639 research outputs found

    Adaptive Fuzzy Interpolation with Prioritized Component Candidates

    Get PDF
    Adaptive fuzzy interpolation strengthens the potential of fuzzy interpolative reasoning. It first identifies all possible sets of faulty fuzzy reasoning components, termed the candidates, each of which may have led to all the contradictory interpolations. It then tries to modify one selected candidate in an effort to remove all the contradictions and thus restore interpolative consistency. This approach assumes that all the candidates are equally likely to be the real culprit. However, this may not be the case in real situations as certain identified reasoning components may be more liable to resulting in inconsistencies than others. This paper extends the adaptive approach by prioritizing all the generated candidates. This is achieved by exploiting the certainty degrees of fuzzy reasoning components and hence of derived propositions. From this, the candidate with the highest priority is modified first. This extension helps to quickly spot the real culprit and thus considerably improves the approach in terms of efficiency

    Generalized Adaptive Fuzzy Rule Interpolation

    Get PDF
    As a substantial extension to fuzzy rule interpolation that works based on two neighbouring rules flanking an observation, adaptive fuzzy rule interpolation is able to restore system consistency when contradictory results are reached during interpolation. The approach first identifies the exhaustive sets of candidates, with each candidate consisting of a set of interpolation procedures which may jointly be responsible for the system inconsistency. Then, individual candidates are modified such that all contradictions are removed and thus interpolation consistency is restored. It has been developed on the assumption that contradictions may only be resulted from the underlying interpolation mechanism, and that all the identified candidates are not distinguishable in terms of their likelihood to be the real culprit. However, this assumption may not hold for real world situations. This paper therefore further develops the adaptive method by taking into account observations, rules and interpolation procedures, all as diagnosable and modifiable system components. Also, given the common practice in fuzzy systems that observations and rules are often associated with certainty degrees, the identified candidates are ranked by examining the certainty degrees of its components and their derivatives. From this, the candidate modification is carried out based on such ranking. This work significantly improves the efficacy of the existing adaptive system by exploiting more information during both the diagnosis and modification processes

    Fuzzy Interpolation Systems and Applications

    Get PDF
    Fuzzy inference systems provide a simple yet effective solution to complex non-linear problems, which have been applied to numerous real-world applications with great success. However, conventional fuzzy inference systems may suffer from either too sparse, too complex or imbalanced rule bases, given that the data may be unevenly distributed in the problem space regardless of its volume. Fuzzy interpolation addresses this. It enables fuzzy inferences with sparse rule bases when the sparse rule base does not cover a given input, and it simplifies very dense rule bases by approximating certain rules with their neighbouring ones. This chapter systematically reviews different types of fuzzy interpolation approaches and their variations, in terms of both the interpolation mechanism (inference engine) and sparse rule base generation. Representative applications of fuzzy interpolation in the field of control are also revisited in this chapter, which not only validate fuzzy interpolation approaches but also demonstrate its efficacy and potential for wider applications

    A review of optimization techniques in spacecraft flight trajectory design

    Get PDF
    For most atmospheric or exo-atmospheric spacecraft flight scenarios, a well-designed trajectory is usually a key for stable flight and for improved guidance and control of the vehicle. Although extensive research work has been carried out on the design of spacecraft trajectories for different mission profiles and many effective tools were successfully developed for optimizing the flight path, it is only in the recent five years that there has been a growing interest in planning the flight trajectories with the consideration of multiple mission objectives and various model errors/uncertainties. It is worth noting that in many practical spacecraft guidance, navigation and control systems, multiple performance indices and different types of uncertainties must frequently be considered during the path planning phase. As a result, these requirements bring the development of multi-objective spacecraft trajectory optimization methods as well as stochastic spacecraft trajectory optimization algorithms. This paper aims to broadly review the state-of-the-art development in numerical multi-objective trajectory optimization algorithms and stochastic trajectory planning techniques for spacecraft flight operations. A brief description of the mathematical formulation of the problem is firstly introduced. Following that, various optimization methods that can be effective for solving spacecraft trajectory planning problems are reviewed, including the gradient-based methods, the convexification-based methods, and the evolutionary/metaheuristic methods. The multi-objective spacecraft trajectory optimization formulation, together with different class of multi-objective optimization algorithms, is then overviewed. The key features such as the advantages and disadvantages of these recently-developed multi-objective techniques are summarised. Moreover, attentions are given to extend the original deterministic problem to a stochastic version. Some robust optimization strategies are also outlined to deal with the stochastic trajectory planning formulation. In addition, a special focus will be given on the recent applications of the optimized trajectory. Finally, some conclusions are drawn and future research on the development of multi-objective and stochastic trajectory optimization techniques is discussed

