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Abstract

Nowadays, finite element (FE) analysis is a broadly used tool to analyze structures and
to predict their behavior under diverse loading conditions. However, when verifying the
predictions against experimental data, sometimes the unsatisfying degree of correlation
hinders the model’s applicability. Therefore, the model that has been adopted must be
adjusted, based on measured/real data, to better reflect the real structure and keep up
with operation and aging conditions: this is the essence of model updating.

Inaccuracies in FE models can be caused by a variety of factors, from unsatisfactory
boundary conditions to the inadequate specification of material properties or even oversim-
plification of the structural system under analysis. Though these factors usually account
for the need to resort to model updating, one can also rely on this technique to follow the
evolution of a given structure through its life cycle and identify possible aging or damage.
The use of model updating techniques in the field of structural digitalization has gained
strength in the past decades and several approaches have been put forward. In fact, the
latest developments in this field are gaining momentum as the use of digital twins (DT)
becomes more common.

Given that this is a growing area of research, a lot of different approaches can be taken
to update FE models. For instance, evolutionary algorithms (EAs) are optimization tools
broadly used in the context of model updating as they allow for prompt minimization of
the residuals between the properties and dynamic characteristics of the FE model and
the damaged structure. Inspired by nature, these algorithms combine efficiency with
effectiveness, even when solving complex and highly non-linear problems.

In this dissertation, EAs are discussed, and a genetic algorithm (GA) optimization is
implemented using Ansys, a finite element software. Additionally, a GA and a particle
swarm optimization (PSO) algorithm are both implemented using Python and a dataset
prepared in Ansys. Since model updating applied to digital twins can be modeled as
either a single-objective or multi-objective optimization problem, both approaches are
analyzed and their performances are compared. Considering that the ultimate goal is to
apply the analyzed model updating methods to power transformers, enabling monitoring
and diagnosis features of the DT, such as early damage detection, a simplification of this
structure is analyzed in both cases. The initial approach to FE model updating is done
in generic terms using a simple problem with synthetic data, while the second approach
is based on experimental data and portrays a more complex problem.

Keywords: Power transformer; Finite element analysis; Evolutionary algorithms;
Optimization; Model updating; Digital-twin
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Resumo

Atualmente, o célculo estrutural com base em elementos finitos (EF) é uma abordagem
amplamente utilizada para analisar estruturas e prever o seu comportamento sob diversas
condicoes de carregamento. No entanto, ao verificar as previsdes contra dados experi-
mentais, as vezes o grau insatisfatério de correlacdo limita a aplicabilidade do modelo.
Portanto, o modelo adotado deve ser ajustado, com base nos dados medidos, para melhor
refletir a estrutura real e acompanhar as condi¢ées de operacdo e envelhecimento: esta é
a esséncia da atualizacdo de modelos numéricos. Imprecises em modelos de EF podem
ser causadas por uma variedade de fatores, desde condigoes de fronteira insatisfatérias, es-
pecificacdo inadequada das propriedades do material ou mesmo simplificagdo excessiva do
sistema estrutural em andlise. Embora esses fatores geralmente determinem a necessidade
de recorrer a atualizacdo do modelo numérico, também se pode contar com essa técnica
para acompanhar a evolu¢do de uma determinada estrutura ao longo do seu ciclo de vida
e caracterizar a sua degradacao e dano. O uso de técnicas de atualizagdo de modelos no
campo da digitalizacdo de estruturas ganhou forca nas iltimas décadas tendo varias abor-
dagens sido propostas. Na verdade, os desenvolvimentos nesta drea tém vindo a ganhar
forga & medida que o uso de gémeos digitais (GD) se torna mais comum.

Dado que esta é uma area de estudo em crescimento, varias abordagens distintas po-
dem ser adotadas para atualizar um modelos de EF. Por exemplo, algoritmos evolutivos
(AE) sao ferramentas de otimizagdo amplamente utilizadas no contexto de atualizagao de
modelos numéricos, pois permitem a minimizagao dos residuos entre as propriedades e car-
acteristicas dindmicas do modelo de EF e as correspondentes propriedades e caracteristicas
da estrutura danificada. Inspirados pela natureza, esses algoritmos combinam eficiéncia
com eficacia, mesmo na resolucdo de problemas complexos e altamente nao lineares.

Nesta dissertacdo sao apresentados alguns AEs, sendo um algoritmo genético (AG)
implementado usando o Ansys, um software de EF. Além disso, um AG e um algoritmo
de otimizacdo por enxame de particulas (OEP) sdo programados em linguagem Python
usando uma base de dados preparada em Ansys. Uma vez que a atualizagdo de modelos
numéricos utilizada em gémeos digitais pode ser modelada como um problema de otimiza-
¢do de objetivo tinico ou multiobjetivo, ambas as abordagens sao analisadas e os seus
desempenhos sdo comparados. Considerando que o objetivo final é aplicar os métodos de
atualizacdo de modelos numéricos analisados a transformadores, possibilitando a monitor-
izacdo e diagnostico realizados pelo GD, como a detecgao precoce de dano, analisa-se uma
simplificagdo dessa estrutura em ambos os casos. A abordagem inicial para atualizacdo do
modelo de EF é feita em termos genéricos usando um problema simples baseado em dados
sintéticos, enquanto a segunda abordagem é baseada em dados experimentais e retrata um
problema mais complexo.

Palavras-chave: Transformador; Analise de elementos finitos; Algoritmos evolutivos;
Otimizagdo; Atualizagdo de modelos numéricos; Gémeo digital
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Chapter 1

Introduction

1.1 Model updating

Nowadays finite element (FE) analysis is a broadly used tool to analyse structures and
predict their behaviour under specific circumstances. However, when verifying the numeri-
cal predictions against experimental data, sometimes the unsatisfying degree of correlation
invalidates the model’s applicability. Therefore, the model that has been adopted must be

corrected to better reflect the measured data: this is the essence of model updating, [1].

In other words, model updating can be described as a mathematical methodology that
progressively updates a digital model by adjusting it’s parameters and assumptions so that
its behavior (for example static and dynamic structural responses) gradually approaches

that of the counterpart real structure that is being analyzed, [2].

Model updating techniques may be classified according to the type of measured data
used which, for structural applications, can either be static or dynamic data, the latter in
the form of frequency response function (FRFs) or natural frequencies and mode shapes.
Besides this, model updating techniques can also be classified into non-iterative or direct
methods and iterative or sensitivity methods. Sensitivity methods are more commonly
used since they provide a wider choice of parameters for updating and are capable of

overcoming the limitations of direct methods, as is explained in chapter 2, [3].

1.1.1 Structural damage detection

Inaccuracies in FE models can be caused by a variety of factors, from faulty bound-
ary conditions, to inadequate specification of material and geometric properties or even
oversimplification of the structural system under analysis. Though these factors usually
account for the need to resort to model updating, one can also rely on this technique to
follow the evolution of a given structure through its life cycle and identify possible dam-

age. The use of model updating techniques on the field of damage detection has gained
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strength in the past decades and several approaches have been presented. In fact, the lat-
est developments in this field are gaining momentum as the use of digital twins becomes
more common, [2, 3].

Structural damage can be caused by either internal or external factors and often leads
to changes in the structural response, namely in structural dynamic properties, which
may give way to deteriorated structural integrity and safety capacity. Therefore, keeping
a close look on structural properties can be vital to guarantee early damage detection
and perform timely structural maintenance operations or repairs, which in turn leads to
a longer and safer structural life-cycle, [2].

In the context of damage detection, measured data must be acquired through non-
destructive techniques, therefore the use of FRFs and modal properties is fairly common.
These traits directly correlate with structural physical properties and can be used to char-
acterize damage based on the premise that damage affects structural physical properties,

which in turn alters structural dynamic characteristics, [2].

1.1.2 Digital-twin

The evolution of the information and manufacturing industries has led to the decline in
cost of communication and sensor technology, accompanied by its miniaturization, which
facilitates the integration of these technologies in virtually any product. That being said,
and considering the fast advances imposed by the establishment of Industry 4.0, the inter-
est in manufacturing products which can sense their own state as well as the state of the
surrounding environment is sky-rocketing. In line with this trend, the concept of digital-
twin (DT) was created shortly after the turn of the century within the aerospace industry.
Nowadays, however, the concept of digital-twin is employed across numerous industries,
[4].

In its essence, a DT is a comprehensive digital representation of a product which
incorporates the properties, state and behavior of the physical object through models and
data. The realistic models used in the DT allow for the simulation of its real counterpart’s
actual behavior, in the context of its surrounding environment, linking together all the
relevant digital artifacts gathered. Thus, the digital twin is developed alongside its physical
counterpart and remains its virtual twin across its entire life-cycle, integrating all the
relevant current knowledge concerning it, [4, 5].

It is pertinent to note that some authors consider that the DT is a compilation of
all the available operational data that is generated and accumulated both during product
development and product use. However, considering that with the latest technology this
could translate into an absurd amount of information, which would naturally be extremely
hard to analyse in due time, it seems more appropriate to include only the relevant data in
the models of a DT, which should be consistent with the intended purpose of that specific
model, [4, 5].
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With access to this sort of detailed information it is possible to ensure information
continuity throughout the entire product’s life-cycle, which in turn allows one to schedule
timely maintenance, optimize the design, manufacturing and operation of future products
based on the performance of its predecessors and derive solutions relevant to the real sys-
tem. Interestingly, this seems to be the core of smart products, cultivated in a developing

smart industry, [4, 5].

1.2 Efacec

Efacec is a Portuguese company founded in 1905 with the establishment of "A Mod-
erna’. In 1921, the then-named "Electro - Moderna, Lda." began activities in the electrical
industry, building the required abilities to facilitate the launch of the Efacec brand in 1948,
when "EFME - Empresa Fabril de Mdquinas Eléctricas, SARL" was established. "ACEC-
Ateliers de Constructions Electriques de Charleroi” would ultimately become the group’s
largest shareholder, and the firm was renamed "EFACEC - Empresa Fabril de Maquinas
Elétricas, SARL" in 1962, before selling its position in the firm. Efacec began restructur-
ing operations and extended its international footprint in the 1960s. Today, the firm is
present in over 65 countries, with economic activity on all five continents and an emphasis
on exports, making it one of the largest Portuguese corporations.

Mobility, systems, and power solutions are the group’s three primary areas of activity.
Within mobility, Efacec provides a comprehensive variety of charging options for electric
cars, including systems that make optimum use of the electrical grid infrastructure. The
company’s systems division focuses on energy, environment, industry, and transportation,
while its power solutions division focuses on service, automation, and transformers, among
other things.

Efacec has always distinguished itself by the design and production of electrical ma-
chinery, namely electrical power transformers. Transformers play an important part in
civilization as a whole, allowing people to use energy. Despite the fact that their opera-
tion is highly dependent on electromagnetic phenomena, mechanical engineering is present
at various phases of a transformer’s project, namely for designing and optimizing com-
ponents. This procedure relies on investigating operating circumstances, producing CAD

models, and overall structural analysis.

1.3 Proposed goals

The main purpose of this dissertation is the exploration, development and application
of model updating techniques, which may later be employed in power transformer DTs.

This goal can be divided into various objectives, of which the following stand out:

o Explore various model updating techniques;
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o Explore which model updating techniques offer the best characteristics to be imple-

mented in a DT;

o Apply model updating techniques available in commercial software to a FE model

based on synthetic data;

e Develop and apply model updating techniques in open source software to a FE model

based on experimental data;

o Verify the quality and efficiency of the selected methods and compare their perfor-

marnce.

1.4 Document structure

This dissertation is structured in six different chapters, as follows:

Chapter 1 The present chapter, which is the first one in this dissertation, aims at
presenting an introduction to the work that has been conducted and provides an overview

of the aspects covered in the following chapters

Chapter 2 Various model updating techniques are presented, with an emphasis on op-
timization procedures. Computational intelligence is explored, in particular evolutionary
computation (EC), with an emphasis on GAs and PSO. Other techniques, namely machine
learning techniques, are also presented and possible hybridizations between approaches are

discussed.

Chapter 3 Fundamental concepts regarding transformers are presented, starting with
their role in a power grid, then moving on to their operation and characterization, and
finally presenting their structural elements and the loading conditions they are typically

subjected to.

Chapter 4 This chapter presents the first approach to model updating techniques con-
ducted in this dissertation. Here, synthetic data is used to update a FE model created
in Ansys and various techniques embedded in this software are documented and explored.
The use of response surface optimization (RSO) versus the use of direct optimization
(DO) is analysed, as well as the performance of single and multi-objective optimization
approaches (SOO and MOO).

Chapter 5 In this chapter, a different experimental approach is presented. Based on
experimental data, a given set of design points is analysed on a FE model created in Ansys

and a database is generated. This database is then used to create a RS in Python on which
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two optimization techniques (GA and PSO) are conducted. The process is document and

results are analysed.

Chapter 6 In the final chapter, the main conclusions that can be drawn from the work
developed throughout the dissertation are presented. Some future work suggestions are

also mentioned.
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Chapter 2

Model Updating Techniques

2.1 Introduction

As previously mentioned, FE model updating is the process of tuning a FE model to
improve its ability to predict observed data from the physical structure being modeled. FE
model updating techniques applied to damaged detection generally involve minimizing the
residual of properties and/or dynamic characteristics, calculated between the FE model
and the damaged structure. This procedure is essentially an optimization problem, where
the objective function characterizes the distance between the FE model forecasts and the
observed measurements and the design variables are the parameters of the FE model that
need to be updated. That being said, various optimization approaches can be taken to

carry out FE model updating, [2, 6].

The field of optimization is a vast one, and a panoply of approaches can be described to
provide an in-depth analysis of all the options available, as can be seen in figure 2.1. These
approaches can be divided into two groups: direct methods and iterative and indirect
methods. The first group of approaches resorts to modal characteristics to update the
FE model, providing accurate results with no need for updating parameters or iterative
paradigms. However, they require accurate measurements, present a high sensibility to
noise and may produce an unrealistic representation of the behaviour of the elements in the
FE model mesh, resulting in mass and stiffness matrices with little physical meaning. For
those reasons, they cannot be employed to damage detection, thus the need to resort to the
second group: iterative and indirect methods. The methods in this group can be further
divided into sensitivity-based methods, model updating using computational intelligence,
response surface method (RSM) and Bayesian/Monte Carlo approaches. These methods
entail physical parameter updating, leading to improved accuracy. Their specifications
are explained in greater detail in this chapter, allowing for a better understanding of their

advantages and limitations, [2, 6].
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Figure 2.1 FE model updating techniques, adapted from [2].

2.2 Sensitivity-based methods

When employing sensitivity-based approaches, experimental data is assumed to be a
combination of perturbations to the design variables from the intact structure’s original
FE model. Therefore, the optimization problem is formulated using a penalty function
approach. Using this definition, the measured responses must be close to the estimated
data deduced from the original FE model, limiting the applicability of sensitivity methods
to small-scale shifts in the actual structure. As a result, they can only be used on structures
which present minimal damage. The key idea behind sensitivity-based approaches is to
quantify derivatives of modal characteristics or frequency response data, which makes the
whole process computationally costly and less interesting to implement. The derivatives
of either the modal properties or the frequency-response functions are calculated in these
methods, [2, 6].

2.3 The response surface method (RSM)

The response surface method (RSM) is a mathematical approach for establishing a re-
lationship between a series of fixed design variables and their responses, which is generally

expressed as a multidimensional polynomial function. In the context of model updating,
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the inputs are the parameters that need to be updated, and the RSM will deduce the
best solution that fits the least difference between the original FE model and the eval-
uated responses. As a result, it is simple to implement and has a high computational
efficiency. Furthermore, RSM can be used to solve dynamic model updating problems.
The optimization approach is based on the response of the surface, so in comparison to
a complete FE model, the optimization equation is normally simple and computationally
light. Other benefits of the RSM include its ease of execution through parallel compu-
tation and the ease with which parameter sensitivity can be measured. The downside of
the RSM for structural damage identification using model updating is that it uses mathe-
matical approximations of undefined parameters, which does not accurately represent the
actual damaged areas along the system. Furthermore, in large-scale systems, RSM-based
FE model updating still lacks sufficient in-depth analysis, [2, 7]

Thus far, the RSM has not been widely used to solve the FE model updating prob-
lem. However, for response surface approximation, a variety of techniques have been used,
namely polynomial approximation and neural networks. The response surface approxi-
mation simply creates a meta-model, the response surface, which can be used to perform
optimization techniques instead of updating the FE model directly. Notice, however, that
the meta-model is a simplification of the FE model and cannot be employed as freely as
the FE model, as it is limited by the rationale used for the simplification of the FE model,
[7].

2.4 Bayesian and Monte Carlo approaches

The Bayesian approach is a modern FE model updating technique inspired by Bayes’
theorem, in which a collection of data with a probability distribution will reflect the prob-
ability distribution of a model by considering a set of data with a probability distribution.
Furthermore, the parameter estimation procedure is simple to apply and provides ade-
quate physical explanations for the effects. However, the Bayesian—-Monte Carlo model
updating methods face real challenges, such as the need to solve complex integrals, which
results in a high computational cost. Furthermore, the original information of updating

parameter periods and distributions must be understood ahead of time, [2].

2.4.1 Monte Carlo method

The Monte Carlo methods were first used in the 1940s in the context of nuclear weapon
development. These methods involve experiments on random numbers and are deeply
connected to experimental mathematics. To put it simply, these type of methods take a
random massive sample and use it to obtain numerical solutions to a given problem. In
other words, they take advantage of the randomness of the selected data and use it to

solve deterministic problems. This is particularly useful when trying to solve problems
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that cannot be solved analytically. All in all, the Monte Carlo methods can be used to
solve any kind of problem which encompasses probabilistic interpretation, [8, 9, 6].

For instance, the Monte Carlo method can be used to solve definite integrals. However,
since the solution obtained through this method is subject to the laws of chance, given its
statistical nature, the accuracy of the solution will be dependent on the number of exper-
iments undertaken. This translates in a very high computational cost, which makes the
method less attractive. That being said, this method is generally used to solve problems
which have a high degree of uncertainty, since problems such as the one stated above can

usually be solved using more computationally economical tools, [8, 9, 6].

2.4.2 Bayesian inference method

The Bayesian inference method is a statistical method that relies on the Bayes’ theorem
to update the probability of a given hypothesis as more evidence or information becomes
available, [10, 11].

Maximum likelihood approaches for FE model updating, which entail a process of for-
mulating an objective function and then optimizing it, have flaws such as not providing
users with confidence intervals for the solutions they produce, not presenting a philosophi-
cal rationale for the regularization principles that are used to manage the complexity of the
modified model, and not being able to accommodate the FE updating problem’s intrinsic
ill-conditioning and nonuniqueness. The Bayesian method is then used in an attempt to
fix these flaws, [11, 6].

In order to understand the definition of the Bayesian inference method, one must recall
the dynamic definition of an elastic structural problem, characterized by the distributed
mass, damping, and stiffness matrices. If the damping terms are ignored, the dynamic
equation for the ith mode can be written in the modal domain (natural frequencies and

mode shapes) as follows:

(—wf[M] + [K]){e}i = {e}i (2.1)

where [M] is the mass matrix, [K] is the stiffness matrix, w; is the ith experimentally
obtained natural frequency, {¢}; is the ith experimentally obtained mode shape vector
and {e}; is the ith error vector. The error vector is null if the system matrices [M] and
[K] correspond to the modal properties. If the system matrices, usually obtained from the
FE model, do not match the measured modal properties, w; and {¢};, then {€}; is a non-
zero vector. In maximum-likelihood methods, the Euclidean norm of {¢}; is minimized in
order to match the system matrices to the measured modal properties, [11, 6].

Having said that, the fundamental Bayes’ theorem can be stated as follows:

_ PHAYN([B]) _ PHA}) - P(BII{A})
P((B]) P((B])

P({A}[B]) (2.2)
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In the aforementioned theorem, {A} stands for the vector of updating parameters,
P({A}) refers to the probability distribution function of updating parameters in the ab-
sence of any data, known as the prior distribution, and [B] is a matrix containing natural
frequencies, w;, and mode shapes, {¢};. Note that the mass, [M], and stiffness, [K],
matrices are functions of the updating parameters, {A}. The quantity P({A}|[B]) is
the posterior distribution function after a set of data has been seen, P([B]|{A}) is the
likelihood distribution function, and P([B]) is the normalization factor, [11, 6].

Therefore, this method allows the combination of prior information with new informa-
tion, providing a great way to analyse dynamic data. Naturally, this is a relevant technique
in the field of engineering, specially when combined with FE models. The Bayesian infer-
ence model can be used while updating finite element models for damage identification,
since this requires updating a model given new information. However, finding the cor-
rect probability distribution to be used in this context is often a tricky task, which is an

unfortunate drawback, [10].

2.5 Computational intelligence

As stated before, FE model updating is ultimately an optimization procedure. The
design variables in this case are the model’s unknown parameters and the aim is to get
the FE predicted data as close to the observed data as possible. Bellow are some of
the optimization techniques typically used within the field of computational intelligence,
6, 2, 12]:

e The Nelder-Mead simplex method - a nongradient-based method for solving the
unconstrained optimization problem of minimizing a certain nonlinear equation. It
is a direct method which makes use of feature values in a number of places but does

not try to quantify an approximate gradient at any of them.

e Sequential quadratic programming technique - solves a series of subproblems with
the aim of minimizing the objective function’s quadratic representation. Newton’s

technique is generally used when no constraints are applied.

e Fuzzy sets - applicable in contexts where information is partial or ambiguous. In
a larger sense, fuzzy logic has been primarily used to analyse ambiguous or vague
situations in natural language. In a narrower sense, fuzzy logic is a symbolic logic

based on the concept of many-valued logic.

e Simulated annealing - a Monte Carlo approach which is used to analyze the equations
of state and frozen states of n degrees-of-freedom systems with the intent of solving

an optimization problem.

o Evolutionary computation (EC) - a group of techniques inspired by nature and

evolution which employ stochastic algorithms to solve optimization problems.
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e Machine learning techniques - a branch of techniques which employ computer algo-

rithms that refine themselves over time as a result of their use of data and practice.

e Hybrid optimization methods - a combination of two or more algorithms.

Considering that the focus of the present work is on iterative methods, and noting
that the Nelder-Mead simplex method is a direct method, it is not further discussed. On
another note, the sequential quadratic programming technique presents an unattractive
degree of complexity and requires full-rank constraint gradients, leading to a laborious
assembly of the divergence matrix. That being said, a closer look on fuzzy sets, simu-
lated annealing, EC, machine learning techniques and hybrid optimization techniques is

provided in subsequent sections.

2.6 Fuzzy sets

As previously stated, model updating for damage assessment is an inverse problem
that is susceptible to ill-posedness and ill-conditioning. As a consequence, the problem is
particularly vulnerable to minor errors, which might reduce the method’s dependability.
Because there are various sources of uncertainty in model updating, both in terms of data
and the numerical model used, it is critical to account for these uncertainties appropriately.
Despite the fact that the probabilistic methods are often regarded as the most complete
methodology for dealing with uncertainties, it is frequently said that it is not especially
suitable for representing epistemic uncertainty. Furthermore, it is believed that adequate
qualitative data for constructing a true and representative probabilistic model is rarely
accessible. Parameter values, for example, are frequently unclear in the sense that they
are known to be "around" a specific value or within a specific interval, and even less
is known about probable interactions and dependencies between numbers. This logic
has sparked the creation of several non-probabilistic uncertainty modeling methodologies,
[13, 14, 15, 16].

The majority of non-probabilistic approaches rely on interval analysis, in which uncer-
tainty about variables is represented by a specific value range, which is then propagated
to interval-valued outputs of interest. Fuzzy set theory is a common extension of interval
analysis. It provides a way for modeling uncertainty in circumstances when, in addition to
interval limits, confidence values or degrees of uncertainty about the unknown quantities
are provided. The standard binary definition of a set, where an element either does or does
not belong to a set, is replaced in fuzzy set theory with a more understandable definition
of sets, where membership is gradual and decided by a so-called membership function,
uz. The value of the fuzzy technique rests in the progressive description of membership,

which may be interpreted in a variety of ways depending on the application. One of the
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most prevalent interpretations of membership is as a measure of uncertainty or plausibil-
ity, because it provides a framework for applying fuzzy set theory to the measurement of
uncertainty, [13, 14, 15, 16].

The fuzzy technique entails representing every uncertain variable x as a fuzzy number
Z, defined by a convex membership function, and then propagating these fuzzy inputs to
the desired output numbers. This is commonly accomplished by discretizing the fuzzy
numbers in a collection of Ngjh, intervals, or so-called a-cuts, [Z]o; as such, a fuzzy
number really represents a series of nested intervals, each representing a distinct level of
plausibility . Fuzzy numbers are typically adjusted so that all membership values « fall
within the range [0, 1], [13, 16].

To solve a fuzzy problem, one must solve the following series of interval expressions:

Va € [0,1]: [fla = f([Z1]as-- -, [En]a) (2.3)

where an interval expression is defined as:

9] = f([z1],...,[zn]) ={y = f(z1,...,2n)|z; € (23], i=1,...,N} (2.4)

The difficulty with discretized fuzzy issues (or any interval-based problem in general)
is essentially in addressing the interval problem specified in equation 2.3, because the two
most important solution strategies both have significant limits. The first method employs
interval arithmetic, which operates directly on mathematical operators by generalizing
them to interval operators. Although this method is computationally efficient, it suffers
from the well-known dependency problem, in which variables that appear several times
are regarded as independent of one another, resulting in massive overestimations of the
derived uncertainty bounds. Other drawbacks of interval arithmetic arise in the method’s
actual implementation: for instance, generalizing implicitly defined operators, namely
when solving a differential equation or an optimization problem, to interval operators
frequently poses significant challenges, preventing the use of existing software packages.

The second method for addressing interval issues with continuous objective functions
is to reformulate the interval issue in equation 2.3 as a restricted optimization problem,
[13, 16]:

Va € [0,1] : Vo =minf(@y,...,ox) subject to x; € [Ti]a (2.5)

y> = max f(x1,...,2N)

All function evaluations become deterministic as a result of this reformulation, which
means that all sorts of functions may be treated and accurate answers produced. An-
other advantage of the method is that, unlike the interval arithmetic technique, it is
non-intrusive, which means that it may be used with any existing program for evaluating
the objective function without any modifications. The related computing expense, how-

ever, is a significant downside of this method as optimization techniques often need a high



14 Model Updating Techniques

number of function evaluations. The optimization technique is most commonly used as a
solution technique for equation 2.3 since the benefits of this technique generally outweigh
the benefits of employing interval arithmetic. To tackle the constrained optimization prob-
lem (equation 2.5), several approaches may be used, the most prominent of which being
general purpose global or local optimization algorithms and vertex approaches. Vertex
methods, such as the generic and reduced transformation approaches, seek to identify the
best solution to equation 2.5 by evaluating the vertices of the hypercube created by the
a-cut intervals. To produce proper results, these approaches require a monotonic objective
function, in which case highly efficient algorithms, for example the short transformation
approach, can be produced, [13, 16].

Several enhanced vertex approaches, such as the maximum possibility search approach,
have been developed in recent years to address nonmonotonic function behavior in fuzzy
issues. A significant disadvantage of virtually all vertex approaches (with the exception
of the short transformation approach) is that they are only relevant to situations with a
very small number of unknown variables, IV, because they typically need a minimum of
2V function evaluations, [13, 14, 15, 16].

RSMs provide a means to obtain cost-efficient approximate solutions to the fuzzy
interval problem when problem-specific vertex methods cannot be used, which occurs
for a large number of input variables, and general optimization algorithms become too
expensive, such as when a large number of expensive function evaluations are required.
This is accomplished by substituting an estimated response surface for the costly function

operator, which is often built by interpolation, [13, 14, 15, 16].

2.7 Simulated annealing

Simulated annealing is an optimization technique based on the natural annealing mech-
anism where structures such as metals recrystallize when cooled according to a set of cool-
ing schedules. In fact, the annealing process entails heating the material until it is molten,
and then gradually reducing the temperature until the system becomes ordered, ensuring
thermodynamic equilibrium throughout the whole process. It is basically a Monte Carlo
method since it relies on probability distributions to iteratively approach the optimal
solution, [6].

Initially, the temperature is set to a very high level, and then it gradually drops
throughout the process, resulting in less random variations in the solution as the temper-
ature approaches zero. In this process a random state corresponds to a potential solution
and the fundamental state, which occurs when the temperature is null, corresponds to the
optimal solution. The temperature represents the characteristics under analysis, while the
energy of the particles corresponds to the fitness function. Simulated annealing substitutes
the current solution or state by a “nearby” random solution according to a probability

determined by the difference between the corresponding objective function values and the
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temperature. The probability function is defined as e 2F/T where AFE is the difference
error between the current solution and the "nearby" solution and 7" is the current temper-

ature value. This process is iterated until the optimal solution is found, [6]
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Figure 2.2 Schematic representation of the simulated annealing method, adapted from [17].

Simulated annealing, like greedy search techniques, gradually approaches the right
solution, but it has the added benefit of fitness reversal. This means it may progress to
a solution that is less fit than the current one, which guarantees that the solution is a
global optimum rather than a local optimum. This is a significant advantage of simulated
annealing over other approaches. However, it also has the disadvantage of a potentially
long computational time. If the global optimum exists, simulated annealing will find it,

but it may take an infinite amount of time, [6, 18].

The general benefits of using simulated annealing for optimization are, [6]:
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e it can manage random structures and objective functions for any amount of imple-

mentation variables;

¢ it ensures that a global optimal solution is found, even though it may take an infinite

number of iterations;

e it is easy to code, even for complex problems, and it is based on sound statistical

grounds;

o It almost always provides a solution that is sufficiently optimal to be useful in prac-

tice.
On the other hand, the disadvantages of this method are, [6]:

e Annealing with a schedule is incredibly slow if the target function is costly to compute
repeatedly. This is due to the fact that simulated annealing is basically a Monte Carlo

simulation technique;

o Simulated annealing is not as effective as other methods. However, the properties of
the objective function are not understood in advance for certain problems, so it is

impossible to decide when to use simulated annealing for a certain class of problems;

e Simulated annealing is highly dependent on the design of the problem at hand, and

it makes use of additional details regarding the system;
e It can be challenging to discern whether the optimal solution has been found;

¢ Deciding which temperature cooling schedule to use can be burdensome.

