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ABSTRACT

Strategic and Blockchain-based Market Decisions for Cloud Computing

Mona Taghavi, Ph.D.

Concordia University, 2021

The cloud computing market has been in the center of attention for years

where cloud providers strive to survive by either competition or cooperation. Some

cloud providers choose to compete in the market that is dominated by few large

providers and try to maximize their profit without sacrificing the service quality

which leads to higher user ratings. Many research proposals tried to contribute

to the cloud market competition. However, the majority of these proposals focus

only on pricing mechanisms, neglecting thus the cloud service quality and users

satisfaction. Meanwhile, cloud providers intend to form cloud federations to enhance

their services quality and revenues. Nevertheless, traditional centralized cloud

federations have strict challenges that might hinder the members’ motivation to

participate in, such as formation of stable coalitions with long-term commitments,

participants’ trustworthiness, shared revenue, and security of the managed data and

services. For a stable and trustworthy federation, it is vital to avoid blind-trust on

the claimed SLA guarantees from the members and monitor the quality of service

considering the various characteristics of cloud services. This thesis aims to tackle

the issues of cloud computing market from the two perspectives of competition

and cooperation by: 1) modeling and solving the conflicting situation of revenue,

user ratings and service quality, to improve the providers position in the market

iii



and increase the future users’ demand; 2) proposing a user-centric game theoretical

framework to allow the new and smaller cloud providers to have a share in the

market and increase users satisfaction through providing high quality and added-value

services; 3) motivating the cloud providers to adopt a coopetition behavior through a

novel, fully distributed blockchain-based federation’s structure that enables them to

trade their computing resources through smart contracts; 4) introducing a new role

of oracle as a verifier agent to monitor the quality of service and report to the smart

contract agents deployed on the blockchain while optimizing the cost of using oracles;

and 5) developing a Bayesian bandit learning oracles reliability mechanism to select

the oracles smartly and optimize the cost and reliability of utilized oracles. All of

the contributions are validated by simulations and implementations using real-world

data.
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Chapter 1

Introduction

In this chapter, we discuss the research context and problem statements, and formulate

the research questions, consequently. We further summarize the PhD research

objectives to be accomplished. The chapter ends by providing the thesis organization.

1.1 Context of Research

Cloud computing is greatly perceived to be an evolutionary technology following the

promising results and success stories of leading companies such as Amazon’s EC2 and

Google’s AppEngine. A large number of services in the market inevitably incurs the

competition among service providers that offer similar functionality [15]. As a result of

this competition, online rating systems have attracted users’ attention as an evaluation

factor of providers’ operational premises and their actual performance. These ratings

reflect users satisfaction in today’s commercial world [16] and can possibly have a large

effect on the provider’s revenue. The aim of this thesis is to study and investigate

this effect.

The healthy competition of cloud providers in the market is threatened since
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the market is dominated by only few large providers. As reported by the Synergy

Research Group 20171, Amazon, Microsoft, Google, and IBM are gaining ground in

the market at the expense of smaller cloud providers. Consequently, compatibility

with private clouds and offering personalized added-value services by resellers [7] are

compromised. For a hybrid of public and private cloud model to operate, a high level

of compatibility between the software that runs the clouds and the business services

is required that demands a higher level of customization. Thus, for the sake of the

growth of the cloud computing industry, we argue that the market should be open

to the new and smaller providers to create a more competitive environment. The

mechanisms of such a market are yet to analysed.

The demand variation has forced cloud providers to preserve a massive amount

of computing resources to avoid Service Level Agreements (SLA) violation. Resource

adaptation strategies require a trade-off between the cost and performance to avoid

the gap between the actual and ideal resource provisioning. If this gap is not managed

properly, it can negatively impact the reputation and aggregated utility of the cloud

providers in the short time, and the cloud consumers in the long run [54]. To mitigate

the issue of underutilized and over provisioned computing resources, cloud providers

scaled their pool of resources by forming cloud federations to maximize their profit and

provide guaranteed Quality of Services (QoS) [14, 32, 47]. However, there are many

partnership and trustworthiness challenges surrounding traditional cloud federations

that prevent providers participation.

For a stable federation, it is vital to monitor the QoS and ensure that SLA

conditions are met, since cloud providers may have an incentive to deviate. This

verification is highly desirable considering the multi-tenancy characteristic of cloud

services. In this context, to scale the economic benefits and optimize resource
1www.srgresearch.com
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utilization, multiple VMs are initiated on the same physical server simultaneously.

The performance variation depends on the network load and usage peak from other

tenants. Cloud providers try to balance the workloads and achieve the required

performance with less preserved capacity, yet they might not be able to supply a

consistent performance. This thesis not only facilitates cloud providers collaboration

within a proposed distributed and trustless federation, but also introduces novel

approaches to monitor services quality.

1.2 Research Questions

Nowadays, online market and rating platforms made it easy for users to compare

a wide range of services and for cloud providers to establish their own credibility.

High rating comes with a price for service providers since rating represents users’

benefits and not necessarily providers’ profit. The problem with the existing revenue

maximization strategies in the domain of cloud computing is that they do not consider

the impact of the users’ preferences and priorities over the price and QoS trade-off on

their demands. This may result in considerable losses for providers in terms of the

gained revenue and for users in terms of the quality of service. Further, it can lead

to poor cloud scalability, resulting in failing providers to scale up or scale down their

resources on time and to support their long-term and strategic needs. Meanwhile,

the service users seek for less costly and high-quality services to optimize their own

utility. The above-discussed challenges lead us to our first research question:

RQ1- How to model the conflicting interests of the cloud service providers in terms

of pricing and quality from one hand, and cloud service consumers’ utility from the

other hand, to maximize the providers’ profit and satisfy the users’ expectations to

maintain their good reputation (rating)?

3



The public cloud market is dominated by few large providers, which prevents a

healthy competition that would benefit the end-users. It also hinders compatibility

with private clouds and prevents offering personalized added-value services by resellers

[7]. We argue that to make the cloud market more competitive, new providers, even

small ones, should be able to enter this market and find a share. Furthermore, today’s

market of Cloud 1.0 is price-focused [21]. The new era of cloud computing, Cloud

2.0, has been emerged to focus on providing value to small and medium enterprises

(SME) as well as large enterprise markets at higher costs as well as higher quality [21].

Despite a large number of pricing competition models [84], [25], [91], to the best of

our knowledge, no one tackled the issue of the cloud providers competition from the

perspective of service quality and end-user satisfaction. Therefore, our second research

question is:

RQ2: How to enable a productive cloud market industry and address the problem of

cloud market share taking into consideration the need for new cloud providers in the

market, and the requirements of Cloud 2.0?

Another service quality and revenue maximization solution is cloud federation.

In spite of the prominent federation advantages, cloud providers are reluctant to

participate in due to some strict challenges, mainly: the stability of a federation [32],

a fair revenue sharing model, the presence of unknown and untrusted participants in a

federation [67], security and privacy threats regarding the managed data and services

as well as the creation and management of the cloud federation itself [47]. Blockchain

can provide a fully distributed architecture for a cloud federation to overcome the

traditional federation models’ issues. However, blockchain solutions are complex

and unexplored. Thus, cloud providers need to explore different business models,

participants’ roles, and responsibilities, and coopetition strategies to fully embrace

the technical and non-technical advantages of blockchain and smart contracts. The

4



above mentioned restrictions of traditional cloud federations lead us to the third

research question:

RQ3: How to design a novel fully distributed blockchain-based cloud federation

architecture and platform that cloud providers can embrace and what are the best

strategies to maximize their profits?

The main restriction of blockchain is that its execution environment is

self-contained and can only access information present in a transaction or in the

transaction history of the blockchain [93]. A new role of verifier is required to provide

some types of information about the external state. Therefore, the federation requires

a trusted verifier, called oracle, to evaluate the service quality against SLA and ensure

the compliance of the quality before the payment. Oracles can be faulty, performing

malicious behaviors, or unable to perform their tasks due to lack of capacity and

not being honest to report their real available resources [49]. Thus, placing a smart

mechanism to select the right oracles plays a significant role in a blockchain network’s

success. The following research question has to be addressed:

RQ4: How to properly monitor the quality of the provided cloud services using the

most qualified oracles selected by a reliable, cost-efficient and smart mechanism?

The above defined research questions and the research area in which they are

stemmed from are illustrated in Figure 1.1.

1.3 Research Objectives and Contributions

To summarize, the main problem we aim to tackle is the theoretical and empirical

foundations of an open cloud computing market. The ultimate objective is to study

and analyse the challenges and opportunities of this market for the service providers

in order to propose strategic and innovative solutions helping to grow the cloud

5
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Figure 1.1: The thesis research questions

computing industry. The main contributions can be summarized as follows:

1. Assess the profitability of user ratings on cloud providers’ income and identify

influential parameters on users demands in a competitive online rating system.

The main objective is to maximize the providers’ profit through a Stackelberg

game model while adjusting the services’ price and capacity based on the

underlining users’ demand. In the meantime, the game model maintains

users’ satisfaction and incentivizes them to provide good ratings for the cloud

providers. This contribution is published in [79] and presented in Chapter 3.

2. Design a two-stage game theoretical model considering the quality of service

among cloud providers through a dynamic differential competition game. This

model intends to allow new and small cloud providers to compete against the

existing and large ones. It also allows to maximize users satisfaction modeled
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using users’ ratings by providing a continues service quality development. This

contribution is published in [81] and presented in Chapter 4.

3. Advocate a fully distributed architecture with a democratic governance structure

for cloud federation, using an innovative exploitation of blockchain. The

architecture aims to prompt and support interoperability and coopetition

among the cloud providers. Different algorithmic game theoretical models are

required to help the providers make wise decisions about the utilization of the

blockchain-based federation. These games focus on maximizing the profit of

the formed federation’s members who cooperatively compete while their service

demand is dynamically changing. This contribution is published in [82] and

presented in Chapter 5.

4. Introduce the new role of oracle and select the most qualified one to provide the

service quality verification services and report to the blockchain to avoid the

participants’ misbehavior. An innovative multi-agent framework is exploited

to model the roles and responsibilities of each agent involved in the cloud

market including the oracles. Furthermore, a Bandit-Bayesian Learning Oracle

Reliability (BLOR) mechanism is proposed to identify trustless (a term used in

the context of blockchain systems meaning not requiring trust) and cost efficient

oracles. The proposed mechanism also incentivizes oracles to continuously act

honestly and provide a fair balance of quality and price with minimal possibility

to cheat. This contribution is published in [83] and in another paper under

review, and presented in Chapter 6 and Chapter 7.

As this thesis is manuscript-based, each chapter of our contributions provides

a research publication as it is. An overview of the above defined objectives and the

chapters in which they are addressed are presented in Figure 1.2.
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Figure 1.2: The thesis objectives and corresponding chapters

1.4 Thesis Organization

The rest of the thesis is organized as follows: the related work organized in several

domains is presented in Chapter 2. In Chapter 3, a Stackelberg game model is designed

to assess the profitability of user ratings for cloud providers. Chapter 4 presents

a two-stage game model for maximizing the providers’ profit who compete with

each other over quality of service. Chapter 5 develops a blockchain-based federation

using smart contracts and model the participants interactions as a differential game.

Chapter 6 introduces oracles as service quality verifiers and Chapter 7 guides how to

select the best oracles using reinforcement learning and a reputation model. Finally,

in Chapter 8, we provide our conclusions.
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Chapter 2

Research Background

In this chapter, we summarize the relevant background for this thesis from four main

perspectives: 1) cloud services; 2) market share dynamics; 3) blockchain; and 4)

reinforcement learning. The main topics from the literature covered in this thesis are

illustrated in Figure 2.1. More details about related work are provided in the following

chapters where the relevant contributions are presented.

2.1 Cloud Services

Cloud computing enables businesses to use scalable services on demand with a

variety of options in pricing and quality. Following the promising results of leading

companies such as Amazon’s EC2, cloud computing is considered an evolutionary

technology. The ease of access to cloud services over the Internet in any place and

highly scalable computing resources in a shared configurable pool have made it more

appealing for users specifically from small and medium companies. The advantages

of cloud computing services have attracted the researchers attentions for many years

and there are many research about the technical aspects of cloud computing, but
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very few research about its business aspects. In this thesis, we cover the research

background and literature in the following areas:

Cloud Service Market: Today’s cloud market, known as Cloud 1.0, is price-oriented

[21]. Majority of research conducted in cloud computing market design is about pricing

competitions and optimal pricing strategies to grow the revenue of cloud providers [91].

However, a price-focused service model does not suit the advanced modern business

applications. The first-generation cloud providers who hide their operations details

behind low pricing models made users unsure to move their critical business process
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to the cloud [21].

Cloud 2.0 that represents the new era of cloud computing, pays a major

attention on providing value to businesses at higher costs but superior quality [21].

Cloud 2.0 requires two transformations to happen: 1) cloud providers must provide a

value that entices the businesses out of their built-in IT resources and applications;

and 2) cloud customers must ask for fast, secure, and reliable cloud services from the

providers to meet their end users’ expectations. As an example of a cloud provider

moving towards cloud 2.0, SITA1 is an IaaS provider that offers mobility-friendly

on-demand hosting and application services specifically designed for the air transport

industry. SITA has connected more than 160 airports which enabled the organization

to host applications accessing to airports systems, such as terminals, gates and

parking.

Cloud Service Competition: Each cloud provider offers similar services at different

prices and performance levels with different sets of features. For example, Amazon

EC2 offers IaaS services of the same computing capabilities at different pricing for

different regions. The large number of services promotes the competition among

service providers offering similar functionality [15]. Survival for new and low reputed

cloud providers in this competition is a big challenge.

Game theory has been explored in the cloud computing area, for instance in

resource allocation and pricing mechanisms in which the interactions of players have to

be taken into account [65]. Hadji et al. [31] took a user-provider interactive approach

and designed a Stackelberg game to optimize the pricing of cloud services with limited

resources. The cloud service providers competition is taken into account by Xu et

al. [91] by optimizing a pricing policy for a better competition under the evolution
1https://www.sita.aero/
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of the cloud market. Forming a Stackelberg game, the authors applied reinforcement

learning (Q-learning) to find out an optimal policy for the leader provider and then

for the followers.

Majority of research proposals paid a major attention to the pricing issue and

somehow neglected the importance of QoS and user satisfaction. A static model for

price-quality trade-off in two cases of monopoly and duopoly price competitions is

proposed by Kilcioglu et al. [42]. In that model, the IaaS marketplace is referred

to as commoditized from the perspective of economic competition since cloud

providers use similar physical hardware, which cannot be differentiated from each

other and profit margins should be omitted. The conducted experiment explained

the price cutting behavior of the current market trend and also how providers

are able to make a profit despite predictions that the market should be totally

commoditized. Conversely, this thesis emphasizes a different approach aligned

with the vision of Cloud 2.0. Young and small competitors cannot survive in the

market with commoditization because of their lower number of users and higher

expenses. We argue that smaller providers need to differentiate themselves from the

established large providers in the market by providing added-value services to their

customers. Fan et al. [24] performed an inspiring study on cloud service quality

by considering market competition among a Software as a Service (SaaS) provider

and a traditional software provider as a differential game. This research analyzes a

short and long-term competition for price and dynamic quality between the two firms.

Cloud Service Federation: Cloud service federations have been formed in response

to users demands variation and shortage of resources. When it comes to federation

formation, coalitional games are mainly entertained in the literature where the

providers resource capacities and their revenues are shared [63]. Federation-formation
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variables, including revenue sharing mechanisms, capacity and cost disparity, and

the presence of a big competitor was invesstigated by Coronado et al. [17]. They

defined revenue sharing mechanisms as the most important factor. Among these

mechanisms, shapely value and outsourcing models (a provider outsources some of its

business and gets a percentage of the revenue) had the least and best performance,

respectively. The authors found that cloud providers tend to stay in outsourcing

collaboration when the user demand is high. Their findings confirm the superiority

of outsourcing in terms of maximizing the profit of cloud providers, which is what we

are proposing in this thesis using a blockchain platform considering interoperability,

trust among cloud providers and service quality, which are not investigated in their

study. Chen et al. [14] proposed another cloud outsourcing model using the coalition

formation game among private clouds and found to be promising to improve the

cloud’s service quality. Zhao et al. [103] investigated the cost-efficiency of data centers

and the cloud providers’ revenue considering the impact of the two factors of energy

consumption and SLA violations. They developed online VM placement algorithms

as an optimization problem of maximizing revenue from VM migration. However,

no initiatives are proposed to monitor the SLA violations. The dynamic and timed

decision making strategies are also not considered.

2.2 Market Share Dynamics

The market share of a company is the percent of total sales in an industry generated

by the firm over the period in which the firm operates. This metric shows how

large a company is in comparison to its industry and its competitors. In this thesis,

we study the dynamics of service price, quality, and market share of the providers

in an oligopoly market. Such a knowledge enables the cloud providers to learn
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their customers behaviors as well as their competitors to plan their market position

strategies to gain more share in the market. We consider a cloud computing market in

which consumers can learn about the services in two ways: use their own experience,

or check their users’ satisfaction reflected through users ratings. The privilege of users

rating and its impact on providers income play a key role in providers incentives to

determine not only their short-term, but also their long-term strategies. Therefore,

we need to define different types of dynamics in our model.

Many proposals in the literature consider static market share [33]. Some of the

non-static studies exercised differential games to formulate the market share dynamics.

For instance, Breton et al. [10] studied dynamic equilibrium advertising strategies in a

duopoly market using differential Stackelberg game. In another attempt, Gutierrez et

al. [30] analyzed the dynamic strategic interactions between a manufacturer with the

assumption that the retail demand is influenced by word-of-mouth from past adopters.

The obtained equilibrium dynamic pricing showed that in some cases, far-sighted

retailer is more profitable. Even though these studies help businesses optimize their

sale, they disregard the customer satisfaction effect on market share.

Currently, major companies such as Amazon, Netflix, Launch, Google, YouTube

and Facebook are heavily using and relying on user ratings to sell their services,

leading to a significant increase of revenue [80]. Today’s on-line market enables service

providers to establish their own credibility. In spite of the acknowledged importance

of users’ ratings in marketing strategies [80], only few proposals investigated its effect

on business owners income [16]. For example, Duan et al. [20] studied video sales

and movie recommender systems and found that users’ ratings increase the users’

awareness by word-of-mouth and increases the providers sales directly. Completing

their study, our research proves that cloud service quality significantly affects the

overall users’ ratings, enhances the providers reputation and increases their profit.
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2.3 Blockchain

Blockchain was initially conceived as an anonymous and trustless peer-to-peer system

used for financial transactions and has evolved over the years to include a wide

variety of other applications such as smart contracts [96]. In fact, blockchain offers a

distributed ledger to track and sustain a record of transactions across a decentralized

network. The distributed ledger contains all verified and validated transactions in

a verifiable, secure, transparent, and lasting method along with a timestamp. Each

stakeholder keeps a copy of the ledger, so it can’t fail at one point. When changes

are recorded, such as adding a block, they are simultaneously updated in all copies

across the network, and records are permanently registered in all ledgers. Changes are

stored as blocks, which build up a chain, where each block is linked to the previous

by storing its hash.

Figure 2.2 presents the chained architecture of blockchain and the smart contract

and oracles interaction over the blockchain. Excluding the first block (called Genesis),

each block has its unique ID and includes the hash of the previous block. For example,

block 186 stores the hash code of block 185 besides its own hash. This method results

in the formation of a chronological chain. Additionally, the data is more secure using

the hash algorithm. Usually, a blockchain consists of a set of transactions [0 − N ]

that have been time-stamped and are validated by stakeholders within the network.

Once the block gains consensus, it becomes a part of the blockchain and is no longer

allowed to be modified. Therefore, trust and transparency are significantly improved

in communications between its participants. Smart contracts are executable codes

residing on blockchain networks that contain agreements among its users. Smart

contracts use oracles to fetch data from the outside world. As Figure 2.2 shows,

when a user’s query requires data from outside of the blockchain network, the smart

contract asks the oracle to retrieve the data within a new self-created contract. Then,
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the oracle collects the data from an off-chain source and transfers it on-chain with

a signed message and makes the data available by putting it in the smart contract’s

storage.

Blockchain-based platforms are categorized as a permissionless or permissioned

blockchain [55]. Anyone can participate anonymously in a permissionless blockchain

network, also called public blockchain. Within a public blockchain, trust is limited, so

that miners are introduced to validate the registered transactions. On the contrary,

permissioned blockchain, called private blockchain, contains a group of identified

users who are trusted. To join this type of network, new users need permission

from the majority of the group or a delegated user. Miners collect and validate

broadcasted transactions and create new blocks. They compete against each other

to solve a mathematical puzzle, widely known as a proof-of-work problem. The first

who solves the puzzle, creates a new block to the chain and earns a specific amount

of reward, such as a small number of Bitcoins.

Smart Contracts: A smart contract defines the conditions and obligations among

stakeholders and lives on the blockchain with a unique address [104]. The information

of a smart contract is recorded as an executable computer code that enables it to

self-execute when all of the predetermined conditions are satisfied within a blockchain

network. Therefore, stakeholders who make their agreements upon a smart contract

build stronger trust relation and are less likely to face any fraud. Moreover, smart

contracts provide users with the freedom to build autonomous applications that

function independently of the system entities.

The most popular blockchain with smart contract functionality is called

Ethereum and its cryptocurrency is Ether. In the current version, Ethereum

functions through gas which is an Ether-based purchase of the consumed resources.
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Figure 2.2: Blockchain and smart contract architecture

This will help Ethereum prevent DoS attacks, infinite loops within contracts, and

network resource expenditure. Every function, such as sending and retrieving data,

executing computation, and storing data, has a gas cost. Smart contracts have two

types: deterministic and nondeterministic [57]. The deterministic smart contract is

implemented on a blockchain with complete isolation from external environments,

and participants are responsible for maintaining the contract states and decisions.

On the other hand, nondeterministic smart contracts require external information

to make decisions, which makes them dependent on actors outside of the blockchain

network. For instance, an external actor could be a weather provider or a sensor data

provider, who are referred to as oracles in blockchains.
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Oracles: Blockchain oracles provide a link between off-chain and on-chain data.

Apparent absence of oracles would limit the smart contracts functionality as they

would only have access to data from within their networks [27]. Whether an oracle

depends on human involvement or is totally automated determines the process by

which it obtains its data. Automated oracles operate solely through software and

hardware to fetch the data and oracle itself is not the original source of the data.

Automated oracles only provide deterministic inquiry results. However, autonomous

oracles or oracles involving human intervention are able to respond to arbitrary

inquiries hard to be deducted by machine. They cannot be distinctly separated from

the data source. Until writing this thesis, no paper was found addressing the reliability

of such oracles.

Oracle systems can be centralized or decentralized. Oraclize 2 is a centralized

oracle service based on Amazon Web Service with main attention of proving that

the obtained data is untampered. Town Crier [99] is also a centralized authenticated

data feed that operates as a trusted bridge between existing HTTPS-enabled websites

and Ethereum using trusted hardware and software. However, similar to any other

centralized solution, their validity relies on a central authority and the correctness

of the original source or the performed task is questionable. Chainlink [23]

is a decentralized oracle network on the Ethereum platform aiming to provide

tamper-proof data using designated APIs. Chainlink operates through incentives and

aggregation models, however, it has cost and scalability issues. ASTRAEA [6], is an

interesting decentralized oracle working based on a voting game to decide about the

truthfulness of propositions. The authors analyzed the game-theoretical incentive

structure to prove the existence of Nash equilibrium under the assumption that all

rational players behave honestly.
2https://provable.xyz/
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Real-World Applications: It has been known for some time but there is little study

on the potential of blockchain in real-world applications despite its vast potential

for business sharing data and collaborating in a secure and customizable way [53].

Blockchain applications mainly focus on finance [85], energy [60] and IoT applications

[102]. In cloud computing and service industry, to the best of our knowledge, there

has been only one academic initiative that proposed a cloud marketplace based on

the blockchain technology, called Desmaa [43]. Desmaa is a conceptual framework

for trustless intermediation in service marketplaces that models the interactions

between a service provider and a service consumer. Yet, the outsourcing model with

collaboration and competition among cloud providers, the providers’ profit and their

best strategies, and evaluation and validation against real-world’s scenarios are not

elaborated.

2.4 Reinforcement Learning

Reinforcement learning was developed as an approach to mimic the behavior of a

biological agent [77]. As Figure 2.3 illustrates, reinforcement learning uses three

elements: observation st, action at, and reward rt at time step t to solve a problem.

The idea is that an intelligent agent learns how to optimize its actions based on how

it is rewarded for its actions in the current and resulting states. It can then optimize

its actions to accumulate more rewards towards its desired objective. This approach

can be applied to any sequential decision-making problem based on the learned policy.

The environment which an agent is interacting with is modeled as a Markov Decision

Process that could be completely or partially observable.

Reinforcement learning has two main elements :1) agent and 2) environment,
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Figure 2.3: Blockchain and smart contract architecture

and three sub-elements named reward, policy and value function. Maximizing the

reward is the goal of the reinforcement learning problem. Policy is a mapping of

states and actions. It defines what actions should be taken in each state by the agent

within the environment. Value function defines the optimal value in a long run. Unlike

reward signal, it focuses on long term return of selected actions.

Reinforcement learning methods are classified as model-based and model-free.

Model-based learning involves modeling of the transitions and immediate outcomes

in the environment and choosing the optimal policy based on the model. Model-free

learning uses trial and error experiences to build the optimal policy. As the state

space and action space grow, model-based algorithms become impractical. In

contrast, model-free learning does not require space to store all the combination of

states and actions tailed in a model. The most widely used algorithms of model-free

learning method are temporal difference, Q-learning and multi-armed bandit.

Q-Learning: The goal of Q-learning is to learn a policy that guides an agent what

action to take under what circumstances. For any finite Markov decision process,

Q-learning finds a policy to maximize the expected value of the total reward over
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any and all successive steps, starting from the current state. Q-learning can identify

an optimal action-selection policy for any given finite Markov decision process, given

infinite exploration time and a partly-random policy. "Q" names the function that

returns the reward used to provide the reinforcement and stands for the "quality" of

an action taken in a given state.

Temporal Difference (TD): TD is a learning method that depends on the future

value without any prior knowledge. The name of temporal difference is derived from

the concept of change and difference in various stages to update its prediction of the

future value, which leads to a learning process. In fact, TD integrates some of the

features of both Monte Carlo and Dynamic Programming (DP) methods and has the

advantage of being implemented in an on-line fully incremental fashion over these

methods.

Multi-Armed Bandit: It is a problem in which there are fixed number of choices

and the objective is to maximize the gain by selecting the best choice. In this context,

each choice can be partially observed and they may be better explored and identified

as the time goes on by examining them on multiple occasions. Multi-armed bandit has

its origins in slot machines, in which players must determine which machine to play,

how many times and in what order to play it to maximize their prizes. In this context,

each machine gives a stochastic reward from a probability distribution. Multi-armed

bandit problem is exploited in many fields such as medical [86], recommender systems

[48], and crowdsourcing [38]. However, to the best of our knowledge, its application

in blockchain together with its specific challenges have not been explored in any

research yet. Multi-armed bandit is highly accurate and requires little complexity

and processing resources when compared to other reinforcement learning methods.

This made it an ideal solution to be utilized on blockchains and smart contracts in

which computation and storage are very precious.
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Chapter 3

On the Effects of User

Ratings on the Profitability

of Cloud Services

In today’s cloud market, providers are taking advantage of consumer reviews and

ratings as a new marketing tool to establish their credibility. However, to achieve

higher ratings, they need to enhance their service quality which comes with an

additional cost. In this chapter that presents our published manuscript, we model

this conflicting situation as a Stackelberg game between a typical service provider

and multiple service users in a cloud environment. The strategy of the service

provider is to adjust the price and IT capacity by predicting the users’ ratings as

well as their demands variation in response to his given price, quality and rating. The

game is solved through a backward induction procedure using Lagrange function and

Kuhn-Tucker conditions. To evaluate the proposed model, we performed experiments

on three real world service providers who have low, medium and high average of
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users’ ratings, obtained from the Trust Feedback Dataset in the Cloud Armor project.

The results show that improvement in ratings is mostly profitable for highly rated

providers. The surprising point is that providers having low ratings do not get much

benefit from increasing their average ratings, meanwhile, they can perform well when

they lower the service price. This chapter is published in [79].

3.1 Introduction

Cloud computing has emerged as a significant promising computing paradigm by

facilitating customers access to computing services without owning any computing

resources. The large number of services inevitably incurs the competition among

service providers that offer similar functionality [15]. Survival for new and less famous

cloud providers in this competition is more challenging, unless they provide high

quality services and gain good reputation. Today’s on-line market made it easy for

providers to establish their own credibility.

On-line rating systems have attracted users’ attentions as an evaluation factor

of providers’ operational premises and their actual performance. Rating platforms

enable users to share their experience and interests with other users in a timely fashion.

Reviews and ratings, known as digitized word-of-mouth, play an important role in the

future customers decision making. Theses ratings reflect users satisfaction in today’s

commercial world and can affect the providers revenue largely [16].

High rating comes with a price for service providers, since rating represents

users’ benefits and not necessarily providers’ profit. The main issue arises due to the

fact that each participating party in the cloud has its own interest. Users want to

purchase elastic and high-quality services with minimum price. However, from the

provider’s perspective, higher quality means more cost and minimum price means low
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profit. Moreover, the service price has a large effect on users willingness to order,

and quality influences users’ ratings that represent their satisfaction as a reference

for future users. Planning a suitable pricing strategy in early stages of the service

development life cycle is highly significant since pricing may give special requirements

to the architectural design, such as scalability and customizability [46]. The problem

with the existing revenue maximization strategies in the domain of cloud computing

is that they do not consider the impact of the users’ preferences and priorities over

the price and QoS trade-off on their demands. This may result in considerable losses

for providers in terms of the gained revenue and for users in terms of the quality of

service. Further, it can lead to poor cloud scalability failing providers to scale up

or scale down their resources on time, and to support their long-term and strategic

needs. Failing to meet the expected users’ demands for cloud services can result in

deficiency or large up-front investments in infrastructure. To address these issues, we

model the conflicting interests and selfish actions of the participants as a Stackelberg

game. The strategy of the service provider as a leader is to maximize his profit and, at

the same time, satisfy the users’ needs to maintain his good reputation. Meanwhile,

the service users as followers seek for less costly and high quality services to optimize

their own utility.

Contributions: The novelty of this study lies in the theoretical and empirical

research conducted to study the impact of on-line customers’ ratings and demand

variations on the revenue of infrastructure cloud service providers. The main

contributions can be summarized as follows:

• Assessing the profitability of user ratings on cloud providers’ income in a

competitive on-line rating system. To the best of our knowledge, our work

is the first that presents a comprehensive study on the users’ ratings on the

providers’ profit in a cloud environment.
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• Enabling providers to identify influential parameters on users demands and

capturing the variations of users’ demands in response to the changes of each

parameter to enable scalability of cloud services and avoid under and over

resources provisioning.

• Maximizing the providers’ profit through a Stackelberg game model while

adjusting the services’ price and capacity based on the underlining users’

demand.

• Maintaining users’ satisfaction and incentivizing them to provide good ratings

for the providers.

For empirical evaluation, the model is implemented using a real world dataset obtained

from the Cloud Armor project1, on three service providers with low, medium and high

rating.

3.2 Related Work

Game theory is widely applied where the interactions of players have to be taken into

account. This cannot be designed with the classical optimization theory, since the

players’ actions affect the other players. Game theory has been successfully applied

to address resource allocation and Quality of Service (QoS) issues [66]. In cloud

computing it is mainly utilized to deal with resource allocation and pricing issues [65].

As an example, a two stage provisioning Stackelberg game is offered by Di Valerio et

al. [18] for Software as a Service (SaaS) providers who use cloud facilities provided by

an Infrastructure as a Service (IaaS) provider. First, the SaaS providers determine

the number of required instances, then the SaaS providers compete by bidding for the

spot instances.
1http://cs.adelaide.edu.au/∼cloudarmor/ds.html
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The perspective of the user and provider is considered by Al Daoud et al. [1],

who propose a policy to maximize the cloud provider’s revenue and users utilities. The

authors focus on the pricing problem and proved the existence of a Nash equilibrium.

A very similar approach is taken by Hadji et al. [31]. A Stackelberg game is designed

to consider constrained pricing with limited resources offered by an IaaS provider and

the optimal user demands. However, price is the only utility factor considered for

both the user and provider in existing research; and the importance of QoS or ratings

as well as the trade-off relation between price and QoS are yet to be investigated. It

is worth mentioning that none of the above discussed research has utilized real world

datasets for demonstration of their game applicability in real life.

