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Abstract This paper describes the design and ecologically valid evaluation
of a learner model that lies at the heart of an intelligent learning environment
called iTalk2Learn. A core objective of the learner model is to adapt forma-
tive feedback based on students’ a↵ective states. Types of adaptation include
what type of formative feedback should be provided and how it should be
presented. Two Bayesian networks trained with data gathered in a series of
Wizard-of-Oz studies are used for the adaptation process. This paper reports
results from a quasi-experimental evaluation, in authentic classroom settings,
which compared a version of iTalk2Learn that adapted feedback based on
students’ a↵ective states as they were talking aloud with the system (the af-
fect condition) with one that provided feedback based only on the students’
performance (the non-a↵ect condition). Our results suggest that a↵ect-aware
support contributes to reducing boredom and o↵-task behavior, and may have
an e↵ect on learning. We discuss the internal and ecological validity of the
study, in light of pedagogical considerations that informed the design of the
two conditions. Overall, the results of the study have implications both for the
design of educational technology and for classroom approaches to teaching,
because they highlight the important role that a↵ect-aware modelling plays in
the adaptive delivery of formative feedback to support learning.
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1 Introduction

The aim of our research is to enhance a student’s learning experience and
performance in a digital learning environment by providing intelligent sup-
port that goes beyond cognitive aspects and takes into account the student’s
a↵ective state.

It is well understood that a↵ect interacts with and influences the learning
process (Kort et al., 2001; D’Mello et al., 2014; Baker et al., 2010). While
positive a↵ective states (such as surprise, satisfaction or curiosity) are known
to contribute towards learning, negative a↵ective states (including frustration
and disillusionment) can undermine learning. For example, Woolf et al. (2009)
describe how students can become overwhelmed (very confused or frustrated)
during learning, which may increase their cognitive load (Sweller et al., 1998).
In addition, Baker et al. (2010) found that certain types of a↵ective states,
such as boredom, were associated with poor learning and with gaming the
system. However, when students are in a positive a↵ective state, learning can
be improved. For example, Csikszentmihalyi (1990) argues that students in
a state of heightened engagement, that he calls in flow, are absorbed in the
learning material and are thus primed for learning.

Any learning experience is typically full of transitions between positive
and negative a↵ective states. For example, while a student may be interested
in a particular learning task, any misconceptions might lead to frustration
or disillusionment as the student is forced to reconsider his or her existing
understanding (in a process Piaget (1951) calls accommodation). However, if
this negative a↵ective state is reconciled, the student might once again become
deeply engaged with the task. D’Mello et al. (2014), for example, elaborate how
confusion, which initially might be thought of as a negative a↵ective state, is
likely under certain conditions to promote learning. It is important therefore,
to deepen our understanding of the role of a↵ective states for learning, and to
be able to move students out of states that inhibit learning.

Pekrun (2006) discusses achievement emotions, a↵ective states that arise
in a learning situation and that are linked to learning, instruction, and achieve-
ment. In the iTalk2Learn project, we focussed on a subset of these achievement
emotions: enjoyment (which we extend to in flow, by which we mean highly
engaged, after Csikszentmihalyi, 1990), surprise, frustration and boredom. We
also add confusion, which has been identified elsewhere as an important af-
fective state during learning both for tutor support and for learning in gen-
eral (Porayska-Pomsta et al., 2008; D’Mello et al., 2014).

Carenini et al. (2014) describe how e↵ective support in learning situations
needs to answer three main questions: (i) When should the support be pro-
vided? (ii) What should the support contain? And, (iii) how should the support
be presented? In the iTalk2Learn project, the main support to be provided is
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formative feedback, text messages that the system sends during the learning
experience (Shute, 2008; Hattie and Timperley, 2007) in response to student
problem-solving actions (Vanlehn, 2006) or other interactions (rather than
messages that only summatively acknowledge the outcome of the learning ex-
perience).