2.8 Evolutionary computation

Evolutionary computation (EC) encompasses stochastic algorithms inspired by nature.
The search methods used in this type of techniques model natural phenomena, and some
examples are particle swarm optimisation (PSO), artificial immune systems, evolutionary
algorithms (EAs), ant colony optimization (ACO) or even artificial bee colony algorithms
(ABC) , [19, 20].

Given their simplicity and efficiency, only EAs and PSO are discussed here. Note that
PSO is particularly easy to implement and presents remarkable accuracy, while EAs depict

an interestingly gradual approach to the optimal point, [19, 20, 21].

2.8.1 Evolutionary algorithms (EAs)
2.8.1.1 Historical background

Evolutionary algorithms (EAs) are population-based metaheuristics inspired by the

Darwinian evolutionary theory. This theory which advocates that new individuals are
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an improvement of the species based on their ancestors’ competitive characteristics which
allowed their survival and reproduction. Intrinsically, this methodology proposes that new
and improved individuals can be developed if one can understand and model the great
characteristics their parents possessed. Therefore, EAs can be used as optimization pro-
cedures and, interestingly, have great advantages over conventional gradient-based search
procedures given their ability to find global optima in disjoint feasible regions for both
multi-objective and single-objective functions. Furthermore, they are robust in the pres-
ence of noisy data and are able to use computing resources in a distributed and parallel
manner, [22, 23].

According to [21], there are three branches within EAs which emerged independently:
1. evolution strategies

2. evolutionary programming

3. genetic algorithms (GAs)

However, according to some authors, genetic programming is also considered an inde-
pendent branch. Anyhow, nowadays, GAs are the most popular type of EA and therefore
these are the branch explored here in greater detail, [22, 23, 24].

2.8.1.2 General algorithm and definition

In the context of EAs, the individuals subjected to evolution are in fact the solutions
to the problem at hands. These may be more or less efficient, thus the need to undergo
evolution. If there are several individuals being handled simultaneously, one must refer to
them as a population. Each iteration of the algorithm will create new generations. The
algorithm comes to a stop when a termination criterion is met, [21].

As can be seen in figure 2.3, the EA starts with a population of individuals that
represent solutions to the problem (search points). This first population is usually created
at random. Each individual is evaluated with a fitness function in order to access the
quality of the solution it provides. The fitness function is usually the objective function.
Afterwards, the fittest individuals are selected and some operators such as crossover,
mutation, selection, and reproduction are applied. The new individuals’ fitness is evaluated
and only the fittest among all individuals are selected, thus generating a new population.
Although some individuals are eliminated, the population size does not change since new
individuals are created with each iteration. This iterative process is repeated until the
termination criterion is met, [25].

It is interesting to notice that, with each iteration, the individuals (or search points)
which present worse fitness values are eliminated, so all new individuals derive from the
fittest predecessors. This is the essence of the evolutionary algorithm and the main differ-

ence between algorithms is usually the type of operators used, [19].
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Although the convergence provided by the survival of the fittest approach is fundamen-
tal for the effectiveness of the algorithm, diversity must always be preserved to ensure that
a considerable portion of the domain is evaluated and local optimal points aren’t mistaken
for global optimal points. The latter situation tends to happen when no actions are taken
to avoid the population to be filled with copies of the best individual. In other words,
the algorithm shouldn’t work under the sole action of selection operators, but instead

incorporate variation operators as well, [21].

2.8.1.3 Operators

As mentioned before, two types of operators can be applied in EAs: selection operators
and variation operators. Each of these operators affects the optimization in a distinct way,
so regulating their presence in the algorithm can substantially shift its course, [25].

Selection operators are divided into selection, which determines the amount of times
any given individual will reproduce in a generation, and replacement, which determines
which individuals will have to disappear from the population in each generation to ensure
that there are no changes to the size of the population. It is relevant to emphasize that
fitter individuals are more often selected to reproduce, [21].

On the other hand, variation (or search) operators provide the algorithm with the
capacity to scout for better solutions than the ones represented in the population. In
other words, these operators can combine individuals or disperse the population to ensure
that the optimization search covers a considerable portion of the domain. These too
are divided into two categories: mutation, which simply modifies an individual to create
a new one, and crossover, which generates one or more offspring from combinations of
two parents. Notice that, in the biological sense, crossover can only involve two parents,
however some proposals for the involvement of more that two parents in EAs have been

put forward, allowing for a peculiar and more concise exploration of the search space, [21].
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The aforementioned operators provide diverse techniques to promote the evolution of
the population, however the way in which an individual is modified is highly dependent
on the structure of the solution it represents. So, it is not possible to design a universal
approach to these operators, as they always depends on the problem under analysis. The
operators used, in particular variation operators, are inescapably related to the repre-
sentation of the solutions in the search space. Consequently, when choosing a particular
representation, it is fundamental to specify and define the variation operators to be used,

as they intrinsically depend on it, [21].

Selection operators: Selection pressure and Genetic drift

As mentioned above, EAs select individuals for reproduction based on their fitness.
So, the fittest individuals will reproduce more often than others and eventually replace
them completely. In fact, if there is no contribution from variation operators, eventually
the best individual will dominate the reproduction chain and soon the whole population
will consist of copies of this super-individual. This phenomenon can be quantified by the
takeover time, which is the number o generations necessary to fill a population with copies
of the best individual under the sole action of selection operators. Selection pressure
inversely correlates with takeover time, so it is greater when takeover time is shorter, [21].

When an EA displays a high selection pressure, then it is at risk of premature con-
vergence. This means that a super-individual, which may be a local optimal point, takes
over the population and deviates the solution from the global optimal point. Since this
super-individual creates what could be described as a gravitational pull, the search space
becomes limited to the area surrounding it, leaving out potentially better solutions which
may be outside this limited search space, [21].

Another interesting phenomenon that happens in EAs (as well as in nature) is genetic
drift. Given the stochastic nature of EAs, and in the absence of variation operators, a
population formed from different individuals with similar fitness, may converge towards a
state where all the individuals are identical. This phenomenon can also be quantified by
the time required to obtain a homogeneous population. Interestingly, it has been noted
that the time of convergence towards this plateau becomes longer as the population size

increases, [21].

Genetic drift also correlates with selection pressure, the first prevailing when the latter
is lower. Both these situations are characterized by a lack of diversity, however genetic
drift may converge to a fitness value far from the optimum, since it is independent of the
individuals’ fitness, [21].

All in all, to avoid malfunctions in EAs one must guarantee an adequate population
size and a selection pressure that is neither too weak nor too strong, preferably combined

with some sort of variation operator, [21].
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Types of Selection

Within selection one can choose from a variety of approaches, namely, [21]:

e Proportional selection - The expected number of times an individual is selected to

generate offspring is proportional to its fitness

o Tournament selection - A random number of individuals are drawn from the popu-
lation and only the fittest of those are selected for reproduction; these tournaments

can be conducted several times with different sets of individuals

e Truncation selection - The n best individuals of a population are chosen for repro-

duction; n is a parameter chosen by the user

e Environmental selection - Determines which individuals in a given generation, from
among both offspring and parents, will constitute the population in the next gener-

ation

It is relevant to note that proportional selection can be applied through various meth-
ods, of which the most common are Roulette Wheel Selection (RWS) and Stochastic
Universal Sampling (SUS). Unfortunately, RWS displays high variance, leading to the
possibility of good individuals not being selected, which in turn promotes genetic drift.
This effect can be minimized if the population size is sufficiently large, but nevertheless
it should not be taken lightly. On the other hand, SUS displays weaker variance than
RWS, leading to less frequent genetic drift. Furthermore, proportional selection exhibits
an almost non existent selection pressure when approaching the optimum in the case of
continuous functions. This behaviour can be reduced if fitness function scaling techniques
are applied, though it becomes evident that managing selection pressure when applying
proportional selection is a great challenge, [21]

As for environmental selection, it can also be conducted via several distinct methods,

namely, [21]:

Generational Replacement - Parents are completely replaced by their offspring with

each generation

e Replacement in the Evolution Strategies - A truncation selection of the best offspring

forms the population for the next generation

o Steady-State Replacement - In each generation a small number of offspring (one or
two) are generated and they replace a smaller or equal number of parents to form

the population for the next generation

o FElitism - The individual with the best fitness (or a group of individuals with the

best fitness) are preserved in the population through the generations, thus ensuring
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that the fitness of the best individual does not decrease from one generation to the

next

All in all, the choice of the right approach and method should always take into con-
sideration the problem under investigation since a great fit for one problem might not be

the best fit for a different problem, which is to say it might lead to overfitting, [21].

2.8.1.4 Fitness function

As mentioned before, a fitness function allows one to quantify the quality of a candidate
solution to a given problem. This function can sometimes coincide with the objective
function, although that is not always the case. Noticeably, not only should the operators
fit the problem, but the fitness function should also suit the chosen operators. Naturally,
when creating a suitable fitness function, the representation chosen should be considered,
as well as the nature of the variation operators, otherwise the information it provides will
not be satisfactory in the process of approaching the optimum. Besides these parameters,
the fitness function must also satisfy specific criteria which may be related to its complexity,
to the constraints of the problem or even to the adjustment of the selection pressure during
the evolution. The complexity of the fitness function in particular should be considered
with extreme scrutiny since it will affect the agility of the algorithm and the amount
of computing power it requires, given that the fitness function is calculated for all the
potential solutions, [21].

Generally, when analysing real-world problems, the evaluation of the fitness function
consumes the greatest amount of computing power during an evolutionary optimization.
In the case of damage detection, which involves the FE method, this situation is particu-
larly acute, given that this method is computationally intensive. Therefore, it is interesting
to explore strategies which help reduce the computational time and cost. These strate-
gies can range from parallel computing to approximate calculation of the fitness function
with progressive refinement of the approximation (also defined as reduced order models
(ROMs)). In the latter scenario, the difficulty resides in determining when the fitness
function should be refined in order to avoid premature convergence to false solutions gen-
erated by the approximations. Besides these strategies, one can also resort to the use of
tournament selection or a ranking selection which do not require the precise values of the
objective function, since only the ranking of the individuals is significant, [21].

It is also relevant to note that the evaluation of the fitness function is generally part of
an evaluation routine, which previously decodes the structure chosen to represent a given
solution, [26].

2.8.2 Genetic algorithms (GAs)

As our knowledge of the world evolves, so do our theories that explain natural phenom-

ena. In this context, Darwin’s theory of evolution has been enriched by the our growing
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knowledge on genetics, giving way to a new theory: Neo-Darwinism. Inspire by this new
theory, genetic algorithms (GAs) were first presented to the world in 1975 by Holland,
[21].

The classical GA operates under the same generic specifications of the common EA,
as can be seen in the pseudocode presented below. However, unlike EAs, GAs refer to
candidate solutions as chromosomes instead of individuals and these are usually vectors
composed of decision variables. In fact, GAs apply the concept of genotype-phenotype
found in natural genetics. In this context, the decision variables are called genes, as these
define the characteristics that will be manifested by the problem under investigation - in
natural genetics, these characteristics are what is called the phenotype. In other words, the
phenotype expresses the natural representation of a given solution obtained after decoding
the genotype. The genotype is the complete set of genetic material an organism possesses,
which in the context of GAs would be a candidate solution to the problem, that is, a
combination or set of genes, and they are the elements that are manipulated by the GA.
Historically, GAs worked with solutions represented by binary strings and that is still
typically the case nowadays, [21, 19, 26].

Listing 2.1 Generic pseudocode for the GA

begin
t = 0;
initialize P(t);
evaluate individuals in P(t);
while termination condition not satisfied do
begin
t = t+1;
select _repro C(t) from P(t—1);
recombine and mutate structures in C(t)
forming Cx(t);
evaluate structures in Cx(t);
select _replace P(t) from Cx(t) and P(t—1);
end

end

Noticeably, in its original form, the GA generated only one or two offspring per gen-
eration, maintaining the number of individuals in the population. Aside form this, when
they were firsts proposed, GAs had three distinctive features which differentiated them
from other EAs, [26]:

1. the representation used consists of bitstrings

2. the method of selection is proportional selection
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3. the primary method for producing variation is crossover

As EAs evolve and alternative methods and representations are introduced, these dis-
tinctive features become faint. However, most GAs are still inspired by this original
essence, [26].

So, given the information provided, one can safely say that a common GA requires two
things, [26]:

1. a genetic representation of the domain
2. a fitness function to evaluate each candidate solution

Additionally, it is relevant to note that GAs can implement variation through a range
of methods when practicing crossover. One of these methods is to have one global popu-
lation where any given individual can be subjected to crossover. Another method, usually
referred to as the island model (alternatively, the migration or coarse-grain model), holds
separate subpopulations where selection and crossover take place in isolation from the
other subpopulations. Nonetheless, now and again an individual from one of the sub-
populations may migrate to another subpopulation, allowing for information to be shared
among subpopulations. A third method, usually referred to as the neighborhood model (al-
ternatively, the diffusion or fine-grain model), maintains overlapping neighborhoods. The
neighborhood where selection (for reproduction and replacement) happens is restricted to
a particular region. In this context, the definition of neighborhood and the interactions
that occur between neighborhoods will depend on the neighborhood topology used, [26].

As a final note on GAs, it is interesting to point out that Holland’s initial work in
this area was directed towards the broader context of exploring GAs as adaptive systems
instead of optimization algorithms. In fact, one can argue that, although evolution can be
seen as a form of optimization, it does not particularly aim at a certain target or destination
and could thus be perceived as an aimless optimization since it is an opportunistic process
which operates in an ever changing environment. In that sense, GAs as a simulation of
evolution would not be solution solving tools per se. Nonetheless, this perspective on
GAs does not, by any means, intend to devalue the usefulness of GAs as tools for function
optimization, but instead aims to point out the differences that exist between optimization
and adaptation and how these different goals affect the requirements of the corresponding
algorithm, [26, 27].

2.8.3 Particle swarm optimisation (PSO)

Particle swarm optimisation (PSO) was presented to the world in 1995 by James
Kennedy and Russel Eberhar. Equally inspired by nature, this technique mimics the
social networks of birds and fishes to carry out the exploration of a given search space
in an attempt to identify an optimal point. In other words, this optimization method is

based on cooperation without selection, [28, 29].
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To better understand the idea behind PSO, consider how a flock of birds interacts
when searching for food. They start by moving randomly within a given area. Then, as
each member of the flock finds a promising spot, it informs others that might be close
by. Gradually, the whole flock learns these bits of information and the best spot starts
attracting more and more birds. The interesting aspect to exploit in this analogy is the

social interactions between birds rather than solely individual abilities, [28].

2.8.3.1 Particles: movement and communication

In the context of PSO, each singular entity is designated as a particle and a set of
particles which interact with each other is called a swarm. At first, the particles are
placed within the search space and they evaluate the objective function at their current
location. Then, based on the knowledge of their own current and best locations and on
the information provided by other close-by particles, they move across the search space.
Each new iteration begins after all particles have moved. Sooner or later the swarm will
converge to an optimal point, just like the aforementioned birds concurred to the same
spot, [29, 28].

Interestingly, some variants of the algorithm consider three different types of particles:
explorers, memorizers and random number generators (RNG). In most algorithms, the
first two particles mentioned are considered a single composite particle which incorporates
the capacity to search for different points, provided by the explorer, and the capacity
to memorize the best points found so far, provided by the memorizer. On the other
hand, most algorithms incorporate a single RNG, which generates numbers according to
a uniform distribution in a given interval, but they may also incorporate a second RNG,
which generates numbers according to non-uniform distributions. These numbers are
used to define the velocity of each particle, as is explained in the following paragraphs.
Additionally, the mentioned particles communicate and exchange information between
them. Noticeably, if an information link exists between two composite particles, the
beginning of the link is taken to be the memory part of the first particle, and the end
of the link the explorer part of the second particle, [28].

In order to effectively perform the PSO, each composite particle is made up of three
N-dimensional vectors, where N is the dimension of the domain. These three vectors are
the current position, 7., the previous best position, ]72, and the velocity, E?, [29].

Generally, the current position, 7,, is a set of coordinates which characterizes a point
in space. However, it may also be defined as a vector of bitstrings. At the end of each
iteration of the algorithm, the current position of each particle is assessed as a potential
solution to the problem, which is to say that the objective function is evaluated at that
point. If the position of a certain particle proves to be better than any of the positions
evaluated before, then its coordinates are stored in the previous best position vector, ﬁ
Additionally, the best value of the objective function found thus far is stored in a variable

usually called ppest, (which stands for “previous best”). This value is used for comparison
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on ensuing iterations. The goal is to go on finding better positions and updating ﬁ and
Drest;- LThe next point the particle must travel to is determined by adding the velocity
coordinates, Ti, to the current position, 7. The velocity, o7, is in turn determined
according to the previous best position vector, ﬁ, and the previous best position vector
of neighbour particles. By adjusting the velocity one can effectively redirect the course of
a given particle and therefore ensure that a certain area is examined by that particle, [29].

The process described above is represented in figure 2.4, where the movement of a
given particle is affected by a single neighbour and the velocity vector is calculated using
a linear combination. The three tendencies (maintaining the current velocity, approaching
the previous best position and approaching the previous best position of a neighbour

particle) are represented by three vectors, which are added, [28].
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Figure 2.4 Movement of a particle considering a single neighbour, [28].

Although the basic idea behind the algorithm is fairly simple to grasp, the core of it,
that is, the communication between particles, can be a bit more intricate. The commu-
nication structure or topology can be seen as a social network, and it frequently consists
of bidirectional connections between pairs of particles, [29]. In this context it is useful to
define the neighborhood of a particle (in a given time step), which is made up of all the
particles which share an information link with it. The ensemble of all neighborhoods is
the topology of the swarm. For instance, if there can be a link between any of the particles
in the algorithm, then the topology is considered global. Any other topologies are said to
be local, [28].

Notice that when each particle is influenced by its neighbors, several parallel searches

can be executed at the same time, allowing for a broader exploration of the search space
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and avoiding the misguided convergence to a local optimum instead of the global optimum.
Though this strategy takes more time to complete and demands more computational effort,
it is by far more accurate that having all particles influenced by the best particle in the
whole swarm. The latter option converges quickly but is far more vulnerable to converging
to local optima. An interesting approach to benefit from both these strategies would be to
implement a dynamic topology which starts by searching within small neighborhoods and
slowly increasing the sizes of these until they overlap and merge, and eventually connect
all the particles in the search space in a single global neighborhood. Alternatively, the
neighborhoods themselves may also be dynamic and defined by proximity in the search
space and through the course of the run the number of neighbors may increase, leading to
a situation where all particles become neighbors, [29].

In any given iteration, the existing relationships can be represented by a valuated
graph which relates particles with links between particles. Each link is defined by three
components: its source, its sink and a probability value. More often than not, the topology
is represented by a square matrix , 7', of size n, where n is the swarm size and T'(i, j) the
probability of particle ¢ informing particle j. Most variants consider the probability to be
either 0 or 1, and it is always assumed that a particle informs itself. That being said, for
any given PSO problem the total number of possible topologies is 2”2_”, [28].

All in all, the algorithm performs quite differently depending on the topology imple-
mented; these differences depend on the function tested, and unfortunately there is no
evidence to conclusively suggest that any particular topology is generally better than any
other. However, it is safe to state that the significance of the social network and the effects

of its topology depend on the fashion of the interactions of the particles, [29].

2.8.3.2 Mechanisms, Strategies and Population dynamics

Management of particles

Contrary to GAs, PSO in its original form does not require mechanisms to create or
destroy particles. Therefore, the only mechanism required to manage particles is the
mechanism which creates them at the start of the algorithm. Notice that the size of the
population is usually set empirically and is influenced by the dimension and perceived
difficulty of the problem. The most classical method for this creation is to simply apply a
random position inside the search space, as well as a random velocity. Even though more
sophisticated methods could be used, their influence in the performance of the method
usually fades after a few iterations. It is also relevant to note that, if the algorithm reaches
some sort of stagnant phase, the mechanism used to create the particles could be used to

create a new set of particles to replace the ones used up until that moment, [28, 29].

Management of information links
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In order to function properly, a PSO must guarantee three essential functions for the
information links: creation, deletion and valuation (assigning a probability). In many
cases the swarm size is constant and the topology remains fixed through the whole process
of optimization, therefore information links may be created just once at the beginning of
the process. On the other hand, if this method does not allow the efficient optimisation of
a particular problem, then the PSO can resort to some form of adaptive topology, which
may be based on mathematical criteria or be inspired by social and biological behaviors,
[28].

Management of particle movement

The algorithm of the PSO determines that each particle’s movement is influenced by
three factors, [28]:

i. its own velocity;
ii. the tendency to move towards the best positions memorized by its neighbors;
iii. the tendency to move towards the best know position.

In order to compute the exact movement of a given particle, five steps must be followed,
[28]:

1. Select the particles within the neighborhood of the particle which will be taken into
account. The best one alone may be used, but any number of particles may be

considered

2. For each neighbor particle considered, determine a point near its best memorized

position and define a virtual movement towards that point

3. Combine all virtual movements considered. The current velocity should also be taken

into account, though it should be of lesser influence
4. Apply the determined movement to the particle

5. In the event of the particle flying outside the search space, a confinement mechanism

may be applied
Confinement and constraints

Since the search for an optimum is bonded by a search space, PSO is always subject to
constraints. These constraints may be applied directly to a certain variable or be given as
a relation between variables. In any case, in the event of a particle disrespecting a given
constraint (that is, in the event of the particle flying outside the search space), one of two

options can be taken, [28]:
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o Let the particle fly and disregard the new position, allowing it to return to the search
space at its own pace. This return is a result of the attraction of neighbor particles’

best memorized position and its own previous best position

o Apply an immediate or progressive confinement method

The nature of confinement methods may be given by any iterative algorithm, but the
most straightforward method would be to stop the particle at the frontier of the search
space and either set its velocity to zero or invert its direction, which may be done at

random, [28].
Noisy functions

When analysing real-world problems, it is common to come across noisy functions. Un-
like the case of dynamic problems where the fitness function evolves over time, in the case
of noisy problems the fitness function remains the same through the iterations. However,
the fitness values associated to each evaluation may fluctuate, which could mislead the
optimization search. Interestingly, the PSO algorithm responds quite well to this sort of
input, remaining effective and sometimes even benefiting from it to avoid getting trapped
in local optima. In any case, some noise-resistant variants of the algorithm have emerged
in literature and these preform exceedingly well, making noisy data an irrelevant issue,
[29].

2.9 Machine learning techniques

Machine learning is the study of the design, creation, and implementation of algorithms
that allow computers to learn from data. Machine learning’s key goal is to learn how to
recognize complex patterns and make intelligent decisions based on data independently. As
a result, machine learning is deeply entwined with fields like probability theory, statistics,
and computational intelligence, [6].

Machine-learning techniques are divided into the following groups, depending on the

technique’s goal, [6]:

o Supervised learning: defines a mathematical function that maps inputs to outputs.
Multi-layer perceptron and support vector machines are two examples of these tech-

niques.

o Unsupervised learning: models a series of inputs without knowing what the outputs
will be.

e Reinforcement learning: is a method for learning how to respond to a specific ob-

servation in the environment by ensuring that each behavior has an effect on the
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environment and that the environment provides reinforcement in the form of incen-

tives and punishments.

2.9.1 Artificial neural networks (ANNs)

Similarly to EAs, artificial neural networks (ANNs) are a methodology inspired by
nature. A neural network is a data-processing model based on how biological nervous
systems, such as the human brain, process information. That being said, a neural network
is a type of computer program that models the relationship between input and output
parameters. In it’s essence, ANNs are a method of supervised learning, [6, 7.

An ANN is made up of a group of processing units, also known as neurons, which
are linked together. Each neuron is a transfer mechanism, and it can be represented as
an oriented graph. Note that a neuron is a nonlinear element with many inputs and a
single output. The architecture of a neural network is therefore dictated by the network’s
interactions and the neurons’ transition functions, [7].

In ANNS, the learning process is normally applied by examples; this process is also
known as ’training,” since the learning procedure is accomplished by iteratively changing
the connection weights. There are three kinds of ANN learning processes: supervised,
unsupervised, and reinforcement learning. The precise comparison of the current output
and the predicted output is the foundation of supervised learning. Reinforcement learning
is a form of supervised learning in which the only criterion is whether the output is valid.
Unsupervised learning relies solely on the input data’s similarity. The learning rule, which
determines the weight update rule, is the heart of a learning algorithm. Delta law, Hebbian
rule, and competitive learning rule are three common learning rules, [7].

As stated before, machine learning algorithms are basically methods for determining
parameter values that appear to be likely based on the results. The data is normally
divided into preparation, validation, and research sets during the learning process. In
ANN, this is used to pick the model to make sure the trained network isn’t skewed against

the data it’s seen during testing, [6, 7].

2.10 Hybrid algorithms

2.10.1 Hybridization between PSO and GA

Although both GAs and PSO algorithms preform in a satisfactory manner, it is possible
to combine their characteristics to create a hybrid algorithm with better attributes. Notice
that, given the fact that the algorithm’s performance is highly dependant on the problem
under analysis, one may find it hard to determine which algorithm, hybrid or purebred,
is the absolute best choice in all scenarios. Therefore, the conclusions drawn from a
particular comparative analysis should not be extrapolated to the general case without

careful consideration.
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In order to explore the vast possibilities of combining GAs with PSO algorithms, two
articles were analysed, [30] and [31]. The first article analyses the performance of PSO
and evolutionary optimization in the search for the optimum in well known functions with
varying dimension and initial population characteristics. After drawing some conclusions
regarding the performance of each method, a few hybrid algorithms are proposed, though
they are not tested. On the other hand, the second article mentioned explores the perfor-
mance of PSO, GAs and two hybrid algorithms in the search for an optimal design of a
profiled corrugated antenna. Finally, similarly to the first article, conclusions are drawn
from the experiment, though no suggestions regarding other hybrid possibilities are made,
[30, 31].

As mentioned above, article [30] only investigates the performance of PSO and evolu-

tionary optimization in the search for the optimum in four test functions, [30]:

1. The sphere model,;
2. The Rosenbrock function;
3. The generalized Rastrigrin function;

4. The generalized Griewank function.

A typical method for initializing the population is to disperse the individuals uniformly
across the search space, which is usually symmetric about the origin. Since some of the test
functions used in this experiment have optima at or near the origin, the typical method can
create some level of bias in the the results. Therefore, besides using the typical method,
another initialization method was used, and the comparison between the two allowed to
assess the performance of the algorithm and its response to the different initialization
schemes used. This second method limited the initial population to a fraction of the
search space which was defined as half the distance from the maximum point along each
axis back towards the origin, [30].

Besides this, the way the dimensionality affected the performance of the algorithm was
also considered. Accordingly, three different dimensions were performed for each initial-
ization method and test function: 10, 20 and 30. That being said, 48 different experiments
were undertaken, with a total of 50 trials per experiment, adding up to 2400 total trials.
The number of generations was also limited according to the dimension of the experiment
and the size of the population was 125 particles for the PSO and 250 individuals, with
250 parents, for the evolutionary optimization. Regarding the evolutionary optimization,
tournament selection was the chosen method for selection. Regarding the PSO, the accel-
eration constant of the particle swarm was set to 2.0 and the velocity was limited between
—2 and 2, [30].

For the case of symmetrical initialization and for the first three functions, PSO found

the optima quite quickly and then abruptly flattened out and halted the search process,
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while evolutionary optimization appeared more gradual and ultimately outperformed the
PSO for all dimensions tested. However, for the fourth function PSO took longer to find
the optima but evolutionary optimization maintained the same performance as in the
previous three functions, [30].

For the case of asymmetric initialization, the results for the first three functions were
quite similar to those obtained for the case of symmetrical initialization, both for PSO and
evolutionary optimization. However, evolutionary optimization takes longer to surpass the
performance of the PSO, given the asymmetrical nature of the initial population. Besides
this, for the fourth function the performance of the PSO improved significantly, suggesting
that PSO might have been biased away from the optimum due to the symmetry of the
initial population, [30].

Even though differences between the two methods were outlined, they still appear to
be very competitive. Although PSO locates the optimum point faster that evolutionary
optimization, it cannot dynamically adjust the velocity when approaching it, which dra-
matically flattens out its performance. In this sense, PSO would largely benefit from a
dynamic refinement of the velocity when an optimal region is approached. On the other
hand, evolutionary optimization presents a slower approach to the optimum, but outper-
forms PSO thanks to its capacity to dynamically adjust to the granularity of the local
search area. Remarkably, both algorithms seemed to perform consistently despite the
initialization method used, [30].

Considering the conclusions drawn, three hybrid approaches were proposed.

e use a self-adaptive technique from the evolutionary optimization to dynamically

adjust the velocity in PSO when approaching an optimum

e include a selection method from evolutionary optimization which could reallocate

particles performing bellow average in PSO

¢ introduce an operator which considers the current best individual of the whole run

and biases the creation of offspring in the algorithm of evolutionary optimization

Article, [31], on the other hand, experiments with both PSO and GAs, as well as two
hybrid algorithms in the search for an optimal design of a profiled corrugated antenna.

The hybrid algorithms used are as follows, [31]:

e GA-PSO hybrid: the GA population is used to start the PSO after 323 fitness

evaluations

e PSO-GA hybrid: the PSO population is used to start the GA after 334 fitness

evaluations

Regarding the GA, the operators used are mutation, crossover and selection. The

fitness function used is the same for all the algorithms tested, allowing for an unbiased
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analysis. Regarding the PSO, the movement of the particles contemplates both the par-
ticle’s personal previous best position as well as the global previous best position. The
initialization of the algorithm is done at random, both in terms of position and veloc-
ity, and the velocity is limited throughout the whole run. Additionally, each algorithm
was given a population of 10 individuals and should stop after completing 600 fitness
evaluations, [31].

Since both algorithms employ the majority of their running time evaluating fitness,
this limitation had fairly the same impact on the two of them. However, in order to
reduce the number of fitness evaluations, the GA did not reevaluate any horn design that
had previously been analysed in the run and the PSO did not evaluate particles which fle
over the search space, [31].

