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Generalized Adaptive Fuzzy Rule Interpolation
Longzhi Yang, Member, IEEE, Fei Chao, Member, IEEE, and Qiang Shen

Abstract—As a substantial extension to fuzzy rule interpolation
that works based on two neighboring rules flanking an observation,
adaptive fuzzy rule interpolation is able to restore system consis-
tency when contradictory results are reached during interpolation.
The approach first identifies the exhaustive sets of candidates, with
each candidate consisting of a set of interpolation procedures which
may jointly be responsible for the system inconsistency. Then, in-
dividual candidates are modified such that all contradictions are
removed, and thus, interpolation consistency is restored. It has
been developed on the assumption that contradictions may only be
resulted from the underlying interpolation mechanism, and that all
the identified candidates are not distinguishable in terms of their
likelihood to be the real culprit. However, this assumption may
not hold for real-world situations. This paper, therefore, further
develops the adaptive method by taking into account observations,
rules, and interpolation procedures, all as diagnosable and modifi-
able system components. In addition, given the common practice in
fuzzy systems that observations and rules are often associated with
certainty degrees, the identified candidates are ranked by examin-
ing the certainty degrees of its components and their derivatives.
From this, the candidate modification is carried out based on such
ranking. This study significantly improves the efficacy of the exist-
ing adaptive system by exploiting more information during both
the diagnosis and modification processes.

Index Terms—Adaptive fuzzy rule interpolation (AFRI),
assumption-based truth maintenance system (ATMS), fuzzy in-
ference, general diagnostic engine (GDE).

I. INTRODUCTION

FUZZY inference systems have been successfully applied to
many real-world applications, but the systems may suffer

from either too sparse or too complex rule bases. Fuzzy rule
interpolation (FRI) alleviates this by supporting inference with
incomplete sparse rule bases, or by simplifying complex fuzzy
systems that involve very dense rule bases through approxi-
mating certain parts of the model with their neighboring rules
[1], [2]. Many important FRI methods and their analysis or vari-
ations have been presented in the literature, including [1]–[22].
What is common to most of these techniques is that multiple
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values may be derived for a single variable. This implies that
inconsistencies have been generated in the interpolated results.

Adaptive fuzzy rule interpolation (AFRI) was proposed in an
effort to address this problem [23], [24]. It was developed upon
FRI approaches by which two neighboring rules that flank an ob-
servation are utilized for interpolation. The approach efficiently
detects inconsistencies, directly locates possible sets of fault
components (namely, candidates), and effectively modifies the
candidates in order to restore consistency, by removing detected
inconsistencies. The approach artificially treats an FRI system
as a component-based mechanism, where system components
are defined as interpolation procedures. An assumption-based
truth maintenance system (ATMS) [25]–[27] is employed to
record the depending relationships between interpolated results
and their dependent system components (i.e., its proceeding in-
terpolation procedures). Then, the classical general diagnostic
engine (GDE) [28] is utilized to hypothesize a set of candidates
that each may have led to all the system contradictions. Finally,
the system consistency is restored by modifying an identified
single candidate.

The adaptive approach outlined above assumes that all the
contradictory interpolated results are caused by the underpin-
ning interpolation procedures. This assumption restricts the ap-
plications of AFRI to problems with defective fuzzy interpo-
lation procedures only, but observations and rules in a fuzzy
inference system may also be ill-specified (to a certain extent).
Thankfully, this limitation is not a fundamental restriction of the
idea underlying the adaptive approach. Supported by the initial
preliminary investigations of [29], this paper further develops
the work of [24], to allow the diagnosis and modification of ob-
servations and rules. This significantly enhances the robustness
of the original method as one consistent inference result may
still be derived when the original fails, often with intuitively
more reasonable interpolated results.

Due to the introduction of more complex and uncertain infor-
mation to the underlying information and knowledge representa-
tion scheme, the number of generated candidates may increase
dramatically. However, these candidates can be discriminated
as: 1) two different values derived for a given variable that have
led to a contradiction may not be equally reliable (besides, one
may be correct and the other wrong); and 2) all the elements
which jointly support one of the two contradictory values may
not be equally reliable. A candidate prioritization mechanism is,
therefore, introduced here to reinforce the present work, starting
from the initial report of [30], such that only the most important
candidates are considered during the modification stage. First,
the classical ATMS is extended to record dependences and also
to log the extent to which such dependences are deemed reli-
able. The candidates are then prioritized using a modified GDE
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Fig. 1. Adaptive fuzzy interpolation.

by taking the reliability information into consideration. Thanks
to the prioritization of candidates, a consistent solution can be
rapidly derived with saved computational cost.

The remainder of this paper is organized as follows. A brief
review of the theoretical underpinnings of AFRI is presented
in Section II. An extension of the candidate generation proce-
dure is reported in Section III, by which a candidate element
can be an observation, rule, or fuzzy interpolation procedure. A
generalization of the candidate modification procedure is dis-
cussed in Section IV, which allows the modification of all types
of diagnosable candidate components. To facilitate comparison,
the application problem considered in [24] is reinvestigated in
Section V, where the proposed approach is employed. This pa-
per is concluded in Section VI, with important future directions
of improvements pointed out.

II. ADAPTIVE FUZZY RULE INTERPOLATION

AFRI ensures that interpolated results remain consistent to a
certain degree throughout the entire interpolation process [24].
In this paper, given two fuzzy sets Ai and Aj with respect to
the same variable x within the domain Dx , the degree of con-
sistency between them is represented as the degree of matching
as follows:

M(Ai,Aj ) = sup
x∈Dx

[min(μAi
(x), μAj

(x))]. (1)

Based on this, the degree β of a contradiction regarding two
propositions P (x is Ai) and P ′(x is Aj ) is defined as

β = 1−M(Ai,Aj ). (2)

This study adopts a predefined threshold β0 (0 ≤ β0 ≤ 1) to
examine whether a pair of values associated with a common
variable is unacceptably contradictory. A β0-contradiction ap-
pears if the corresponding contradictory degree between the two
concerned propositions is greater than β0 .

As with [24], each pair of neighboring rules, which may be
utilized together for interpolation, is termed as a fuzzy inter-
polation component (FIC). The input of such a component is a
vector of observations and/or previous inferred results, which is
hereafter referred to an interpolation input for simplicity. The
output is the consequence of the interpolated rule, which takes
such an input as its antecedent. The working process of AFRI
is illustrated in Fig. 1. Given a fuzzy inference problem with
a sparse rule base, the interpolator performs inference through
FRI, and the ATMS records the dependences of contradictions
upon the preceding FICs. Then, the GDE diagnoses the cause
of the contradictions and generates candidates for modification,

and finally, the modifier revises the candidates to remove con-
tradictions and restore system consistency.

A. Rule Interpolation by the Interpolator

Suppose that the interpolation input is

O : x1 = A∗1x and ... and xm = A∗mx (3)

and that rules

Ri : IF x1 = A1i and ... and xm = Ami, THEN y = Bi

Rj : IF x1 = A1j and ... and xm = Amj , THEN y = Bj

(4)
are the neighboring ones used for interpolation regarding the
input O. The scale and move transformation-based FRI, upon
which AFRI has been introduced, is outlined in Fig. 2. Further
details of this approach can be found in [12] and [13], but this
is out of the scope of this paper.

In this figure, there are m repeated subcomponents, each of
which takes A∗kx , Aki , and Akj (1 ≤ k ≤ m) as inputs and pro-
duces a relative placement factor λk , an intermediate fuzzy set
A∗kx

′, and a number of similarity measurements between Akx

and A∗kx . Each subcomponent first uses the so-called represen-
tative values aki , akj , and a∗kx to express the overall positions of
Aki , Akj , and A∗kx , respectively, computed using the function
f1 . The relation regarding the relative locations between the in-
terpolation input term A∗kx and the corresponding antecedents
terms (Aki and Akj ) of a pair of neighboring rules is computed
next, resulting in the required λk , which is computed by the
real function f2 . From this, an antecedent term of the inter-
mediate rule A∗kx

′ is calculated by applying real function f3
with a parameter λk to Aki and Akj . Next, a set of similar-
ity degrees between A∗kx and A∗kx

′, expressed as the scale rate
sk , scale ratio Sk , and move rate Mk , is obtained by applying
the function f4 (which stands for a predefined similarity met-
ric). Function f6 is then introduced to combine all the resultant
λk (k ∈ {1, 2, ...,m}) to an overall single scale λ, as is f7 to
combine all the similarity rates (sk , Sk , Mk ) to (s, S, M). The
conclusion B∗ can finally be approximated by transforming the
consequent B∗′ of the intermediate rule. This is implemented
by applying the combined single-scale similarity rates, through
the transformation function f5 :

T (B∗, B∗′) = T ((A1x , ...., Amx), (A∗1x
′, ...., A∗mx

′)). (5)

B. Truth Maintenance by the Assumption-Based Truth
Maintenance System

In implementing AFRI, ATMS is utilized to record the depen-
dence of interpolated results and that of contradictions, upon the
FICs from which they are inferred. Using ATMS’ terminology,
observations, interpolated results, contradictions, and FICs can
all be represented as ATMS nodes, each of which is formed by
a name (standing for its logical or physical meaning), a set of
justifications, and a label.