A recent survey conducted by BrightLocal in November 2016, acknowledged that

84% of people trust on-line ratings and reviews as much as personal recommendations,

and 58% of consumers say that the star rating of a business is the most important

decisive factor2. Yet, there have been few works exploring the user ratings effect

on business owners profit [16], that can be found mainly in marketing and economic

literatures. For instance, empirical studies showed that improving book review ratings

on Amazon.com and BarnesandNoble.com tends to increase their sales [16]. In the

cloud service literature, Wang et al. [89] proposed a reputation measurement approach

based on feedback ratings to obtain the trust vector of each cloud service. Their

model generates a reputation score for cloud services and is limited to the users who

already used the service in the past, but does not support future users. To the

best of our knowledge, this work is the first that models cloud services profitability

while considering future users ratings, where unlike classic economic models, the main

challenge is how to consider the elasticity feature of cloud services along with QoS

factors.
2www.brightlocal.com/learn/local-consumer-review-survey/
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3.3 Cloud Service Provider-User Stackelberg

Game

We model the cloud service market interactions between a service provider and the

service users as a Stackelberg game, where the service provider is the leader and the

service users are the followers. The users observe the price and ratings to adjust

their demand accordingly. In quest of the users demands, the service provider makes

decision on his pricing strategy and optimal capacity. In the provider objective model,

the provider tries to comply with Service Level Agreement (SLA) to obtain and

maintain his good rating, otherwise poor quality affects users rating and future users

demand. We assumed there is no limitation for provider capacity, so he can increase

his capacity as the demand grows. The proposed model considers different parameters,

which are provided in Table 3.1.

The cloud service delivery requires provisioning an estimated amount of the

required cloud resources to satisfy customers’ demands. A precise estimation

will benefit cloud providers with a balanced capacity and reduced cost. This

challenging task of estimation depends on several factors including the number of

consumers, variation of their demand, and their expected QoS [59]. Elasticity

capabilities of cloud resources enable providers to scale their capacities and to

configure provisioned resources to take into account the user demand behavior and

specified QoS requirements for each user. In order to capture demand elasticities and

variations specific for each user, which are fundamental aspects in cloud environments,

we define the user demand using the Cobb-Douglas function that models well these

elasticity aspects [29].
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Table 3.1: Notations used in service provider-user Stackelberg game

Decision variables

xik Demand size of user i for service k

φ IT capacity/process rate of the service provider

Pk Price per unit of service k

Input parameters

i = 1, 2, ...n ∈ N Index of n users in the set N

Bi User i Budget

Rik Rating utility of service k from user i

rik Service rating of user i for service k

r̄k Average of n users’ ratings for service k

r̄i Average ratings of all the services given by user i

r̂ik Predicted rating of user i for service k

αi Price elasticity for user i

βi Rating elasticity for user i

γi Amount of service elasticity for user i

l User’s arrival rate

k, j Services (offered by two different providers)

µ Constant scale of user demand

φ IT capacity/process rate of service provider

Qk Quality of service k stated in SLA

C0k/Ck Fixed cost/marginal cost of service k

λ, λ1, λ2 Lagrange multipliers

The Cobb-Douglas demand function is continuous, convex or concave, and has

constant elasticities in relation with each input parameter. In real world situations, a

28



user demand depends on service price and perceived quality. The user will have the

opportunity to check the provider rating that represents the actual user satisfaction

level of the service quality. Therefore, in addition to the amount of service and the

service price, the user rating is considered influential in our user demand function.

We define the user demand function as follows:

Di(xik, Pk, rik) = µ xγiik P
−αi
k rβiik (3.1)

where αi, βi and γi, i = 1, 2, ..., n are elasticities of the service price Pk, rating rik

and size xik respectively. Different market users, having different requirements and

satisfaction levels, do not react evenly to the same price or rating. It is the combination

of these factors that produces different values of αi, βi and γi. These values are

independent of the specific values of Pk, rik and xik, which is an inherent property of

the Cobb-Douglas function. User demand has a negative relation with service price,

and positive relation with service rating. The user (i.e., a typical follower) aims to

maximize his payoff:

maximize UP (xik) = Di(xik, Pk, rik)− Pk

subject to Pkxik ≤ Bi

xik ≥ 0,∀i ∈ N

(3.2)

The user’s objective is to maximize the demand size xik within his budget Bi

while minimizing the cost Pk. Users’ ratings that reflect their satisfaction level enhance

their total utility encoded in the demand function. Service provider predicts the new

user rating based on the given previous ratings that is influenced by the actual service

quality. The user can only decide on the size of the demand, and price should be

obtained through the provider’s utility function.
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As the cloud service provider needs to maintain his reputation through the user

ratings, he is responsible to process users requests on time. Thus, it is important to

consider service processing rate that represents IT capacity of the service provider,

denoted as φ. A large processing rate requires a higher IT capacity, meaning a higher

cost for φ that includes fixed cost of C0 and marginal cost of Ck. Thus, the total cost

for capacity φ is C0k + Ckφ.

Following previous literature in cloud computing [24], we model arrival of

customers as a Poisson process with mean arrival rate l. The average delay for a

customer in an M/M/1 queue can be defined as 1
φ−l . The provider is willing to optimize

his profit by maximizing the price and ratings given by the users, and minimizing the

costs. Thus, the provider (i.e., the leader) optimization problem is:

maximize PP (Pk, φ) =
n∑
i=1

(Pk − φ Ck) D(x∗ik, Pk, rik)

+
n∑
i=1

Rik − C0k

subject to 1
φ − l

≤ Qk

φ > 0, Pk > 0,∀i ∈ N

(3.3)

x∗ik is the outcome of the optimization problem Eq.3.2, which corresponds to the best

user’s response in terms of demand size to the offered service price and quality. The

provider can only maintain his high records of ratings, if he offers a service quality not

less than what is stated in SLA. Thus, based on the defined constraint, the average

delay should not be more than Qk stated in SLA.

The user ratings do not always enhance the utility of the provider. When the

provider receives a low rating, it may have a negative effect on his payoff. To reflect

that, we assign to Rik a negative sign when the user rating is less than the average
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user ratings as follows:

Rik : =


+Rik if r̂ik ≥ r̄k

−Rik if r̂ik < r̄k

(3.4)

r̂ik is the predicted rating of user i which will be calculated in the next section.

3.4 User Rating Prediction

Each service has a history of user rating values that can be used for future user ratings

for other services. In this paper, we predict the rating value of service k using a set

of similar services to service k that have been rated by the users. The similar service

neighbors are identified using the Pearson Correlation Coefficient (PCC) measure.

PCC is a common method of similarity computation in recommender systems that

measures the extent to which two variables linearly relate with each other. Therefore,

the similarity among two services k and j with the same functionality consumed by

user i is computed as follows:

Sim(k, j) =
∑
i∈N(rik − r̄k)(rij − r̄j)√∑

i∈N(rik − r̄k)2
√∑

i∈N(rij − r̄j)2
(3.5)

where r̄k and r̄j represent the average rating values of service k and j consumed by n

users. After calculating the similarity values, it is important to select neighbors that

are really similar to the service. Therefore, the similar neighbor set S for service k is

defined as follows:

S(k) = {j|j ∈ TK , Sim(j, k) > 0, j 6= k} (3.6)
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TK represents a set of the Top-K similar services to service k. The identified

similar service set is utilized for rating predictions. Based on the user experience of

the similar service set, the missing rating value of service k for user i would be:

r̂ik = r̄i +
∑
j∈S(k) Sim(k, j)(rij − r̄j)∑

j∈S(k) Sim(k, j) (3.7)

Predicted rating of service k from user i will be placed as an input for the

defined function of Rik in Eq.3.4 to compute the final utility for the service provider.

For convenience, we use rik to designate r̂ik or rik in the rest of the paper.

3.5 Stackelberg Game Equilibrium

We solve the equilibrium point of the above defined Stackelberg game by a backward

induction procedure. Therefore, the followers’ (users) problem has to be solved first to

obtain the response function of these users. The leader’s (provider) decision problem is

then computed considering all possible reactions of his followers in order to maximize

his net profit. For every possible provider’s action, every user’s optimal reaction shall

be determined by considering the provider’s decisions as its input parameters. At

last, the provider identifies his optimal decision that leads to his optimal payoff, by

assuming that the users are rational and make the optimal response to his decisions.

The best response functions are discussed in the following sections.

3.5.1 User Best Response

The user has to adjust the size of his demand according to his budget for a given

price. In our model, increasing the budget is not allowed for the user. By definition,

the Cobb-Douglas function Di(xik, Pk, rik) is an increasing and concave function of
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rik, so we have a positive first derivative and a negative second derivative,

∂Di(xik, Pk, rik)
∂rik

= βiµP
−αi
k rβi−1

ik xγiik > 0 (3.8)

∂2Di(xik, Pk, rik)
∂r2

ik

= βi(βi − 1)µP−αik rβi−2
ik xγiik < 0 (3.9)

Considering the above equations, we have 0 < βi < 1. We can get the same

range for γi, 0 < γi < 1, since the function is increasing and concave in xik, and

αi > 0.

As the objective function in Eq.3.2 is continuous and concave in xik, we obtain the

solution using Lagrange multipliers, λ1 and λ2, with Kuhn-Tucker conditions. So, we

will have a new objective function:

Lup = Di(xik, Pk, rik)− Pk − λ1(xikPk −Bi) + λ2xik (3.10)

with the following conditions:

λ1(xikPk −Bi) = 0 (3.11)

λ2xik = 0 (3.12)

λ1, λ2, xik ≥ 0

The only coupling point between users is xik, so we take the derivative with

respect to xik.
∂LUP (xik)

∂xik
= ∂Di (xik)

∂xik
− λ1Pk + λ2 = 0 (3.13)
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We have two cases: 1) xik = 0: regardless of the value of λ1, λ2, this means that

the user is not demanding any services, so his utility will be zero. 2) xik > 0: from

slackness complementary condition in Eq.3.12 we can conclude that λ2 = 0; so we

have:

γiµx
γi−1
ik P−αik rβiik − λ1Pk = 0 (3.14)

xik = (λ1P
αi+1
k

rβiikγiµ
)

1
γi−1 (3.15)

By substituting xik from Eq.3.15 in Eq.3.11 we obtain λ1:

λ1[(λ1P
αi+1
k

rβiikγiµ
)

1
γi−1Pk −Bi] = 0 (3.16)

λ
1

γi−1
1 = Bir

βi
ikγiµ

P
αi+1
γi−1 +1
k

(3.17)

The final response xik from user i is attained by replacing Eq.3.17 in Eq.3.15.

x∗ik = Bi(rβiikγiµ)
γi−2
γi−1

Pk
(3.18)

The above obtained x∗ik is optimal where Eq.3.11 slacks and λ1 > 0. However,

we claim that it is reasonable to consider slackness rather than binding, since having

λ1 = 0 is an extreme case where the user cares only about the price and does not

consider the previous ratings or quality.

3.5.2 Cloud Service Provider Best Response

In the case of having a non zero demand for the service provider and close values of

price and cost, the provider can only survive when he receives a high rating that can
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cover his sacrificed price loss. But, if his rating is low and he cannot set a high price,

he will eventually suffer from a loss and leave the market. Using Lagrange multiplier

λ, we model the objective optimization in Eq.3.3 as follows:

LPP (Pk, φ, λ) = PP (Pk, φ)− λ( 1
φ− l

−Qk) (3.19)

The Kuhn-Tucker condition for our model is:

∂PP (Pk, φ)
∂φ

− λ
∂( 1

φ−l −Qk)
∂φ

= 0 (3.20)

∂PP (Pk, φ)
∂Pk

= 0 (3.21)

λ( 1
φ− l

−Qk) = 0 (3.22)

where λ ≥ 0, Pk, φ > 0. To find the optimal capacity φ, we first assume that Eq.3.22

binds and λ > 0. Referring to Eq.3.20 we have:

CkDi(x∗ik, Pk, rik)− λ( −1
(φ− l)2 = 0

λ = −CkDi(x∗ik, Pk, rik)(φ− l)2 (3.23)

Knowing that Ck > 0 and Di(x∗ik, Pk, rik) > 0, we obtain a negative λ in Eq.3.23

that contradicts with the defined constraint λ ≥ 0. Therefore, λ = 0 and Eq.3.22

slacks which means the service provider should not provide the capacity equal to

satisfaction of his promised quality, it has to be more. Any assigned capacity can be
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optimal as long as the following condition holds:

φ∗ = 1
Qk

+ l + ε (3.24)

ε represents a very small amount. By solving Eq.3.21 we can get the optimal price as

follows:

∂[(Pk − φCk)Di(x∗ik, Pk, rik)]
∂Pk

=

(− αi
γi − 1)Bir

βi(
−γi+1
γi−1 )

ik γ
−γi+1
γi−1
i P

−αi
γi−1−1
k −

φCk(
−αi
γi − 1 − 1)Bir

βi(
−γi+1
γi−1 )

ik γ
−γi+1
γi−1
i P

−αi
γi−1−2
k = 0

P ∗k = φCk(
αi + γi

αi + γi − 1) (3.25)

Obtaining optimal response points enables us to develop an equilibrium algorithm

to solve our proposed Stackelberg game. According to Algorithm 3.1, the utility

of predicted rating is calculated for the service provider, then the user demand is

calculated and the final provider payoff is obtained.

3.6 Simulation Results and Analysis

In order to evaluate our proposed Stackelberg game, we performed our experiments on

three real life cases. We chose HostGator, Carbonite, and AceHost as our Stackelberg

leaders. They all are actual IaaS providers who offer cloud backup and hosting services

to business and individual users. The intuition behind selecting these three providers

was their difference in average rating values that make each of them in high, middle,

and low class of ratings. This section provides the simulation of users’ demands and
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Algorithm 3.1 PP/UP Stackelberg Game
1: procedure Input: Set i = 1, 2, ..., n; αi > 0 ; 0 < γi, βi < 1; Get Ck, C0k, rik, r̄k for service
k.

2: TotalR, sum1, sum2← 0
3: for each i ∈ N do
4: Predict the rating . use Eq.3.7
5: if rik ≥ r̄k then
6: Rik ← rik

7: else
8: Rik ← −rik

9: end if
10: TotalR← Rik + TotalR
11: Obtain the optimal Pk . use Eq.3.25
12: Calculate xik . use Eq.3.18
13: Calculate Di . use Eq.3.1
14: Obtain the optimal φ . use Eq.3.24
15: UPi ← Di − Pk

16: sum1← sum1 + Pk ∗Di

17: sum2← sum2 + φ ∗ Ck ∗Di

18: end for
19: PP ← sum1− sum2 + TotalR− C0k

20: end procedure

assesses how the users react to changes in the price, rating, and volume of each service.

It helps investigate how the profit obtained by service providers in each rating class

varies when the user sensitivities towards the service volume, rating and price change.

3.6.1 Experiment Setup

As the main purpose of this experiment is to demonstrate the reliability of the

proposed Stackelberg game and its solution algorithm, we have to set meaningful

data and reasonable game parameters. To do so, we obtained real world data

and investigated some properties of the Cobb-Douglas function originally used in

supply chain practices [98]. We simulated 300 cloud service users for each of the

providers using real customer ratings from the Trust Feedback Dataset, provided by

Noor et. al. [64] in the Cloud Armor project, with respect to speed and response

time. HostGator has a very good record of user ratings with an average of "4.72".

Afterwards, Carbonite has an average record of user ratings "2.58", while AceHost has
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Figure 3.1: Pricing strategies (AceHost)

low record of user ratings "1.83".

Considering the fact that users usually rate the price according to their budgets,

we scaled up the daily budget of users based on their ratings given to the service price

factor. To obtain the process rate, we referred to the providers promised quality in

the SLA statements. For example, Carbonite promises the minimum speed of 2 mbps,

and from this value we computed the process rate φ for a day with l= 5 requests per

second that gives a reasonable response time of 0.01. We set the constant scale of µ to 1

consistently with previous literature [40]. Since there is no information available about

the providers’ cost, we assume that they are renting their cloud infrastructure from

Google, so the margin cost is obtained from Google Cloud Storage that is Ck = 0.026

monthly.

3.6.2 Rating Prediction

Through the dataset, we tried to find similar services that had ratings for the same

quality factor. We identified 14 well-known service providers such as Go Daddy,

38



a) HostGator b) Carbonite

c) AceHost

Figure 3.2: Demand variation with rating elasticity (20 different values of β [0.25-0.61]

Dropbox, and Dream host including the previously three nominated service providers

who offer similar services. The rating prediction was conducted with a Mean Absolute

Error of 1.209, and Root Mean Square Error of 1.478.

3.6.3 Pricing Strategies

Service provider has to set the optimal price based on the predicted user demand

response given the offered price. Considering possible users reactions towards the

given price can help service provider as a leader to choose the best pricing strategy.
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This reactions towards changes in demand related parameters are to be analyzed with

the defined elasticities that represents users sensitivities by changing each parameter.

As an example,

βi = ∂Di(xik,Pk,rik)
∂rik

rik
Di(xik,Pk,rik)

indicates that one percentage change in rik brings a βi percentage change in

Di(xik, Pk, rik).

Figure 3.1 depicts the best pricing strategies that a service providers can adopt.

It is not surprising that user rating sensitivity does not affect the optimal service

pricing, as it was found earlier in Eq.3.25. Meanwhile, price reduction towards size

sensitivity has to be much less than what it has to be against price sensitivity. Since

the optimal pricing strategies of all the three providers are similar and only differ

in price reduction scale, we only provide the figure for AceHost. From these pricing

strategies, we need to investigate how the users react in their demands and how these

strategies will ultimately enhance the provider’s profit.

3.6.4 Sensitivity Analysis of Rating

Let us consider the rating elasticity parameter β. What a service provider in our

Stackelberg game needs to know is how users will respond to ratings improvement,

and how this response ultimately affects the provider’s profit. In order to illustrate

variations of demands within the user population, box plots are provided. Figure 3.2

shows that users’ demands of all three providers rise with increase of β, but not in

the same distribution. The quartiles and median of the HostGator service demand

are increasing along with the growth of β. For Carbonite, the quartiles are increasing

but the median remains almost unchanged. This shows less users have increased their

demands. However, those who enlarged their demands, had more variation than the

users of HostGator, whose variation is going up more than 120,000. AceHost has
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a) User rating sensitivity b) Service volume sensitivity

c) Service price sensitivity

Figure 3.3: Analysis of providers profit with different user sensitivities

a different situation. The majority of users’ demands are unchanged, while some

had increased in even more amount compared to the other two providers (more than

150,000).

The effect of these changes are reflected in Figure 3.3a, where the profits of

the three providers are compared. Since the process rate and marginal cost of

HostGator are high, at first Carbonite is better off. But after increasing β, HostGator

outperforms Carbonite. As it was expected for AceHost, the profit has a slight

improvement when β is increased.
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By analyzing these results, we can conclude that users who become customers of

HostGator, mainly care about quality and rating. So when the provider increases his

rating, he will see a dramatic increase of profit but not early. Carbonite has almost the

same situation but less intense, so this provider can witness the increase of profit at

slower pace. Meanwhile, the users of AceHost are not much sensitive towards rating.

Therefore, rising the rating has a minor effect on AceHost profit.

3.6.5 Sensitivity Analysis of Service Volume

To estimate the volume of service that users obtain, we analyzed γ. According to

Figure 3.4, variation of user demand distribution for service volume is almost the

same as ratings. However, very few users have lowered their demand when they met

their budget limits. Figure 3.3b shows the three providers’ profit gained at a milder

slope in comparison with rating increment. This is due to the fact that only few

customers lowered their demands, specially HostGator’ customers who should pay

more money. Yet, HostGator and Carbonite have similar trend of gaining the profit

out of size increment.

3.6.6 Sensitivity Analysis of Price

Users react differently towards the decrease of price. As α goes up, the price goes

down. The change of price has to be greater than the other parameters to enhance

the user demands. Figure 3.5 depicts the fact that users have a late reaction towards

the decrease of price, but when they start to boost their demand, it goes up very

fast. Consequently, the three providers’ profits are more curvy with variation of price

than the other parameters, as presented in Figure 3.3c. Like the case of the other two

parameters, AceHost received less increment but most intense in variation. HostGator,
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a) HostGator b) Carbonite

c) AceHost

Figure 3.4: Demand variation with size elasticity (20 different values of γ [0.25-0.61]

Carbonite and AceHost behave similarly at the beginning, but Carbonite profit speeds

up over scaling the price reduction. This shows that medium rated providers with

medium cost and price have better opportunity to gain user satisfaction by cutting

the service price.

In summary, it can be inferred that users react to small changes of rating and

service size, meanwhile price deduction has to be large to affect considerably the users

demand. For providers with higher capacity and higher rating values, the slope of

profit increment will be higher than those with less capacity and lower rating values.

Although providers with high capacity and rating obtain higher profits, providers
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a) HostGator b) Carbonite

c) AceHost

Figure 3.5: Demand variation with price elasticity (20 different values of α [0.85-0.75]

with low capacity and low rating may receive some unexpected demand growth by

enlarging the service size, improving the rating values, or reducing the price.

3.7 Conclusion

This chapter introduced a Stackelberg game model between a typical IaaS provider

and the users to optimize the profit of the service provider who operates within

an on-line rating platform. The theoretically obtained results confirmed by the

game simulation on a real world dataset showed that rating improvement is mostly
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influential for high rated providers who compete with high quality providers and

attracted the users who prioritize quality in their decision making. Improving the

ratings of a low rated provider does not increase his profit as much as it does for

a medium and high rated provider. Meanwhile, an average rated provider takes the

most advantage out of the price reduction, that can be related to his medium cost and

process rate. Lowering the price boosted almost all the users demands greatly, but

only when it is reduced in large scale. In a nutshell, providers with higher capacity,

rating and also cost can make more profit when the user demands increase. The main

competitive advantage of high rated providers is their service quality that becomes

most profitable by enhancing their ratings. Providers with lower capacity, cost and

rating may see some unexpected increase of demand from some customers, but in total

they will have less demand and less profit. Yet their main advantage is lower cost that

attracts low budget customers with continuing their price reduction. Finally, as the

competition among providers is not considered in this chapter, we design a dynamic

game that models this competition over time in the next chapter.

45



Chapter 4

Two-Stage Game Theoretical

Framework for IaaS Market

Share Dynamics

In this chapter, we consider the problem of cloud market share among Infrastructure

as a Service (IaaS) providers in a competitive setting. The public cloud market is

dominated by few large providers, which prevents a healthy competition that would

benefit the end-users. We argue that to make the cloud market more competitive,

new providers, even small ones, should be able to inter this market and find a share.

This problem of deeply analyzing the cloud market and providing new players with

mechanisms allowing them to have a market share has not been addressed yet. In

fact, to make the cloud market open and increase the cloud service demand, we

show in this paper that the cloud providers have to compete not only over price,

but also quality. Most of the research performed in the cloud market competition

focus only on pricing mechanisms, neglecting thus the cloud service quality and user’s

46



satisfaction. However, to be consistent with the new era of cloud computing, Cloud

2.0, providers have to focus on providing value to businesses and offer higher quality

services. As a solution to the aforementioned problem, we propose a conceptual,

user-centric game theoretical framework that includes a two-stage game: 1) to capture

the user demand preferences (optimal capacity and price), a Stackelberg game is used

where IaaS providers are leaders and IaaS users are followers; and 2) to enhance the

service ratings given by users in order to improve the provider position in the market

and increase the future users’ demand, a differential game is proposed, which allows

IaaS providers to compete over service quality (e.g., QoS, scalability and adding extra

features). The proposed two-stage game model allows the new IaaS providers, even if

they are small, to have a share in the market and increase user’s satisfaction through

providing high quality and added-value services. To validate the theoretical analysis,

experimental results are conducted using a real-world cloud service quality feedback,

collected by the CloudArmor project. This research reveals that due to the fact that

service customization tends to enhance the customers loyalty in today’s subscription

cloud economy, the best strategy for small IaaS providers is to increase the service

cost and improve the quality of their added-value solutions to prevent customers’

defection. This not only elevates the provider’s profit, but also increases the quality

equilibrium that leads to a higher user satisfaction. Consequently, higher satisfaction

enhances the provider’s rating and future users demand. This chapter is published

in [81].
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Figure 4.1: Cloud revenue race among IaaS providers

4.1 Introduction

4.1.1 Motivations

The rising demand in the cloud infrastructure service market has tempted a large

number of technology providers to participate and compete in the market [15].

However, today’s cloud market is dominated by only few large providers. As reported

by the Synergy Research Group 20171, Amazon, Microsoft, Google, and IBM gained

ground in the market at the expense of smaller IaaS providers. The medium sized IaaS

providers lost 1% of the market and a large number of small IaaS providers collective

market share dropped by 4%, as illustrated in Figure 4.1. Such a dominated market

prevents a healthy competition. It also hinders compatibility with private clouds

and prevents offering personalized added-value services by resellers [7]. Lack of these

services may threaten the wide adoption of cloud computing in many industries. Thus,

for the growth of the cloud computing industry, there is an increasing need to open the

market to the new and smaller providers and create a more competitive environment.

Cloud IaaS has been in the center of attention for years and several research
1www.srgresearch.com
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proposals about the technology itself have been lunched. Nonetheless, there is an

urgent need to explore and address the business issues surrounding cloud computing,

while considering the technical characteristics of such a paradigm. Nowadays, online

market and rating platforms made it easy for users to compare a wide range of

infrastructure services and for IaaS providers to establish their own credibility. In

this paper, we argue that each IaaS provider entering the market needs to distinguish

itself from the already established players and compete over both price and quality. As

outlined in [21], today’s market of Cloud 1.0 is price-focused. For that reason, there are

extensive research that considered pricing competition and proposed optimal pricing

strategies in order to maximize the final revenue of cloud providers [91,95]. However,

there is a large number of modern business applications for which a price-focused

service model will not be adequate. Often, users hesitate to move their critical business

process to the cloud since the first-generation cloud obscured its operations detail

behind its low pricing models [21]. Hiding the details blurs the vision of customers

about the trade-offs that the IaaS provider has made in order to offer computing at

such a low price.

The new era of cloud computing, Cloud 2.0, has been emerged to focus on

providing value to small and medium enterprises (SME) as well as large enterprise

markets at higher costs as well as higher quality [21,34,61,74,90]. For the revolution of

Cloud 2.0 to take place for IaaS, two transformations need to occur: 1) IaaS providers

must be prepared to provide value to businesses that entices them out of their built-in

IT resources and applications; and 2) customers must demand a combination of fast,

secure, and reliable IaaS from the providers to meet their end users’ expectations [13].

In fact, data security and privacy are highly important in the context of Cloud 2.0

where cloud, fog and IoT must be consolidated and application providers are granted

privileges to use and process the data [73]. In this context, to ensure the availability
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and delivery of low-latency services, Cloud 2.0 can be integrated with fog and edge

computing to deal with the massive data volumes being produced by devices and

users [75].

As an example of a cloud provider moving towards this revolution, SITA2 is an

IaaS provider that offers mobility-friendly on-demand hosting and application services

specifically designed for the air transport industry. SITA has connected more than

160 airports which enabled the organization to host applications accessing to airports

systems, such as terminals, gates and parking. A research conducted by Microsoft

Cloud and Hosting Study3 also confirmed the Cloud 2.0 movement by showing that

89% of companies are willing to pay additional fees for cloud management services.

Despite the large number of pricing competition models, to the best of our knowledge,

no one tackled the issue of the cloud providers competition from the perspective of

service quality and end-users satisfaction. The only study about quality competition

has been conducted by Fan et al. [24] who considered market competition among a

software as a service provider and a traditional software provider. Their research

focus on marketing advantages of bundling software in a service, neglecting the tight

competition among cloud providers themselves and the user satisfaction effect on

providers’ revenue.

Considering the initiatives of Cloud 2.0 movement, this study promotes a healthy

market competition through rigor economical and theoretical models. To build a

practical roadmap, we propose to empower new and small providers by considering

two key features of Cloud 2.0:

1. High quality services: Considering the increasing number of clouds deployed in

private data centers, the classic approach, such as the one used by Amazon,

to build a cloud in which hardware and software developments are insourced,
2https://www.sita.aero/
3http://partner-l1.microsoft.com/hosting-cloud-research-report-2017
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is no longer efficient and hardly deployable. Instead, clouds are being built

out of commercial technology stacks with the aim of enabling the infrastructure

providers to access the market rapidly and compete while providing high-quality

services. However, finding cost-efficient component technologies offering high

reliability, continues support, adequate quality, and easy integration is highly

challenging. Unlike most of the research performed in the cloud market

competition focusing only on pricing mechanisms, we model the competition

from the perspectives of cloud service quality and user’s satisfaction by focusing

on added-value and superior quality services. Enabling small or new providers

to access the market and offer personalized added-value services within our

proposed model is part of this feature of Cloud 2.0 that enhances compatibility

with private clouds.

2. Long-term commitment: The success of modern business applications relies on

the reliability of services, such as incident response, security hardening, SLA

assurance, software updates, and performance tuning. In fact, 80 percent

of downtime is caused by service provisioning problems. Traditionally, these

services have been delivered by the IT departments, and simply deploying

remote servers in the cloud doesn’t solve the services problem. Because services

in the cloud will most likely be outsourced, they must be delivered while

considering the customer’s needs in a long-term commitment vision. Moving

toward this long-term commitment strategy will drive providers to better focus

on customer satisfaction to enjoy higher benefits. Our simulations also confirmed

that providing added-value services along with customization could increase

long-term commitment which is indeed very profitable.
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4.1.2 Problem Statement and Contributions

In this thesis chapter, we consider the problem of IaaS cloud market share taking

into consideration the need for new cloud providers to be in the market and the

requirements of Cloud 2.0. We propose a conceptual, user-centric two-stage game

theoretical framework that can help the IaaS providers and users optimize the service

quality with a balanced profit. The first stage of our conceptual framework uses our

Stackelberg game [79] to identify the user demand preferences and set the optimal

price and capacity for the IaaS provider. The Stackelberg game model focuses on

interaction among a single IaaS provider with a group of users to appropriately

capture the demand elasticities and set the price and allocate resources for each Virtual

Machine (VM) to meet the Service Level Agreement (SLA) and match the customers

interests. However, our Stackelberg model does not consider the competition among

the IaaS providers to provide higher quality services. Therefore, in the second stage,

we formulate this competition through a differential game with service quality features

as the main competitive factors. Most of the studies on strategic interactions among

the cloud participants are grounded in static frameworks [62, 101]. These models

overlook the strategic issues arose when providers interact repeatedly over time. Thus,

to tackle the limitation of static frameworks, we introduce a non-cooperative dynamic

differential game that captures the important dimension of time.

The designed differential game takes multi-tenancy property into account, which

leads to define competitive advantages for both the large and small IaaS providers.

The large providers (the market leaders) make their profit through a virtuous cycle

reflected through the following causal associations: 1) the more customers an IaaS

provider gets, the more infrastructure and the better resource provision with robust

cloud features (e.g., higher availability and more storage) it can afford; 2) the more

infrastructure, the better economies of scale and the cheaper prices for IaaS; and 3)
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the lower prices and the better their quality, the more customers the provider can get.

Meanwhile, the small IaaS providers have fewer users and limited resources. Thus,

by targeting a specific industry or local region, they can have tenants who share the

same scheme with similar requirements such as complying with data and security

regulations, national and international standards or dealing with compatibility issues.

This enables them amalgamate their needs by customizing their services to add value

to the users’ business solutions. Providing personalized cloud services can further drive

customer loyalty [19]. To reflect the above arguments and take them into account,

we introduce three main competition factors including ratings by users that reflect

customers satisfaction, low cost QoS provisioning, and customization or added-value

services.

In summary, our main contribution is a two-stage game theoretical model that:

• Allows new and small IaaS providers to compete against the existing and large

ones and have a market share, which enables a productive cloud market industry

that benefits the end-users. To the best of our knowledge, our work is the first

that investigates this competition in the cloud computing context.

• Maximizes users satisfaction modeled using users’ ratings by providing a

continues service quality development. It is the first research that models a

dynamic competition considering the quality of service among IaaS providers.

• Captures user preferences and demand elasticities for optimal price and resource

allocation. To ensure the continued validity of the optimality in the presence of

changing internal or external factors, a post-optimality analysis is provided.

The proposed model can help new born IaaS providers identify their users’ needs and

potential markets, anticipate their competitive advantage, formulate their valuation

model and create new service provisioning scenarios. We implement our model using
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a real-world dataset containing users’ ratings over cloud service quality features,

obtained from the CloudArmor project4. Finally, it is worth mentioning that because

the problem of making the cloud market competitive by analyzing how small providers

can get a market share has not been addressed yet, no benchmark has been found for

the purpose of comparison.

4.2 Related Work

Small and medium businesses can take the advantage of cloud computing in several

ways [72]. Cloud computing offers scalable services that businesses can use on demand

as much as they need to. The competitive market of cloud services provides a variety

of options in pricing and quality. The users can always shift their host provider

to another provider offering more opportunistic service or lower price. Due to this

opportunistic characteristics, this industry is predicted to reach $270 billion in 2020

[97]. Cloud economics plays a significant role in shaping the future of cloud computing

industry. The economics of the cloud computing can have two dimensions [65]: 1)

intra-organization that deals with internal factors such as labor, power, hardware and

so on; and 2) inter-organization that refers to market competition factors between

organizations such as price, quality of service, and reputation. A third dimension

can also be considered where providers can adopt a cooperation strategy by forming

coalitions or federations among data centers [87]. In such federations, different

challenging problems have been addressed including virtual network provisioning [76]

and trust management [88]. This study deals with the second dimension. In this

section, we present the work related to market share modeling from economics and

marketing literature followed by the work done related to cloud services quality and
4https://cs.adelaide.edu.au/~cloudarmor/ds.html
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pricing strategies.