Other research works, including our own (Mavrikis et al., 2008; Holmes
et al., 2015a) and more recently that of Basu et al. (2017) in this issue, focus
on how formative feedback in open-ended or exploratory environments can
sca↵old learners to perform a particular learning task. However, in addition to
providing context-specific guidance, our formative feedback also aims to en-
hance student a↵ective states - i.e., to move students from nominally negative
a↵ective states (such as frustration or boredom) into nominally positive a↵ec-
tive states or to maintain positive a↵ective states. In this context, we addressed
Carenini’s latter two questions by means of two Bayesian networks: one to de-
termine what the feedback should contain (i.e. the type of formative feedback),
the second for detecting how the formative feedback should be presented. Both
networks were trained with data from a series of Wizard-of-Oz studies where
we investigated the impact of feedback type and presentation on student af-
fective states (c.f. Grawemeyer et al., 2015a,b). We learned that a student’s
a↵ective state can be enhanced when the feedback type is matched to the af-
fective state of the student. For example, when students were confused, a↵ect
boosts and specific instructive feedback were most e↵ective. In addition, adapt-
ing the presentation of the feedback according to the students’ a↵ective state
is also important, especially when the student is confused or frustrated. For
these particular a↵ective states, high-interruptive feedback (a pop-up window
that has to be dismissed before the student can proceed) was more e↵ective
in enhancing the student’s a↵ective state, especially as the cost of not viewing
the feedback is likely to be a negative a↵ective state. However, when students
were in flow, low-interruptive feedback (a glowing lightbulb which indicates
that feedback is available) was preferred by students (Mavrikis et al., 2013).

While most research to date in this area responds to a student’s a↵ective
state by adapting the feedback message (e.g. by including empathetic state-
ments to motivate students (VanLehn et al., 2014; Forbes-Riley and Litman,
2011a; D’Mello et al., 2010), we instead adapt the type of feedback (whether it
is, for example, instructional feedback or a reflective prompt), with the feed-
back content being based on the student’s interaction (mainly their perfor-
mance). In addition, instead of adapting the delivery of the feedback using for
example an empathetic pedagogical agent (e.g. Conati and MacLaren, 2009;
Rowe et al., 2009; Woolf et al., 2009), we adapt how interruptive the feedback
is for the student (whether low- or high-interruptive).

In summary, in this paper we report on the development of intelligent for-
mative support and its evaluation. The system includes a learner model that
contains information about the student’s a↵ective state which is used to tailor
the type of formative feedback and its presentation according to the student’s
a↵ective state. It includes two Bayesian networks, one for each adaptation
(feedback type and feedback presentation), which were trained with data from
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earlier Wizard-of-Oz studies in which their predictive accuracy was tested.
We subsequently built on that earlier work and incorporated the Bayesian
networks in a comprehensive online system for the learning of fractions. In
Rummel et al. (2016), we report on a summative evaluation of that system
that focuses on learning e�cacy. In this paper, we draw on elements of that
summative evaluation to consider the potential of a learner model in relation
to enhancing student a↵ective states and learning. We evaluated the intelligent
support and its learner model by comparing two conditions in real classroom
settings. The first condition adapted feedback based on the student’s a↵ec-
tive state (the a↵ect condition), whereas the second condition used only the
student’s performance (by which we mean the creation and manipulation of
fractions representations) to provide feedback (the non-a↵ect condition).

In the next section, we provide an overview of related literature. Section 3
describes the development of the a↵ect-aware intelligent support. Section 4
outlines the evaluation of the support. Results of the evaluation are reported
in Section 5. A detailed discussion that highlights the importance of a↵ect-
aware learner modelling is provided in Section 6, while Section 7 concludes the
paper.

2 Related work

Di↵erent computational approaches have been adopted in order to detect af-
fective states in intelligent learning environments. These include speech-based
approaches (e.g. Cowie et al., 1999; Vogt and André, 2005), using informa-
tion from facial expressions (e.g. Kaliouby and Robinson, 2004), keystrokes or
mouse movements (e.g. Epp et al., 2011), or physiological sensors (e.g. Lang
et al., 1993; Vyzas and Picard, 1998; Nasoz et al., 2003). Recent research (such
as D’Mello and Graesser, 2010; Paleari et al., 2009; Wöllmer et al., 2010; Jiang
et al., 2011) focuses on a combination of input stimuli to detect a↵ective states.

Other research has investigated how a student’s a↵ective state or motiva-
tion can be detected or taken into account when providing appropriate learn-
ing material or motivational feedback. Early examples include del Soldato and
du Boulay (1995) and Mavrikis et al. (2007) that look into a student’s level of
confidence and how much e↵ort the student puts into performing a learning
task as detected by the interaction with the learning environment (such as
help requests or task completion).

Jaques et al. (2014) describe how they use gaze data to predict boredom
and curiosity within MetaTutor, a hypermedia environment designed to foster
student self-regulated learning processes in the domain of biology (Azevedo
et al., 2009). Another example is Santos et al. (2014), which shows that per-
sonality and self-e�cacy impact the e↵ectiveness of motivational feedback and
recommendations. A↵ective states were detected from mouse and keyboard
interactions as well as from physiological parameters. Additionally, students
self-reported their a↵ective states through the Self-Assessment Manikin emo-
tion assessment tool (Bradley and Lang, 1994) and free-text forms. The a↵ec-
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tive states that were detected included boredom, surprise, confusion, and loss
of motivation. Wizard-of-Oz studies were used to investigate how motivational
feedback and recommendations could be adapted based on students a↵ective
states.

