in computational 

effort and improvement in fuel efficiency when compared to the multi-objective 

optimisation approach.  

Wang et. al. [85], Poursamadet. al.[86] and Yi et. al. [87], used genetic algorithm to 

tune and optimise a robust real-time implementable fuzzy logic based HEV control 



Page 30 of 98 
 

strategy. The application of genetic algorithm for multi-objective energy 

management is considered by Huang et. al.[81]. In this study, a multi-objective 

genetic algorithm (MOGA) is used to solve a optimisation problem for a series HEV. 

Their results show that genetic algorithm is flexible and effectively handles multi-

objective optimisation problems. By comparing the multi-objective genetic algorithm 

(MOGA) to a single-objective genetic algorithm (SOGA) and a thermostatic algorithm 

over different driving cycles as shown in Figure 14, the authors conclude that if the 

performance of fuel economy and emissions are taken into account, the strategy 

based on multi-objective genetic algorithm is always better than the thermostatic 

and single-objective genetic algorithm. The MOGA approach is further developed in a 

study by Desai et. al. [88] to also optimise powertrain component sizing. The ICE size, 

motor and battery sizes, as well as the control strategy parameters were optimised. 

The results of the trade-off solutions (Table 7) demonstrated significant 

improvements in vehicle performance over the UDDS driving cycle. In Fang et. 

al.[82], the MOGA approach is used to simultaneously optimise the control system 

and powertrain parameters. Genetic algorithm (GA) has also been used to solve an 

HEV control problem involving the optimisation of component sizes and the 

minimisation of fuel consumption and emissions [74-79, 89]. In Hu et. al.[89], the 

proposed approach is a non-dominated sorting genetic algorithm (NSGA).  The NSGA 

varies from GA only in the way the selection operator works. Crossover and mutation 

operations remain the same. 

In a study byMontazeri-Ghet. al.[90], a genetic-fuzzy approach is formulated to find 

an optimal region for engine operation. First, a hidden Markov model was developed 

to classify and recognise driving patters from previous driving experiences. 

Afterwards, predicted driving patterns were utilised for the optimisation of HEV 

control parameters using a genetic-fuzzy approach. Simulation results from this study 

show that adaptation to traffic conditions using intelligent genetic-fuzzy approach is 

very effective in reducing fuel consumption (Figure 15).  
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Driving Cycle no. Monitored Parameters MOS DB Dev% 

NEDC 

HC (g/km) 0.247 0.2485 +0.63% 

CO (g/km) 1.469 1.4642 -0.36% 

NO, (G/km) 0.134 0.1337 -0.59% 

Fuel Consumption 

(Litres/km*100) 
3.593 3.5992 +0.17% 

Final SOC 0.557 0.5584 -0.16% 

CPU Time consumption  

during the cycle (s) (N-184) 
965.86 70.09 -92.74% 

FTP 

HC (g/km) 0.173 0.1713 -0.75% 

CO (g/km) 0.996 0.8444 -15.2% 

NO, (G/km) 0.151 0.1501 -0.6% 

Fuel Consumption 

(litres/km*100) 
3.963 3.6926 -6.82% 

Final SOC 0.547 0.5219 -4.65% 

CPU Time consumption  

during the cycle (s) (N=465) 
2018.3 287.45 -85.75% 

US06 

HC (g/km) 0.216 0.217 0.49% 

CO (g/km) 2.048 2.054 0.31% 

NO, (G/km) 0.251 0.247 -1.69% 

Fuel Consumption 

(Liters/km*100) 
5.127 5.165 0.006% 

Final SOC 0.0508 0.5077 0.75% 

CPU Time consumption 

during the cycle (s) (N=131) 
747.75 35.5 -95.23% 

HWFET 

HC (g/km) 0.163 0.1603 -1.4% 

CO (g/km) 0.913 0.8853 -3.0% 

NO, (G/km) 0.143 0.1381 -3.7% 

Fuel Consumption 

(Liters/km*100) 
3.446 3.142 -0.99% 

Final SOC 0.357 0.5523 -0.86% 

CPU Time consumption 

during the cycle (s) (N=156) 
833.39 52.24 -93.73% 

Table 6: Simulation results: MOS (Multi-objective solutions), DB (Data Base), DEV% 

(Deviation in Percentile) source [84] 
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a. Fuel economy performance 

 
b. HC emissions 

 
c. CO emissions 

 
d. NOx emissions 

Figure 14: Performance evaluation of the SOGA, MOGA and Thermostatic controller 

(source [81]) 
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Figure 15: Fuel consumption obtained from simulation HEV over TEH-CAR driving 

cycle (source [90]) 
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Design Variables Objectives Constraint 

X1 X2 X3 
   

X7 
Fuel 

Cons. 

(L/100 

km) 

Emission 

(grams/  

km) 

Acceleratio

n t1 

ICE 

Powe

r (kW) 

Moto

r 

Powe

r (kW) 

Battery 

Power 

(kWh) 

X4 X5 X6 (km/h) (sec) 

186.3

3 

90.12 54.86 0.5

1 

0.

88 

0.8

8 

6.2 44.45 19.47 24.47 

179.9

1 

122.4

3 

56.41 0.4

5 

0.

99 

0.9

9 

5.71 45.33 18.84 24.11 

185.6

2 

95.1 54.85 0.5

2 

0.

93 

0.9

3 

5.46 44.8 19.35 23.84 

195.4

6 

127.4

4 

54.83 0.4

8 

0.

93 

0.9

3 

3.42 43.51 19.83 23.19 

179.3

8 

99.96 53.19 0.4

8 

0.

88 

0.8

8 

5.77 44.8 18.96 24.19 

205.7

3 

138.0

9 

52.92 0.5

2 

0.

98 

0.9

8 

2.01 43.15 22.49 22.63 

188.4

5 

132.0

5 

53.19 0.6

7 

0.

92 

0.9

2 

4.1 44.38 19.54 23.58 

186.3

3 

90.12 54.86 0.5

1 

0.

88 

0.8

8 

6.2 44.45 19.47 24.47 

195.3

5 

123.6

8 

55 0.6

5 

0.

88 

0.8

8 

5.59 43.34 21.38 23.19 

195.0

2 

128.8 54.26 0.5

6 

0.

96 

0.9

6 

4.4 43.4 20.92 23.22 

181.2

2 

122.4

3 

56.64 0.4

5 

0.

99 

0.9

9 

5.72 45.15 18.88 24.02 

205.7

3 

138.0

9 

52.92 0.5

2 

09

8 

0.9

8 

2.01 43.15 22.49 22.63 

Table 7:Multi-objective genetic algorithm parameters over the UDDS driving cycle 

(source [88]) 

 

5.1.5 Particle swarm optimization 

Particle swarm optimisation (PSO) is a computational method developed by 

Dr.Eberhart and Dr.Kenedy in 1995 [91, 92]. This technique is inspired by the social 

behaviour of bird-flocking, which optimises a problem by iteratively trying to 

improve a candidate solution with regard to a given measure of quality. In PSO, 

particles move around a search space and are guided by best known positions in the 

search space, as well as the best known position of the entire swarm. Movement of 

the swarm particles occur when improved positions are discovered. 

PSO is a meta-heuristic approach, and can search very large spaces of candidate 

solutions. Though non-causal in nature, PSO does not require the optimisation 

problem to be differentiable and as such is very suitable for optimisation problems 

with some degree of noise or irregularity. Particle swarm optimisation has 

successfully been applied in HEVs.  
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In a study by Huang et. al.[93], an improved particle swarm optimisation approach 

was used to optimise a multilevel hierarchical control strategy for a parallel HEV 

(Figure 16). Results from this study show that compared to a baseline control 

strategy (PSAT built-In control strategy), the optimal multilevel hierarchical control 

strategy is able to articulate the engine, electric motor and battery towards 

operating efficiently in an optimal state. In this way, fuel consumption and emissions 

are simultaneously minimised (Table 8). In Junhong[94], PSO was also successfully 

applied to solve an HEV energy management problem involving the simultaneous 

minimisation of fuel consumption and emissions. 