4.2.1 Market Share Dynamics

Most of the proposals in the literature about market share are static [33]. A

non-static approach has been taken by Breton et al. [10], who studied dynamic

equilibrium advertising strategies in a duopoly market. They defined a model to

formulate the market share dynamics for two competitors and obtained a feedback

differential Stackelberg equilibrium. Gutierrez et al. [30] analyzed the dynamic

strategic interactions between a manufacturer and a retailer in a distribution channel

for innovative products. The underlying assumption was that the retail demand for

such a product is influenced by word-of-mouth from past adopters. This influence

creates a trade-off between immediate and future sales and profits of the manufacturer.

The obtained equilibrium dynamic pricing showed that in some cases, far-sighted

retailer is more profitable. The above mentioned studies utilize differential game

to help businesses optimize their sale and advertisement channels regardless of the

customer satisfaction, while this paper considers the technical characteristics of

infrastructure cloud computing environment to distribute a fair market share among

IaaS providers and fulfill the users’ requirements.

Only few proposals have explored the users’ ratings impact on business owners

profit [16]. Nonetheless, their importance in marketing strategies has been recognized

[80]. Duan et al. [20] studied video sales and movie recommender systems and found

that users’ ratings reflect movies quality, but they do not persuade the users to buy. In

fact, they increase the users’ awareness by word-of-mouth that is central to the efficacy

of providers and increases their sales directly. Completing their study, our research

proves that cloud service quality significantly affects the overall users’ ratings, and

further shows how cloud providers can take the advantage of those ratings to enhance
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reputation and increase profit.

4.2.2 The Competition among Cloud Service Participants

Game theory has been successfully applied in the cloud computing area, for instance

for resource allocation and pricing mechanisms, where the interactions of players have

to be taken into account [65]. A user-provider interactive approach is taken by Hadji

et al. [31], where a Stackelberg game is designed to consider constrained pricing with

limited resources offered by a cloud service provider and the optimal user demands.

Xu et al. [91] optimized a pricing policy for cloud service providers to better compete

with each other under the evolution of the cloud market. Forming a Stackelberg game,

the authors applied a reinforcement learning (Q-learning) to find out an optimal policy

for the leader provider. Following the leader, the optimal policy for followers will be

uncovered. In the same line of research, Shen et al. [71] used a Stackelberg game

to model the interactions among data providers, service providers, and users. The

authors studied the optimization problem of the players’ profits using deep learning

in a context of data markets. However, price is the only utility factor considered in

these studies and the importance of QoS and user satisfaction is somehow neglected.

Zhao et al. [103] investigated the impact of the two factors of energy consumption

as well as SLA violations on degrading the cost-efficiency of data centers and the

cloud providers’ revenue. The authors developed online VM placement algorithms as

an optimization problem of maximizing revenue from VM migration and achieved

promissing results. The research conducted by Kilcioglu et al. [42] calibrated a

static model for price-quality trade-off in two cases of monopoly and duopoly price

competitions where the IaaS marketplace is referred to as commoditized from the

perspective of economic competition. The reason is that cloud providers use similar

physical hardware which cannot be differentiated from each other and profit margins
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should become null. The conducted experiment explained the price cutting behavior

of the current market trend and also how providers are able to make a profit

despite predictions that the market should be totally commoditized. Conversely,

this paper emphasizes a different approach aligned with the vision of Cloud 2.0.

Commoditization for young and small competitors is not profitable and these providers

cannot survive in the market of Cloud 2.0 due to their lower number of users and

higher expenses. We advocate smaller providers to differentiate themselves from the

established large providers in the market by providing added-value services to their

customers.

The only study on cloud service quality that inspired our research is performed

by Fan et al. [24] who considered market competition among a software as a service

provider and a traditional software provider as a differential game. This research

analyzes a short and long-term competition for price and dynamic quality between

the two firms. The authors found that the cost of software implementation can

significantly affect the equilibrium price while quality improvement has a more robust

effect. Our work differs from this research in many points: 1) we focus on internal

competition among IaaS providers considering the technical advantages and challenges

specific to IaaS, specifically when a new provider enters the market to compete

with big and dominant providers; 2) the user demand is formulated based on the

user preferences and the two proposed game models prioritize the user satisfaction

considering price, capacity and quality optimization; and 3) our model contains a

continuous game loop where the players enter two different games and can evaluate

post-optimality analysis to choose the right game, the right stage, and the right time

to enter and to stay. Our post-optimality analysis also informs the players about the

changes to the optimum values as they change over time.
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4.3 Framework Overview

The race to maximize the revenue, specifically for the new entrants to the cloud

market, entails formulation of non-cooperative games. We form two key competing

players representing each a group of the same type: 1) a small and fresh provider, and

2) a large and reputed provider. Early game theoretic models in product competition

emphasized static models. A dynamic model can add the important dimension of

time and recognizes the competitive decisions that do not necessarily remain fixed.

Models involving competition in continuous time are typically treated as differential

games, in which critical state variables, e.g., demand or market share, are assumed to

change with respect to time according to specified differential equations. Differential

games have been widely applied in various domains to analyze competition in dynamic

advertising and pricing [30].

This research tackles the problem of maximizing the IaaS providers’ revenue

through two interactive games in a cycle with 11 steps, as presented in Figure 4.2.

The first stage is the cloud market identification and demand provisioning for a new

IaaS provider. The box on the top including the service selection Stackelberg game

illustrates six interactive steps among an IaaS provider as the leader and the IaaS

users as the followers. In the first and second steps, the IaaS provider kJ announces

its price, quality and the average rating obtained so far. Then, the users decide the

amount of their request (step (3)). The IaaS provider predicts the future user rating,

plans the optimal capacity and offers the actual price under guaranteed SLA (steps

(4 and 5)). In the final step (6), the user provides its rating. A brief explanation of

this model needed in the rest of this report is provided in the next section and more

details can be found in our previous work [79]. This game produces two outcomes:

optimum price and capacity of VM (P ∗, φ∗).
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Figure 4.2: Hierarchical Stackelberg and differential games’ framework

After setting the price and capacity (step (7)), the provider enters into the second

game (called differential competition game) which is proposed in this report. During

step (8), the IaaS provider has to compete with all the existing IaaS providers to

enhance its service ratings through a justified amount of quality increments. The IaaS

quality factors include functional and non-functional attributes such as QoS, adding

new features, scalability and security. As our objective is to analyze the entrance of
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new providers to the cloud market, we denote by k1 a typical small and new IaaS

provider, and by k2 a typical well-established IaaS provider competing against k1.

The outcome of the differential game (Game 2) is the required amount of quality

improvement during the time interval [0− T ] for a given T .

In the meantime, the optimality of the obtained values has to be analyzed since

the game is dynamic and the values of the variables are changing. The users request

(in terms of VM) arrival rate l that depends directly on the number of end users,

will be used to assess the optimality of VM’s price and capacity in step (9). Thus, if

the variation of l remains less than a threshold, no changes are required and players

shall stay in the second game (step (10): No). However, if the variation exceeds the

threshold, a new optimal price has to be calculated using the new value of l (step

(10): Yes). In the event that the price deviates from a certain threshold (the game

sensitivity analysis), the game players have to go back to the Stackelberg game (Game

1) and start over the game, which includes computing the provider and users’ best

responses (step (11): Yes). Otherwise, the two IaaS providers only need to recompute

their own best responses and obtain a new price and capacity through Game 1 (step

(11): No).

4.4 IaaS Selection Stackelberg Game

In the first game, we model the cloud service market interactions between a typical

IaaS provider and the service users as a Stackelberg game, where the IaaS provider

is the leader and the service users are the followers. The users observe the price and

ratings to adjust their demand accordingly. In quest of the users’ demands, the IaaS

provider makes a decision on its pricing strategy and optimal capacity. The game

parameters are provided in Table 4.1. In order to capture demand elasticities and
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Table 4.1: Notations used in the service selection Stackelberg game

Decision
variables
xi VM request size of user i for the IaaS
φ VM preserved capacity
P Price per VM of the IaaS
Input
parameters
i = 1, 2, ...n ∈ N Index of n users in the set N
Bi User i budget
Ri Rating utility of IaaS provider from

user i
ri Service rating of user i for the IaaS

provider
αi IaaS price elasticity for user i
βi IaaS rating elasticity for user i
γi Size and number of VMs elasticity for

user i
l VM requests’ arrival rate
µ Constant scale of user IaaS demand
Q Guaranteed QoS as stated in SLA
C0/C Fixed/marginal cost of the

infrastructure
λi1/λi2/λk Lagrange multipliers

variations specific for each user, we defined the user demand using the Cobb-Douglas

function that models well these elasticity aspects in terms of price and rating [29]. It

is assumed that the user will have the opportunity to check the IaaS provider rating

that represents the actual user satisfaction level. The user demand function is defined

as follows:

Di(xi, P, ri) = µ xγii P−αi rβii (4.1)

where αi, βi and γi, i = 1, 2, ..., n are elasticities (variations) of the IaaS price P ,

rating ri and VM size xi respectively. The price elasticity αi is dependent on the user

i because it reflects the price the user is willing to pay for the provided infrastructure.

Different market users, having different requirements and satisfaction levels, do not
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react evenly to the same price or rating. It is the combination of these factors that

produces different values of αi, βi and γi. The user aims to maximize its payoff as

follows:
maximize UP (xi) = Di(xi, P, ri)− P

subject to Pxi ≤ Bi, xi ≥ 0
(4.2)

As the IaaS provider needs to maintain its reputation through the user ratings, it is

responsible to process users requests on time. Thus, it is important to consider VMs

processing rate that represents VM capacity of the IaaS provider, denoted as φ. A

large processing rate requires increasing the number and capacity of VMs, meaning

a higher cost for φ that includes fixed cost of C0 and marginal cost of C. Thus, the

total cost for VM capacity φ is C0 + Cφ.

Following previous literature in cloud computing [24], we model the arrival of

VM requests as a Poisson process with mean arrival rate l. The average delay for a

request in an M/M/1 queue can be defined as 1
φ−l . The IaaS provider aims to optimize

its profit by increasing the price and ratings given by the users, and minimizing the

costs. Thus, the IaaS provider’s (i.e., the leader) optimization objective is:

maximize PP (P, φ) =
n∑
i=1

(P − φ C) D(x∗i , P, ri) +
n∑
i=1

Ri − C0

subject to 1
φ − l

≤ Q

φ > 0, P > 0

(4.3)

Ri is the rating utility that is affected positively if the given rating is above the average

user rating, and is affected negatively if the rating is below that average. Details of

user rating prediction and rating utility calculation can be found in our previous

work [79]. We solve the equilibrium point of the above defined Stackelberg game by

a backward induction procedure. Therefore, the followers’ (users) problem has to be
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solved first to obtain the response function of these users. The leader’s (provider)

decision problem is then computed considering all possible reactions of its followers

in order to maximize its net profit.

4.4.1 User Best Response

As the objective function in Eq.4.2 is continuous and concave in xi, we obtain the

solution using Lagrange multipliers, λi1 and λi2, with Kuhn-Tucker conditions. So,

we will have a new objective function:

LUP = Di(xi, P, ri)− P − λi1(xiP −Bi) + λi2xi (4.4)

with the following conditions:

λi1(xiP −Bi) = 0 (4.5)

λi2xi = 0 (4.6)

Where λi1, λi2, xi ≥ 0. The only coupling point between users is xi, so we take

the derivative with respect to xi.

∂LUP
∂xi

= ∂Di(xi, P, ri)
∂xi

− λi1P + λi2 = 0 (4.7)

We have two cases: 1) xi = 0: regardless of the value of λi1 and λi2, this means

the user is not demanding any services, so its utility will be null; and 2) xi > 0: from

slackness complementary condition in Eq.4.6, we can conclude that λi2 = 0; so we
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have:

xi = (λi1P
αi+1

rβii γiµ
)

1
γi−1 (4.8)

By substituting xi from Eq.4.8 in Eq.4.5 we obtain λi1:

λ
1

γi−1
i1 = Bir

βi
i γiµ

P
αi+1
γi−1 +1

(4.9)

The final response xi from user i is attained by replacing Eq.4.9 in Eq.4.8.

x∗i = Bi(rβii γiµ)
γi−2
γi−1

P
(4.10)

The above obtained x∗i is optimal where Eq.4.5 slacks and λi1 > 0. However,

we claim that it is reasonable to consider slackness rather than binding, since having

λi1 = 0 is an extreme case where the user cares only about the price and does not

consider the previous ratings or quality.

4.4.2 IaaS Provider Best Response

Using Lagrange multiplier λk, we model the objective optimization in Eq.4.3 as follows:

LPP (P, φ, λk) = PP (P, φ)− λk(
1

φ− l
−Q) (4.11)

The Kuhn-Tucker condition for our model is:

∂PP (P, φ)
∂φ

− λk
∂( 1

φ−l −Q)
∂φ

= 0 (4.12)

∂PP (P, φ)
∂P

= 0 (4.13)
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λk(
1

φ− l
−Q) = 0 (4.14)

where λk ≥ 0, P, φ > 0. To find the optimal capacity φ, we first assume that Eq.4.14

binds and λk > 0. Referring to Eq.4.12 we have:

CDi(x∗i , P, ri)− λk(
−1

(φ− l)2 = 0

λk = −CDi(x∗i , P, ri)(φ− l)2 (4.15)

Knowing that C > 0 and Di(x∗i , P, ri) > 0, we obtain a negative λk in Eq.4.15

that contradicts the defined constraint λk ≥ 0. Therefore, λk = 0 and Eq.4.14 slacks,

which means the IaaS provider should provide a higher VM capacity than what is

promised in SLA. Any assigned capacity can be optimal as long as the following

condition holds:

φ∗ = 1
Q

+ l + ε (4.16)

ε represents a very small amount. By solving Eq.4.13 we get the optimal price as

follows:

P ∗ = φ∗C( αi + γi
αi + γi − 1) (4.17)

4.5 Differential Competition Game

In the previous section, we designed a static game between a typical IaaS provider

and a typical IaaS user. However, the IaaS provider does not act alone in the market.

After identification of the users’ requirements, the IaaS provider needs to plan a

suitable strategy against its competitors. To model dynamic competition among the
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IaaS providers over a period of time, we design a differential game with continuous

strategies over a finite horizon time T . The game is between a typical new and small

IaaS provider k1 with n customers, and a typical large and established IaaS provider

k2 with m customers, m >> n. The list of employed notations is given in Table 4.2.

For the sake of simplicity, we use k when we refer to both providers. Considering

the cost, technical reality and multi-tenancy characteristics of cloud computing, each

IaaS provider faces different challenges to compete with high quality services. In the

next section, we explain which of those can lead the way of IaaS providers.

4.5.1 IaaS Architecture and Competitive Advantage

To scale the economical benefits and optimize resource utilization, multiple VMs are

initiated on the same physical server simultaneously. Multi-tenancy implies multiple

customers of a services set. For instance, multiple business units within a large

organization with resources and data that should remain separate through a logical

segmentation of the shared infrastructure by using software-defined technologies.

The segmentation options available to be considered are: physical separation, logical

separation, data separation, network separation, and performance separation. In the

performance separation scheme, the infrastructure is shared but the capacity or QoS

is guaranteed while no other separation scheme ensures such a quality. As discussed

earlier, despite the tremendous momentum of the cloud computing, many firms are

reluctant to move to the cloud due to the performance concerns. For that reason, we

only consider the option of “performance separation” in our model, which remains

a key component in the Cloud 2.0 movement. Considering the same scheme, each

provider may take its own advantage to compete.

Competitive advantages of large IaaS providers (k2): Tenants with guaranteed
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performance require consistency and predictability which are challenging for IaaS

providers since infrastructure is shared by many tenants. For the sake of performance

isolation, it is not enough to use host-based virtualization technologies since the

bandwidth between VMs of the same tenant can change significantly over time. This

variation depends on the network load and usage peak from other tenants. The

larger number of customers, the less variation is expected from the overall average

demand. A large IaaS provider that serves a large number of customers and operates

within different industries and geographically dispersed locations can avoid the cost

of overbooking. New scheduling algorithms allow multiple workloads on the same

cluster of customers to access a common data pool along with hardware and software

resources. Thus, larger providers can balance the workloads of the same clusters and

would achieve the required performance with less preserved capacity. On the other

hand, a smaller IaaS provider with fewer customers has to provide a larger amount

of reserved capacity to meet the variation. Another advantage of large infrastructure

is energy saving cost of data centers. Large tenant clusters enable providers to shut

down the idle servers and migrate tasks to other VMs running on active servers.

The multi-tenancy architecture is not visible to the user, however the user can

observe its effects. The visible effects, such as higher availability and scalability, are

directly reflected in our model through user rating (ri) that ultimately increases the

user demand and provider’s revenue. Further, we consider the invisible effects of

multi-tenancy for the IaaS providers (ζk2). ζk2 is mainly considered as a discounted

cost for the large provider due to its larger infrastructure as explained earlier.

Competitive advantages of small IaaS providers (k1): Security regulations vary

specially when the IaaS provider has to operate in diverse national and international

markets. Thus, customers require to customize the security and access settings to each
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region or country’s regulations. The same thing can happen with regulated industries.

Mobile realm is another example where customization is highly desired. Organizations

are more and more adopting mobile applications and require to integrate them into

their cloud infrastructure without introducing network risks. The lack of personalized

infrastructure services may not allow organizations to gain the maximum potential

value of their cloud investments. Despite the importance of customization, it is

disputed that large providers are not willing to offer customized service-oriented

architecture or application programming interfaces to SMEs [56]. Customized use

of the cloud in a multi-tenancy environment is costly and hard to realize, unless the

customers residing in a cluster share the same scheme. Having similar requirements

(e.g., same regulations) enables the small IaaS provider to support added-value options

for each application type. Since data sources for multiple tenants are in the same

database, by using a simple data aggregation, the small IaaS provider can develop

applications specific for its group of customers. Taking the explained example of SITA,

the provider created a large network of organizations working in the air industry and

expanding their offers to applications built on top of that network.

This competitive factor is not embraced in user ratings collected through online

platforms and neither relates to cost. However, it definitely has a strong positive effect

on the users’ demand. Thus, we use ϑk1 to reinforce the formulated demand.

4.5.2 Differential Game Formulation

IaaS providers establish their credibility and gain their share through on-line market

platforms where users can express their ratings. We make the following realistic

assumption that is satisfied in market platforms in general.

Assumption 4.1. The quality of an IaaS has a significant effect on users’
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rating, so that improving the service quality will ultimately lead to the increase of

the average users’ rating.

Assumption 4.1 is the basis of our game design and is very important for the

validity of our game. Thus, we will validate this assumption using statistical analysis

in Section 4.7.

Conventionally, IaaS providers may compete over two factors: price and

quality. Several research proposals showed that due to the cost of changing price and

being inconvenient for the customers, prices do not change frequently [24]. Thus,

we consider the optimum price as computed in the first game in Eq.4.17 for each

provider, and we assume it remains constant over the time interval [0 − T ], while

the quality can be updated throughout the game. Afterward, whenever the values

of the defined parameters vary significantly enough to warrant a shift in price, the

optimal price can easily be determined by solving the Stackelberg game with the new

parameter values. Consequently, the new optimal price can be utilized to solve the

differential competition game over the next period of time. The following definition

explains the service quality factors featured in the game.

Definition 4.1. The quality factors of an IaaS can be any of the following elements:

• QoS: basic quality features such as response time, throughput, and availability.

• Adding new service features and innovative / customized offers to the existing

service.

• Enhancing and optimizing cloud specific features such as elasticity, security, and

storage space.

• Supporting customers technically or non-technically.
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Table 4.2: Notations used in the differential competition game

Decision variable
qk(t) Quality control path (quality improvement) of IaaS k at time t
Input parameters
k1 New and small IaaS provider
k2 Existing and big IaaS provider
δk Customers’ defection rate to buy IaaS k
ρ Discount rate of future IaaS provider’s revenues
θ̂k Rate of IaaS k demands increase
θ̌k Rate of IaaS k demands drop
ηk Non-functional cost of IaaS quality (e.g. quality attributes achieved

by preserving higher VM capacity)
fk Functional cost of IaaS quality (e.g. offering new features and

improving technical support)
ζk2 Rate of discounted non-functional cost due to large infrastructure

for IaaS provider k2
ϑk1 Rate of customization value for customers of IaaS provider k1
[0− T ] Time horizon of the game

The next assumption establishes the initial conditions to formulate our

differential competition game.

Assumption 2. Each player (IaaS provider) has perfect knowledge of:

• The function Ḋk(t) determining the evolution of the user demand, and the

control path of qk(t) available to the two players.

• The payoff function PPk.

• The initial demand state at time zero, Dk(0).

However, players have no knowledge about the future states. So, they will not be

able to observe the state and update their initial control path (qk(t)) of quality

improvement. The information structure of the game is open-loop. This means

the players must formulate their decisions at time t only with the knowledge of the

initial condition of the state at time zero. The intuition behind the selection of this
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information structure is that IaaS providers have to put some investment and make

stable pricing strategies at the initial stage because changing these strategies bears

some cost for both providers and their customers. Besides, quality improvement may

result in the increase of immediate rating, but improving the average rating is a

long-term strategy and is not observable in short time.

In traditional service trading models, once customers had chosen their providers,

they tended to keep the relation working since the investment has been made through

a long-term contract. In the subscription cloud economy, customers are much free to

defect anytime from a provider and switch to another one as there is very little to no

financial penalty to do so. There are several variables that affect the user’s demand

over time. The demand for an IaaS increases with its rating improvement. Due to

the strong correlation between rating and quality as asserted in Assumption 1, we use

quality instead of rating. Therefore, improvement of quality elevates the demand at

a rate of θ̂k. We also define a demand drop rate θ̌k when the other provider enhances

its service quality. Moreover, customers may defect at a certain rate δk. Based on the

predefined variables, the users’ demand dynamics evolve according to the following

equations:


Ḋk1(t) = (θ̂k1 + ϑk1) qk1(t)βn − θ̌k1 qk2(t)βn − δk1Dk1(t)

Dk1(0) = Dk10, 0 < t < T

(4.18)


Ḋk2(t) = θ̂k2 qk2(t)βm − θ̌k2 qk1(t)βm − δk2Dk2(t)

Dk2(0) = Dk20, 0 < t < T

(4.19)

As discussed earlier, ϑk1 is the added-value to the quality for IaaS provider k1. βn

and βm denote the average users’ sensitivity towards rating for k1 and k2 respectively.

Eq.4.18 and Eq.4.19 explicitly describe how the service quality of the two competitors
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jointly determine the dynamics of demand rate.

The marginal cost of increasing quality is considered to be quadratic in past

studies [24]. We consider the same quadratic increment for the increase of quality.

Thus, let Ĉqk(t) to be a cost associated with the efforts to increase the quality level

by an amount qk(t) at time t. Two types of quality improvement are considered in our

model: functional (f) and non-functional (η). The functional quality improvement is

realized by adding extra functionalities to the service, such as offering new features

or improving technical support. The non-functional one is related to the quality

attributes that can be reached by reserving extra resources and increasing the

processing capacity. Definition 2 determines the cost of quality improvement for both

IaaS providers.

Definition 4.2. To increase the quality, k1 and k2 incur a quadratic cost function as

follows:

Ĉqk1(t) = fk1qk1(t)2 + ηk1qk1(t)2 (4.20)

Ĉqk2(t) = fk2qk2(t)2 + (ηk2 − ζk2)qk2(t)2 (4.21)

Concurring with the cost functions delineated by Definition 4.2, the instant

profit of IaaS providers k1 and k2 at time t can be calculated according to the following

formulas:
PPk1(Dk1(t), qk1(t)) = (P ∗k1 − φ∗k1 Ck1) Dk1(t)

− (fk1qk1(t)2 + ηk1qk1(t)2)− C0k1

(4.22)

PPk2(Dk2(t), qk2(t)) = (P ∗k2 − φ∗k2 Ck2) Dk2(t)

− (fk2qk2(t)2 + (ηk2 − ζk2)qk2(t)2)− C0k2

(4.23)
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Different from the instant profit of IaaS provider in the static game in Eq.4.3, we

do not consider the rating accumulation in the profit function. The reason is that

we already considered the increase of future demand due to the enhanced user rating

(quality) in Eq.4.18 and Eq.4.19. The objective function is the total discounted IaaS

provider’s payoff over the planning horizon [0− T ]:

maximize
∫ T

0
eρt{PPk1(qk1(t), Dk1(t))}dt

subject to Ḋk1(t) = (θ̂k1 + ϑk1) qk1(t)βn − θ̌k1 qk2(t)βn − δk1Dk1(t)

Dk1(0) = D0k1 , 0 < βn < 1

(4.24)

maximize
∫ T

0
eρt{PPk2(qk2(t), Dk2(t))}dt

subject to Ḋk2(t) = θ̂k2 qk2(t)βm − θ̌k2 qk1(t)βm − δk2Dk2(t)

Dk2(0) = D0k2 , 0 < βm < 1

(4.25)

ρ is a constant discount rate to rebate all the future costs and revenues’ streams

relative to the present. Note that Eq.4.24 and Eq.4.25 formulate two optimal

control problems with the service quality and the cumulative demand as control and

state variables, respectively. In the following section we solve these optimal control

problems.

4.5.3 Open-Loop Equilibrium Solution

The analysis of differential games relies profoundly on the concepts and techniques

of optimal control theory [35]. To study the dynamics of the payoff functions and

the paths of control variables, we leverage the Hamiltonian systems. Equilibrium

strategies in the open-loop structures can be found by solving a two-point boundary

value problem for ordinary differential equations derived from the Pontryagin
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maximum principle in Hamiltonian functions. Pontryagin maximum principle gives

the necessary condition for a control path to be optimal open-loop control. The

optimal control paths of quality are defined as follows.

Definition 4.3. For the IaaS provider k, the quality strategy q∗k(t) is optimal if the

inequality PPk(Dk(t), q∗k(t)) ≥ PPk(Dk(t), qk(t)) holds for all feasible control paths

qk(t) 6= q∗k(t).

To acquire the optimal control, we first formulate the Hamiltonian system of

the IaaS providers’ payoff which is quite similar to the Lagrangian method that we

used in the first game.

Hk1(qk1(t), Dk1(t), λk1(t), t) =

(P ∗k1 − φ
∗
k1Ck1) Dk1(t)− (fk1qk1(t)2 + ηk1qk1(t)2)− C0k1

+ λk1(t)((θ̂k1 + ϑk1) qk1(t)βn − θ̌k1 qk2(t)βn − δk1Dk1(t))

(4.26)

Hk2(qk2(t), Dk2(t), λk2(t), t) =

(P ∗k2 − φ
∗
k2Ck2)Dk2(t)− (fk2qk2(t)2 + (ηk2 − ζk2)qk2(t)2)

− C0k2 + λk2(t)(θ̂k2 qk2(t)βm − θ̌k2 qk1(t)βm − δk2Dk2(t))

(4.27)

The adjoint variable or shadow price (λk) associated with a particular constraint

is the change in the optimal value of the objective function per unit increase in the

right-hand-side value of that constraint, all other problem data remaining unchanged.

The economic interpretation of λk(t) is the value of an additional unit of demand. For

given qk(t), λk(t) > 0 implies that the IaaS provider benefits from current demands.

With a zero shadow price λk(t) = 0, the IaaS provider does not take into account the

impact of the quality on future user demands. On the other hand, when λk(t) < 0,
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the IaaS provider has no motive to sacrifice current profits for future profits, so that

it will no longer elevate the service quality.

According to the control theory, the optimal control strategy of the original

problem must also maximize the corresponding Hamiltonian function. Thus, based

on the Pontryagin maximum principle, all candidate optimal strategies have to satisfy

the following necessary conditions:

∂Hk1(t)
∂qk1(t) = − 2(fk1qk1(t) + ηk1qk1(t))

+ λk1(t)(θ̂k1 + ϑk1) βnqk1(t)βn−1 = 0
(4.28)

λ̇k1(t) = ρλk1(t)− ∂Hk1(t)
∂Dk1(t)

=(ρ+ δk1)λk1(t)− P ∗k1 + φ∗k1Ck1 , λk1(T ) = 0
(4.29)

∂Hk2(t)
∂qk2(t) = − 2(fk2qk2(t) + (ηk2 − ζk2)qk2(t))

+ λk2(t)θ̂k2 βmqk2(t)βm−1 = 0
(4.30)

λ̇k2(t) = ρλk2(t)− ∂Hk2(t)
∂Dk2(t)

=(ρ+ δk2)λk2(t)− P ∗k2 + φ∗k2Ck2 , λk2(T ) = 0
(4.31)

When only one boundary condition is specified as Dk(0) = D0k, the free-end

condition is used as λk1 = λk2 = 0 at t = T . It should be noted that the Pontryagin

maximum principle is only a necessary condition, but not essentially sufficient for

optimality. Consequently, the solution of the pair quality control in the above

equations does not necessarily converge to the Nash equilibrium. To investigate the

normality of our defined systems and to assess if Pontryagin can provide a sufficient

condition for optimality in our case, we shall derive the monotonicity condition on the

adjoint variables in Lemma 1. This condition is important since the adjoint variables
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significantly affect the payoff functions in our optimal control-based optimization.

Lemma 4.1. With positive profit unit margins, we have λk1(t) > 0 and λk2(t) > 0

for all t ∈ [0, T ).

Proof. Here we prove the monotonicity of λk1(t), and the same proof applies for λk2(t).

As stated in Eq.4.29, we have λk1(T ) = 0. Therefore, at t = T , λ̇k1 = −P ∗k +φ∗k1Ck1 <

0, since P ∗k1 > φ∗k1Ck1 . So, λk1(t) > 0 as t approaches T . Now, consider λk1(t1) < 0

for any given t1. Then we should have λk1(t2) = 0 for some t2 > t1 and λ̇k1(t2) ≥ 0.

Consequently, λ̇k1(t2) = −P ∗k1 + φ∗k1Ck1 < 0. This is a contradiction and λk1(t) is

proved to be positive during the whole period of time.

The following proposition is concluded from Lemma 4.1.

Proposition 4.1. IaaS providers’ profit optimization functions have a normal form

maximum principle with positive adjoint variables (λk1(t), λk2(t)) associated with

(q∗k1(t), q∗k2(t)).

Lemma 4.2. Pontryagin Maximum Principle (in Eq.4.28-4.31) provides the

necessary sufficient conditions of optimality and the control path pair of (q∗k1(t), q∗k2(t))

is optimal and unique.

Proof. Proposition 1 asserts that the formulated profit optimization problems have a

normal form. It suffices to prove that the Hamiltonian function is concave in Dk(t) for

both providers k1 and k2 in any t ∈ [0−T ]. Let (q∗k1(t), D∗k1(t)) be a pair that satisfies

the Pontryagin condition for IaaS provider k1, with λk1(0) = 1, and for all admissible

demand states, the limiting transversality condition holds: limt→T λk1(t)(Dk1(t) −

D∗k1(t)) ≥ 0 . To prove the concavity of the dynamic function in Dk1(t), the following
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condition must hold:

Hk1(qk1(t), Dk1(t), λk1(t), t)−Hk1(q∗k1(t), D∗k1(t), λk1(t), t)

≤ ∂Hk1(t)
∂Dk1(t)(Dk1(t)−D∗k1(t))

(4.32)

The left-hand-side of the inequality is negative since the Hamiltonian function in the

optimal quality path is the maximum IaaS provider profit that is more than its profit

at any other path in any time t. Thus, it is enough to prove that the right-hand-side

of the inequality is positive. From Eq.4.29, we can see that:

∂Hk1(t)
∂Dk1

= ρλk1(t)− λ̇k1(t) (4.33)

Replacing Eq.4.33 in Eq.4.32, we get (ρλk1(t) − λ̇k1(t))(Dk1(t) − D∗k1(t)) in the

right-hand-side. From the transversality condition, we already know that

λk1(t)(Dk1(t) − D∗k1(t)) ≥ 0, so it is enough to prove that λ̇k1(t) is negative. It

is known in optimal control theory that the motion of shadow price is equal to

the negative derivative of Hamiltonian towards the dynamic state, so that λ̇k1(t) =

−P ∗k1 + φ∗k1Ck1 − δk1λk1(t) ≤ 0. The same logic applies for k2.

After proving the monotonicity of adjoint variables in Lemma 4.1 and the

sufficiency of the Pontryagin maximum principle in obtaining the optimal solution

in Lemma 4.2, we can obtain the optimal control path.

Theorem 4.1. The finite horizon differential game in Eq.4.24 and Eq.4.25 has a

unique Nash equilibrium solution for the two IaaS providers. The optimal quality

strategies are given by:

q∗k1(t) = (
(P ∗k1 − φ

∗
k1Ck1)(θ̂k1 + ϑk1)βn

2(ρ+ δk1)(fk1 + ηk1) )
1

2−βn (1− e
(ρ+δk1 )(t−T )

2−βn ) (4.34)
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q∗k2(t) = (
(P ∗k2 − φ

∗
k2Ck2) θ̂k2βm

2(ρ+ δk2)(fk2 + (ηk2 − ζk2)))
1

2−βm (1− e
(ρ+δk2 )(t−T )

2−βm ) (4.35)

Proof. The two formulated differential equations Eq.4.29 and Eq.4.31 can lead us to

the adjoint variables:

λk1(t) =
P ∗k1 − φ

∗
k1Ck1

ρ+ δk1

(1− e(ρ+δk1 )(t−T )) (4.36)

λk2(t) =
P ∗k2 − φ

∗
k2Ck2

ρ+ δk2

(1− e(ρ+δk2 )(t−T )) (4.37)

Replacing Eq.4.36 in Eq.4.28 and Eq.4.37 in Eq.4.30 gives us the optimal quality

control paths.