A justification expresses a logical implication through which
a node may be derived from other relevant nodes. An inferred
proposition represented as an ATMS node is of the following
justification:

M1 ,M2 , ...,Mn ,RiRj ⇒ C (6)
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Fig. 2. Outline of transformation-based FRI.

where RiRj denotes the FIC formed by the two neighboring
rules Ri and Rj (i �= j) which infers the interpolated result
C from n other nodes M1 ,M2 , ...,Mn (that are observations
and/or interpolated results). Based on the definition of contra-
diction, a β0-contradiction is reached if the contradiction degree
β between any two propositions P (x is Ai) and P ′(x is Aj )
is greater than a predefined threshold β0 , which is expressed in
the format of proposition as

P, P ′ ⇒β0 ⊥. (7)

A label is a set of environments, each of which is a mini-
mal set of FICs that jointly entail the supported node. An en-
vironment is said to be β0-inconsistent if β0-contradiction is
logically derivable by the environment and a given justification;
otherwise, the environment is (1− β0)-consistent. The ATMS
label updating algorithm ensures that the label of each node is
(1− β0)-consistent, sound, minimal, and complete, except that
the label of the special “false” node is β0-inconsistent rather
than (1− β0)-consistent. Whenever a β0-contradiction is de-
tected, each environment in its label is added into the label of
the “false” node, and all such environments and their supersets
are removed from the label of every other node. In addition,
any such environment which is a superset of another is removed
from the label of the “false” node. Therefore, the label of the
special “false” node collectively holds the minimal complete set
of environments, each of which leads to a β0-contradiction.

C. Candidate Generation by the General Diagnostic Engine

A set of minimal candidates for modification can be generated
by GDE [28] from the label of the “false” node. A candidate is
a set of FICs that may have led to all detected contradictions.
Since a β0-inconsistent environment contained in the label of
the “false” node indicates that at least one of its elements is
inconsistent (or faulty), a candidate must have a nonempty in-
tersection with each β0-inconsistent environment. Based on this
observation, each candidate is constructed by taking just one

FIC from each environment that supports the “false” node. The
candidates are guaranteed to be minimal by removing all the
supersets of others. As a result of this, the successful correction
of any single candidate will remove all contradictions.

D. Candidate Modification by the Modifier

AFRI always modifies the candidate with the smallest car-
dinality first. With respect to a given queue of candidates Q,
the overall modification procedure is outlined in Algorithm 1.
The main subprocedure MODIFY(C) takes a single candidate
(C) as input and returns a Boolean value to indicate whether the
modification succeeds or not.

Algorithm 1: The CONSISTENCYRESTORING procedure.
CONSISTENCYRESTORING(Q)

Input: Q, a queue of candidates, each of which is a set
of FICs.

Output: True, if succeeds; False, otherwise.
1) modified←False
2) do
3) C← Dequeue(Q)
4) modified←MODIFY(C)
5) while ((modified ==False) && (Q! = ∅))
6) return modified

To illustrate the basic ideas embedded in this subprocedure,
suppose that the defective FIC is formed by the pair of neighbor-
ing rules as given in (4), which flanks the interpolation inputs
Ox(x ∈ {1, 2, ..., n}) in the form of (3). The implementation of
the modification procedure for a candidate consisting of a single
FRI can then be summarized in the following steps:

Step 1: Find the interpolated rule “IF x1 = A∗1k and · · · and
xm = A∗mk , THEN y = B∗k ” whose antecedent is located in the
middle most of the neighborhood of the antecedents of the two
rules used for interpolation in terms of their representative values
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that are calculated using a particular integration formula [24].
Suppose that the relative placement factor of its consequence
λk is modified to ̂λk . The correction rate pair can then be
calculated as

{

c− = ̂λk

λk

c+ = 1−̂λk

1−λk
.

(8)

Step 2: Obtain the modified relative placement factors of the
consequences of all other interpolated rules, which have been
created with respect to the same defective FIC in the same way
as that used to compute the correction rate pair above, where
p ∈ {1, 2, ..., k − 1} and q ∈ {k + 1, k + 2, ..., n}:

{

̂λp = λp · c−
1− ̂λq = (1− λq ) · c+ .

(9)

Step 3: Compute the modified consequences of the in-
termediate rules corresponding to all interpolated rules that
have been generated from the same defective FIC in accor-
dance with their modified relative placement factors. Sup-
pose that the intermediate rule corresponding to defec-
tive rule “IF x1 = A∗1x and · · · and xm = A∗mx, THEN y =
B∗x” is “IF x1 = A′1x and · · · and xm = A′mx, THEN y =
B′x .” From this, the modified consequence of the intermediate
rule ̂B′x is

̂B′x = (1− ̂λx)Bi + ̂λxBj (10)

where x ∈ {1, 2, ..., n}. That is, the modified intermediate rule
becomes “IF x1 = A′1x and · · · and xm = A′mx, THEN y =
̂B′x .”

Step 4: Compute the modified consequences of all interpo-
lated rules from the consequences of the modified intermediate
rules through scale and move transformations:

T ((A1x
′, ..., Amx

′), (A∗1x , ..., A∗mx)) = T ( ̂B′x , ̂B∗x) (11)

where x ∈ {1, 2, ..., n}, and T (·, ·) represents the transforma-
tions based on the scale and move measures [12], [13].

Step 5: Impose restriction over the modified consequence
such that it becomes consistent with the interpolation context.
Suppose that m object values B1 , B2 , ..., Bm are obtained for
the variable y. If they are (1− β0)-consistent, they must satisfy

m
⋂

j=1

(Bj )β0 �= ∅ (12)

where (Bj )β0 denotes the β0-cut of fuzzy set Bj .
Step 6: Constrain the propagations of all modified conse-

quences so that they are consistent with the rest. Propagate
the modified result through the entire reasoning network. For
a given variable z, suppose that m object values of the vari-
able z have been modified via the propagation, resulting in
modified values ̂Ci , i ∈ {1, 2, ...,m}, and that n object values
Cj , j ∈ {1, 2, ..., n}, of z are not affected by the propagation.
These modified consequences must satisfy the following such
that they are all (1− β0)-consistent:

(

m
⋂

i=1

( ̂Ci)β0

)

⋂

(

n
⋂

l=1

(Cj )β0

)

�= ∅. (13)

Step 7: Solve the set of simultaneous equalities and inequali-
ties as posed above. The solutions imply successfully modified
results which guarantee the system reasoning consistency.

III. GENERALIZING CANDIDATE GENERATION

Only FICs are regarded as diagnosable and modifiable can-
didate elements in the original AFRI approach outlined above.
However, observations and rules may also be faulty to a cer-
tain extent. This section extends the existing AFRI such that
observations and rules can also be diagnosed and modified. To
facilitate this, the certainty degrees of observations, rules, and
FICs are discussed first.

A. Certainty Degrees of Observations and Rules

There are generally four categories of inexact informa-
tion [31]: 1) vagueness, 2) uncertainty, 3) both vagueness and
uncertainty with the latter represented as real numbers, and 4)
both vagueness and uncertainty with the latter also defined as
fuzzy sets. The existing FRI [24] only considers type 1 infor-
mation, which is extended in this study by introducing type 2
information into the system, thereby resulting in the exploitation
of type 3 information overall.

With the extra information, an observation is represented as

O: xi = A∗ij (cO ) (14)

where 0 ≤ cO ≤ 1 expresses the certainty degree of the obser-
vation O. Conceptually, the vagueness of an object value can
be modeled as a fuzzy set due to the lack of a precise boundary
between given bits of information. Here, the certainty degree of
an observation is represented as a crisp number, which is either
assigned subjectively [32] or estimated from other mechanisms
such as statistical data analysis. It indicates the confident level
at which the current description of the object value may be
regarded as of confidence or being reliable.