After conducting the aforementioned experience with the four algorithms, it was noted
that the GA improved faster than PSO earlier in the run, but the latter passes GA
shortly after. Taking this into account, PSO is said to perform better than GA. As to the
hybrid algorithm, PSO outperformed the GA-PSO, however PSO-GA returned the best
horn when compared to the other three algorithms. As a final note, PSO is described
as a highly competitive and effective method, although PSO-GA seems to be the most
promising, [31].

After careful analysis of the two articles, it is possible to understand that the differ-
ences in performance between PSO and GA are not necessarily consistent. While the first
article indicates GA as the best performing algorithm, the second article states otherwise.
Nevertheless, one should take into account the fact that the population used in the lat-
ter article was of small dimension, which generally leads to poorer performance of the
algorithm, [30, 31].

All in all, hybrid algorithms which combine PSO and GAs seem quite promising ac-
cording to both articles, but there is still a lot of room for research and development in this
up-and-coming area. Furthermore, the introduction of aspects of GAs in the final stages
of PSO seems to be the technique which leads to best results, allowing for a refinement
of the method near the optimum which guarantees a progressive approach to that same
point, [30, 31].

2.10.2 Optimization of ANNs based on EAs

The shortcomings of a neural network are well-known. It can easily get stuck in a local
minimum and presents great challenges when it comes to changing the architecture. When
used in basic problems, EAs may not be adequate, and their efficiency may not be compa-
rable to that of special algorithms for specific problems. But GAs are robust, nonlinear,
and parallel algorithms that can be used in a variety of situations since they are built on
prior knowledge of a specific problem. EAs can be used to solve a variety of problems,
including connection weight preparation, architecture design, rule learning, input function

selection, connection weight initialization, and rule extraction from ANNs. The number
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of layers, the number of neurons in each layer, the connecting path between neurons,
and other parameters are used to characterize neural network architecture. According to
certain performance assessment principles, designing network architecture entails deter-
mining the combination of parameters that is best suited to solving a specific problem. It
can be difficult to build a network artificially, so ANNs require effective and automated

methods of construction, which GA fortunately provides, [7].

2.11 Single-objective (SOO) and multi-objective (M OO) op-

timization

Optimization usually refers to the process of solving a problem where one or multiple
objectives must be minimized or maximized. These objectives may be weighted functions
of integer or real variables and they are generally subject to one or more constraints. The
objective depends on certain traits or characteristics of the system, which are referred
to as variables or unknowns. Solving the optimization problem consists of systematically
assigning values to these variables, abiding by the imposed restrictions, and assessing
whether the optimal solution has been found - this solution corresponds to the best value
of the objective function. Notice that these values must fit within a preset domain. When
analysing a real problem, it is common to come across multiple objectives, which might
even be conflicting, however real single objective problems can also be found, though they
are generally very simplistic, [32, 33].

In order to solve an optimization problem, it is usual to follow a sequence of steps

rather than attempt to solve it in one go. These steps are as follows, [32]:

1. check for the need of optimization

2. define the design variables

3. formulate the constraints

4. formulate the objective function/functions
5. choose and optimization algorithm

6. run the algorithm and obtain a solution or set of solutions

Within the field of optimization, two techniques may be used: single variable optimiza-
tion and multi-variable optimization. Furthermore, for either technique, one can find two
optimization scenarios: unrestricted , which means there are no constraints, or restricted,
which means there are either equality constraints, inequality constraints or a combination
of both, [32, 33].

Single-objective optimization (SOO) encompasses optimization problems which

deal with the maximization or minimization of a single objective function based upon
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one or more variables subject to any given number of constraints. The objective function
may present several local minimum or maximum, and a single global minimum and global
maximum, [32, 33].

Within the context of SOO, three different optimization techniques can be found,
(32, 33]:

1. Calculus-based or numeric techniques;
2. Enumerative techniques;
3. Guided random search techniques.

The first two technique assumes the existence of derivatives, making it unsuitable to
solve the majority of real-life problems. The second technique requires the evaluation of
every point in the search space, making them computationally expensive. Evolutionary
computation, and thus GAs and PSO, fits in the category of random techniques. This
branch is based on enumerative methods, though it is guided to search only promising
regions of the search space, making it useful in complex, multidimensional and discon-
tinuous problems with vast search spaces. It encompasses both single point and multiple
point search. An example of single point search is simulated annealing, while multiple
point search includes evolutionary computation and tabu search, [32, 33].

Multi-objective (multicriteria or multiattribute) optimization (MOO), on
the other hand, refers to problems which present two or more conflicting objectives which
must be simultaneously optimized with respect to a given set of constraints. If the op-
timization of one objective coincides with the optimization of the remaining objectives,
then the problem under analysis is not considered a MOO problem. In MOO the concept
of optimality cannot be directly applied since the answer is generally a set of solutions
that define the best trade off between competing objectives. Taking this into account, the
quality of a solution is then determined by its dominance and thus the notion of Pareto
optimal front is usually employed, [32, 33].

For a given solution to be considered dominant over another solution it must be no
worse in all objectives and strictly better in at least one objective. Therefore, it is possible
to determine a set of solutions which does not dominate and is not dominated by any
potential solution within this set. This set is called a non-dominated solution set and the
non-dominated set of the entire feasible decision space is called the Pareto-optimal set.
The boundary defined by the set of all points mapped from the Pareto optimal set is called
the Pareto optimal front. Taking this concept into account, the main goal in MOO is to
find a set of solutions as close as possible to the Pareto-optimal front. Note that the rank
of any potential solution in a given set is defined as the number of solutions within that
set that dominate it. Therefore, the solutions in the Pareto optimal front have rank 0 as

they are not dominated by any other potential solution, [32, 33].
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2.11.1 Multi-objective evolutionary algorithms (MOEAs)

Though a panoply of approaches to solve MOO problems can be found in literature,
only multi-objective evolutionary algorithms (MOEASs) are mentioned in this text. In
the particular case of GAs, where different populations are used for different objectives,
a few Pareto-based approaches stand out, namely multiple objective GA (MOGA), non-
dominated sorting GA (NSGA), and niched Pareto GA. The aforementioned techniques are
generally nonelitist, so it is relevant to mention the most commonly found elitist MOEAs:
NSGA-II, the strength Pareto evolutionary algorithm (SPEA), and SPEA2, [33].

It is interesting to note that, though EAs were initially applied to SOO, they can be
easily extended to solve MOO problems. That being said, and considering the multitude
of different approaches one can adopt to solve MOO problems, an attempt to categorize

them is presented bellow, based on [33]:

Aggregating approaches

1. Weighted sum approach: weights are used to combine multiple objectives. To put
it another way, the objective functions are combined into a single function, which is

subsequently optimized.

2. Approach based on goal programming: users are requested to set targets or objec-
tives for each objective function, and deviation from these targets is subsequently

minimized.

3. Goal attainment-based approach: users must give a target vector and a weight vector

that connects the relative accomplishment of the intended goals.

4. e-Constraint approach: the primary objective function is optimized considering the

other objective functions as constraints bounded by some allowable levels ;.

Population-based non-Pareto approaches

1. Vector evaluated genetic algorithm (VEGA): this approach makes use of a unique
selection operator that creates a number of subpopulations by applying proportional
selection to each objective function in turn. This was the earliest MOO attempt using
a GA.

2. Lexicographic ordering: the user prioritizes the objectives in order of significance,

and the optimization is conducted on these priorities.
3. Game theory-based approach: each objective is seen as a player

4. Use of gender for identifying the objectives: it is permissible to have many parents

join to generate a single offspring.
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5. Use of the contact theorem: an individual’s fitness is characterized by their relative

distance from the Pareto front.

. Use of nongenerational GA: a series of appropriate transformations is used to convert

a multi-objective problem to a single-objective problem. Individual fitness is assessed
progressively, and in each generation, a single individual is generated through genetic

operators, replacing the weakest individual in the population.

Pareto-based non-elitist approaches

1. Multiple objective GA (MOGA): each individual is allotted a rank based on the

number of people in the present population by whom it is dominated plus one.
Individuals who are non-dominated are ranked first. The fitness of individuals with
the same rank is averaged such that they are all sampled at the same rate. The
population is then distributed throughout the Pareto-optimal region using a niche
generation mechanism. It is important to note that this approach converges slowly,

and certain issues with niche size parameters may develop.

. Niched Pareto GA (NPGA): to decide the winner amongst two candidate solutions,

a tournament selection based on Pareto dominance is run on a sample of the popu-
lation. To assess dominance, a sample of roughly ten individuals is taken, and the
non-dominated individual is chosen. If both participants are either dominated or
non-dominated, the tournament’s outcome is determined by fitness sharing. This
approach also has the issue of determining a suitable value for the niche size param-

eter.

. non-dominated sorting GA (NSGA): All non-dominated individuals are assigned to

a single category, and a dummy fitness value proportionate to population size is
assigned. This group is then eliminated, and the remainder of the population is
reclassified. The procedure is repeated until all of the individuals in the population
have been categorised. In this case, stochastic remainder proportional selection is
applied. This approach has a very high convergence rate, however it also has issues

with the niche size parameter.

Pareto-based elitist approaches

1. Strength Pareto evolutionary algorithm (SPEA): elitism is expressly manifested by

the upkeep of an external population known as an archive. The repository contains
all non-dominated solutions from the general population. Each individual in the
archive is assigned a strength rating proportionate to the number of individuals it
dominates. The fitness of each individual in the present population, on the other
hand, is determined by the strength of all the archival non-dominated solutions that

dominate it. Furthermore, it uses average linkage clustering to reduce the size of the
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archive while increasing diversity in the primary population. This method has been
thoroughly tested, and it guarantees that no parameters are necessary for diversity

preservation. However, the usage of clustering is seen as a limiting factor.

2. Strength Pareto evolutionary algorithm 2 (SPEA2): to overcome the SPEA’s flaws,
where individuals dominated by the same archive members have the same fitness val-
ues, both the general population and the archive are considered when establishing
an individual’s fitness values. Furthermore, in order to prevent losing outside and
border solutions, which is common when performing the clustering strategy, SPEA2
maintains diversity by applying a density-based strategy on the kth closest neigh-
bor. Unfortunately, this strategy is hampered by computationally costly fitness and

density computations.

3. Pareto archived evolutionary strategy (PAES): when producing offspring, a binary
representation and bitwise mutation are utilized. The offspring is formed first in this
process, and then the goal functions are computed. Following that, its fitness value
is compared to that of the parent. Only through dominating the parent can a child
be recognized as the next parent. In that instance, the iteration process is resumed.
Otherwise, the child is rejected, and the parent produces a new mutant offspring.
It should be noted, however, that the parent and offspring may be non-dominant to
one other. In such case, the offspring is compared to all members of the archive to
see if it outperforms any of them. If it happens, the child is recognized as the new
parent, and all dominated solutions are removed from the archive. Otherwise, if the
archive does not include any individuals dominated by the child, both the parent and
the child are examined for their proximity to the archive’s solutions. If the offspring
occupies a less populated portion of the search area, it is approved as a parent. In

addition, a copy of the offspring is uploaded to the archive.

4. Pareto envelope-based selection algorithm (PESA): the population is divided into
two parts: an internal (or primary) population and an external (or secondary) pop-
ulation. PESA uses the same hypergrid search space division as PAES to retain
diversity. The hypergrid’s selection method is based on its crowding metric. This
same metric is used to decide which solutions to provide to the external popula-
tion, that is the archive of non-dominated individuals discovered throughout the

evolutionary process.

5. Pareto envelope-based selection algorithm-II (PESA-II): PESA-II is an improved
version of PESA that features region-based selection. In region-based selection, a
hyperbox is employed as the selection unit rather than an individual. The selection
procedure begins with the selection of a hyperbox (using some conventional selection
techniques) and then the selection of a random individual inside that hyperbox. The

main advantage of this technique is that it is simple to use and computationally



38

Model Updating Techniques

efficient. However, the gridsize affects the algorithm’s outputs, and drawing grids

requires previous knowledge of the goal space.

. Elitist non-dominated sorting GA (NSGA-II): NSGA-II was proposed to overcome

the shortcomings of NSGA, particularly its nonelitist design. Individuals in a pop-
ulation are subjected to non-dominated sorting, similar to NSGA, and are awarded
rankings as a consequence. A new selection approach called crowded tournament se-
lection is proposed, in which solutions are picked based on crowding distance (which
measures the density of a solution’s neighborhood and encourages variety mainte-
nance in non-dominated front solutions). To apply elitism, the parent and child
populations are joined, and non-dominated individuals from the combined popu-
lation are handed on to the next generation. Since NSGA-II is one of the most

commonly used MOO algorithms, it is covered in greater depth here.

The non-dominated sorting approach is a key feature of the NSGA-II. Given that the
non-dominated set of solutions within a set of possible solutions is made up of those
that are not dominated by any other solution, the operation of the non-dominated
sorting approach is as follows: the non-dominated sorting process first seeks the non-
dominated set from the given set of possible solutions. Each of the non-dominated
solutions is given a rank of one. The same technique is then performed to the set
of potential solutions that does not contain the previously determined set of non-
dominated solutions, yielding a new set of non-dominated solutions. Each solution
in this new collection of non-dominated solutions is awarded a rating of 2. This
method is continued until all of the initial set’s solutions have been ranked. As a
result, the non-dominated sorting strategy assures that viable alternatives are always

prioritized above infeasible options.

All in all, the main steps of the NSGA-II algorithm are as follows:

e Initialize the population.
o While the termination criterion is not met, repeat the following;:

— Evaluate each solution in the population by computing m objective function

values.

Rank the solutions in the population using non-dominated sorting.

Perform selection using the crowding binary tournament selection operator.

— Perform crossover and mutation (as in conventional GA) to generate the
offspring population.

— Combine the parent and child populations.

— Replace the parent population by the best members (selected using non-

dominated sorting and the crowded comparison operator) of the combined

population.

e Output the first non-dominated front of the final population.
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Power transformers

3.1 Fundamentals

Transformers are static devices that use electromagnetic induction to transfer electri-
cal energy from one equipment to another without changing the frequency. This transfer
occurs with variations in both voltage and current, but the electrical power remains con-
stant throughout, suffering only small losses. These machines can link circuits with various
voltages, which is one of the supporting factors for the widespread use of the alternating
current (AC) system for electrical energy transmission and distribution. That being said,
transformers enable different components of the power grid, such as generators, transmis-
sion lines, distribution networks, and loads, to run at their most suitable voltage levels.
They play a significant role in interconnecting the various components of a power grid at
different voltage levels, particularly when transmission voltages in certain parts of the sys-
tem are elevated to higher levels. Transformers are therefore critical connections between
the generating stations and the points of consumption. Their integration in a common
power grid is represented in figure 3.1, [34, 35, 36].

Note that a transformer is an electromagnetic converter that transforms the electrical
energy obtained by its primary winding into magnetic energy, which is then transformed
again into electrical energy in other circuits. Therefore, the primary and secondary wind-
ings are magnetically coupled rather than electrically connected. Based on whether the
secondary voltage is higher or lower than the main voltage, a transformer is called a step-
up or a step-down transformer. Bearing that in mind, transformer windings are referred to
as high-voltage/low-voltage or low-tension/high-tension windings instead of primary/sec-
ondary windings given their ability to either step-up or step-down voltage depending on
the need and operation, [34, 35, 36].

3.1.1 Principles and equivalent circuit

As stated above, power remains constant throughout the energy transfer, displaying

only small losses due mainly to the resistance presented by the windings. To better
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Figure 3.1 The power transmission process, [37].

understand the source of this power loss and how to minimize it, it is relevant to recall

the following equations, [34, 35].

P=VvV-I (3.1)

where P refers to the power, V refers to the voltage and I refers to the current.

R=p- (3.2)

where R refers to the resistance presented by a given winding, p refers to the resistivity
of the conductor material, L refers to the length of the winding and A refers to the cross

section area of the winding.

Considering equations 3.1 and 3.2, the power loss can be calculated as follows:

L-I?
P.=IR=p- .
R=p- = (3.3)
and the associated voltage drop can be calculated as follows:
L-I

Therefore, considering equation 3.1, power loss and voltage drop can be calculated as

follows:
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L. P?

P = P2 (3.5)
L-P

Vi=ravy (36)

That being said, and considering equations 3.5 and 3.6, it seems that a rise in voltage,
V', leads to a plunge in power losses, P,, and in voltage drop, V;.. Therefore, one can say
that electrical power transfer is more efficient when associated with higher voltage values.
Alternatively, one could reduce both P, and V,. by increasing the cross section area of the
winding, A. However, an increase in A leads to an increase in the weight of the winding,
which in turn leads to greater costs. Hence, it is necessary to consider a trade-off between

the minimization of losses and the increased cost associated with larger windings.

3.2 Electric power grid

Electrical energy is carried throughout the power grid at high voltages, however the
voltage must be reduced near housing or commercial and industrial facilities. As previ-
ously mentioned, this voltage reduction is achieved through a transformer. Additionally,
transformers are also used to increase the voltage provided by the generator up to the re-
quired value for the transmission of electrical energy. In this way, transformers are crucial
in any electric power grid, as they allow for each component of the system to work at its
most suitable voltage value, [34, 35].

Figure 3.1 shows a simplification of the electric power grid, mapping out the course from
source to final consumer, including generation, transmission and distribution of electric
energy. At the beginning there is a power plant (A), where energy is generated, followed
by a step-up transformer (B), which elevates the voltage levels to allow for transmission to
occur at more efficient levels. Next there is a tower (C) and transmission substation (D).
The latter includes a transformer as well, however this one has the purpose of reducing the
voltage from transmission level to average tension. Afterwards, another set of transformers
reduce the voltage to the lowest value in the distribution substation (E) and transformers
(F). Finally, the energy arrives at its destination: the consumer. Here it is represented as

a home (G), but it might as well be a commercial or industrial facility, [34, 35].

3.3 Power transformer operation

Transformers operate according to the principle of induction, discovered by Faraday in
1831. This principle states that when a variable magnetic flux interacts with an electrical
circuit, it induces an electromotive voltage or force in the circuit. Interestingly, the induced
voltage is proportional to the number of turns of the electrical circuit traveled by said flux,
[34, 35].
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Figure 3.2 displays a representation of a monophasic transformer composed of two
windings, with a different number of turns, traversed by the same magnetic flux, ¢,,. The
primary winding has N7 turns, while the secondary winding has N, turns. Therefore,
as the number of turns is different in the two circuits, so is the induced force in each of
them. The transformer is considered an electromagnetic energy converter since it receives
electrical energy in the primary winding and converts it into magnetic energy, reconverting

it back into electrical energy in the second winding, [34, 35].
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Figure 3.2 Representation of a monophasic transformer composed of two windings, with a
different number of turns.

The instantaneous electromotive force induced in the primary and secondary windings

due to the magnetic flux, are calculated as follows:

dom
Ey=N—— 3.7
=N (37)
v, B
Ey = )
y = N (33)

Equations 3.7 and 3.8 describe the electromotive forces in the context of the circuit. In
the context of the magnetic flux, the induced voltages are symmetrical to the ones stated

above.

Disregarding the resistivity of the windings, one can state:

Vi = B (3.9)
Vs = By (3.10)
E, N

s (3.11)

Ey No



Types of transformer 43

Therefore, taking into account equations 3.1, 3.9, 3.10 and 3.11, the following conclu-
sion may be reached:
Ey2 Vi N1 D

SN2y =Vl 3.12
EQ ‘/2 N2 Il 141 242 ( )

3.4 Types of transformer

Transformers can be classified according to their role in the power grid or according to
their design. The following subsections provide an overview of the types of transformers

according to these two types of classification.

3.4.1 On the basis of use: power and distribution transformers

When analysed according to their function, transformers can divided into power trans-
formers and distribution transformers. The power transformers are located after the gen-
erator and are responsible for increasing the voltage up to the transmission value. Besides
that, they are also responsible for lowering the voltage - transforming high voltage in
medium voltage - near urban or industrial centers. Distribution transformers, on the
other hand, are responsible for lowering the voltage - transforming medium voltage into

low voltage - so that it can be distributed to consumers, [34, 35].

Figure 3.3 Types of transformer on the basis of use: distribution transformer, Efacec.

3.4.2 On the basis of design: shell and core transformers

Regarding their design, transformers can be classified into core type and shell type.

This designation takes into account the type of construction of the active part, which is
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Figure 3.4 Types of transformer on the basis of use: power transformer, Efacec.

made up of the magnetic circuit and windings. In the core type transformer the windings
are placed around the magnetic circuit. Usually, high voltage and low voltage windings
are placed concentrically, with the low voltage winding within the high voltage winding.
Note that the windings have a cylindrical shape. In the shell type the magnetic circuit is
coiled around the windings. The windings are flat and oval in shape. Furthermore, the

low voltage windings are placed side by side with the high voltage windings, [34, 35, 36].
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Figure 3.5 Types of transformer on the basis of design: shell transformer.

In order to choose the preferred type of active part of the transformer, and therefore
the type of transformer, both function and cost must be taken into account. For example,
for distribution transformers it is common to opt for core transformers, since the windings
are wrapped around the magnetic circuit in an economical fashion. On the other and, for
high power transformers, the shell type is typically used, since greater resistance to short-
circuit situations is required. This occurs, for instance, in nuclear power plants. Notice,

however, that this type of transformer is more expensive, [34, 35, 36].
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Figure 3.6 Types of transformer on the basis of design: core transformer.

3.5 Structural elements in power transformers

Transformers are machines made out of copper, steel, densified wood, insulating paper
and oil. Each of these materials are transformed into various parts, namely the windings,
tap changing system, core, tank, and bushings. These elements come into contact with

the voltage and current, making up the active component of a transformer, [36].

3.5.1 Windings

A power transformer’s windings are its most important component. They are made
from copper or aluminum coils that are generally insulated with multiple layers of paper
between the turns. As stated above, the core type and shell type windings are the two
primary winding designs and technologies that have been evolved over time, displaying
many variants. In both cases, the electric basis is the same, but the mechanical design is
distinct, [36].

Windings are made with a lot of manual labor and require a lot of experience as well
as strict adherence to the highest quality criteria. This is due to the fact that winding
conductors are shielded by a form of insulation with minimal mechanical and thermal
flexibility, such as varnish or insulating paper. Nonetheless, this insulation form protects
the insulation paper from high overvoltages, high overcurrents, short-term overheating,
and high mechanical pressures, ensuring that the insulation paper’s longevity is not com-
promised. It should be noted that the transformer’s winding insulation cannot be quickly
fixed or removed during its service period, and rewinding can only be done in a specialized
facility, [36].
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3.5.2 Core

The core of a transformer is the most critical and usually the heaviest component.
It is made of steel and has a high magnetic permeability, allowing the magnetic flux to
pass through it with no resistance. To minimize losses and magnetising current, it is
constructed from thin steel sheets with a thickness of a few tenths of a millimetre. The
most common method of producing a core is to stack the sheets, which have been cut to
the correct size, into automated machines and then manually stack them to form a core,

[36].

3.5.3 Tap changer

Additional turns are added to the high voltage windings of most transformers, and
some of those turns are related to a system known as a "Tap Changer'. During the
transformer’s service life, it allows for a specific spectrum of voltage variation. There are
some movable contacts in the electric circuit of the windings and the tap changer. The
De-Energized Tap Changer (DETC) - a mechanically simple type that switches the voltage
when the transformer is not loaded - and the On Load Tap Changer (OLTC) - a more
complicated type that works while the transformer supplies the load - are the two major

forms of tap changers, [36].

3.5.4 Bushings

The bushings connect the windings to a network that runs across the grounded tank.
High-voltage bushings are technically challenging, and their failure will quickly result in
a transformer explosion. This is because the voltage gradient between the high voltage
bushing central component at maximum potential and the grounded tank at a gap of just
a few centimetres is one of the largest. The insulating oil under the bushing is highly
flammable, and if it sparks, it could produce a lot of steam, open the tank slightly, and
then ignite the oil, resulting in an explosion. As a result, the high voltage bushing is
designed to tolerate extremely high voltages in a narrow area between the bushing and

the transformer tank filled with paper and oil, [36].

3.5.5 Insulating materials

Mineral oil, paper, and pressboard are the three most popular insulating materials
used in power transformers. Inside the tank, the mineral insulating oil is weighed in tons
and can be used to measure certain important aspects of a transformer’s condition as well
as any vital incipient faults. The pressboard reinforces the electrical insulation and gives
dielectric spacing at various sites, such as in the main duct between the windings, while

the paper insulates the winding turns, [36].
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Paper, pressboard, and mineral oil, for example, are organic products that deteriorate
with time. Solid insulation, unlike other transformer parts and components, is difficult to
patch or replace, limiting the transformer’s service existence. As a result, the transformer’s

rigid insulation lifespan translates into the transformer’s lifetime, [36].

3.6 Typical loading scenarios for power transformers

The transformer tank is designed to support a set of loads associated with different

types of events. The most important events to consider are, [34, 35]:

o Lifting: The lifting eyelets, located at the top of the tank, and the supports, located
at the base of the tank, are mechanisms that facilitate lifting the transformer at any
given moment. The eyelets are used to lift the transformer with a crane, while the

base supports allow lifting, mainly in the same location, without the aid of a crane;

e Transport: Transporting the transformer at the installation location is done with
the aid of rollers and transport terminals. The transport terminals are located at

the bottom of the tank and the rollers are located under the base plate;

e Seismic and eolian activity: Seismic and eolian activity affect the performance of the

tank’s connections and support structures;

e Pressure: Pressure occurs when there is an internal issue which leads to the pro-
duction of a large amount of gas. These gases will cause the internal pressure to
rise if the pressure relief mechanism fails to act. This rapid increase may cause the

transformer to rupture, which can lead to a fire or oil spillage from inside the tank;

e Short-circuit: Short-circuits can cause large power surges and waves of shock that

affect the structure of the core transformer, damaging it and reducing its life span;

e Vacuum: The introduction of vacuum inside the tank is part of the manufacturing
process, namely when filling it with oil and removing moisture from its interior.

That being said, a relative internal pressure of 0.1 M Pa is created within the tank.

As noted, the tank is subject to a set of loads due to various events, such as pressure,
vacuum, elevation, physical activity and transport, which makes its design a complex
project. Additionally, there are a number of accessory components that are connected to
the tank structure, which make its design even more intricate. Therefore, in an attempt
to correctly design a power transformer, one can predict its behavior with the use of
numerical methods, such as the FE method. When used correctly, these tools are a cost

effective way to facilitate the adequate design of the transformer, [34, 35].
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3.6.1 Types of reinforcement

The three types of reinforcements that are typically used are, [34, 35]:

e Beam Reinforcement: this type of reinforcement is used in smaller transformers’

tanks since they are more compact and resistant;

o T-shaped reinforcement: this type of reinforcement takes up more space than beam
reinforcements, but present less risk of buckling and are more compact than box

reinforcement;

e Box reinforcement: this type of reinforcement is used in high power transformers,
however it is susceptible to corrosion due to the difficulty of applying anti-corrosion

treatments to the inner surface of the box.

Regarding the tank cover plate, which has several accessories and requires a plate with
greater thickness, beam or T-shaped reinforcements are generally preferred. On the other
hand, the bottom plate of the tank, which supports the total weight of the structure, is
usually thicker that the side plates, [34, 35].

The orientation of the reinforcement on the plate can be vertical or horizontal. How-
ever, the vertical reinforcement provides a greater contribute to the increase in the re-
sistance of the tank structure. Anyhow, the characteristics of the reinforcements should
always abide by space constraints, [34, 35].

With respect to the tank, the design of the reinforcements is a crucial step, since they
allow for the minimization of the plate’s thickness. Thus, the criterion for introducing
reinforcements is based on the minimization of the tank’s weight, while guaranteeing it
can still withstand all loads applied to it, [34, 35].
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Chapter 4

A case study on model updating

with synthetic data

In order to achieve the ultimate goal of implementing model updating to power trans-
formers, a simple case study was examined first to assess the quality of some of the methods
presented earlier. Consisting of a cube subject to internal pressure, this case study resorts
to the FE software Ansys to implement and compare various model updating methods,

embedded in the aforementioned software.

4.1 Problem specification

The problem at hands consists of a cube (500 x 500 x 500 mm) with two pipes, one
on the side of the cube, to introduce pressure, and another one at the top of the cube, to
install a pressure gauge. This cube is made up of S235JR structural steel and the walls
are 6 mm thick.

In order to test the optimization tools embedded in Ansys, two models were made: a
synthetic model (representing the real structure to be experimentally analysed in a real
case study) and the nominal model which will be subjected to the FEM updating. The
synthetic model is a substitute of the real cube, where the walls are not all exactly 6 mm
thick, but instead somewhere between 5.4 mm and 6.6 mm thick. This interval is the
dimensional tolerance interval for these elements and the exact measurements used in the
synthetic data model are presented in table 4.1. The material considered for the synthetic
data model is the S235JR. structural steel, which has a Young Modulus of about 210 GPa.

The nominal model, which is the one meant to be subjected to model updating, consists
of the same cube with nominal dimensions (6 mm thick walls) and material properties
(S235JR structural steel with Young Modulus set to 200 GPa). Notice that the Young
Modulus was set to a different value from the one used for the synthetic model in order
to investigate the performance of the model updating methodologies when applied to

updating this parameter.
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Figure 4.1 Cube analysed in the case study.
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Table 4.1 Wall thickness for the model used to generate the synthetic data.

Wall Thickness, ¢t (mm)

Top 6.2
Bottom 5.9
Front 5.7
Back 6.1
Right 5.8
Left 6.3

Notice that, for both models, the cube was considered to be pinned at the corners
of its base and all dimensions, except for the thickness of the walls, are the same as the
nominal model.

After introducing an internal pressure of 0.1 MPa, the maximum deformation in each
wall was evaluated. The analysis of deformation was chosen over strain or tension due
to the fact that, in a real experimental analysis, LVDT sensors are more practical when

compared to strain gauges and introduce less noise into the acquired signals.