Conati and MacLaren (2009) developed a model of emotions (a dynamic
Bayesian network) based on students’ bodily expressions in an educational
game. The system used six emotional states: joy, distress, pride, shame, ad-
miration and reproach. A pedagogical agent provided support according to
students’ emotional state detected by the system and their personal goal (such
as wanting help, having fun, learning maths, or succeeding by oneself).

Another example is Shen et al. (2009), which also reports the use of
Bayesian networks to classify students’ a↵ective states. Here biophysical sig-
nals, such as heart rate, skin conductance, blood pressure, and EEG brain-
waves, are used for the classification. The detected a↵ective states (interest,
engagement, confusion, frustration, boredom, hopefulness, satisfaction, and
disappointment) are included in an a↵ective learner model. The system draws
on the a↵ective learner model and uses recommendation rules to determine
appropriate interventions, such as providing an example when the student is
confused or delivering a video/music when the student is bored.

Woolf et al. (2009) developed an a↵ective pedagogical agent which is able
to mirror a student’s emotional state and alter the agent’s feedback by pro-
viding for example, an empathetic message. These researchers used hardware
sensors and facial movements to detect student emotions. This system dis-
criminated between seven emotions: high/low pleasure, frustration, novelty,
boredom, anxiety, and confidence. Di↵erent machine learning techniques were
applied for the classification, including Bayesian networks and Hidden Markov
models.

Similarly, Rowe et al. (2009) describe a narrative-centred learning environ-
ment, Crystal Island, which takes into account students’ actions, locations,
goals, and physiological information to detect their a↵ective states. Näıve
Bayes, decision trees, and support vector machines were used for the a↵ect
detection. The learning environment included virtual agents, which were able
to express empathy based on the student’s a↵ective state. Another example is
the AutoTutor tutoring system (D’Mello et al., 2005, 2010), which holds con-
versations with students in computer literacy and physics courses. The system
classifies emotions based on natural language interaction, facial expressions,
and gross body movements. The focus is on three emotions: frustration, con-
fusion, and boredom. The classification is used to respond to students via a
conversation through an embodied pedagogical agent and to adapt both the
dialogue and the facial expression of the agent according to the student’s af-
fective state.

The promising results of the aforementioned work inspired us to investi-
gate a related system that would fit our context. Methodologically, perhaps the
most relevant work for our context is that of Forbes-Riley and Litman (2011a),
who developed a physics text-based tutoring system, UNC-ITSPOKE. This
used spoken dialogue (acoustic-prosodic and lexical features) to classify stu-
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dent uncertainty. Based on the student’s performance and level of uncertainty,
the dialogue-based feedback is adapted. To develop their system, Forbes-Riley
and Litman (2011a) used a corpus collected from a wizarded version of a spoken
dialogue computer tutor (Forbes-Riley and Litman, 2011b), where detection
and natural language understanding was performed by a human in order to
train a model to detect uncertainty. Our aim was to extend this approach to
accommodate several a↵ective states (as previously investigated by D’Mello
et al., 2010).

Meanwhile, several researchers have investigated adapting feedback to stu-
dents’ a↵ective states. VanLehn et al. (2014) describe an a↵ective meta tutor,
which is able to determine what kind of motivational feedback should be pro-
vided to students based on their a↵ective states and log data. Physiological
sensors (facial expression camera and a posture-sensing chair) and a regres-
sion model are used to calculate whether a student is engaged, confused, or
bored. A decision tree uses the current a↵ective state of the student and log
data to decide what motivational feedback message should be provided by an
embodied pedagogical agent. In general, these adaptations tend to be focused
on changing the text within a message (e.g. VanLehn et al., 2014) or chang-
ing the dialogue (e.g. Forbes-Riley and Litman, 2011a; D’Mello et al., 2010)
to include, for example, empathetic statements designed to motivate the stu-
dents. Interestingly, research has shown that there is a gender di↵erence in how
empathetic feedback is perceived by students - for example, Burleson and Pi-
card (2007) show that female students respond more positively to empathetic
feedback than male students; while Vail et al. (2015) showed that female stu-
dents were more engaged and less frustrated when provided with a↵ect-aware
support than male students. Other research (e.g. Conati and MacLaren, 2009;
D’Mello et al., 2005, 2010; VanLehn et al., 2014; Woolf et al., 2009; Rowe
et al., 2009) have altered how feedback is delivered to students, for example
through the use of a pedagogical agent capable of expressing empathy.