Differential games enable us to analyze the dynamic nature of competition

and quality improvement. The following lemmas and propositions are inferred from

Theorem 4.1.

Lemma 4.3. Each provider’s quality improvement decreases in its quality

development cost.

Proof. The decrease is straightforward from the first derivative of quality with respect

to cost, ∂q∗k1
(t)

∂(fk1+ηk1 ) < 0 and ∂q∗k2
(t)

∂(fk2+(ηk2−ζk2 )) < 0. However, the cost decrement slope is

steeper for big providers due to serving a large number of customers. The difference

is specifically reflected in the non-functional costs since functional costs are expected

to be alleviated as the service becomes more mature. This corollary is an evidence of

the economic benefits of continuous quality improvement for both IaaS providers to

have a higher level of quality equilibrium as well as user rating.

Lemma 4.4. Higher level of customer loyalty and lower discount factor lead to a

higher quality equilibrium for both providers.
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Proof. This corollary simply means the fewer IaaS providers’ customer defection rate,

the more incentive for the providers to improve their service quality. It can be inferred

from the first order conditions for Hamiltonian systems of IaaS provider k1 (Eq.4.28),

where we have:

q∗k1(t) = (λk1(t)(θ̂k1 + ϑk1)βn
2(fk1 + ηk1) )

1
2−βn

This implies that the two variables of customer defection rate and discount factor are

reflected through the value of the shadow price λk1(t). As t approaches the end of the

time horizon, the negative effect of ρ and δk1 becomes more evident:

lim
t→T

λk1(t) =
P ∗k1 − φ

∗
k1Ck1

ρ+ δk1

The same logic is applied for IaaS provider k2. Thus, as the marginal values of

customers drop, the service quality equilibrium shrinks.

Proposition 4.2. The quality improvement of cloud services is higher in early stages

and decreases over time.

The service quality improvement rate is steeper at the beginning of the time

horizon. As t approaches T , the improvement flattens out. The reason can be the

maturity of the service, getting maximum user ratings, or adjustment of the service

features and support.

Proposition 4.3. Assuming that 1) both providers make the same revenue per unit

service; 2) δk1 = δk2 with the same user rating sensitivities; and 3) ϑk1 for IaaS

provider k1 and ζk2 for IaaS provider k2 determine the quality level. If smaller

providers do not take the advantage of customization and providing value for their
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target segment, then q∗k2(t) > q∗k1(t), ∀t < T . The established condition outlines when

quality improvement of the bigger providers always dominates the smaller ones.

In the above propositions and lemmas, we brought a number of managerial

insights into attention. We showed that in the early stage, there should be an emphasis

on increasing the quality of IaaS. Also, it will be to the IaaS provider’s advantage to

reduce the quality cost. That will increase the optimum quality level and will give rise

to a ripple effect of benefits. The dynamic differential game will be played in a time

interval, so that some of the variables may change during that time. In the following

section, we will analyze how these variations can affect the optimality conditions.

4.6 Post-Optimality Analysis

The input data in theoretical optimization approaches is not subject to change,

however, in real life it might be found impractical. This assumption is rather

valid in a static and deterministic environment, while the essence of our problem

is dynamic. User demand reflects market behavior that is changing, and in some

degree unpredictable. Cost and capacity estimates are sometimes prone to errors

and to changes over time due to the dynamic behavior of the market. Therefore, an

important question lies in the sensitivity of the obtained optimal solutions to changes

in the input parameters.

We investigate the variability of VM request arrival rate due to a future increase

in the number of users. Subsequently, this variability may affect the optimal capacity

and price as well. As a result, two types of variations may happen in the range of:

1) objective function; and 2) constraints. The objective function’s range refers to the

range over which capacity and price coefficients can vary, without changing the basis

associated with our optimal solution. In this case, for example, by computing the
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amount of change in price, we can obtain a new optimal price: P ∗new = P ∗old + ∆P ∗.

The constraint’s range refers to the user arrival range so that the values of the shadow

prices in terms of the defined quality and capacity will remain unchanged.

As the number of users grows, the VM request arrival rate will expand. The

value range of l and possible changes to the optimality of the VM price and capacity

are investigated in Theorem 4.2.

Theorem 4.2. IaaS provider best response sensitivity: The optimal solutions obtained

for the IaaS provider about price P ∗ and capacity φ∗ remain optimum if:

∆l < (Q(φ∗ − l)− 1)(φ∗ − l)2︸ ︷︷ ︸
lthreshold

(4.38)

In that case, the optimal price and capacity vary as follows:

∆P ∗ = l ∆l C( αi + γi
αi + γi − 1) (4.39)

∆φ∗ = ∆l (4.40)

Proof. The expressions for the sensitivity derivatives can be derived based on the

Kuhn-Tucker conditions. The changes in the optimum values of φ∗ and P ∗ necessary

to satisfy the Kuhn-Tucker conditions due to a change ∆l in the user arrival rate

parameter can be estimated as follows:

∆P ∗ = ∂P ∗

∂l
∆l = l ∆l C( αi + γi

αi + γi − 1)

∆φ∗ = ∂φ∗

∂l
∆l = ∆l
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Earlier, Eq.4.15 proved that λk = 0, and the constraint is inactive in the profit

maximization problem in Eq.4.3. Now, Eq.4.14 can be used to determine when an

originally inactive constraint becomes active due to the change in VM request arrival

rate, ∆l. Let us consider the constraint in Eq.4.14 as g(x) = 1
φ∗−l −Q. The currently

inactive constraint will become critical due to ∆l, if the new value of g(x) converts to

zero:

g(x) + dg(x)
dl

∆l = g(x) + (∂g(x)
∂φ∗

∂φ∗

∂l
+ ∂g(x)

∂P ∗
∂P ∗

∂l
)∆l = 0

Thus, the necessary change to ∆l to make g(x) active can be found as:

∆l = − g(x)
∂g(x)
∂φ∗

∂φ∗

∂l

= (Q(φ∗ − l)− 1)(φ∗ − l)2

The change of the optimal price ∆P obtained from Eq.4.39 shall be examined

for its effect on the optimality condition of the user demand size as shown in Theorem

4.3.

Theorem 4.3. IaaS user best response sensitivity: The optimal solutions obtained

for IaaS user i on VM request size x∗i remain optimum if:

∆P ∗ < P ∗

αi + γi︸ ︷︷ ︸
P ∗
threshold

(4.41)

Proof. To prove Eq.4.41, we should calculate how much λi1 will fluctuate. Similarly,

the variation in the value of Lagrange multiplier due to ∆P can be estimated as

follows:

∆λi1 = ∂λi1
∂P ∗

∆P ∗

The above equation can be used to determine when the originally active constraint
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defined for the optimization problem in Eq.4.2 becomes inactive due to the change

∆P . Since the value of λi1 is zero for an inactive constraint, we will have:

λi1 + ∆λi1 = λi1 + ∂λi1
∂P ∗

∆P ∗ = 0

From Eq.4.9 we calculate λi1 as follows:

λi1 = (Bir
βi
i γiµ)γi−1

P ∗(αi+γi)

Therefore, the amount of change in the optimal price to diminish its optimality is as

follows:

∆P ∗ = −λi1∂λi1
∂P ∗

= P ∗

αi + γi

4.7 Experiments and Analysis

As the main purpose of our experiments is to demonstrate the effectiveness of the

proposed games, we have to set meaningful data and reasonable game parameters.

To do so, we obtained real-world data and previously achieved suitable values for

the parameters of the Cobb-Douglas demand function [79]. Initially, we experimented

with 300 IaaS users for the small provider k1 using real customer ratings to investigate

the sensitivity of pricing formula to VM request arrival rate. The data was collected

from the Trust Feedback Dataset, provided by Noor et al. [64] in the CloudArmor

project5.

To simulate the differential game, we assumed VM request arrival rate to be 300

tasks per hour for k1 and 900 tasks per hour for k2, that are realistic and commonly
5https://cs.adelaide.edu.au/~cloudarmor/ds.html
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used values for cloud services [41]. The price for k1 is borrowed from a local IaaS

provider in Malaysia, called exabytes6. Due to the earlier explained reasons, k2 price

will be less or at most the same. Both cases are to be considered in our experiments.

To obtain the VM process rate (capacity), which is the minimum speed of 2mbps,

we referred to the IaaS promised QoS in the SLA statements. Since there is no

information available about the providers’ cost, we approximate the cost of k1 to the

cost of renting large cloud infrastructure from Google (per VM per hour) and the cost

of k2 is set to be 100 times less.

The value of ζk2 (the discounted non-functional cost) is approximated using the

Eta-Squared statistics of the ANOVA analysis on the acquired user ratings given to

non-functional quality features. The reason behind using Eta-Squared comes from the

fact that the average Eta-Squared of some non-functional features (e.g., availability

and response time) reflects the importance of these parameters on customers’ demand.

In fact, we used Eta-squared to measure the effect size of the independent variables

(the non-functional attributes). On the other hand, there is no feature representing

the personalization value to customers to be used for ϑ. So, we run our experiments

by giving different values to ϑ. The rest of the parameters are assigned based on

the past literature [5, 24, 58]. Table 4.3 depicts the utilized values of variables in the

experiments. The time axis is normalized to the (0-1) interval.

As discussed previously, there is no similar work to our model or related

experiments to be compared to. For this reason, only the results of our model are

reported.
6www.exabytes.my
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Table 4.3: Assigned variables’ values in simulation

Variables k1 k2
P 0.18 0.18, 0.13
C 0.000076 0.00000076
δ 0.001 0.001
ρ 0.005 0.005
θ̂ = θ̌ 0.3 0.3
η 0.5 0.5
f 0.5 0.5
ζk2 NA 0.7
ϑ 0, 0.7, 0.9 NA
l 300 900

4.7.1 Significance of Quality over User Rating

A one-way ANOVA was conducted to assess the effect of the provided quality on

the user rating. The ANOVA test was performed over 2000 user ratings given

to 78 distinct cloud services considering 8 attributes representing functional and

non-functional quality features. Given that the significance value (p) is less than

the α-value (α = .001) for all quality features, as reported in Table 4.4, we can rest

Assumption 1 and claim that quality attributes are strongly positively correlated with

the overall user rating score.

The analysis of variance and Eta-squared values showed that the effect of the

technical support attribute was the most significant criterion. It was followed by

customer service, response time and availability. Taken together, these results suggest

that high levels of more tangible and measurable qualities have more effect on the user

rating score.

The ANOVA results proved that user rating has a strong tie with after-sales

service, and customer support has turned into a crucial tool in an organization’s

arsenal of sales tools. In classical business models, there is little incentive to provide

excellent customer support since the majority of the revenue from a customer is
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Table 4.4: ANOVA Test results

Service
attributes

Sum of
Squares

df Mean
Square

F Sig.
(p)

Eta-
Squared

Technical
support

3215.603 1907 525.621 1701.668 .000 .817

Response time 768.870 698 145.287 537.118 .000 .756
Availability 2212.676 1414 331.846 844.832 .000 .750
Speed 1472.511 742 218.983 427.415 .000 .744
Ease of use 1541.725 1289 283.299 891.095 .000 .735
Accessibility 533.575 630 97.636 427.327 .000 .732
Operation&
management
features

853.372 617 149.497 358.836 .000 .701

Storage space 846.267 601 115.788 180.430 .000 .547

already secured. In today’s subscription model, however, the equation is almost

reversed. Once a service is sold, the IaaS provider receives a very small fraction

of the lifetime revenue at the beginning of the transaction. Afterwords, the support

team is under a great pressure to keep the customer satisfied. This satisfaction is

also crucial to enhance the customer loyalty that has a significant impact on quality

equilibrium as asserted by Lemma 4.4.

4.7.2 Sensitivity Analysis

In order to evaluate the VM request arrival rate threshold and optimality of price,

we simulate an increasing number of VM request arrival with a fixed price for IaaS

provider k1. Given the speed of 2mbps, Q (for k1) is 900 in an hour. According to

our obtained formula in Eq.4.38, we have: ∆l < 900(0.5)(1.5)2, that makes a critical

value of change to VM request arrival at about ∆l < 1000. This means that if this

provider experiences an increase of 1000 VM request arrivals, it needs to recalculate

its pricing strategy since it is not making an optimized profit. This sensitivity is

illustrated in Figure 4.3. Once the VM request arrival rate crosses the threshold
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Figure 4.3: Sensitivity of pricing optimality to the increase of VM request arrival rate

(∆l = 1300− 300 = 1000), the profit starts sinking.

4.7.3 Quality Improvement Impact on User Demand and

Profit

During the first game, the IaaS provider has to set the optimal price based on the

predicted user demand response given the offered price. The best pricing strategy

should consider users’ reactions towards the given price. Nevertheless, there are two

possible cases for IaaS k1’s price to be considered: 1) Pk1 > Pk2 ; and 2) Pk1 = Pk2 .

It was learned that the smaller provider faces higher costs, so that it cannot offer a

price cheaper than the large provider. Thus, k1 can offer either the same price as k2

or a higher price. The following sections provide more details on these two scenarios.

Scenario 1: higher pricing

To assess the role of the competitive advantage of k1, we assign three different values

to ϑk1 , each representing a specific market positioning:

87



a) when Pk1 > Pk2

b) when Pk1 = Pk2

Figure 4.4: The IaaS quality improvement of k1 and k2

1. ϑk1 = 0: in this case, the IaaS provider is not using its strategic advantage and

does not target any market niches nor offer customization.

2. ϑk1 = 0.7: this means the IaaS provider is providing added value for customers

as worthy as the non-functional quality advantages offered by the existing

competitors.

3. ϑk1 = 0.9: this case illustrates a situation where the IaaS provider is making

extra effort to provide more value to the customers than the existing offers.
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Figure 4.5: The change of user demand when Pk1 > Pk2

Figure 4.4 (a) presents the quality improvement steps over time for k1 and

k2 when Pk1 > Pk2 . Agreeing with Proposition 4.2, the quality improvement rate is

steeper at the beginning and flattens out at final stages. When k1 is providing the same

value as k2, it needs to put more effort on quality than k2. The difference of this extra

quality is higher in the first steps, but reduces over time. Thus, k1 can, for instance,

expand the infrastructure to preserve a more capacity and networking bandwidth,

or reorganize the tenant clusters. Customer support is specifically important where

the small provider operates to provide a more customized solution. Examples of less

costly quality improvement would be offering creative features and highly customized

and targeted services.

Mapping the defined quality improvement to user rating increment gives the

opportunity to identify how the users feel about the trade-off between the price and

quality. When the users are paying higher price and receiving lower quality, they would

expect to see much higher added-value to their businesses. The strategic benefits will

satisfy their expectations and would rise their ratings. This is highly significant for

smaller providers to plan the right amount of investment to improve the quality in
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their early stages of development. Clearly, the case where k1 is making extra effort

on providing customer value requires additional improvement.

The effect of such a quality (rating) improvement on the user demand rate is

quite interesting. As shown in Figure 4.5, k1 gains the highest change in user demand

when it is providing the same value as k2. The change it experiences exceeds that

of k2. This can be because of receiving a closer rating to k2, which can reflect how

valuable is providing such targeted services to customers. It is not surprising that the

demand rate increases very little when the IaaS provider is not offering any special

value. Remarkably, providing extra value does not necessarily lead to a higher demand

rate. Overdoing that may result in limiting the range of the targeted customers. If

the IaaS provider offers very specific and customized services, it may narrow its range

of clients and miss the market share that it could obtain. Therefore, finding a suitable

strategy is essential for the IaaS provider that wants to compete and earn its share of

a profitable but competitive market.

Figure 4.6: The change of user demand when Pk1 = Pk2

90



Scenario 2: equal pricing

In this scenario, the small IaaS provider sets the same price as the existing IaaS in

the market. Unlike the first scenario, this time k1 has less improvement of quality

than k2 when ϑk1 = 0.7 as shown in Figure 4.4 (b). This is due to the fact that k1 is

lowering its pricing down to the same amount as k2, while its cost is higher. Besides,

users of k1 have already gained the benefit of having lower prices, so the provider does

not have to offer higher quality to cover the benefit of price and gain higher ratings.

Meanwhile, as expected, no difference is observed between the two scenarios in the

amount of the quality improvement when ϑk1 is 0 or 0.9. This is reasonable because

providing zero value (resp. a very high value) demands the same quality improvement

regardless of the pricing strategy.

Figure 4.6 illustrates the variation in demand rate over time. When k1 sets equal

pricing as k2, its demand increase does not reach the change of k2’s demand, which

remains higher. Unexpectedly, the equal pricing strategy mainly affects k2’s demand

rather than k1. This event can be related to the impact of quality improvement on

the user demand rate. When k1 sets higher pricing, it can afford more improvement

leading to enhanced rating, and its users demand gets slightly higher. Meanwhile,

k2 takes the most advantage of k1’s lower rating improvement to attract more users.

It can be inferred that customers prioritize quality over price, which confirms the

movement of Cloud 2.0. The trend of k1’s user demand rate variation offering the

highest and lowest values does not present any significant change.

Provider’s profit and users’ loyalty

Total variations of IaaS provider’s profit with both pricing strategies are presented in

Figure 4.7. Since the trend of profit for k1 when Pk1 = Pk2 was almost the same as

when Pk1 > Pk2 , we provided only one plot for each different case of ϑk1 . However, as
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Figure 4.7: IaaS provider’s profit taking different quality controls and pricing
strategies

the profit of k2 differs significantly depending on the pricing strategy (Pk1 = Pk2 or

Pk1 > Pk2), two separate plots are depicted. This figure provides a very useful insight

for small IaaS providers by showing that pricing does not alter profit optimization

as long as they provide a quality level adjusted with that pricing level. Higher price

demands more quality improvement to meet the user expectation and gain high rating.

Consequently, the IaaS provider undergoes the burden of the cost associated with that

improvement such as increasing the number of servers to reserve more capacities. Here,

k1 can rely on its identified market segment behavior through obtaining its sensitivity

to price and rating to decide about setting a reasonable price.

Although the pricing strategy does not significantly affect the profit of k1,

it has enormous influence on the profit of k2. The reason is that k2 has already

established its reputation as an IaaS leader and obtained a high rating, so that its

quality improvement is saturated. In fact, when k1 fails to attain the customers

looking for high quality and customized services, k2 attracts them. However, k1 can

recompense its profit with higher service price. In this case, k1’s customers will mainly

constitute the new public IaaS adopters who could not enjoy the cloud computing
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Figure 4.8: Customer loyalty effect on quality and profit

benefits due to their regional, national or international barriers or because of some

very customized needs. Although customization is essential for some businesses, yet

the quality features of the services are very important. The majority of the users are

not willing to sacrifice one for the other. Thus, if the smaller IaaS providers are ready

to compete and gain more market share through their own market segment, they need

to supply a reasonable amount of IaaS non-functional quality.

We further investigate the importance of customer loyalty on IaaS providers’

revenue. Being loyal to an IaaS provider in today’s subscription model has mutual

benefit for both, the users and providers. As Figure 4.8 illustrates, customer loyalty
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is a key motivation for quality improvement for both providers, k1 and k2. The effect

of customer loyalty is intense when the customers exhibit a highly loyal behavior.

In this case, IaaS providers commit themselves to provide high quality services.

However, customers with low and even medium loyalty do not make a significant

difference. Consequently, as the customer defection rate increases, the user demand

and provider’s profit drop. The new and small providers are slightly more vulnerable

to customer defection, in particular when it comes to future demand provisioning.

In fact, the new IaaS providers need to establish their credibility by increasing their

users satisfaction and attracting high users’ ratings. They also have a limited range

of customers compared to the established providers. However, it is most likely that

customers who receive customized and targeted infrastructure services would be more

loyal to their providers since it is unlikely to find such services anywhere else.

In summary, IaaS quality, specially customer support, has a strong correlation

with users’ ratings. It offers a managerial point for IaaS providers to increase the

customer loyalty through not only customized services, but also fully commitment

in after-sale support. The results show that when the IaaS users are paying

higher and receiving lower non-functional qualities, they would expect to see much

higher added-value from the IaaS provider. The strategic benefit satisfies the user’s

expectation and rise the provider rating. The small IaaS providers gain the highest

change in user demand when they provide the same quality as the established ones.

Notably, providing extra value does not necessarily lead to a higher demand rate as it

might limit the range of the targeted customers. Improving the quality and ratings of

a small and new IaaS provider specifically increases its demand rate and profit in the

both pricing scenarios, higher and equal. Setting equal pricing for both IaaS providers

mainly favors the established provider. When the smaller provider sets equal pricing,

it cannot afford more improvement that leads to a lower user satisfaction. This failure
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to attract high user ratings makes a perfect situation for its competitor to attract

them, although it does not harm its own profit since it gains the difference of the

demand with the difference in the price and quality, and maintains the customers

who have no choice but their customized services.

4.8 Conclusion

This chapter tackled the issue of oligopoly IaaS market that neglects the user

satisfaction and threatens the grows of the cloud market industry. A conceptual

game theoretical framework with two games, namely Stackelberg and differential has

been introduced and designed to allow new and even small IaaS providers to obtain a

market share using their own strategic advantages. The theoretically obtained results

were confirmed by experiments using real-world dataset. It was found that the user

demand from small IaaS providers increases the most when these providers provide

added-value services equal to the value offered by the existing providers. Regardless of

the pricing strategy (higher or equal), improving the quality and ratings of a small and

new IaaS provider increases its demands’ rate and profit. However, the best strategy

for small IaaS providers is to set higher price and improve the quality of their provided

added-value solutions, specifically in the early stages of development. The reason

is that service customization increases the customer loyalty in today’s subscription

cloud economy model, where customers are free to defect anytime. Higher customer

loyalty elevates the provider’s profit and increases the quality equilibrium. Higher

level of service quality leads to a higher user satisfaction and improves the small

IaaS provider’s market position through higher ratings. This research drew many

technical, strategic and managerial insights to guide IaaS providers on how to utilize

their strengths in deciding on future opportunities and target markets. By offering
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value beyond simply providing computing resources, the IaaS provider will play a

strategic role in the future of Cloud 2.0.
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Chapter 5

Cloudchain: A

Blockchain-Based

Coopetition Differential

Game Model for Cloud

Computing

In this chapter, we introduce, design and develop Cloudchain, a blockchain-based

cloud federation, to enable cloud service providers to trade their computing resources

through smart contracts. Traditional cloud federations have strict challenges that

might hinder the members’ motivation to participate in, such as forming stable

coalitions with long-term commitments, participants’ trustworthiness, shared revenue,

and security of the managed data and services. Cloudchain provides a fully distributed
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structure over the public Ethereum network to overcome these issues. Three types of

contracts are defined where cloud providers can register themselves, create a profile

and list of their transactions, and initiate a request for a service. We further design

a dynamic differential game among the Cloudchain members, with roles of cloud

service requesters and suppliers, to maximize their profit. Within this paradigm,

providers engage in coopetitions (i.e., cooperative competitions) with each other while

their service demand is dynamically changing based on two variables of gas price and

reputation value. We implemented Cloudchain and simulated the differential game

using Solidity and Web3.js for five cloud providers during 100 days. The results

showed that cloud providers who request services achieve higher profitability through

Cloudchain compared to those providers that supply these requests. Meanwhile,

spending high gas price is not economically appealing for cloud requesters with a

high number of requests, and fairly cheaper prices might cause some delays in their

transactions during the network peak times. The best strategy for cloud suppliers

was found to be gradually increasing their reputation, especially when the requesters’

demand is not significantly impacted by the reputation value. This chapter is

published in [82].

5.1 Introduction

To mitigate the issue of underutilized and over provisioned computing resources, cloud

providers scaled their pool of resources by forming cloud federations to maximize

their profit and provide guaranteed QoS [14, 32, 47]. In spite of the prominent

federation advantages, cloud providers are reluctant to participate in due to some

strict challenges, mainly: 1- The stability of a federation is a key factor for the

cloud providers to ensure their profitability [32]. Such a stability requires long-term
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commitments from the providers, which is very hard to obtain. 2- A federation needs

to address the complications of a fair revenue sharing model to warrant that each

cloud provider will gain a revenue according to the amount of computational resources

contributed to the federation. 3- The presence of unknown and untrusted participants

in a federation can degrade the QoS of the federated services [67]. The trust issue

limits conventional federations to enroll only trusted providers and disregard the new

ones. 4- Having a large pool of computing resources in a grand coalition might

increase the opportunity of botnet attacks. Meanwhile, forming a small federation

might hinder the revenue maximization of its participants [4]. 5- There are some

security and privacy concerns regarding the managed data and services as well as the

creation and management of the cloud federation itself. All the necessary information

to manage a federation is usually maintained in a centralized trusted third party.

This implies that a federation must maintain roles concerning the authorization to

manage the participants’ information that yields, which makes not only a single point

of failure, but also raises trustfulness concerns [47].

Contributions: This research overcomes the traditional cloud federation issues by

contributing a novel architecture and an innovative strategic game model:

1. To provide a practical cooperative solution that any cloud provider can

embrace regardless of their market position and trustworthiness, we advocate

a fully distributed architecture with a democratic governance structure, called

Cloudchain. To effectively enforce such a structure, Cloudchain proposes an

innovative exploitation of blockchain to prompt and support interoperability

and coopetition among the cloud providers over the public Ethereum network.

Within Cloudchain, cloud providers endeavor to overcome the resource

limitation in their local infrastructure by outsourcing their customers’ requests

to other members of the Cloudchain. Moreover, it allows providers to access
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underutilized resources and lease them at cheaper prices. By leveraging

blockchain-enabled smart contracts [78], we eliminate the need for trust in the

federation and reduce barriers of entry [43].

2. To incentivize the cloud providers and help them make wise decisions about the

utilization of Cloudchain, a dynamic differential game is designed, solved and

simulated. This game aims to maximize the profit of the Cloudchain members

who cooperatively compete while their service demand is dynamically changing.

Two variables are considered to impact the cloud provider’s revenue, the demand

variability and the quality of the provided service: gas cost and reputation value.

Gas is a proportional amount that Ethereum pays to motivate the miners to

participate in the mining process and to supply a fair compensation for their

computation effort [51]. Reputation value is defined to assign a credibility

proportional to the quality that a Cloudchain member provides.

We implement the Cloudchain prototype using Solidity and Web3.js which is available

open source in Github1. We further simulated the differential game using the Gratner’s

rating dataset2 where five real-world providers trade their services. Despite being

costlier to transact for cloud-service providers who request a service rather than

supply, the obtained results proved it is economically justified to adopt Cloudchain.

5.2 Related Work

The literature about cloud-providers cooperation focuses on federation formation as

coalitional games where capacity and revenue are shared [63]. Coronado et al. had

an intensive investigation on federation-formation variables among cloud providers,
1https://github.com/kavehbc/Cloudchain
2https://www.gartner.com/reviews/market/public-cloud-iaas
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including revenue sharing mechanisms, capacity and cost disparity, and the presence

of a big competitor [17]. They defined revenue sharing mechanisms as the most

important factor. Among these mechanisms, shapely value and outsourcing models

had the least and best performance, respectively. They indicated that collaborating

cloud providers can implement a mechanism in which a provider outsources some of

its business and gets a percentage of the revenue. The outsourcing model allows the

provider to keep some of the revenue of its secured business, even though it is not able

to fulfill that business alone. The authors had an insight through the demand peaks

and concluded that cloud providers tend to stay in outsourcing collaboration when the

demand is high. However, interoperability, trust among cloud providers and service

quality or SLA are not considered in their study. The findings from this study confirm

the superiority of outsourcing in terms of maximizing the profit of cloud providers,

which is what we are proposing in this paper in addition of having the advantage

of coopetition among cloud providers. The fact that providers tend to collaborate

when they face a hike in their demand, reinforces the consideration of a dynamic and

long/short-term federation like Cloudchain. The challenges of interoperability and

trust issues among cloud providers are also addressed by the blockchain platform we

propose in this paper. Another cloud outsourcing model has been performed by Chen

et al. [14] who analyzed the interrelated workload factoring and coalition formation

game among private clouds. The authors integrated two types of federations: 1)

vertical (outsource workload to public clouds), ad 2) horizontal (share resources with

other private clouds. Their experiments found this approach to be promising to

improve the cloud’s service quality and decrease the delay by 11%. However, their

research was limited to service quality and economic aspects of stable cooperation

patterns without considering other challenges of a traditional federation explained in

the previous section.
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Very few efforts have been made to study the potential of blockchain in

real-world applications despite its great potential for businesses to share data and

collaborate in a secure and customized manner [53]. According to Tractica, a market

research firm, the annual revenue for enterprise applications of blockchain is estimated

to increase to $19.9 billion by 2025 [39]. The majority of studies about blockchain’s

application have focused on finance [85], energy [60] and IoT applications [102].

In cloud computing and service industry, to the best of our knowledge, there has

been only one academic initiative that proposed a cloud marketplace based on the

blockchain technology. Klems et al. designed Desmaa, a conceptual framework for

trustless intermediation in service marketplaces using blockchain [43]. This conceptual

framework modeled the interactions between a service provider and a service consumer

and tried to overcome problems of conventional marketplace systems, such as barriers

of entry and transaction costs. Yet, the outsourcing model with collaboration and

competition among cloud providers themselves are not considered in their research.

Moreover, the providers’ profit and the best strategies for utilizing this marketplace

is not elaborated nor modeled. Even though the authors developed a prototype, no

evaluation and validation against real-world’s scenarios were provided.

5.3 Cloudchain Architecture

Cloudchain incorporates three types of smart contracts including a set of executable

functions and state variables. Similar contracts are proposed in [3] in the context

of medical data management. Contract 1 (C1 ) or Cloudchain Registery (CCR) is

a global contract that maps cloud providers identification values (including Name,

Reputation Value, Computing Capacity and Storage Capacity) to their Ethereum

address identities (equivalent to public keys). The reputation values can be computed
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from the customers’ ratings given to each provider through online rating platforms.

Policies coded into the contract can regulate registering new providers or changing the

mapping of the existing ones. The cloud provider registration can be restricted only

to certified providers. CCR also maps identities to the Cloudchain Contract (CCC)

address on the blockchain, where a special contract regarding each provider profile

and list of services is recorded.

Contract 2 (C2 ) denotes Cloudchain Profile (CCP). It holds a list of references

to CCC, representing all the participants’ previous and current engagements with

other nodes in the system. CCP also implements a functionality to enable provider

notifications. Providers should register their requests in this contract. Each

transaction list stores a status variable. This indicates whether the transaction is

newly established, awaiting pending updates and has or has not been completed.

This contract is important as it stores the address of all new CCC contracts, without

which Cloudchain can simply lose the track of all the contracts.

Contract 3 (C3 ) represents the Cloudchain Contract (CCC). It is issued between

two nodes in the system when one node accepts and provides the requested service

for the other. The beneficiaries can also complete, or cancel the contract. Once the

contract is completed or canceled, the contract balance would be transferred to the

supplier-, or requester address respectively, and the contract status would also be

updated. There are two approaches to reduce the size of the data as well as the cost

of transactions over Cloudchain. The first approach is a common practice for data

storage in smart contracts and consists of storing raw data off-chain, and meta-data,

small critical data, and hashes of the raw data on-chain [94]. However, the selection

of off-chain data storage has some concerns regarding the interaction between the

blockchain and the off-chain data storage. The other approach is to provide a common

glossary among cloud providers to define the generic terms and policies to be referred
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Figure 5.1: Cloudchain interactions

to in the contract.

Fig. 5.1 provides the steps taken by the Cloudchain members to register and

establish their requirements by interacting via Cloudchain. In step 1, a provider

registers in CCR. Each registered user is assigned with a public key pair. Guaranteed

SLA tenants require performance consistency and scale predictability. When a

member faces a computing-resources deficiency to meet its end users’ demand with

guaranteed SLA, it can submit a request for a service using CCP to deploy a CCC to

the blockchain in step 2. Requesters are required to pay a deposit in advance and it

is stored in the contract. Meanwhile, a rule for providers is set by the requesters to

ensure that qualified providers could ultimately receive the task, e.g. reputation value

threshold. Function calls on contracts are transactions, and those which update the

contract storage need to be validated by miners. Once a new block is mined with the

104



newly linked CCC, it would be broadcasted to other nodes in step 3. Through step

4, the first node that accepts the request should update the respective CCC contract.

Each provider who accepts a task should deposit some coins or its reputation value

to guarantee the quality of the task. The contract termination and delivery of the

requested service have to be confirmed by the service requester in step 5. The requester

is required to rate the supplier based on the received service quality.