 

Figure 16: Structure of multilevel hierarchical control system of PHEV powertrain 
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Control strategy 

Fuel 

Consumption 

(L/100km) 

Final SOC (initial 

SOC-0.7) 

Optimal multilevel hierarchical control 

strategy 
6.0921 0.6929 

PSAT Built in control strategy 7.1597 0.7557 

Table 8: Comparison of a baseline control strategy (PSAT built-In control strategy), 

with an optimal multilevel hierarchical control strategy (source [93, 95]) 

Wang et. al.[96] proposed a control strategy to optimise fuel consumption and 

emissions in HEVs using PSO. Through simulation, the proposed PSO strategy is 

shown to significantly improved fuel economy in high speed driving cycles (US06), 

and emissions in middle or low speed driving cycles (NEDC and Manhattan cycle) as 

detailed in Table 9. 

Control 

Strategy 

Fuel Economy 

(mpg) 

HC Emission 

(g/mi) 

CO Emission 

(g/mi) 

NOs Emission 

(g/mi) 

Before Opt 28.8 0.722 3.422 1.003 

Direct 35.4902 0.7026 3.5538 0.9757 

PSO 44.9723 0.6680 3.4383 0.8892 

a. US06 driving cycle 

Control 

Strategy 

Fuel Economy 

(mpg) 

HC Emission 

(g/mi) 

CO Emission 

(g/mi) 

NOs Emission 

(g/mi) 

Before Opt 39.9 0.756 3.726 0.959 

Direct 30.4926 0.6937 1.7738 0.5324 

PSO 38.1694 0.6834 2.3926 0.6984 

b. NEDC driving cycle 

Control 

Strategy 

Fuel Economy 

(mpg) 

HC Emission 

(g/mi) 

CO Emission 

(g/mi) 

NOs Emission 

(g/mi) 

Before Opt 32.7 2.256 11.497 2.613 

Direct 34.8820 0.7056 3.5636 0.9829 

PSO 32.5624 0.7304 1.9575 0.7098 

c. MANHATTAN driving cycle 

Table 9: PSO simulation results over different driving cycles (source [96]) 
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Wuet. al.[97] applied PSO to optimise the membership function and rules of a fuzzy 

logic HEV controller. The resulting strategy was simulated over different driving 

conditions, and found to yield near-optimal control signals in charge-sustaining 

operations. In Al-Aawaret. al.[98] andWu et. al.[99], PSO is used for sizing 

electromechanical components for higher efficiency and reduced fuel consumption. 

In Al-Aawaret. al.[98, 100], the design optimisation environment consists mainly of a 

PSO module and an Electromagnetic-Team Fuzzy Logic (EM-TFL) module. As shown in 

Figure 17, the PSO optimiser searches the database of the EM-TFL algorithm to 

obtain the best population. The best population set are then matched to the 

objective functions. If the degree of match is higher than the present tolerance, the 

PSO is considered as a successful candidate. The successful candidates of all 

components are subsequently gathered and a PSO algorithm is used to compute the 

global optimal sizing for all component combinations. In Wu et. al.[99], the 

component sizing optimisation problem is solved using a multi-objective self-

adaptive differential evolution algorithm (MOSADE). The proposed MOSADE (Figure 

18) approach adopts an external elitist archive to retain non-dominated solutions 

that are found during the evolutionary process. To preserve the diversity of Pareto 

optimal solutions, the MOSADE approach consist of a progressive comparison 

truncation operator, based on the normalised nearest neighbour distance. 

Simulation results from both studies, demonstrate the capability of PSO to generate 

well-distributed Pareto optimal solutions to HEV multi-objective optimisation design 

problems.  
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Figure 17: Electromagnetic-Team fuzz logic PSO optimization process for an HEV 

(source [98]) 
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Figure 18: Algorithm flow chart of the MOSADE approach (source [99]) 

Desai et. al.[101], applied PSO to optimise both the powertrain and control strategy 

for reduced fuel consumption, improved efficiency and reduced emissions. As 

detailed in Figure 19, simulation results show an improvement in the fuel economy, 

emissions, and overall drivetrain efficiency. In Varesiet. al.[102], PSO is used as 

shown in Figure 20 to find the optimal degree of hybridisation in a series-parallel 
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HEV, to optimise vehicle performance, as well as reduce fuel consumption and 

emissions. By analysing real-time simulation results, the authors conclude that the 

PSO algorithm is a fast and efficient optimisation technique for component sizing. 

 

Figure 19: Comparative plot of fuel economy, emissions and drivetrain efficiency for 

a particle swarm optimisation process (source [101]) 
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Figure 20: Optimal degree of hybridisation solution process using particle swarm 

optimisation algorithm (source [102]) 

 

 



Page 42 of 98 
 

5.2 HEV online control strategies 

In contrast to HEV offline control strategies, HEV online control strategies are causal 

and can be implemented in real-time. HEV online control strategies can either be 

formulated in form of heuristic control rules (rule-based control strategies), or as an 

instantaneous optimisation of a defined objective function (online optimisation 

based strategies). 

 

5.2.1 Rule based control strategy 

Rule-based control strategy is the most common way of implementing a real-time 

supervisory control in an HEV. The control rules are often based on heuristics, 

engineering intelligence, or mathematical models and are aimed at the objective of 

enabling the ICE to operate at high efficiency points, as well as enabling energy 

recuperation via regenerative braking [103-106].  

The development of rule-based HEV control methods is generally articulated in two 

steps: the definition of the relevant rules for the powertrain control, and the 

calibration of the strategy, which is typically carried out by means of simulations on a 

vehicle model. Rule-based control methods are generally unable to guarantee the 

optimality of the solution found, nor satisfy the desired final integral constraint 

(charge sustainability). To remedy this, the control rules must make sure that the 

integral constraint (SOC) remains between its prescribed lower and upper bounds. 

With rule-based control strategies, there is no standard approach to the control rules 

formation, and no way to determine a priori that the given set of rules is appropriate 

for the given application. However, there is a possibility that the control rules can be 

made detailed and complex enough to take care of any special event that may affect 

the vehicle [26, 107-112]. 

The main advantage of rule-based HEV control methods lie in their simplicity, which 

makes them fairly easy to understand and implement on actual vehicles [26, 107-

112]. Owing to their low computational demand, natural adaptability to online-

applications, good reliability and satisfactory fuel consumption results, rule-based 

control strategies have monopolised the production vehicle market. Despite 

widespread utilisation, rule-based HEV control methods, still present some 

significant challenges. Typically, in a rule-based HEV control strategy, a huge amount 

of time and investment in qualified work force is required to develop the strategy, 

owing to the long rules definition and calibration process. This situation is further 

worsened by the fact that the rules need to be redefined for every new driving 
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condition and powertrain, thus posing some questions about the robustness of rule-

based HEV control strategies [113]. In addition to this, recent research studies show 

that in comparison to optimisation methods, rule-based HEV control methods 

produce inferior but satisfactory fuel consumption results [114]. Rule-based 

controllers could further be subcategorised into deterministic rule-based control 

strategy [115] and fuzzy rule-based control strategy [106]. 