Finally, as explained in D’Mello and Kory (2015), most a↵ect-aware sys-
tems up until now have been tested or evaluated only in lab-based contexts
and very controlled settings.

In our research we extend the literature by (i) exploring how di↵erent types
of feedback (e.g. reflective prompts or instructive feedback) can be adapted
to a student’s a↵ective state, (ii) how the presentation of feedback can be
adapted to a student’s a↵ective state by taking into account how interruptive
that feedback is, and (iii) undertaking an ecologically-valid evaluation of an
a↵ect-aware learning environment in real classrooms.

3 The iTalk2Learn platform

Our research involves iTalk2Learn, an intelligent learning platform for children
aged 8-12 years old who are learning fractions, which is designed to detect,
analyse and respond to children’s speech in real time in order to improve
learning. Specifically, the platform’s aim is to foster the robust learning of
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fractions by providing activities that help develop conceptual knowledge, in an
exploratory learning environment called Fractions Lab, which are interleaved
with structured practice activities that help foster procedural knowledge, in
an ITS called Whizz Maths (Mazziotti et al., 2015). The overall sequence
of exploratory learning and structured practice activities is determined by a
Student Needs Analysis (SNA) component. The SNA sequences the tasks ac-
cording to the student’s level of challenge, which is inferred from the student’s
interaction using the amount of feedback provided as a key indicator, in order
to avoid students being over- or under-challenged, which may trigger boredom
or anxiety (as described by Acee et al., 2010). In Rummel et al. (2016), we
elaborate on the importance of interleaving exploratory learning and struc-
tured practice tasks and the potential of this interleaving for robust learning.
In addition, in (Holmes et al., 2015a) we explore multiple dimensions of forma-
tive feedback provided while students are undertaking the learning activities
in our exploratory learning environment. In this paper, however, we focus on
how that intelligent support can usefully be made a↵ect-aware (in Section 4.3
we explain how the sequence of exploratory learning and structured practice
tasks was configured to address the aims of the evaluation described in this
paper).

Fig. 1 Exploratory learning environment (Fractions Lab).
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Figure 1 shows the Fractions Lab interface. Students are given a task (dis-
played at the top of the interface) which they explore and attempt to solve by
choosing fraction representations (from the right hand side menu) which the
student then manipulates (in the work area at the centre of the interface) in
order to solve the given task. The large button at the top of the work area
provides access to a variety of tools (to compare, add and subtract fractions).
Adaptive feedback (which is well-known to be essential in exploratory learning
environments, Kirschner et al., 2006) is provided to students based on their
interactions with the system and their a↵ective states.

Figure 2 shows the architecture of the adaptive support. Drawing on our
previous work (Gutiérrez-Santos et al., 2012), the support comprises three
main layers: the analysis layer, the reasoning layer, and the feedback generation
layer.

Fig. 2 Architecture of the adaptive support.

The analysis layer includes an a↵ective state detector which has several
inputs: a student’s interaction with Fractions Lab, the output of a perceived
task di�culty classifier (PTDC ) which uses prosodic cues in the student’s
speech to predict the level of challenge for the current student, and the out-
put from speech recognition software which identifies words in the student’s
speech. The analysis layer infers the student’s a↵ective state from these vari-
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ous inputs. The student’s detected a↵ective state is then stored, together with
the student’s interaction data, in the learner model.

Building on the analysis layer, the reasoning layer decides what feed-
back should be provided. This layer contains an a↵ective state reasoner, im-
plemented as a Bayesian network which draws on information from the learner
model, in particular the student’s a↵ective state, to decide what type of feed-
back should be provided to the student. The resulting feedback type is then
stored in the learner model and provided to the feedback generation layer.

The feedback generation layer includes an a↵ective state presentation
model implemented as a second Bayesian network, which draws on the learner
model to decide how the feedback should be presented to the student. The
information that is accessed from the learner model includes the student’s
a↵ective state as well as interaction data. The Bayesian network decides if
the feedback should be provided in a low-interruptive or in a high-interruptive
way.

We incorporated two Bayesian networks in order to accommodate the main
architecture of the intelligent support.

When the feedback is provided depends on the student’s interactions with
the learning environment. If a student’s inactivity passes a threshold time
(which currently, based on the outputs of Wizard-of-Oz studies (Grawemeyer
et al., 2015a,b), is set at 4 seconds), the intelligent support starts the reasoning
process, drawing on the learner model, and calculates what type of feedback
and how that feedback should be provided.

3.1 A hypothetical use case scenario

To illustrate the flow of information in the intelligent support, centred on the
learner model, we next present a use case scenario.