5.4 Cloudchain Members’ Revenue Optimization

A true blockchain-led federation will not happen unless cloud providers are widely

engaged and able to manage the costs and properly play their role. The use of a

differential game is motivated by the need to model the time constrained and dynamic

strategies of selfish cloud providers willing to maximize their own revenue. Let us

consider two typical cloud providers (CP) over Cloudchain, CPr as the provider who is

facing a peak time and is going to request some VMs from other Cloudchain members,

and CPs as the Cloudchain member that has some idle servers and is willing to rent

them out with the price offered by CPr. For simplicity and without losing generality,

we will focus on a single VM type, with φ denoting the capacity and the process rate

of VM instances that can be hosted by a typical CPj that can be CPr or CPs. To

make a request and create a contract, CPr has to define the price of gas Gr for the

created transaction (e.g. 5 gwei). If the price is high enough, the transaction will

be executed sooner, since miners will execute transactions with the highest gas price

first. If the price is set too low, CPr may end up waiting longer for execution of its

transaction and distribution of its request. This waiting time may degrade the service

quality for its users and hinder its profit. On the other hand, setting a high gas price

for every single transaction and update incurs higher costs. So, the gas price is a
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decisive factor in profit optimization and we define it as the control path at time t for

CPr, denoted by Gr(t). In this game, VM price is assumed to be given by CPr.

To be qualified to supply a cloud service, the provider CPs has to maintain a

good reputation Rs which is given based on the quality of service for end users and

the quality of collaboration (e.g. speedy communication) with the cloud provider that

requested the service, CPr. Even though the reputation value is given by CPr and

not CPs itself, yet it has a control over this value through the service quality and gas

price of its own transactions. Therefore, Rs(t) is considered as the control path of

CPs to coopete with CPr within Cloudchain to gain higher profit. Table 5.1 provides

a summary of the notations used in our model.

In order to capture the demand elasticities and variations specific for each

user, we define the user demand using the Cobb-Douglas function that models well

these elasticity aspects in terms of price and reputation, adopted from [79]. It is

assumed that the user will have the opportunity to check the cloud provider rating

that represents the actual user satisfaction level and reputation value defined through

Cloudchain. The user demand function is defined as follows:

Du = µ p−αu Rβu (5.1)

In the mining race, miners have to compete to solve proof of work and propagate

the block to reach consensus. The new blocks’ generation follows a Poisson process

with a constant rate 1
Γ throughout the whole Cloudchain network [45]. Before the race,

miners collect their selected pending transactions into their blocks with a total gas

amount of ∑k
j=1Mj. When miner j propagates its block to Cloudchain for consensus,

the time for verifying each transaction is affected by the size of transactions Mj. The

first miner j who successfully has its block achieves consensus will be rewarded based
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Table 5.1: Notations used in Cloudchain

u End user index
r, s ∈ {1, 2, ..., j, ..., k} Requester and supplier in the set of k cloud providers in

Cloudchain
G Cost of gas
M The amount of the cumulated gas for each block
M
′ The amount of required gas for each transaction

X Number of the transactions occurring over Cloudchain
ω Rate of transactions arrival for a CP in [0− T ]
Γ Rate of the block generation for miners in Cloudchain
φ/φ′/φ′′ Provider’s active/idle/mining capacity
p/p

′ Price per VM for the end user/for the members of
Cloudchain

R Reputation value of cloud provider in Cloudchain
Rw Reward value of mining
τ Block propagation time
η Rate of the impact of M over τ
θ̌ Rate of CPr demands rise due to the higher quality services

of CPs
θ̂ Rate of D′r demands increase due to higher reputation of

CPs
ψ Rate of CPr demands increase due to higher gas and higher

quality
αu/βu CP price/rating variation for user u
δ Demand decay rate
µ The amount of VMs
C/C

′ Cost of the primary/outsourced capacity

on the amount of the assigned capacity φ′′j . Thus, miner j’s expected reward Rwj(φ
′′
j )

is:

Rwj(φ
′′

j ) = RwjPj(φ
′′

j ,Mj) (5.2)

where Pj(φ
′′
j ,Mj) is the probability that miner j receives the reward by contributing

a block. To win the reward, provider must perform a successful mining and instant

propagation. The miner may fail to obtain the reward if its new block does not achieve

consensus as the first. This kind of mined block that cannot be added to the blockchain
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is called orphaned block. The block containing a larger size of transactions has a

higher chance of becoming orphaned since a larger block requires more propagation

time, thus, causing a higher delay for consensus. As the arrival of new blocks follows

a poisson distribution, miner j’s orphaning probability, P0
j , can be approximated as:

P0
j = 1− exp(− 1

Γ)τj (5.3)

Here, we assume miner j’s block propagation time τj is linear with the size of

transactions in its block, τj = Mjηj, where ηj is a constant that reflects the impact of

Mj over τj. Therefore, we obtain the reward probability as follows:

Pj(φ
′′

j ,Mj) = 1− P0
j = φ

′′

j e
−

1
ΓMjηj (5.4)

Substituting Eq.5.4 into Eq. 5.2 provides an estimation of total revenues that CPj may

obtain by attending the mining tournament. To model the transactions’ distribution,

we use the compound Poisson process, which is a generalization of the Poisson process

where each arrival is weighted according to a distribution. The compound Poisson

process represents better the transactions dynamics. In this case, the assumption is

that transactions sent to Cloudchain follow a Poisson process, but the amount of gas

they require follows a compound Poisson process. The reason is that the difference

between the amount of gas is based on the complexity of the transaction, for example,

the creation of a contract requires a much higher amount of gas than updating the

contract. Therefore, the probability of the required gas by Xj transactions occurring

in [0−T ] follows an exponential distribution based on the compound Poisson process

as follows:

Pj(X) = e−ωT (ωT )Xj
Xj!

(5.5)
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5.4.1 Cloud Provider as a Requester

Here we explain the scenario from the perspective of CPr that has to optimize its

profit CPPr while requesting VMs as follows:

CPPr(Gr(t), D
′

r(t), t) = (pr − φr Cr) Dr + (pr − p
′

sφ
′

s)D
′

r(t)

− e−ωT (ωT )Xr
Xr!

M
′

rGr(t) +Rwrφ
′′

re
−

1
ΓMη

(5.6)

M
′
r represents the amount of required gas that depends on the complexity of the

transaction a provider wants to initiate. The transaction fees go to the miner that

mines the block, so if a provider attends a mining process, it will be rewarded according

to Eq.5.2 and Eq.5.4. D′r(t) is the demand that CPr intends to outsource to obtain

the idle capacity of φ′s for a secondary price of p′ . Considering the time-dependent

profit functions of CPr in Eq.5.6, the objective function is the total discounted cloud

provider’s payoff over the planning horizon [0− T ]:

maximize
∫ T

0
eρt{CPPr(Gr(t), D

′

r(t), t)}dt

subject to Ḋ
′

r(t) = Gβu
r (t)ψr + θ̌Rβu

s (t)− δrD
′

r(t)

D
′

r(0) = D
′

0r

(5.7)

The users’ demands evolution over time is represented as Ḋ′r(t) for CPr that increases

when the service quality rises. The service quality is aggregated through two factors

of gas price that CPr pays and the reputation of CPs. The demand decays at a

certain rate of δr. It is important to note that Eq.5.7 formulates an optimal control

problem with the gas price as a control variable and the cumulative demand of

CPr as a state variable. The analysis of differential games relies profoundly on the

concepts and techniques of optimal control theory [35]. To study the dynamics of
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the payoff function and the path of control variable, we leverage the Hamiltonian

systems. Equilibrium strategies in the open-loop structures can be found by solving a

two-point boundary value problem for ordinary differential equations derived from the

Pontryagin maximum principle in Hamiltonian functions. The Pontryagin maximum

principle gives the necessary condition for a control path to be optimal open-loop

control. To acquire the optimal control, we first formulate the Hamiltonian system of

the cloud provider’s payoffs:

Hr(Gr(t), D
′

r(t), λr(t), t) = (pr − φr Cr) Dr(t) + (pr − p
′

sφ
′

s)D
′

r(t)

− e−ωT (ωT )Xr
Xr!

M
′

rGr(t) +Rwrφ
′′

re
−

1
ΓMη

+ λr(t)(Gβm
r (t)ψr + θ̌Rβm

s (t)− δrD
′

r(t))

(5.8)

According to the control theory, the optimal control strategy of the original problem

must also maximize the corresponding Hamiltonian function. Thus, based on the

Pontryagin maximum principle, the candidate optimal strategy has to satisfy the

following necessary conditions:

∂Hr(t)
∂Gr(t)

= −e
−ωT (ωT )Xr

Xr!
M
′

r + λr(t)βmGβm−1
r (t)ψr = 0 (5.9)

λ̇r(t) = ρλr(t)−
∂Hr(t)
∂D′r(t)

= (ρ+ δr)λr(t)− pr + p
′

sφ
′

s, λr(T ) = 0 (5.10)

When only one boundary condition is specified as D′r(0) = D
′
0r, the free-end condition

is used as λr = 0 at t = T . The formulated differential equation Eq.5.10 can lead us
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to the adjoint variable:

λr(t) = pr − p
′
sφ
′
s

ρ+ δr
(1− e(ρ+δr)(t−T )) (5.11)

Replacing Eq.5.11 in Eq.5.9 gives us the optimal gas price control path as follows:

G∗r(t) = ( M
′
re
−ωT (ωT )Xr(ρ+ δr)

Xr!(pr − p′sφ
′
s)(1− e(ρ+δr)(t−T ))βmψr

)
1

βm−1 (5.12)

5.4.2 Cloud Provider as a Supplier

Cloud provider as a supplier has a different scenario. CPs observes the total demand

of its own users, Ds, and the capacity preserved for the mining process to determine

the remaining capacity φ′s, to optimize its profit as follows:

CPPs(Rs(t), D
′

r(t), t) = (ps − φs Cs) Ds + (p′s − φ
′

s C
′

s)D
′

r(t)

− e−ωT (ωT )Xs
Xs!

M
′

sGs(Rs(t)) +Rwsφ
′′

se
−

1
ΓMη

(5.13)

G(Rs(t)) denotes the gas cost that the suppliers pay to earn higher reputation for

having prompt communication. Considering the time-dependent profit functions of

CPs in Eq.5.13, the objective function is the total discounted cloud provider’s payoff

over the planning horizon [0− T ]:

maximize
∫ T

0
eρt{CPPs(Rs(t), D

′

r(t), t)}dt

subject to Ḋ
′

r(t) = θ̂rRs(t)βn − δsD
′

r(t)

D
′

r(0) = D
′

0r

(5.14)

The demand dynamics of CPs is defined based on the demand that it receives from

CPr that evolves with its own reputation and decays at a rate δs. By solving
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Table 5.2: Provider’s estimated transactions and costs on Cloudchain based on the
proposed scenarios

Amazon
EC2

Microsoft
Azure

Rackspace Century
Link

Alibaba
Cloud

Reputation Value 88 82 84 60 82
Price per hour (p) 0.0058 0.005 0.084 0.025 0.0125
Price per hour (p′) 0.003 0.0025 n/a n/a n/a
Requests ∗ 0 0 8 15 17
Supplies ∗ 23 17 0 0 0
Cancellations ∗ 0 0 0 3 2
Total Gas 1,290,668 953,972 15,292,736 34,310,286 36,254,668
Gas Price (gwei)† 15 15 15 12 11
Gas Cost (gwei) ‡ 19,360,020 14,309,580 229,391,040 411,723,432 398,801,348
Gas Cost (USD) ‡ $12.06 $8.91 $142.91 $256.50 $248.45
Transaction Delay(s) § 27-66 27-66 27-66 27-4000 27-5459
∗Quantity †Total Gas×Gas Price ‡Average §Time range of each transaction in
seconds

a corresponding Hamiltonian system of Eq.5.14, similar to Eq. 5.8, the optimal

reputation control path is obtained as follows:

R∗s(t) = ( M
′
se
−ωT (ωT )XsGs(ρ+ δs)

Xs!(p′s − φ
′
s C

′
s)(1− e(ρ+δs)(t−T ))βnθ̂r

)
1

βn−1 (5.15)

5.5 Implementation, Simulation and Discussion

We implemented the coopetitive Cloudchain prototype on Ethereum using Solidity

(version 0.4.24), the script language on Ethereum, to test our proposed framework

and the effect of gas price and reputation values on cloud providers revenues. This

program is available open source in Github3. The program was written with the main

concern of the minimum consumption of gas per each transaction and was tested using

remix4, an online IDE for Solidity.

The gas price unit is in gwei, which is 1×10−9 ether. Ethereum stores arbitrary
3https://github.com/kavehbc/Cloudchain
4http://remix.ethereum.org/
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data in smart contracts in two ways. The first option is to store the data as a variable

in a smart contract. The cost of storing data in the contract storage is based on

the number of SSTORE operations on the contract variable. The second option is

to store arbitrary data as a log event. There are also memory variables such as

contract arguments and defined memory variables, which are not stored permanently

inside the contracts. Memory variables are disposed after the function execution is

complete. In our implemented prototype, we used solidity structures and variables to

store provider’s data and requests inside the contracts. Meanwhile, each transaction

is logged with a summary using an event to make it easily accessible for the other

providers (blockchain nodes) to track new transactions. Once a new transaction

with a specific event (e.g. New Request) is created, other providers can call the

contract to get more information and/or change contract stored data (e.g. to accept

a new request). Calling a contract and retreiving data are expensive transactions, the

stored data as events can provide enough information without any retreival cost. The

events are retrieved and filtered using the Web3.js platform to notify the providers

on important changes (e.g. New registration, updates, deactivations, new requests,

etc.) in Cloudchain. CCR and CCP contracts are deployed once, but CCC would be

deployed every time a new request is registered.

For the sake of representation, we assumed a small number of 5 cloud providers

(Amazon, Microsoft, Rackspace, Alibaba cloud, and Century Link) using Cloudchain

for a duration of 100 days to investigate their economic gain through the differential

game. The scalability of our system for higher number of cloud providers is not

questioned since the Ethereum platform is proven to be scalable. We simulated

Rackspace, Alibaba and Century Link as cloud requesters who make 8, 17 and 15

requests of service, respectively. Meanwhile, Amazon accepts Rackspace and Century

Links requests with a reputation threshold of 75, and Microsoft takes Alibaba’s orders,
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which were set for a minimum reputation of 85. Due to the limitation of Solidity

in defining float numbers, we scaled the reputation values collected from Gartner

to [0-100]. The on-demand cloud services’ prices are borrowed from the providers’

websites with an assumption of the secondary price of Amazon and Microsoft to be two

times less for the Cloudchain members. The collected real-world data (e.g. reputation

and price), simulated number of requests and supplies, as well as the simulated results

of total gas consumption, gas price and transactions delays are shown in Table 5.2.

Since there is no time-dependent profit maximization model similar to our proposal,

not even in traditional centralized federations or related experiments to be compared

to, only the results of our model are reported.

In our simulated scenario, three cloud providers of Amazon, Microsoft and

Rackspace are supposed to be miners and collect their rewards. To make the

simulation more realistic, we followed up all the contract transactions from registering

in the Cloudchain up to confirmation of the contract completion, depositing the

payment and assigning a reputation. Century Link and Alibaba are assumed to

cancel their requests for few times after making the contract before acceptation. As

Table 5.2 depicts, the obtained gas consumptions of cloud service requesters are much

higher than those that answer these requests and supply these services. This is why

Alibaba has the most and Microsoft the least gas consumption.

The gas price of Amazon and Microsoft are considered as constant inputs and

they are set to 15. This price guarantees a fast execution of transactions to avoid

tarnishing their reputation and will not impose them huge cost due to their minimal

gas required as the role of suppliers. To estimate the time delay for each transaction,

we tested different prices in different time slots to obtain an approximate range of

delay depending on the traffic of the Ethereum network. The obtained optimal gas

prices for the three cloud requesters are shown in Figure 5.2. Alibaba has to pay
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Figure 5.2: Gas prices of the three cloud
service requesters

Figure 5.3: Microsoft’s optimal reputation
with different values of (0.1 ≤ θ̂r ≤ 0.9)
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Figure 5.4: Average of cloud providers’ profit and demands’ evolution in Nash
Equilibrium
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the minimal price, which is almost 11 gwei for the whole period of time. This cloud

provider has the highest number of requests, so it is not profitable if it invests more

money over gas. With this price, Alibaba has to pay almost $248.45, at the time of

writing this report. However, because of the cheap gas price, Alibaba has a delay of

27 to 5459 seconds for each transaction (refer to Table 5.2). Even though high traffic

happens not very often, yet, it would be advisable to predict its demand in advance

to avoid the delays that can cause user dissatisfaction. Century Link also has to pay

cheap gas price, but not as cheap as Alibaba. It is reasonable since this cloud provider

has less gas consumption, higher end-users’ prices and lower reputation. To win the

users’ satisfaction proportional to its service’s price, Century Link has to increase the

gas price sharply, to speed up the communication and avoid major delays. Based

on the results, Rackspace has to pay the highest price for the gas among the cloud

requesters. The main reason can be the highest end users’ price, the low amount of

transactions and gas consumption. The participation in the mining process could also

add up to its wealth to afford higher price and higher quality with minimum delays.

It worth to note that even though the gas is costly for all cloud providers, it is a

one-time cost for a permanent storage.

Figure 5.3 depicts Microsoft’s optimal reputation value during these 100 days

as obtained in our experiment. It is worth mentioning that Amazon showed a similar

pattern. To investigate the behavior of cloud requesters’ demand over these reputation

values, we considered the demand rate θ̂r varying from 0.1 to 0.9. As the effectiveness

of reputation over demands’ rate raises, the provider has to aim for a higher reputation

at the beginning to earn the eligibility for more demands. However, these optimums

do not follow the same trend. In the case of lower effectiveness, the provider has to

increase the service quality and gas price leading to a higher reputation over time,

but as effectiveness gets intense, the reputation starts to decline. This is where the
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provider has established its credibility at first and made the major profit halfway

through the period, and the increase of reputation is not profitable anymore. This

confirms that keeping a high reputation is costly and not always economically justified.

Figure 5.4 presents a comparative analysis of the average of profit and demands’

evolution for the Cloudchain members. The demands’ evolution Ḋ′r(t) for cloud service

suppliers have noticed a higher spike. Yet, interestingly, cloud service requesters have

received a higher profit from Cloudchain due to fulfilling their initial demand and

selling to their own end-users. The cloud service requesters could obtain cheaper

prices from the suppliers and sell at their own prices. However, it should be noted

that they can face the risk of not fulfilling their commitments to the end-users if none

of the suppliers have the required preserved capacity to rent out. Although it seems

that Cloudchain benefits more the cloud requesters, yet it is not true. The main profit

of cloud suppliers is from their own market and users, and they only rent the partial

idle computing resources, which are not being used. As the number of cloud service

requesters elevates, their share of profit from the outsourced demand and the mining

rewards increases.

5.6 Conclusion

In this chapter, we introduced a new distributed blockchain-based framework for

cloud providers federation to overcome the limitations of conventional centralized

federations. Due to the coopetitive environment of Cloudchain, and high expense of

public smart contracts, we further designed and solved a differential game. This game

modeled the best strategies of cloud providers to make a request with an optimal

transaction cost and time, as well as, to optimize their reputation value to receive the

requests from other providers. Cloudchain was implemented using Solidity over the
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Ethereum network and the differential game was simulated for a sample of five cloud

providers during 100 days. The findings can be summarized from two perspectives of

the cloud service requesters and suppliers. For cloud requesters with a high number

of requests, spending high gas price is not economically appealing. With cheaper gas

prices, they might face some delays in peak times, which needs to be predicted in

advance. Although requesters incurred higher costs from Cloudchain, yet they gained

a significantly high income by outsourcing some parts of their customers’ demands

that could not be fulfilled by their own. The results showed that cloud suppliers

have minimal gas consumption, which makes it more affordable for them to pay

higher prices and enhance their communication and reputation. Though increasing

the reputation was not always the best strategy for highly reputed cloud providers,

a gradual increase is recommended when the requesters’ demand is not significantly

impacted. The end-user’s service price is found to be a very decisive factor in deciding

the level of quality and gas/reputation values for both of the cloud service requesters

and suppliers.
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Chapter 6

A Blockchain-based Model

for Cloud Service Quality

Monitoring

This chapter introduces a novel blockchain-based decentralized federation model that

embodies quality verification for cloud providers who lease computing resources from

each other. The blockchain structure removes the barriers of a traditional centralized

federation and offers a fully distributed and transparent administration by enforcing

the involved agents to maintain consensus on the data. For a blockchain-based

federation, it is vital to avoid blind-trust on the claimed SLA guarantees and

monitor the quality of service which is highly desirable considering the multi-tenancy

characteristic of cloud services. Due to the fact that the blockchain network is unable

to access the outside world, it cannot handle, by its own, providers misbehavior in

terms of SLA violations. Thus, we introduce oracle as a verifier agent to monitor

the quality of the service and report to the smart contract agents deployed on the
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blockchain. Oracle is a trusted third-party agent who can communicate with the

outside world of the blockchain network. The interaction between cloud service

providers (either providing a service or requesting it from another provider) and

the oracle through smart contracts comprises a system of autonomous and utility

maximizer agents. Cloud requesters seek to receive high quality services with constant

monitoring at cheap prices or even with no charge, while cloud providers aim to have

a balanced work-load with less preserved capacity, and the oracle tends to charge

higher for their monitoring services. Therefore, to model this conflicting situation,

we formulate a dynamic Stackelberg differential game to optimize the cost of using

the oracle and maximize the profit of the agents with the role of provider agent as

leader, and the requester and verifier agents as followers. Our designed Stackelberg

differential game can seize the dynamicity of users’ demand and resource provisioning

in a competitive cloud market. We implemented our proposed decentralized model

using the Solidity language in the remix IDE on the Ethereum network. We further

evaluated the optimal controls and agents’ profit with real-world data simulated for

three concrete cloud providers. The results revealed that the requester agent initiates

most of the quality verification requests at the beginning to the middle time of the

contract. Thus, the provider agent could reserve less computing resources considering

the fact that it could share the workload among other customers’ computing resources

during the peak-time. Moreover, imposing higher penalty on the provider agent

increased the capacity and decreased the number of requests for quality verification

at the equilibrium. The evaluation also disclosed that the impact of timing in the

dynamic pricing strategy of the verifier agent is very minimal, and the provisioning

capacity of the provider is strongly correlated with the monitoring price. This chapter

is published in [83].
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6.1 Introduction

The demand variation has forced cloud providers to preserve a massive amount of

computing resources to avoid SLA violation. To mitigate the issue of underutilized and

over provisioned computing resources, cloud providers scaled their pool of resources by

forming cloud federations to maximize their profit and provide guaranteed QoS [32].

In spite of their prominent advantages, cloud providers are reluctant to participate in

federations due to some strict challenges, including the federations’ stability, long-term

commitments from the providers, fair revenue sharing, the presence of unknown

and untrusted participants, security and privacy concerns regarding the managed

data, and the creation and management overhead of these federations [4, 32, 47, 67].

In order to overcome the aforementioned limitations of the traditional federations,

Cloudchain [82] proposed a new distributed blockchain-based framework to support

interoperability and coopetition (i.e. cooperative competition) among the cloud

providers. Cloudchain allows the cloud providers to outsource their unmet computing

demands and agree on the values of shared variables (e.g. amount of the resource,

SLA and price) and keep a history of how the values change over time.

Utilizing smart contracts in blockchain enabled Cloudchain to offer higher

transparency, visibility, and reliance within its fully decentralized agreements deployed

on top of Ethereum. However, Cloudchain falls short in supervising the SLA’s agreed

terms, which requires to access the outside world of the blockhcain network. Each of

the cloud providers may disagree about the SLA compliance. However, investigating

that is beyond the control of blockchain miners or digital codes embedded in the

smart contracts due to its self-contained execution environment. Thus, we need a

third party to perform the highly important verification task and confirm if the SLA

is met.

To address the quality monitoring issue, we propose to employ oracles tailed
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to smart contracts within an innovative multi-agent decentralized model. A smart

contract is a piece of code deployed and executed on blockchain. Oracle in the

blockchain context is a fully-trusted third-party agent that has access to the outside

world, and feeds the data into the blockchain to be accessible by the applications.

Oracles usually provide proofs to show that the retrieved data is tamper-proof. A

number of oracles have been deployed using cryptographic evidences (e.g. hash code)

such as Oraclize, or the Intel SGX feature, such as Town Crier, to make sure the

data is tamper-proof. Our proposed multi-agent model includes five different agents,

namely the cloud service requester (requester agent (RA)), cloud service provider

(provider agent (PA)), oracle (verifier agent (VA)), and two smart contract agents

called registry-profile and contract agents. These contracts that were developed in [82],

are registered in the blockchain and are triggered by new transactions (i.e. initiating

new requests or registering inputs from VA), which will make each blockchain node

update its state based on the results obtained after running the smart contract. The

smart contract is considered as an agent that has state variables and enforces the

associated rules. In our scenario, RA makes a contract with PA and might initiate a

quality monitoring request anytime from VA. VA can check the quality of the service

with respect to different attributes (e.g. availability, bandwidth, response time, etc.)

and detects any misbehavior of RA or PA, then returns the result to the contract

agent to manage the payments and apply potential punishments. Accordingly, the

contract agent decides who should pay the monitoring cost to VA.

Having cloud requesters, providers, and the oracle interacting with each other

through smart contracts composes a system of autonomous and utility maximizer

agents. Cloud requesters seek to receive high quality services with constant monitoring

which could be very costly. On the other hand, providers aim to have a balanced

work-load with less preserved capacity, yet avoid any monitoring cost or possible
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punishments. If they do not manage the gap between the actual and ideal

resource provisioning, it can negatively affect their reputation and aggregated utility.

Meanwhile, the oracle tends to charge higher for the monitoring services without

risking a decline in the number of the requests for monitoring that it receives. Yet some

important questions remain: how many times and when to ask for quality monitoring,

who has to pay for such a service, how much should be paid and how to avoid

SLA violations and its possible consequences. To answer the above questions and to

optimize the providers’ computational resource capacity, quality verification requests

and cost of the monitoring, we formulate a dynamic Stackelberg differential game

among three agents seeking to maximize their revenue. The Stackelberg differential

game is used to study the sequential decision making of cloud provider (leader) for the

optimal resource provisioning, cloud requester (follower) for the quality monitoring

requests, and oracle (follower) for the monitoring cost. In the designed game, the

differential equations capture the dynamic competition and resource provisioning,

quality monitoring requests and costs in continues time.

This study contributes as follows:

1. Developing a novel blockchain-based decentralized model for cloud providers

that outsource some parts of their demand which they cannot fulfill on their

own. Our proposed model enjoys a multi-agent structure, which allows us to

introduce a quality verifier agent to ensure the cloud provider’s compliance with

the SLA. The interaction of an oracle within blockchain for monitoring purposes

is innovative.

2. Formulating a three-player dynamic Stackelberg differential game in which

players have to make choices about their control variables at various points in

time, where PA acts as the leader and RA and VA are the followers. Differential

equations are introduced into the game model to characterize the dynamic
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variations of the end users’ demand. Finally, the optimal solutions are obtained

based on the open-loop equilibria of the proposed game.

We evaluate our proposed model using the Solidity language on Ethereum and

Web3.js by simulating three real-world cloud providers using our system for 100 days.

To the best of our knowledge, there is no research that implements oracles and their

practical integration with smart contracts. Due to the very recently emerging research

topic and nonexistence of any similar model, we are not able to compare our model

with any other model. In addition to the optimal profit of agents, we also evaluated

estimated transactions and costs.

6.2 Motivational Scenario

For a blockchain-based federation, it is vital to monitor the QoS and ensure that

SLA conditions are met, since cloud providers may have an incentive to deviate.

This verification is highly desirable considering the multi-tenancy characteristic of

cloud services. In this context, to scale the economic benefits and optimize resource

utilization, multiple VMs are initiated on the same physical server simultaneously.

The performance variation depends on the network load and usage peak from other

tenants. Cloud providers try to balance the workloads and achieve the required

performance with less preserved capacity, yet they might not be able to supply a

consistent performance.

Figure 6.1 illustrates a scenario when cooperation among two cloud providers

could be problematic. Let us imagine cloud provider A and cloud provider B are using

Cloudchain through the following steps:

1. Cloud providers have to supply scalable cloud services with consistent

performance for their users with guaranteed SLA. To ensure such a scalability
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and on-promise performance, cloud providers A and B can register themselves

in Cloudchain to enjoy the federated services from the available resources.

2. When cloud provider B faces a computing resources deficiency to meet its end

users’ demand, it can create a request through Cloudchain.

3. Provider A who has idle servers, accepts the request and leases its computing

resources to provider B within the smart contract deployed over Cloudchain

with a specified SLA, price, terms and conditions.

4. Two issues might happen that Cloudchain cannot resolve on its own. First,

provider A has actually complied with SLA stated in the Cloudchain contract,

but provider B claims falsely that provider A violated the SLA conditions and

has to be fined.

5. Cloudchain is impotent to oversight and confirm who is telling the truth due to

its inability to communicate with the outside world of the blochchain network.

Blockchain can only access information present in a transaction or in the

transaction history of the blockchain. Thus, we introduce oracle as a third

party to perform the verification and confirm if the SLA is met.

6. The oracle can check the QoS at some cost and report the SLA compliance to

Cloudchain.

7. Second issue can arise when provider A has actually compromised the quality

but denies the accusation and requests to receive the full deposit from provider

B.

8. Cloudchain calls the oracle and initiates a verification request.

9. The oracle confirms that a violation has happened.
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Figure 6.1: Cloud providers misbehavior through the federation

10. At the end, considering the terms and conditions of the contract, as well as

the verification reports from the oracle, Cloudchain distributes the money and

charges the verification cost.

Utilizing the oracle through the steps 4 to 9 is part of our contribution in this paper.

In order to fully materialize the oracle as a verifier agent, we first develop a new

multi-agent structure and then optimize the cost of using the oracle and trading

within Cloudchain.

6.3 Related Work

This work extends our previous work on Cloudchain [82], a novel model that exploits

blockchain to prompt and support interoperability and coopetition among cloud

providers over the public Ethereum network. Blockchain is employed to ensure

transparency and decentralize the agreements in Cloudchain, but the provided cloud

services are supplied out of the blockchain network. So, the blockchain dynamics

can neither guarantee nor validate the quality of the supplied service. Therefore,
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to ensure that the providers comply with the agreements, we need to validate the

QoS, even though the agreement is deployed over blockchain. Similar to any other

blockchain-based platform, Cloudchain suffers from the most challenging issue, yet

to be solved, which is its inability to interact with the outside world. Thus, in this

work, we introduce a verifier agent as an autonomous oracle to monitor the quality

upon the request of the service requester (RA). We further investigate the revenue

maximization strategies among the cloud providers and verifier agent which were not

discussed in our previous contribution.

Summaries of the related literature are drawn from three different areas

elaborated as follows.

6.3.1 Game Theory in Cloud Computing

Game theory has been successfully applied in the cloud computing area, for instance

for resource allocation and pricing mechanisms, where the interactions of players

have to be taken into account [65]. A user-provider interactive approach is taken

by Hadji et al. [31], where a Stackelberg game is designed to consider constrained

pricing with limited resources offered by a cloud service provider and the optimal

user demands. Xu et al. [91] optimized a pricing policy for cloud service providers to

better compete with each other under the evolution of the cloud market. Forming a

Stackelberg game, the authors applied a reinforcement learning (Q-learning) to find

out an optimal policy for the leader. Following the leader, the optimal policy for

followers will be uncovered. However, the price is the only utility factor considered in

these studies and the importance of QoS is somehow neglected. The study by Fan et

al. [24] could address the QoS competition issue by considering the market competition

among a SaaS (software-as-a-service) provider and a traditional software provider as

a differential game. This research analyzes short and long-term competitions for price
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and dynamic quality between the two firms. The authors found that the cost of

software implementation can significantly affect the equilibrium price while quality

improvement has a more robust effect.

6.3.2 Cloud Federation

The literature about cloud providers cooperation focuses on federation formation as

coalitional games where capacity and revenue are shared [63]. Coronado et al. had an

intensive investigation on federation formation variables among providers, including

revenue sharing mechanisms, capacity and cost disparity, and the presence of a big

competitor [17]. They defined revenue sharing mechanisms as the most important

factor. Among these mechanisms, shapely value and outsourcing models had the

least and best performance, respectively. They indicated that collaborating providers

can implement a mechanism in which a provider outsources some of its business and

gets a percentage of the revenue. The outsourcing model allows the provider to keep

some of the revenue of its secured business, even though it is not able to fulfill that

business alone. The authors had an insight through the demand peaks and concluded

that cloud providers tend to stay in outsourcing collaboration when the demand is

high. However, interoperability, trust among providers, and service quality or SLA

are not considered in their study. The findings from this work confirm the superiority

of outsourcing in terms of maximizing the profit of providers, which is what we are

proposing in this paper in addition of having the advantage of coopetition among these

providers. The fact that providers tend to collaborate when they face a hike in their

demand, reinforces the consideration of a dynamic and long/short-term federation-like

blockchain. The challenges of interoperability and trust issues among cloud providers

are also addressed by the blockchain platform we propose in this paper.