 

5.2.1.1  Deterministic rule based control strategy 

In the deterministic rule-based control strategy, rules are decided with the aid of a 

fuel economy or emissions map of the engine in question. Implementation of the 

rules, are often performed via pre-computed look up tables. Deterministic rule-based 

control strategy features notably in the study of Kim et. al.[116], where the concept 

of hybrid optimal line was proposed for a parallel HEV, with continuous varying 

transmission (CVT). Using this concept, optimal values of CVT gear ratio, motor 

torque and engine throttle were determined successfully and applied in real-time. 

One of the most successfully applied deterministic rule-based HEV control strategy is 

the electric assist control strategy. In this strategy, the ICE works as the sole source 

of power supply and the electric motor is only used to supply additional power when 

demanded by the vehicle. Thermostat control strategy is another variation of 

deterministic rule-based control. In this approach, the electric motor and ICE are 

used to generate the electrical energy which powers the vehicle. The battery state of 

charge is always maintained between predefined high and low levels, by simply 

turning on/off the internal combustion engine. Jalilet. al.[105] used the thermostatic 

control strategy to turn the engine on/off based on the battery state of charge 

profile. Obtained results were found to be highly sub-optimal, compared to that of a 

deterministic rule-based control strategy. 

In many of the widely employed rule-based control strategies, the following rules 

apply [117-119]:- 

1. Below a certain vehicle power demand, the vehicle works purely as an electric 

vehicle (EV) and only the electric motor is used to supply the total power 

demand. This rule is generally set to avoid the engine operating in low engine 

efficiency points. The applicability of this rule however depends on the size of 

the electric motor and batteries employed on the HEV. 

2. The electric motor is used for power-assist, when the vehicle power request 

exceeds the maximum engine power. 
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3. The electric motor charges the battery during regenerative braking. 

4. The ICE is used to produce an extra torque to sustain the battery SOC, when it 

goes below the set minimum value. 

 

5.2.1.2  Fuzzy rule based control strategy 

Fuzzy rule controllers in general originate from rule-based controllers. However, in a 

fuzzy rule controller, the linguistic representation of the control inputs is converted 

into numerical representation with membership function, in the fuzzification and 

defuzzification process. The underlying logic in the fuzzy rule-base control strategy is 

a form of multivalued logic derived from fuzzy set theory, to deal with reasoning that 

is approximate rather than precised. The relative simplicity associated with fuzzy rule 

controllers allow for tuning and adaptation where necessary, thus enhancing the 

degree of freedom of control. Its non-linear structure makes it even more useful in 

complex systems such as advanced powertrain. Fuzzy rule controllers typically accept 

as inputs, the battery state of charge, desired ICE torque and intended mode and 

outputs the ICE operating point. In Schoutenet. al. [107], Zeng et. al. [120] and 

Khoucha et. al. [121], driver command, battery SOC and motor/generator speeds 

were considered as fuzzy sets for the design of a fuzzy rule-based control strategy. In 

Liu et. al. [122], the fuzzy control framework was extended to include a power 

notification system, which enables the engine to operate in its high efficiency region. 

Typically, the electric motor makes up for the difference between the power demand 

and the ICE power. Currently, there are several variations to the fuzzy rule-based 

control in the form of: traditional fuzzy control strategy, adaptive fuzzy control 

strategy and predictive fuzzy control strategy. 

 

5.2.1.2.1 Traditional fuzzy control strategy 

Traditional fuzzy control is typically implemented to optimise fuzzy efficiency, thus 

enabling the ICE to operate more efficiently. This is achieved by means of load 

balancing, where the electric motor is used to force the engine towards operating in 

its most efficient region (low engine speed, high engine torque region), while 

sustaining the battery state of charge. Schoutenet. al. [107] proposed a fuzzy logic 

controller to optimise fuel consumption in a parallel HEV. The proposed method is 

based on the efficiency optimisation of the essential parts of the vehicle including 

the internal combustion engine, electric motor and battery. An efficiency map for a 

generic compression ignition direct injection (CIDI) engine is used. Taking into 
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account the battery state of charge, the fuzzy controller is used to track the 

individual components so that they operate close to the optimal curve, as shown in 

Figure 21. The entire solution process can be articulated using the following steps: 

First, the power controller is used to convert the accelerator and brake pedal inputs 

to driver power command. The driver power command, battery SOC and electric 

motor speed are then used by a fuzzy logic controller, to compute the optimal 

generator power and scaling factor for the electric motor, as detailed in Table 10. 

The driver power command, optimal generator power, and scaling factor are then 

used to compute the optimal power for the ICE and electric motor. 

 

Figure 21: Simplified block diagram of the Fuzzy logic controller (source [107]) 

 

Table 10: Rule base of the Fuzzy logic controller (source [107]) 

Simulation results show that compared to a default controller on the PSAT (PNGV 

systems analysis tool kit) simulation model, the fuzzy logic controller achieves on the 

overall, a 6.8% improvement over an urban driving cycle, and a 9.6% improvement 

over a highway driving cycle as detailed in Table 11. 
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 Highway cycle Urban cycle 

Normalised losses Default FLC Default FLC 

Internal Combustion Engine (ICE) 62.7 59.4 66.5 64.5 

Electric Motor EM 3.2 2.2 5.2 3.2 

Battery 0.85 0.53 0.6 0.3 

Drivetrain 12.3 7.3 12.3 9.4 

Vehicle 19.3 19.3 10.8 10.9 

Friction braking 0.35 0.35 2.5 2.8 

Accessories 1.3 1.3 2.1 2.1 

Total 100 90.4 100 93.2 

Table 11: Comparison of normalised losses for a default PSAT controller and a Fuzzy 

logic controller (source [107]) 

 

5.2.1.2.2 Adaptive fuzzy control strategy 

Adaptive fuzzy control strategy is becoming increasingly popular in automotive 

applications on HEV, because it presents the possibility for the simultaneous 

optimisation of fuel efficiency and emissions. Fuel efficiency and emissions are often 

conflicting objectives and as such an optimal solution cannot be achieved to the 

satisfaction of each individual objective. However, a sub-optimal solution is 

achievable using the weighted-sum approach, where appropriate weights are tuned 

over different driving conditions, for fuel efficiency and emissions. The weights 

assigned are relative, and thus reflect the importance of the individual objectives to 

which they are assigned (fuel consumption, NOx, CO and HC emissions) [123]. 

Consequently, with adaptive fuzzy controllers it is possible to control individual 

objectives by changing the value of the weights assigned. An application of adaptive 

fuzzy logic controllers in solving conflicting objective control problems involving NOx, 

CO and HC emissions, have been reported in literature [86, 123]. 

 

5.2.1.2.3 Predictive fuzzy control strategy 

Predictive fuzzy controller utilises prior information about a planned driving trip. This 

information is often acquired with the aid of a Global Positioning System (GPS), 

which provides knowledge about the type of obstacles that the vehicle is bound to 

encounter e.g. heavy traffic, and steep grade etc. Typical inputs to the predictive 

controller are vehicle speed, speed state in the look-ahead window and the elevation 

of the sampled points along a predetermined route.  
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Based on the available history of vehicle motion, and the speculation of its possible 

motion in future, the predictive fuzzy controller calculates the optimal ICE torque 

contribution for each vehicle speed and outputs a normalised signal in the order of -1 

to +1, which prescribes whether the battery should be charge or discharged 

respectively. 

Owing to simplicity and robustness, fuzzy controllers have attracted a lot of attention 

from heuristic control experts within the research and automotive industry. Arsieet. 

al.[124] for example, implemented a fuzzy controller to control the parameters 

related to driver-vehicle interaction, torque management, and battery recharge.  The 

proposed driver model uses fuzzy control rules (Table 12), to formulate a realistic 

representation of the cognitive process of a human driver. Consequently, in a 

situation where the vehicle speed is greater than the reference speed and the vehicle 

is already decelerating, the fuzzy driver would not brake hard, but would either keep 

the throttle closed or brake gently. As shown in Figure 22, simulation results show an 

excellent agreement between the target and the instantaneous vehicle speed. 