Denote the certainty degree of an observation O as cO . Then,
the uncertainty degree of the same piece of information is
naturally expressed as 1− cO . Thus, the modifiable range of
the object value O is intuitively bounded to the proportion of
1− cO in reference to the entire variable domain. This means
that the factual object value of O can be obtained by shifting
the fuzzy set representation of the defective observation toward
either side of the variable domain to a maximal distance of
1−cO

2 (maxi −mini), where the domain of the variable xi is
Dxi

= [mini ,maxi ]. Given that the shifting of a vague term is
restricted from changing the shape and area of the underlying
fuzzy set, the shifting process is equivalent to adding a real num-
ber to the original fuzzy set [33]. Formally, the factual value of
A∗ij , denoted as ̂A∗ij , of the observation O as given in (14) must
satisfy

{

̂A∗ij ≥ Aij − 1−cO

2 (maxi −mini)
̂A∗ij ≤ Aij + 1−cO

2 (maxi −mini).
(15)

It is possible that the shifting may be out of the variable
domain due to the inaccuracy of the uncertainty information.
Therefore, to ensure that the final shifting result is within the
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value range of the variable, the following must be satisfied:
{

min(supp( ̂A∗ij )) ≥ mini

max(supp( ̂A∗ij )) ≤ maxi

(16)

where supp( ̂A∗ij ) represents the support of ̂A∗ij .
Similarly, with the uncertainty information, rules given in (4)

are then extended to be of the following form:

Ri : IF x1 = A1i and · · · and xm = Ami,
THEN y = Bi (cRi

);
Rj : IF x1 = A1j and · · · and xm = Amj ,
THEN y = Bj (cRj

).

(17)

This means that rules Ri and Rj are certain to the degree of cRi

and cRj
, respectively. As with the certainty degrees associated

with observations, certainty degrees attached to the rules are
either subjectively provided or objectively learned.

B. Certainty Degrees of Fuzzy Interpolation Components

An FIC consisted of two neighboring rules is utilized in this
study to represent the fuzzy interpolation mechanism. Essen-
tially, this mechanism is an extension of classical linear interpo-
lation on fuzzy rules. Thus, intuitively, if an FIC is defined on
a pair of neighboring rules that are more certain to derive cor-
rect interpolated results, such an artificially created component
is deemed to be more reliable, under the linearity assumption.
Suppose that the FIC RiRj consists of the following two single-
antecedent rules:

Ri : IF x = Ai, THEN y = Bi (cRi
)

Rj : IF x = Aj , THEN y = Bj (cRj
). (18)

Then, reflecting this intuition, the certainty degree cRi Rj
of the

component RiRj can be defined by

cRi Rj
= 1−

∣

∣

∣

∣

d(Ai,Aj )
maxx −minx

− d(Bi,Bj )
maxy −miny

∣

∣

∣

∣

(19)

where d(A,A′) is the distance between A and A′ (given a certain
distance metric), and maxz and minz are the maximum and
minimum of the domain values of the variable z(z = x, y),
respectively. Note that cRi Rj

∈ [0, 1].
For the more general cases where the FIC RiRj is composed

by two multiantecedent rules as given in (17), the calculation of
the certainty degree can be readily extended. The result is given
as follows:

cRi Rj
= 1−

∣

∣

∣

∣

∣

∣

∑m
k=1

d(Ak i ,Ak j )
maxx k

−minx k

m
− d(Bi,Bj )

maxy −miny

∣

∣

∣

∣

∣

∣

. (20)

In this equation, the distance between the two sets of antecedents
of two multiantecedent fuzzy rules is defined as the average
of the distances between all pairs of corresponding antecedent
terms regarding each corresponding variable. This is again to
reflect the underlying linearity assumption.

C. Certainty Degrees of Interpolated Results

Given an interpolation input M1 ,M2 , ...,Mn , two neighbor-
ing rules Ri and Rj that flank the given interpolation input, and

the corresponding FIC RiRj , a logical consequence C can be
generated by applying FRI. Then, the certainty degree cC of
the conclusion C can be derived from the certainty degrees of
the input terms, the certainty degree of the neighboring rules,
and the certainty degree of the corresponding FIC, which is
calculated by

cC = cM 1 ⊗ cM 2 ⊗ · · · ⊗ cMn
⊗ cRi

⊗ cRj
⊗ cRi Rj

(21)

where the composition operator ⊗ is a t-norm operator, such
as minimum and algebraic product. Note that multiple applica-
tions of different interpolation procedures may lead to the same
interpolated result C. However, they may be associated with dif-
ferent certainty degrees, say cC1 , cC2 , ..., cCn

. Then, the overall
certainty degree c of the interpolated result C is revised as

c = cC1 ⊕ cC2 ⊕ · · · ⊕ cCn
(22)

where ⊕ is an s-norm operator, such as maximum.

D. Dependence Recording With Extended Assumption-Based
Truth Maintenance System

In the previous work of [24], ATMS records the dependences
of the contradictions (or interpolated results) upon FICs. How-
ever, in general, such contradictions may also depend upon the
observations and rules used to perform FRI. Therefore, observa-
tions, interpolated results, contradictions, FICs, and rules are all
represented as ATMS nodes in this study, which are originally
assumed to be true and which may be established to be false
(of a certain degree) subsequently. Recall that a justification de-
scribes how a node is derivable from other nodes. In general, any
ATMS node with an interpolated result C from an interpolation
input M1 ,M2 , ...,Mn based on neighboring rules Ri and Rj

may now be verified by the following ATMS justification:

M1 ,M2 , ...,Mn ,Ri, Rj ,RiRj ⇒ C. (23)

Equation (23) degenerates to (6) when rules Ri and Rj (i �=
j) are fixed and true and hence not needed to be kept in the
dependence records.

The above justification not only explicitly describes how the
consequence C is logically derived from other nodes, but also
implicitly expresses to what extent C can be derived from the
nodes M1 , M2 , ..., Mn , Ri , Rj , and RiRj , with the support
of their certainty values. This implicit information is explicitly
held in extended ATMS nodes. The certainty degrees of primi-
tive ATMS nodes, including observations, rules, and FICs have
been discussed in the previous sections, which can be directly
used here to extend the corresponding ATMS nodes. The cer-
tainty degree of an interpolated result can be derived from its
entire set of label environments, based on (22), while the ex-
tent to which each individual environment entails the concerned
interpolated result can be computed on the basis of (21). The pro-
cess of calculating and updating of the certainty degrees of in-
terpolated results is effectively managed by an extended ATMS
label-updating mechanism. As a result, an extended ATMS node
not only expresses how it is entailed by its label environments,
but also indicates to what extent the node is derivable from the
label environments.
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E. Candidate Generation With Extended General Diagnostic
Engine

A β0-contradiction occurs if two object values are observed
and/or derived for a common variable that differ to the extent of
at least β0 , and therefore, one or both of the two values are faulty.
Due to lack of differentiating information, both contradictory
values are supposed to be equally faulty in [24]. With the support
of additional information of certainty degrees as recorded in
the extended ATMS, two values for a common variable can
be distinguished in response to the extent to which each of
them is derivable. In addition, for any one of the two ATMS
nodes representing the two observations/interpolated results, the
elements in its label environments are also distinguishable as
some of the elements are of higher certainty degrees than others.
Within the label environment of either of the two contradictory
values, those elements with the smallest certainty degree are
intuitively regarded as the most likely to be the real culprit.
Based on these observations, the candidates generated by GED
can be prioritized. In order to do so, all the elements in the label
environments of the “false” node are ranked first.

Suppose that E⊥ is one of the label environments of the
“false” node which is deduced by two contradictory propo-
sition P and P ′. Then, there must exist environments E =
{e1 , e2 , ..., em} and E ′ = {e′1 , e′2 , ..., e′n}, which entail the cor-
responding propositions such that E ∪ E′ = E⊥. Suppose that
the certainty degrees associated with the propositions P and P ′

are c and c′, respectively. The procedure of prioritizing the label
elements of E⊥, by assigning a ranking value to each element,
is shown in Algorithm 2. Assuming that c ≤ c′, this algorithm
guarantees that ei ≤ e′j , i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., n},
and vice versa.

Algorithm 2: The ELEMENTRANKING procedure.

ELEMENTRANKING(E,E′,c,c′)
1) E⊥ = E ∪ E ′

2) foreach e ∈ E⊥
3) if (c ≤ c′ && e ∈ E ′)||(c′ ≤ c && e ∈ E)
4) re = ce + 1
5) else
6) re = ce

Recall that each label environment of the “false” node entails
a contradiction. Thus, by taking one element from each environ-
ment of the “false” node, a candidate is constructed. Repeating
this will generate all possible candidates. If all the duplications
are deliberately kept, all the originally generated candidates will
have the same cardinality, equaling to the number of label en-
vironments in the “false” node. From this, all candidates can
be prioritized according to the ranking values of their members.
Algorithm 3 shows a two-step sorting method for this. After the
ranking, duplications of candidate elements are removed, and
all those candidates which are a superset of one other candidate
are also removed to guarantee that the candidate set is minimal.
Obviously, such removals do not alter the ranking order of the
remaining candidates.

