5,644 research outputs found

    QoE in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoff

    Get PDF
    Abstract—This paper presents a systematic performance anal-ysis of pull P2P video streaming systems for live applications, providing guidelines for the design of the overlay topology and the chunk scheduling algorithm. The contribution of the paper is threefold: 1) we propose a realistic simulative model of the system that represents the effects of access bandwidth heterogeneity, latencies, peculiar characteristics of the video, while still guaranteeing good scalability properties; 2) we propose a new latency/bandwidth-aware overlay topology design strategy that improves application layer performance while reducing the underlying transport network stress; 3) we investigate the impact of chunk scheduling algorithms that explicitly exploit properties of encoded video. Results show that our proposal jointly improves the actual Quality of Experience of users and reduces the cost the transport network has to support. I

    GLive: The Gradient overlay as a market maker for mesh-based P2P live streaming

    Get PDF
    Peer-to-Peer (P2P) live video streaming over the Internet is becoming increasingly popular, but it is still plagued by problems of high playback latency and intermittent playback streams. This paper presents GLive, a distributed market-based solution that builds a mesh overlay for P2P live streaming. The mesh overlay is constructed such that (i) nodes with increasing upload bandwidth are located closer to the media source, and (ii) nodes with similar upload bandwidth become neighbours. We introduce a market-based approach that matches nodes willing and able to share the stream with one another. However, market-based approaches converge slowly on random overlay networks, and we improve the rate of convergence by adapting our market-based algorithm to exploit the clustering of nodes with similar upload bandwidths in our mesh overlay. We address the problem of free-riding through nodes preferentially uploading more of the stream to the best uploaders. We compare GLive with our previous tree-based streaming protocol, Sepidar, and NewCoolstreaming in simulation, and our results show significantly improved playback continuity and playback latency

    Dante: A Self-Adapting Peer-to-Peer System

    Get PDF
    In this paper we introduce DANTE, an unstructured P2P system in which the topology of the underlying overlay network can be dynamically adapted to the system conditions. Such an adaption is performed by the peers in an autonomous manner. DANTE uses a simple search mechanism based on random walks that, combined with the topology adaptation, allows it to work in a very efficient way. We have evaluated how DANTE behaves in practice, showing that it adapts very well to varying system conditions

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page

    Toward Self-Organising Service Communities

    Get PDF
    This paper discusses a framework in which catalog service communities are built, linked for interaction, and constantly monitored and adapted over time. A catalog service community (represented as a peer node in a peer-to-peer network) in our system can be viewed as domain specific data integration mediators representing the domain knowledge and the registry information. The query routing among communities is performed to identify a set of data sources that are relevant to answering a given query. The system monitors the interactions between the communities to discover patterns that may lead to restructuring of the network (e.g., irrelevant peers removed, new relationships created, etc.)

    An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETS

    Full text link
    [EN] In recent years, new applications, architectures, and technologies have been proposed for vehicular ad hoc networks (VANETs). Regarding traffic safety applications for VANETs, warning messages have to be quickly and smartly disseminated in order to reduce the required dissemination time and to increase the number of vehicles receiving the traffic warning information. In the past, several approaches have been proposed to improve the alert dissemination process in multihop wireless networks, but none of them were tested in real urban scenarios, adapting its behavior to the propagation features of the scenario. In this paper, we present the Profile-driven Adaptive Warning Dissemination Scheme (PAWDS) designed to improve the warning message dissemination process. With respect to previous proposals, our proposed scheme uses a mapping technique based on adapting the dissemination strategy according to both the characteristics of the street area where the vehicles are moving and the density of vehicles in the target scenario. Our algorithm reported a noticeable improvement in the performance of alert dissemination processes in scenarios based on real city maps.This work was supported in part by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2011-27543-C03-01 and the Diputacion General de Aragon under Grant "subvenciones destinadas a la formacion y contratacion de personal investigador."Fogué Cortés, M.; Garrido Picazo, MP.; Martínez Domínguez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). An adaptive system based on roadmap profiling to enhance warning message dissemination in VANETS. IEEE/ACM Transactions on Networking. 21(3):883-895. doi:10.1109/TNET.2012.2212206S88389521
    corecore