4.2 Ansys: model preparation and synthetic data genera-

tion
4.2.1 Preparing the FE model

The aforementioned models were developed using SpaceClaim, one of Ansys tools. In
order to simplify the analysis, all surfaces were converted to midsurfaces during geometry
preparation (before meshing), allowing the use of shell elements when the mesh for the
FE analysis was created. Notice that this approximation is valid since shell elements are
used to model structures in which one dimension, in this case the thickness, is significantly
smaller than the other dimensions, [38].

After developing the model in SpaceClaim, the FE mesh was generated in Mechanical,
another one of Ansys tools. These tools can be accessed through the Workbench, which is
Ansys’s main page. The created mesh is made up of quadrilateral and triangular elements,
with greater abundance of the first type. The size of these elements varies according to
their location, with a greater density of elements near potentially problematic areas, such
as holes or any other area that may be prone to stress concentration.

Afterwards, the boundary conditions and loading scheme were defined. As mentioned
before, the four vertices of the base of the cube were deemed restricted and all the welded
and bolted connections were considered to be bonded. This is an approximation which
minimizes computing time, though it may affect the accuracy of the obtained results.
After defining these conditions, an internal pressure of 0.1 MPa was applied to all 6 walls

of the cube. These situations are represented in figures 4.4 and 4.5
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Figure 4.2 Ansys Workbench: Static Structural, Parameter Set, Response Surface and Re-
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Figure 4.3 FE mesh generated in Ansys.

A: Static Structural
Fixed Support

. Fixed Support

200,00 400,00 (mm)

0,00

300,00

100,00

Figure 4.4 Fixed supports applied to the FE model of the cube.
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A: Static Structural
Pressure

. Pressure: -0,1 MPa

0,00 200,00 400,00 (mm)
N . )
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Figure 4.5 Internal pressure applied to the 6 walls of the FE model of the cube.
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Figure 4.6 Total deformation for the synthetic data calculated in Ansys.
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Figure 4.7 Von Mises equivalent stress for the synthetic data calculated in Ansys.

Having defined all necessary parameters, it was then possible to run the simulation
and retrieve all relevant data. Since the main focus is on the deformation of each wall, the
FE model was solved to separately obtain those deformations. Other metrics were also

evaluated, however they were not used in the present case study.

4.2.2 Retrieving synthetic data

When evaluating the deformation of each wall, Ansys provides a detailed analysis of
that surface, displaying its deformation according to a colour scheme. However, only the
maximum deformation of each wall was used for the model updating. The maximum
deformation occurs at the center of each wall, since the faces of the cube are square and
the internal pressure is constant. Notice that, coincidentally, if the experiment were to
be conducted on the real cube, the measurement of the deformation would be done at
the center of each wall, using LVDT sensors. Therefore, the deformations obtained from
the model used to generate the synthetic data are displayed in table 4.2 and refer to the

maximum deformation, which occurs at the center of each wall.

4.2.3 Defining parameters for model updating

The maximum deformation of each wall was defined as a parameter on the model
which is meant to be updated (from here on, this model is simply referred to as "model"),
as can be seen in figure 4.8. These parameters are used for model updating later on. In

the Parameter Set tab, found in the Workbench, one can go over all the parameters which
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Table 4.2 Synthetic data.

Wall  Thickness, t (mm) Maximum Deformation, d,,,, (mm)

Top 6.2 1.6935
Bottom 5.9 2.1887
Front 5.7 1.6975
Back 6.1 1.8459
Right 5.8 2.1670
Left 6.3 1.7077

have been defined, as can be seen in figure 4.9. Notice that the thickness of each wall was
also set as a parameter, as well as the Young Modulus. These parameters, referred to as
‘input parameters’, are the ones intended to be updated based on the 'output parameters’,

that is, the deformation of each wall.

Details of “Total Deformation - Top” * Q1 Ox
=1 Scope
Scoping Method Geometry Selection
Geometry 1 Face
- Definition
Type Total Deformation
By Time
Display Time Last
Calculate Time History Yes
Identifier
Suppressed No
= Results
Minimum 6,3082e-003 mm
P Maximum 1,8308 mm
Average 0,42013 mm

Minimum Occurs On | Midsurface - N111000080151\Midsurf..,
Maximum Occurs On | Midsurface - N111000080151\Midsurf...
-/ Minimum Value Over Time

Minimum 1,2505e-003 mm

Maximum 6,3082e-003 mm
=/ Maximum Value Over Time

Minimum 0,37605 mm

Maximum 1,8808 mm

+ Information

Figure 4.8 Maximum deformation of the top wall being defined as a parameter.

4.3 Ansys: model updating

As can be seen in figure 4.10, Ansys presents various possible optimization approaches
within the tab of Design Exploration, embedded in the Workbench. For the present case
study, Response Surface Optimization (RSO) and Direct Optimization (DO) were imple-

mented separately, with the aim of comparing their performance. It is relevant to note
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that RSO creates a response surface (RS), based on the defined parameters, and then runs
an optimization procedure on that RS, while DO runs the optimization procedure directly
on the FE model, reevaluating it for each individual or candidate solution. Additionally,

the optimization procedure chosen for both scenarios is the same: NSGA-II, a MOGA.

IE Design Exploration
§ 3D ROM
&) Direct Optimization
Eﬂ Parameters Correlation
|71 Response Surface
&) Response Surface Optimization
Wl Six Sigma Analysis

Figure 4.10 Design exploration options available in Ansys.

Figure 4.11 presents a scheme of all the conducted experiments. The details of each
experiment are explained in the following sub-sections as well as the names used to describe

them.

Single Objective
Optimization (SOO)

525 Refinement

Points

Multiple Objective
Optimization (MOO)

Response Surface

Optimization

Single Objective
Optimization (SOO)

1050 Refinement

Points

Multiple Objective
Optimization (MOO)

Single Objective

— Optimization (SOO)
| 525 Individual
Evaluations

Multiple Objective
Optimization (MOO)

Direct Optimization [—

Single Objective
Optimization (SOO)

1050 Individual
Evaluations

Multiple Objective
Optimization (MOO)

Figure 4.11 Schematic representation of the conducted experiments.
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4.3.1 Defining compound output parameters

Notice that, for each of the experiments, two alternative optimization approaches were
conducted: SOO and MOO. For the SOO approach, an objective function was created.
Although NSGA-II is used in both scenarios, for the MOO various objectives are defined
as targets, while for the SOO a single objective function is introduced in the program.
For that reason, the objective function must be defined as an output parameter, as it will
play a similar role in the SOO procedure as the output parameters (deformation of each
wall) play in the MOO procedure. The targets for each of the deformations are presented
in table 4.3, and equation 4.1 and figure 4.12 represent the objective function used for
the SOO. The objective function is based on the minimum weighted sum method and
aims at minimizing the residual between the deformations in the synthetic data and the
deformations in the model. For the objective function in the SOO, all deformations are
considered to have the same weight, which is in line with the default approach Ansys uses
in the MOO where no deformation is considered of greater importance than the remaining
ones. Recall that the objective for both situations is to update the deformations in the
model so that they approximate the values of the deformations provided by the synthetic
data.

Table 4.3 Target deformations for each wall based on the synthetic data.

Wall Target Deformation, ¢; (mm)

Top 1.6935
Bottom 2.1887
Front 1.6975
Back 1.8459
Right 2.1670
Left 1.7077
6 2
Objective Function = Z ((5n — 5tn)
n=1

=(6Topwatt — 1.6935)% + (8 Bottomwan — 2-1887)%+ (4.1)
(OFrontwan — 1.6975)% + (8packwan — 1.8459)%+
(Orightwan — 2.1670)* + (6 efewan — 1.7077)?

4.3.2 Response surface optimization (RSO)

The RSO tool embedded in Ansys uses a number of design points to create a polynomial
surface, referred to as the RS, which is later on used to conduct the optimization. This RS,

which defines the output parameters in terms of the input parameters, can be considered
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Figure 4.12 Definition of the parameter for the SOO objective function in the parameter set.

a meta-model, as it is a simplification of the model under analysis. Note that it is created
with the purpose of running an optimization procedure without the need to re-solve the
FE model for every evaluation during the optimization method. Naturally, evaluating a
given point on this polynomial surface is faster and simpler than conducting a FE analysis,

however any flaw or miscalculation in the RS will affect the optimization results.

It is also relevant to note that, if one were to conduct a different type of optimization,
aimed at optimizing different parameters, the RS created would not be suitable, and an
adequate RS would have to be created. This is one of the drawbacks of creating a meta-
model: it only represents certain aspects of the model, which were deemed relevant to a

particular analysis, and cannot be used directly for analysis with different aims.

Figure 4.13 presents the Workbench blocks referring to the RSO. Notice that the RSO is
split into two blocks as it is possible to create a RS and not necessarily run an optimization

procedure on it.

- B v C
; :
2 |5 Design of Experiments &, 2 | -] Design of Experiments &,
3 [&% Response Surface v ., 3 21 Response Surface v 4
Response Surface - 525 4 | @ Optimization v 4

MOO w/ RS - 525

- D
;
2 - Design of Experiments &
3 H Response Surface v 4
4 (@) Optimization v 4

SO0 w/ RS - 525

Figure 4.13 RS and RSO blocks in Ansys Workbench.
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4.3.2.1 Creating the response surfaces (RS)

After defining all parameters, and before creating the RS, one must define the design

of experiments (DOE). Here, the lower and upper bounds for each input parameter are

defined and the initial design points are created, based on those bounds. The bounds

defined for each input parameter were set as is shown in table 4.4 For this analysis, sparse

grid initialization was used, which allowed a continuity between the DOE and the method

used for creating the RS. Considering that there are 7 input parameters (the thickness

of each of the 6 walls and the Young Modulus), each with a lower and upper bound, 15

design points were created for the initial grid, as is presented in figure 4.14. Notice that,

since the input and output parameters and respective bounds are the same for both RSs,

the initial set of design points is also the same.

Table 4.4 Upper and lower bounds for the input parameters.

Parameter Unit Lower Bound Upper Bound
tTopWall mim 5.4 6.6
t BottomW all mm 5.4 6.6
t FrontWall mm 5.4 6.6
tBackWall min 5.4 6.6
tRightwall mm 5.4 6.6
LLeftwall mm 5.4 6.6

Young Modulus GPa 180 220
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Figure 4.14 Initial design points created in the DOE for both RSs.

In order to create the RS, Ansys offer various methods, such as, [39]:

e Genetic Aggregation - uses a GA to produce populations of alternative RSs com-

puted in parallel in order to pick the optimal RS. Each RS’s fitness function is

utilized to determine which one offers the best approach. It considers the accuracy

of the RS on the design points as well as the stability of the RS (crossvalidation).

« Full 2"?-Order Polynomials - performs a regression analysis which is a statisti-

cal approach that makes use of the connection between two or more quantitative

variables in order to estimate one dependent variable from the others. A regression

analysis implies that there are n sampling points and that the corresponding values

of the output parameters are known for each sample point. Based on these sample
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points, the regression analysis reveals the connection between the input parameters
and the output parameter. This connection is also affected by the regression model
used. For the regression model, a second-order polynomial is usually preferred. This
model is typically an approximation of the real input-to-output relationship, and
it only produces a true and precise relationship in few instances. The RS is the
resultant estimate of the output parameter as a function of the input variables after

this connection is identified.

Kriging - is a meta-modeling method that improves response quality and accom-
modates higher order fluctuations of the output parameter. It is a precise multi-
dimensional interpolation that combines a polynomial model similar to that of the
conventional RS — which gives a "global" model of the design space — with lo-
cal deviations such that the Kriging model interpolates the Design of Experiments
(DOE) points. Kriging allows for the refining of continuous input parameters, in-
cluding those with manufacturable values. Discrete parameters are not supported.
Kriging’s success is dependent on its internal error estimator’s capacity to enhance
response surface quality by creating refinement points and adding them to the parts

of the RS that require improvement the most.

Non-Parametric Regression (NPR) - is designed for outputs with consistently
strong nonlinearity with respect to inputs. NPR is a method that belongs to the
Support Vector Method (SVM) family. These are data categorization algorithms
that divide data groups using hyperplanes. The regression technique operates in
the same way. The key distinction is that the hyperplane is utilized to classify a
subset of the input sample vectors that are judged enough to represent the output
in question. The support vector set is the name given to this subset. The RS’s
internal parameters are set to constant values and are not optimized. The values are
obtained through a series of benchmark tests, and they achieve a balance between
RS accuracy and computing speed. The present settings produce decent outcomes
for a wide range of issues. However, significant oscillations between the DOE points
may be seen for some problem types (such as those dominated by flat surfaces or

lower order polynomials).

Neural Network - is a mathematical approach based on the human brain’s natural
neural network. To interpolate a function, a network with three layers (input, hidden,
and output) is constructed with weighted connections between them. To create the
approximation, this approach employs a small number of design points. It works
best when the number of design points and intermediate cells is large. It can provide

fascinating outcomes with a variety of settings.

Sparse Grid - allows for the refining of continuous parameters, including those with

manufacturable values. Discrete parameters are not supported. Sparse Grid employs
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an adaptive RS, which implies it automatically refines itself. A dimension-adaptive
algorithm determines which dimensions are most essential to the goal functions,
minimizing computing cost. The refining criterion are customizable. Sparse Grid
utilizes an automatic local refinement method to find the parts of the RS that require
the greatest refining when updating it. It then focuses refinement points in these
regions, allowing the RS to attain the desired degree of accuracy faster and with

fewer design points.

For this particular analysis, the Sparse Grid method was used. This method is par-
ticularly interesting it terms of time efficiency, which makes it attractive for the present
study, as the purpose is to compare DO, which is time consuming, with a more expeditious
method, such as the RSO, and evaluate their competitive features. Sparse grid uses an
adaptive RS, which means that it refines itself automatically. This method starts out by
creating a coarse mesh which is refined based on validation points until a criterion is met.

The termination criteria are as follows:

e Level of accuracy
e Maximum number of refinement points

e Maximum depth

The maximum depth is the maximum number of times a mesh can be refined in
one direction. Once the maximum depth for a direction is reached, there is no further
refinement in that direction. For this particular case, the initial mesh is made up of 16
points and 32 validation points were considered. The maximum depth was set to 10 and
the maximum relative error was set to 0.1%. In order to assess the adequate number of
refinement points to be used, two RSs were created. The maximum number of refinement
points was set to 525 for one of them and 1050 for the other one. This information is
presented in tables 4.5 and 4.6

Table 4.5 Parameters for generating a RS with 525 design points.

RS with 525 Design Points

Initial number of design points 15
Number of validation points 32
Maximum Relative Error (%) 0.1
Maximum Depth 10

Maximum Number of Refinement Points 525

After creating both RSs, the evolution of the error was analysed. Table 4.7 displays the
relative error for each of the RSs and figures 4.15 and 4.16 display graphs which present
the relative error as a function of the number of refinement points, providing an insight

into the evolution of the RS. Figure 4.17 represents a comparison of the maximum relative
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Table 4.6 Parameters for generating a RS with 1050 design points.

RS with 1050 Design Points

Initial number of design points 15
Number of validation points 32
Maximum Relative Error (%) 0.1
Maximum Depth 10

Maximum Number of Refinement Points 1050

error as a function of the number of refinement points for the RSs with 525 and 1050

design points

Table 4.7 Relative error for each of the RSs.

Response Surface Relative Error (%)

525 Design Points 0.4985
1050 Design Points 0.1531

Since the relative error is greater than 0.1% for both RSs, one can state that they did
not converge. However, the relative error for both situations is considerably low (bellow
0.5%), making a good case for the quality of the RS.

After analysing the evolution of the relative error for both RSs, it seems that after about
400 design points there is no significant improvement to the quality of the RS, evaluated
according to the relative error. To better understand this trend, table 4.8 presents the
relative error for various numbers of design points for each of the RSs.

Table 4.8 Evolution of the maximum relative error for the RS with 525 design points and for
the RS with 1050 design points.

Maximum Relative Error (%)

No. of Refinement Points RS with 525 RS with 1050
Design Points Design Points

100 4.910 4.910
200 3.942 3.942
300 2.279 2.279
400 1.279 1.279
500 0.505 0.505
600 - 0.388
700 - 0.306
800 - 0.2221
900 - 0.176
1000 - 0.155

Table 4.8 presents relative errors inferior to 5%, even for a number of design points as

low as 100, which is an acceptable value. Therefore, even if the RS was created using only
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100 design points, it would still present satisfactory quality. However, one should bear
in mind the simplicity of the present problem. If more parameters were used, specially
parameters such as strains and stresses, the RS might not present an equivalent level of
quality as these parameters are not obtained directly.

Additionally, since the creation of the RS follows a deterministic method, it is not
necessary to reevaluate and compare the results obtained by creating new RSs using the
same design parameters. This characteristic (determinism) is represented in table 4.8
and in figure 4.17 where one can see that the evolution of the maximum relative error
is unaffected by the number of refinement points used. Therefore, the evolution of the

maximum error for both RSs (using 525 or 1050 refinement points) is coincident.

4.3.2.2 Running the optimization procedures

After generating the RSs, it was possible to conduct the optimization procedures using
NSGA-II (Non-dominated Sorted Genetic Algorithm-IT), a MOGA embedded in Ansys.
As previously mentioned, this is a MOGA based on controlled elitism concepts which
employs both crossover and mutation operators. As expected, its criteria can be tailored
to better fit the problem at hands.

The criteria for the NSGA-II include:

o Estimated number of design points

e Number of initial samples

e Number of samples per iteration

e Maximum allowable Pareto percentage

o Convergence stability percentage

e Maximum number of iterations

e Maximum number of candidates

The estimated number of design points refers to the number of initial samples combined

with the number of samples per iteration multiplied by the maximum number of iterations.

Ndesign points = Minitial samples + Nsamples per iteration X Niterations (42)

The maximum allowable Pareto percentage refers to the maximum desired ratio be-
tween the number of Pareto points and the number of samples per iteration, which is
a metric used to control selection pressure and therefore avoid premature convergence.
When this percentage is reached, the optimization is considered to have converged. How-
ever, the optimization stops before the maximum allowable Pareto percentage is met if the

maximum number of iterations is reached. The convergence stability percentage represents
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the stability of the population based on its mean and standard deviation. This criterion
allows for the minimization of the number of iterations performed while still reaching the
desired level of stability. When the specified percentage is reached, the optimization is
considered to have converged. The maximum number of candidates simply refers to the
maximum amount of potential solutions the software should provide at the end of the
optimization process, [39].

At this point, two optimization procedures were conducted for each of the RSs: one
using a MOO procedure and another one using a SOO procedure. For each of these, the
RSO criteria must be defined. There, the output parameters which should be optimized
are defined, as well as the targets they must meet. Bearing in mind the targets for each
of the deformations, presented before in table 4.3, the MOO deformation targets were
defined as can be seen in figure 4.18. For the SOO, figure 4.19 represents the objective
function (parameter P23) being defined as the output to be optimized. Contrary to what
happened for the MOOQO, here the goal is simply to minimize that parameter, thus no target
is defined.

A B C | D | E

! MName Parameter e

2 Type Target | Tolerance
3 Seek P24 = 1,6935mm | P24 - Total Deformation - Top Maximum Seek Target ;I 1,6935 | 0,0001

4 Seek P25 = 2,1837 mm | P25 - Total Deformation - Botbom Maximum | Seek Target ;l 2,1887 | 0,0001

5 Seek P26 = 1,6975mm | P26 - Total Deformation - Front Maximum Seek Target ;I 1,6975 | 0,0001

3 Seek P27 = 1,8459 mm | P27 - Total Deformation - Back Maximum Seek Target ;l 1,3459 | 0,0001

7 Seek P28 = 2,167 mm P28 - Total Deformation - Right Maximum Seek Target ;I 2,167 0,0001

8 Seek P29 = 1,7077 mm | P29 - Total Deformation - Left Maximum Seek Target ;l 1,7077 | 0,0001

Figure 4.18 Objective definition for MOO : deformation targets.

1 Objective

Name Parameter
2 Type Target | Tolerance
3 | Minimize P23 | P23-500 Minimize x| 0

Figure 4.19 Objective definition for SOO: minimization of the objective function defined
under parameter P23.

The criteria used for both SOO and MOO is presented in table 4.9. Both approaches
were defined using the default criteria to facilitate comparing their performance, however
the convergence stability percentage was set to 0. Since it is almost impossible to reach
said value, this approach is equivalent to eliminating that termination criteria. In fact,
assuming that the maximum Pareto percentage isn’t reached, this allows the simulation to
run all possible iterations. Additionally, notice that the estimate number of design points
(evaluated through the RS) is very large, which should lead to a more accurate outcome.

Therefore, any deviation in the obtained results must not be traced back to the quality
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of the optimization but instead to the quality of the RS. This is relevant to the present
study since the goal is to obtain reliable results in the optimization procedure, allowing

for an unbiased comparison between RSO and DO.

Table 4.9 Criteria used for the optimization procedure in all of the RSO experiments.

Criteria Value

Estimated number of design points 33600

Initial samples 7000

Samples per iteration 1400
Maximum Pareto percentage 70
Convergence stability percentage 0
Maximum number of iterations 20

4.3.2.3 Results and comments

The performance of all the optimization approaches is presented in tables 4.10 to 4.16.
Notice that, for MOO, various solutions are presented. This is due to the fact that MOO
does not lead to a single solution but instead an array of solutions which are ranked
according to the concept of dominance, as mentioned above. Therefore, each solution
must be analysed to better understand its performance for each of the objectives. To
facilitate that analysis, the error for the updated thickness of each wall (equation 4.3) was
calculated for each of the candidate solutions, as well as the sum of the absolute value of
these errors (combined absolute error - CAE (%)- equation 4.4). Additionally, the absolute
value of the error of the updated Young Modulus was also taken into account for another
combined absolute error (CAEYM - equation 4.5). Note that this combined absolute error
includes all thicknesses and the Young Modulus. For SOO, on the other hand, one single
solution is presented here as there is a single objective to be fulfilled. The aforementioned
CAE and CAEYM were also calculated for this solution. Notice, however, that Ansys still
provides various candidate solutions for the SOQO, as it also applies the NSGA-IT to the
SOO problem. Nonetheless, the concept of dominance does not suit SOO, therefore only

the best candidate is analysed here, as the remaining candidates are always worse.

t —1 i
Error (%) _ Updated M odel SyntheticData % 100 (43)
t SyntheticData

Combined Absolute Error (%) = CAE (%)

6
_ Z t UpdatedModel,n — tSyntheticData,n % 100
n—1 t SyntheticData,n
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CAE w/YoungModulus (%) = CAEYM (%)
(4.5)

E —E i
— CAE (%) + UpdatedModel SyntheticData % 100
E SyntheticData

Besides that, the sum of the squared differences between the deformation in the up-
dated model and the deformation in the synthetic data was also calculated for the MOO.
This is equivalent to the value of the SOO objective function, which is also presented here,
allowing for direct comparison between the two. This information is presented in tables
4.14 to 4.16, where:

e Omaz refers to the maximum deformation of a given wall in the updated model

e Sq. Diff. refers to the squared difference between the maximum deformation in a

given wall for the updated model and the synthetic data (equation 4.6)

o Sum Sq. Diff. refers to the sum of the squared differences (Sq. Diff.) of all
the walls for a given candidate solution (equation 4.7). Notice that, for the case of
SOQ, this value corresponds to the value of the objective function and is therefore

automatically calculated by Ansys

. 2
SQ- Dfo = (5UpdatedModel - 5SyntheticDam) (46)
6 2
Sum Sq- lef = Z (5UpdatedModel,n - 5SyntheticData,n) (47)
n=1

Table 4.10 Details of the SOO and MOO experiments.

Type of Optimization SO0 MOO
Number of Refinement Points 525 1050 525 1050
No. of iterations: 20 20 20 20
Sample size: 1400 1400 1400 1400
No. of evaluations: 32893 32893 32893 32893
Stability percentage: 0.0601 0.0684 0.3530 0.2936
Pareto percentage: 0.0714 0.0714 0.0714 0.0714

Although both optimization approaches were defined using the same criteria, SOO
leads to better results across all evaluated metrics (CAE, CAEYM and sum of the squared
differences). In fact, the sum of the squared differences suggests that the SOO approach is
superior to the MOO approach, presenting results around ten times better for both types of
RS. Concerning the CAE and CAEYM, they are lower for SOO across all experiments using
RSO, presenting results at least 0.5% better than those obtained using MOO. Interestingly,
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Table 4.11 Results from the SOO experiments using the RSs with 525 design points and
1050 design points.

Single Objective Optimization

Number of Design Points 525 1050
Parameter Unit  Value Error (%) Value Error (%)
LT opWall mm  6.2199 -0.32 6.2393 -0.63
tBottomWall mim 5.9143 -0.24 5.9345 -0.59
t FrontWall mm  5.7200 -0.35 5.7403 -0.71
tBackWall mim 6.1155 -0.25 6.1291 -0.48
tRightWall mm  5.8104 -0.18 5.8350 -0.60
tLeftWall mm  6.3115 -0.18 6.3450 -0.71
CAE % - 1.53 - 3.72

Young Modulus  GPa 208.6 0.59 206.7 1.50
CAEYM % - 2.12 - 5.22

however, candidate solution number 3, for the MOO using the RS with 525 design points,
seems to perform better according to these metrics than SOO using the same RS. It
also performs better than the remaining 5 candidates according to those two metrics.
This solution, on the other hand, does not perform as well in terms of sum of the squared
differences. For the case of MOO using the RS with 1050 design points, candidate solution
number 5 seems to outperform the remaining 5 when evaluated according to the CAE and
CAEYM. Anyhow, SOO still outperforms them, specially in terms of the CAEYM.

Additionally, it is relevant to note that, regarding the sum of the squared differences,
SO0 seems to worsen, while MOO does not seem to improve significantly with an increase
in the number of design points used for generating the RS. This may mean that the RS
using 525 design points reflects the model it is supposed to model with sufficient accuracy
and the worse results found using a RS with a higher number of refinement points may
be due to the nature of the optimization approach. Bearing that in mind, increasing the
number of design points beyond that value may not be necessary. Interestingly, the CAE
and CAEYM seem to worsen with the increase of the number of design points, for both
SO0 and MOO. Therefore, it is necessary to address whether this unexpected error derives
from the RSs or the optimization procedures. One simple way to analyse whether the RSs
accurately reflect the model is by evaluating the candidate solutions obtained from the

RSO in the FE model and comparing the results obtained.

In order to present a more accurate description of the evolution of the quality of the
RSs (and the results obtained from the RSO) according to the number of design points
used, two additional RSs was created, using 125 and 725 design points. For these RSs
and corresponding optimization procedures, the aforementioned metrics (CAE, CAEYM

and sum of the squared differences) were also calculated and the obtained results can be
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Table 4.12 Results from the MOO experiment using the RS with 525 design points.
Multiple Objective Optimization

Candidate Solution 1 2 3
Parameter Unit Value Error (%) Value Error (%) Value Error (%)
tTopWall mm  6.2253  -0.41  6.3323  -2.13  6.2007  -0.01
t BottomW all mm  5.9301 -0.51 5.9888 -1.51 5.8949 0.09
t FrontWall mm  5.7277 -0.49 5.7977 -1.71 5.7045 -0.08
tBackWail mm  6.1590 -0.97 6.1195 -0.32 6.1345 -0.56
LRightWall mm  5.8297 -0.51 5.8922 -1.59 5.7955 0.08
tLeftWall mm  6.3210 -0.33 6.3332 -0.53 6.3283 -0.45
CAE % - 3.22 - 7.79 - 1.27
Young Modulus GPa  207.1 1.34 200.9 4.28 210.7 -0.36
CAEYM % - 4.55 - 12.07 - 1.63
Candidate Solution 4 5 6
Parameter Unit  Value Error (%) Value FError (%) Value Error (%)
tTopWall mm  6.2253 -0.41 6.1754 0.40 6.2612 -0.99
t BottomW all mm  5.9301 -0.51 5.8949 0.09 6.0049 -1.78
tFrontWall mm  5.7390 -0.68 5.7036 -0.06 5.8040 -1.82
t BackWall mm 6.1634 -1.04 6.1345 -0.56 6.1930 -1.53
tRightWall mm  5.8339 -0.59 5.7955 0.08 5.9053 -1.82
tLeftwall mm  6.3274 -0.44 6.2575 0.67 6.4375 -2.18
CAE % - 3.66 - 1.87 - 10.11
Young Modulus GPa  207.1 1.34 210.7 -0.36 199.2 5.10
CAEYM % - 5.00 - 2.23 - 15.21
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Table 4.13 Results from the MOO experiment using the RS with 1050 design points.

Multiple Objective Optimization

Candidate Solution 1 2 3
Parameter Unit  Value Error (%) Value Error (%) Value Error (%)
tTopWail mm  6.2268 -0.43 6.3385 -2.23 6.4422 -3.91
t BottomW all mm  5.9392 -0.66 5.9603 -1.02 6.0992 -3.38
t FrontWall mm  5.7399 -0.70 5.7603 -1.06 5.8771 -3.11
tBackWall mm 6.1390 -0.64 6.1659 -1.08 6.2885 -3.09
t RightWall mm  5.8385 -0.66 5.8634 -1.09 5.9969 -3.39
tLeftwall mm  6.3697 -1.11 6.4369 -2.17 6.4291 -2.05
CAE % - 4.21 - 8.66 - 18.92
Young Modulus GPa  205.9 1.90 203.7 2.95 190.1 9.41
CAEYM % - 6.11 - 11.61 - 28.33
Candidate Solution 4 5 6
Parameter Unit Value Error (%) Value Error (%) Value Error (%)
tTopWall mm  6.2453 -0.73 6.2168 -0.27 6.2309 -0.50
tBottomW all mm  5.9509 -0.86 5.9436 -0.74 5.9511 -0.87
t FrontWall mm 5.7791 -1.39 5.7391 -0.69 5.7791 -1.39
tBackWall mm 6.1416 -0.68 6.1356 -0.58 6.1376 -0.62
t RightWall mm  5.8486 -0.84 5.8504 -0.87 5.8490 -0.84
tLeftwall mm  6.3477 -0.76 6.3433 -0.69 6.3477 -0.76
CAE % - 5.26 - 3.84 - 4.97
Young Modulus GPa  204.6 2.51 205.4 2.14 204.6 2.51
CAEYM % - 7.7 - 5.98 - 7.48

Table 4.14 Optimal objective function value for the SOO experiments using the RSs with
525 and 1050 design points.