Wahaabb et al. [87] focused on the business potential of Web services and
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addressed the problem of community-based cooperation as a virtual trading market

using a Stackelberg game model. They further developed a trust-based hedonic

coalitional game model that forms trusted communities of cloud services and proposed

an algorithm to converge to a stable coalition [88]. Their simulations proved

the importance of federation and showed an improvement to the Nperformance

of the established communities in terms of availability, throughput and response

time. Khosrowshahi [2] considered stability and fairness for all web services within

a community and offered an applicable mechanism for membership requests and

selection of web services. The proposed mechanism used cooperative game-theoretic

techniques, particularly Shapley value, core, ε-core and convex games. Nonetheless,

none of these studies utilized blockchain to form a federation and neither proposed a

solution for service quality monitoring for federated services.

Zhao et al. [103] investigated the impact of two factors: energy consumption and

SLA violations on degrading the cost-efficiency of data centers and the cloud providers’

revenue. The authors developed online VMs placement algorithms as an optimization

problem of maximizing revenue from VMs migration and achieved promising results.

However, no initiatives are proposed to monitor the SLA violations, specifically when

it come to cooperation and competition among providers. The dynamic and timed

decision making strategies are also not considered.

6.3.3 Blockchain and its Applications

Blockchain is emerged as a distributed database technology building upon a

secured list of timestamped transaction records. Its main innovation stems from

enabling parties to transact with untrusted parties over a computer network [53].

The blockchain data structure is an ordered list of blocks containing aggregated

transactions. Every block is identifiable and linked to the previous block in the chain
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where the integrity is ensured by cryptographic techniques. Recently, blockchain

had a revolutionary impact in corporate governance by offering greater transparency

among stakeholders, easier administration, and creation of an infrastructure for

innovative applications where business transactions could be shared in real time

[96]. By leveraging blockchain-enabled smart contracts, we eliminate the need for

trust in federation and reduce barriers of entry, lock-in, and transaction costs, by

removing obsolete trust-establishing mechanisms [43]. A smart contract is a piece of

code residing on a blockchain and is identifiable by a unique address. Moreover,

smart contracts permit creating decentralised applications (DApp) that operate

autonomously without any intervention by a system entity.

A few efforts have been made to study the potential of blockchain in real-world

applications despite its great potential for businesses to share data and collaborate

in a secure and customized manner [53]. According to Tractica, a market research

firm, the annual revenue for enterprise applications of blockchain is estimated to reach

$19.9 billion by 2025 [39]. The majority of studies about blockchain’s application have

focused on finance [85], energy [60] and IoT applications [102].

In cloud computing and service industry, to the best of our knowledge, there

have been very few related academic initiatives in addition to Cloudchain. Among

which, one paid a major attention in the energy-aware resource management problem

in cloud datacenters and developed a robust blockchain-based decentralized resource

management framework in order to save the energy consumed by the request scheduler

[92]. Moreover, this research further utilizes a reinforcement learning embedded in

a smart contract to minimize the energy cost. Their simulations based on Google

cluster traces and electricity prices showed their method was able to reduce the

datacenters’ cost significantly. Desmaa [43] is a cloud marketplace framework based

on the blockchain technology. This conceptual framework modeled the interactions
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between a service provider and a service consumer and tried to overcome problems

of conventional marketplace systems, such as barriers of entry and transaction costs.

Yet, the outsourcing model with collaboration and competition among cloud providers

themselves are not considered in this initiative. Moreover, the providers’ profit and

the best strategies for utilizing this marketplace are not elaborated nor modeled.

Even though the authors developed a prototype, no evaluation and validation against

real-world’s scenarios were provided.

6.4 Quality Verification Model within Cloudchain

6.4.1 Background: Cloudchain’s Smart Contracts

Cloudchain incorporates three types of smart contracts including a set of executable

functions and state variables [82]. Similar contracts are proposed in [3] in the context

of medical data management. Contract 1 (C1 ) or Cloudchain Registry (CCR) is

a global contract that maps cloud providers identification values (including Name,

Reputation Value, Computing Capacity and Storage Capacity) to their Ethereum

address identities (equivalent to public keys). Policies coded into the contract can

regulate registering new providers or changing the mapping of the existing ones. The

cloud provider registration can be restricted only to certified providers. CCR also

maps identities to the Cloudchain Contract (CCC) address on the blockchain, where

a special contract regarding each provider profile and list of services is recorded.

Contract 2 (C2 ) denotes Cloudchain Profile (CCP). It holds a list of references

to CCC, representing all the participants’ previous and current engagements with

other nodes in the system. CCP also implements a functionality to enable provider

notifications. Ethereum supports an event-based mechanism which permits smart

contracts to create an event and signals that a certain action (e.g. an update
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to profile’s data) has been performed. Providers should register their requests in

the CCP contract to be propagated and raised to other nodes of providers. Each

transaction list stores a status variable. This indicates whether the transaction is

newly established, awaiting pending updates and has or has not been completed.

This contract is important as it stores the address of all new CCC contracts, without

which Cloudchain can simply lose the track of all the contracts.

Contract 3 (C3 ) represents the Cloudchain Contract (CCC). It is issued between

two nodes in the system when one node accepts and provides the requested service

for the other. The beneficiaries can also complete or cancel the contract. Once

the contract is completed or canceled, the contract balance would be transferred to

the supplier or requester address respectively, and the contract status would also be

updated. There are two approaches to reduce the size of the data as well as the cost

of transactions over Cloudchain. The first approach is a common practice for data

storage in smart contracts and consists of storing raw data off-chain, and meta-data,

small critical data, and hashes of the raw data on-chain [94]. However, selection

of off-chain data storage has some concerns regarding the interaction between the

blockchain and the off-chain data storage. The other approach is to provide a common

glossary among cloud providers to define the generic terms and policies to be referred

to in the contract. The members of Cloudchain can join and leave the system anytime

by executing specific functions in the smart contracts. Such a flexible membership

allows them to supply or demand a service once or multiple times as required.

6.4.2 Multi-Agent Architecture of the Cloud Service

Distributed Model

The proposed model incorporates five agents as follows:
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Figure 6.2: Multi-agent cloud service quality monitoring model

• The Requester Agent (RA) and Provider Agent (PA) are both cloud providers

willing to trade their computing resources;

• The Registry-Profile Agent (RPA) and Contract Agent (CA) represent

CCR-CCP and CCC smart contracts, respectively, with a set of executable

functions and state variables; and

• The Verifier Agent (VA), known as oracle, is an agent that verifies real-world

occurrences and submits this information to a blockchain to be used by smart

contracts.

Figure 6.2 provides the interactions among these agents. In step 1, RA and PA should

register themselves in RPA where each registered user is assigned with a public key

pair. RPA maps identities of RA and PA to the contract agent’s (CA) address on the

blockchain. It holds a list of references to CA to provide all the participants’ previous
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and current engagements with other nodes in the system with a record of any SLA

violation or compliance.

When RA faces a computing resources deficiency, it can submit a request for a

service using RPA to create and deploy a CA in the blockchain in step 2. Meanwhile,

a rule for providers is set by the requesters to ensure that qualified providers could

ultimately receive the task, e.g. reputation value threshold. The first time reputation

values can be computed from the customers’ ratings given to each provider through

online rating platforms and will be updated based on the future ratings given by RA.

CA regulates the interactions between two nodes in the system where one node

accepts and provides the requested service to the other in step 3. RA is required to

pay a deposit in advance and it is stored in the contract using CA. The beneficiaries

can complete or cancel the contract, however, the contract termination and delivery

of the requested service have to be confirmed by RA. Once completed or canceled, CA

calculates fines to be charged if any exist and the remained contract’s balance would

be transferred to the RA or PA address respectively, and the contract status would

be updated.

Function calls on contracts are transactions, and those which update the contract

storage need to be validated by blockchain miners. Once a new block is mined with

the newly linked CA, it would be broadcasted to other nodes and the first node that

accepts the request should update the respective CA contract.

RA can initiate a quality monitoring request anytime to check if the provider

is complying with the SLA conditions during the runtime. The request should

be submitted to CA and CA calls VA to perform the verification through step 4.

VA checks the prioritized quality attributes of the service using RA credentials and

extracts the runtime needed information and pushes it into CA. PA would be penalized

if there is any violation of the SLA. A record of the SLA monitoring and penalties
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will be kept by RPA for future references. RA is required to rate the supplier based

on the perceived performance. The process of requesting a service and monitoring its

quality among the five agents are elaborated in Algorithms 6.1 and 6.2. The agents’

decision variables and the details of their trading policies provided in these algorithms

will be discussed in the following section.

Algorithm 6.1 Cloud providers service agreements within the multi-agent model
Require: Ether Deposit; Reputation threshold; PA reputation; Cloud requester’s Etheruem address

(RA); Cloud supplier’s Etheruem address (PA).
1: procedure ServiceAgreement
2: RA makes a service request in RPA
3: RPA creates a CA
4: RA.SendTo(CA, Ether Deposit)
5: CA.Availability = True
6: EventLog.Create("New request is available")
7: if RA.Reputation ≥ Reputation threshold AND RA.Accept(CA) then
8: CA.Availability = False
9: while RA requests a quality verification do . refer to Eq.6.8
10: CA calls Algorithm 6.2
11: N(t) += 1
12: if Verification.Result = True then
13: RA.SendTo(Verifier, M(t))
14: PA.PositiveVerification += 1
15: else if Verification.Result = False then
16: PA.SendTo(Verifier, M(t))
17: PA.NegativeVerification += 1
18: Assign F to charge PA
19: CA.SendTo(RA, F )
20: end if
21: end while
22: if CA.Completed then
23: EventLog.Create("CA is completed")
24: ContractDeposit = CA.TotalAmount
25: CA.SendTo(PA, ContractDeposit)
26: EventLog.Create("Fund is transferred to the Cloud supplier")
27: RA.UpdateReputation(PA)
28: end if
29: end if
30: end procedure
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Algorithm 6.2 Verification process
Require: CA Ethereum address; M(t); ε; VA Etheruem address (oracle).
Ensure: Verification.Result . Boolean
1: procedure VerificationProcess
2: VA retrieves CA terms and monitor the cloud service
3: VA verifies the quality of the provided service based on CA.SLA
4: if (φ̄− φ(t)) <= ε then
5: Verification.Result = True
6: else
7: Verification.Result = False
8: end if
9: Calculate M(t) to charge CA . refer to Eq.6.15
10: end procedure

6.5 Requester, Provider and Verifier Agents

Decision Making

Unlike conventional (static) game theoretic models, dynamic models we use in this

paper consider the important dimension of time and recognize the competitive

decisions that do not necessarily remain fixed. Models involving competition in

continuous time are typically treated as differential games, in which critical state

variables, e.g. demand, are assumed to change over time according to specified

differential equations.

Our RA, PA, and VA agents aim to maximize their profit within our proposed

multi-agent and blockchain-based federation. RA is facing a peak time and is going

to request some VMs from other federation’s members, and PA has some idle servers

and is willing to rent them out with the price offered by RA. For simplicity and

without losing generality, we will focus on a single VM type, with φ̄ denoting the

desired capacity and the process rate of VM instances that can be hosted by PA

which guarantees to meet the SLA even during the peak time. In fact φ̄ is what RA is

paying for, while φ is the actual preserved capacity that PA assigns for RA considering

the fact that its other customers might use less and it can assign the extra capacity
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to RA when needed. Therefore, PA controls its optimal capacity assignment φ. Since

RA might experience a QoS degradation or sense a violation of SLA, it has the right

to initiate a monitoring verification request. However, this request can be costly as

it has to pay if there is no SLA violation. Thus, RA is required to decide on the

number of verification requests to make, denoted by the control path N(t) (a control

path is a vector of control or decision variables). On the other hand, VA has to decide

on its control path representing the optimal pricing M(t) which alters its verification

demands and final revenue.

We formulate the profit maximization, service trading, and quality assurance

problems as a Stackelberg differential game as follows.

• Players: There are three players: PA acts as leader; and VA and RA act as

followers. We assume that the decision making of the followers are simultaneous

and they use each others’ control variable as input of their models.

• Strategy space: PA can choose the optimal capacity control path φ(t) to

maximize its payoff by observing the cost and numbers of the requests for

monitoring in response to the capacity. VA sets an optimal price control

path M(t) to charge for the quality verification by considering the given

capacity which also affects the number of the requests from RA. RA controls its

verification requests N(t) to ensure the service quality by considering the given

φ(t).

• State: The end users’ demands and the quality monitoring demands are the

system states of PA, RA, and VA, respectively.

In the Stackelberg differential game, both the leader and followers try to maximize

their own payoffs, which are the integration of instantaneous payoffs over the time

horizon [0, T ], by controlling their control paths which are their decision variables to
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be committed to for the whole time horizon. Similar to a statistic Stackelberg, to

obtain the equilibrium of a Stackelberg differential game, we use backward induction

and solve the problem for the follower first. A list of the notations is provided in

Table 6.1.

Table 6.1: Notations used in Stackelberg differential game

j/i Index of a provider/quality attribute from the set k/I
M Quality monitoring cost
N Number of monitoring verification requests
r/p/v Requester/provider/verifier agents
G/C Cost of gas/capacity
F Fine payment of PA to RA due to SLA violation
W The amount of the cumulated gas for each block
W
′ The amount of required gas for each transaction

X Number of the transactions over the blockchain
Y Maximum number of the initiated verification requests
ω Rate of transactions arrival for an agent in [0− T ]
ω
′ Weight of the monitoring request arrival from RA

Γ Rate of the block generation for miners
φ/φ

′
/φ̄ Provider’s active/mining/maximum capacity

P Price per VM
R Reputation value of RA and PA in the range of [0− 1]
Rw Reward value of mining
τ Block propagation time
η Rate of the impact of W over τ
ψ Rate of end users’ demands increase due to higher quality for

RA
θ Rate of end users’ demands increase due to higher Rp

β Quality sensitivity of the end users
γ Price sensitivity of RA and PA for monitoring service
δ Demand decay rate
µ The amount of VMs
Q Quality attributes of a cloud service in the set I
λ/Λ/Θ Adjoint variables

138



6.5.1 Preliminaries

This section explains some of the required elements to formulate our game. We first

make an assumption that is a rule for differential games.

Assumption: Each player has perfect knowledge of:

• The dynamic state function determining the evolution of the demand, and the

control paths of the three players.

• The payoff functions.

• The initial demand states at time zero.

The analysis of differential games relies profoundly on the concepts and

techniques of optimal control theory [35]. Definition 4.1 provides some relevant points

on this regards.

Axiom 6.1. The open-loop strategy spaces of RA, VA and PA are respectively defined

as:

Ñ = {N(t)|N(t) measurable on [0, T ], N(t) ≥ 0 for all t ∈ [0, T ]}

M̃ = {M(t)|M(t) measurable on [0, T ],M(t) > 0 for all t ∈ [0, T ]}

φ̃ = {φ(t)|φ(t)measurable on [0, T ], 0 > φ(t) ≥ φ̄ for all t ∈ [0, T ]}. The strategy

profile (N∗(t),M∗(t), φ∗(t)) is an open-loop Stackelberg equilibrium if, for RA, VA

and PA, each of them is optimal control strategies given others’ strategies.

It is assumed that cloud providers can participate in the mining to earn some

rewards if they have spare computing resources. In the mining race, miners have

to compete to solve proof of work and propagate the block to reach consensus.

The new blocks’ generation follows a Poisson process with a constant rate 1
Γ

throughout the whole blockchain network [45]. Before the race, miners collect

their selected pending transactions into their blocks with a total gas amount of
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∑k
j=1Wj. Gas is a proportional amount that Ethereum pays to motivate the miners

to participate in the mining process. When miner j propagates its block to the

blockchain for consensus, the time for verifying each transaction is affected by

the total size of the transactions Wj. The first miner j who successfully has its

block achieves consensus will be rewarded based on the amount of the assigned

capacity φ′j. The amount of the reward can be computed by the following proposition.

Theorem 6.1. The miner j’s expected reward Rwj(φ
′
j) is:

Rwj(φ
′

j) = Rwjφ
′

je
−

1
ΓWjηj (6.1)

Proof. The expected reward of mining is: RwjPj(φ
′
j,Wj) where Pj(φ

′
j,Wj) is the

probability that miner j receives the reward by contributing a block. To win

the reward, the miner must perform a successful mining and instant propagation.

However, the miner may fail to obtain the reward if its new block does not achieve

consensus as the first. This kind of mined block that cannot be added to the blockchain

is called orphaned block. The block containing a larger size of transactions has a

higher chance of becoming orphaned since a larger block requires more propagation

time, thus, causing a higher delay for consensus. As the arrival of new blocks follows

a Poisson distribution, miner j’s orphaning probability, P0
j , can be approximated as:

P0
j = 1− exp(− 1

Γ)τj (6.2)

It is safe to assume that miner j’s block propagation time τj is linear with the size of

transactions in its block, τj = Wjηj, where ηj is a constant that reflects the impact of
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Wj over τj. Therefore, we obtain the reward probability from Eq.6.2 as follows:

Pj(φ
′

j,Wj) = 1− P0
j = φ

′

je
−

1
ΓWjηj (6.3)

By multiplying Eq.6.3 by the reward value, we obtain Eq.6.1.

Axiom 6.2. To model the transactions’ distribution, we use the compound Poisson

process, which is a generalization of the Poisson process where each arrival is weighted

according to a distribution. The compound Poisson process represents better the

transactions dynamics. The assumption is that transactions sent to the blockchain

follow a Poisson process, but the amount of gas they require follows a compound

Poisson process. The reason is that the difference between the amount of gas is based

on the complexity of the transaction, for example, the creation of a contract requires

a much higher amount of gas than updating the contract. Therefore, the probability

of the required gas by Xj transactions occurring in [0 − T ] follows an exponential

distribution as follows:

Pj(X) = e−ωT (ωT )Xj
Xj!

(6.4)

We further require another distribution function to formulate the cost and

penalty/reward of the quality monitoring services provided by VA. To do so, we

require to consider how the history records of transactions and the reputation values

of the providers can influence the number of the requests for quality verification. This

formulation is provided in the below definition.

Axiom 6.3. Let us define Y as the maximum number of the verification requests

that an agent j can initiate. If the reputation value of an agent who is providing a

service is high, it is likely that there will be less number of the verification requests.

However, if the reputation value of RA is high it is more likey to have more numbers
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of verifications to ensure that quality will remain reliable and the reputation stays

untouched. Thus, the most requests will be initiated if the reputation value of RA is

high and PA is low. We propose a similar distribution function given by Eq.6.4, since

the initiation of monitoring requests and the amount of cost M(t) or the received

reward (penalty F paid by PA) follows the same compound Poisson process which is

tight with the agents’ reputation values:

Pj(Y ) = e−ω
′
T (ω′T )Yj(1−Rp)Rr

(Yj(1−Rp)Rr)!
(6.5)

6.5.2 Problem Formulation and Open-Loop Equilibrium of

RA (Follower)

We firstly discuss the problem of the optimal number of verification requests N(t)

for RA, to get the open loop equilibrium solution. Adopted from [79], we define

the end users’ demand using the Cobb-Douglas function that captures the demand

elasticities and variations specific for each user of a cloud service, D = µ P−α Qβ.

The two variables α and β are the users’ sensitivities towards the price and quality,

respectively.

As presented in Algorithms 6.1 and 6.2, we assume that if (φ̄−φ(t)) <= ε, then

PA is complying with the SLA and there will be no penalty of F and no verification

cost M(t) for PA. Here, ε is a very small number that PA is allowed to disobey due to

the very dynamic context of cloud service attributes. But, if (φ̄− φ(t)) > ε, then RA

will not pay for M(t) and will be rewarded the penalty value of F . The provider’s

cost is usually considered to be quadratic in the literature [33], a convex cost term

can prevent aggressive behavior of a certain provider which can result in a monopoly

market.

The requester agent acts as a follower of PA by relying on the provided capacity
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and simultaneously receiving the monitoring cost from VA to adjust its optimal

number of the verification monitoring requests N(t), while considering the evolve

of its end users’ demand state. Thus, it tries to maximize its profit according to the

following function:

Maximize RA(N(t), Dr(t),M(t), φ(t), t) =∫ T

0
eρt{PrDr(t)− φ̄P 2

p +Rwr(φ
′

r)− Pr(X)W ′

rGr

− Pr(Y )(M(t)− F )(φ̄− φ(t))N(t)}dt

subject to Ḋr(t) = (N(t)φ(t))βψ − δrDr(t)

(6.6)

Rwr(φ
′
r), Pr(X) and Pr(Y ) are borrowed from Proposition 4, Definition 4.2 and

Definition 4.3. ρ denotes discounted factor in our discounted-utility model, in which

it is assumed that the instantaneous utility each period depends solely on profit in

that period, and that the utilities from streams of profit are discounted exponentially.

The demand state dynamics is defined with Ḋr(t) which increases with the

number of capacity monitoring and ensuring the service quality with the power of β

as the end user sensitivities towards the quality at the rate ψ. It also decays at the

rate δr in which users switch to another provider.

Axiom 6.4. For RA, the number of monitoring requests’ strategy N(t)∗ is

optimal if the following inequality holds for all feasible control N∗(t) 6= N(t),

RA(N(t)∗, Dr(t)) ≥ RA(N(t), Dr(t)).

In order to get the equilibrium solution of the optimization problem in Eq.

6.6, we need to construct the Hamiltonian system of the RA’s problem. Equilibrium

strategies in the open-loop structures can be found by solving a two-point boundary

value problem for ordinary differential equations derived from the Pontryagin

maximum principle in Hamiltonian functions. Here, the equilibrium solution for RA
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is the solution of the differential game, and also is the Stackelberg equilibrium solution

for RA as a follower. The Hamiltonian system of RA is as follows:

Hr(t) =PrDr(t)− φ̄P 2
p +Rwr(φ

′

r)− Pr(X)W ′

rGr

− Pr(Y )(M(t)r − F )(φ̄− φ(t))N(t)+

λ(t)((N(t)φ(t))βψ − δrDr(t))

(6.7)

The adjoint variable or shadow price (λ) associated with a particular constraint is

the change in the optimal value of the objective function per unit increase in the

right-hand-side value of that constraint, all other problem data remaining unchanged.

The economic interpretation of λ(t) is the value of an additional unit of the end users’

demand for RA. For a given N(t), λ(t) > 0 implies that RA benefits from the current

demands. With a zero shadow price λ(t) = 0, RA does not take into account the

impact of the price on future users’ demands. On the other hand, when λ(t) < 0,

RA has no motive to sacrifice current profits for future profits by paying the cost

of quality monitoring, so that it will no longer increase N(t). The final solution is

obtained in the following Theorem.

Theorem 6.2. Knowing the fact that verification cost is paid by RA unless there is

a violation of the SLA by PA, in which PA incurs M(t) and F , the optimal number

of monitoring requests is given by:

N(t)∗ =


(−Pr(Y )M(t)(φ̄−φ(t))

λ(t)βψφ(t)β−1 )
1

β−1 if (φ̄− φ(t)) <= ε

(Pr(Y )F (φ̄−φ(t))
λ(t)βψφ(t)β−1 )

1
β−1 if (φ̄− φ(t)) > ε

(6.8)

and λ(t) is given by:

λ(t) = Pr
ρ− δr

(1− EXP ((ρ− δr)(t− T )) (6.9)
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Proof. As proven in the optimal control theory, the optimal control strategy of

the original problem must also maximize the corresponding Hamiltonian function.

According to the Pontryagin’s Maximum Principle (PMP), a control constitutes an

open loop equilibrium to the problem in Eq. 6.7, and Dr(t) is the corresponding state

trajectory, if there exists a costate function λ(t) such that the following relations are

satisfied,
∂HRA(t)
∂N(t) =Pr(Y )(M(t)r − F )(φ̄− φ(t))+

λ(t)βψ(N(t)φ(t))β−1 = 0
(6.10)

λ̇(t) = ρλ(t)− ∂H∗RA(t)
∂Dr(t)

= λ(t)(ρ− δr)− Pr, λ(T ) = 0 (6.11)

where Eq.6.11 is the adjoint equation to describe the dynamics of a costate variable.

In the case that the strategy space Ñ does not depend on the system state Dr,

the maximized Hamiltonian function H∗RA on the right hand side of Eq.6.11 can be

replaced by the original HRA. When only one boundary condition is specified as

Dr0(t) = Dr(0), the free-end condition is used as λ = 0 at t = T . Solving the

differential equation of Eq.6.11 can lead us to the corresponding costate function. By

solving Eq.6.10, we can obtain the optimal N(t)∗ given in Eq.6.8.

6.5.3 Problem Formulation and Open-Loop Equilibrium of

VA (Follower)

To formulate the optimal pricing control M(t) problem for V A and to get the open

loop equilibrium solution, we require to define the dynamic variation of the state of

verification demand. A major part of dynamic pricing research originates from the

Bass new service diffusion model, which was later enriched by incorporating price

sensitivity to allow a dynamic pricing examination [30,69]. We modify this model to
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elaborate on the new concept of verification demand in our model as described in the

following definition.

Axiom 6.5. Let V (t) denotes the total number of the verification requests initiated

by RA at time t for each quality attribute, given an I-tuple of QoS attributes

Q1, Q2, ..., QI with an index of i. The verification state evolves based on the external

factor of capacity discrepancy and the internal factor of price as follow:

V̇ (t) = dV (t)/dt = (M(t)V (t) + (φ̄− φ(t)))(1− γM(t)) (6.12)

where the positive parameter γ measures the providers’ sensitivity to the verification

price.

To obtain a suitable dynamic pricing strategy, VA observes the number of the

verification requests from RA and provides a response to the announced capacity

control of PA. Therefore, VA tries to maximize its profit by the following Eq. 6.13

which is subject to Eq. 6.12:

Maximize V A(M(t), N(t), V (t), t) =∫ T

0
eρt{(M(t)− C2

v )V (t)− Pv(X)W ′

vGv}dt

subject to: V̇ (t) = (M(t)V (t) + (φ̄− φ(t)))(1− γM(t))

(6.13)

The Hamiltonian system is given as below.

HV A(t) =(M(t)− C2
v )V (t)− Pv(X)W ′

vGv+

Λ(t)(M(t)V (t) + (φ̄− φ(t)))(1− γM(t))
(6.14)

Theorem 6.3. The optimal monitoring cost is given by,

M(t)∗ = 1
γ
− (φ̄− φ(t))
V (t) + Λ(t) + 1 (6.15)
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where Λ(t) is given by:

Λ(t) = (γ(φ̄− φ(t)) + V (t)− C2
vV (t)γ

V (t)(ργ + 1) )(1− EXP (ρ+ 1
γ

)(t− T )) (6.16)

Proof. Similarly, the necessary optimality conditions for VA can be derived according

to PMP as follows:

∂HV A(t)
∂M(t) = 0

V (t) + Λ(t)(V (t)(1− γM(t))− γ(M(t)V (t) + (φ̄− φ(t)))) = 0
(6.17)

By solving Eq.6.17, we can obtain the optimal price given by Eq.6.15. When the

optimal control depends on the system state, it has to be replaced in the original

Hamiltonian system in Eq.6.14 to achieve H∗V A(t) and to be used for calculation of

the adjoint variable Λ(t).

Λ̇(t) = ρΛ(t)− ∂H∗V A(t)
∂V (t) ,Λ(T ) = 0

Λ̇(t) = Λ(t)(ρ+ 1
γ

)− φ̄− φ(t)
V (t) − 1

γ
+ C2

v

(6.18)

6.5.4 Problem Formulation and Open-Loop Equilibrium of

PA (Leader)

For each capacity path φ(t) ∈ φ̃ PA announces, there is a corresponding N∗(t) ∈ Ñ

and a M∗(t) ∈ M̃ . PA takes the VA and RA’s best responses into consideration when
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solving the optimization problem. The PA’s optimization problem is given by:

Maximize PA(φs(t), R(t), Ds(t), λ(t),Λ(t),Γ(t),M∗(t), N∗(t), t)

=
∫ T

0
eρt{PpDp(t)− φ(t)C2

p +Rwjp(φ
′

p)−

Pp(X)W ′

pGp − Pp(Y )(M(t)∗ + F )(φ̄− φ(t))N(t)∗}dt

(6.19)

subject to



Ḋp(t) = (Rp − F (φ̄− φ(t)))βθ − δpDp(t)

λ̇(t) = λ(t)(ρ− δr)− Pr

Λ̇(t) = Λ(t)(ρ+ 1
γ
)− φ̄−φ(t)

V (t) −
1
γ

+ C2
v

(6.20)

Compared to RA and VA, the Hamiltonian function of PA in the Stackelberg

differential game is more complex since the maximization of the payoff of PA also

needs to consider the dynamics of costate variables of RA and VA as the additional

state constraints besides the system state constraints. In this case, similar to the

introduction of a costate variable for the system states in the follower’s Hamiltonian

function, the costate variables for both the system states and costates of the followers

are needed in the Hamiltonian function of PA as leader.

HPA(t) =PpDp(t)− φ(t)C2
p +Rwjp(φ

′

p)− Pp(X)W ′

pGp−

Pp(Y )(M(t)∗ + F )(φ̄− φ(t))N(t)∗+

Θ1(t)(θ(Rp − F (φ̄− φ(t)))β)− δpDp(t))+

Θ2(t)(λ(t)(ρ− δr)− Pr)+

Θ3(t)(Λ(t)(ρ+ 1
γ

)− φ̄− φ(t)
V (t) − 1

γ
+ C2

v )

(6.21)

Similarly, the necessary optimality conditions for PA can be derived through the PMP.

Due to the concavity of Hamiltonian function with respect to φ(t), we can obtain φ∗(t)

for the leader which could be obtained from ∂HPA(t)
∂φ(t) = 0, and denoted as:
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φ∗(t) = gp(M∗(t), N∗(t), λ(t),Λ(t), Θ1(t), Θ2(t), Θ3(t), Dp(t), V (t), t).

We further have the following conditions:

Θ̇1(t) = ρΘ1(t)− ∂HPA(t)
∂Dp(t)

= Θ1(t)(ρ− δp)− Pp

Θ̇2(t) = ρΘ2(t)− ∂HPA(t)
∂λ(t) = −Θ2(t)δr−

( 1
1−β )λ

β
1−β (Pj(Y )F (φ̄−φ∗(t))

βψφ∗(t)β−1 )
1

β−1Pp(Y )(M∗(t) + F )(φ̄− φ(t))

Θ̇3(t) = ρΘ3(t)− ∂HPA(t)
∂Λ(t) =

ρ(Θ3(t)− 1) + 1
γ

+ Pp(Y )(φ̄− φ∗(t))2N(t)∗
V (t) + Λ(t) + 1

(6.22)

with boundary conditions Θ1(T ) = 0 and Θ2(0) = Θ3(0) = 0. We impose Θ1(T ) = 0,

because Dr(T ) is free to move and impose Θ2(0) and Θ3(0) to be 0, because our

problem is controllable and initial state depends on φ(0). Replacing φ∗(t) into Eq.6.16

along with differential equations in Eq.6.22 constitutes a system of five differential

equations which, along with the boundary conditions, imply a solution; however is

difficult to obtain analytical solutions for that (you can refer to [22] for a discussion of

the complexity of the solutions to a similar system). Yet, we analyze all the variables

and the system behavior in Section 5.

Theorem 6.4. For the formulated Stackelberg differential game, the candidate strategy

profile (N∗(t),M∗(t), φ∗(t)) is indeed an open-loop Stackelberg equilibrium.

Proof. It is straightforward that the construction of strategy profile

(N∗(t),M∗(t), φ∗(t)) satisfies all the necessary conditions as it followed the

PMP conditions. The following arguments constitute the sufficient conditions for

optimality. Since the Hamiltonian function HRA is strictly concave and continuously

differentiable with respect to N(t) for all t ∈ [0, T ], the necessary optimality

condition in Eq.6.10 uniquely determines a candidate optimal control path N(t)∗ as
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a function of the observed verification pricing strategy M(t), capacity strategy φ(t)

and the system state Ḋr(t), and the costate λ(t). In a similar way, due to the strict

concavity of Hamiltonian function HV A with respect to M(t), and HPA with respect

to φ(t), PMP provides not only necessary conditions but also sufficient conditions

for optimality of M∗(t) for VA and φ∗(t) for PA. According to the stated conditions,

we can conclude that the obtained strategy profile is indeed an open-loop Nash

equilibrium.

6.6 Implementation and Evaluation

We implemented our proposed blockchain-based quality monitoring prototype on

Ethereum using Solidity (version 0.4.25), the script language on Ethereum and

Web3.js. This program is available open source in Github1. The program was written

with the main concern of the minimum consumption of gas per each transaction and

was tested using remix2, an online IDE for Solidity. The gas price unit is in gwei,

which is 1 × 10−9 ether. In our implemented prototype, we used solidity structures

and variables to store provider’s data and requests inside the contracts. Meanwhile,

each transaction is logged with a summary using an event to make it easily accessible

for the other providers (blockchain nodes) to track new transactions. Once a new

transaction with a specific event (e.g. new request) is created, other providers can

call the contract to get more information and/or change contract stored data. To

make the simulation more realistic, we followed up all the contract transactions from

registering up to confirmation of the contract completion and assigning a reputation.