 

Table 12: Rule-based for driver model fuzzy controller (source [124]) 



Page 48 of 98 
 

 

Figure 22: Target and actual vehicle speed for a fuzzy driver model (source [124]) 

Lee et. al.[125] proposed a fuzzy controller that is robust and unaffected by vehicle 

load variation and road pattern. The proposed fuzzy logic controller is mainly 

composed of two parts: the driver’s intention predictor (DIP) and the power balance 

controller (PBC), as shown in Figure 23. The difference between the two fuzzy logics 

is that the DIP generates the torque reference responding to the rapid acceleration 

or deceleration of the vehicle regardless of the battery’s state, and the PBC 

generates the torque reference responsible for keeping the battery charge balanced. 
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Figure 23: Block diagram of the DIP and PBC fuzzy controller (source [125]) 
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Figure 24: Fuzzy logic based driver’s intention predictor (DIP). (a) Input and output 

membership functions (b) Rule-base (c) Output (source [125]) 
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Figure 25: Fuzzy logic based power balance controller (a) Input and output 

membership functions. (b) Rule base (c) Output (source [125]) 

Simulation results show that over a 20 days testing period, the proposed controller is 

able to preserve  the battery voltage between its nominal voltage (120% fully charge 

voltage) without any extra charge (Figure 26). 
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Figure 26: Battery voltage variations for the DIP and PBC fuzzy controller (source 

[125]) 

Baumann et. al. [108], demonstrated the effectiveness of fuzzy controllers to 

increase fuel economy and showed that it works well for non-linear, multi-domain 

and time varying systems. The proposed control scheme forces the majority of 

operating points to be in the vicinity of the highest point of efficiency. The resulting 

effect is an increase in average efficiency from 23% to 35.4% over the federal urban 

driving schedule as shown in Figure 27. 
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Figure 27: Efficiency map for HEV using efficiency strategy (source [108]) 

Tao et. al.[126] designed a PID-like fuzzy controller with heuristic functional scaling 

which is easy to adjust even in the absence of a mathematical model for the vehicle. 

The proposed controller dubbed “FPIDF” (Flexible complexity reduced PID-like Fuzzy 

controller) (Figure 28) was simulated against a normal PID-like fuzzy controller and a 

PD controller. Simulation results show that compared to the other controllers, the 

FPIDF controller performs the best with the shortest rise and settling time. 

Proportional-Integral (PI) controllers have also been shown to be effective in the 

control of non-linear plants [4, 127-129]. In Syed et. al.[127] for example, a PI 

controller is designed and optimally scheduled using a fuzzy-gain scheduling system, 

to control engine power and speed in an HEV. 

In Jianlonget. al. [130], an attempt is made to formulate a computationally efficient 

fuzzy control strategy, using a network structure of 2 inputs and 1 output. In Zhouet. 

al. [131], particle swarm optimisation is used to improve the accuracy, adaptability 

and robustness of a fuzzy control strategy. 
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Figure 28: Block diagram of the fuzzy control system with FPIDF (source [126]) 

 

 

Figure 29: Performances of fuzzy controllers FPIDF (solid line), PIDF (dash-dot line), 

and PD (dotted line) for delayed plant (source [126]) 

In Hajimiriet. al.[132], a predictive fuzzy logic controller which uses inputs such as 

present elevation, future elevation, present speed and predictive speed is proposed 

to manage the power flow in a series HEV. Based on the future state of the vehicle, 

related to traffic and elevation positions, the rules are defined accordingly as 

detailed in Table 13. 
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Future Increasing Constant Decreasing 

State elevation elevation elevation 

Increasing 
Nothing 

Normal High 

traffic flow discharging discharging 

Constant Normal 
Nothing 

Normal 

traffic flow discharging discharging 

Decreasing High Normal 
Nothing 

traffic flow charging discharging 

Table 13: Fuzzy rule base of a predictive control strategy 

The foregoing rules imply that, when the GPS indicates “decreasing elevation” and 

“increasing traffic flow” for the future state, the output command is “high 

discharging”. In this case, more battery energy is consumed in slower traffic and 

higher elevation; while the future state of the vehicle, i.e. decreasing elevation and 

increasing traffic flow, will compensate the high rate of discharging at present. The 

comparison results of the predictive fuzzy controller and a power follower algorithm 

are detailed in Table 14.  

  
Predictive algorithm 

Power follower 

algorithm 

Fuel consumption 

[Lit/mile] 
0.189 0.202 

CO [g/mile] 4.293 5.08 

HC [g/mile] 0.656 0.676 

NOx [g/mile] 0.878 0.894 

Table 14: Fuel consumption and emissions of a fuzzy predictive controller and a 

power follower controller (source [132]) 

These results show that the predictive fuzzy controller outperforms the power 

follower algorithm on the basis of fuel consumption reduction and emissions 

reduction. 

In Langariet. al.[133], the concept of fuzzy intelligent energy management agent 

(IEMA) is proposed and implemented for vehicle torque distribution and charge 

sustenance, on the basis of current vehicle state, vehicle power demand and 
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available online driving cycle data. Simulation results show that the IEMA is able to 

manage the torque distribution of a parallel HEV in a charge-sustaining manner. 

In Golkaret. al.[134], an online adaptive intelligent fuzzy controller (Figure 30) is 

proposed, and used to optimally control the ICE torque such that conflicting 

objectives involving fuel consumption and emissions are simultaneously  minimised.  

 

Figure 30: Layout of fuzzy controller with driver intention predictor and driver torque 

computation (source [134]) 

Using different variations of the predictive fuzzy control strategy, similar results were 

observed in the study of Lu et. al.[135] (Table 15) and Fu et. al.[136]. 

Drive 

cycle 

Control 

strategy 

NOx HC CO Fuel 

Emissions Emissions Emissions Economy 

g/km g/km g/km L/(100km) 

N
ED

C
 

Electric assist control 

egystrat 
59195 59344 19795 797 

Fuzzy logic control 59158 59295 1.361 5 

Improve (%) 44.62% 14.24% 24.18% 35.06% 

U
D

D
S

 

Electric assist control 

strategy 
59253 59323 19467 797 

Fuzzy logic control 59132 59269 1.282 4.4 

Improve 47.83% 16.72% 12.61% 42.86% 

in
a

C
h

 

Electric assist control 

strategy 
59244 59398 19869 896 

Fuzzy logic control 59132 59346 1.62 4.6 

Improve 45.90% 13.07% 13.32% 46.51% 

Table 15: Comparison between electric assist control and fuzzy logic control (source 

[135]) 
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  Fuzzy logic energy management strategy 

After optimisation Before optimisation 

HC (grams/miles) 0.34 0.421 

CO (grams/miles) 1.713 2.071 

NOX (grams/miles) 0.159  90.16 

Fuel Economy (mpg) 63.6 62.4 

Table 16: Simulation results from a fuzzy logic energy management strategy (source 

[136]) 

Poursamadet. al.[86] proposed an adaptive genetic-fuzzy control strategy to 

determine how to distribute vehicle power demand between the internal 

combustion engine and the electric motor of a parallel HEV. First, a fuzzy logic 

controller is designed, and then the rules are determined and optimised using 

genetic algorithm. The resulting controller is used to optimise an objective function 

whose target values are minimised fuel consumption and exhaust emissions (HC, CO, 

and NOx). Simulation results show that over the TEH-CAR driving cycle, the genetic-

fuzzy controller is able to simultaneously achieve reduced fuel consumption, 

improved vehicle performance and battery charge sustenance (Figure 31). 
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a. Driving cycle 

 
b. SOC history over TEH-CAR driving cycle 

Figure 31: Simulation results for the genetic-fuzzy control strategy over the TEC-CAR 

driving cycle (source [86]) 