Single Objective Optimization

Number of Design Points 525 1050
Sum Sq. Diff. (mm?)  6.19x107° 1.83 x 1074
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Table 4.16 Sum of the squared differences for deformations in the MOO experiment using the RS with 1050 design points.

Multiple Objective Optimization

Candidate Solution

1

2

3

Wall Smaz (mm)  Sq. Diff. (mm?) &4 (mm) Sq. Diff. (mm?) 6,4, (mm) Sq. Diff. (mm?)
Top 1.7063 1.64 x 1074 1.6425 2.60 x 1073 1.6820 1.32 x 1074
Bottom 2.1886 7.67 x 107? 2.1888 1.06 x 1078 2.1891 1.88 x 1077
Front 1.6982 4.26 x 1077 1.7010 1.21 x 1075 1.7207 5.37 x 1074
Back 1.8474 2.39 x 1076 1.8441 3.41 x 10~ 1.8629 291 x 104
Right 2.1674 1.32 x 1077 2.1637 1.10 x 107° 2.1670 1.73 x 107
Left 1.6854 4.98 x 10~* 1.6520 3.10 x 1073 1.7753 4.57 x 1073
Sum Sq. Diff. (mm?) - 6.65 x 1074 - 5.73 x 1073 - 5.53 x 1073
Candidate Solution 4 5 6

Wall Smaz (mm)  Sq. Diff. (mm?) 64 (mm) Sq. Diff. (mm?) 4, (mm) Sq. Diff. (mm?)
Top 1.7032 9.32 x 107> 1.7182 6.12 x 104 1.7138 4.14 x 104
Bottom 2.1891 1.56 x 1077 2.1893 3.87 x 1077 2.1889 4.54 x 1078
Front 1.6743 5.40 x 1074 1.7027 2.74 x 107 1.6741 5.48 x 1074
Back 1.8567 1.18 x 1074 1.8550 8.33 x 107° 1.8604 2.09 x 1074
Right 2.1692 4.67 x 1076 2.1592 6.02 x 107° 2.1686 2.72 x 1076
Left 1.7134 3.20 x 107° 1.7106 8.50 x 106 1.7133 3.12 x 107°
Sum Sq. Diff. (mm?) - 7.87 x 1074 - 7.91 x 1074 - 1.20 x 1073
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consulted in appendices A and B. These metrics, calculated for all RSO experiments, are
presented in figures 4.20, 4.21 and 4.22. Notice that the information concerning the RSs
with 125 and 725 design points is presented in table 4.17, and the information regarding
the optimization procedures implemented on both RSs is presented in table 4.18.

Table 4.17 Parameters for generating a RS with 125 design points and a RS with 725 design
points and relative errors obtained after creating them.

Number of Design Points in the RS 125 725

Initial number of design points 16 16

Number of validation points 32 32

Maximum Relative Error (%) 0.1 0.1

Maximum Depth 10 10

Maximum Number of Refinement Points 125 725
Relative Error (%) 4.8683 0.3010

Table 4.18 Criteria used for the optimization procedure in the RSOs using 125 and 725 design
points.

Criteria Value

Estimated number of design points 33600

Initial samples 7000

Samples per iteration 1400
Maximum Pareto percentage 70
Convergence stability percentage 0
Maximum number of iterations 20

Based on the aforementioned graphs, one can state that the RSO using a RS with 125
design points presents suspiciously good results, particularly for SOO. It would be expected
that the results obtained from RSO would be increasingly better as the number of design
points used to create the RS increases, however this trend does to seem to be followed.
That being said, the four RSs were compared to assess their quality and investigate the
credibility of the obtained results.

Table 4.19 presents the candidate solution obtained from the SOO using the RS with
125 design points. To assess the credibility of this solution, the candidate solution’s wall
thicknesses and Young Modulus were used to obtain the corresponding wall deformations
according to each of the four RSs (using 125, 525, 725 and 1050 design points) and accord-
ing to the FE model. Additionally, the error between each wall’s deformation in the RS
and the FE model (equation 4.8) was calculated, as well as the CAE (equation 4.9), which
is the sum of the absolute value of each walls’ errors. The results obtained are presented
in table 4.20.

Ops — 0 ode
Errorpg (%) = S — CFEModel (4.8)

OFEModel
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Table 4.19 Candidate solution obtained from the SOO using the RS with 125 design points
and corresponding deformation evaluation in the FE model.

Unit trsi2s  IrE Model
Top Wall mm  6.2155 1.6863
Bottom Wall mm  5.9145 2.1786
Front Wall mm  5.7082 1.6954
Back Wall mm 6.1157 1.8368
Right Wall mm  5.8139 2.1574
Left Wall mm 6.3146 1.7005
Young Modulus GPa  209.4 -




80 A case study on model updating with synthetic data

Combined Absolute Error g (%) = CAEFE (%)

6

_ Z 535,” - 5FEModel,n (49)
n=1

OFEModel,n

Table 4.20 Wall deformations for the candidate solution obtained from the SOO using a RS
with 125 design points according to each of the four RSs (using 125, 525, 725 and 1050 design
points) and according to the FE model and corresponding errors.

RS 125 Design Points 525 Design Points
§ (mm) Errorpp(%) 0 (mm) Errorpg(%)
Top Wall 1.6897 0.20 1.6876 0.07
Bottom Wall  2.1855 0.31 2.1806 0.09
Front Wall 1.6954 0.00 1.6957 0.02
Back Wall 1.8425 0.31 1.8379 0.06
Right Wall ~ 2.1649 0.35 2.1590 0.07
Left Wall 1.7001 -0.02 1.7011 0.04
CAEFE (%) - 1.20 - 0.35
RS 725 Design Points 1050 Design Points
d (mm) Errorpg(%) 60 (mm) Errorpg(%)
Top Wall 1.6866 0.02 1.6864 0.01
Bottom Wall  2.1790 0.02 2.1789 0.01
Front Wall 1.6957 0.02 1.6957 0.02
Back Wall 1.8373 0.03 1.8372 0.02
Right Wall ~ 2.1581 0.03 2.1580 0.03
Left Wall 1.7008 0.02 1.7007 0.01
CAEFE (%) - 0.13 - 0.10

As can be seen from table 4.20, the results obtained from the RSO using the RS with
125 design points present a greater error when compared to the deformations obtained from
the FE model. Bearing in mind that the RS provides an estimate for the deformations
the FE model would calculate for a given set of wall thicknesses and Young Modulus,
this means that the RS with 125 design points provides a meta-model of the relation
between walls thicknesses, deformations and Young Modulus which, despite having an
higher approximation error, may yield candidate points with predicted sum of the squared
residuals lower than it’s actual value (when recalculated with the FEM model). That
being said, the results presented in table 4.20 reveal that the RS with 1050 design points
creates a better meta-model (that is, a better approximation of the FE model) than the
RSs with less design points.

Besides the appraisal presented above, it is also relevant to note that the error for
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each of the walls deformations does not pass the maximum error presented by Ansys for
any of the RSs (Maximum Errorpsiass = 4.868%, Mazimum Errorgsses = 0.498%,
Mazimum Errorgsros = 0.301%, Mazximum Errorgsioso = 0.153%).

So, as can be seen from this assessment, it is necessary to take into account the error
introduced by the quality of the RSs into the obtained solutions. Particularly, it is relevant
to note that the imprecision in the RSs may lead to apparently better results, which do
not reflect the actual behaviour of the FE model and, consequently, the real structure.
Therefore, to create a fair comparison between all the approaches presented in this study,
each candidate solution was reevaluated in the FE model (using the thicknesses obtained
from the optimization procedures for each candidate solution) and the deformations ob-
tained from that reevaluation were used to calculate a new sum of the squared differences.
This metric measures the squared residual between the wall deformations for the candi-
date solution for each procedure evaluated in the FE model and the target deformations
established by the synthetic data. Figure 4.23 presents the reevaluated sum of the squared
differences for all the RSO approaches used in this study.
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Figure 4.23 General comparison of the sum of the squared differences between the deforma-
tions in the updated model, calculated with the FE model, and those in the synthetic data
for RSO.

After analysing figure 4.23, it seems that an increase in the number of design points
used to generate the RS may lead to improved results. However, this trend is neither
obvious nor followed by all the evaluated points. Anyhow, one can say that the increase
in the number of design points leads to a decrease in the error between the RS and the
synthetic FE model. Initially, this occurs in a global or generalized manner, which causes
a sharp decay of the sum of the residuals. Once the surface is reasonably approximated

globally, however, the accuracy around the design point which represents the cube from



82 A case study on model updating with synthetic data

the synthetic model becomes more significant. Therefore, further refining the surface
in areas away from this design point can degrade the accuracy of the response surface
around this design point, which is the global optimum. Notice, however, that this depends
largely on the interpolation technique used in the response surface (as is shown in chapter
5). Nonetheless, the increase in the sum of of the squared differences displays a less
pronounced growth after 525,725 design points, validating the potential theory that this
is a consequence of loss of local precision due to the inclusion of more design points in
remote areas.

Furthermore, one should also bear in mind the fact that the optimization algorithm
used for both optimization approaches, NSGA-II, is a non-deterministic algorithm which
offers no guarantee of reaching the optimal value in all of its runs and may mistake
local optima for global optima, leading to unsatisfactory results. MOO is particularly
prone to displaying this sort of behaviour since it deals with multiple objectives, more
often than not conflicting, and approaching one objective may negatively influence the
attempt to approach another objective. Therefore, the results obtained from MOO are
more susceptible to unpredictability and error. This unfortunate effect is displayed in
figure 4.24, where one can see that not all objectives are approached at the same rate nor
reach the same error level. It is interesting to note that, even though SOO and MOO run
an equal number of evaluations and iterations, SOO leads to stability percentages around
5 times lower, which means that the latter optimization method presents a stabler set of
candidate solutions. However, the Pareto percentage seems to be similar for all of the
experiences.

All in all, it would appear that MOO converges more abruptly, thus the higher stability
percentage, but leads to worse results. Furthermore, it is a less computationally effective
technique, since it requires satisfying diverse objectives simultaneously and ranking can-
didate solutions according to a dominance criteria. Therefore, from this simple analysis,
it would appear that SOO is superior to MOO, though further testing may be necessary

to extrapolate this conclusion to more complex problems.

4.3.3 Direct optimization (DO)

Contrary to RSO, DO runs NSGA-II directly on the model. This means that, for each
evaluation the algorithm performs, the FE model must be re-evaluated, leading to a slower
optimization process. Therefore, the main difference between DO and RSO is the method
used for the evaluation performed by the algorithm, which for the latter simply means
consulting the RS. The optimization procedure is then fairly similar for both methods.
The criteria for the DO is simply defined in the DO block, which is represented in figure
4.25.

Note that, since the GA is not deterministic, different runs of the optimization process
may lead to different results, specially when using a small population. This notion will be

taken into account later on.
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Figure 4.24 Evolution of the relative error of the average deformation value per iteration for

MOO on a RS created using 1050 design points.
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Figure 4.25 DO blocks in the Ansys Workbench.

Since the optimization algorithm used for DO is the same one used for the RSO,

NSGA-II, the criteria remains the same:

o Estimated number of design points

e Number of initial samples

e Number of samples per iteration

e Maximum allowable Pareto percentage
e Convergence stability percentage

e Maximum number of iterations

e Maximum number of candidates

4.3.3.1 Running the optimization procedures

In order to effectively compare the solutions obtained from DO with those obtained
from RSO, two experiments were conducted. The criteria used for each of them is presented
in table 4.21. Notice that the estimated number of design points used for each of the DO
experiments is equal do the maximum number of refinement points used for creating the
RSs in the RSO experiments. This means that, for both cases, the FE model must be
conducted either 525 or 1050 times, creating a fair ground for performance comparison
later on. Notice that here, similarly to what was done for RSO, the convergence stability
percentage was set o 0, forcing the simulations to run all iterations (assuming that the
maximum Pareto percentage is not reached).

For each of the two aforementioned experiments, the SOO and MOO approaches were
both used. These approaches were defined in a similar manner to that used for the RSO,

as can be seen in figures 4.18 and 4.19, presented in subsection 4.3.2.
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Table 4.21 Criteria for DO experiments.

Experiment 525 design points 1050 design points
Estimated number of design points 525 1050
Initial samples 50 100
Samples per iteration 25 50
Maximum Pareto percentage 70 70
Convergence stability percentage 0 0
Maximum number of iterations 20 20

4.3.3.2 Results and comments

The results obtained from the DO experiments are presented in tables 4.22 to 4.28 and
figures 4.26, 4.27 and 4.28. Figures 4.26 and 4.27 present the relative error for the average
deformation of each wall per iteration as a function of the number of evaluated points,
while figure 4.28 compares the evolution of the relative error in terms of the number of
evaluations (design points) for SOO based on the approaches using 525 and 1050 design
points. Notice that, when 525 design points are used, the graphs start from 25 evaluations,
as that is the number of individuals from the initial population that get selected to repro-
duce and integrate the next generation. For the same reasons, when 1050 design points are
used, the graphs start from an initial set of 50 individuals, with the number of evaluations
increasing at a rate of 50 evaluations per iteration. Similarly to the information provided
in subsection 4.3.2, tables 4.26 to 4.28 refer to the analysis of the sum of the squared

differences between the updated deformations and the synthetic data deformations.

Table 4.22 Details of the SOO and MOO experiments using DO.

Type of Optimization SO0 MOO
Number of Design Points 525 1050 525 1050
No. of iterations: 20 20 20 20
Sample size: 25 50 25 50
No. of evaluations: 514 1028 514 1028
Stability percentage: 0.0333 0.0221 0.6547 3.4412
Pareto percentage: 4 2 4 2

Unlike RSO, and according to the CAE, CAEYM and the sum of the squared differ-
ences, DO only seems to perform better when SOO is used for a smaller number of design
points, as can be seen in table 4.26. MOO, on the other hand, seems to follow the expected
trend across all metrics, that is, a lower value is achieved with a greater number of design
points, as can be seen in tables 4.24, 4.25, 4.27, 4.28. Therefore, an increase in the number
of design points seems to benefit the results for MOO but harm them for SOO, which is an
unexpected result. For the case of 525 design points, the results obtained from SOO are

clearly better than those obtained from MOO, presenting a CAE around 4 times lower,
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Table 4.23 Results from the SOO experiments using DO with 525 and 1050 design points.

Single Objective Optimization

Number of Design Points 525 1050

Parameter Unit Value Error (%) Value Error (%)

tTopWall mm 6.1882 0.19 6.5186 -5.14

t BottomW all mm 5.8969 0.05 6.1815 -4.77

t FrontWall mm 5.6916 0.15 5.9157 -3.78

t BackWall mm 6.0409 0.97 6.3627 -4.31

t RightWall mm 5.7690 0.53 6.0762 -4.76

tLeftWall mm 6.2802 0.31 6.5368 -3.76

CAE % - 2.21 - 26.52

Young Modulus GPa 211.6 -0.83 184.7 12.01

CAEYM % - 3.04 - 38.53

Table 4.24 Results from the MOO experiment using DO with 525 design points.

Multiple Objective Optimization

Candidate Solution 1 2 3
Parameter Unit  Value Error (%) Value Error (%) Value Error (%)
T opWail mm  6.2267 -0.43 6.2268 -0.43 6.2268 -0.43
tBottomW all mm  6.0472 -2.49 6.0870 -3.17 6.0865 -3.16
tFrontWall mm  5.8018 -1.79 5.8029 -1.80 5.8021 -1.79
tBackWall mm  5.7687 5.43 5.8061 4.82 5.8061 4.82
tRightWall mm  5.7882 0.20 5.7889 0.19 5.7883 0.20
tLefiWall mm 62616  0.61  6.2652 055 62614  0.61
CAE % - 10.96 - 10.97 - 11.02
Young Modulus GPa  211.3 -0.68 211.3 -0.69 211.3 -0.68
CAEYM % - 11.64 - 11.65 - 11.70
Candidate Solution 4 5 6
Parameter Unit Value Error (%) Value Error (%) Value Error (%)
tropwall mm 62274  -0.44  6.2268  -043  6.2268  -0.43
tBottomW all mm  6.0861 -3.15 6.0870 -3.17 6.0861 -3.15
t P rontWall mm 58021  -1.79 58082  -1.90  5.8091  -1.91
tBackWall mm  5.8069 4.80 5.8123 4.72 5.8057 4.82
t RightWall mm  5.7882 0.20 5.7889 0.19 5.7889 0.19
tLeftWall mm 6.2616 0.61 6.2652 0.55 6.2649 0.56
CAE % - 11.00 - 10.96 - 11.07
Young Modulus GPa  211.3 -0.69 211.3 -0.69 211.3 -0.68

CAEYM % - 11.69 - 11.64 - 11.76
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Table 4.25 Results from the MOO experiment using DO with 1050 design points.
Multiple Objective Optimization

Candidate Solution 1 2 3
Parameter Unit Value Error (%) Value Error (%) Value Error (%)
tTopWall mm  6.2445 -0.72 6.2013 -0.02 6.2008 -0.01
t BottomWall mm  5.9832 -1.41 5.9953 -1.61 5.9810 -1.37
tFrontWall mm 5.8185 -2.08 5.8206 -2.12 5.8184 -2.08
t BackWall mm  6.1257 -0.42 6.1111 -0.18 6.1172 -0.28
tRightWall mm  5.8939 -1.62 5.8944 -1.63 5.8938 -1.62
tLeftWall mm  6.4456 -2.31 6.4463 -2.32 6.4519 -2.41
CAE % - 8.56 - 7.88 - 7.7
Young Modulus GPa  199.9 4.77 200.3 4.59 200.4 4.52
CAEYM % - 13.33 - 12.47 - 12.29
Candidate Solution 4 5 6
Parameter Unit  Value Error (%) Value FError (%) Value Error (%)
tTopWall mm  6.2008 -0.01 6.2013 -0.02 6.2013 -0.02
t BottomWall mm  5.9810 -1.37 5.9810 -1.37 5.9810 -1.37
t FrontWall mm 5.8184 -2.08 5.8204 -2.11 5.8205 -2.11
t BackWall mm 6.1172 -0.28 6.1005 -0.01 6.0961 0.06
tRightWall mm  5.8938 -1.62 5.8938 -1.62 5.8938 -1.62
tLefeWall mm  6.4526  -2.42  6.4504  -2.39  6.4463 = -2.32
CAE % - 7.78 - 7.52 - 7.51
Young Modulus GPa 2004 4.52 200.3 4.59 200.3 4.59
CAEYM % - 12.30 - 12.11 - 12.10

Table 4.26 Optimal objective function value for the SOO experiment using DO with 525

design points.

Single Objective Optimization

Number of Design Points

525

1050

Sum Sq. Diff. (mm?)

213 x 1073

4.25 x 1073
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Table 4.27 Sum of the squared differences for deformations in the MOO experiment using DO with 525 design points.

Multiple Objective Optimization

Candidate Solution

1

2

3

Wall Omaz (mm)  Sq. Diff. (mm?) pee (mm) Sq. Diff. (mm?) 0, (mm) Sq. Diff. (mm?)
Top 1.6638 8.81 x 1074 1.6638 8.81 x 1074 1.6639 8.74 x 1074
Bottom 2.0231 2.74 x 1072 1.9847 4.16 x 1072 1.9853 4.14 x 1072
Front 1.6015 9.22 x 1073 1.6011 9.30 x 1073 1.6018 9.17 x 1073
Back 2.1686 1.04 x 1071 2.1268 7.89 x 1072 2.1270 7.90 x 1072
Right 2.1648 4.75 x 1076 2.1639 9.90 x 1076 2.1647 5.20 x 1076
Left 1.7263 3.47 x 1074 1.7233 242 x 1074 1.7265 3.563 x 107
Sum Sq. Diff. (mm?) - 1.42 x 1071 - 1.31 x 107! - 1.31 x 107!
Candidate Solution 4 5 6

Wall Smaz (mm)  Sq. Diff. (mm?) &4p (mm) Sq. Diff. (mm?) 6,4, (mm) Sq. Diff. (mm?)
Top 1.6634 9.08 x 104 1.6637 8.86 x 104 1.6638 8.83 x 1074
Bottom 1.9855 4.13 x 102 1.9846 4.17 x 1072 1.9854 4.13 x 102
Front 1.6017 9.18 x 1073 1.5967 1.02 x 1072 1.5960 1.03 x 1072
Back 2.1260 7.84 x 1072 2.1200 7.51 x 1072 2.1273 7.92 x 1072
Right 2.1647 5.41 x 1076 2.1638 1.02 x 1075 2.1639 9.66 x 106
Left 1.7262 3.42 x 10~* 1.7232 2.41 x 104 1.7235 2.49 x 10~4
Sum Sq. Diff. (mm?) - 1.30 x 107! - 1.28 x 1071 - 1.32 x 107!
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Figure 4.26 Evolution of the relative error of the average deformation value per iteration for
DO using MOO with 525 design points.
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Figure 4.27 Evolution of the relative error of the average deformation value per iteration for

DO using MOO with 1050 design points.
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both when considering and not considering the Young Modulus, and a sum of the squared
difference around 100 times lower. However, when using 1050 design points, the results
are surprising as both the CAE and CAEYM for the MOO are around 3 times lower
than the ones calculated for the SOO. Nonetheless, the sum of the squared difference is
still around 2 times lower for the SOO. The unexpected results found in the case of SOO
using 1050 design points emphasize the stochastic nature of the optimization algorithm,
NSGA-II, which does not guarantee that the optimal point is reached and may wrongly
converge towards a local optimal point instead of the global optima. It is particularly
interesting to note the fact that, for that experiment, the metrics of CAE and CAEYM,
which quantify the quality of the approximation of the wall thicknesses and Young Mod-
ulus, present extremely poor results, however the sum of the squared differences, which
quantifies the quality of the approximation of the wall deformations, does not present
equally poor results. That being said, since the target was set for the wall deformations,
a fairly satisfactory approximation for these values may not translate into a satisfactory
approximation of the wall thickness and Young Modulus, thus emphasizing the need to

evaluate the obtained results according to various metrics.

In any case, however, the use of a greater number of design points seems to benefit the
performance of MOOQO, as can be seen in figure 4.28. This figure also presents an interesting
insight into the evolution of the optimization algorithm, highlighting the fact that SOO
using 525 design points starts the optimization process from a better candidate solution
than the SOO using 1050 design points, converging earlier and leading to better results.
SOO using 1050 design points seems to converge abruptly in the beginning, however it
never reaches a candidate solution with an objective function value nearly as good as the
one found for SOO with 525 design points. This representation further emphasizes the
stochastic nature of the optimization algorithm, NSGA-II, and how that aspect may affect
the obtained results in an unpredictable way. Contrary to what was found when generating
the RSs, running an optimization procedure using a GA can lead to different (and even
unexpected) results for each run of the same optimization experiment. Therefore, it is not
sensible to extrapolate the obtained results and conclusions to different and more complex
problems without a wider range of experiments which can shed light into the intricacies

of the algorithm’s behaviour.

Interestingly, SOO leads to a higher stability percentage for the case of DO using
525 design points, but a lower one for the 1050 design points. This means that the
set of candidate solutions found for SOO using 525 design points is more heterogeneous.
Additionally, the Pareto percentage is higher for 525 design points than for 1050 for both
SO0 and MOO, which means that a greater percentage of the sample set is part of the

Pareto front.
Taking into account the information presented in the graphs from figures 4.26 and

4.27, it seems that DO using MOO with 525 design points does not accurately approach

the correct value for the deformation of each wall, presenting no relevant evolution after
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450 design points. The left and back wall deformations seem to present the worst ap-
proximations, with a particularly irregular evolution of the relative error, which does not
drop from 10% for the left wall and 20% for the back wall. The right wall deformation,
however, seems to be accurately approached from the very beginning, suffering no relevant
changes as the optimization evolves, while the remaining walls seem to have a steady drop
in the relative error. This may mean that the top, bottom, front and right walls may
have been prioritized in the optimization process. Bearing that in mind, the unsteady
and irregular evolution of the relative error for the left and back walls may be a conse-
quence of crossover between candidate solutions which present better approximations for
the deformation of the remaining walls, but do not necessarily fit the targets for these two
walls, generating candidate solutions which lead to decreased relative error for some walls
and an erratic evolution of the relative error for the back and left walls. The MOO using
1050 design points, on the other hand, seems to present a better approach to the target
value for each wall’s deformation, leading to a lower relative error, with an absolute value
no greater than 5%. In fact, when comparing the two graphs, MOO using 1050 design
points seems to have generated a population with overall better candidate solutions, never
presenting a relative error superior to 30% for any of the walls. This may be due to the
fact that MOO using 1050 design points presents a larger population, which may posi-
tively affect diversity, which in turn allows for a greater coverage of the search space and
a faster approach to optimal values. This difference in diversity is shown in figures 4.29
and 4.30 which display the evolution of the the candidate solutions from the optimization
of the deformation of the back wall for DO using MOO using with 525 and 1050 design
points, respectively. The greater diversity present in the MOO with 1050 design points is
shown by the scattered points in the graph from figure 4.30, which represent the various
individuals analysed throughout the optimization. The MOO with 525 design points, on
the other hand, presents a less scattered graph, as can be seen in figure 4.29, indicating
the aforementioned lack of diversity and early approach to a poor candidate solution. It
is important to note that, since the GA is not deterministic, these graphs could be quite
different if the simulation that generated them were to be conducted again. Therefore, it
only seems fair to conclude that a greater number of samples per iteration benefits the
diversity of the population and an increased number of evaluations allows the algorithm
to approach the correct values, even if at a slower pace.

Taking this information into account, it is hard to conclude which approach is better,
though it seems that, as the number of design points increases, MOO becomes a better
option. For these reasons, further testing is still necessary to reach sustained conclusions

and then extrapolate them to more complex problems.

4.3.4 Comparison between DO and RSO

In order to fairly compare DO and RSO one must analyse the number of design points

used to create each RS and the number of evaluations conducted in the DO process, making
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Figure 4.29 Evolution of the candidate solutions for the updated deformation of the back
wall as a function of the number of evaluations for DO using MOO with 525 design points.
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Figure 4.30 Evolution of the candidate solutions for the updated deformation of the back
wall as a function of the number of evaluations for DO using MOO with 1050 design points.
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sure that they are similar, thus representing and identical number of FE model evaluations,
and may therefore be compared. Having set the convergence stability percentage to 0 for
all the optimization procedures, it was possible to guarantee that the optimizations used
the pre-determined number of design points, guaranteeing the aforementioned guideline.
Additionally, the method for creating the RS is deterministic and used the complete set
of design points determined initially. Therefore, the RS is not a source of deviation from
the aforementioned guideline either.

To facilitate the comparison between the performance of all the aforementioned opti-
mization procedures, three graphs were created which present the performance of all the
methods used according to the three main metrics used in this study: sum of the squared
residual for the deformation of each wall, CAE (combined absolute error concerning the
walls’ thickness) and CAEYM (combined absolute error concerning the walls’ thickness
and the Young Modulus). These graphs are presented in figures 4.31, 4.32 and 4.33. An
additional graph is presented in figure 4.34, which presents the performance of all experi-
ments in terms of the sum of the squared residual for the deformation of each wall, except
here each candidate solution put forward by any RSO procedure has been reevaluated in
the FE model, therefore avoiding an unfair comparison prompted by any candidate points
with predicted sum of the squared residuals lower than it’s actual value (when recalcu-
lated with the FE model). This representation is in line with the analysis conducted in
subsection 4.3.2.3.
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Figure 4.31 General comparison of the sum of the squared differences between the deforma-
tions in the updated model and those in the synthetic data.

Therefore, and based on the aforementioned graphs, one can state that, for the case
of RSO using a RS with 1050 design points versus the case of DO using the same number
of design points, both SOO and MOO optimization procedures for the RSO outperform
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Figure 4.34 General comparison of the sum of the squared differences between the defor-
mations in the updated model, calculated with the FE model, and those in the synthetic
data.

those for DO across the various metrics used. However, for the case where 525 design
points were used, RSO outperforms DO for SOO across all metrics, but, for MOO, RSO
only outperforms DO in terms of the sum of the squared differences. In terms of CAE
and CAEYM, SOO for DO using 525 design points presents better results than MOO for
both RSO and MOO for the same number of design points. However, when analysing
SOO for DO using 1050 design points, the results are completely opposite, as this stands
out as the worst option both in terms of CAE and CAEYM. As previously mentioned,
this unexpected behaviour may be a consequence of the increase in the number of design
points leading to a lower global error on the RS that does not necessarily improve the
RS’s quality near the global optimal point, which corresponds to the wall thicknesses and

Young Modulus used in the synthetic FE model.
Figure 4.34 also reveals that RSO outperforms DO for both SOO and MOO, regardless

of the number of design points used. Nonetheless, an increase in the number of design
points used seems to greatly benefit DO when MOO is use, which does not seem to be
the case for RSO. Therefore, it would seem that a RS using 525 design points would be
sufficient to approach satisfactory results. In fact, that RS would still guarantee better
results than any of the experimented DO approaches, both for SOO and MOO.

All in all, RSO appears to be the best option for analysing the problem at hands,
regardless of the number of design points used. Additionally, it does not seem beneficial to
increase the number of design points in the RSO beyond 1050 design points, and 525 design
points seems enough to guarantee good results for this particular case. Regarding DO, it

would be interesting to evaluate its performance using a greater number of design points
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and assess whether it can outperform RSO. Additionally, it would be relevant to re-conduct
the optimization procedures several times in order to examine their behaviour and reach
more comprehensive conclusions. From this analysis it would seem that SOO outperforms
MOO for RSO. However, for the case of DO, SOO only outperforms MOO when using
525 design points. Moreover, MOO seems to improve in a more brisk manner that SOO
for DO as the number of design points increases, so the aforementioned conclusion could

be untrue if the number of design points increases significantly.