For the sake of representation, we assumed three real-world cloud providers

(Amazon (PA), Alibaba cloud (RA), and Century Link (RA)) using the system for
1https://github.com/kavehbc/Cloudchain
2http://remix.ethereum.org
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a duration of 100 days to investigate their economic gain through the Stackelberg

differential game. The scalability of our system for a higher number of providers is

not questioned since the Ethereum platform is proven to be scalable. We simulated

Alibaba and Century Link as cloud requesters who make 17 and 14 requests of

service, respectively. The on-demand services’ prices are borrowed from the providers’

websites and their ratings are collected through the Gratner’s dataset3. The collected

real-world data, simulated number of requests and simulated results of total gas

consumption, gas price, gas cost (at the time of writing this paper), and transactions

delays are shown in Table 6.2.

The gas price that providers choose to pay for each transaction can affect

the speed of processing their transactions to be approved since miners choose the

most profitable transactions to include in their block. We adopt the optimal gas

price formulated in our previous study [82]. As Table 6.2 depicts, the obtained gas

consumptions of cloud service requesters are much higher than those that answer

these requests and supply these services. This is why Alibaba has the most and

Microsoft the least gas consumption. To estimate the time delay for each transaction,

we tested different prices in different time slots to obtain an approximate range of delay

depending on the traffic of the Ethereum network. Since there is no time-dependent

profit maximization model similar to our proposal, not even in traditional centralized

federations or related experiments to be compared to, only the results of our model

are reported.

Figure 6.3.a illustrates the optimal φ(t) for Amazon, where φ̄ = 304 according to

the speed attribute mentioned in the SLA terms of Amazon. It can be easily noticed

that during the first half period of T , it is crucial to preserve a capacity close to the

desired capacity all the time, otherwise, Amazon incurs a huge loss. The surprising
3https://www.gartner.com/reviews/market/public-cloud-iaas
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Table 6.2: Provider’s estimated transactions and costs based on the proposed scenarios

Cloud providers Amazon C-Link Alibaba
Reputation 0.9 0.6 0.8
Price 0.0058 0.025 0.0125
Requests n/a 14 17
Consumed gas ∗ 1,739,596 32,022,933 36,254,668
Gas Price 15 12 11
Gas cost (G) † 26,093,940 384,275,203 398,801,348
Gas Cost (USD) ‡ $12.06 $256.50 $248.45
Transaction
Delay(s) §

27-66 27-4000 27-5459

∗ ∑y
Y=1W

′ †Total Gas×Gas Price ‡Average §Time range of each transaction in
seconds

point is that Amazon can cheat over the preserved capacity after t = 60, since it does

not influence its profit. In this situation, Amazon will not reserve the whole resource

for Century Link, and if the request consumes extra computing resource than the

reserved one, the workload will be shared with other tenants. In this way, there is

a minimal risk of penalty and monitoring surcharge as the number of the Amazon’s

customers and tenants grow over time. It should be noted that the pattern was similar

for both followers.

The optimal pricing of VA in response to φ(t) is provided in Figure 6.3.b.

According to our findings, the impact of timing in dynamic pricing is very minimal,

meanwhile capacity is strongly correlated with monitoring price. As the capacity

increases, the computational cost and time for VA also climb. Consequently, VA has

to enhance its price to be profitable. Another reason could be the low number of

the monitoring requests, initiated when the capacity is almost desired, as shown in

Figure 6.3.c. Century Link had the most number of the requests during the first half

of the period with a very high intensity at the beginning where φ(t) was low. For the

second half period, Century Link is well informed about the quality and the results

of the verification from VA, so the number of the requests is almost flattened. This
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(a) (b)

(c)

Figure 6.3: (a) Optimal capacity of Amazon (PA) emerging towards equilibrium, (b)
Dynamic pricing strategy of VA in the equilibrium, (c) Optimal quality verification
requests for Century Link (RA) in the equilibrium

behavior of Century Link now justifies why Amazon can cheat over the quality after

t = 60. Alibaba Cloud also showed a similar pater, though the scale was different.

Alibaba had a higher number of requests for verification due to its higher reputation

value and number of transactions. It worths to mention that this response is given to

a finite time, it could be different if we assume they will be collaborating for infinite

time.

We further investigated the effect of the penalty value and the reputation value

of PA over RA’s profit and optimal control. As shown in Figure 6.4, the number of

the requests for verification starts declining unexpectedly, as penalty F for Amazon
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Figure 6.4: Optimal quality verification requests for Alibaba (RA) in the equilibrium

(meaning reward for Alibaba) is getting higher. This means that with a higher penalty,

Amazon will not risk over φ(t), so the probability of earning a reward is low. Whereas,

it is pretty much probable that Alibaba ends up with the monitoring cost to be paid.

So, imposing higher penalty to the provider agent, will increase the capacity and

decrease the quality verification requests’ equilibria. The reputation value of PA

has a significant effect on the profit of RA. As shown in Figure 6.5, Alibaba with a

reputation of 0.8 gain most if the reputation of PA is higher than Alibaba itself. If the

reputation value of Amazon drops to less than 0.8, it is not economically justified to

outsource Alibaba’s demand to it. This highlights the effect of the users’ satisfaction

over the demand evolution and economic gain over time. The reputation threshold is

certainly less for Century Link with lower reputation value.

6.7 Conclusion

To overcome the issue of traditional federations of cloud providers and compromised

QoS, this research proposed a multi-agent blockchain-based quality monitoring model.
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Figure 6.5: The impact of the Amazon’s reputation over Alibaba’s profit

In our proposed model, a multi-agent approach was taken where an oracle plays the

role of a verifier agent to evaluate the service quality whenever is called through the

smart contract agents deployed on the blockchain. A Stackelberg differential game

was designed to formulate the best strategies of resource provisioning, the number of

quality verification requests and the monitoring price for the provider, requester and

verifier agents, respectively. The system was implemented using Solidity on Ethereum

and was simulated for resource trading among three real-world cloud providers. It

was found that at the beginning, the provider has to preserve the desired amount of

capacity to satisfy the required quality even throughout the peak-times. However,

it is not economically justified to make this reservation for the last periods of its

contracts’ time. Such a resource provisioning impacted the verifier pricing strategy

and the number of requests. RA asks for more verification during the first half period

of the contract when the preserved capacity is low. The reputation of PA elevated

the profit of RA, whereas, it negatively affected the reputation of PA when it is lower

than RA. Furthermore, higher penalty raised the capacity and reduced the number

of verification requests at the equilibrium. The developed system was proven to be
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economical for cloud beneficiaries and valuable in transparency and preventing the

SLA violation.
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Chapter 7

BLOR: Bayesian Bandit

Learning Model for

Blockchain Oracles

Reliability

Smart contracts struggle with the major limitation of operating on data that is solely

residing on the blockchain network. The need of recruiting third parties, known as

oracles, to assist smart contracts has been recognized with the emergence of blockchain

technology. Oracles could be deviant and commit ill-intentioned behaviors, or be

selfish and hide their actual available resources to gain optimal profit. Current research

proposals employ oracles as trusted entities with no robust assessment mechanism,

which entails a risk of turning them into centralized points of failure. The need

for an effective method to select the most economical and rewarding oracles that

are self-interested and act independently is somehow neglected. Thus, this chapter
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proposes a Bayesian Bandit Learning Oracles Reliability (BLOR) mechanism to

identify trustless (a term used in the context of blockchain systems meaning not

requiring trust) and cost-efficient oracles. Within BLOR, we learn the behavior

of oracles by formulating a Bayesian cost-dependent reputation model and utilize

reinforcement learning (knowledge gradient algorithm) to guide the learning process.

BLOR enables all the blockchain validators to verify the obtained results while running

the algorithm at the same time by dealing with the randomness issue within the limited

blockchain structure. We implement and experiment with BLOR using Python and

the Solidity language on Ethereum. BLOR is benchmarked against several models

where it proved to be the most efficient algorithm in selecting the most reliable and

economical oracles with a fair balance.

7.1 Introduction

Blockchain technology has the ability to cut the role of middlemen by enabling

self-enforcing digital contracts (called smart contracts), whose execution does not

require any human involvement in a safe, secure, and immutable way. The emergence

of the blockchain as a revolutionary technology has been compared to the Internet,

and it has predicted that it will erode power from centralized authorities. With

its deployment as a service [50] and its integration with IoT [68], Blockchain has a

promising approach in supporting business collaborations by ensuring transparency to

all the stakeholders if conflicts arise [8,37]. However, the integration of blockchain with

external data is one of the major obstacles preventing widespread adoption. Imagine

that two persons place a bet on who wins a football match and deposit their funds in

a smart contract. Based on the results of the game, the smart contract should release

the funds to the winner. However, a smart contract does not have access to the data
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out of its network and should ask a trusted party to learn who won the match.

In blockchain, the term oracle refers to an entity that can access external data

without compromising the integrity of the blockchain. Oracles are assumed to be

third-party agents that are trustworthy and can communicate with the outside world,

and fetch the data into the blockchain [93]. Oracles are also able to connect the

blockchain to external databases. This way, costly computations can be carried

out outside of the blockchain. Oracles ensure the integrity of the retrieved data

by providing some evidences [44]. Thus, cryptographic-based evidences such as the

ones used by Oraclize1, or trusted hardware-based evidences such as the ones used by

the Town Crier system that leverages Intel SGX [99] are used as part of a number

of oracle-based systems. These evidences are not only insufficient to ensure that the

data is tamper-proof, they are impractical in many real-world applications where the

digital data is not available or human involvement is required.

Oracles could display ill-intentioned behaviors, or unable to perform their tasks

due to lack of capacity and being selfish by failing to report their real available

resources [49]. Thus, placing a reliable mechanism to select the right oracles plays

a significant role in a blockchain network’s success. There are several proposals for

organizing one or more oracles as a group with trustworthy mechanisms, specifically

designed for computer hardware and software [28], [6]. However, these methods are

not applicable when human intervention is involved or when the original data source

is malicious. Moreover, these proposals sought to organize one or more oracles with

enhanced security features or incentive mechanisms. To the best of our knowledge,

there is no smart mechanism to promote how to select the most rewarding oracles

among the existing ones in a market of oracles that might act selfishly to gain optimal

profit.
1https://provable.xyz/
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In this research, we utilize a Bayesian multi-armed bandit to learn the most

rewarding oracles from the two perspectives of reliability and cost efficiency, to perform

specific tasks within a blockchain. Multi-armed bandit is a reinforcement learning

method that assumes the player does not know how much it will earn each time playing

a particular slot machine, but the player has a distribution of belief, which could be

wrong. The only way the player learns who has the highest expected reward is to try all

machines, even those that do not appear to be the best. While trying these machines,

the player may be earning lower rewards. The ultimate goal is to balance what we

earn against what we learn (to improve future decisions) to maximize the expected

sum of rewards. In our case, oracles are considered to be slot machines and blockchain

beneficiaries are players who try to recruit the best oracles. Reinforcement learning

methods have been applied in many real-world applications and their employment

within blockchain has great advantages including high accuracy, ability to learn with

few or no historical record, and low computational resources consumption [77]. To the

best of our knowledge, these methods have not been applied in the field of blockchain

yet, and even though it would be very interesting and novel, serious challenges in

design and implementation within current platforms arise.

Theoretical and practical challenges: The issue of selecting the most

rewarding oracle is a decision-making problem that should capture the tensity between

exploration of new oracles and exploitation of the good and well-known ones. For

simple and low number of choices, dynamic programming can compute the optimal

solution. However, it is very computationally inefficient in the blockchain environment

with the growing number of oracles working for blockchains. There is a need for an

algorithm that runs quickly with a very minimal computation surcharge. The reason

is that this algorithm has to be running by all blockchain validators (i.e., miners)

acting within the network. Furthermore, current solutions of multi-armed bandit
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assume that the player retains little information about the past, or switch between

exploration and exploitation either randomly or after a fixed number of trials. These

solutions are not practical for our problem, since oracles could be run and managed

by intelligent agents that can change their behavior anytime. Another challenge of

utilizing current solutions is that our decision-making procedure should be based

not only on the oracles’ performance, but also on their cost of performing the task

considering applications’ limited budgets. There could be some reliable and high

performance oracles that are expensive, but current solutions would always select

them based on their past performance records. We assume a fixed cost for each

oracle, and consider the oracles reputation and cost of other oracles in the market

could change the behavior of each individual oracle.

To overcome the aforementioned challenges, we formulate a Bayesian

cost-dependent reputation model to learn the behavior of oracles and utilize knowledge

gradient algorithm which guides the learning process based on the marginal value of

information. Using a Bayesian model for blockchain is complex, since the algorithm

has to produce the same results in every course of experiment. This is because all

the validators should verify the results and it only happens if all of them come up

with the same results while running the algorithm. This adds further complexity

since all the Bayesian reinforcement learning methods include randomness and use

random variables. At last, the current platforms of blockchains and smart contracts

are very limited, for example no floating number can be defined within blockchain, or

limited number of variables can be defined for Ethereum. This paper discusses how

the proposed model and mechanism tackles and solves these issues by formalizing the

oracles’ performance optimization as a Bayesian bandit problem. Our algorithmic

model defines a distribution over oracles with different reputations (representing their

reliability and costs) to be used by blockchain participants to choose best performing
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oracles on future requests.

Contributions: This chapter contributes as follows:

1. Formulating a new model using a Bayesian cost-dependent reputation model

(BCRM) and knowledge gradient (KG) to find the most rewarding oracles.

BCRM captures the behavior of the oracles elegantly, and KG unfolds

the exploration/exploitation dilemma in multi-armed bandit with very low

computational cost and high accuracy.

2. Proposing a framework to show how to employ the model within a blockchain

where all the validators need to achieve a consensus. This framework incentivizes

oracles to continuously act honestly and provide a fair balance of quality and

price with minimal possibility of acting maliciously.

3. Adapting a reinforcement learning algorithm for blockchain environment with

limited computational resources and capabilities (e.g., there is no floating

number in Ethereum). Designing and implementing a reinforcement learning

solution for the oracle selection problem is an objective yet to be achieved.

We simulated and implemented our proposed model using Python on Google

Colab and Solidity on Ethereum. The implementation of BLOR deals with many

challenges raised by the complexity of machine learning and limitations of blockchain

and Ethereum, such as floating numbers, randomness and advanced mathematical

numbers that are not supported in blockchain. Since there is no real-world data on

oracles working for blockchains, we had to simulate the behavior of 100 oracles during

1000 observations to assess the performance of our model and compare it with other

comparative algorithms.
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7.2 Motivational Scenario: Trust Paradox of

Oracles and Blockchains

Many blockchain platforms have been experiencing the oracle idea since the beginning

of Ethereum, but the oracle dilemma continues unsolved at a large scale. The most

challenging part is that majority of oracles require a level of trust, which directly

opposes the trustless blockchains’ nature. The main complication of using oracles

is trusting them as outside sources of information. The trust issue connected with

oracles is referred to as the oracle problem.
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Figure 7.1: Motivational scenario

Figure 7.1 presents the motivating scenario of this paper. Let us assume a

smart contract running an insurance marketplace platform in a trustless environment.

Imagine that an insured costumer has a car crash and makes a claim to its insurance

company. According to the agreed policies signed in the smart contract, the insurance

company requires the crash sensors’ data and some evidences to process the claim,
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but the blockchain network cannot provide such data. To transmit the data and

estimate the situation, the smart contract needs to employ an oracle. Since the oracle

determines what the smart contract sees, it is crucial to employ not only an economical

oracle, but also a reliable and trustworthy one. If the oracle is malicious, it may report

in favor of the insurance company and the smart contract accepts the result blindly.

Besides, the smart contract cannot rely solely on the historic behavior and reliability

of the oracle, since it might decide to deviate for any reason. Furthermore, usually

the allocated budget for these tasks are limited. It gets more complicated when some

oracles are new with little or no history offering low prices. The smart contract has

to find an optimal choice with a balance between reliability and price that all the

blockchain validators agree on the obtained result.

Oracles, like human subjects and computer applications, are susceptible to bad

behavior that can manifest in gamified attacks in blockchains. In its most basic form,

a centralized oracle can supply misleading data, which can impact the actions of

blockchain nodes in ways that make them susceptible to attacks. In some situations,

the incentives to submit non-truthful data may surpass the gains of acting truthfully.

It is argued that a high decentralization of the oracle model would lead to less

vulnerability to the “Oracle Paradox” [23]. No matter how centrally centralized it

is, an oracle will always come with a price. The most profitable strategy should be

always acting honestly, which is why strong incentives must be placed. This raises

the need to investigate an incentive mechanism that can motivate oracles to behave

honestly. In this study, we argue that assigning a reputation value to these oracles

and make them subject to tests against other oracles make the option of reporting

misleading data not profitable.
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7.3 Related Work

Summaries of the related literature are drawn from two different areas: blockchain

and multi-armed bandit.

7.3.1 Blockchain

Blockchain is a distributed database system built upon a timestamped list of

transaction records. Its main innovation lies in allowing parties to transact with

untrusted parties using a computer network [53]. The blockchain data structure

is a hierarchy of blocks that aggregates transactions. Each block is uniquely

identifiable and linked to its predecessor in the chain, and integrity is ensured using

cryptography-based techniques.

Nodes in a blockchain network might perform arbitrary or malicious behaviors,

or possessing misinformation. So, consensus mechanisms are the core of blockchain

networks to ensure that all participants agree on the state of the network in such

trustless environments [9]. The most important consensus algorithms for blockchains

are Proof of Work (PoW) and Proof of Stake (PoS). In blockchains using PoW

(e.g. Bitcoin), the algorithm rewards participants for solving cryptography-based

puzzles to validate transactions and build new blocks. In PoS-based blockchains (e.g.

Ethereum’s upcoming Casper implementation), validators take turns to propose and

vote for the next block. The weight of validators vote depends on their stake or deposit

on the network. PoS provides enhanced scalability, fast transactions, low computation

and energy consumption, and high security.
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Blockchain Applications and Smart Contracts

Blockchain was originally designed to operate as a trustless peer-to-peer network for

financial transactions. Since then, the technology has grown to include many other

applications including smart contracts. A smart contract lives on the blockchain and

has its own unique address. Moreover, smart contract technology allows users to create

autonomous applications that operate independently without any intervention from

a system entity. While BLOR can theoretically support any smart contract with low

computation surcharge, this paper focuses on its use in Ethereum for implementation

due to its publicly accessible platforms. Ethereum initially developed its platform

based on PoW, but recently is performing a significant upgrade to presents Ethereum

2.0, using the Casper protocol [11]. The Casper protocol eases the transition from the

current PoW to a pure PoS protocol. Ethereum’s cryptocurrency is called Ether. In

the current version, Ethereum functions through gas which is an Ether-based purchase

of the consumed resources. This will help Ethereum prevent DoS attacks, infinite

loops within contracts, and in general control network resource expenditure. Every

function, such as sending and retrieving data, executing computation, and storing

data, has a gas cost.

Smart contracts have two types: deterministic and non-deterministic [57]. The

deterministic smart contract code is implemented on a blockchain with complete

isolation of external environments, and the decisions and the contract states are

maintained by participants within the blockchain. By contrast, the nondeterministic

smart contract code needs external information to make decisions, making it

dependent on actors outside the blockchain network. For example, the external actor

could be a weather information provider or a sensor data provider, who are known as

oracles in blockchain.

In recent years, blockchain technology has revolutionized corporate governance
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by offering greater transparency among all stakeholders. Easier administration,

and the creation of an infrastructure for innovative applications where business

transactions could be shared in real-time [96]. A few efforts have been made to study

the potential of blockchain in real-world applications despite its great potential for

businesses to share data and collaborate in a secure and customized manner [53].

According to Tractica, a market research firm, the annual revenue for enterprise

applications of blockchain is estimated to reach $19.9 billion by 2025 [39]. The

majority of studies about blockchain’s application have focused on finance [85], energy

[60] and IoT applications [102].

Blockchain Oracles

The way an oracle retrieves its data depends on whether it relies on human

involvement or functions completely automated. Automated oracles operates solely

through software and hardware by accessing a data source and retrieving the required

data. This means that the oracle itself is fetching the data and is not the original

source of the data. Automated oracles only provide deterministic inquiry results as

they retrieve existing information from a data source. However, this is not the case

with autonomous oracles or oracles involving human intervention. These oracles are

not only able to transmit deterministic data, but also to respond to arbitrary inquiries

which could be hard to be deducted by machine. Autonomous oracles and human

intervention-based Oracles cannot be distinctly separated from the data source. So

far, we could not find any paper addressing the issue of trustworthiness for these types

of oracles.

Oracle systems can be centralized or decentralized. Oraclize (now is called

Provable)2 is a centralized oracle service based on Amazon Web Service that provides
2https://provable.xyz/
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data feedback for smart contracts and blockchain applications. The main attention

of Oraclize is given on proving that the obtained data from its original source is

genuine and untampered. Town Crier [99] is also a centralized authenticated data

feed that operates as a trusted bridge between existing HTTPS-enabled websites and

Ethereum. In fact, it uses trusted hardware and software to be able to prove that

the tasks are performed with no tamper and results are reliable. However, similar to

any other centralized solution, its validity relies on a central authority and there is

no guarantee if the task is performed correctly. It also pays attention to bring data

to smart contracts in a trustworthy way, but the data resource is questioned.

Chainlink [23] is a decentralized oracle network on the Ethereum platform. It

originally aims to provide tamper-proof data for smart contracts through accessing

key data resources using designated APIs. Chainlink operates through incentives and

aggregation models, however, it has cost and scalability issues. In another attempt,

the authors in [52] proposed a decentralized oracle system equipped with verification

and disputation mechanisms. ASTRAEA [6], is an interesting decentralized oracle

working based on a voting game to decide about the truthfulness of propositions.

All voters place some amount of stake to have the opportunity to vote on a selected

randomly proposition. The authors analyzed the game-theoretical incentive structure

to prove the existence of Nash equilibrium under the assumption that all rational

players behave honestly.

7.3.2 Multi-Armed Bandit

Reinforcement learning is one of the most popular machine learning techniques that is

inspired by behavioral psychology of a biological agent. The idea is that an intelligent

agent learns the outcome of its actions by interacting with the environment in which

it optimizes its actions based on the accumulated rewards it receives. Multi-armed
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bandit is a classic reinforcement learning problem. Its name comes from slot machines

in casinos, where a gambler is in front of a row of slot machines and he should decide

which machine, how many times, and in which order to play the slot machines in order

to maximize his potential prize. In this context, each machine gives a stochastic reward

from a probability distribution. The gambler’s objective is to maximize the total of

rewards earned by pulling the sequence of levers at slot machines. Multi-armed bandit

problem is exploited in many fields such as medical [86], recommender systems [48],

and crowdsourcing [38]. But, its application in blockchain along with its specific

challenges has not been explored in any research yet to the best of our knowledge.

There have been very few related academic initiatives utilizing reinforcement

learning for blockchain and smart contracts. Among which, one paid major

attention in the energy-aware resource management problem in cloud data centers and

developed a robust blockchain-based decentralized resource management framework in

order to save the energy consumed by the request scheduler [92]. This research utilizes

a reinforcement learning model embedded in a smart contract to minimize energy

cost. Their simulations based on Google cluster traces and electricity prices showed

their method was able to reduce the data centers’ cost significantly. Multi-armed

bandit is very accurate with minimal complexity and required computing resources

comparing to other reinforcement learning methods. These specifications made it a

very optimal solution to be employed on blockchain and smart contract platforms

where computation and storage are very precious.
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Figure 7.2: BLOR framework

7.4 BLOR: A Markovian Multi-Armed

Bandit-based Solution

The main concern of a blockchain-based system, which requires to obtain data from

the outside world, is how to maximize total rewards from various oracles in an

uncertain setting through trial and observation. BLOR provides an optimal solution

using Bayesian theorem and reinforcement learning techniques. In the process of

BLOR’s sequential decision to choose a proper, reliable and cost efficient oracle, two

components have to be considered:

1. Learning: BLOR utilizes observations to update its understanding and

knowledge regarding the reliability of oracles.

2. Choice: BLOR selects an action that has a proper balance between the
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immediate reward of oracles (short-term objective) and the increased knowledge

of oracles (long-term objective).

For the learning component, BLOR uses a novel Bayesian cost-dependent reputation

model (BCRM), and for the control component it uses Knowledge Gradient (KG) [26].

BLOR is responsible to manage trust establishment among the blockchain participants

and oracles by assigning tasks to the best performing oracles. A digitally assigned

reputation value is an effective factor that can be used by BLOR to recognize the

premier oracles. To assess and model reputation, we require information and evidence

about the history of the evaluated oracle. However, solely employing oracles with

good history implies loosing significant opportunities of stranger oracles that BLOR

has never encountered before. Furthermore, these oracles tend to be more costly,

which can lead to an exceeding budget. Thus, it is crucial to combine the cost factor

with the reputation value while assigning a task to an oracle. BCRM assumes that

reward rates can change during the experiment depending on the reputation state of

the oracle. There are just two possible actions for the choice component: 0 (freeze)

which produces no reward nor state change, and 1 (continue) with reward θtk and

reputation state changes, according to Markov dynamics.

KG prefers the actions that inspects the choices with little information.

Exploration is an endeavor to gain knowledge with a minimal use of precious time and

computing resources. Pure exploration can waste time and computing resources if it

searches irrelevant areas of the environment. This also means that the agent’s learning

efficiency may be poor, since it is wasting time on actions that don’t contribute to

its goals. Finding a good balance between exploration and exploitation is highly

beneficial. The agent may be able to discover the most worthy areas to explore by

exploiting its current knowledge of the environment. Furthermore, optimizing the cost

of learning (i.e., making the agent’s performance during learning as high as possible)
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cannot be achieved without some level of exploration of the environment, which is

important in identifying efficient behaviors.

7.4.1 BLOR Framework

Figure 7.2 illustrates the workflow of BLOR that aims to select the most optimal

oracles in terms of reliability and cost. Majority of this process happens on-chain

so that the blockchain’s validators can verify and achieve a consensus to avoid any

bias. Let us consider the insurance company as a service provider and the customer

as a service requester, trading through a smart contract. When a claim request is

triggered by the service requester through the smart contract, BLOR will decide

which oracles will perform the task. At first, once the smart contract receives the

request, it automatically creates a new contract with the network of oracles who are

the other beneficiary party. This contract contains a new set of rules and conditions

such as the payments and compensations policies.

In order to understand the oracles behavior and learn their rewards (in terms

of reliability and cost), BLOR creates a BCRM. However, since BCRM is a Bayesian

model and probability is involved, we need to generate a random number from the

prior distribution in each trial. Generating a random number by each node of the

blockchain is a challenge as each node could come up with a different number, around

which making a consensus is impossible. Therefore, we propose a Random Number

Generator (RNG) with participation of all the validators’ nodes. Thus, in step 2, a

RNG contract will be created to issue an agreeable random number which will be

elaborated in Section 7.4.3. To select the most rewarding oracle, the KG algorithm

is used thanks to its high performance and fast computation that makes it suitable

for the blockchain environment. In step 3, KG uses the generated reputation state of

each oracle to calculate its degree (D).
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The KG algorithm selects the most rewarding oracles over a period of time, so

at each request, there could be some chosen oracles with unknown or low rewards. For

this reason, the chosen oracle has to be checked if additional oracles have to be hired.

Depending on the strategies and objectives of the blockchain and its validators, as

well as the sensitivity of the task being outsourced to the oracle, the smart contract

has to decide if the probability of truthfully and successfully performing the task is

high enough for the chosen oracle in step 4. If this probability is low, the next two

oracles with highest degree of knowledge (obtained from KG) shall be selected to

ensure a reliable result (step 5: No). The intuition behind selecting three in total is

to evaluate the trustworthiness of the results based on the majority vote and then

rate each oracle accordingly. However, more than three oracles is not economically

justified since each of them charges the smart contract to perform its task. If only

one oracle is chosen, we can have some random tests by using other oracles from time

to time to use for training our model (step 5: Yes). These random tests ensure that

even trusted oracles do not behave maliciously and the learning is processed without

deviation. The nominated oracles will be called by smart contract triggers within

step 6 and the results will be reported by sending a signed transaction to BLOR in

step 7. BLOR verifies the results, updates the reputation values of the participated

oracles, then pays these oracles according to the defined rules and conditions in step

8, and informs the requester about the result (step 9). In the last step (10), the

updated posterior reputation including the success or failure of the oracle will be sent

to BCRM.

7.4.2 Formulating Oracles Problem in a Bandit Setting

Suppose on each data request, we have K oracles known with reward rates, θk, k =

1, . . . , K. At first, we assume θk to be the true reward mean if oracle k is to be chosen.
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We do not know θk, but we assume that it is normally distributed with prior mean

θ0
k, variance (σ0

k)2 and precision β0
k = 1/(σ0

k)2. Let Rt = (θtk, βtk) be the vector of

reputation states with the means and precisions for all the choices of oracles after t

trials.

Let kt be the oracle that we choose after t trials, meaning that our first choice

is k0 made based on the prior, purely. These trials are made based on a policy π to

be run by smart contract which depends on the history of trials. Policy is a decision

rule that BLOR adopts on behalf of all the blockchain participant to assign tasks to

oracles. Let us assume that Kπ
k is the random variable representing the total number

of selecting oracle k, given the policy π. This number is random since the results

depend on the observed rewards. Our objective is to choose a policy π that solves the

following supremum objective function supV where Rk is the reputation state of the

oracle k:

supV π = Eπ
K∑
k=1

Kπ
kRkθk (7.1)

Eπ stands for the expected value depending on π to reflect the underlying probability

space that we are going to construct. Learning problems can be easily formulated in a

Bayesian framework, where we are able to capture the uncertainty in our belief about

a system. In our oracle bandit problem, θk is the true rewards value of oracle k, but

we do not know this value. Instead, we assign a probability distribution from the Beta

distribution that describes what we think θk is for each oracle. Since each oracle can

have two outcomes of success or failure, we employ the Beta distribution where trials

are generated independently and identically from an unknown Bernoulli distribution

for each oracle. The following section explains how we construct our Bayesian model

for oracles.
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7.4.3 Bayesian Cost-dependent Reputation Model

We formulate two components of Bayesian learning as follow: 1) Bayesian Inference:

to update the reputation representing the belief about the probability of a successful

and truthful evaluation (reward) based on new information; and 2) Bayesian Learning:

to compute the posterior probability distribution of the target features.

Usually bandit solutions using Bayesian learning assume that there is a fixed

probability of γ ∈ [0, 1] for the experiment repeated on any given trial t. Then, the

appropriate value of γ shall be learned over the time period of experiment. This

approach is naive to solve the problem of oracles, since oracles might change their

behavior and deviate in a certain point of time for certain cases. For this reason, we

adopt a dynamic model for reputation state in which γt has a Markovian dependency

on γt−1. A graphical illustration of these two models is presented in Figure 7.3.
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Figure 7.3: Graphical model of (A) Fixed model vs. (B) Dynamic model. The
numbers in circles show example values for the variables. S denotes the oracle success
and F denotes the oracle failure to deliver reliable results with a fixed probability of
γ or dynamic probability of γt.

Under the dynamic reputation model, the reward probabilities might change at

times during the experimental session, as each oracle is an autonomous agent in our

problem and might change its behavior. Thus, during any trial, the prior reputation

of each oracle is a combination of the posterior reputation from the previous trial

and a generic prior. The main task of BLOR would be to track the evolving reward
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probability of each oracle during the period of trials. We assume the prior distribution

that generates the Bernoulli rates is a Beta distribution, Beta (a, b), which is conjugate

to the Bernoulli distribution, and whose two hyper-parameters, a and b, specify the

pseudo-counts associated with the prior.

Random Number Generator

Let n be the number of validators. In BLOR, the random number is generated by all

the n validators to enable the final verification of results. First, we need to create a

Random Number Generator (RNG) contract in BLOR, which defines the participation

rules and computes the final random number. The basic process of generating a

random number can be divided into two phases:

1. Any validator who wants to participate in the random number generation

and the final candidate verification needs to send a secret number (si ∈

Beta(a, b), 1 ≤ i ≤ n) encrypted by Keccak-256 hash algorithm through a

transaction to the RNG contract in a specified time period (e.g, 3 blocks period).

The RNG contract will check if s is valid by running Keccak-256 against s. Valid

s is kept to calculate the final random number.

2. After collecting all the secret numbers, the RNG contract calculates the random

number from the function f(s) and the final random number will be sent

to BLOR and all the validators, where smin and smax are the minimum and

maximum numbers respectively:

f(s) =
∑n
i=1 si − smin
smax − smin

(7.2)
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Oracles Reputation Model

Let Stk and F t
k be the numbers of successes and failures obtained from the kth oracle

after t trials, and θtk to be the estimated reward probability of oracle k at trial t. θtk

has a Markovian dependency on θt−1
k , so that with probability γ, θtk = θt−1

k . Also with

probability 1−γ, θtk is redrawn from the prior distribution Beta(a, b). To infer the new

posterior distributions, BLOR combines the sequentially generated prior reputations

with incoming observations (successes and failures on each oracle). The observation

Ot
k is assumed to be Bernoulli(θtk).