    Fast and robust image feature matching methods for computer vision applications

    Get PDF
    Service robotic systems are designed to solve tasks such as recognizing and manipulating objects, understanding natural scenes, navigating in dynamic and populated environments. It's immediately evident that such tasks cannot be modeled in all necessary details as easy as it is with industrial robot tasks; therefore, service robotic system has to have the ability to sense and interact with the surrounding physical environment through a multitude of sensors and actuators. Environment sensing is one of the core problems that limit the deployment of mobile service robots since existing sensing systems are either too slow or too expensive. Visual sensing is the most promising way to provide a cost effective solution to the mobile robot sensing problem. It's usually achieved using one or several digital cameras placed on the robot or distributed in its environment. Digital cameras are information rich sensors and are relatively inexpensive and can be used to solve a number of key problems for robotics and other autonomous intelligent systems, such as visual servoing, robot navigation, object recognition, pose estimation, and much more. The key challenges to taking advantage of this powerful and inexpensive sensor is to come up with algorithms that can reliably and quickly extract and match the useful visual information necessary to automatically interpret the environment in real-time. Although considerable research has been conducted in recent years on the development of algorithms for computer and robot vision problems, there are still open research challenges in the context of the reliability, accuracy and processing time. Scale Invariant Feature Transform (SIFT) is one of the most widely used methods that has recently attracted much attention in the computer vision community due to the fact that SIFT features are highly distinctive, and invariant to scale, rotation and illumination changes. In addition, SIFT features are relatively easy to extract and to match against a large database of local features. Generally, there are two main drawbacks of SIFT algorithm, the first drawback is that the computational complexity of the algorithm increases rapidly with the number of key-points, especially at the matching step due to the high dimensionality of the SIFT feature descriptor. The other one is that the SIFT features are not robust to large viewpoint changes. These drawbacks limit the reasonable use of SIFT algorithm for robot vision applications since they require often real-time performance and dealing with large viewpoint changes. This dissertation proposes three new approaches to address the constraints faced when using SIFT features for robot vision applications, Speeded up SIFT feature matching, robust SIFT feature matching and the inclusion of the closed loop control structure into object recognition and pose estimation systems. The proposed methods are implemented and tested on the FRIEND II/III service robotic system. The achieved results are valuable to adapt SIFT algorithm to the robot vision applications

    A Probabilistic Algorithm for Predictive Control With Full-Complexity Models in Non-Residential Buildings

    Get PDF
    Despite the increasing capabilities of information technologies for data acquisition and processing, building energy management systems still require manual configuration and supervision to achieve optimal performance. Model predictive control (MPC) aims to leverage equipment control-particularly heating, ventilation, and air conditioning (HVAC)-by using a model of the building to capture its dynamic characteristics and to predict its response to alternative control scenarios. Usually, MPC approaches are based on simplified linear models, which support faster computation but also present some limitations regarding interpretability, solution diversification, and longer-term optimization. In this paper, we propose a novel MPC algorithm that uses a full-complexity grey-box simulation model to optimize HVAC operation in non-residential buildings. Our system generates hundreds of candidate operation plans, typically for the next day, and evaluates them in terms of consumption and comfort by means of a parallel simulator configured according to the expected building conditions (weather and occupancy). The system has been implemented and tested in an office building in Helsinki, both in a simulated environment and in the real building, yielding energy savings around 35% during the intermediate winter season and 20% in the whole winter season with respect to the current operation of the heating equipment.This work was supported in part by the Universidad de Granada under Grant P9-2014-ING, in part by the Spanish Ministry of Science, Innovation and Universities under Grant TIN2017-91223-EXP, in part by the Spanish Ministry of Economy and Competitiveness under Grant TIN2015-64776-C3-1-R, and in part by the European Union (Energy IN TIME EeB.NMP.2013-4), under Grant 608981

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value
    • …
    corecore