4.3.5 Conclusions

Additionally to the information presented before, the overall computational cost of
running a RSO is slightly lower than that of running a DO, if the same number of FEM
evaluations is imposed. Even though the FE model was re-evaluated a similar amount
of times when creating the RS and when running the DO, the method for creating the
RS is marginally lighter than the method used for the DO, given the stochastic nature of
the latter. Furthermore, it is relevant to note that, although the optimization procedure
used in the RSO ran a considerable amount of evaluations, it did so on the RS, which
is simply a polynomial surface and is therefore computationally economical to analyse.
Therefore, RSO seems more attractive for implementing in a DT as the FE model must
only be reevaluated to create the RS, but not to run the optimization procedure, and
therefore conduct model updating. All in all, even if the computational cost of conducting
DO and RSO is similar for a single attempt at conducting model updating, the impact
of reevaluating the FE model for each candidate solution evaluated in the optimization
procedure is magnified as the number of model updating instances increases. That being
said, when implementing an optimization tool for model updating in a DT, one must bear
in mind that the optimization procedure will certainly be re-conducted numerous times,
allowing for a precise follow-up of the structure’s life-cycle. Therefore, the main focus
must be on guaranteeing that the optimization procedure is light-weight and effective,
thus creating an expeditious model updating tool. This is achieved when using RSO,
which only requires consulting and running the FE model for creating the RS, not for
running the optimization procedure used for model updating.

The results presented above make a strong case for the use of RSO, which, additionally
to its competitive running time and computational cost, presents remarkably satisfactory
results. Furthermore, for both RSO and DO, SOO seems to present better results on
almost all aspects. Particularly, when combined with RSO, SOO presents the best results
on all metrics, leading to the conclusion that RSO combined with SOO may be the best
option when conducting model updating. However, if time and computational cost are
not a restraint, then it might be interesting to opt for a DO approach using MOO with a
large number of design points (larger than 1050 design points).
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Chapter 5

A case study on model updating

with experimental data

Based on the results and relevant conclusions taken from the case study on model
updating with synthetic data, presented in previous chapter, it was possible to conduct a
more complex case study, based on practical experiments, and explore other model updat-
ing techniques. The experimental setup consisted of a cube subject to internal pressure,
similarly to what was done in the case study from chapter 4. Ansys was used to generate
the simulation FEM model, but not to produce the RS nor conduct the optimization pro-
cedure. Alternatively, based on the data of a DOE matrix retrieved using the simulation
model, a RS (metamodel) was created with Python scripting. Afterwards, PSO and GA
were implemented to conduct optimization procedures, also with Python scripting, using

the referred RS.

5.1 Problem specification

The problem at hands consists of a cube (500 x 500 x 500 mm) with two pipes, one on
the side of the cube, for introducing pressure into the cube, and another one at the top of
the cube, to install a pressure gauge. Two photographs of this cube can be found in figure
4.1, in chapter 4. This cube is made up of S235JR structural steel, which has a Young
Modulus of about 210 GPa, and the walls are expected to be 6 mm thick, but are in fact
somewhere between 5.4 and 6.6 mm thick, which is the dimensional tolerance for this type
of element. The cube is pinned at three of the four corners of its base and the deformation
of 4 walls (the top and bottom walls are not considered) was measured using 4 Linear
Variable Differential Transformers (LVDT). Pressure was gradually introduced into the
cube until it reached 2 bar (200 kPa) and relevant data was collected, as is explained in
section 5.2.

The material considered for the FE model is very similar to the S235JR structural steel,
except it has a Young Modulus of 210 GPa, and the walls are defined as being 6 mm thick.
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The maximum deformation of each of the considered walls is evaluated for various pressure
values, determined according to the pressure introduced into the real cube. Afterwards,
using the DOE, a data set including various possible combinations of wall thicknesses,
wall deformations and Young Modulus is generated in Ansys. Using said data set, a RS
is created in Python, and two different model updating approaches (GA and PSO) are
implemented to determine the thickness of the four walls and the Young Modulus. Since
the case study from chapter 4 showed that a combination of RSO with a SOO approach
is the most accurate, this type of approach was used for the model updating procedure in

the present study.

5.2 Experimental set up and data retrieval

In order to conduct the experimental analysis, the cube was set on a table with supports
on 3 of its base corners (front left corner and back right and left corners). Additionally, 4
LVDTs were installed at the center of each of the 4 walls, as can be seen in figure 5.1. The
data retrieved from these sensors was analysed in LabView and the signal was processed
using a second-order Butterworth low-pass filter with a cut-off frequency of 5 Hz. This
filter removes signal oscillations with a frequency higher than 5 Hz, which are considered
noise. This noise may be due to any minor vibration in the table where the cube was set,
electromagnetic noise that affects the signal sent through the cables, oscillations in voltage
provided by the source or measurement uncertainty in the LVDTs. However, it is relevant
to note that none of this was significantly observed in the raw signals of this experiment,

so the differences due to the filter application are almost nonexistent.

As previously mentioned, pressure was gradually introduced into the cube until ap-
proximately 2 bar (200 kPa) were reached. In order to facilitate retrieving and processing
data, pressure was introduced at increments of around 0.25 bar (25 kPa) and the corre-
sponding deformation for each of those pressure levels was recorded. Notice that it was
not possible to strictly abide by the aforementioned protocol due to limitations imposed
by the compressed air system used to introduce pressure into the cube. Table 5.1 presents
the pressure levels analysed during the experimental trial. It is relevant to note that
the first and last pressure levels correspond to the moments prior and after introducing
pressure, which indicates that the pressure gauge might have an offset of 0.8 kPa. That
being said, table 5.2 presents the correct pressures levels, where the pressure offset was
subtracted to the recorded pressure levels, and the average deformation value for each wall
at each pressure level. Figure 5.3 presents the evolution of the deformation of each wall

as a function of the applied internal pressure obtained from the experimental data.
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Figure 5.1 Experimental setup: pressure gauge and LVDT sensors.

Figure 5.2 Experimental setup: power supply and Lab View.
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Table 5.1 Pressure levels and wall deformations for the experimental trial.

Pressure (kPa)

0.8
29.8
50.6
74.3
95.6

128.8
150.5
181.1
198.3
0.9

Table 5.2 Pressure levels and wall deformations for the experimental trial.

Deformation, 6 (mm)

Front Wall Back Wall Right Wall Left Wall

Pressure (kPa)

0.0 0.0000 0.0000 0.0000 0.0000
29.0 0.6973 0.7114 0.8078 0.7028
49.8 1.2482 1.3066 1.4275 1.2084
73.5 1.8974 1.9574 2.0871 1.7423
94.8 2.4474 2.5038 2.6628 2.2244
128.0 3.1536 3.0740 3.4410 2.8708
149.7 3.6701 3.5017 3.9381 3.3083
180.3 4.4353 4.2084 4.6741 3.9515
197.5 4.8228 4.5684 5.0401 4.2334

0.1 0.0003 0.0914 0.1105 0.0925
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Figure 5.3 Evolution of the deformation of each wall as a function of the applied internal
pressure obtained from the experimental data.

5.3 Ansys: model preparation

In order to conduct the model updating procedure, 8 models were created in the same
Workbench. All these models are similar, except for the applied pressure, which was set
to the values presented in table 5.2. Notice that the first and last pressure levels were
not considered for these models. Each model was named after the pressure level it was
subjected to, as can be seen in figure 5.4.

The aforementioned models were developed using SpaceClaim, a CAD tool embedded
in Ansys. In order to simplify the analysis, all surfaces were converted to midsurfaces
during geometry preparation (before meshing), allowing the use of shell elements when
the mesh for the FE analysis was created. Notice that this approximation is valid since
shell elements are used to model structures in which one dimension, in this case the
thickness, is significantly smaller than the other dimensions, [38].

After developing the model in SpaceClaim, the FE mesh was generated in Mechanical, a
structural FEA tool. These tools can be accessed through the Workbench, which is Ansys’s
main page. The created mesh is made up of quadrilateral and triangular elements, with
greater abundance of the first type. The size of these elements varies according to their
location, with a greater density of elements near potentially problematic areas, such as
holes or any other area that may be prone to stress concentration.

Afterwards, the boundary conditions and loading scheme were defined. As mentioned
before, three of the four vertices of the base of the cube were pinned (the front left vertex
and the back right and left vertices), as can be seen in figure 5.6, and all the welded and

bolted connections were considered as bounded connections. This is an approximation
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Figure 5.4 Ansys Workbench blocks for the models at various pressure levels.
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Figure 5.5 FE mesh generated in Ansys.

which minimizes computing time, though it may affect the accuracy of the obtained re-
sults. After defining these conditions, the internal pressure was applied (according to the

corresponding model) to all 6 walls of the cube, as can be seen in figure 5.7.

5.3.1 Defining parameters

The aforementioned models were considered to be connected in the Workbench and
for each of them the thickness and deformation of each of the 4 walls (Front, Back, Left
and Right) were set as parameters, as well as the Young Modulus. Since the Young
Modulus and thickness values for each wall are independent of the applied pressure, these
parameters were set to be equal between all models. For example, the thickness of the
right wall is the same for the model at 29.0 kPa, the model at 49.8 kPa, the model at 73.5
kPa and so on. This relationship between parameters is defined in the parameter set, as

can be seen in figure 5.10.

5.3.2 Creating the RS

As previously mentioned, the RS was created using data retrieved from Ansys. There-
fore, using the aforementioned 8 models (each corresponding to a different pressure level),
the DOE was created. The data retrieved from the DOE, which relates the various param-
eters considered in this experiment, was then processed though a Python script to create

a RS, using an interpolation algorithm.
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Figure 5.6 Fixed supports applied to the FE model of the cube.

H: Static Structural - 0,1975 MPa
Pressure
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Figure 5.7 Internal pressure applied to the 6 walls of one of the FE models of the cube (model
subject to an internal pressure of 197.5 kPa).
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H: Static Structural - 0,1975 MPa
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Figure 5.8 Total deformation, calculated in Ansys, for the model subject to an internal
pressure of 197.5 kPa.
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Figure 5.9 Von Mises equivalent stress, calculated in Ansys, for the model subject to an
internal pressure of 197.5 kPa.
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Figure 5.10 Back wall thickness parameter being defined as equal between models in the
Parameter Set.
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Using Python scripting for creating the RS allows for a greater degree of independence
from Ansys, which is an attractive feature, particularly in a corporate environment, as
working with licensed software may not always be possible and available at all times.
Additionally, having created the RS in Python based on the original model, it can then
be used to follow the entire life-cycle of the product, as the model parameters considered
in the RS may be updated as many times as necessary. This further emphasizes the
lasting independence from licensed software. All in all, creating the RS and running the
optimization procedure in Python is a step forward towards creating a DT which can
be used and updated continuously, using for example data measured in-field, during the

in-service phase of the product.

5.3.2.1 Creating the DOE

In the DOE, the upper and lower bounds for each input parameter were set, as shown
in table 5.3. The method for creating the design points was ’Custom’, which allowed for
the customization of the desired design points. That being said, in order to create a rep-
resentative, yet reasonably sized, set of initial design points, the lower and upper bounds,
plus two intermediate values for each input parameter, were used to create these design
points. This information is also presented in table 5.3. Therefore, for each parameter,
4 possible values were evaluated, which generated 4° = 1024 initial design points (each
design point represents a possible combination between the various values evaluated for
each input parameter). Notice that, although 5 input parameters were set for each model
(the thickness of each of the 4 walls and the Young Modulus), making up a total of 40
input parameters, these parameters were set to be equal between all models. Therefore,

in terms of the DOE, only 5 input parameters are relevant.

Table 5.3 Upper and lower bounds and intermediate values considered for the input param-
eters.

Intermediate Value

Parameter Unit Lower Bound Upper Bound
Lower Upper
tFrontWall mm 5.4 5.8 6.2 6.6
tBackWall mm 5.4 5.8 6.2 6.6
tRightWall mm 5.4 5.8 6.2 6.6
LLeftWall mm 5.4 5.8 6.2 6.6
Young Modulus GPa 180 193 206 220

After establishing the parameters for the DOE, Ansys simulated the corresponding
deformation values for each design point, therefore completing the data set. Having done
that, it was possible to extract said data set as a CSV document.

It is relevant to point out that the scheme used for creating the DOE is computationally

demanding and particularly time consuming. However, an interesting alternative would
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be to create an individual Workbench file for each pressure level and create the DOE for
each of these models separately, but using the same order of design points. This way, it is
possible to guarantee the analysis of the same combinations of wall thicknesses and Young
Modulus (which is to say that each design point is analysed across all pressure levels)
while also being able to generate all DOE data sets at the same time by running the DOE
for all models in parallel. After obtaining each data set, they can all be combined in a
single Excel file to be later on read by Python to create the response surface and run the

optimization procedures.

5.3.2.2 Interpolating the RS design points

After exporting the data set generated in Ansys as a CSV document, it was possible
to import said information into Python. To do that, various modules were imported into

Python, such as:

e 0s : presents miscellaneous operating system interfaces;
e pandas : provides open source data analysis and manipulation tools;

 openpyxl : allows one to read or write Excel xlsx/xlsm/xltx/xltm files.

After reading the data set and introducing it into Python as lists (each parameter’s
values were placed into a list), it was possible to create the RS. Since the main focus is
not necessarily on obtaining the equation that governs the RS but instead on having a
function which allows the optimization algorithm to evaluate the fitness of each candidate
solution, an interpolation algorithm was chosen for this purpose. That being said, various
interpolation algorithms are available to be used in Python, namely in the SciPy library.

The interpolation algorithms found in this library are:

1D interpolation (interpld)

2D interpolation (interp2d)

Multivariate data interpolation (griddata)

Spline interpolation

— Spline interpolation in 1D: Procedural (interpolate.splXXX)

Spline interpolation in 1D: Object-oriented (UnivariateSpline)
— 2D spline representation: Procedural (bisplrep)

— 2D spline representation: Object-oriented (BivariateSpline)

o Radial basis function (Rbf)
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Given the fact that the intended interpolation has 5 input variables (wall thicknesses
and Young Modulus) and 32 output variables (wall deformations of the 4 walls for the
8 pressure levels), only multivariate data interpolation (MDI) and radial basis function
(RBF) seem to fit the requirements. That being said, both algorithms were tested to

assess their performance.

Radial basis function (RBF) The RBF is based on a sophisticated approximation
theory approach for building high-order accurate interpolants of unstructured data, po-
tentially in high-dimensional spaces. A RBF is a function with points specified as distances
from a center and the interpolant is implemented as a weighted sum of RBFs. If said cen-
ter coincides with the origin, then one can say that the RBF is symmetrical around the
origin, [40].

The Bell Curve is an example of an RBF where points are represented as number of
standard deviations from the mean. Formally, an RBF may be defined as a function that

can be written as, [40]:

f(@) = f(ll]]) (5.1)

Based on this theoretical ground, a RBF is a scalar valued function in n-dimensional
space whose value at = can be expressed in terms of r = ||z —c||, where ¢ is the center of the
RBF. Python’s SciPy RBF interpolant class resorts to RBFs to interpolate n-dimensional
data that is scattered and potentially noisy. Therefore, the RBF interpolant for the scalar
valued observations d = [dy,...,d,]?, made at scattered locations z1,..., 2y, is a linear
combination of RBFs centered at x plus a polynomial with a specified degree. The RBF

interpolant is parameterized as follows

fl@) = aip(lle — xil]) + D bjpj(x) (5.2)
i=1 j=1

where ¢ is an RBF and p(z), ..., pm(x) are monomials that span the space of polynomials
with a specified degree. The coefficients a = [a1,...,a,]’ and b = [b1,...,b,]7 are the
solutions to the linear equations

(K+o’T)a+Pb=d (5.3)

and

PTa=0 (5.4)

where K is a matrix of RBFs with components K;; = ¢(||z; — x;[|), P is a matrix with
components P;; = p;j(x;), and o is a smoothing parameter that regulates how well the
observations should be fit. When o is zero, the observations are perfectly fit, [41, 42, 43, 44].
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The solution for a and b is unique if the chosen RBF is positive definite and P has full
column rank. If the selected RBF is conditionally positive definite of order ¢ and P has
full column rank, the solution is unique provided that the degree of the monomial terms
is at least ¢ — 1, [41, 42, 43, 44].

Currently, SciPy offers two RBF interpolant classes: scipy.interpolate. Rbf and scipy.
interpolate. RBF Interpolator. The first class is said to be a legacy code, which refers to
code that was developed a long time ago, as well as contemporary code that was written
without tests for some reason. Nonetheless, both classes are analysed here.

In order to properly call the RBF interpolant class scipy.interpolate. Rbf, various pa-

rameters can be defined, namely:

o arguments (in the form of arrays): z,vy, z, ..., d, where x,y, z, ... are the coordinates

of the nodes and d is the array of values at the nodes.

o function (optional): the RBF, based on the radius, r, given by the norm (Euclidean

distance). The default is ‘multiquadric’, but the following RBFs are available:

‘multiquadric’: ¢(r) = /1 + (er)?
1
1+ (er)?

—(er)?

— ‘inverse’: ¢(r) =

— ‘gaussian’: ¢(r) =e
— ‘linear’: ¢(r) =7

— ‘cubic’: ¢(r) =13
— ‘quintic: ¢(r) = r°

— ‘thin_ plate”: ¢(r) = r2log(r)

o ¢ (optional): adjustable constant for gaussian, inverse and multiquadric functions -

defaults to the average distance between nodes.

o smooth (optional): refers to the smoothing parameter, . Values greater than zero
increase the smoothness of the approximation. If set to 0, which is the default, the
function will go through all the nodal points, creating a true interpolation of the

evaluated points.

o mneighbours, K (optional): if specified, the value of the interpolant at each evaluation
point will be computed using only the specified number of nearest data points, K.
All the data points are used by default.

Notice that only the arguments are mandatory, while the remaining parameters are
optional. When no option is chosen for the latter parameters, the default option is selected
by the algorithm.

Having defined the arguments, the RBF interpolant scipy.interpolate. Rbf is creates as

follows:
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Listing 5.1 Defining the RBF interpolation function for scipy.interpolate.Rbf

d_right_290_interp = scipy.interpolate.Rbf(t_front_ DOE,
t_back_DOE, t_right  DOE, t_left DOE,
young_modulus_ DOE, d_right_290_DOE,

function="multiquadric ")

where:

e ’d_right_ 290_interp’ is the callable interpolation function. In this case, the defor-
mation of the right wall when subject to an internal pressure of 29.0 kPa is being
defined.

e ’t_front_ DOE’, ’t_back_ DOE’, ’t_right DOFE’, 't_left_ DOE’ and ’young _mod-
ulus. DOE’ are the lists containing the values for the wall thicknesses and Young
Modulus for each point in the DOE data set.

e ’d_right_ 290 DOE’ is the array of the data point values corresponding to the data
point coordinates for each point in the DOE data set. In this case, these values

correspond to the deformation of the right wall when subject to an internal pressure
of 29.0 kPa.

o function is the function defined for the RBf interpolant. In this case, ‘multiquadric’

was chosen.

In order to evaluate the interpolation at a given point (calculate the interpolation of
the deformation for a given set of wall thicknesses and Young Modulus), the following

code line must be written:

Listing 5.2 Calling the RBF interpolation function for scipy.interpolate.Rbf

d_right_290 = d_right_290_interp(t_front, t_back, t_right,
t_left , young_ modulus)

where:

e ’d_right 290 _interp’ is the callable interpolation function. In this case, it’s the in-
terpolation function for the deformation of the right wall when subject to an internal

pressure of 29.0 kPa.

e ’t_front’, ’t_ back’, ’t_right’, 't_left’ and ’young modulus’ are the values for the
wall thicknesses and Young Modulus at the point at which the deformation must be

interpolated.

e ’d_right_ 290’ is the interpolated value for the deformation of the right wall when
subject to an internal pressure of 29.0 kPa calculated at the point with wall thick-

nesses 't_ front’, 't__back’, 't_right’, 't_ left’” and Young Modulus ’young_modulus’
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Alternatively, if one intends to call the RBF interpolant class scipy.interpolate. RBF Interpolator,

the following parameters can be defined:
o y (in the form of a single array): array of the data point coordinates.
o d (in the form of an array): array of values at points y.

o kernel (optional): the type of RBF. The default is ‘thin_ plate_spline’, but the

following RBFs are available:

— ‘multiquadric’ ¢(r) = —y/1 4+ (er)?
1
— ‘inverse_ multiquadric’: ¢(r) = ————
-~ multiq o(r) ENEE
— dratic’: =——
inverse_quadratic’: ¢(r) FNESE

— ‘gaussian’: ¢(r) = e~ (")’

— ‘linear’: ¢(r) = —r
— ‘cubic’: ¢(r) =3
— ‘quintic’: ¢(r) = —1r°

— ‘thin_ plate_spline’: ¢(r) = r2log(r)

o ¢ (optional): shape parameter that scales the RBF input. If the kernel is ‘linear,’
‘thin plate spline,’ ‘cubic,” or ‘quintic,” this value is 1 and may be disregarded because
it has the same effect as scaling the smoothing parameter. This must be indicated

otherwise.

o smoothing (optional): refers to the smoothing parameter, o. Values greater than
zero increase the smoothness of the approximation. If set to 0, which is the default,
the function will go through all the nodal points, creating a true interpolation of the

evaluated points.

o neighbours (optional): if specified, the value of the interpolant at each evaluation
point will be computed using only the specified number of nearest data points (neigh-

bours). All the data points are used by default.

Notice that only arguments y and d are mandatory while the remaining parameters are
optional. When no option is chosen for the latter parameters, a default option is selected
by the algorithm.

Having defined the arguments, the RBF interpolant scipy.interpolate. RBF Interpolator

is defined as follows:

Listing 5.3 Defining the RBF interpolation function for scipy.interpolate. RBFInterpolator

d_right_290_interp = scipy.interpolate. RBFInterpolator(
data_ points, d_right 290 _ DOE,
kernel="'thin\__plate\__spline', epsilon=1)
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where:

e ’d_right_ 290 interp’ is the callable interpolation function. In this case, the defor-
mation of the right wall when subject to an internal pressure of 29.0 kPa is being
defined.

e ’data_ points’ is the array of the data points coordinates, created from the lists
't_front_ DOE’, ’t__back_DOFE’, ’t_right_ DOE’, ’t_left  DOE’ and ’young _ mod-
ulus_ DOE’ which contain the values for the wall thicknesses and Young Modulus
for each point in the DOE data set.

e ’d_right 290 DOEFE’ is the array of the data point values corresponding to the data
point coordinates for each point in the DOE data set. In this case, these values
correspond to the deformation of the right wall when subject to an internal pressure
of 29.0 kPa.

e kernel is the function defined for the RBf interpolant. In this case, ‘thin_ plate_ spline’

was chosen.

o epsilon is the shape parameter defined for the RBf interpolant. In this case, the

value 1 was chosen for this parameter.

In order to evaluate the interpolation at a given point (calculate the interpolation of
the deformation for a given set of wall thicknesses and Young Modulus), the following

code line must be written:

Listing 5.4 Calling the RBF interpolation function for scipy.interpolate. RBFInterpolator

d_right_ 290 = d_right_290_interp(evaluation_points)

where:

e ’d_right_ 290 _interp’ is the callable interpolation function. In this case, it’s the in-
terpolation function for the deformation of the right wall when subject to an internal

pressure of 29.0 kPa.

e ’evaluation_ point’ is the array containing the coordinates of the point where the
interpolation function must be evaluated. This means that this array contains the
values for the wall thicknesses and Young Modulus at the point at which the defor-

mation must be interpolated.

e ’d_right 290’ is the interpolated value for the deformation of the right wall when

subject to an internal pressure of 29.0 kPa calculated at the point ’evaluation_ point’.
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Multivariate data interpolation (MDI) In order to properly call the MDI inter-

polant class scipy.interpolate.griddata, various parameters can be defined, namely:
e points : array of the data point coordinates.
o values (in the form of an array): array of values at the points.

o x; (in the form of a single array): array containing the points at which to interpolate
the data set.

o method (optional): method of interpolation. The default is ‘nearest’, but the fol-

lowing methods are available:

— ‘nearest’: returns the value at the data point closest to the point of interpola-

tion.

— ‘linear’: the interpolant is built by triangulating the input data and conducting

linear barycentric interpolation on each triangle.
— ‘cubic (1-D)’: returns the value determined from a cubic spline.

— ‘cubic (2-D)’: the interpolant is built by triangulating the input data and ap-
plying a piecewise cubic interpolating Bezier polynomial to each triangle. The
interpolant is guaranteed to be continuously differentiable. The interpolant
gradients are set in such a way that the curvature of the interpolating surface

is approximatively minimized.

Notice that only the points and values are mandatory while the remaining parameters
are optional. When no option is chosen for the latter parameters, the default option is
selected by the algorithm.

Having defined the arguments, the MDI interpolant class scipy.interpolate.griddata can
be called as is shown in listing 5.5. Notice that, contrary to both RBF classes, griddata
directly calculates the interpolated values at the desired point, thus avoiding the need to

define an interpolation function and calling it later on.

Listing 5.5 Calling the MDI interpolant class - scipy.interpolate.griddata

d_right_290 = scipy.interpolate.griddata(data_points,
d_right__290_DOE, evaluation_ points,

method="'linear ")

where:

e ’d_right 290’ is the interpolated value for the deformation of the right wall when

subject to an internal pressure of 29.0 kPa calculated at the point ’evaluation_ point’.
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o ’data_ points’ is the array of the data points coordinates, created from the lists
't_front_ DOE’, ’t__back_DOEFE’, ’t_right_ DOE’, ’t_left  DOE’ and ’young _mod-
ulus_ DOE’ which contain the values for the wall thicknesses and Young Modulus
for each point in the DOE data set.

e ’'d_right_ 290 DOEF’ is the array of the data point values corresponding to the data
point coordinates for each point in the DOE data set. In this case, these values
correspond to the deformation of the right wall when subject to an internal pressure
of 29.0 kPa.

e ’method’ is the method defined for the MDI interpolant. In this case, ‘linear’ was

chosen.

e ’evaluation_ point’ is the array containing the coordinates of the point where the
interpolation function must be evaluated. This means that this array contains the
values for the wall thicknesses and Young Modulus at the point at which the defor-

mation must be interpolated.

5.3.2.3 Interpolation function and RS validation

In order to choose the most appropriate class between the RBF interpolant classes
scipy.interpolate. Rbf and scipy.interpolate. RBFInterpolator and the MDI interpolant class
scipy.interpolate.griddata, various verification points, created using the FE model, were
used to evaluate the relative error found in the interpolation provided by functions from
each candidate class. With the purpose of creating an extensive set of verification points,
an approach similar to the one used to create the DOE data set was conducted, allowing
for an expeditious analysis of the FE model’s behaviour for different combinations of wall
thicknesses and Young Modulus. Here, three possible thicknesses were considered for each
wall, as well as three possible Young Modulus values, as is presented in table 5.4. These
values were selected from the existing intervals between the values used to generate the
DOE data set, presented in table 5.3, and all possible combinations of these values were

considered, leading to a total of 3% = 243 validation points.

Table 5.4 Young Modulus and wall thickness values considered for the validation points.

Parameter Unit Value 1l Value 2 Value 3

UFrontWall mm 5.6 6 6.4
tBackWall mimn 5.6 6 6.4
tRightWall mm 5.6 6 6.4
tLeftWall mm 5.6 6 6.4
Young Modulus GPa 185 193 215

Each validation point was interpolated using each of the functions available for each

of the considered classes and the results were analysed using Excel. Notice that all the
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optional parameters available in each class were set as default for all analysed functions.
For each candidate point analysed using each class and function, a relative error was
calculated between the deformation obtained at each pressure level according to the inter-
polation and the deformation obtained according to the FE model, for the same pressure
level. Equation 5.5 was used to calculate this relative error.

OInter ion — 0
Relative Error (%) _ Interpolatio FEModel (55)

OFEModel

To facilitate the comparison between the various options, the maximum and average
of the absolute values of the relative errors (Max. Rel. Error (%) and Avg. Rel. Error
(%), respectively) were calculated for each interpolation and the results are presented in
tables 5.5, 5.6 and 5.7. Notice that for MDI only the 'nearest’ and ’linear’ methods were
considered given the fact that the remaining ones (’cubic 1-D” and ’cubic 2-D’) cannot be
used to interpolate functions with 5 dimensions.

Table 5.5 Maximum and average of the absolute values of the relative errors obtained from
the interpolations using each available function in RBF interpolant class scipy.interpolate. Rbf.

Function = Max. Rel. Error (%) Avg. Rel. Error (%)

Multiquadric 49.9 13.0
Inverse 56.2 45.1
Gaussian 100 100
Linear 40.9 11.6
Cubic 81.6 23.1
Quintic 566 248
Thin plate 66.3 15.7

Table 5.6 Maximum and average of the absolute values of the relative errors obtained from
the interpolations using each available kernel in RBF interpolant class scipy.interpolate. RBF
Interpolator.

Kernel Max. Rel. Error (%) Avg. Rel. Error (%)
Multiquadric 63.8 19.3
Inverse Multiquadric 46.0 18.0
Inverse Quadtratic 47.2 17.6
Gaussian 49.3 17.8
Linear 44.2 12.7
Cubic 70.1 11.8
Quintic 52.9 4.85
Thin Plate 66.9 15.8

Based on the aforementioned tables, MDI using the 'linear’ method appears to be the
best option for the present study, displaying the lowest average relative error and the
second lowest maximum relative error. However, for the majority of the analysed points

interpolated using this method, the relative error found was bellow 1%, and errors greater



Ansys: model preparation 121

Table 5.7 Maximum and average of the absolute values of the relative errors ob-
tained from the interpolations using each available method in the MDI interpolant class
scipy.interpolate.griddata.

Method Max. Rel. Error (%) Avg. Rel. Error (%)

Nearest 67.7 11.2
Linear 45.7 2.30

than that were only found for pressure levels of 149.7 kPa and 197.5 kPa. In fact, a similar
discrepancy between the maximum errors for these two pressure levels and the maximum
errors for the remaining pressure levels was detected for all analysed interpolant classes
and functions. This was found to be due to an error in the data set of the validation
points, which only affected those two pressure levels. Therefore, in the interest of time,
the maximum and average relative errors for each interpolant class and function were
calculated disregarding those two pressure levels. The results are presented in tables 5.8,
5.9 and 5.10.