In order to maximize the utility of the blockchain’s participants, BLOR needs

to select the oracles that perform their tasks correctly at a lower price. Let ct be the

normalized cost that oracle k charges the blockchain with a weight of w to adjust the

value of cost to the chain participants. We denote R(θtk) as reputation state which

is the posterior distribution of θtk given the observed sequence. At each trial, the

updated cost-based reputation state can be computed using Bayes’ rule as follows:

R(θtk) ∼ P (Ot
k | θtk)P (θtk | St−1

k , F t−1
k )/wct (7.3)

where, the prior probability of reward state is a weighted sum (parameterized by γ)

of last trial’s posterior and the generic prior R0 ≡ f(s), as defined bellow:

P (θtk = θ | St−1
k , F t−1

k ) = γRt−1
k (θ) + (1− γ)R0(θ) (7.4)

7.4.4 BLOR’s Final Decision based on Knowledge Gradient

In reinforcement learning methods, the entire reward is generally received after the

final measurement, which is impractical for our problem in blockchain. Thus, we

need to receive the reward given in pieces over time. This will not only decrease
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the complexity of the solution and computational resources, but also will shorten the

results time to identify the best oracles from the beginning of the process in an online

manner. The KG policy can achieve this by maximizing the single period reward.

The objective given by Eq.7.1 and Eq.7.3 has a terminal reward, V T,π(RT ) :=

max θtk. However, we require to restructure it in order to provide single period reward

V T,π(Rt) at trial t, and V T,π(Rt+1)− V T,π(Rt) at times t+ 1, . . . , T , meaning that:

max θtk =[V T,π(RT )− V T,π(RT−1)] + · · ·+

[V T,π(Rt+1)− V T,π(Rt)] + V T,π(Rt)

KG is defined as a single-step and look-ahead policy, which selects the next

instance with the largest expected reward, greedily. Its algorithm is close to the

optimal policy. While pretending only one more exploratory measurement is allowed,

it assumes that after the next measurement all remaining choices will exploit what

is known. It evaluates the expected change in each estimated reward rate for each

oracle, according to the current reputation state Rt
k. The approximate value function

for choosing oracle k, Dt = k, on trial t is:

V t
k = E[max θt+1

k | Dt = k,Rt]−max θtk (7.5)

The first term is the expected largest reward rate (the value of the subsequent

exploitative choices) on the next step if the kth oracle were to be chosen, with the

expectation taken over all possible outcomes of choosing k. The second term is the

expected largest reward given no more exploitative choices. Their difference is the

“knowledge gradient” of taking one more exploratory sample.

Let us imagine we have T trials of which (t − 1) measurements were already
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made. For the tth measurement, the KG decision rule is defined as follows:

Dt = arg max θtk + (T − t− 1)V t
k (7.6)

Other than very minimal computational resources that validators require to

compute KG, it accommodates the issue of cold start for oracles who join the network

later on. It means that the KG policy measures those alternatives that has less

knowledge about. The predictive distributions of these alternative oracles (k′) have

large variance (σtk′)2 > (σtk)2, or equivalently, small precision βtk′ < βtk.

7.4.5 An Illustrative Example

In this section, we provide an illustrative example to show how BLOR works in details.

At first, BLOR shall construct BCRM. Assume that we have 5 oracles, K = 5,

O1, . . . , O5. For each one of them, we shall calculate the reputation state. Figure 7.4

illustrates how we form that for each oracle. Consider O1 is measured for the first trial

and returns a success. In the beginning, we have no knowledge of its performance,

therefore its prior for the next step (S1) is equally distributed in the Beta setting.

Since computation of prior includes randomness, according to Figure 7.2, BLOR calls

the node in charge of generating random numbers to have the same random number for

all the validators. The summation of the prior with the random number is multiplied

by the Bernoulli trial to obtain the posterior. This posterior will be used as the

prior for the next step (S2). During the next trial (S3), O1 returns a failure which

negatively affects the posterior distribution.

After creating BCRM, BLOR seeks to find out the best oracles for the

task by computing and comparing their KG degrees. Table 7.1 presents these

calculations. Let us assume that the total number of trials is 500 and BLOR is
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Figure 7.4: Illustration of partial rewards state of O1 within the constructed BCRM

exploring its 65th trial, (T = 500, t = 65). We further assume that at t = 64, O1 is

selected and its number of successes became 20. BLOR must compute the expected

reward rate, value function and KG decision using Eq.7.3, Eq.7.5, and Eq.7.6.

Consider the two oracles O1 and O4, which have the highest numbers of successes

according to Table 7.1, with a reputation state of 0.66 obtained from the previous trial.

1- Choosing O1:


O1 wins (P=0.67)−−−−−→ R65

1 = 0.68/0.8 = 0.85

O1 loses (P=0.33)−−−−−→ R65
1 = 0.65/0.8 = 0.81

Therefore, we have:

V 65
1 = (0.67 ∗ 0.85 + 0.33 ∗ 0.81)− 0.66 = 0.16

D65 = 0.85 + (436 ∗ 0.16) = 70.61

180



1- Choosing O4:


O4 wins (P=0.65)−−−−−→ R65

4 = 0.68/0.7 = 0.97

O4 loses (P=0.35)−−−−−→ R65
4 = 0.66/0.7 = 0.94

Therefore, we have:

V 65
4 = (0.65 ∗ 0.97 + 0.35 ∗ 0.94)− 0.66 = 0.95

D65 = 0.97 + (436 ∗ 0.95) = 415.17

Thus, among O1 and O4, O4 with the highest degree of KG will be selected.

Please note that to save computation time, BLOR does not calculate value function

and KG for the oracles with very low chance of being selected.

Table 7.1: BLOR in the illustrative example (t = 65)

T = 500 O1 O2 O3 O4 O5
Success 20 5 0 10 5
Failure 5 10 5 0 5
Cost 0.8 0.5 0.5 0.7 0.6
R(θtk) 0.85 0.82 0.7 0.97 0.83
V t
k 0.16 0 0 0.95 0

The algorithm of BLOR will be explained in the next section in a case study

where we construct smart contracts and the relationship among them.

7.5 A Case Study of Cloudchain (Cloud Services

Trading over Blockchain)

The aim of the Cloudchain case study is to present how BLOR can offer a unique

smart model for employment of oracles and transform the way cloud services are

delivered. Cloudchain [82] is an innovative distributed blockchain-based framework

to support interoperability and coopetition (i.e. cooperative competition) among the
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cloud providers. Cloudchain allows the cloud providers to outsource their unmet

computing demands.

Utilizing smart contracts in blockchain enabled Cloudchain to offer higher

transparency, visibility, and reliance within its fully decentralized agreements deployed

on top of Ethereum. However, Cloudchain falls short in supervising the SLA’s agreed

terms, which requires to access the outside world of the blockhcain network. Each of

the cloud providers may disagree about the SLA compliance. Yet, investigating that

is beyond the control of blockchain validators or digital codes embedded in the smart

contracts due to its self-contained execution environment. Thus, oracle is required

to perform the highly important verification task and confirm if the SLA is met. In

many research works, oracle is assumed to be a fully-trusted third-party agent that has

access to the outside world, and feeds the data into the blockchain to be accessible by

the applications [83]. Furthermore, oracle is assumed to be single or act as a member

of a group, while in real world, each oracle could be a selfish agent trying to maximize

its own gain. We explain how BLOR can contribute to this situation.

7.5.1 Background: Cloudchain’s Smart Contracts

Three types of smart contracts are incorporated into Cloudchain that include

executable functions and state variables. [82].

Contract 1 or Cloudchain Registry (CCR) is a global contract mapping

Ethereum addresses (equivalent to public keys) to cloud providers identification values

(including Name, Reputation Value, Computing Capacity and Storage Capacity). A

contract can include policies governing the registration of new providers or changes

to the mappings of existing ones. Only certified cloud providers can register for the

cloud provider program. In addition, CCR maps identities to Cloudchain Contract

(CCC) addresses, where an exclusive contract concerning each provider profile and
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list of services is recorded.

Contract 2 provides Cloudchain Profile (CCP). It contains a list of references to

CCC, which represent all the participants’ prior and current dealings with other nodes

in the system. CCP also implements a feature that enables provider notifications.

Ethereum supports the creation of events to indicate that certain actions have been

performed (e.g. an update to profile’s data). Providers must submit their requests

to the CCP contract to be propagated and raised to other nodes. Each transaction

records a status variable. This indicates if a transaction is newly initiated, waiting

for updates, or has been completed. This contract is critical since it stores new CCC

contract addresses, and without it Cloudchain might lose track of all the contracts.

Contract 3 indicates the Cloudchain Contract (CCC). It is created between two

nodes when one agrees to provide the requested service to the other. Similarly, the

contract can be completed or canceled by the beneficiaries. The contract balance

would be transferred once the contract is completed or canceled, and the status of

the contract would also be updated. Cloudchain members are able to join and leave

the system at any time by executing functions in smart contracts. These flexible

memberships allow members to supply or demand services once or multiple times as

required.

7.5.2 BLOR in Cloudchain

Figure 7.5 illustrates interactions among the contracts and cloud providers. In step 1,

The Cloud Provider as a requester (CPr) and the Cloud Provider as a supplier (CPs)

should register in CCR. Public key pairs are assigned to each registered user in CCR.

In the case of a computational resource deficiency, CPr can create a new CCC

in step 2 by requesting a service using CCP. CCP ties identities to the CCC’s address

on the blockchain and keeps a history of providers previous and current engagements

183



 

… 

CPr 

 

(2) Submit a new 

request (CCP), 

Deploy a new CCC 

and make a deposit 

(1) Create CCR (3) Accept and update its 

CCC 

CPs 

CCR 

C
lo

u
d

ch
ai

n
 

CCP CCC 

(4) Trigger a 

verification 

request 

(5) Create a new contract (CCO) (7) Submit the verification results 

Oracle 2 
c2 

CCO Math Contract 

… 

Oracle 1 
c1 

Oracle k 
ck 

(6) Assign the verification task to the 

selected oracle and obtain the results 

Figure 7.5: Application of BLOR within Cloudchain

with other nodes in the system as well as any SLA violations.

CCC allows the interaction between two nodes in the network in which one

node responds to the other’s request in step 3. In order to complete a contract, CPr

is required to pay a deposit in advance. Beneficiaries can choose to end the contract

or cancel it. However, the contract termination and delivery of the requested service

must be confirmed by CPr. Once the contract is complete or canceled, CCC will

calculate and charge fines if any exist. The balance remaining on the contract would

be transferred to the CPr or CPs address accordingly. The status of the contract

would be updated as well.
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In step 4, CPr can initiate quality monitoring at any time to verify whether the

provider meets the SLA conditions during the runtime. To do so, the request should

be submitted to CCC in which a new contract of CloudChain Oracle (CCO) will be

created to perform the verification in step 5. CCO holds a list of all oracles and

their past history. Each oracle announces its cost to perform the task ck. CCO

implements BLOR to find qualified oracle/s to monitor the SLA. CCO runs the

designed models and formulas through a set of defined functions. Since the current

blockchain platforms are not capable of implementing complex math functions, a

math contract is defined to perform basic operations in order to calculate advanced

functions. Once one or multiple oracles are nominated, the verification task is assigned

and the proper money is deposited into CCO in step 6. In the last step (6), the

obtained result is extracted to be push into CCC (step 7) and be used to train the

defined models in BLOR.

Function calls on contracts involve transactions, and those which make changes

to the contract storage must be validated by blockchain validators. Once a block is

mined with the newly linked contract, it will be broadcast to other nodes, and the

first node to accept the request will update the contract accordingly.

All the explained procedure and interactions among smart contracts are

elaborated in Algorithm 7.1 and 7.2. Algorithm 7.1 illustrates the process of requesting

a service and triggering a quality monitoring request and Algorithm 7.2 presents the

process of selecting the best oracle/s by BLOR.

7.6 Experimental Results

Because there is no available dataset about blockchains’ oracles, in order to evaluate

the performance of BLOR, we simulated 100 oracles operating within a blockchain in
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Algorithm 7.1 Cloud providers service agreements within Cloudchain
Require: Ether deposit; Cloud requester’s Etheruem address (CPr); Cloud supplier’s Etheruem

address (CPs); ck; CCO Ethereum address.
1: procedure ServiceAgreement
2: CPr makes a service request in CCP
3: CCP creates a CCC
4: CPr.SendTo(CCC, Ether deposit)
5: CCC.Availability = True
6: EventLog.Create("New request is available")
7: while CPr requests a quality verification do
8: CCC calls BLOR in Algorithm 7.2 . Outsource the task to oracle/s to obtain the

verification result
9: CCC.SendTo(CCO, ck) . Pay the cost of the oracle ck to perform the task
10: end while
11: if CCC.Completed then
12: EventLog.Create("CCC is completed")
13: ContractDeposit = CCC.TotalAmount
14: CCC.SendTo(CPs, ContractDeposit)
15: EventLog.Create("Fund is transferred to the Cloud supplier")
16: end if
17: end procedure

1000 observations. We implemented and experimented with BLOR using Python on

Google Colab and the Solidity language on Ethereum. Because a bandit is an online

learner, it needs a record of the oracles history prior to the current time step we are

simulating in order for it to act like it will in a production setting. Each oracle is

assumed to have a different historical performance drawn from a beta distribution.

The normalized cost of each oracle is assumed to be fixed and normally distributed

with a mean of 0.54 and standard deviation of 0.17. We first discuss the challenges

that we dealt with, and then provide the obtained results.

7.6.1 Implementation Issues

The current version of Cloudchain is using Ethereum and it is not easy to run a

machine learning algorithm on Ethereum that is a public blockchain with various

limitations. Besides, at the time of writing this research study, Ethereum is still

using PoW consensus and has not been upgraded to PoS yet. We came up with some
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Algorithm 7.2 BLOR process within CCO
Require: CCC Ethereum address; Oracles’ Etheruem address; ck; Ether deposit.
Ensure: Verification.Result . Boolean
1: procedure OracleSelection
2: CCC.Deposit(CCO, Ether deposit)
3: Retrieve CCC’s terms and conditions to monitor the service
4: RNGContract.getRandom()
5: MathContract.calculate(R(θt

k)) . refer to Eqs. 7.3, 7.4
6: BLOR calculates Dt and selects the oracle with the highest Dt . refer to Eqs. 7.5, 7.6
7: if probability of success is low then
8: Select another two oracles with highest Dt

9: if EachVerification.Result = True for majority of oracles then
10: Verification.Result = True
11: else if EachVerification.Result = False for majority of oracles then
12: Verification.Result = False
13: end if
14: else
15: Test randomly against oracles with high reputations
16: end if
17: CCO.SendTo(selected oracle/s, ContractDeposit)
18: CCO.Update(Oracle/s reputation/s, Results)
19: CCO.ReportTo(CCC contract, Verification.Results)
20: Math contract receives the results and updates the posterior reputation of the selected

oracle/s in BCRM
21: end procedure

solutions to test BLOR on the current platform of Ethereum.

• Random number: In Blockchain, there is no pure random generator

mechanism, because when the code is being run by other nodes, they all should

reach the same result to achieve a consensus. There are some possible scenarios

to generate a random number such as using a centralized system using an oracle,

publicly verifiable secret sharing, or even hash-block. For the purpose of our

simulation, we used a simple, yet efficient solution, which is using the block

number to generate a hash number to be employed as a random number. This

solution is practical and efficient since the block number is not known before

being generated.

• Float number: Blockchain does not support any float/decimal number with

floating points. The reason is because all CPUs work based on a binary
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mechanism, and there is no exact representation of fractions in binary mode,

so they are round to the nearest match. For this very important reason,

Blockchains do not support any number with floating point. Even for financial

transactions, they have introduced smaller units such as wei, gwei, etc. instead

of using float numbers. Basically, the only supported numerical data type in

Ethereum is Integer (either signed or unsigned). So, we require to scale up all

the variables in integer level. For instance, if we want to take a number between

0 and 1, we have to change the scale to 0 and 100 to replicate the behavior of

0− 1 with one or two floating points precision. This would also impact parts of

the algorithm, since the mathematical behavior of 0−1 is different from 1−100.

So, the formulas need slight adjustments.

• Limited number of variables: In Solidity, Ethereum language in which

Cloudchain is coded, there is a limitation for the number of variables which

can be initialized and used in a function. When there are too many variables,

Ethereum virtual machine does not compile the contracts. We designed carefully

our functions to avoid such a problem.

• Advanced mathematical functions: Blockchain languages do not support

complex mathematical functions by default due to various issues such as the

ones discussed earlier. In the BLOR algorithm, we used complex mathematical

functions. Thus, in order to run BLOR on Blockchain, we built a new contract

called Math Contract. Math contract implements our required functions

using four primitive operations only. This contract supports Sin, Cos, Log,

exponential, Gamma function, SQRT, Beta Distribution etc. All these functions

are developed in Solidity solely based on integer numbers (with no floating point)

and primitive operations.
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Table 7.2: Probability of selection for the sample oracles

Oracle ID 0 2 7 27 85 95
Cost 0.3 0.7 0.9 0.6 0.5 0.5
Success 4 5 9 6 3 1
Failure 5 0 1 3 4 3

7.6.2 Benchmarking and Simulation Results

In order to assess the effect of performance and cost in BLOR decision making, we

compared six oracles containing half faulty, during first 100 observations. Table 7.2

represents their detailed histories and costs. Figure 7.6 presents the variation of value

function for each oracle. At the beginning, Oracles with shorter history, such as Oracle

95 and Oracle 2, provide more value in the learning process of BLOR. Consequently,

they have a higher chance to be selected by BLOR, as can be seen in Figure 7.7.

After few observations, more value is earned with the oracles with cheaper price (such

as Oracle 0 and Oracle 85). However, the chance to be selected is more among the

oracles with a balance of price and performance (Oracle 27) and those that are very

cheap (Oracle 0). The value function of all the oracles tend to zero after a while,

when BLOR learned their behavior and there is no more value in exploring them.

Meanwhile, Oracle 85 generates an unsteady value, which means BLOR is willing to

measure the change into the future expected reward of this oracle. This could be

because of gaining more successful history combined with its good price.

Our multi-armed bandit-based solution for the oracle selection problem can vary

based on how we do exploration and exploitation. We compare the performance of

BLOR against other algorithms as follows:

• No exploitation: this is the most naive approach where the system selects

randomly.

• Exploitation with exploration at random: ε-greedy is among the most popular
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Figure 7.6: Cost and history of the sample oracles

Figure 7.7: Comparison of value function for the sample oracles

and efficient methods of this group. The ε-greedy is a heuristic model that

assumes decision-making is determined by a parameter ε to control the balance

between random exploration and exploitation. With probability of ε, the oracle

is chosen randomly, and (1 − ε) the oracle with the greatest estimated reward

rate will be selected.

• Exploration smartly with preference to uncertainty: BLOR is in this category.

We further investigate the performance of Markov chain Monte Carlo in our problem.

Markov chain Monte Carlo is a probabilistic machine learning method that creates

samples from a continuous random variable. The experiments are conducted using
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Table 7.3: Algorithms comparison

Performance Cost Time (mean; STD)
BLOR 90 52 (0.04; 0.005)
Monte Carlo 74 58 (10.3; 1.07)
Random 62 54 (0.008; 0.0003)
ε-greedy 82 66 (0.03; 0.003)

Python in Google Colab with Intel(R) Xeon(R) CPU @ 2.00GHz and 13GB RAM.

Table 7.3 presents the average performance, cost and elapsed time of each algorithm

with mean and standard deviation (STD). Here, cost is the total money that has

to be paid to the selected oracles within all the observations. In general, BLOR

had the highest performance and Random the least. From the economic perspective,

BLOR was the most economical solution and ε-greedy was the costliest one. However,

in terms of computation time, Random runs very fast, followed by ε-greedy with a

comparable time against BLOR. As expected, Monte Carlo lasted the longest.

Figure 7.8 presents the performance of each method in noisy observations. By

noise, we mean that the oracle did not behave as expected. It is obvious that the

performance of all the methods decline when the noise increases, however, BLOR had

the most steady accuracy. Even in a very noisy situation, BLOR could maintain its

performance by almost 80%. This means that out of the all oracles picked by BLOR,

80% of them could report a successful result. After BLOR, even though ε-greedy had

higher accuracy, it was the most influenced by the noise. Since this heuristic algorithm

mostly picks the oracle with highest reward, it is unable to recognize its change of

behavior and is not suitable for noisy subjects. As expected, random selection did

not show a significant change in its performance, which was mostly around 50%.

The moderate performance of Markov chain Monte Carlo was mainly because of two

reasons: 1) this method requires several observations to build its model; 2) Markov

Chain Monte Carlo needs equal records of historical data for all oracles, while we
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Figure 7.8: Performance comparison against noisy observations

assumed each oracle joined the system at different time.

We further measured the total cost of the selected oracles by all the considered

methods, indicated in Figure 7.9. In a non-noisy or less noisy environment, BLOR

performed very well. However, as the noise increases, BLOR sacrifices the cost to

maintain the high performance. In a very noisy situation (more than 50%), BLOR is

the costliest method. ε-greedy picked the most expensive oracles in non-noisy or less

noisy situations and followed the same expense as the noise increased. Random and

then Markov Chain Monte Carlo were economical in all the situations.

In order to investigate the effect of number of faulty oracles on the performance

of these methods, we run several experiments with different percentages of faulty

oracles. A faulty oracle is an oracle with a history of more than 50% failures. As
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Figure 7.9: Total cost comparison against noisy observations

Figure 7.10 shows, performance or accuracy of BLOR was the highest among these

methods, followed by ε-greedy. However, as the percentage of faulty oracles decreases,

the performance of all the methods increases.

7.7 Conclusion

Oracles gather information from the real world and transport it onto the blockchain for

further use. Hence, the use of oracles is imperative to promote a widespread adoption

of smart contracts. Yet, research about oracles and their practical application is very

immature. As our last contribution, this research study tried to shed some light by

addressing two major challenges in this area. The first challenge is about employing
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Figure 7.10: Performance comparison against the number of faulty oracles

a smart mechanism in place to identify the trustless and cost-efficient oracles. This

challenge was addressed by developing a Bayesian cost-dependent reputation model

in a multi-armed bandit setting, named BLOR. The second challenge of actual

application of a smart mechanism using reinforcement learning was dealt with by

implementing BLOR on Ethereum. To the best of our knowledge, this study is the

first to implement a machine learning algorithm for smart contracts in general, and

for oracles’ recruitment in particular. We showed how to solve various challenges

that could raise while implementing complex algorithms like machine learning in

Ethereum. To prove the efficiency of BLOR, we simulated 100 oracles operating within

a blockchain in 1000 observations and benchmarked it against several algorithms vary

by their degree of exploration and exploitation. It was found that BLOR prioritizes

the newer oracles which hold less history and those with a fair balance of performance
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and price. Through a benchmarking experiment, BLOR proved a steady performance

in selecting the successful oracles within a low to high noisy environment ranging, in

average, from 80 to 90 percent out of the all selected oracles, whereas, other algorithms

performance was ranged, in average, from 50 to 80 percent. BLOR had the most cost

saving selection when the noise was lower. In overall, BLOR performed competitively

better than the other algorithms, but at the cost of time.
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Chapter 8

Conclusion

8.1 Summary and Discussion

In this thesis, we discussed the problems to be tackled and objectives to be achieved

within the cloud computing market area. This research has been carried out from

two strategic viewpoints of competition and cooperation in order to contribute to the

current and future cloud computing market. From the competition perspective, the

focus was to enhance the users satisfaction and optimize the profit of service providers

who operate within an on-line rating platform by designing and solving a Stackelberg

game model between a typical cloud provider and the users. The theoretical results we

obtained were confirmed by the game simulation on a real world dataset and showed

that rating improvement is the best strategy for high rated providers who offer quality

competitive services. This strategy allows those providers to attract the users who

prioritize quality in their decision making. Providers with higher capacity, rating

and also cost can make more profit when the user demands increase. Providers with

lower capacity, cost and rating may see some unexpected increase of demand from

some customers, but in total, they will attract less demand and make less profit. Yet
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their main advantage is lower cost that attracts low budget customers with continuing

their price reduction. These findings addressed the first research question about how

to model the conflicting interests of the cloud service providers and consumers.

After identifying cloud consumers’ interests and revealing the issues surrounding

low rated cloud providers in our first research, we included market competition in

our model and introduced a game theoretical framework to allow new and small

cloud providers to obtain a market share using their own strategic advantages. The

conducted experiments using real-world dataset showed that the user demand from

small cloud providers increases the most when these providers offer added-value

services. Regardless of the pricing strategy, improving the quality and ratings of a

small and new IaaS provider increases its demands’ rate and profit. However, the best

strategy for small cloud providers is to set higher price and improve the quality of their

provided added-value solutions, specifically in the early stages of development. These

findings answered our second research question, which is about enabling a productive

cloud market industry that includes new and small providers.

From the cooperation perspective, we introduced a new distributed

blockchain-based framework, named Cloudchain, for cloud providers federation

to overcome the limitations of conventional centralized federations. Due to the

coopetitive environment of Cloudchain, and high expense of public smart contracts,

we further designed and solved a differential game. This game modeled the best

strategies of cloud providers to make a request with an optimal transaction cost

and time and optimize their reputation value to receive the requests from other

providers. Cloudchain was implemented using Solidity over the Ethereum network

and the differential game was simulated for a sample of five cloud providers during 100

days. It was found that for cloud requesters with a high number of requests, spending

high gas price is not economically appealing. The results showed that cloud suppliers
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have minimal gas consumption, which makes it more affordable for them to pay

higher prices and enhance their communication and reputation. Though increasing

the reputation was not always the best strategy for highly reputed cloud providers, a

gradual increase is recommended. These results address our third research question

regarding how to design a blockchain-based cloud federation and how to maximize

the providers profit within the platform.

To overcome the issue of compromised QoS within Cloudchain, we proposed a

multi-agent blockchain-based quality monitoring model that contains an oracle playing

the role of a verifier agent to evaluate the service quality. A Stackelberg differential

game was also designed to formulate the best strategies of resource provisioning,

the required number of quality verification requests and the monitoring price for the

provider, requester and verifier agents, respectively. The evaluation results showed

that at the beginning, the provider has to preserve the desired amount of capacity

to satisfy the required quality even throughout the peak-times. However, it is not

economically justified to make this reservation for the last periods of its contracts’

time. Such a resource provisioning impacted the verifier pricing strategy and the

number of requests. The reputation of the provider agent elevated the profit of the

requester agent. Furthermore, higher penalty raised the capacity and reduced the

number of verification requests at the equilibrium. The developed system was proven

to be economical for cloud beneficiaries, valuable in transparency and efficient in

preventing the SLA violation.

In the last contribution, we shed some light on two major challenges related

to oracles and their practical application. The first challenge is about employing a

smart mechanism to identify the trustless and cost-efficient oracles. This challenge was

addressed by developing a Bayesian cost-dependent reputation model in a multi-armed

bandit setting, named BLOR. The second challenge related to the actual application
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of a smart mechanism using reinforcement learning was dealt with by implementing

BLOR on Ethereum. To the best of our knowledge, this study is the first to

implement a machine learning algorithm for smart contracts in general, and for oracles’

recruitment in particular. We showed how to solve various challenges that could

raise while implementing our machine learning algorithm in Ethereum. To prove

the efficiency of BLOR, we simulated 100 oracles operating within a blockchain in

1000 observations and benchmarked it against several algorithms that vary by their

degree of exploration and exploitation. It was found that BLOR prioritizes the newer

oracles which hold less history and those with a fair balance of performance and

price. Through a benchmarking experiment, BLOR proved a steady performance

in selecting the successful oracles within a low to high noisy environment ranging, in

average, from 80 to 90 percent out of the all selected oracles, whereas, other algorithms

performance was ranged, in average, from 50 to 80 percent. BLOR had the most cost

saving selection when the noise was lower. Overall, BLOR performed competitively

better than the other algorithms, but at the cost of time. These research findings

address our fourth research question which was about how to monitor the quality of

the provided cloud services using the most qualified oracles.

8.2 Contributions

A summary of this thesis contributions are provided as follow:

1. We assessed the profitability of user ratings on cloud providers’ income in a

competitive on-line rating system. We addressed the problem of maximizing

the providers’ profit through a Stackelberg game model while adjusting the

services’ price and capacity based on the underlining users’ demand.

2. We enabled providers to identify influential parameters on users demands and
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captured the variations of users’ demands in response to the changes of each

parameter to enable scalability of cloud services and avoid under and over

resources provisioning. Furthermore, our model helps in maintaining users’

satisfaction and incentivizing them to provide good ratings for the providers.

3. We developed a two-stage game theoretical model to allow new and small cloud

providers to compete against the existing and large ones and have a market

share, which enables a productive cloud market industry that benefits the

end-users.

4. We modeled and maximized users satisfaction using users’ ratings by providing

a continues service quality development. It is the first research that models a

dynamic competition considering the quality of service among cloud providers.

To ensure the continued validity of the optimality in the presence of changing

internal or external factors, a post-optimality analysis is provided.

5. We elaborated a practical cooperative solution that any cloud provider can

embrace regardless of their market position and trustworthiness through a

fully distributed architecture with a democratic governance structure, called

Cloudchain. To effectively enforce such a structure, Cloudchain proposes an

innovative exploitation of blockchain to prompt and support interoperability

and coopetition among the cloud providers over the public Ethereum network.

6. We incentivized the cloud providers and helped them make wise decisions about

the utilization of Cloudchain by designing and solving a dynamic differential

game. This game aims to maximize the profit of the Cloudchain members who

cooperatively compete while their service demand is dynamically changing.

7. We developed a novel blockchain-based decentralized model that enjoys a
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multi-agent structure, which allows us to introduce a quality verifier agent to

ensure the cloud provider’s compliance with the SLA. The interaction of an

oracle within blockchain for monitoring purposes is innovative.

8. We formulated a three-player dynamic Stackelberg differential game in which

players have to make choices about their control variables at various points in

time. The optimal number of verification requests, capacity, and monitoring

pricing are to be obtained through a Stackelberg differential game.

9. We put forward a new model using a Bayesian cost-dependent reputation

model (BCRM) and knowledge gradient (KG) to find the most rewarding

oracles. BCRM captures the behavior of the oracles elegantly, and KG unfolds

the exploration/exploitation dilemma in multi-armed bandit with very low

computational cost and high accuracy. We further proposed a framework to

show how to employ the model within a blockchain where all the validators need

to achieve a consensus. This framework incentivizes oracles to continuously act

honestly and provide a fair balance of quality and price with minimal possibility

of acting maliciously. To the best of our knowledge, there is no research

that theoretically and practically implements a machine learning technique for

blockchains and oracles.

The first and second contributions answered our first objective that sought to assess

the profitability of user ratings on cloud providers’ income and identify influential

parameters on users demands in a competitive online rating system. The results are

published in [79]. The third and fourth contributions are in response to our second

objective that was to allow new and small cloud providers to compete against the

existing and large ones and to maximize users satisfaction through a two-stage game

theoretical model. The results are published in [81]. The fifth and sixth contributions
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acknowledge our third objective that strive to advocate a fully distributed architecture

using blockchain for cloud federation and to help the providers make wise decisions

about the utilization of the blockchain-based federation. The results are published

in [82]. The seventh, eighth and ninth contributions endeavored to achieve our forth

objective that quested introduction of a new role of oracle through an innovative

multi-agent framework and selecting the most qualified one/s to provide the service

quality verification services using a Bandit-Bayesian Learning Oracle Reliability

(BLOR) mechanism. The results are gathered within two research papers: one is

published in [83], and the other one is under review of a refereed journal.

8.3 Directions for Future Work

The research contributions of this thesis filled out some of the important gaps in the

current literature. However, considering the rapid advance of technology, there are

still challenging problems to be explored. A summary of future research directions

are provided as follow:

• Although game theory has been applied to real problems in different domains,

the assumption that players are rational and have common knowledge so they

aim at maximizing profit and minimizing cost is not always practical as shown

by some experimental studies [12]. These experimental proposals demonstrated

that in some cases, players consider in their decision-making other preferences

than simply maximizing profits, for instance psychological, ideological, societal,

or environmental preferences. Behavioral game theory could be utilized to

investigate the behavior of cloud providers and customers’ decision making using

experimental data.

• This thesis theoretically analyzed the behavior of the small cloud providers
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to gain a share in the market and verified that by simulating their behavior.

Proving that our theoretical findings, supported by simulations involving real

data, match experimental choices of real cloud providers in real settings is yet

to be explored. To fully investigate the practical implication of our proposal,

different cloud market players should be studied and analyzed if their behavior

is as expected in theory, considering different considerations, for instance

social, political, etc. This line of research is highly appealing as it has been

demonstrated that real players play naturally towards the equilibrium solutions,

in particular when the game is played many times so players gain experience

and understand better the game [70].

• Supporting and deploying mobile-edge technologies are other interesting

directions for further research toward the future of Cloud 2.0. In particular,

two key issues can be focused on: security and computation offloading to tackle

the problem of limited computational power, storage, and energy [36,100].

• Application of blockchain and smart contracts in real-world scenarios is somehow

neglected in the current literature. We investigated a specific application of

public blockchain in cloud federation formation and many other applications

could be explored by public or private blockchains. Private blockchains could

be specifically challenging where we require to pay more attention to the roles

and responsibilities of participants with different incentive mechanisms.

• There is a need to investigate different learning approaches to provide cloud

players with better mechanisms to learn 1) the behavior of customers in order to

increase their satisfaction and their ratings; and 2) better strategies to compete

against different providers or collaborate within the Cloudchain platform.
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