9,428 research outputs found

    Affective learning: improving engagement and enhancing learning with affect-aware feedback

    Get PDF
    This paper describes the design and ecologically valid evaluation of a learner model that lies at the heart of an intelligent learning environment called iTalk2Learn. A core objective of the learner model is to adapt formative feedback based on students’ affective states. Types of adaptation include what type of formative feedback should be provided and how it should be presented. Two Bayesian networks trained with data gathered in a series of Wizard-of-Oz studies are used for the adaptation process. This paper reports results from a quasi-experimental evaluation, in authentic classroom settings, which compared a version of iTalk2Learn that adapted feedback based on students’ affective states as they were talking aloud with the system (the affect condition) with one that provided feedback based only on the students’ performance (the non-affect condition). Our results suggest that affect-aware support contributes to reducing boredom and off-task behavior, and may have an effect on learning. We discuss the internal and ecological validity of the study, in light of pedagogical considerations that informed the design of the two conditions. Overall, the results of the study have implications both for the design of educational technology and for classroom approaches to teaching, because they highlight the important role that affect-aware modelling plays in the adaptive delivery of formative feedback to support learning

    Intelligent tutoring systems for systems engineering methodologies

    Get PDF
    The general goal is to provide the technology required to build systems that can provide intelligent tutoring in IDEF (Integrated Computer Aided Manufacturing Definition Method) modeling. The following subject areas are covered: intelligent tutoring systems for systems analysis methodologies; IDEF tutor architecture and components; developing cognitive skills for IDEF modeling; experimental software; and PC based prototype

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the student’s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Applying A Methodology For Educating Students With Special Needs: A Case Study

    Get PDF
    The introduction of innovative educational technologies opens up new ways of interacting with students. We propose to exploit this potential to help in the education of children with special needs. We analyze the state of the art of tools supporting the teaching process, focusing on the omissions of existing research. We propose a new framework to help throughout the whole teaching process and describe its application to Proyecto Aprender (Learn Project), an educational resource targeting children with learning difficulties. Finally, we outline some conclusions and current/future research lines

    Adapting Progress Feedback and Emotional Support to Learner Personality

    Get PDF
    Peer reviewedPostprin

    Using Student Mood And Task Performance To Train Classifier Algorithms To Select Effective Coaching Strategies Within Intelligent Tutoring Systems (its)

    Get PDF
    The ultimate goal of this research was to improve student performance by adjusting an Intelligent Tutoring System\u27s (ITS) coaching strategy based on the student\u27s mood. As a step toward this goal, this study evaluated the relationships between each student\u27s mood variables (pleasure, arousal, dominance and mood intensity), the coaching strategy selected by the ITS and the student\u27s performance. Outcomes included methods to increase the perception of the intelligent tutor to allow it to adapt coaching strategies (methods of instruction) to the student\u27s affective needs to mitigate barriers to performance (e.g. negative affect) during the one-to-one tutoring process. The study evaluated whether the affective state (specifically mood) of the student moderated the student\u27s interaction with the tutor and influenced performance. This research examined the relationships, interactions and influences of student mood in the selection of ITS coaching strategies to determine which strategies were more effective in terms of student performance given the student\u27s mood, state (recent sleep time, previous knowledge and training, and interest level) and actions (e.g. mouse movement rate). Two coaching strategies were used in this study: Student-Requested Feedback (SRF) and Tutor-Initiated Feedback (TIF). The SRF coaching strategy provided feedback in the form of hints, questions, direction and support only when the student requested help. The TIF coaching strategy provided feedback (hints, questions, direction or support) at key junctures in the learning process when the student either made progress or failed to make progress in a timely fashion. The relationships between the coaching strategies, mood, performance and other variables of interest were considered in light of five hypotheses. At alpha = .05 and beta at least as great as .80, significant effects were limited in predicting performance. Highlighted findings include no significant differences in the mean performance due to coaching strategies, and only small effect sizes in predicting performance making the regression models developed not of practical significance. However, several variables including performance, energy level and mouse movement rates were significant, unobtrusive predictors of mood. Regression algorithms were developed using Arbuckle\u27s (2008) Analysis of MOment Structures (AMOS) tool to compare the predicted performance for each strategy and then to choose the optimal strategy. A set of production rules were also developed to train a machine learning classifier using Witten & Frank\u27s (2005) Waikato Environment for Knowledge Analysis (WEKA) toolset. The classifier was tested to determine its ability to recognize critical relationships and adjust coaching strategies to improve performance. This study found that the ability of the intelligent tutor to recognize key affective relationships contributes to improved performance. Study assumptions include a normal distribution of student mood variables, student state variables and student action variables and the equal mean performance of the two coaching strategy groups (student-requested feedback and tutor-initiated feedback ). These assumptions were substantiated in the study. Potential applications of this research are broad since its approach is application independent and could be used within ill-defined or very complex domains where judgment might be influenced by affect (e.g. study of the law, decisions involving risk of injury or death, negotiations or investment decisions). Recommendations for future research include evaluation of the temporal, as well as numerical, relationships of student mood, performance, actions and state variables

    Redefinition of basic modules of an intelligent tutoring system: the tutor module

    Get PDF
    It has been noticed that during the initial semesters of Computing Engineering that the amount of human tutors is insufficient. The students/tutors ratio is very high and there is a great difference in the acquired knowledge and backgrounds. The idea is that a system could emulate the human tutor and besides provide the student with a degree of flexibility for the selection of the most adequate tutorial type. This could be a feasible solution to the stated problem. But a tutorial system should not only emulate the human tutor but besides it should be designed from an epistemological conception of what teaching Basic Programming means specially in an Engineering course due to the profile and identity of the future engineer.Eje: Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI

    Psychophysiology in games

    Get PDF
    Psychophysiology is the study of the relationship between psychology and its physiological manifestations. That relationship is of particular importance for both game design and ultimately gameplaying. Players’ psychophysiology offers a gateway towards a better understanding of playing behavior and experience. That knowledge can, in turn, be beneficial for the player as it allows designers to make better games for them; either explicitly by altering the game during play or implicitly during the game design process. This chapter argues for the importance of physiology for the investigation of player affect in games, reviews the current state of the art in sensor technology and outlines the key phases for the application of psychophysiology in games.The work is supported, in part, by the EU-funded FP7 ICT iLearnRWproject (project no: 318803).peer-reviewe

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin
    corecore