92 research outputs found

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Edge Intelligence Simulator:a platform for simulating intelligent edge orchestration solutions

    Get PDF
    Abstract. To support the stringent requirements of the future intelligent and interactive applications, intelligence needs to become an essential part of the resource management in the edge environment. Developing intelligent orchestration solutions is a challenging and arduous task, where the evaluation and comparison of the proposed solution is a focal point. Simulation is commonly used to evaluate and compare proposed solutions. However, there does not currently exist openly available simulators that would have a specific focus on supporting the research on intelligent edge orchestration methods. This thesis presents a simulation platform called Edge Intelligence Simulator (EISim), the purpose of which is to facilitate the research on intelligent edge orchestration solutions. In its current form, the platform supports simulating deep reinforcement learning based solutions and different orchestration control topologies in scenarios related to task offloading and resource pricing on edge. The platform also includes additional tools for creating simulation environments, running simulations for agent training and evaluation, and plotting results. This thesis gives a comprehensive overview of the state of the art in edge and fog simulation, orchestration, offloading, and resource pricing, which provides a basis for the design of EISim. The methods and tools that form the foundation of the current EISim implementation are also presented, along with a detailed description of the EISim architecture, default implementations, use, and additional tools. Finally, EISim with its default implementations is validated and evaluated through a large-scale simulation study with 24 simulation scenarios. The results of the simulation study verify the end-to-end performance of EISim and show its capability to produce sensible results. The results also illustrate how EISim can help the researcher in controlling and monitoring the training of intelligent agents, as well as in evaluating solutions against different control topologies.Reunaälysimulaattori : alusta älykkäiden reunalaskennan orkestrointiratkaisujen simulointiin. Tiivistelmä. Älykkäiden ratkaisujen täytyy tulla olennaiseksi osaksi reunaympäristön resurssien hallinnointia, jotta tulevaisuuden vuorovaikutteisten ja älykkäiden sovellusten suoritusta voidaan tukea tasolla, joka täyttää sovellusten tiukat suoritusvaatimukset. Älykkäiden orkestrointiratkaisujen kehitys on vaativa ja työläs prosessi, jonka keskiöön kuuluu olennaisesti menetelmien testaaminen ja vertailu muita menetelmiä vasten. Simulointia käytetään tyypillisesti menetelmien arviointiin ja vertailuun, mutta tällä hetkellä ei ole avoimesti saatavilla simulaattoreita, jotka eritoten keskittyisivät tukemaan älykkäiden reunaorkestrointiratkaisujen kehitystä. Tässä opinnäytetyössä esitellään simulaatioalusta nimeltään Edge Intelligence Simulator (EISim; Reunaälysimulaattori), jonka tarkoitus on helpottaa älykkäiden reunaorkestrointiratkaisujen tutkimusta. Nykymuodossaan se tukee vahvistusoppimispohjaisten ratkaisujen sekä erityyppisten orkestroinnin kontrollitopologioiden simulointia skenaarioissa, jotka liittyvät laskennan siirtoon ja resurssien hinnoitteluun reunaympäristössä. Alustan mukana tulee myös lisätyökaluja, joita voi käyttää simulaatioympäristöjen luomiseen, simulaatioiden ajamiseen agenttien koulutusta ja arviointia varten, sekä simulaatiotulosten visualisoimiseen. Tämä opinnäytetyö sisältää kattavan katsauksen reunaympäristön simuloinnin, reunaorkestroinnin, laskennan siirron ja resurssien hinnoittelun nykytilaan kirjallisuudessa, mikä tarjoaa kunnollisen lähtökohdan EISimin toteutukselle. Opinnäytetyö esittelee menetelmät ja työkalut, joihin EISimin tämänhetkinen toteutus perustuu, sekä antaa yksityiskohtaisen kuvauksen EISimin arkkitehtuurista, oletustoteutuksista, käytöstä ja lisätyökaluista. EISimin validointia ja arviointia varten esitellään laaja simulaatiotutkimus, jossa EISimin oletustoteutuksia simuloidaan 24 simulaatioskenaariossa. Simulaatiotutkimuksen tulokset todentavat EISimin kokonaisvaltaisen toimintakyvyn, sekä osoittavat EISimin kyvyn tuottaa järkeviä tuloksia. Tulokset myös havainnollistavat, miten EISim voi auttaa tutkijoita älykkäiden agenttien koulutuksessa ja ratkaisujen arvioinnissa eri kontrollitopologioita vasten