The fuzzy algorithm is also well suited for non-control applications. For example, in 

Brahamaet. al. [137], the fuzzy control theory is used to accurately design an HEV 

modelling tool, with multi-purpose applications. 
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5.2.2 Online optimization based strategies 

Online optimisation based strategies reduce global optimisation problems into a 

succession of local optimisation problems, thus reducing the associated computation 

effort. This eliminates the need for future driving information, thus making it 

implemented in real-time.  Despite yielding marginally sub-optimal results in 

comparison to global optimisation strategies, local optimisation strategies have 

received the greatest research attention in HEV control. ECMS (Equivalent 

Consumption Minimisation Strategy) [117, 138-141] and PMP (Pontryagin’s minimum 

principle) [142, 143] feature as the most popular of these techniques among 

researchers. Other online optimization based strategies being researched today 

include artificial neural network, particle swarm optimisation (PSO) and model 

predictive control (MPC).  

 

5.2.2.1  Pontryagin’s minimum principle 

Pontryagin’s minimum principle (PMP), formulated in 1956 by the Russian 

mathematician Lev Pontryagin and his students, is a special case of Euler-Lagrange 

equation of the calculus of variations.  The principle stipulates that the optimal 

solution to the global optimisation problem must satisfy the condition of optimality. 

PMP is based on the instantaneous minimisation of a Hamiltonian function over a 

driving cycle [143, 144]. Under the assumption that the trajectory obtained from 

PMP is unique and satisfies the necessary constraints and boundary conditions, the 

optimal trajectory obtained by PMP can be considered as a global optimal trajectory 

[143, 145-150]. In Geering[146] and Serraoet. al.[147], the process of formulating a 

global optimisation problem into a local optimisation problem, and solving it using 

PMP is discussed. 

Kim et. al.  [150, 151] applied PMP to find the optimal control law for a plug-in HEV. 

They showed that by setting a correct initial estimate of the co-state, the 

instantaneous minimisation of the Hamiltonian function over a driving cycle yields a 

control policy that closely matches results from dynamic programming, when the 

state boundary conditions are met (Table 17). They also showed that under the 

assumption that the battery resistance and voltage are independent of SOC, the co-

state could be considered a constant, and the resulting controller would still 

compare very closely in performance to the PMP variation with a variable co-state 

(Table 17and Figure 32). 
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Method DP 

PMP 

Exact solution 

(p(0) = -301.1) 

Constant co- state 

(p(0) = -293.4) 

FE (km/l) 65.716 65.621 65.358 

Table 17: Optimal fuel economies for PHEVs under different techniques (source 101) 

 

 

Figure 32: Engine operation points for a PMP controller with constant co-state and 

variable co-state (source 101) 

Stockaret. al. [152] proposed a PMP inspired model-based control strategy to 

minimise CO2 on a plug-in HEV (Figure 34). By examining the state of energy 

evolution for different co-state values, it was concluded that the performance of the 

PMP controller is very sensitive to the estimated co-state value. In the particular 

example considered (Figure 33), it was found that for a co-state value greater than 

10, the model-based PMP control strategy forces the vehicle to deplete the battery, 

and when the lower SOE (State of Energy) bound is reached, it switches to a charge-

sustaining mode. Similarly, when the co-state value is equal to 6, the model-based 

PMP strategy allows the battery to be gradually depleted during the cycle, reaching 

the lower SOE bound only at the end of the driving pattern and avoiding any charge-

sustaining operations. This operation, which is known as blended mode, allows for 

the achievement of the minimum vehicle fuel consumption along a prescribed 

driving cycle. The findings from Stockaret. al. [152] suggest that PMP is a shooting 

method that solves a boundary value optimisation problem. Consequently, the 

file:///C:/Users/wiseguy4ree/Dropbox/Thesis%20Chapters%20Organisation/Finally%20Updated%20Thesis/Freelancer%20edited%20copy/FINAL%20THESIS%20COPY.docx%23_ENREF_101
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resulting optimal control strategy is non-causal and cannot be implemented in real-

time. 

 

Figure 33: Battery SOE profile during the driving cycle for    = 18 varying    (cycle 

Path 3, U.S. scenario) – source [152] 
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Figure 34: Flow chart describing the model-based PMP control strategy (source 

[152]) 

 

5.2.2.2  Equivalent consumption minimization strategy 

A more readily implementable local optimisation approach is the Equivalent 

Consumption Minimisation Strategy (ECMS) [138, 141, 144, 153-160]. ECMS was first 

developed based on the heuristic concept that the energy used to drive a vehicle 

over a driving cycle ultimately comes from the engine. As such, the hybrid system 

merely serves as an energy buffer [138]. This strategy is based on the instantaneous 

minimisation of a cost index, which is the sum of a number of operation metrics 
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weighted by equivalence factors. The commonly used metrics in ECMS HEV control 

are engine fuel cost and battery fuel cost. It does not require prior knowledge of 

driving pattern and is thus implementable online. Variations to ECMS optimisation 

control strategy have been reported by a number of studies. Some of such variations 

include the Adaptive ECMS [153, 161] and Telemetry ECMS [162], which adjust the 

equivalence factor based on past driving data and future prediction. The downside to 

these adaptive techniques however, is the need for predictive equipment like GPS 

which comes at an additional cost.  

Paganelliet. al.[154] implemented an ECMS strategy to minimise fuel consumption 

and pollutant emissions on a sport utility vehicle operating in charge-sustaining 

mode. To implement the global constraint of charge-sustaining operation, the 

optimum power split is biased using a non-linear penalty function of the battery 

state of charge deviation from its target value. Results from this study show that 

using the ECMS strategy, a charge-sustaining reduction in emissions can be achieved 

with no additional penalty to fuel economy. 

Similar observations were made in Gaoet. al. [163] (Table 18) and Rousseau et. al. 

[164] (Figure 35). Results from both studies show that even in the absence of driving 

information, ECMS still yields near-optimal results for fuel consumption 

minimisation. 

 

Fuel consumption (l/100 km) 

IM240 
ECE_EUDC_

LOW 
MANHATTAN 

Thermostat Control Strategy (TCS) 34.7 47.8 63.8 

Power Follower Control Strategy 

(PFC) 
36.5 45.7 56.5 

Equivalent Fuel Consumption 

Optimal Control Strategy (EFCOCS) 
32.9 42.3 54.7 

Global optimisation (DP – Dynamic 

Programming controller) 
30.2 38.5 49.3 

Table 18: Comparison between the fuel economy performance of the TCS, PFC, 

EFC0CS and DP HEV control strategies (source [163]) 
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Figure 35: Results obtained with a sub-optimal ECMS strategy (source [164]) 

In Mursadoet. al.[153], an adaptive equivalent consumption minimisation strategy  

(A-ECMS), is proposed for the real-time energy management of an HEV (Figure 36). 

This strategy works by continuously updating the control parameter (equivalence 

factor) according to road load conditions, such that charge-sustaining, quasi-optimal 

control signals are obtained. By comparing the results obtained from the A-ECMS 

controller to those from an optimal controller (based on dynamic programming), the 

authors concluded that “a very slightly sub-optimal solution can be achieved with a 

technique much simpler that the one leading to the optimal policy” (Table 19). A 

similar inference was made in Sciarrettaet. al[141] and Maranoet. al[165]. 