Algorithm 3: The CANDIDATESORTING procedure.
CANDIDATESORTING(S)

Input: S, a set of candidates with the same cardinality.
1) foreach C ∈ S
2) SORT (C) // Sort all the members of C in

ascending order by their ranking
values

3) foreach i = |C| : 1
4) STABLESORT(S, i) // Sort all the candidates

in ascending order by
the ranking values of
their ith members

Note that a number of extensions to the classic ATMS and
GDE have been proposed in the literature. A possibilistic ATMS
was proposed in [34], where all the assumptions and justifica-
tions are associated with possibility values and handled in the
framework of possibility theory [35]. A credibilistic ATMS was
proposed in [36], which is developed on the basis of credibil-
ity theory [37]. The approach of [38] and [39] generalized the
classical ATMS to work with reasoning systems using multi-
valued logic. The present work differs from these extensions as
reliability values are used to reflect certainty degrees. Note too
that classical GDE has also been extended from other perspec-
tives, such as for reducing search spaces [40] and for modeling
in situations where connections may also be faulty [40]. All
these extensions to ATMS and GDE are interesting in further
generalizing the present study, but are beyond the scope of this
paper.

F. Illustrative Example—Part 1

The running example in the original work on AFRI [24] is
reconsidered herein, but all the rules and observations are now
associated with the information of certainty degrees. For com-
pleteness, the rule base is provided below:

R1 : IF x1 = A1 , THEN x2 = B1 (0.80)
R2 : IF x1 = A2 , THEN x2 = B2 (0.90)
R3 : IF x2 = B3 , THEN x3 = C3 (0.60)
R4 : IF x2 = B4 , THEN x3 = C4 (0.70)
R5 : IF x3 = C5 , THEN x6 = F5 (0.70)
R6 : IF x3 = C6 , THEN x6 = F6 (0.80)
R7 : IF x3 = C7 and x4 = D7 , THEN x5 = E7 (0.90)
R8 : IF x3 = C8 and x4 = D8 , THEN x5 = E8 (0.60)
R9 : IF x6 = F9 , THEN x7 = G9 (0.90)
R10 : IF x6 = F10 , THEN x7 = G10 (0.80)
R11 : IF x5 = E11 , THEN x7 = G11 (0.70)
R12 : IF x5 = E12 , THEN x7 = G12 (0.90).
The parameter set and representation schemes used in [24] are

also utilized in this study, and thus, the details are omitted. With
the support of extra information, suppose that the four obser-
vations are now: O1 : x1 = A∗ = (9.0, 9.5, 10.0, 10.5) (0.70),
O2 : x2 = B∗ = (7.0, 7.5, 8.0, 8.5) (0.60), O3 : x4 =
D∗ = (5.5, 6.0, 6.5, 7.0) (0.90), and O4 : x6 = F ∗ =
(11.0, 11.5, 12.0, 12.5) (0.80). By applying the classical
scale and move transformation-based FRI, multiple pairs of
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Fig. 3. Fuzzy sets and contradictions involved in the example.

contradictions result (e.g., F ∗ and F ∗2 ), which are summarized
in Fig. 3.

The interpolation procedures are outlined as a component-
based diagram, as illustrated in Fig. 4. In this figure, all the
ATMS nodes and contradictions are shown as circles. Take node
P5 as an example. This node is inferred from the nodes P3 and
O3 by the FIC F4 , which uses the rules R7 and R8 , whose justi-
fication is, therefore, P3 , O3 , R7 , R8 , F4 ⇒ P5 , where O3 is an
observation, and P3 is a previously interpolated result. By run-
ning the label-updating algorithm of the extended ATMS, the
label of the node P5({{O2 , O3 , R3 , R4 , F2 , R7 , R8 , F4}}) can
be derived from the labels of: the observation O3({{O3}}),
the interpolated result P3({{O2 , R3 , R4 , F2}}), the rules
R7({{F7}}) and R8({{R8}}), and the FIC F4({{F4}}).

The certainty degrees of all FICs can be obtained by apply-
ing the approach introduced in Section III-B. For instance, the
certainty degree of the FIC F1 is calculated as follows:

cF1 = 1−
∣

∣

∣

∣

d(A1 , A2)
maxx1 −minx1

− d(B1 , B2)
maxx2 −minx2

∣

∣

∣

∣

= 1−
∣

∣

∣

∣

Rep(A2)− Rep(A1)
maxx1 −minx1

− Rep(B2)− Rep(B1)
maxx2 −minx2

∣

∣

∣

∣

= 1−
∣

∣

∣

∣

16.75− 6.75
20− 0

− 14.75− 5.75
20− 0

∣

∣

∣

∣

= 0.05

where Rep(A) denotes the representative value of the fuzzy set
A [12]. The certainty degrees of derived nodes can be computed
by following (22). As an example, the certainty degree of the
derived node P10 is computed as follows:

cP1 0 = (cO2 ⊗ cO3 ⊗ cR3 ⊗ cR4 ⊗ cF2 ⊗ cR7 ⊗ cR8 ⊗ cF4

⊗cR1 1 ⊗ cR1 2 ⊗ cF6 )⊕ (cO4 ⊗ cR9 ⊗ cR1 0 ⊗ cF5 )

= max(0.60 ∗ 0.90 ∗ 0.60 ∗ 0.70 ∗ 1.00 ∗ 0.90 ∗ 0.60 ∗
0.75 ∗ 0.70 ∗ 0.90 ∗ 1.00, 0.80 ∗ 0.90 ∗ 0.80 ∗ 1.00)

= 0.58.

The certainty degrees of all other derived nodes can be calculated
in the same manner. All the ATMS nodes (i.e., observations,
rules, and FICs) and contradictions are summarized below:

R1 : 〈x1 = A1 ⇒ x2 = B1 , 0.80, {{R1}}〉
R2 : 〈x1 = A2 ⇒ x2 = B2 , 0.90, {{R2}}〉
R3 : 〈x2 = B3 ⇒ x3 = C3 , 0.60, {{R3}}〉
R4 : 〈x2 = B4 ⇒ x3 = C4 , 0.70, {{R4}}〉
R5 : 〈x3 = C5 ⇒ x6 = F5 , 0.70, {{R5}}〉
R6 : 〈x3 = C6 ⇒ x6 = F6 , 0.80, {{R6}}〉
R7 : 〈x3 = C7 , x4 = D7 ⇒ x5 = E7 , 0.90, {{R7}}〉
R8 : 〈x3 = C8 , x4 = D8 ⇒ x5 = E8 , 0.60, {{R8}}〉
R9 : 〈x6 = F9 ⇒ x7 = G9 , 0.90, {{R9}}〉
R10 : 〈x6 = F10 ⇒ x7 = G10, 0.80, {{R10}}〉
R11 : 〈x5 = E11 ⇒ x7 = G11, 0.70, {{R11}}〉
R12 : 〈x5 = E12 ⇒ x7 = G12, 0.90, {{R12}}〉
F1 : 〈R1R2 , 0.95, {{F1}}〉
F2 : 〈R3R4 , 1.00, {{F2}}〉
F3 : 〈R5R6 , 0.65, {{F3}}〉
F4 : 〈R7R8 , 0.75, {{F4}}〉
F5 : 〈R9R10 , 1.00, {{F5}}〉
F6 : 〈R11R12 , 1.00, {{F6}}〉
O1 : 〈x1 = A∗, 0.70, {{O1}}〉
O2 : 〈x1 = B∗, 0.60, {{O2}}〉
O3 : 〈x4 = D∗, 0.90, {{O3}}〉
O4 : 〈x6 = F ∗, 0.80, {{O4}}〉
P1 : 〈x2 = B∗1 , 0.48, {{O1 , R1 , R2 , F1}}〉
P2 : 〈x3 = C∗1 , 0.20, {{O1 , R1 , R2 , F1 , R3 , R4 , F2}}〉
P3 : 〈x3 = C∗2 , 0.25, {{O2 , R3 , R4 , F2}}〉
P4 : 〈x5 = E∗1 , 0.07, {{O1 , O3 , R1 , R2 , F1 , R3 , R4 , F2 , R7 ,