    Load Management in a Smart House

    Get PDF
    Since a couple years ago, studies have been done in order to minimize the energy consumption at home. With that in mind, algorithms were developed to predict the energy consumption at the house and study the behaviour of the loads with the goal of minimizing the energy costs. In this dissertation, the objective was to create a model for the space heating and water heating and study their behaviour and adjust their load model to reduce the energy consumption and energy bill, and find the best energy tariffs for each case.The models consider physical parameters of the house , so the model can be a better approximation from reality.However, the problem is not only, a Energy and bill reduction, but the algorithm has to focus on the comfort of the house habitants too.Since a couple years ago, studies have been done in order to minimize the energy consumption at home. With that in mind, algorithms were developed to predict the energy consumption at the house and study the behaviour of the loads with the goal of minimizing the energy costs. In this dissertation, the objective was to create a model for the space heating and water heating and study their behaviour and adjust their load model to reduce the energy consumption and energy bill, and find the best energy tariffs for each case.The models consider physical parameters of the house , so the model can be a better approximation from reality.However, the problem is not only, a Energy and bill reduction, but the algorithm has to focus on the comfort of the house habitants too

    Game-Theoretic Foundations for Forming Trusted Coalitions of Multi-Cloud Services in the Presence of Active and Passive Attacks

    Get PDF
    The prominence of cloud computing as a common paradigm for offering Web-based services has led to an unprecedented proliferation in the number of services that are deployed in cloud data centers. In parallel, services' communities and cloud federations have gained an increasing interest in the recent past years due to their ability to facilitate the discovery, composition, and resource scaling issues in large-scale services' markets. The problem is that the existing community and federation formation solutions deal with services as traditional software systems and overlook the fact that these services are often being offered as part of the cloud computing technology, which poses additional challenges at the architectural, business, and security levels. The motivation of this thesis stems from four main observations/research gaps that we have drawn through our literature reviews and/or experiments, which are: (1) leading cloud services such as Google and Amazon do not have incentives to group themselves into communities/federations using the existing community/federation formation solutions; (2) it is quite difficult to find a central entity that can manage the community/federation formation process in a multi-cloud environment; (3) if we allow services to rationally select their communities/federations without considering their trust relationships, these services might have incentives to structure themselves into communities/federations consisting of a large number of malicious services; and (4) the existing intrusion detection solutions in the domain of cloud computing are still ineffective in capturing advanced multi-type distributed attacks initiated by communities/federations of attackers since they overlook the attacker's strategies in their design and ignore the cloud system's resource constraints. This thesis aims to address these gaps by (1) proposing a business-oriented community formation model that accounts for the business potential of the services in the formation process to motivate the participation of services of all business capabilities, (2) introducing an inter-cloud trust framework that allows services deployed in one or disparate cloud centers to build credible trust relationships toward each other, while overcoming the collusion attacks that occur to mislead trust results even in extreme cases wherein attackers form the majority, (3) designing a trust-based game theoretical model that enables services to distributively form trustworthy multi-cloud communities wherein the number of malicious services is minimal, (4) proposing an intra-cloud trust framework that allows the cloud system to build credible trust relationships toward the guest Virtual Machines (VMs) running cloud-based services using objective and subjective trust sources, (5) designing and solving a trust-based maxmin game theoretical model that allows the cloud system to optimally distribute the detection load among VMs within a limited budget of resources, while considering Distributed Denial of Service (DDoS) attacks as a practical scenario, and (6) putting forward a resource-aware comprehensive detection and prevention system that is able to capture and prevent advanced simultaneous multi-type attacks within a limited amount of resources. We conclude the thesis by uncovering some persisting research gaps that need further study and investigation in the future

    Strategic and Blockchain-based Market Decisions for Cloud Computing

    Get PDF
    The cloud computing market has been in the center of attention for years where cloud providers strive to survive by either competition or cooperation. Some cloud providers choose to compete in the market that is dominated by few large providers and try to maximize their profit without sacrificing the service quality which leads to higher user ratings. Many research proposals tried to contribute to the cloud market competition. However, the majority of these proposals focus only on pricing mechanisms, neglecting thus the cloud service quality and users satisfaction. Meanwhile, cloud providers intend to form cloud federations to enhance their services quality and revenues. Nevertheless, traditional centralized cloud federations have strict challenges that might hinder the members' motivation to participate in, such as formation of stable coalitions with long-term commitments, participants' trustworthiness, shared revenue, and security of the managed data and services. For a stable and trustworthy federation, it is vital to avoid blind-trust on the claimed SLA guarantees from the members and monitor the quality of service considering the various characteristics of cloud services. This thesis aims to tackle the issues of cloud computing market from the two perspectives of competition and cooperation by: 1) modeling and solving the conflicting situation of revenue, user ratings and service quality, to improve the providers position in the market and increase the future users' demand; 2) proposing a user-centric game theoretical framework to allow the new and smaller cloud providers to have a share in the market and increase users satisfaction through providing high quality and added-value services; 3) motivating the cloud providers to adopt a coopetition behavior through a novel, fully distributed blockchain-based federation's structure that enables them to trade their computing resources through smart contracts; 4) introducing a new role of oracle as a verifier agent to monitor the quality of service and report to the smart contract agents deployed on the blockchain while optimizing the cost of using oracles; and 5) developing a Bayesian bandit learning oracles reliability mechanism to select the oracles smartly and optimize the cost and reliability of utilized oracles. All of the contributions are validated by simulations and implementations using real-world data