Sarah, a primary school student who is learning about fractions, is using
the iTalk2Learn system. Currently, she is working in Fractions Lab, explor-
ing a task about the sum of two fractions, 1

2 and 1
3 . She begins by creating

a representation of 1
2 , an interaction which (like all interactions with repre-

sentations and tools in Fractions Lab) is logged in her learner model. Sarah
moves the mouse to create another representation, remarking as she does so
“I think this’s easy”. The speech recognition component has also been contin-
uously monitoring, transcribing what Sarah says and providing the words to
the analysis layer. Easy is a keyword that is classified with a high probability
of being in flow, and so the a↵ect detection component classifies Sarah as in
flow - more information that is saved in the learner model.

Sarah continues by creating a second fraction of 1
3 , but then stops, thinking

about what to do next. This lack of interaction is noticed by the intelligent
support which triggers it to start reasoning about her interactions and her
a↵ective state in order to deliver appropriate formative feedback. Based on the
interaction data stored in the learner model (that reveals she has yet to receive
any feedback) and her current a↵ective state (in flow), the first Bayesian
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network (the a↵ective state reasoner) calculates that there is a probability of
1.0 that a reflective prompt will keep her in flow). Accordingly, the system
chooses a reflective prompt, which asks her to reflect on her actions, “Why did
you use this method?”

Next, again based on interaction and a↵ect data stored in the learner
model, the second Bayesian network (the a↵ective state presentation model)
calculates how the message should be presented. For Sarah, it determines that
there is a 0.3 probability that providing feedback in a high-interruptive way
will keep her in flow, whereas there is a probability of 0.7 that providing her
feedback in a low-interruptive way (as an illuminated light bulb that she might
or might not choose to access) will do so. Accordingly, the light bulb starts to
glow (indicating that feedback is available). However, Sarah ignores the glow-
ing light bulb - perhaps because she is in flow. Instead, she creates another
fraction, 2

5 , suggesting that she has a misconception about how two fractions
with di↵erent denominators are added together. Nevertheless, she puts all
three representations into the Fractions Lab addition tool to check her calcu-
lation and then is confused to see that it is incorrect. She sighs, “This is so
di�cult. . . ”. Again, the speech recognition component provides the words to
the analysis layer. Di�cult is a keyword that is classified with a high proba-
bility as confusion, and so the a↵ect detection component classifies Sarah as
confused which again is saved in the learner model.

Meanwhile, Sarah continues to interact with Fractions Lab, exploring other
ways to solve the task but, when she has run out of ideas, she stops again,
unsure what to do next. Once more, this lack of interaction is noticed by the
intelligent support and triggers it to start to reason about the information
that had been stored in the learner model. The learner model reveals that she
did not view and did not follow the most recent feedback and that her current
a↵ective state is confusion. Again, the first Bayesian network (the a↵ective
state reasoner) calculates which feedback type has the highest probability of
improving her a↵ective state. It determines that there is a probability of 0.6
that an a↵ect boost will enhance her a↵ective state, while there is a probability
of 0.7 that instructive feedback will do so. Accordingly, the system chooses
instructive feedback (instructing her to look at the denominators). Next, again
based on interaction and a↵ect data stored in the learner model, the second
Bayesian network (the a↵ective state presentation model) calculates how the
message should be presented. It determines that there is a probability of 0.4
that providing feedback in a low-interruptive way will improve her a↵ective
state, whereas there is a 0.6 probability that providing feedback in a high-
interruptive way will do so. Accordingly, this time, Sarah’s instructive feedback
message is presented in a high-interruptive pop-up window.

After other similar interactions, speech acts, Bayesian network calculations,
and targeted formative feedback, Sarah finally completes her exploration of the
task, and has discovered that 1

2 plus 1
3 equals 5

6 . At this point, she receives an
a�rmation prompt that acknowledges her success, and a final reflective prompt
that takes into account the misconception detected by the system and asks her
to reflect on what she has achieved. When she finishes this final reflection, a
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Student Needs Analysis component (Mazziotti et al., 2015), determines that
Sarah should move to the Whizz Maths environment, where she engages in a
series of related structured tasks to practise what she had just explored and
learned (the importance of matching denominators when adding fractions).

The following sections provide detailed information about the di↵erent
components of the iTalk2Learn platform.

3.2 Learner model

The learner model spans all three main components and can be seen as the
heart of the intelligent support. It includes the following information about
the current student:

– Feedback data
– The conditional probability table for the Bayesian network of the a↵ec-

tive state reasoner, which is used to determine what type of feedback
should be presented to students (please see Section 3.4 for more details).