Mursadoet. al.[153] also analysed the sensitivity of equivalence factors on battery 

charge sustenance (Figure 37). Results from this analysis show that the control 

performance of a classical ECMS control strategy is very sensitive to the variation of 

equivalence factors. In fact as shown in Figure 37, small perturbations of the 

equivalence factor leads to a non-charge-sustaining operation. 
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A-ECMS ECMS opt DP Pure 

Thermal 

mpg 

Driving 

Cycle improve mpg improve mpg improve mpg 

15.5% 25.5 16.3% 25.7 16.4% 25.7 22.1 FUDS 

3.9% 25.8 4.1% 25.8 4.9% 26.0 24.8 FHDS 

17.9% 24.5 18.0% 24.5 18.2% 24.5 20.8 ECE 

6.1% 24.7 6.2% 24.7 6.3% 24.8 23.3 EUDC 

10.1% 24.4 10.7% 24.5 10.7% 24.5 22.2 NEDC 

18.2% 24.8 19.8% 25.1 20.1% 25.1 21.0 JP1015 

Table 19: Comparison of fuel economy for a baseline vehicle, dynamic programming 

controller, ECMS optimal controller and adaptive ECMS controller (source [153]) 

 

Figure 36: Control block diagram of A-ECMS (source [153]) 
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Figure 37: SOC for optimal and non-optimal equivalence factors (source [153]) 

InGu et. al. [160], a Driving Pattern Recognition (DPR) approach to ECMS real-time 

adaptation is proposed to obtain a better estimation of the equivalence factor under 

different driving conditions (Figure 38). The proposed control strategy is articulated 

as follows: first 18 standard driving cycles are analysed. Twenty-one different cycle-

characterising quantities, such as average velocity, are extracted. Using the ideas of 

Principal Component Analysis (PCA) and statistical clustering, driving cycles are 

classified into 4 classes. While the vehicle is running, a time window of past driving 

conditions is analysed periodically and recognised as one of the representative 

driving patterns. Under the assumption that the current driving pattern does not 

change significantly compared to the past pattern, the equivalence factor is updated.  

Results obtained in this research show that with the proposed A-ECMS strategy, 

driving conditions can be successfully recognised, and good control performance can 

be achieved in various driving conditions while sustaining battery SOC within desired 

limits. In He et. al.[166], telemetry ECMS (using predictive speed profiles) for energy 

management of plug-in HEVs is proposed. Using an optimal window size, the 

following improvements in cumulative fuel consumption were realized: 14–31% for 
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the UDDS driving cycle, 1–15% for the HWFET driving cycle, and 1–8% for the US06 

driving cycle (depending upon the total length of travel and operating modes).  

In Won et. al. [155], a multi-objective non-linear ECMS is proposed. First, a multi-

objective non-linear optimal torque distribution strategy is formulated and 

converted into a single objective linear optimisation problem, by defining an 

equivalent energy consumption rate for fuel flow rate and battery state of charge. A 

vehicle-mode-based state of charge compensator is then applied to the optimal 

torque distribution strategy. Simulation results show that by linearising a non-linear 

optimisation problem, up to 38% reduction in computation time could be achieved 

over standard driving cycles, with little or no penalty to the optimality of the solution 

obtained. 

In Tulpuleet. al. [167], an ECMS approach is formulated to optimise fuel economy by 

estimating equivalence factors based on known total trip distance, instead of driving 

pattern information. The proposed approach estimates equivalence factors based on 

a battery SOC reference, which varies inversely with increasing trip distance. 

 

Figure 38: Driving pattern recognition based A-ECMS strategy (source [160]) 

 

5.2.2.3  Model predictive control strategy 

Model predictive control (MPC) makes explicit use of a model of a plant process in 

order to obtain the control signal, which minimises the objective function. Model 
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predictive control generally represents the solution of a standard optimal control 

problem over a finite horizon. It is performed online by using a model to predict the 

effect of a control on the system output.  

It works by instantaneously calculating the optimal control for the prediction 

horizon, but only applying the first element; then at the next time step, the 

prediction horizon is displaced towards the future. The working principle of MPC 

relies heavily on high model accuracy, as well as priori knowledge of reference 

trajectories which are not directly possible in vehicular applications. However, MPC 

have been shown by Salman et. al. [168] to be an effective real-time predictive 

optimal control strategy, when used with a navigation system. In this study, a 

generalised predictive optimal control framework is used to find the conditions 

under which the predictive strategies will give superior fuel economy compared to 

instantaneous strategies. Mixed integer linear programming with no assumptions on 

the control structure is used subsequently to formulate the optimal predictive 

energy management strategy. 

Typically, the information supplied by the navigation system, corresponding to future 

states is sampled in the look-ahead window along a planned route. Then, the optimal 

control theory is applied to solve the energy management problem in real-time using 

a preview of driving pattern and driving route information. In the absence of a 

navigation system, a static and clustering based analysis method is used to predict 

future driving conditions from past and present recorded driving data. This method 

operates on the assumption that the driving condition in future will remain relatively 

consistent. 

MPC control strategy have been shown to yield as much as 31.6% fuel savings 

compared a rule-based control strategy(Table 20)[169]. 

WVUSUB UDDS NEDC Driving cycle 

L/100km L/100km L/100km Strategies 

5.30 5.32 5.32 Rule-based control strategy 

3.76 3.82 3.64 Predictive control strategy 

Table 20: Fuel consumption results of a rule-based control strategy and a predictive 

control strategy (source [169]) 

Few researchers [168, 170-178] have successfully applied MPC to the energy 

management of HEVs. In Back et. al.[43], an MPC energy management strategy is 

formulated for a parallel HEV. In their computation, they assumed a constant vehicle 
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speed, and using GPS information, were able to estimate the road grade over the 

prediction horizon. Dynamic programming was then used to obtain the optimal 

control sequence which minimises fuel consumption. Simulation results show that by 

extending the prediction horizon to the entire route, a fuel saving potential as high as 

20% could be achieved by the model predictive controller.  

Nuijtenet. al. [179]also successfully applied a similar approach (the receding horizon 

dynamic programming) on a conventional vehicle with a 42-volts electric power net 

and an alternator which is able to supplement torque to the driveline as required. 

Vito et. al.[180] also presented a similar approach on a fuel cell hybrid vehicle.  In this 

study, the MPC algorithm uses the linearised model of the fuel cell to predict its 

dynamic response, thus deciding what battery power is needed in order to satisfy the 

vehicle power demand, whilst still minimising the objective function. The proposed 

approach consist of a two level control architecture. The lower level scheme controls 

the fuel cell acting on the compressor command and on the back pressure valves of 

the anode and the cathode. The higher control level is devoted to manage the power 

absorbed by the motor and the one provided by the fuel cell.  