Table 5.8 Maximum and average of the absolute values of the relative errors obtained from
the interpolations using each available function in RBF interpolant class scipy.interpolate. Rbf,
disregarding pressure levels 149.7 kPa and 197.5 kPa.

Function = Max. Rel. Error (%) Avg. Rel. Error (%)

Multiquadric 27.6 11.4
Inverse 56.2 45.7
Gaussian 100 100
Linear 24.7 10.6
Cubic 43.4 21.0
Quintic 478 235
Thin plate 20.7 13.8

Table 5.9 Maximum and average of the absolute values of the relative errors ob-
tained from the interpolations using each available kernel in RBF interpolant class
scipy.interpolate. RBFInterpolator, disregarding pressure levels 149.7 kPa and 197.5 kPa.

Kernel Max. Rel. Error (%) Avg. Rel. Error (%)
Multiquadric 30.7 17.4
Inverse Multiquadric 41.3 17.4
Inverse Quadtratic 43.1 17.2
Gaussian 45.3 17.4
Linear 24.9 11.6
Cubic 27.0 9.87
Quintic 7.99 3.13

Thin Plate 20.6 14.0
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Table 5.10 Maximum and average of the absolute values of the relative errors ob-
tained from the interpolations using each available method in the MDI interpolant class
scipy.interpolate.griddata, disregarding pressure levels 149.7 kPa and 197.5 kPa.

Method Max. Rel. Error (%) Avg. Rel. Error (%)

Nearest 15.9 9.8
Linear 1.64 0.770

Based on tables 5.8, 5.9 and 5.10, one can state that MDI using the ’linear’ method
seems to be the best option for the present study, displaying the lowest maximum and
average relative error. One should bear in mind, however, that the pressure levels which
were disregarded are two of the highest pressure levels and the errors found for those are
expected to be higher than the errors found for lower pressure levels, even if marginally.
Nonetheless, this does not alter the conclusions drawn from the present study.

For most of the analysed interpolation options, the maximum relative error presented
in tables 5.8 and 5.9 is surprisingly high compared to the average relative error, which
indicates that those interpolations may not be smooth and may present troublesome areas.
For that reason, a different analysis was conducted which consisted of representing the
evolution of the deformation of a given wall as a function of that same wall’s thickness
and as a function of the Young Modulus, allowing for a more comprehensive representation
of the potential RSs created with the aforementioned interpolation algorithms. Through
that analysis, an interesting aspect regarding the RBF interpolation classes was discovered.
Considering both RBF interpolant classes and respective available functions or kernels,
the evolution of the interpolated value of the right wall’s deformation as a function of that
same wall’s thickness for an internal pressure of 197.5 kPa is presented in figures 5.11 and
5.12, and the evolution of the interpolated value for the deformation of the right wall as
a function of the Young Modulus is presented in figures 5.13 and 5.14. Notice that the
thickness of each of the remaining three walls was set to 6 mm and the Young Modulus
was set to 210 GPa for the first graph, while for the second graph all walls were considered
to be 6 mm thick. Despite only presenting the behaviour of the interpolation functions for
the right wall, a similar behaviour was found for the remaining three walls. Even if a more
comprehensive analysis could be conducted using 3D graphs, these 2D graphs provide an
insight into the shape of the RSs, in the most simple and effective way. The fact that
more than 3 variables are considered in the present analysis is a hurdle when trying to
represent the RS, hampering the task of validating it’s quality.

Based on the aforementioned graphs, the shape of the RS as a function of the thickness
of each wall appears to be particularly smooth, leading to the conclusion that the deforma-
tion as a function of the wall thickness is correctly interpolated for most of the functions/k-
ernels used. Notice, however, that, for scipy.interpolate. Rbf, functions ’quintic’, ’inverse’
and 'gaussian’ present terrible approximations, which was expected based on the maximum

and average relative errors analysed previously. For scipy.interpolate. RBFInterpolator, on
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Figure 5.11 Evolution of the interpolated value for the deformation of the right wall as a
function of that same wall’s thickness for an internal pressure of 197.5 kPa, using each available
function in RBF interpolant class scipy.interpolate. Rbf.

6.0
E 5.0
T _
:
® il fp— Multiquadric
g —— Inverse Multiquadric
g 401 Inverse Quadratic |
= Gaussian
53.5 — Linear

—— Cubic
3.0{ —— Quintic

Thin Plate Spline

5.4 5.6 5.8 6.0 6.2 6.4 6.6
Right wall thickness (mm)

Figure 5.12 Evolution of the interpolated value for the deformation of the right wall as a
function of that same wall’s thickness for an internal pressure of 197.5 kPa, using each available
kernel in RBF interpolant class scipy.interpolate. RBF Interpolator.
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Figure 5.13 Evolution of the interpolated value for the deformation of the right wall as a
function of the Young Modulus for an internal pressure of 197.5 kPa, using each available
function in RBF interpolant class scipy.interpolate. Rbf.
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Figure 5.14 Evolution of the interpolated value for the deformation of the right wall as a
function of the Young Modulus for an internal pressure of 197.5 kPa, using each available
kernel in RBF interpolant class scipy.interpolate. RBF Interpolator.
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the other hand, kernels ’inverse multiquadric’, ’gaussian’ and ’inverse quadratic’ present
the worst approximations, however they are considerably better than the ones found using
similar functions in scipy.interpolate. Rbf. Nonetheless, the most unexpected behaviour was
found for the interpolation of the deformation as a function of the Young Modulus. For
that case, both scipy.interpolate. Rbf and scipy.interpolate. RBFInterpolator present four
irregular areas for Young Modulus values of around 180, 198, 206 and 220 GPa, which,
despite not being represented here, are accentuated as the internal pressure increases.
These areas coincide with the points used to generate the data set, leading to believe
that the error found for these interpolation classes might be chiefly due to an incorrect
interpolation when the Young Modulus is considered. This unexpected behaviour further
emphasizes that neither RBF interpolant class should be used for the present study as
both present an irregular and unexpected behaviour. Discovering the root cause for this
behaviour is considered out of the scope of the this dissertation.

As previously mentioned, and considering the unusual behaviour found for the RBF
interpolant classes, a similar analysis was conducted for the MDI class. Considering both
available applicable methods, 'nearest’ and ’linear’, the evolution of the interpolated value
of the right wall’s deformation, for an internal pressure of 197.5 kPa, as a function of that
same wall’s thickness, and as a function of the Young Modulus, is presented in figure 5.15
and in figure 5.16, respectively. Notice that the thickness of each of the remaining three
walls was set to 6 mm and the Young Modulus was set to 210 GPa for the first graph while
for the second graph all walls were considered to be 6 mm thick. Despite only presenting
the behaviour of the interpolation functions for the right wall, a similar behaviour was

found for the remaining three walls.
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Figure 5.15 Evolution of the interpolated value for the deformation of the right wall as a
function of that same wall’s thickness for an internal pressure of 197.5 kPa, using each available
method in the MDI class scipy.interpolate.griddata.
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Figure 5.16 Evolution of the interpolated value for the deformation of the right wall as a
function of the Young Modulus for an internal pressure of 197.5 kPa, using each available
method in the MDI class scipy.interpolate.griddata.

After analysing these graphs, the contrasting behaviour of both methods (’linear’ and
‘nearest’) stands out. While the linear method presents clear straight lines connecting
the four points considered for the DOE data set (t € [5.4,5.8,6.2,6.6) mm and F €
[180, 193, 206, 220] GPa), the 'nearest’ method presents unmistakable steps. Notice that
this behaviour is not surprising for the MDI using the 'nearest’ method as this method
does not perform an actual interpolation but instead, for any given point, returns the
value in the original data set corresponding to the point nearest the evaluated point. This
accounts for the steps found in the graphs mentioned above. Notice that these steps are
centered around the thickness and Young Modulus values used in the original DOE data
set, thus emphasizing the behaviour described before (no interpolation is conducted, but
instead the nearest value is returned).

Considering that the MDI class using the ’linear’ method presented the best results,
as well as a the smoothest interpolation with no evident troublesome areas, the evolution
of the interpolated value for the deformation of each wall as a function of that same wall’s
thickness is presented for the right wall in figure 5.17, and the evolution of the interpolated
value for the deformation of each wall as a function of the Young Modulus is presented for
the right wall in figures 5.18. Despite not being represented, the behaviour found for each
of the remaining three walls was similar. For each of the first graph the thickness of each
of the remaining three walls was set to 6 mm and the Young Modulus was set to 210 GPa,
while for the second graph all walls were considered to be 6 mm thick. As can be seen
from these graphs, the deformation of each wall seems to be correctly interpolated for all
pressure levels, both as a function of that same wall’s thickness or the Young Modulus.

Furthermore, no unusual behaviour is found in any of the graphs, where the expected
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smooth trend is shown. Therefore, the MDI class using the ’linear’ method was chosen to

create the RS in the present study.

— 29.0 kPa
— 49.8 kPa
73.5 kPa
94.8 kPa
— 128.0 kPa
149.7 kPa
—— 180.3 kPa

[ 197.5 kPa

[}

|

Right wall deformation (mm)
¥ w
|

_ —
1 —
e —
—
_—
I B
5.4 5.6 5.8 6.0 6.2 6.4 6.6

’ Right wall thickness (mm) ’

Figure 5.17 Evolution of the interpolated value for the deformation of the right wall as a
function of that same wall’s thickness for the MDI class, using the ’linear’ method.

5.3.3 Defining the objective function

In order to conduct the SOO approaches, an objective function was created. Recall
that the objective is to update the deformations in the RS (meta-model) so that they
approximate the values of the deformations provided by the experimental data, allowing
for the estimation of the wall thicknesses and Young Modulus. The targets for each of the
deformations are presented in table 5.11, and equation 5.6 represents the objective function
used for the SOO. The objective function is based on the minimum weighted sum method
and aims at minimizing the residual between the deformations in the experimental data
and the deformations in the model. In order to avoid placing a greater emphasis on higher
pressure levels, which create greater deformations, the residual was quantified as a relative
error, as is presented in equation 5.6. That being said, the objective function is a sum of
the squared relative errors for each walls’ deformation at each pressure level. Interestingly,
note that squaring the relative error emphasizes the greater disparities between updated
and target deformations, prioritizing their minimization and leading to a solution that

presents an even degree of error across the various parameters under optimization.

82 /5 _s 2
Objective Function = Z (W) (5.6)
tn

n=1
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Figure 5.18 Evolution of the interpolated value for the deformation of the right wall as a
function of the Young Modulus for the MDI class, using the ’linear’ method.

Table 5.11 Target deformations for each wall based on the experimental data.

Target Deformation, §; (mm)

Right Wall Back Wall Left Wall Front Wall

Model Pressure (kPa)

1 29.0 0.8078 0.7114 0.7028 0.6973
2 49.8 1.4275 1.3066 1.2084 1.2482
3 73.5 2.0871 1.9574 1.7423 1.8974
4 94.8 2.6628 2.5038 2.2244 2.4474
5 128.0 3.4410 3.0740 2.8708 3.1536
6 149.7 3.9381 3.5517 3.3083 3.6701
7 180.3 4.6741 4.2084 3.9515 4.4353
8 197.5 5.0401 4.5684 4.2334 4.8228
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5.3.4 Running the optimization procedures

After generating the RS, it was possible to conduct the optimization procedures. As
previously mentioned, two optimization procedures were conducted: PSO and GA. The
open-source algorithms used for these optimization procedures are implemented in Python
and besides being extensively documented, have bee recently revised and updated. Fur-
thermore, active online forums on the subject support the verdict that these algorithms
present great quality and have been thoroughly tested. Subsections 5.3.5 and 5.3.6 present
detailed information regarding the implementation of PSO and GA, respectively, to the
present study.

5.3.5 Implementing PSO
5.3.5.1 Introduction to PySwarms

In order to conduct the PSO, PySwarms was used. This is an extensible research
toolkit in Python which provides basic customizable optimization using PSO. It is defined
to solve minimization problems, however it can be used for maximization purposes by
simply readjusting the objective function. It offers the possibility of conducting local
and global best optimizations, but for the present study only the latter was used. The
difference between these two options resides in the fact that global best optimization uses
the global best position to attract all particles in the search space, while local best relies
on the local best position in the neighborhood of a given particle to redirect its movement,
[45].

In the global best optimization, offered by PySwarms, each particle’s position is up-

dated as follows:

where x;(t) is the position at the current timestep, ¢, x;(t + 1) is the updated position and
vi(t 4+ 1) is the velocity, which is defined as:

vi(t+1)=w-vi(t) + ¢y -7y - [pbest;(t) — xi(t)] + co - ro - [gbest(t) — x;(t)] (5.8)

where pbest;(t) and gbest(t) are the personal best and the global best positions at that time
step, respectively, r; and ro are random numbers and ¢; and ¢y are the cognitive and social
factors which govern the particle’s behaviour, determining its tendency to either follow its
personal best position or follow the swarm’s global best position. Overall, this determines
whether the swarm is exploratory or exploitative in character. In other words, the cognitive
factor influences the particle’s memory of its own historical experience, whereas the social
factor affects the particle’s information exchange and collaboration. The variables ¢; and

co are, therefore, learning factors. Notice that if ¢; = 0, there is no cognitive part but
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only the social portion, and when a particle travels, it is only impacted by the historical
optimum knowledge of the entire population. On the other hand, if co = 0, the particle’s
movement is controlled by its own historical optimum knowledge without the interchange
of information. If ¢; = ¢ = 0, the particle will move towards to its previous position,
affected only by the inertia factor, w, [45, 46, 47].

In order to correctly call the global optimization class (pyswarms.single.global best.

GlobalBestPSO), some arguments must be defined, namely:

'n_ particles’: number of particles in the swarm
e ’dimensions’: number of dimensions in the search space

e ’options’: a dictionary containing the values for the cognitive, social and inertia

factors
e bounds: upper and lower bounds for each dimension of the search space
¢ objective function: objective function intended to be minimized

Note that other parameters can be defined as well, allowing for greater customization
of the optimization algorithm, however they where not explored in the present study.

According to [29], the population size is generally determined empirically, although
numbers ranging from 20 to 50 are very frequent. In the literature, the cognitive and
social factors, ¢; and co, are typically set to no higher than ¢; = co = 2. In terms of
the inertia factor, w, the literature suggests that the best performance can be obtained
by initially setting it to a relatively high value (for example, 0.9), which corresponds
to a system in which particles move in a low viscosity medium and perform extensive
exploration, and gradually lowering it to a much lower value (for example, 0.4), where the
system would be more exploitative. Values greater than w = 1 may cause the swarm to
become unstable as it will make the particle’s velocity increase exponentially with each

iteration, [29].

5.3.5.2 Pyswarms implementation

The PySwarms algorithm is implemented as follows, where 't__ym_ opt’ refers to the
best candidate solution delivered by the algorithm, ’of _opt’ refers to the objective function

value at said point and ’of’ refers to the callable objective function.

Listing 5.6 PySwarms implementation

import pyswarms as ps
from pyswarms. utils.plotters import (plot_cost_history,

plot_contour, plot_surface)

options = {'cl': 2, 'c2': 2, 'w': 0.9}
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b = [5.4, 5.4, 5.4, 5.4, 185]
ub = [6.6, 6.6, 6.6, 6.6, 220]

constraints = lb, ub

optimizer = ps.single.GlobalBestPSO(n_particles=100,

dimensions=5, options=options, bounds=constraints)
t_ym_opt, of opt = optimizer.optimize(of, iters=1000)
plot__cost__history (cost__history=optimizer.cost__history)

plt .show ()

In order to run PySwarms correctly, the callable objective function, ’of’, must receive
an array with a number of rows equal to the number of particles in the swarm and a
number of columns equal to the dimension of the problem, and return a single column
array of real values with as many rows as particles in the swarm. Therefore, for each
iteration of the algorithm, the objective function is calculated for all the particles in the
swarm using one single callable function. The array received by the objective function is
a matrix where each line refers to a particle in the swarm and each column refers to an

input variable (wall thicknesses and Young Modulus).

5.3.5.3 Conducting the optimization procedure using PySwarms

Given the fact that the problem at hands presents a great amount of variables, the
swarm size was initially set to 50 particles, therefore abiding by the aforementioned guide-
lines. To analyse the impact of the various factors, three possible values were analysed for
each of them and all combinations between said values were analysed, leading to a total of
33 = 27 combinations. Afterwards, the impact of the population size was also evaluated,
considering the following sizes: 25, 50, 75, 100, 200.

For the cognitive and social factors, ¢; and co, values 1, 1.5 and 2 were considered.
As for the inertia factor, w, values 0.4, 0.65 and 0.9 were used. The maximum number of
iterations was set to 200 as this value allowed for the algorithm to converge and stabilize
for the aforementioned parameters. The obtained optimal solutions are presented in table
5.12, and figures 5.19, 5.20, 5.21, 5.22 and 5.23 represent the evolution of the best candidate
solution as a function of the number of iterations for each combination of factors values.
The graphs from figures 5.19, 5.20, 5.21 present various combinations of ¢y and w, with
c1 =1, ¢ = 1.5 and cg = 2, respectively. The graph from figure 5.22 presents various

combinations of ¢; and ca, with w = 0.9 and the graph from figure 5.23 presents various
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combinations of ¢1, co and w, with an emphasis on the proportions between c¢; and cs.
Taking into account the information presented in table 5.12, the best combination of factor
was shown to be ¢y = 1, co = 1.5, w = 0.9, so these values are used to analyse the effect
of the population size. Table 5.13 presents the obtained optimal results for each swarm
size (25, 50, 75, 100 or 200 particles), and figure 5.24 shows the evolution of the objective

function value as a function of the number of iterations for each of these swarm sizes.

— c¢l=1, c2=1,w=0.4

— c¢l=1,c2 =1, w=0.65
cl=1, c2=1, w=0.9
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Figure 5.19 Evolution of the objective function value for various combinations of ¢y and w
(no. particles = 50, max. no. iterations = 300, ¢; = 1).

5.3.5.4 Results and comments

Based on the results presented in the previous section, it is noticeable that the PSO
algorithm seems to converge to different optimal values using different combinations of
the three factors, c¢1, ¢o and w. This may mean that the search space is not effectively
analysed for every case, which can be related to two key factors: the exploratory vs.
exploitative character of the swarm and the swarms velocity. The graph from figure 5.23,
which represents the evolution of the objective function value as a function of the number
of iterations for various combinations of ¢1, co and w with an emphasis on the proportion
between c¢; and ¢y, sheds some light on these two aspects. Firstly, it is relevant to note
that a given proportion between ¢; and co will influence the exploratory vs. exploitative
character of the algorithm, however the actual values used for these factors will influence
the velocity of the swarm. This can be seen when comparing the situations where ¢; =
co =1 and ¢ = co = 2. For the first case, the lower values of ¢; and ¢y won’t promote
the acceleration of the swarm, leading to a slower exploration of the search space, and
an increased likelihood of not approaching the global optima. The graph from figure 5.23

shows that when ¢; = ¢o = 1 a worse objective function value is reached when compared
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—— cl=1.5,c2=1, w=04
3.5 — ¢1=1.5, c2=1, w=0.65
cl=1.5, c2=1, w=0.9
3.0 —— c¢l1=1.5,c2=1.5, w=0.4
o 3.
= —— ¢1=1.5, ¢c2=1.5, w=0.65
g —— cl1=1.5, c2=1.5, w=0.9
=25 i
S \ cl=1.5, c2=2, w=0.4
k3] T —— ¢1=1.5, c2=2, w=0.65
52.0 1
2 Y —— ¢1=1.5, c2=2, w=0.9
[
2
s 1.5
<@
2 | I
©1.0 =
0.5 L \ —
\

0 25 50 75 100 125 150 175 200
Number of iterations

Figure 5.20 Evolution of the objective function value for various combinations of ¢y and w
(no. particles = 50, max. no. iterations = 300, ¢; = 1.5).
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Figure 5.21 Evolution of the objective function value for various combinations of ¢y and w
(no. particles = 50, max. no. iterations = 300, ¢; = 1).
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Table 5.13 Results obtained from applying PSO using different swarm sizes (¢; = 1, co = 1.5,

w = 0.9).
Number of Particles 25 50 75 100 200
Maximum Iterations 200 200 200 200 200
trront (Mm) 5.5027 5.4846 5.4788 5.4135 5.4287
tBack (mMmm) 5.6289 5.8537 5.7225 5.7164 5.6566
tRight (Mm) 5.7011 5.6932 5.4268 5.4205 5.7226
treft (Mm) 6.0209 5.9390 5.9488 5.5430 6.0495

Young Modulus (GPa) 191.2 187.0 206.9 218.0 194.2
Objective Function 0.233 0.160 0.338 0.390 0.224

2.5 !
25 particles

50 particles
75 particles
2.0 100 particles

—— 200 particles
1.5 H
1.0
0.5 \‘
L \

0 25 50 75 100 125 150 175 200
Number of iterations

Objective function value

Figure 5.24 Evolution of the objective function value as a function of the population size
(max. no. iterations = 200, ¢; =1, ¢cg = 1.5, w = 0.9)
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to the case where ¢y = ¢ = 2 is used. This might mean that values of ¢; = ¢co = 1 do
not promote an effective investigation of the search space due to the lower acceleration
they promote. From these two situations, it is also shown that the use of a higher value
of w leads to better results; w = 0.9 in particular seems to greatly benefit these two
combinations on ¢; and co, as well as a combination of ¢; = co = 1.5, as can be seen in
figure 5.20. When analysing the situation where c; = 2 x ¢; = 2, which represents a swarm
with a greater tendency to follow the global best known position, the results found for
w = 0.9 show a worse performance and a higher optimal objective function value than the
ones obtained for ¢; = 2 X ¢cg = 2, which represents a swarm where the particles display
a greater tendency to follow their own personal best known position. This shows that a
tendency to follow the particle’s personal best position might be the most beneficial for
the problem at hands. Nonetheless, the best objective function value was achieved using
a combination of co = 1.5 X ¢; = 1.5, however that particular run of the algorithm started
with an initial swarm with a very good global best position, as can be seen in figure 5.22,
thus an approach which encourages the swarm to move towards the global best position

would be more likely to reach better results.

Regarding the number of particles in the swarm, a larger number of particles in the
initial swarm should lead to an increased chance of having a particularly good candidate
solution in the initial set. However, the graph from figure 5.24 shows that a larger swarm
size does not necessarily lead to a better initial global best position, which is not surprising
considering the stochastic nature of the algorithm. Furthermore, an increase in the number
of design points beyond 50 does not seem to be beneficial as the obtained results are not

improved by that.

Considering the results obtained, it would appear that Pyswarms is particularly un-
predictable as re-running the algorithm for a given set of parameters inevitably leads to
multiple results, sometimes with great disparity between them. This behaviour is dis-
played in table 5.14 and figure 5.25. Despite being a stochastic algorithm, the magnitude
of this behaviour is not to be expected, given the fact that the RS used for the optimization
appears to be smooth. Therefore, this algorithm does not seem to be the most adequate to
be implemented in the present case, though further analysis of the customizable features
of the algorithm could be conducted to better understand this behaviour and attempt to

promote a more effective performance.

On a final note, figure 5.25 emphasizes the role that an initial swarm containing a
good candidate solution plays in the quality of the obtained results given that, for the
same parameter values, the runs which presented a lower objective function value for the
global best candidate at the beginning of the run led to better results. This was verified
for all runs except the third run, which, despite containing a better candidate solution in

the initial swarm than the fourth and fifth runs, still led to worse results.
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Table 5.14 Analysis of various runs of the PySwarms algorithm, using the same parameters.

Number of Particles 50 50 50 50 50
Maximum Iterations 300 300 300 300 300
c1 1 1 1 1 1
Co 1.5 1.5 1.5 1.5 1.5
w 0.9 0.9 0.9 0.9 0.9
tFront (Mm) 5.4846 5.4165 5.4595 5.5853 5.4976
tBack (mm) 5.8537 5.8756 5.8513 5.5033 5.7513
L Right (mm) 5.6932 5.6250 5.7760 5.4794 5.5072
treft (Mm) 5.9390 6.1012 5.6468 5.8713 5.6970
Young Modulus (GPa) 187.0 189.7 212.0 208.4  206.1
Objective Function 0.160 0.223 0.602 0.427 0.316
— 1strun
4.0 —— 2nd run
3.5 —— 3rd run
© 4th run
%3.0 —— bthrun
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Figure 5.25 Analysis of various runs of the PySwarms algorithm, using the same parameters

(no. particles = 50, max. no. iterations = 300, ¢c; = 1, co = 1.5, w = 0.9)
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5.3.6 Implementing GA
5.3.6.1 Introduction to geneticalgorithm

For the GA optimization, the geneticalgorithm Python library was used. This library
offers a standard elitist GA with the ability to solve continuous, combinatorial and mixed
optimization problems with continuous, discrete, and mixed variables. It was created to
solve minimization problems, however it can be used for maximization purposes by simply
readjusting the objective function, [48].

In order to correctly call this library, various arguments must be defined, namely:

o ’function’: objective function intended to be minimized
e ’dimensions’: number of dimensions in the search space
e ’variable_type’: the type of variable under analysis

e ’variable boundaries’: upper and lower bounds for each dimension of the search

space

e ’algorithm_ parameters’: optional argument referring to additional parameters that

may be customized, namely:

— ’max_num_iteration’: maximum number of iterations. It’s the termination
criterion. If this option is set to None, the algorithm determines the maximum
number of iterations based on the dimension, boundaries, and population size.
The user can input as many iterations as they like and it is strongly advised
that the user determines the maximum number of iterations rather than using

None.
— ’population_ size’: population size. Defaults to 100.

— ’'mutation__probability’: mutation probability. Determines the chance of each
gene in each individual solution being replaced by a random value. The default
is 0.1 (10%).

— ’elit_ratio’: elitist ratio. Determines the number of individuals preserved as
elites in the population. The default value is 0.01 (1%). To implement a

standard non-elitist GA, this parameter must be set to 0.

— ’crossover__probability’: crossover probability. Determines the chance of an

existing solution passing breeding offspring. The default value is 0.5 (50%).

— ’parents_ portion’: parents portion. Number of individuals in the population

from previous generations (parents). The default value is 0.3 (30%).

— ’crossover__typ’: crossover type. There are three options: one-point, two-point,

and uniform crossover functions. The default is uniform crossover.
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— 'max__iteration_ without_ improv’: maximum number of iterations without im-
provement. If the algorithms does not improve the objective function over the
number of successive iterations determined by this parameter, then the algo-
rithm stops and reports the best solution found thus far. The default value is

None.

5.3.6.2 geneticalgorithm implementation

The geneticalgorithm is implemented as follows, where ’of’ refers to the callable objec-

tive function.

Listing 5.7 geneticalgorithm implementation

import numpy as np

from geneticalgorithm import geneticalgorithm as ga

varbound=np.array ([[5.4, 6.6], [5.4, 6.6], [5.4, 6.6],
(5.4, 6.6], [185, 220]])

algorithm_param = {'max_num_ iteration': 3000,
"population_size':100,
"mutation__probability ':0.1,
"elit_ratio': 0.01,

'"crossover__probability': 0.5,
"parents__portion': 0.3,
"crossover__type': 'uniform ',

'max__iteration_without__improv':None}

model=ga (function=of ,
dimension=5,
variable_type='real',
variable boundaries=varbound,

algorithm_parameters=algorithm_param)

model . run ()

In order to run geneticalgorithm correctly, the callable objective function, ’of’, must
receive a line array with a number of columns equal to the dimension of the problem,
and return a scalar. Therefore, for each iteration of the algorithm, the objective function
is called as many times as the number of individuals to be evaluated in that iteration.
The array received by the objective function is a vector where each component refers

to an input variable (wall thicknesses and Young Modulus). The value returned by the
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objective function is the objective function value for each of the evaluated individuals

(candidate solutions).

5.3.6.3 Conducting the optimization procedure using the geneticalgorithm

Since there is no general consensus in literature regarding recommended values or
intervals for each of the GA’s parameters, a similar approach to the one conducted for
PySwarms was implemented. Using a population of 50 individuals and a maximum number
of iterations of 200, the effect of mutation probability, crossover probability and parents
portion was evaluated. Although the elite ratio is also customizable, the default was used
(0.01), meaning that a single elite individual is preserved from generation to generation
(0.01 x 50 = 0.5 but the algorithm considers at least 1 individual). Besides this, using high
values of elite ratio hinders the algorithm as it limits its capacity to inspect the search
space. Regarding the mutation and crossover probabilities and the parents portion, values
of 0.1, 0.3 and 0.5 were considered for each of them and all possible combinations of these
parameters were analysed. The obtained optimal solutions are presented in table 5.15, and
figures 5.26, 5.27, 5.26 and 5.29 represent the evolution of the best candidate solution as a
function of the number of iterations for each combination of factor values. The graphs from
figures 5.26, 5.27, 5.26 present various combinations of crossover probability and parents
portion, with the mutation probability set to 0.1, 0.3 and 0.5, respectively. The graph from
figure 5.29 presents various combinations of mutation and crossover probabilities, with the
parents portion set to 0.1. Taking into account the information presented in table 5.15, the
best combination of parameters was shown to be 0.3, 0.3 and 0.1, for mutation probability,
crossover probability and parents portion, respectively, so these values were used to analyse
the effect of the population size. Table 5.16 presents the obtained optimal results for each
population size (25, 50, 75, 100 or 200 individuals), and figure 5.30 shows the evolution
of the objective function value as a function of the number of iterations for each of these

population sizes.

5.3.6.4 Results and comments

As can be seen from the results presented in table 5.15, the differences between the
worse optimal solution and best optimal solution obtained using the geneticalgorithm for
various combinations of parameter values are all less than 0.01, which, compared to what
was found for PSO can be considered a marginal difference. Therefore, it would seem that
the GA either does a more thorough inspection of the search space or the smoothness of
the RS inhibits the manifestation of different behaviours in the algorithm as a function of
the parameters’ values. Either way, the obtained results were analysed as follows.

Due to the algorithms capacity to approximately reach what appears to be the global
optimum for every run of the algorithm, the best individual contained in the initial popu-

lation does not seem to affect the results obtained for the maximum number of iterations
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Table 5.15 Results obtained from applying GA using a population of 50 individuals and limiting the number of iterations to 200.