– The feedback messages that have been provided to the student.
– The type of feedback provided to the student (e.g. reflective prompts or

instructive feedback).
– How feedback that was provided to the student was presented (inter-

ruptive or non-interruptive).
– Student data

– The student’s a↵ective state (based on the student’s speech and inter-
action and calculated by the a↵ective state detector).

– The student’s progress with the task (whether the student is still ex-
ploring or has completed it).

– The student’s interactions with the learning environment (whether a
representation has been created, selected or manipulated).

– Whether or not the feedback was viewed by the student.
– Whether or not the student followed the feedback.

The learner model is constantly being updated with information about the
student and the feedback that has been provided to the student. The learner
model is used by the various components to determine what type of support
should be provided to the student and how that support should be provided.

3.3 Analysis layer (a↵ective state detector)

The student’s a↵ective state is detected (inferred) from the student’s speech
and interaction with Fractions Lab. Data gathered in several Wizard-of-Oz
studies (Mavrikis et al., 2014; Grawemeyer et al., 2015a,b) were used as the
basis for our a↵ect detection, as follows:

– The speech recognition software (Sail-Labs, 2016) detects whether students
are speaking or not and produces an array of spoken words. This array is
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used to detect keywords that are associated with a particular a↵ective
state. During the Wizard-of-Oz studies, we recorded what students said
and used this to determine keywords that can provide some insight into
the student’s a↵ective state. The selection of keywords was based on how
often a particular word was spoken by the participating students when in
a particular a↵ective state and how unique the word was for that a↵ective
state. For example, from detected words such as ‘that’s easy’, or ‘this is
good’ the system infers the a↵ective state of in flow, whereas from detected
words such as ‘this is hard’, or ‘tricky’ the system infers confusion. The ‘Bag
of Words’ method (e.g. Schuller et al., 2005) and a naive Bayes classifier
was used to classify the student’s a↵ective state (Grawemeyer et al., 2014).

– What we call the perceived task di�culty classifier (PTDC ), extracts
prosodic features (such as ‘um’s and pauses) from the student’s speech and
uses speech and pause histograms to infer whether the student is under-,
appropriately or over-challenged (Janning et al., 2014, 2016). The prosodic
features were extracted from the voice recordings of the Wizard-of-Oz stud-
ies, based on two independent coders who classified a student’s level of
challenge by taking into account the student’s speech and interaction with
the learning environment.

– The student’s interaction with the platform is used to add evidence towards
an a↵ective state. For example, whether or not the student viewed and
followed the most recent feedback is used to calculate whether the student
seems to be in flow or confused. For instance, if a student has viewed and
followed the most recent feedback, the system infers that this student is in
flow. However, if the student has viewed but not followed the most recent
feedback, the system infers that the student is confused. In addition, the
student’s interaction is used in combination with the output of the PTDC
to classify students as either frustrated or bored.

The a↵ective state detector determines the student’s overall a↵ective state
using weights given to the di↵erent inputs. Based on what was learned in our
Wizard-of-Oz studies, the highest weight is given to the keyword detection,
followed by PTDC and then interaction. Figure 3 shows a flow diagram of how
the overall combined a↵ect is calculated. For example, when a student has not
viewed the most recent feedback, we infer the following a↵ective states:

– frustration: (1) if the student is over-challenged and the interaction clas-
sification shows that the student is not confused (i.e. is in flow) and no
keyword has been detected; or (2) if a keyword has been detected that is
associated with frustration.

– in flow : (3) if the student is appropriately challenged and the interaction
classification classifies the student as not confused and no keyword has
been detected; or (4) if a keyword has been detected that is associated
with being in flow ; or (5) if the PTDC does not produce any results (when
there was not enough speech data, or the speech data was too noisy, for
the PTDC to infer the student’s level of challenge), no keyword has been
detected and the interaction classification classifies the student as in flow.
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– boredom: (6) if the student is under-challenged and the interaction clas-
sification classifies the student as not confused and no keyword has been
detected; or (7) if a keyword has been detected that is associated with
boredom.

– confusion: (8) if the interaction classification identified the student as con-
fused and no keyword was detected; or (9) if a keyword was detected that
is associated with being confused .

– surprise: (10) only if a keyword was detected that is associated with sur-
prise.

3.4 Reasoning layer (a↵ective state reasoner)

The a↵ective state reasoner uses the information from the student model to
decide what type of feedback should be provided. We explore di↵erent types of
feedback that are known from the literature (see Section 2) to support students
in their learning and that fit our context: a↵ect boosts, instructive feedback,
other problem solving support, reflective prompts, talk aloud prompts, task
sequence prompts, and a�rmation prompts.

