4,051 research outputs found

    Control of posture with FES systems

    Get PDF
    One of the major obstacles in restoration of functional FES supported standing in paraplegia is the lack of knowledge of a suitable control strategy. The main issue is how to integrate the purposeful actions of the non-paralysed upper body when interacting with the environment while standing, and the actions of the artificial FES control system supporting the paralyzed lower extremities. In this paper we provide a review of our approach to solving this question, which focuses on three inter-related areas: investigations of the basic mechanisms of functional postural responses in neurologically intact subjects; re-training of the residual sensory-motor activities of the upper body in paralyzed individuals; and development of closed-loop FES control systems for support of the paralyzed joints

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab

    Effectiveness of Mechanical Horse-Riding Simulators on Postural Balance in Neurological Rehabilitation: Systematic Review and Meta-Analysis

    Get PDF
    Mechanical horse-riding simulators consist of a device that mimics the movement of a real horse, generating between 50 and 100 three-dimensional physical movements (forward and back, left and right, up and down). The main objective of this study is to analyze the effectiveness of mechanical horse-riding simulators to improve postural balance in subjects with neurological disorders. The search was conducted during January-March 2019 in PubMed, Physiotherapy Evidence Database (PEDro), Cochrane, Web of Science, CINAHL, and Scopus. The methodological quality of the studies was evaluated through the PEDro scale. A total of seven articles were included in this systematic review, of which four contributed information to the meta-analysis. Statistical analysis showed favorable results for balance in stroke patients, measured by the Berg Balance Scale (standardized mean difference (SMD) = 3.24; 95%; confidence interval (CI): 1.66-4.83). Not conclusive results were found in sitting postural balance, measured using the Gross Motor Function Measure-66 (GMFM-66) Sitting Dimension, in patients with cerebral palsy. Most studies have shown beneficial effects on postural balance compared with conventional physical therapy. However, due to the limited number of articles and their low methodological quality, no solid conclusions can be drawn about the effectiveness of this therapy

    Annotated Bibliography: Anticipation

    Get PDF

    Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform

    Get PDF
    Copyright @ 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).To assess the improvement of human body balance, a low cost and portable measuring device of center of pressure (COP), known as center of pressure and complexity monitoring system (CPCMS), has been developed for data logging and analysis. In order to prove that the system can estimate the different magnitude of different sways in comparison with the commercial Advanced Mechanical Technology Incorporation (AMTI) system, four sway tests have been developed (i.e., eyes open, eyes closed, eyes open with water pad, and eyes closed with water pad) to produce different sway displacements. Firstly, static and dynamic tests were conducted to investigate the feasibility of the system. Then, correlation tests of the CPCMS and AMTI systems have been compared with four sway tests. The results are within the acceptable range. Furthermore, multivariate empirical mode decomposition (MEMD) and enhanced multivariate multiscale entropy (MMSE) analysis methods have been used to analyze COP data reported by the CPCMS and compare it with the AMTI system. The improvements of the CPCMS are 35% to 70% (open eyes test) and 60% to 70% (eyes closed test) with and without water pad. The AMTI system has shown an improvement of 40% to 80% (open eyes test) and 65% to 75% (closed eyes test). The results indicate that the CPCMS system can achieve similar results to the commercial product so it can determine the balance.National Science Council (NSC) of Taiwan and the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan (which is sponsored by the NSC)

    Rehabilitation robot cell for multimodal standing-up motion augmentation

    Get PDF
    The paper presents a robot cell for multimodal standing-up motion augmentation. The robot cell is aimed at augmenting the standing-up capabilities of impaired or paraplegic subjects. The setup incorporates the rehabilitation robot device, functional electrical stimulation system, measurement instrumentation and cognitive feedback system. For controlling the standing-up process a novel approach was developed integrating the voluntary activity of a person in the control scheme of the rehabilitation robot. The simulation results demonstrate the possibility of “patient-driven” robot-assisted standing-up training. Moreover, to extend the system capabilities, the audio cognitive feedback is aimed to guide the subject throughout rising. For the feedback generation a granular synthesis method is utilized displaying high-dimensional, dynamic data. The principle of operation and example sonification in standing-up are presented. In this manner, by integrating the cognitive feedback and “patient-driven” actuation systems, an effective motion augmentation system is proposed in which the motion coordination is under the voluntary control of the user

    Adaptive Neural Networks for Control of Movement Trajectories Invariant under Speed and Force Rescaling

    Full text link
    This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.National Science Foundation (IRI-87-16960); Air Force Office of Scientific Research (90-0128, 90-0175

    Assessment of postural, locomotor, and physical fitness status in individuals with intellectual and developmental disabilities

    Get PDF
    Introduction: Postural control and locomotion deficits can be observed during the early years of childhood development and throughout life. For those with disabilities, these deficits can advance past the development years and into adolescence and adulthood while affecting the quality of life and daily activity. Finding interactive rehabilitative activities to delay or limit these deficits is essential for people with disabilities to improve their quality of life, inclusion, and overall movement. Adapted physical activity/sports like badminton and virtual reality could promote improvements in postural and locomotor status for young adults with intellectual and developmental disabilities like cerebral palsy (CP), intellectual disability (ID), and autism spectrum disorder (ASD). Purpose: These studies aim to assess the postural and locator status of young adults with intellectual and developmental disabilities after participating in a 12-week badminton and intensive virtual reality programs. Methods: Study A will follow a multiple baseline approach to access postural control, locomotion, and areas of physical fitness in young adults with IDD utilizing the immersive virtual reality game Fruit Ninja™ while study B will follow and repeated measures design accessing static postural control for students in a comprehensive transition program for intellectual disabilities at a southeastern university
    corecore