Mutation Crossover Parents . Young Modulus Objective
Probability Probability Portion brvon (mm) - tpack (mm) - trign (mMm) - trep (mm) (GPa) Function
0.1 0.1 0.1 5.4059 5.7693 5.6196 5.9235 185.0 0.1002
0.1 0.1 0.3 5.4031 5.7299 5.5763 5.8820 192.5 0.0979
0.1 0.1 0.5 5.4069 5.7685 5.6205 5.9244 185.0 0.1000
0.1 0.3 0.1 5.4005 5.7728 5.6194 5.9199 185.0 0.1001
0.1 0.3 0.3 5.4038 5.7254 5.5703 5.8945 192.7 0.0977
0.1 0.3 0.5 5.4094 5.7273 5.5687 5.8987 192.6 0.0991
0.1 0.5 0.1 5.4020 5.7293 5.5780 5.8970 192.6 0.0972
0.1 0.5 0.3 5.4019 5.7273 5.5733 5.8968 192.5 0.0972
0.1 0.5 0.5 5.4009 5.7266 5.5709 5.8990 192.8 0.0971
0.3 0.1 0.1 5.4034 5.7661 5.6112 5.9229 185.2 0.1014
0.3 0.1 0.3 5.4028 5.7309 5.5781 5.8926 192.5 0.0975
0.3 0.1 0.5 5.4073 5.7364 5.5752 5.8898 192.4 0.0988
0.3 0.3 0.1 5.4001 5.7303 5.5732 5.9021 192.5 0.0968
0.3 0.3 0.3 5.4049 5.7356 5.5737 5.9020 192.2 0.0985
0.3 0.3 0.5 5.4010 5.7391 5.5741 5.8928 192.3 0.0974
0.3 0.5 0.1 5.4073 5.7689 5.6179 5.9229 185.1 0.1003
0.3 0.5 0.3 5.4024 5.7273 5.5651 5.8998 192.9 0.0978
0.3 0.5 0.5 5.4182 5.7348 5.5893 5.8924 192.4 0.1022
0.5 0.1 0.1 5.4021 5.7412 5.5738 5.8928 192.7 0.0977
0.5 0.1 0.3 5.4006 5.7173 2.5730 5.9031 192.1 0.0984
0.5 0.1 0.5 5.4221 5.7143 5.5497 5.9155 192.5 0.1056
0.5 0.3 0.1 5.4194 5.7688 5.6264 5.9471 185.3 0.1045
0.5 0.3 0.3 5.4435 5.7648 5.6301 5.9375 185.3 0.1068
0.5 0.3 0.5 5.4151 5.7617 5.5866 5.8791 192.5 0.1040
0.5 0.5 0.1 5.4106 5.7384 5.5623 5.8724 192.6 0.1009
0.5 0.5 0.3 5.4167 5.7517 5.5849 5.8942 192.4 0.1025
0.5 0.5 0.5 5.4220 5.7531 5.5640 5.9081 192.0 0.1049
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Figure 5.26 Evolution of the objective function value for various combinations of crossover
probability (CP) and parents portion (PP) (population size = 50, max. no. iterations = 200,

elite ratio = 0.01, mutation probability (MP) = 0.1).
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Figure 5.27 Evolution of the objective function value for various combinations of crossover
probability (CP) and parents portion (PP) (population size = 50, Max. no. iterations = 200,

elite ratio = 0.01, mutation probability (MP) = 0.3).



144 A case study on model updating with experimental data

0.9
—— MP=0.5, CP=0.1, PP=0.1
0.8 l —— MP=0.5, CP=0.1, PP=0.3
MP=0.5, CP=0.1, PP=0.5
0.7 —— MP=0.5, CP=0.3, PP=0.1

—— MP=0.5, CP=0.3, PP=0.3
MP=0.5, CP=0.3, PP=0.5
— MP=0.5, CP=0.5, PP=0.1

MP=0.5, CP=0.5, PP=0.3
— MP=0.5, CP=0.5, PP=0.5

o
o

e
o

Objective function value

0 25 50 75 100 125 150 175 200
Number of iterations

Figure 5.28 Evolution of the objective function value for various combinations of crossover
probability (CP) and parents portion (PP) (population size = 50, max. no. iterations = 200,
elite ratio = 0.01, mutation probability (MP) = 0.5).
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Figure 5.29 Evolution of the objective function value for various combinations of mutation
probability (MP) and crossover probability (CP) (population size = 50, max. no. Iterations
= 200, elite ratio = 0.01, parents portion (PP) = 0.1).
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Table 5.16 Results obtained from applying GA using different population sizes (max. no.
iterations = 200, mutation probability (MP) = 0.3, elite ratio = 0.01 , crossover probability
(CP) = 0.3, parents portion (PP)= 0.1).

Maximum Iterations 200 200 200 200 200

Population size 25 50 75 100 200
trront (Mm) 5.4022 5.4001 5.4004 5.4045 5.4017
tBack (mMm) 5.7246 5.7303 5.7251 5.7661 5.7286
tRight (1m) 5.5718 5.5732 5.5733 5.6197 5.5727
treft (Mm) 5.8985 5.9021 5.8928 5.9193 5.8941

Young Modulus (GPa) 192.6 1925 1926 1851 192.6
Objective Function 0.0973 0.0968 0.0968 0.1005 0.0971

1.0 —— 25 individuals
—— 50 individuals
—— 75 individuals
100 individuals
—— 200 individuals

°
©

°
o

Objective function value
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~
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N

0 25 50 75 100 125 150 175 200
Number of iterations

Figure 5.30 Evolution of the objective function value for various population sizes (max. no.
iterations = 200, mutation probability (MP) = 0.3, elite ratio = 0.01 , crossover probability
(CP) = 0.3, parents portion (PP) = 0.1).
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allowed. Even for a number of iterations as low as 50, the size of the population does not
seem to significantly affect the results obtained up to that point. This is shown in figure
5.30 where various population sizes are considered. Interestingly, this graph also shows
the expected tendency to find better candidate solutions in larger initial samples, even if
that was shown to be irrelevant in the performance of the algorithm.

On a different note, running as little as 100 iterations would seem sufficient since a
higher number of iterations does not seem to benefit the obtained results significantly, as
can be seen in figures 5.26, 5.27, 5.26 and 5.29.

Considering figure 5.29, one can see that a combination of a high mutation probability
(0.5) with a low crossover probability and parents portion (0.1 for both) prompts the
algorithm to take longer to converge; however, as the RS is smooth, intensifying the
stochastic nature of the algorithm and forcing it to search random areas of the domain
is not beneficial. One should note, however, that if the RS were more intricate, with a
narrow plunge near the global optima, this behaviour would be extremely beneficial to the
effectiveness of the algorithm.

Regarding the crossover probability, figure 5.29 shows that higher values for this pa-
rameter (0.5) may stall the algorithm by promoting a thorough local search due to a larger
amount of good candidate solutions generating offspring. Lower values (0.1), on the other
hand, seem to allow for global search to be conducted while still promoting local search
at a lower rate, which is specially beneficial when the initial sample set does not contain
any particularly good candidate solution, as can be seen for the case where the three
parameters under analysis were set to 0.1.

On the other hand, and with a shift of focus towards mutation probability, for the case
where mutation probability was set to 0.3 and crossover probability and parents portion
were both set to 0.1, the initial set contained a similar best candidate solution to the one
found when the three parameters under analysis were set to 0.1, however the approach
to the optimal value is done at a slower rate, even presenting iteration intervals where no
improvement can be detected, which may be a consequence of the smoothness of the RS
where a random search may not be the best approach. This random search is promoted by
the higher value of the mutation probability and the lower value of crossover probability,
which leads to the creation of random offspring at a greater rate than offspring generated
through crossover. Figure 5.29 shows that this behaviour becomes intensified as the value
of the mutation probability increases. Therefore, it would seem that, for the present study,
an intermediate value of mutation probability might be the most interesting as it provides
a compromise between improving global search, which is beneficial when the initial sample
set is not particularly good, and not hindering local search, which is necessary to accurately
approach the optimal value.

Regarding the parents portion, figures 5.26, 5.27 and 5.26 show that a higher value
for this parameter seems to stall the search in the early stages, as it hinders the creation

of new offspring by preserving individuals from the previous generation, however it seems
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beneficial later on as preserving the best individuals from the previous generation promotes
local search.

That being said, given that the algorithm converged particularly fast for all analysed
combinations of parameter values, leading to similarly good results for all those combina-
tions, it is not possible to determine exactly which combination of parameter values would
be the most beneficial. Notwithstanding, the best solution found occurred for mutation

and crossover probabilities of 0.3 and parents portion of 0.1.

5.3.7 Results and comments

The interpolation classes analysed for creating the RS led to surprising results, further
emphasizing the importance of carefully analysing the interpolation method used, as it
influences the results obtained from the optimization procedures. It is relevant to note
that the RBF interpolant classes both displayed an unusual behaviour when interpolating
the deformation of any given wall as a function of the Young Modulus, displaying a drop
in the interpolated deformation values near the Young Modulus values used to create the
DOE data set. This behaviour became evident when analysing a graphic representation
of the deformation of a given wall as a function of the Young Modulus, however the high
values found for the maximum and average relative error using these functions already
indicated that there might be a problem with the interpolation. In fact, this behaviour is
alarming, particularly considering that, even when using a linear interpolation function,
the interpolation between the data set points was not linear. It is relevant to note that,
if such behaviour were to be found in the RS used to run the optimization procedures,
a tendency to converge towards the areas of the search space closest to the DOE points
would be prominent, thus negatively influencing the optimization algorithm, as it would
be more likely to approach local optimal values that might not accurately represent a
realistic combination of wall thicknesses, Young Modulus and wall deformations for the
structure under analysis.

The MDI, on the other hand, displayed the expected behaviour for both available
methods. The 'nearest’ method presents clear steps for the interpolation of the deformation
as a function of either the wall thickness or the Young Modulus, which was expected as this
method returns the function value corresponding to the point in the DOE data set which is
closest to the point under analysis. The ’linear’ method, on the other hand, displayed the
expected linear trend in all interpolations, as well as the lowest average relative error and
second lowest average relative error, when compared to all other analysed combinations
of interpolant classes and functions.

After conducting various experiments using PSO (PySwarms) and GA (geneticalgo-
rithm), the first one’s stochastic nature stands out significantly when compared to the
latter. When using GA, the likelihood of reaching significantly divergent results when em-
ploying the same parameters appeared to be lower than for PSO. That being said, results

obtained from PSO offer little guarantee that the used parameters are in fact responsible
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for said satisfactory results. Thus, the PSO seems to be less reliable than GA for imple-
menting in a DT, offering a lower predictability of its behaviour. However, this tendency
may be reduced as a larger number of iterations is conducted. On the other hand, GA
converged particularly fast and led to significantly better results than PSO accross all
experiments. Therefore, increasing the number of iterations used in PSO would still not
make it particularly competitive for the present study.

An interesting aspect which stood out was the fact that the analysis conducted using
the GA led to believe that the RS was particularly smooth, since no significance deviance
was found when varying the parameter values, however the same cannot be said of PSO,
where the different results obtained from the various experiments could lead to the con-
clusion that the RS was in fact not smooth and various local optimal values could have
been found. Besides this, PSO was shown to be abundantly sensitive to the quality of the
candidate solutions in the initial sample set, however a similar behaviour was not found
for the GA.

Despite having conducted a general analysis of the available parameters for both PSO
and GA, a more comprehensive analysis would be necessary to reach conclusions that can
be extrapolated to other optimization and model updating problems. Nonetheless, the
analysis conducted showed that a combination of the PSO’s customizable factors which
emphasizes the social character of the algorithm, making it predominantly exploratory,
led to better results for the present study. For the genetic algorithm, on the other hand,
a moderate mutation and crossover probability combined with a low parent portion led to
the best results for the present study.

Lastly, it is relevant to note that, after conducting the aforementioned analysis, an
error was found in the connections considered in the Ansys model used for this study.
Besides the mentioned connections between the various parts of the cube, a few additional
connections were created automatically between the edges of the front wall and the flanges
of the right and left walls, leading to increased stiffness. This led to lower deformations
found in the front wall, as is shown in figure 5.31, when compared to the deformations
found in the remaining walls. Figure 5.31 represents the evolution of the deformation for
the four walls as a function of the internal pressure for wall thickness of 5.4 mm for all four
walls and Young modulus of 180 GPa. It is relevant to note that this error did not greatly
affect the obtained results, particularly considering that the majority of the connections
considered in the model are simplifications of the connections found in the real object.
Since the connections between the four walls are welded, the weld bead thickness should
be considered for the connections and if so, that would certainly increase the local stiffness.
That being said, a more thorough analysis could be conducted with a particular emphasis

on the correct representation of the connections between the various elements of the cube.
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Figure 5.31 Evolution of the deformation for the four walls as a function of the internal
pressure for wall thickness of 5.4 mm for all four walls and Young modulus of 180 GPa.
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Chapter 6

Conclusions and future work

6.1 Main conclusions

As previously stated, the primary goal of this dissertation was to investigate, develop,
and implement model updating techniques which could be used in the context of DTs.
Placing a significant emphasis on the application of EAs, namely GA and PSO, various
optimization approaches were implemented. The use of SOO and MOO was thoroughly
analysed, as well as the use of RSO and DO. In terms of the RSO, two different approaches
were evaluated, one of them completely relying on Ansys, and another one using a data
set created in Ansys, but implemented in Python, where the actual RS was created and
the optimization procedures conducted. Although the conclusions taken from this analysis
have a limited scope of application due to the simplicity of the analysed problems, the

main goal of the dissertation is considered to have been accomplished.

Regarding the comparison between RSO and DO, the first option seems to be the
most interesting one for model updating, particularly in the context of DTs. First and
foremost, the fact that, for RSO, the FE model must only be reevaluated to create the RS,
but not to run the optimization procedure, and therefore conduct model updating, makes
it particularly competitive in terms of computational cost, specially when compared with
DO, which relies on reevaluating the FE model for each candidate solution analysed in the
optimization process. That being said, even if the computational cost of conducting DO
and RSO is similar for a single instance of model updating, where the FE model might
be reevaluated a similar amount of times when creating the RS and when running the
DO, the impact of reevaluating the FE model for each candidate solution considered in
the DO process is magnified as the number of model updating instances increases. When
implementing an optimization tool for model updating in a DT, one must bear in mind
that the optimization procedure will certainly be re-conducted numerous times to allow
for a precise follow-up of the structure’s life-cycle. Therefore, the main focus must be on
guaranteeing that the optimization procedure is light-weight and effective, thus creating

an expeditious model updating tool. As previously mentioned, RSO guarantees a com-
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putationally effective optimization process in the long run, meeting the DT’s requirement
for a light-weight procedure, however it also proved to be exceptionally effective, as was
demonstrated in this dissertation. In fact, RSO presented considerably better results than
DO according to various metrics which assessed the quality of the obtained solutions from
diverse standpoints. Notably, the use of RSO with a SOO approach presented the best
results across all analysed metrics when compared to DO using either SOO or MOO and
RSO using MOQO, leading to the conclusion that RSO combined with SOO may be the
best option when conducting model updating. The results obtained for RSO using MOO
were better than the ones obtained for DO using MOO across all analysed metrics, how-
ever DO using SOO presented surprisingly better results than RSO using MOO for a low
number of design points, thus reinforcing the superior performance of SOO. Interestingly,
MOO seemed to present a swift improvement with the increase in the number of design
points used, however increasing the number of design points to an extent which allows
MOO to present competitive results does not seem practical for model updating, partic-
ularly in DTs, as an increase in the number of design points used inevitably leads to a
more computationally expensive optimization procedure. Although RSO using SOO was
consistently better than all other analysed options across all experiments, one should bear
in mind that the optimization procedure used for this comparison (NSGA-II, a MOGA)
is stochastic and further repetitive analysis should be conducted to validate the obtained

results and allow for the extrapolation of the previously mentioned conclusions.

Regarding the RSs analysed, the RS created using Python scripting, based on a
data set with 1024 design points, presented a relative error similar to the one found
for the RSs created in Ansys (Max. Errorgs python = 1.64%, Max. Errorgsiss = 4.87%,
Mazx. Errorrsses = 0.498%, Max. Errorgsres = 0.301%, Max. Errorrsioso = 0.153%).
It is relevant to note that the RSs created in Ansys resorted to the sparse grid method,
which introduced a greater density of refinement points in problematic areas, contributing
to a more realistic meta-model. The RS created using Python scripting, on the other hand,
was based on an approximately evenly spaced grid, with no refinement around problematic

areas.

The interpolation classes analysed to be used to create the RS using Python script-
ing presented surprising results, specifically the RBF interpolant classes which created
a distorted interpolation of the wall deformations as a function of the Young Modulus.
Although the source of this error was not thoroughly analysed, it could be related to the
different magnitudes of the various inputs (wall thicknesses and Young Modulus) and the
definition of the radius used in the RBF and an attempt at solving this problem could
include the normalization of the input parameters. Nonetheless, MDI led to an accurate
interpolation with apparently no distortions, as it followed the expected linear behaviour

when interpolating the wall deformations.

Concerning the PSO and GA implemented using Python scripting, the first one seemed

to present a notoriously variable behaviour, reaching significantly divergent results for
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different runs of the algorithm when employing the same parameters. Nonetheless, the
analysis conducted showed that a combination of the PSO’s customizable factors which
emphasizes the social character of the algorithm, making it predominantly exploratory,
led to better results for the present study. For the genetic algorithm, on the other hand, a
moderate mutation and crossover probability combined with a low parent portion led to the
best results for the present study. Notwithstanding, the GA displayed very little sensitivity
to parameter changes, leading to similarly good results across all analysed combinations
with a notoriously fast convergence rate. This might be due to the smoothness of the
RS which does not contain any significant plunges, facilitating the search for the global
optima. Therefore, a more complex and irregular RS would be required to effectively

analyse the effects of the evaluated parameters.
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6.2 Future work

Although Ansys includes various methods for creating RSs, only sparse grid was used
in this study. It would therefore be interesting to analyse the remaining methods and
evaluate their performance, particularly in terms of RS quality and running time, as these
are the most pressing details concerning RS generation. Kriging, in particular, seems like
an interesting approach when compared to sparse grid, as it also provides the capacity for
refinement in areas of the domain which may be more challenging to model in the RS.

Regarding the interpolation algorithms analysed for Python scripting, in particular
the RBF interpolant classes, a more comprehensive analysis of their behaviour could be
conducted to better understand the unexpected errors found in their implementation and
explore possible solutions.

On a different note, a more precise representation of the connections used in the con-
sidered experimental prototype could be conducted and a comprehensive analysis of the
impact of the simplification of the connections could be executed. This would be relevant
to understand the extent to which a model can be simplified with minimal loss of accuracy
in the representation of the real counterpart.

Additionally, it wold be interesting to explore other optimization algorithms, in par-
ticular hybrid versions, which may allow for a faster and more precise approach to the
optimal point, combining the competitive features of various algorithms.

Concerning the analysis of PySwarms and geneticalgorithm for PSO and GA optimiza-
tion, respectively, an in depth analysis of these could provider greater insight into their
performance and allow for a better understanding of how they can be combined for a more
positive outcome. An interesting analysis of these algorithms could include a repetitive
analysis of the results obtained from controlled variations of the algorithm’s costumizable
parameters. Since there is still little information in literature regarding the best approach
to customize these parameters, conducting this analysis could fill an existing gap in this
field of research.

Furthermore, an attempt to implement an optimization algorithm using Python script-
ing coupled to Ansys Workbench could be developed, allowing the automatic generation
of the DOE data matrix or the exploration of other optimization algorithms, in addition
to the restricted options available in Ansys.

Finally, it would also be interesting to analyse the local optimal search available in
PySwarms and extensively compare its performance with the global optimal search. By
doing so one could attempt to develop more comprehensive guidelines for the use of these
two tools, particularly concerning their costumizable parameters, facilitating their appli-

cation.
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Appendix A

Optimization results for the RS

with 125 refinement points

This appendix presents the results obtained from the SOO and MOO procedures con-
ducted in ANSYS on the RS with 125 refinement points.

Table A.1 Results from the SOO experiments using the RS with 125 design points.

Single Objective Optimization

Parameter Unit Value Error (%)
tTopWall mm 6.2155 -0.25
t BottomW all mm 5.9145 -0.25
tFrontWall mm 5.7082 -0.14
tBackWall mim 6.1157 -0.26
t RightWail mm 5.8139 -0.24
tLeftWall mm 6.3146 -0.23
CAE % - 1.37
Young Modulus GPa 209.4 0.22
CAEYM % - 1.59

Sum Sq. Diff. mm? 1.02x 1074 -
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Table A.2 Results regarding the wall thicknesses and Young Modulus obtained from the
MOO experiment using the RS with 125 design points.

Multiple Objective Optimization

Candidate Solution 1 2 3
Parameter Unit Value Error (%) Value Error (%) Value Error (%)
tTopWall mm 6.3789 -2.89 6.2731 -1.18 6.4136 -3.45

t BottomW all mm  6.0565 -2.65 5.9658 -1.12 6.0800 -3.05
t FrontWall mm  5.8587 -2.78 5.7727 -1.28 5.8563 -2.74
tBackWall mm 6.2713 -2.81 6.1749 -1.23 6.2895 -3.11
t RightWall mm  5.9554 -2.68 5.8627 -1.08 5.9788 -3.08
treftwall mm  6.5249 -3.57 6.2403 0.95 6.5413 -3.83

CAE % - 17.38 - 6.83 - 19.26
Young Modulus GPa  194.6 7.31 203.7 2.96 191.7 8.67

CAEYM % - 24.68 - 9.79 - 27.93 4

Candidate Solution 4 5 6
Parameter Unit  Value Error (%) Value Error (%) Value Error (%)
tTopWall mm 6.2701 -1.13 6.2707 -1.14 6.3973 -3.18

tBottomW all mm  5.9645 -1.09 5.9640 -1.09 6.0856 -3.15
t FrontWall mm  5.7737 -1.29 5.7726 -1.27 5.8823 -3.20
t Back WV all mm 61764  -1.25 61901  -1.48  6.2855  -3.04
tRightWall mm  5.8608 -1.05 5.8604 -1.04 5.9608 -2.77
tLeftwall mm  6.2407 0.94 6.4980 -3.14 6.5332 -3.70

CAE % - 6.76 - 9.16 - 19.04

Young Modulus GPa  203.7 2.96 203.5 3.03 193.1 8.01
CAEYM % - 9.72 - 12.19 - 27.05
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Appendix B

Optimization results for the RS

with 725 refinement points

This appendix presents the results obtained from the SOO and MOO procedures con-
ducted in ANSYS on the RS with 725 refinement points.

Table B.1 Results from the SOO experiments using the RS with 725 design points.

Single Objective Optimization

Parameter Unit Value Error (%)
tTopWall mm 6.2817 -1.32
t BottomWall mm 5.9710 -1.20
t FrontWall mm 5.7639 -1.12
UBackWall mm 6.1740 -1.21
t RightWail mm 5.8690 -1.19
LLeftwall mm 6.3691 -1.10
CAE % - 7.14
Young Modulus GPa 2031.1 3.23
CAEYM % - 10.38

Sum Sq. Diff. mm? 7.40 x 107° -
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Table B.2 Results regarding the wall thicknesses and Young Modulus obtained from the
MOO experiment using the RS with 725 design points.

Multiple Objective Optimization

Candidate Solution 1 2 3
Parameter Unit  Value Error (%) Value Error (%) Value Error (%)
tTopWall mm  6.1228 1.25 6.1357 1.04 6.2485 -0.78
t BottomW all mm  5.8183 1.38 5.8569 0.73 5.9906 -1.53
P rontWall mm 56136 152 56654  0.61 57851  -1.49
t BackWall mm  6.0192 1.32 6.0625 0.62 6.1905 -1.48
t RightWall mm  5.7154 1.46 5.7621 0.65 5.8842 -1.45
tLeftWall mm  6.2330 1.06 6.2624 0.60 6.4474 -2.34

CAE % - 7.99 - 4.24 - 9.09
Young Modulus GPa  219.0 -4.34 214.7 -2.29 200.6 4.42
CAEYM % - 12.33 - 6.52 - 13.51

Candidate Solution 4 5 6
Parameter Unit  Value Error (%) Value Error (%) Value Error (%)
lTopWall mm  6.2485 -0.78 6.1081 1.48 6.1459 0.87
t BottomW all mm  5.9906 -1.53 5.8652 0.59 5.8638 0.61
tFrontWall mm  5.7851 -1.49 5.6609 0.69 5.6483 0.91
tBackWall mm  6.1905 -1.48 6.0688 0.51 6.0620 0.62
tRightWall mm  5.8842 -1.45 5.7514 0.84 5.7479 0.90
tLe foWall mm 64474  -2.34 62829 027  6.2167  1.32

CAE % - 9.09 - 4.38 - 5.24
Young Modulus GPa  200.6 4.42 214.1 -1.99 214.3 -2.08

CAEYM % - 13.51 - 6.37 - 7.32




167

e 0T X 79T - _01 X 20 - ¢—01 X €€ - (puw) g -bg wng
e 0T X 6T°T TehL'T p_0T X GT'€ L689°T e 0T X TG 88991 130T
»—0T X 79°C ze’T'C b 0T X €6'T 608T°C ¢ 0T X 8T'F GeLT'g STy
00T X 89°¢ 078’1 ¢ 0T X 09°F 16681 ¢ 0T X 19T 66781 Yoeg
b 0T X ZT'T TSOL'T 90T X 9€'T 1869°T ¢ 0T X 00°G 9%0L'T JuoL]
00T X 89°C 1.81°C 00T X T0'€E 0L81°C L 0T X 18T 1681°C wo3j0¢]
¢ 0T X €8°9 8T0OL'T e 0T X 0G'T goeL’T e 0T X 69T 9¥eL’T dof,
(juw) giq bg  (ww) e (yww) cgrq bg  (wm) e (Lwrwr) cpiq bg  (wur) TPt HEAN
9 G iz uornjog ajyeprpue)
¢ 0T X Z€'€ - »—0T X 90°€ - b 0T X €6F - (;uu) -grq -bg wng
e 0T X TG'T 8899°'T ¢ 0T X 88°€¢ GTOL'T p—0T X 9L°C 11691 el
¢ 0T X 8T'F GeLT'T ¢ 0T X 68'T L291°C ¢ 0T X G7'C 6TLTC STy
¢ 0T X T9'T 66781 ¢ 0T X 09°¢ 66£8°T ¢ 0T X 1€'T eTr8'T Yoeg
¢ 0T X 00°C 9F0L'T ¢ 0T X 6L°G 6689'T 90T X 626 c00L'T JUOL]
, 0T X I8'T 1681°C 10T X 9G°L 9681°C L 0T X 0L°E €681°C woj0g
e 0T X 69T oFeL'T b 0T X ¥G'T 6S0L°T p—0T X 0€'T 1289'T dog,
(puw) i bg  (wur) *Pe  (Lww) piq bg  (ww) e (,ww) cgiq bg  (wur) TPt [1eA
¢ ré I uornjog ajyeprpue)

uoryezrujdQ 2a1109(qQ AN

‘syutod USISep g UMM QY o) Sulsn juewitedxs ()OI 9YJ Ul SUOIJBULIOP I0J S9oULISHIp palenbs o1y) jJo wing ¢ 9[qel,



	Front Page
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Model updating
	1.1.1 Structural damage detection
	1.1.2 Digital-twin

	1.2 Efacec
	1.3 Proposed goals
	1.4 Document structure

	2 Model Updating Techniques 
	2.1 Introduction
	2.2 Sensitivity-based methods
	2.3 The response surface method (RSM)
	2.4 Bayesian and Monte Carlo approaches
	2.4.1 Monte Carlo method
	2.4.2 Bayesian inference method

	2.5 Computational intelligence
	2.6 Fuzzy sets
	2.7 Simulated annealing
	2.8 Evolutionary computation
	2.8.1 Evolutionary algorithms (EAs)
	2.8.2 Genetic algorithms (GAs)
	2.8.3 Particle swarm optimisation (PSO)

	2.9 Machine learning techniques
	2.9.1 Artificial neural networks (ANNs)

	2.10 Hybrid algorithms
	2.10.1 Hybridization between PSO and GA
	2.10.2 Optimization of ANNs based on EAs

	2.11 Single-objective (SOO) and multi-objective (MOO) optimization
	2.11.1 Multi-objective evolutionary algorithms (MOEAs)


	3 Power transformers
	3.1 Fundamentals
	3.1.1 Principles and equivalent circuit

	3.2 Electric power grid
	3.3 Power transformer operation
	3.4 Types of transformer
	3.4.1 On the basis of use: power and distribution transformers
	3.4.2 On the basis of design: shell and core transformers

	3.5 Structural elements in power transformers
	3.5.1 Windings
	3.5.2 Core
	3.5.3 Tap changer
	3.5.4 Bushings
	3.5.5 Insulating materials

	3.6 Typical loading scenarios for power transformers
	3.6.1 Types of reinforcement


	4 A case study on model updating with synthetic data
	4.1 Problem specification
	4.2 Ansys: model preparation and synthetic data generation
	4.2.1 Preparing the FE model
	4.2.2 Retrieving synthetic data
	4.2.3 Defining parameters for model updating

	4.3 Ansys: model updating
	4.3.1 Defining compound output parameters
	4.3.2 Response surface optimization (RSO)
	4.3.3 Direct optimization (DO)
	4.3.4 Comparison between DO and RSO
	4.3.5 Conclusions


	5 A case study on model updating with experimental data
	5.1 Problem specification
	5.2 Experimental set up and data retrieval
	5.3 Ansys: model preparation
	5.3.1 Defining parameters
	5.3.2 Creating the RS
	5.3.3 Defining the objective function
	5.3.4 Running the optimization procedures
	5.3.5 Implementing PSO
	5.3.6 Implementing GA
	5.3.7 Results and comments


	6 Conclusions and future work
	6.1 Main conclusions
	6.2 Future work

	References
	Appendices
	A Optimization results for the RS with 125 refinement points
	B Optimization results for the RS with 725 refinement points