R8 , F4}}〉
P5 : 〈x5 = E∗2 , 0.09, {{O2 , O3 , R3 , R4 , F2 , R7 , R8 , F4}}〉
P6 : 〈x6 = F ∗2 , 0.09, {{O2 , R3 , R4 , F2 , R5 , R6 , F3}}〉
P7 : 〈x6 = F ∗1 , 0.07, {{O1 , R1 , R2 , F1 , R3 , R4 , F2 , R5 , R6 ,

F3}}〉
P8 : 〈x7 = G∗2 , 0.06, {{O2 , R3 , R4 , F2 , R5 , R6 , F3 , R9 , R10 ,

F5}}〉
P9 : 〈x7 = G∗1 , 0.05, {{O1 , R1 , R2 , F1 , R3 , R4 , F2 , R5 , R6 ,

F3 , R9 , R10 , F5}}〉
P10 : 〈x7 = G∗3 , 0.58, {{O2 , O3 , R3 , R4 , F2 , R7 , R8 , F4 ,

R11 , R12 , F6}, {O4 , R9 , R10 , F5}}〉
P11 : 〈x7 = G∗4 , 0.05, {{O1 , O3 , R1 , R2 , F1 , R3 , R4 , F2 , R7 ,

R8 , F4 , R11 , R12 , F6}}〉
⊥1 : 〈⊥, {{O1 , O2 , O3 , R1 , R2 , F1 , R3 , R4 , F2 , R7 , R8 ,

F4}}〉
⊥2 : 〈⊥, {{O2 , O4 , R3 , R4 , F2 , R5 , R6 , F3}}〉
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Fig. 4. Discrepancy records in ATMS.

⊥3 : 〈⊥, {{O1 , O2 , R1 , R2 , F1 , R3 , R4 , F2 , R5 , R6 , F3}}〉
⊥4 : 〈⊥, {{O2 , O3 , R3 , R4 , F2 , R5 , R6 , F3 , R7 , R8 , F4 , R9 ,

R10 , F5 , R11 , R12 , F6}, {O2 , O4 , R3 , R4 , F2 , R5 , R6 ,
F3 , R9 , F5}}〉

⊥5 : 〈⊥, {{O1 , O2 , R1 , R2 , F1 , R3 , R4 , F2 , R5 , R6 , F3 , R9 ,
R10 , F5}}〉

⊥6 : 〈⊥, {{O1 , O3 , O4 , R1 , R2 , F1 , R3 , R4 , F2 , R7 , R8 , F4 ,
R9 , R10 , F5 , R11 , R12 , F6}, {O1 , O2 , O3 , R1 , R2 , F1 ,
R3 , R4 , F2 , R7 , R8 , F4 , R11 , R12 , F6}}〉

⊥7 : 〈⊥, {{O1 , O2 , O3 , R1 , R2 , F1 , R3 , R4 , F2 , R5 , R6 , F3 ,
R7 , R8 , F4 , R9 , R10 , F5 , R11 , R12 , F6}}〉

⊥8 : 〈⊥, {{O1 , O3 , R1 , R2 , F1 , R3 , R4 , F2 , R5 , R6 , F3 , R7 ,
R8 , F4 , R9 , R10 , F5 , R11 , R12 , F6}}〉.

The “false” node, denoted by P⊥, collectively represents all
the contradictions ⊥1 ,⊥2 , ...,⊥8 by only containing a minimal
set of label environments, which is given as follows:

P⊥ : 〈⊥, {{O1 , O2 , O3 , R1 , R2 , F1 , R3 , R4 , F2 , R7 , R8 , F4},
{O2 , O4 , R3 , R4 , F2 , R5 , R6 , F3}, {O1 , O2 , R1 , R2 , F1 , R3 ,
R4 ,F2 , R5 , R6 , F3}, {O2 , O3 , R3 , R4 , F2 , R5 , R6 , F3 , R7 ,
R8 , F4 ,R9 , R10 , F5 , R11 , R12 , F6}, {O1 , O3 , O4 , R1 , R2 , F1 ,
R3 , R4 ,F2 , R7 , R8 , F4 , R9 , R10 , F5 , R11 , R12 , F6}, {O1 , O3 ,
R1 , R2 ,F1 , R3 , R4 , F2 , R5 , R6 , F3 , R7 , R8 , F4 , R9 , R10 , F5 ,
R11 , R12 ,F6}}〉.

Applying the extended GDE as introduced in Section III-D,
a ranked list of minimal candidates (including 85 candidates) is
generated as follows:

C1 = [R3, 0.6], C2 = [O2, 0.6;R8, 0.6]
C3 = [R8, 0.6;F3, 0.65], C4 = [O2, 0.6;F3, 0.65;O4, 0.8]
C5 = [O2, 0.6;O1, 0.7], C6 = [R8, 0.6;R5, 0.7]
C7 = [O2, 0.6;R11, 0.7], C8 = [O2, 0.6;R5, 0.7;O4, 0.8]
C9 = [R8, 0.6;O1, 0.7;O4, 0.8], C10 = [O2, 0.6;F4, 0.75]
C11 = [O2, 0.6;R1, 0.8], C12 = [O2, 0.6;O4, 0.8;R6, 0.8]
C13 = [R8, 0.6;O4, 0.8;R1, 0.8]
C14 = [R8, 0.6;R6, 0.8], C15 = [O2, 0.6;R10, 0.8]
C16 = [R8, 0.6;O4, 0.8;R2, 0.9]
C17 = [R8, 0.6;O4, 0.8;F1, 0.95]
C18 = [O2, 0.6;O3, 0.9], C19 = [O2, 0.6;R2, 0.9]

C20 = [O2, 0.6;R7, 0.9], C21 = [O2, 0.6;R9, 0.9]
C22 = [O2, 0.6;R12, 0.9], C23 = [O2, 0.6;F1, 0.95]
C24 = [O2, 0.6;F5, 1.0], C25 = [O2, 0.6;F6, 1.0]
C26 = [F3, 0.65;O1, 0.7], C27 = [F3, 0.65;F4, 0.75]
C28 = [F3, 0.65;R1, 0.8], C29 = [F3, 0.65;O3, 0.9]
C30 = [F3, 0.65;R2, 0.9], C31 = [F3, 0.65;R7, 0.9]
C32 = [F3, 0.65;F1, 0.95]
C33 = [O1, 0.7;R5, 0.7;O1, 0.7], C34 = [R4, 0.7]
C35 = [O1, 0.7;R11, 0.7;O4, 0.8]
C36 = [R5, 0.7;F4, 0.75]
C37 = [O1, 0.7;F4, 0.75;O4, 0.8]
C38 = [O1, 0.7;R6, 0.8]
C39 = [O1, 0.7;O4, 0.8;R10, 0.8]
C40 = [R5, 0.7;R1, 0.8], C41 = [O1, 0.7;O4, 0.8;O3, 0.9]
C42 = [O1, 0.7;O4, 0.8;R7, 0.9]
C43 = [O1, 0.7;O4, 0.8;R9, 0.9]
C44 = [O1, 0.7;O4, 0.8;R12, 0.9]
C45 = [O1, 0.7;O4, 0.8;F5, 1.0]
C46 = [O1, 0.7;O4, 0.8;F6, 1.0]
C47 = [R5, 0.7;O3, 0.9], C48 = [R5, 0.7;R2, 0.9]
C49 = [R5, 0.7;R7, 0.9], C50 = [R5, 0.7;F1, 0.95]
C51 = [R11, 0.7;R1, 0.8;O4, 0.8;R1, 0.8]
C52 = [R11, 0.7;R1, 0.8;R6, 0.8]
C53 = [R11, 0.7;O4, 0.8;R2, 0.9]
C54 = [R11, 0.7;O4, 0.8;F1, 0.95]
C55 = [F4, 0.75;O4, 0.8;R1, 0.8]
C56 = [F4, 0.75;R6, 0.8]
C57 = [F4, 0.75;O4, 0.8;R2, 0.9]
C58 = [F4, 0.75;O4, 0.8;F1, 0.95]
C59 = [R1, 0.8;R6, 0.8;R1, 0.8]
C60 = [R1, 0.8;O4, 0.8;R1, 0.8;R10, 0.8]
C61 = [R1, 0.8;O4, 0.8;R1, 0.8;R9, 0.9]
C62 = [R1, 0.8;O4, 0.8;R1, 0.8;R12, 0.9]
C63 = [R1, 0.8;O4, 0.8;R1, 0.8;F5, 1.0]
C64 = [R1, 0.8;O4, 0.8;R1, 0.8;F6, 1.0]
C65 = [O4, 0.8;R1, 0.8;O3, 0.9]
C66 = [O4, 0.8;R1, 0.8;R7, 0.9], C67 = [R6, 0.8;O3, 0.9]
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C68 = [R6, 0.8;R2, 0.9], C69 = [R6, 0.8;R7, 0.9]
C70 = [O4, 0.8;R10, 0.8;R2, 0.9]
C71 = [R6, 0.8;F1, 0.95]
C72 = [O4, 0.8;R10, 0.8;F1, 0.95]
C73 = [O4, 0.8;R2, 0.9;O3, 0.9]
C74 = [O4, 0.8;R2, 0.9;R7, 0.9]
C75 = [O4, 0.8;R2, 0.9;R9, 0.9]
C76 = [O4, 0.8;R2, 0.9;R12, 0.9]
C77 = [O4, 0.8;O3, 0.9;F1, 0.95]
C78 = [O4, 0.8;R7, 0.9;F1, 0.95]
C79 = [O4, 0.8;R2, 0.9;F5, 1.0]
C80 = [O4, 0.8;R2, 0.9;F6, 1.0]
C81 = [O4, 0.8;R9, 0.9;F1, 0.95]
C82 = [O4, 0.8;R12, 0.9;F1, 0.95]
C83 = [O4, 0.8;F1, 0.95;F5, 1.0]
C84 = [O4, 0.8;F1, 0.95;F6, 1.0], C85 = [F2, 1.0].
From this, the reasoning consistency can be restored by suc-