Table 1 shows an example feedback message for each feedback type.
The following di↵erent feedback types are provided while the student is

exploring the task:

– AFFECT BOOSTS. As described in (Woolf et al., 2009), a↵ect boosts can
help to enhance a student’s motivation to solve a particular learning task.
Here, we included prompts that acknowledged that a task is challenging
in order to encourage the student to keep trying. During the evaluation,
a↵ect boosts were provided only in the a↵ect condition.

– INSTRUCTIVE feedback. This feedback provided detailed instructions
about what action to perform in order to solve the task.

– OTHER PROBLEM SOLVING feedback. This aimed to help students
tackle a problem by challenging their thinking instead of specifying next
steps (a subset of ‘Socratic’ formative feedback, Holmes et al., 2015b).

– REFLECTIVE prompts. Reflecting on task performance and self-explanation
can be viewed as a tool to help students address their own misunderstand-
ings (Chi, 2000) and as a ‘window’ into their thinking.

– TALK ALOUD prompts. These build on the hypothesis that automatic
speech recognition can facilitate learning, which is based mostly on educa-
tional research that has shown benefits of verbalization for learning (e.g.
Askeland, 2012). During the evaluation, talk aloud prompts were provided
only in the a↵ect condition.

When a student has finished the task, the following additional feedback is
provided:

– AFFIRMATION prompts. This feedback is provided when students have
completed the task successfully, in order to indicate that they finished the
task and should move to the next task.
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Fig. 3 Calculation of students a↵ective state based on a combination of speech (keywords
and prosodic features (PTDC)) and interaction.

– FINAL REFLECTIVE prompts that encourage students to reflect on a
certain aspect of the task based on the students’ performance.

– TASK SEQUENCE prompts. These are provided when students attempt to
move to the next task without having completed the current task. Students
are encouraged to first finish the current task or to ask for help but, in order
to also allow them to proceed if they are stuck, students are able to move
on to the next task with their third try.
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Fig. 4 Bayesian network of the a↵ective state reasoner.

Based on the information from the learner model and the a↵ective state
reasoner, the system decides what type of feedback should be provided to the
student.

Table 1 Examples of feedback types

Feedback type Example

AFFECT BOOSTS Well done. You’re working really hard!
AFFIRMATION prompts The way that you worked that out was excellent.

Now go to the next task.
INSTRUCTIVE feedback Use the comparison box to compare your frac-

tions.
OTHER PROBLEM SOLVING
feedback

What do you need to do now, to complete the
fraction?

REFLECTIVE prompts What do you notice about the two fractions?
TALK ALOUD prompts Please explain what you are doing.
TASK SEQUENCE prompts Are you sure that you have answered the task

fully? Please read the task again.

The a↵ective state reasoner is a Bayesian network based on data gathered
in our Wizard-of-Oz studies (Grawemeyer et al., 2015b) that investigated the
impact of the di↵erent feedback types on student a↵ective states. In those
studies, students were given a series of fractions tasks and were provided with
feedback, of the types described above, by the researchers (the ‘wizards’) as if
it was being provided by the system. The decision about what type of feedback
to provide was based on a script. For more information, the reader is referred
to Mavrikis et al. (2014).

Following these studies, we trained a Bayesian network using human-annotated
data (265 data points) during and after the study as described in Grawemeyer
et al. (2015b). Figure 4 shows the Bayesian network of the a↵ective state rea-
soner on which we employed a 10-fold cross-validation that showed promising
results (accuracy=79.25%; Kappa=0.50; recall true=0.62; recall false=0.87)
and encouraged us to proceed to the full implementation of the system.
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The a↵ective state reasoner receives the current a↵ective state of the stu-
dent (based on the student’s speech and interaction) as well as information
about whether the student followed the most recent feedback. For each feed-
back type, the Bayesian network predicts whether the feedback type is able to
improve a student’s a↵ective state. For example, enhancing a student’s a↵ec-
tive state from frustration to confusion, or from confusion to in flow. This is
used to determine which feedback type will be most e↵ective at enhancing the
a↵ective state.

Table 2 shows an extract of the conditional probability table (CPT) used
by the a↵ective state reasoner with example values. The CPT is stored in the
learner model.

Table 2 Example extract of a CPT used by the a↵ective state reasoner.