In a study by West et. al. [181], MPC is applied simultaneously to enhance battery 

life, vehicle driving range, as well as reduce emissions, fuel consumption and drive 

train oscillations for HEVs. In Rajagopalanet. al. [123], traffic information in the form 

inform of road speed limits, and topological data from GPS over an entire trip was 

used alongside a fuzzy logic controller to determine the power split between the 

internal combustion engine and the electric motor, based on efficiency and 

emissions. In Sciarettaet. al. [141] and Borhanet. al.[182], an MPC framework with no 

need for future driving conditions is proposed for the control of parallel HEVs. In 

Sciarettaet. al. [141], the fuel equivalent of electrical energy is estimated online as a 

function of current system status, and used to near-optimally adapt the MPC 

controller. Simulation results over an ECE driving cycle indicate a fuel consumption 

reduction of around 50% over a typical urban driving scenario. In Borhanet. al.[182], 

the global fuel minimisation problem is converted to a finite horizon optimal control 

problem with an approximated cost-to-go, using the relationship between the 

Hamilton-Jacobi-Bellman (HJB) equation and the Pontryagin’s minimum principle. A 

non-linear MPC framework is employed subsequently, to solve the problem in real-

time. Simulation results indicate that compared to a rule-based control strategy, the 

non-linear MPC control strategy offers remarkable improvements in fuel economy 

over the US06, SC03, JC08 and NYCC driving cycles, with minimum penalty to the 

final battery state of charge (Table 21). 
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US06 cycle 

Controller Initial SOC Final SOC 
Fuel Economy 

(mpg) 

Rule-based 
0.7 0.62 45.4 

0.6 0.6 .842 

linear MPC-Non 
0.7 0.69 42.49 

0.69 0.69 46.01 

SC03 cycle 

Controller Initial SOC Final SOC 
Fuel Economy 

(mpg) 

Rule-based 
0.7 0.68 71.29 

0.68 0.68 69 

linear MPC-Non 
0.7 0.69 76.66 

0.69 0.69 74.77 

JC08 cycle 

Controller Initial SOC Final SOC 
Fuel Economy 

(mpg) 

Rule-based 
0.7 0.67 85.67 

0.67 0.67 81 

linear MPC-Non 
0.7 0.71 82 

0.71 0.71 83.6 

NYCC 

Controller Initial SOC Final SOC 
Fuel Economy 

(mpg) 

Rule-based 
0.7 0.66 68.68 

0.64 0.64 52.6 

linear MPC-Non 
0.7 0.67 66.47 

0.67 0.67 58.25 

Table 21: Comparison between a non-linear MPC strategy and a rule-based strategy 

over the US06, SC03, JC08 and NYCC driving cycles (source [182]) 

Ripaccioliet. al. [183] proposed a hybrid MPC strategy to co-ordinate powertrains 

and enforce state and control constraints. At first, the authors develop a hybrid 

dynamic model using a linear and piecewise affine identification method, and then 

design an MPC strategy to reduce fuel consumption and emissions. In another study 

by Ripaccioliet. al. [184], a Stochastic Model Predictive Control (SMPC) framework is 
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developed for the power management of a series HEV. The power demand from the 

driver is modelled as a Markov chain, estimated on several driving cycles and used to 

generate scenarios in the SMPC control law. Simulation results show that the SMPC 

solution governs the engine, motor, and battery operations in a causal, time-

invariant, state-feedback way, thus resulting in an improved fuel economy and 

vehicle performance, compared to deterministic receding horizon control 

techniques. 

In Vogalet. al.[185],  a predictive MPC model based on driving route prediction is 

proposed and tuned using inverse reinforcement learning for fuel efficiency 

optimisation. In a more practical context, the proposed approach considers routes 

that the driver is likely to take, and then computes an optimal mix of engine and 

battery power. Using simulation analysis, this approach was shown to increase 

average vehicle fuel efficiency by 1.22%, without requiring any hardware 

modification or change in driver behaviour. 

In Borhanet. al.[186], a complex MPC control strategy articulated in two steps is 

proposed and applied to a power-split HEV (Figure 39). In the first step, a supervisory 

MPC is developed and used to calculate the future control sequences that minimise 

the chosen performance index. The supervisory MPC is made up of a quadratic cost 

function which characterises the HEV optimal control problem. The formulated 

problem is solved online using a linear time-varying MPC approach. In the second 

step, an addition cost function is introduced by dividing the fuel consumption cost 

into a stage cost and an approximation of the cost-to-go as a function of the battery 

state of charge. Simulation results show that, compared to a linear time-varying MPC 

strategy, the proposed two-step non-linear MPC strategy yields significant increase in 

fuel economy over standard driving cycles.  

 

Figure 39: Control block diagram of a two-step MPC strategy (source [186]) 
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Poramapojanaet. al. [177] proposed an MPC-based control strategy (Figure 40) for 

fuel consumption minimisation and charge sustenance, based on future torque 

demand predictions (estimated from desired battery SOC and desired vehicle speed). 

Simulation results show the feasibility of using an MPC controller to improve vehicle 

performance and minimise fuel consumption. 

 

Figure 40: The control architecture of the MPC-based vehicle control system (source 

[177]) 

In Sampathnarayananet. al. [173] and Kermaniet. al.[172], MPC is combined with 

other global optimization strategies to yield a near-optimal HEV control strategy in 

real-time. In Sampathnarayananet. al. [173], MPC is combined with quadratic 

programming, to solve an optimal HEV control problem. Simulation results show that 

a long prediction horizon and high prediction accuracy do not yield better results 

than a shorter horizon. The results also show that prediction accuracy is only 

meaningful for long prediction horizons. In Kermaniet. al.[172], a Lagrange formula 

based MPC global optimisation approach is proposed. The resulting controller is 

made up of a two stage algorithm. The lower stage deals with solving a receding 

horizon optimisation problem, while the upper stage deals with prediction error 

compensation and disturbance rejection. 

 

5.2.2.4  Artificial neural network (ANN) 

Artificial neural network (ANN) is a computing system made up of a number of 

simple highly interconnected processing elements, which process information using 

their dynamic state response to external inputs. The concept of ANN was originally 

developed by McCulloh and Pitts in 1943 and further improved with the addition of 

the first learning rule by Hebb in 1949.  Neural networks can be trained to learn a 

highly non-linear input/output relationship, by adjusting weights to minimise the 
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error between the actual and predicted output patterns of a training set [187]. This 

form of supervised learning is facilitated by the back propagation method. 

The adaptive structure of neural network makes it suitable for HEV energy 

management applications. Using neural network, it is possible to learn and replicate 

the non-linear relationships between inputs and outputs of a well-defined energy 

management network. 

Baumann et. al.[188] developed a control strategy that combines artificial neural 

network and fuzzy logic to implement a load levelling strategy for improved fuel 

economy and reduced emissions for different drivers and different driving patterns. 

In Arsieet. al.[45], a dynamic model is used to describe the driver-vehicle interaction 

for a generic transient and to simulate the vehicle driveline, the internal combustion 

engine (ICE) and the electric motor/generator (EM). In absence of traffic preview 

information, vehicle load is estimated in real-time through the implementation of a 

Time Delay Neural Network (TDNN) and used to optimise the supervisory control 

strategy. Simulation results show a 45% improvement in fuel economy compared to 

a conventional vehicle with the same thermal engine. 

In Mohebbiet. al.[106], an adaptive neuro-fuzzy inference system controller is 

proposed and implemented to maximise fuel economy and minimise emissions in an 

HEV. The proposed approach is designed based on the torque required for driving 

and the battery state of charge. The output of the controller is the throttle angle of 

the internal combustion engine. 

 In Suzuki et. al. [189], the neural network control framework is further improved to 

account for more multi-objectives including: torque distribution optimisation, fuel 

efficiency optimisation and electric current consumption minimisation. The entire 

optimization process is articulated using the flowchart, shown in Figure 41. 