cessfully modifying one of the above candidates, which is de-
tailed in Section IV.

G. Discussion on Generated Candidates

In order to effectively modify a candidate, it is necessary to
examine if multiple related diagnosable ATMS nodes regarding
a single interpolation step can be included in one candidate.
If this is the case, the modifications of the related compo-
nents must be considered jointly; otherwise, the modification
of the candidate can be decomposed into that of its individual
members.

Given a step of interpolation M1 ,M2 , ... ,Mn ,Ri, Rj , RiRj

⇒ C, for notational simplicity, let NM 1 , NM 2 , ..., NMn
, NRi

,
NRj

, NRi Rj
, and NC denote the following nodes: M1 , M2 ,

. . . ,Mn , Ri , Rj , RiRj and the consequence C, respectively.
Recall that the environment of each primitive ATMS node,
which may be an observation, a rule or an FIC, contains only
one node which represents itself [25]–[27]. Based on the label
updating algorithm, every combination of one label environ-
ment from each node NM 1 , i ∈ {1, 2, ..., n}, and those label
environments of nodes {NRi

,NRj
,NRi Rj

} jointly form a label
environment of the node NC . Assume that NC contributes to
a certain contradiction. Then, if any of its label environments
contains NRi Rj

, it must also contain NRi
and NRj

, and vice
versa. Since a candidate is generated by taking one element
from every label environment of each contradiction and any
candidate which is a superset of another is removed, it is impos-
sible that {NRi

,NRi Rj
} or {NRj

,NRi Rj
} is contained within

a minimal candidate. Similarly, suppose that the node N is any
element in the label environments of the nodes NM 1 , NM 2 , . . .,
and NMn

, then {N,NRi
}, {N,NRj

}, or {N,NRi Rj
} cannot

jointly appear in any single minimal candidate.
Note that NRi

may also be used in conjunction with another
rule rather than NRj

to perform interpolation, and vice versa.
Thus, it is possible that one label environment of the “false”
node only contains NRi

but not NRj
while another only contains

NRj
but not NRi

. Therefore, a minimal candidate may contain
both NRi

and NRj
. In this situation, the modification of related

candidate elements NRi
and NRj

needs to be considered jointly.

IV. GENERALIZING CANDIDATE MODIFICATION

Having generated and prioritized all the candidates, one (and
only one) of them needs to be modified in order to restore sys-
tem consistency. This process naturally starts from the highest
prioritized candidate. The principle underlying the consistency-
restoring algorithm as given in Algorithm 1 is extended here
by treating all observations, rules, and FICs as modifiable can-
didate elements. Recall that a candidate in general consists of
a number of elements. Given a candidate, the modification of
each of its elements will lead to a set of constraints in the format
of equalities and inequalities. A satisfied solution of all joint
equalities and inequalities imposed by the modifications of all
the elements within a candidate will guarantee the modified re-
sult to be β0-contradiction-free. The modification of FICs has
been briefed in Section II-D and thus omitted here. The modi-
fication processes regarding observations, individual rules, and
pairs of rules corresponding to a single interpolation step, are
discussed below.

A. Observation Modification

It has an intuitive appeal to amend an observation based on the
uncertainty value without changing the vagueness level associ-
ated with the relevant piece of information, which is reflected by
the shape and area of the underlying fuzzy set. Such amendment
may help maintain the interpretability of the fuzzy sets while
offering an opportunity of removing inconsistencies in interpo-
lation during the process of inference. Thus, the modification
of a defective observation associated with a certainty degree of
c is to shift the fuzzy set within its value range while keeping
its shape and area unchanged. The shifting is required to satisfy
the following.

1) The range of the shifting is bounded by (15) and (16),
regarding the given c.

2) The shifted result should not cause disruption regarding
the definitions of the other object values of the same vari-
able, maintaining consistency in the specification of that
variable’s value domain. This is a similar constraint as
that imposed in Step 5 for the modification of an FIC, as
described in Section II-D.

3) The propagation of the shifted result should maintain mu-
tual consistency with that of any other object value of the
same variable. This is a similar constraint as that imposed
in Step 6 for the modification of an FIC, again as described
in Section II-D.

All three constraints listed above can be satisfied by con-
structing and then solving a set of simultaneous equalities and
inequalities. The modification of observations can then be read-
ily propagated by applying the modified results as interpolation
inputs within the process of FRI. Note that as indicated above,
constraints 2 and 3 are enforced in a way similar to those re-
quired over the case of modifying an FIC, while the computation
implementing such modification has been generally presented
in detail in [24]. Therefore, such common subprocedures of
modification are omitted here; they are also omitted from the
description of the modifications of interpolation rules that is to
be described next.
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B. Single-Rule Modification

The problem considered here is for situations where only
one of a given pair of neighboring rules is identified as defec-
tive. Following the scale and move transformation-based FRI
(which AFRI is developed upon), the interpolated result in re-
sponse to a given input (that may be an observation or a previ-
ously inferred value) is derived from the consequent of an artifi-
cially created intermediate rule through the process outlined in
Section II-A. This process involves the use of a pair of neighbor-
ing rules regarding the given input. While the antecedent of the
intermediate rule and the input share the same overall location,
the interpolated value is achieved by transferring the conse-
quence of the intermediate rule with the same proportion of the
area and shape differences between them. Therefore, in order
to maintain interpretability, the single defective rule should be
modified while keeping the shape and area of its consequence
unchanged. This study follows on this intuition.

Similar to the process of modifying an observation, the modi-
fication of a defective rule is to shift the consequence of the rule
within its value range by satisfying the three constraints listed
in the last subsection. However, all the interpolated results that
have been generated by applying this defective rule also need to
be modified accordingly, as the defective rule has been utilized
for their interpolation.

Although AFRI is applicable to fuzzy inference problems
with multiple-antecedent rules, for illustrative simplicity, rules
with two antecedents are taken in this study as an example to
show the underlying approach. The method can be extended to
rules with more than two antecedent variables in a straightfor-
ward manner. Given an input (A∗k , B∗k ), suppose that the (clos-
est) neighboring rules Ai,Bi ⇒ Ci and Aj ,Bj ⇒ Cj flank this
input. Without losing generality, assume that the second rule is
defective and is included in the candidate to be modified, and
that (Ai,Bi) is less than (Aj ,Bj ) in accordance with the in-
tegration of their representative values (for a given integration
method). Based on the location of the antecedent of this defec-
tive rule, in reference to the other rule that was jointly fired with
it to derive the detected contradictory interpolated result, two
mirrored cases need to be addressed.

First, consider the case where the location relation between
the input (A∗k , B∗k ) and its corresponding interpolated conse-
quence C∗k is mapped by the line P1P3 within the assumed
3-D space, as shown in Fig. 5. This line is determined by the
locations of the two neighboring rules used for interpolation.
Suppose that the defective rule consequence is modified from
Cj to ̂Cj ; then, the original mapping line P1P3 is accordingly
shifted to the line P1P5 . To quantitatively measure the extent of
such shifting, the following correction rate c− is introduced:

c− =
d(Ci, ̂Cj )
d(Ci, Cj )

(24)

where d(C,C ′) stands for the distance between the fuzzy sets
C and C ′, computed as the distance between the representative
values of these two fuzzy sets. Suppose that the modified result
of C∗k is denoted as ̂C∗k . Then, by applying the correction rate c−

to the distance between Ci and C∗k , the distance from Ci to ̂C∗k

Fig. 5. Propagation of rule modification.

can be determined. Having known the locations of Ci and C∗k ,
the location of ̂C∗k can be computed, resulting in the modified
interpolated value.