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Control and game-theoretic methods for secure cyber-physical-human systems

    Get PDF
    This work focuses on systems comprising tightly interconnected physical and digital components. Those, aptly named, cyber-physical systems will be the core of the Fourth Industrial Revolution. Thus, cyber-physical systems will be called upon to interact with humans, either in a cooperative fashion, or as adversaries to malicious human agents that will seek to corrupt their operation. In this work, we will present methods that enable an autonomous system to operate safely among human agents and to gain an advantage in cyber-physical security scenarios by employing tools from control, game and learning theories. Our work revolves around three main axes: unpredictability-based defense, operation among agents with bounded rationality and verification of safety properties for autonomous systems. In taking advantage of the complex nature of cyber-physical systems, our unpredictability-based defense work will focus both on attacks on actuating and sensing components, which will be addressed via a novel switching-based Moving Target Defense framework, and on Denial-of-Service attacks on the underlying network via a zero-sum game exploiting redundant communication channels. Subsequently, we will take a more abstract view of complex system security by exploring the principles of bounded rationality. We will show how attackers of bounded rationality can coordinate in inducing erroneous decisions to a system while they remain stealthy. Methods of cognitive hierarchy will be employed for decision prediction, while closed form solutions of the optimization problem and the conditions of convergence to the Nash equilibrium will be investigated. The principles of bounded rationality will be brought to control systems via the use of policy iteration algorithms, enabling data-driven attack prediction in a more realistic fashion than what can be offered by game equilibrium solutions. The issue of intelligence in security scenarios will be further considered via concepts of learning manipulation through a proposed framework where bounded rationality is understood as a hierarchy in learning, rather than optimizing, capability. This viewpoint will allow us to propose methods of exploiting the learning process of an imperfect opponent in order to affect their cognitive state via the use of tools from optimal control theory. Finally, in the context of safety, we will explore verification and compositionality properties of linear systems that are designed to be added to a cascade network of similar systems. To obfuscate the need for knowledge of the system's dynamics, we will state decentralized conditions that guarantee a specific dissipativity properties for the system, which are shown to be solved by reinforcement learning techniques. Subsequently, we will propose a framework that employs a hierarchical solution of temporal logic specifications and reinforcement learning problems for optimal tracking.Ph.D

    INTEGRATED DYNAMIC DEMAND MANAGEMENT AND MARKET DESIGN IN SMART GRID

    Get PDF
    Smart Grid is a system that accommodates different energy sources, including solar, wind, tidal, electric vehicles, and also facilitates communication between users and suppliers. This study tries to picture the interaction among all new sources of energy and market, besides managing supplies and demands in the system while meeting network's limitations. First, an appropriate energy system mechanism is proposed to motivate use of green and renewable energies while addressing current system's deficiencies. Then concepts and techniques from game theory, network optimization, and market design are borrowed to model the system as a Stackelberg game. Existence of an equilibrium solution to the problem is proved mathematically, and an algorithm is developed to solve the proposed nonlinear bi-level optimization model in real time. Then the model is converted to a mathematical program with equilibrium constraints using lower level's optimality conditions. Results from different solution techniques including MIP, SOS, and nonlinear MPEC solvers are compared with the proposed algorithm. Examples illustrate the appropriateness and usefulness of the both proposed system mechanism and heuristic algorithm in modeling the market and solving the corresponding large scale bi-level model. To the best knowledge of the writer there is no efficient algorithm in solving large scale bi-level models and any solution approach in the literature is problem specific. This research could be implemented in the future Smart Grid meters to help users communicate with the system and enables the system to accommodate different sources of energy. It prevents waste of energy by optimizing users' schedule of trades in the grid. Also recommendations to energy policy makers are made based on results in this research. This research contributes to science by combining knowledge of market structure and demand management to design an optimal trade schedule for all agents in the energy network including users and suppliers. Current studies in this area mostly focus either in market design or in demand management side. However, by combining these two areas of knowledge in this study, not only will the whole system be more efficient, but it also will be more likely to make the system operational in real world
    corecore