Controller sampling time, about several minutes, is defined as a parameter. During 

the sampling time, required vehicle torque demand, engine speed, regenerating 

current and battery SOC are estimated using neural network. The hybrid controller is 

then used to iteratively determine the optimal assist torque distribution. Simulation 

results shown a 7% improvement in fuel economy compared with a heuristic HEV 

control algorithm. 
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Figure 41: Flow chart of a neuro-fuzzy controller (source [189]) 

Prokhorov et. al. [190] proposed a neural network controller for the Toyota Prius 

HEV. This approach is based on recurrent neural network using online and offline 

training including extended Kalman filtering and simultaneous perturbation 

stochastic approximation. A combination of the online and offline control methods 

was reported in this study to yield an improved average fuel efficiency of 17% over 

standard driving cycles. It was also shown to reduce the SOC variance over all the 

tested driving cycles by at least 25%. In Gong et. al. [191] and Boyaliet. al. [192] 

neural network based controllers are developed to consider variation in driving 

patterns. In Gong et. al. [191], a neural network based trip model was developed for 

a highway trip.The simulation results show that the obtained trip model using neural 

network can greatly improve the trip modelling accuracy, and thus improve the fuel 

economy. In Boyaliet. al. [192], a neuro-dynamic programming (NDP) method for 

real-time HEV control is proposed. In this approach, the complex solution structure 

of dynamic programming optimal control is approximated using artificial learning 

algorithms for real-time application. Simulation results over two randomly generated 

urban driving cycles show that although the NDP controller is able to effectively 
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sustain the battery energy in real-time, it yields highly sub-optimal fuel economy, 

when compared to the dynamic programming optimal controller (Table 22). In Liu et. 

al. [193], a high accuracy Fuzzy Neural Network (FNN) controller is proposed and 

optimised using a modified genetic algorithm and an error-compensation approach. 

 Fuel consumption Improvement      

Conventional 10.99 L/100km - - 

DP Solution 9.39 L/100km 14.5% 0% 

NDP Solution 10.53 L/100km 4.12 % 1.7% 

a. Randomly generated urban driving cycle 1 

 Fuel consumption Improvement      

Conventional 9.24 L/100km - - 

DP Solution 8.07 L/100km 12.6% 0% 

NDP Solution 8.84 L/100km 4.35 % 1.14% 

b. Randomly generated urban driving cycle 2 

Table 22: Comparison of simulation results from a dynamic programming 

controller (DP) and a neuro-dynamic programming controller (NDP) – source 

[192] 

 

6 EXISTING RESEARCH GAPS IN HEV ENERGY MANAGEMENT 

As reviewed thus far, vehicle hybridisation poses new challenges in the form of: how 

to optimally split energy demand in real-time between various competing power 

sources.  In the case of braking, this answer is straightforward because while braking, 

the focus of the strategy is to maximise energy recovery in the battery by using the 

motor as much as possible. Simple solutions however, prove inefficient when the 

vehicle power demand is positive.  

The first step in solving energy management problems when the vehicle power 

demand is positive lies in the formation of an objective function representing the 

objectives to be minimised (e.g. fuel consumption, emissions). Another aspect of 

great importance in solving energy management problems lies in the control of the 

battery state of charge. This control is implemented to constantly keep the battery 

SOC within safe prescribed boundaries to ensure battery durability, and to ensure 

appropriate and convenient exploitation of the energy stored in the battery. The 
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resulting energy management problem is a classical constrained optimisation 

problem which has been addressed by various studies, as reviewed in section 5. 

Despite the vast improvements in fuel consumption and emissions reported by most 

studies, the following gaps in control strategies still exist: 

1. Rule-based control strategies: Rule-based control strategies are by nature 

sub-optimal, and unable to guarantee the fulfilment of integral 

constraints such as charge sustenance. They also require vigorous tuning 

to optimise rules for specific driving scenarios.  This affects the robustness 

of the controller, consequently leading highly sub-optimal online 

performances. The problem is further worsened in the absence of route 

preview information.  

 

2. Dynamic programming:  Although known to yield global optimal solutions 

to HEV energy management problems, dynamic programming present 

non-causal results which are non-implementable in real-time, but can be 

used to create or benchmark sub-optimal controllers. The possibility of 

deriving useful real-time control policies from dynamic programming has 

been widely investigated in literature. Despite the research advances 

made, some of the resulting sub-optimal control policies have been found 

to yield selective performances, which are charge-depleting in highway 

driving scenarios or charge-hoarding in urban driving scenarios.  

 

3. ECMS strategy: The equivalent consumption minimisation strategy is a 

local optimisation approach based on the heuristic concept that the 

energy used to drive a vehicle over a driving cycle ultimately comes from 

the engine, and as such the hybrid system merely serves as an energy 

buffer [138]. The resulting controller thus impacts the relative advantage 

of both heuristic controllers and optimal controllers. Consequently, the 

ECMS has received considerable amount of attention in literature, with 

several variations in the form of Adaptive ECMS and Telemetry ECMS 

being proposed. Despite these research advances, the ECMS technique in 

its present form is still unable to guarantee a charge-sustaining 

optimisation performance in real-time. In a study Silvertsonnet. al.[194] 

the final battery SOC of sub-optimal ECMS strategies were shown to 

deviated by as much as 20% over standard driving cycles (Figure 42). This 

result shows that the equivalence factor of ECMS strategies are highly 
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sensitive and cycle dependent i.e. the optimal equivalence factor for one 

driving cycle might lead to a poor performance on another driving cycle. 

 

Figure 42: Impact of equivalence factor on battery state of charge (source [194]) 

4. MPC strategy: Owing to improved vehicular computational capabilities, 

and the wide availability of partial route preview information, model 

predictive control (MPC) strategies have gained significant attention, as a 

viable charge-sustaining energy management approach for HEVs. 

According to most literatures, future driving information can be predicted 

and incorporated into MPC strategies in two forms: 

a. Directly through real-time navigation systems  

b. Through the clustering based analysis of past recorded driving 

data. 

Although both methods have been successfully implemented in literature, 

future driving information prediction based on navigation systems, have 

witnessed a wider appreciation. This is due to the computational burden 

associated with static and clustering based analysis. In most production 

vehicles today, the predictive MPC framework is formulated using 
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heuristics, which decide when the battery should be charged or 

discharged accordingly. Consequently, the resulting controller contains no 

form of optimisation and is not defined to account for charge sustenance.  

In addition to the foregoing research gaps, the concept of vehicle speed 

control is relatively new and has only been investigated by a few researchers 

[195-198]. With the research area only being in its early days, most of the 

proposed vehicle speed control models are overly simplified and often yield 

non-realisable fuel-optimal speed trajectories. For example, no study to date 

has been known to consider engine braking effects in the formulation of fuel-

optimal vehicle speed trajectories. By ignoring these real-world effects, the 

resulting speed trajectory is only of academic interest. 

 

7 CONCLUSIONS 

Owing to the prospect of improved fuel economy and vehicle performance, HEVs 

continue to enjoy a wide research attention from academics and industrial 

researchers alike. With increased government funding and industrial cost 

optimizations, HEVs are becoming more affordable and accessible than ever. 

To meet the energy demands of different HEV configurations, several power 

management strategies have been proposed in literature. This paper presents a 

comprehensive review of relevant literatures pertaining to modelling and control of 

parallel hybrid electric vehicles. HEV control strategies were reviewed at depth on 

two main tiers: HEV offline control strategies and HEV online control strategies. This 

detailed appraisal is aimed at highlighting the control structure of the reviewed 

techniques, their novelty, as well as contributions towards the satisfaction of several 

optimisation objectives, which includes but are not limited to: reduction of fuel 

consumption and emissions, charge sustenance, optimisation of braking energy 

regeneration, and improvement of vehicle drivability. 

As part of this treatise, exploitable research gaps pertaining to rule based control 

strategies, dynamic programming, the equivalent consumption minimization strategy 

(ECMS) and model predictive control (MPC) strategies were identified. These 

identified research gaps points towards the direction that current HEV control 

strategies are still lacking primarily in the aspects of: optimization of braking energy 

regeneration and charge sustaining sub-optimal control using partial route preview 

information and no route preview information. Future studies towards mitigating 



Page 79 of 98 
 

these research gaps are expected to yield control strategies capable of realising the 

ultimate charge-sustaining fuel saving potentials of HEVs in real-time. 
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