The case discussed above covers the case where an input
which has invoked the defective rule for interpolation is less than
the integrated antecedent of the rule. For the case where an input
is greater than the antecedent, a mirrored procedure is followed
to perform the modification, with a different correction rate
c+ . Assume that the input (A∗k , B∗k ) is flanked by the defective
rule Ai,Bi ⇒ Ci and the other neighboring rule, Aj ,Bj ⇒ Cj ;
then, c+ is defined as

c+ =
d( ̂Ci, Cj )
d(Ci, Cj )

. (25)

The modified result of (A∗k , B∗k ) can then be calculated using
this correction rate, in a way similar to that utilized in the first
case.

C. Modification of Both Neighboring Rules

Having addressed the situations where only one of the two
neighboring rules appears in a candidate for modification, this
subsection discusses the modification of both neighboring rules
which are defective (i.e., both are included in a given candidate).

Suppose that the two defective neighboring rules are
Ai,Bi ⇒ Ci and Aj ,Bj ⇒ Cj , and denote the (to be) mod-
ified consequences of them as ̂Ci and ̂Cj , respectively. For easy
reference, call the defective rule whose integrated antecedent is
less than the input the left rule and the other the right. If the
left rule is modified first as illustrated in Fig. 6(a), then the right
defective rule will be modified using the result of modifying the
left rule, as shown in Fig. 6(b). Then, the final modification can
be represented by shifting the original defective location map-
ping line P1P3 to the line P6P5 as also illustrated in Fig. 6(b).
If, however, the modification begins with the right defective
rule, the modification will be performed as illustrated in Fig. 7,
which also results in the final result that is the same as the one
represented by the line P6P5 in Fig. 6(b). From this, due to the
generality in the expression of the two rules, it can be concluded
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Fig. 6. Rule modification starting from left defective rule. (a) Left rule modi-
fication first. (b) Right rule modification second.

that the revised result is independent of the order of modifica-
tions. Therefore, the modification of both neighboring rules in
a single candidate can be done by revising the two individual
defective rules separately in either order.

D. Illustrative Example—Part 2

Continue the example given in Section III-F, the candidate
C1 , which is of the highest priority, will be modified first. As
only one modifiable element R3 (If x2 = B3 , THEN x3 = C3)
is contained in this candidate, the modification procedure given
in Section IV-B is applied. With respect to (15) and (16), the
modification of the defective rule, R3 needs to satisfy

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̂C3 ≥ C3 − 1−0.6
2 (20− 0)

̂C3 ≤ C3 + 1−0.6
2 (20− 0)

min(supp( ̂C3)) ≥ 0
max(supp( ̂C3)) ≤ 20.

Running interpolation with the two neighboring rules con-
sisting of the rule R4 and the defective one R3 leads to the

Fig. 7. Rule modification starting from right defective rule. (a) Right rule
modification first. (b) Left rule modification second.

following two interpolated rules:

IR1 : IF x2 is B∗, THEN x3 is C∗2
IR2 : IF x2 is B∗1 , THEN x3 is C∗1 .

Since both antecedents of IR1 and IR2 are greater than the
antecedent of the defective rule, C+ is applied

c+ =
d( ̂C3 , C4)
d(C3 , C4)

.

From this, the overall location of the modified results will then
satisfy

{

d( ̂C∗1 , C4) = d(C∗1 , C4) · c+

d( ̂C∗2 , C4) = d(C∗2 , C4) · c+ .

These results are then utilized to further constrain the modified
interpolated values such that

{

̂C∗1 = C∗1 + (d( ̂C∗1 , C4)− d(C∗1 , C4))
̂C∗2 = C∗2 + (d( ̂C∗2 , C4)− d(C∗2 , C4)).

The remaining process of the modification is to ensure that the
modified results and their propagations are consistent with the
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rest. This subprocess is again the same as that of the modification
of an FIC, as previously reported [24]. However, by solving all
the simultaneous equalities and inequalities as listed above, in-
cluding those imposed by the consistency-ensuring subprocess,
there is no solution found. Therefore, the candidate with the
second highest priority, that is C2 in this example, is modified
next.

The candidate C2 includes two elements, the observation O2
and the rule R8 , both of which need to be modified simulta-
neously in order to remove inconsistency. The modifications of
O2 and R8 are carried out based on the procedures given in
Sections IV-A and IV-B, respectively. In particular, according
to constraint number 1 of the observation modification process,
the modified value of O2 must satisfy

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̂B∗ ≥ B∗ − 1−0.6
2 (20− 0)

̂B∗ ≤ B∗ + 1−0.6
2 (20− 0)

min(supp( ̂B∗)) ≥ 0
max(supp( ̂B∗)) ≤ 20.

Similar constraints are also applied to the modified result of
the consequence of R8 . As the modification procedure of R8 is
the same as that of R3 , as described above, the computational de-
tails are omitted here. By solving the equalities and inequalities,
including those posed for consistency-ensuring, one solution is
obtained as illustrated in Fig. 8. With the consistency restored,
this concludes this illustrative example.

E. Computational Complexity

As the generalization of AFRI, it may be expected that the
generalized AFRI will involve more computation than its origi-
nal. In particular, as compared with the computational complex-
ity of AFRI, that of the generalized version can be considered
from the following two viewpoints: 1) impact of adding rules
and observations as diagnosable candidate elements during can-
didate generation; and 2) impact of the constraints led by these
extra candidate elements during candidate modification.

The computational complexity of candidate generation
mainly depends on the complexity of the ATMS. It is well
known that the standard ATMS has a computational complexity
of exponential order in the worst case [41], but the average-case
complexity can be greatly improved during practice use [42],
[43]. The introduction of observations and rules as diagnosable
candidate elements certainly increases the processing time be-
cause of a more sophisticated problem being addressed. How-
ever, this does not affect the general time complexity of the
underlying ATMS. The complexity of the candidate modifica-
tion stage is mainly determined by the constraint satisfaction
mechanism which, for the problem of FRI in general, can be
resolved in polynomial time complexity [24]. Although the in-
troduction of additional constraints may increase the absolute
computing time, the general time complexity will not be af-
fected as the constraints introduced by the extra modifiable can-
didate elements are of the same type with those used in AFRI.
Putting both aspects together, at the system level, the overall

Fig. 8. One solution of the running example.

computational complexity of the generalized version does not
deteriorate from that of the original AFRI approach.

V. APPLICATION AND DISCUSSION

Disease burden may result from environmental changes [44]–
[46]. An example study of this concerns how a previously road-
less area in northern coastal Ecuador may be affected by the
construction of a new road or railway in term of epidemiology
of infectious diseases [47]. The causal relationship between the
key factors driven by road construction has been established
in the work of [47], which has been further quantitatively in-
vestigated using AFRI in [24]. As the theoretical development
reported in this paper carries a substantial extension of [24], the
application problem is reconsidered in this paper to facilitate di-
rect comparison. For completeness, the sparse rule base is given
below, and the fuzzy values included in the rules are listed in
Table I.

R1 : IF x1 = A1 and x2 = B1 , THEN x3 = C1 (0.9)
R2 : IF x1 = A2 and x2 = B2 , THEN x3 = C2 (0.9)
R3 : IF x3 = C3 and x4 = D3 , THEN x5 = E3 (0.7)
R4 : IF x3 = C4 and x4 = D4 , THEN x5 = E4 (0.8)
R5 : IF x5 = E5 , THEN x6 = F5 (0.8)
R6 : IF x5 = E6 , THEN x6 = F6 (0.6)
R7 : IF x6 = F7 , THEN x7 = G7 (0.7)
R8 : IF x6 = F8 , THEN x7 = G8 (0.7)
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TABLE I
FUZZY VARIABLES AND THEIR NORMALIZED OBJECT VALUES

Fig. 9. Interpolated result by the HS method.

R9 : IF x5 = E9 , THEN x8 = H9 (0.8)
R10 : IF x5 = E10 , THEN x8 = H10 (0.6)
R11 : IF x8 = H11 , THEN x9 = I11 (0.7)
R12 : IF x8 = H12 , THEN x9 = I12 (0.9)
R13 : IF x9 = I13 , THEN x10 = J13 (0.7)
R14 : IF x9 = I14 , THEN x10 = J14 (0.8)
R15 : IF x7 = G15 and x10 = J15 , THEN x11 = K15 (0.6)
R16 : IF x7 = G16 and x10 = J16 , THEN x11 = K16 (0.8).
Suppose that four pieces of uncertain information are

observed: O1 : x1 = A∗ = (0.16, 0.18, 0.20, 0.22)(0.7),

Fig. 10. Interpolated result by the adaptive approach (based on the HS
method).

O2 : x2 = B∗ = (0.34, 0.36, 0.38, 0.40)(0.9), O4 : x4 =
D∗ = (0.65, 0.67, 0.69, 0.71)(0.6), and O8 : x8 = H∗ =
(0.54, 0.56, 0.58, 0.60)(0.7). These observations do not invoke
any rule in the rule base (with only B∗ overlapping with
the second antecedent attribute B2 of the rule R2). Thus,
traditional fuzzy system techniques that are based on the use of
compositional rule of inference cannot be employed to address
the problem. However, FRI may help.

Assume that the set-theory-based similarity measure is uti-
lized to compute the degree of contradiction, and let β0 = 0.5.
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β0-contradictions will result from most of the existing inter-
polation methods [24]. In particular, the interpolated result us-
ing the scale and move transformation-based FRI, which the
proposed work is built upon, leads to multiple (intermediate)
β0-inconsistencies, as shown in Fig. 9.

To obtain a consistent solution, the proposed adaptive
fuzzy interpolation approach is applied. From the modifiable
components (i.e., observations, rules, and FICs) upon which
the detected contradictions depend, GDE generates 16 minimal
candidates: C1 = [R10 , 0.6], C2 = [O1 , 0.7], C3 = [R3 , 0.7],
C4 = [R11 , 0.7], C5 = [O3 , 0.8], C6 = [R4 , 0.8], C7 =
[R9 , 0.8], C8 = [O2 , 0.9], C9 = [R1 , 0.9], C10 = [R2 , 0.9],
C11 = [R12 , 0.9], C12 = [F6 , 0.92], C13 = [F5 , 0.93],
C14 = [F1 , 0.94], C15 = [F2 , 0.99], and C16 = [O4 , 1.6].
One solution resulted from the modification of the first
prioritized candidate C1 is shown in Fig. 10.

From this figure, it can be seen that there is no more β0-
contradiction, and thus, consistency has been successfully re-
stored. That is, the original inconsistent interpolated result has
been successfully removed, demonstrating the effectiveness of
this study. Interestingly, different from the problem-solving pro-
cess of the previous work reported in [24], this solution has
resulted from the modification of the very first candidate C1 .
This is due to the employment of the proposed candidate prior-
itization method. By this method, the priority of each candidate
is calculated from their reliability rather than from the informal
intuition as used previously.

VI. CONCLUSION

This paper has presented a generalized framework for AFRI.
The generalization allows the identification and modification
of observations and rules, in addition to that of interpolation
procedures that were addressed in the previous work. This is
supported by introducing extra information of certainty degrees
associated such basic elements of FRI. The work also allows
for all candidates for modification to be prioritized, based on
the extent to which a candidate is likely to lead to all detected
contradictions, by extending the classic ATMS and GDE. The
working of the extended approach is illustrated with a running
example throughout Sections III and IV, and also demonstrated
by a realistic application in Section V.

This research can be further improved in several directions.
At the present, it works with interpolation involving just two
multiple-antecedent rules. It is worthwhile to investigate how
this study may be generalized to perform interpolation and ex-
trapolation with multiple multiantecedent rules. Note that the
FRI approach proposed in [48] also deals with inconsistency
problems, but in a different way by considering the relevant de-
grees of rules relevant to a given observation. In particular, the
relevant degree of a certain rule is determined by the reciprocal
distance from the observation to the rule. An interesting piece
of further work is, therefore, to compare these two approaches.
In addition, the proposed adaptive approach is developed on the
HS method only. It is desirable to apply the adaptive approach
to other FRI methods, such as those implemented in MATLAB
FRI toolbox [49], and to compare the generated results. Finally,

it is of great interest to study how the classical ATMS and GDE
can be utilized to support traditional fuzzy inference systems
and to develop an integrated inconsistency detection and fault-
correction platform that supports both standard fuzzy inference
and FRI.

ACKNOWLEDGMENT

The authors are very grateful to the reviewers and the Asso-
ciate Editor for their very positive and encouraging comments.

REFERENCES
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[20] Y. Yam and L. Kóczy, “Representing membership functions as points in
high-dimensional spaces for fuzzy interpolation and extrapolation,” IEEE
Trans. Fuzzy Syst., vol. 8, no. 6, pp. 761–772, Dec. 2000.

[21] Y. Yam, M. L. Wong, and P. Baranyi, “Interpolation with function
space representation of membership functions,” IEEE Trans. Fuzzy Syst.,
vol. 14, no. 3, pp. 398–411, Jun. 2006.

[22] L. Yang and Q. Shen, “Closed form fuzzy interpolation,” Fuzzy Sets Syst.,
vol. 225, pp. 1–22, 2013.

[23] S.-H. Cheng, S.-M. Chen, and C.-L. Chen, “Adaptive fuzzy interpolation
based on ranking values of polygonal fuzzy sets and similarity measures
between polygonal fuzzy sets,” Inf. Sci., vol. 342, pp. 176–190, 2016.

[24] L. Yang and Q. Shen, “Adaptive fuzzy interpolation,” IEEE Trans. Fuzzy
Syst., vol. 19, no. 6, pp. 1107–1126, Dec. 2011.

[25] J. de Kleer, “An assumption-based TMS,” Artif. Intell., vol. 28, no. 2,
pp. 127–162, 1986.

[26] J. de Kleer, “Extending the ATMS,” Artif. Intell., vol. 28, no. 2, pp. 163–
196, 1986.

[27] J. de Kleer, “Problem solving with the ATMS,” Artif. Intell., vol. 28,
no. 2, pp. 197–224, 1986.

[28] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artif. Intell.,
vol. 32, no. 1, pp. 97–130, 1987.

[29] L. Yang and Q. Shen, “Adaptive fuzzy interpolation with uncertain ob-
servations and rule base,” in Proc. IEEE Int. Conf. Fuzzy Syst., 2011, pp.
471–478.

[30] L. Yang and Q. Shen, “Adaptive fuzzy interpolation with prioritized com-
ponent candidates,” in Proc. IEEE Int. Conf. Fuzzy Syst., 2011, pp. 428–
435.

[31] X. Fu and Q. Shen, “Fuzzy compositional modeling,” IEEE Trans. Fuzzy
Syst., vol. 18, no. 4, pp. 823–840, Aug. 2010.

[32] E. H. Shortliffe and B. G. Buchanan, “A model of inexact reasoning in
medicine,” Math. Biosci., vol. 23, no. 3, pp. 351–379, 1975.

[33] Q. Shen and R. Leitch, “Fuzzy qualitative simulation,” IEEE Trans. Syst.,
Man Cybern., vol. 23, no. 4, pp. 1038–1061, Jul./Aug. 1993.

[34] D. Dubois, J. Lang, and H. Prade, “A possibilistic assumption-based
truth maintenance system with uncertain justifications, and its applica-
tion to belief revision,” in Proc. Workshop Truth Maintenance Syst., 1991,
pp. 87–106.

[35] D. Dubois, H. M. Prade, H. Farreny, R. Martin-Clouaire, and C. Testemale,
Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty, vol. 2. New York, NY, USA: Plenum, 1988.

[36] Q. Shen and R. Zhao, “A credibilistic approach to assumption-based truth
maintenance,” IEEE Trans. Syst., Man Cybern. A, Syst. Humans, vol. 41,
no. 1, pp. 85–96, Jan. 2011.

[37] P. Li and B. Liu, “Entropy of credibility distributions for fuzzy variables,”
IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 123–129, Feb. 2008.

[38] J. L. Castro and J. M. Zurita, “A generic ATMS,” Int. J. Approx. Reason.,
vol. 14, no. 4, pp. 259–280, 1996.

[39] J. L. Castro and J. M. Zurita, “A multivalued logic ATMS,” Int. J. Intell.
Syst., vol. 11, no. 4, pp. 185–195, 1996.

[40] J. De Kleer, “Modeling when connections are the problem,” U.S. Patent
7 962 321, 2011.

[41] G. M. Provan, “The computational complexity of truth maintenance
systems,” Univ. British Columbia, Vancouver, BC, Canada, Tech. Rep.,
Rep. No. TR-88-11, 1988.
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