Student enhanced a↵ective state
Student
current
a↵ective
state

Student
followed
previous
feedback

Feedback type FALSE TRUE

in flow F a↵ect boosts 0.3 0.7
confusion F a↵ect boosts 0.4 0.6
frustration F a↵ect boosts 0.3 0.7
boredom F a↵ect boosts 0.5 0.5
surprise F a↵ect boosts 0.5 0.5
in flow F instructive feedback 0.2 0.8
confusion F instructive feedback 0.3 0.7
frustration F instructive feedback 0.4 0.6
boredom F instructive feedback 0.3 0.7
surprise F instructive feedback 0.6 0.4
...
...
...
in flow T reflective prompts 0.0 1.0
confusion T reflective prompts 0.6 0.4
frustration T reflective prompts 0.2 0.8
boredom T reflective prompts 0.5 0.5
surprise T reflective prompts 0.0 1.0

3.5 Feedback layer (a↵ective state presentation model)

The aim of the a↵ective state presentation model is to present the feedback in
a way that enhances the student’s a↵ective state. In our learning environment,
the feedback can be presented in either a low-interruptive way, by highlighting
a light bulb at the top of the interface that indicates feedback is available that
the student might or might not choose to access (see Figure 5), or in a high-
interruptive way, by providing a pop-up window that has to be dismissed
before the student can proceed (see Figure 6).
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Fig. 5 Low-interruptive feedback. The light bulb at the top of the interface glowing in order
to indicate that feedback is available.

Fig. 6 High-interruptive feedback. A pop-up window that includes a feedback message.
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Fig. 7 Bayesian network of the a↵ective state presentation model.

We conducted a further Wizard-of-Oz study that investigated if there was
a di↵erence in a student’s a↵ective state when the di↵erent types of feedback
were either presented in the low-interruptive way, with the light bulb, or in the
high-interruptive way, with the pop-up window (Grawemeyer et al., 2015a).
Two independent researchers used video and speech recordings to annotate the
students’ a↵ective states after the Wizard-of-Oz study (Kappa=.52, p<.001).
The data from the study was used to train a Bayesian network that is able
to predict whether the adaptation of the presentation of the feedback can im-
prove a student’s a↵ective state. Figure 7 shows the Bayesian network of the
a↵ective state presentation model. This network is similar to the Bayesian net-
work of the a↵ective state reasoner (please see Figure 4), except that the node
feedback type is replaced by the node feedback presentation. The dataset con-
tained 266 cases. Each comprised the student’s a↵ective states that occurred
before and after feedback was presented and the student’s interaction data
(whether or not the most recent feedback had been followed). As before, with
this data set and employing a 10-fold cross-validation, we have encouraging
results (accuracy=82.38%; Kappa=0.53; recall true=0.65; false=0.87).

The a↵ective state presentation model receives the a↵ective state of the
student as well as information about whether the most recent feedback had
been followed. Based on this, the presentation of the feedback most likely to
enhance the a↵ective state of the student is inferred.

4 Evaluation

As mentioned, we were particularly interested in the potential of our learner
model for helping adapt support to promote student learning and engagement.
The iTalk2learn project ran a series of formative and summative ecologically
valid evaluations with students in real classrooms that considered a range
of questions. In the summative evaluation, (among other questions that are
tangential to this paper) we asked whether feedback that was tailored to a
student’s a↵ective states enhanced the student’s learning experiences and per-
formance. To address this question, we evaluated the system and its intelligent
support in a quasi-experimental study in which we compared one version that
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included the a↵ect-aware support (the a↵ect condition) with a version where
the a↵ect-aware support was switched o↵ (the non-a↵ect condition).

We investigated the following sub-questions:

– Can a student’s speech and interaction be used e↵ectively as inputs in the
detection of students’ a↵ective states?

– Is there a di↵erence (between the a↵ect and non-a↵ect conditions) in how
often feedback is accessed (based on the di↵erent feedback presentation
mechanisms)?

– Are students in more positive a↵ective states when feedback is tailored to
their a↵ective state?

– Are students less o↵ task when feedback is tailored to their a↵ective state?
– Do students have higher learning gains when feedback is adapted to their

a↵ective state?

4.1 Participants

80 students took part in the summative evaluation, although for several reasons
our final dataset comprises 77 students. These participants were all primary
school students, aged between 8 and 10 years old, recruited from two schools in
the UK (one in the north of England, one in the south). Parental consent, for
students’ involvement in the study, was obtained for all participating students.

4.2 Conditions

The experimental condition (a↵ect or non-a↵ect) determined the presence or
absence of the a↵ective learner model. In turn, this determined what evidence
was available to the analysis, reasoning and feedback layers (as described in
Section 3), and the type of feedback and its presentation.

Table 3 summarises the di↵erences in the adaptation mechanism and feed-
back presentation between the a↵ect and the non-a↵ect conditions. The dif-
ference between the conditions will be discussed below.

4.2.1 A↵ect condition

In the a↵ect condition, the student’s a↵ective state was used to determine
what type of feedback should be provided and how that feedback should be
presented, in order to improve that a↵ective state.

When students were working with Fractions Lab, the Bayesian model in the
a↵ective state reasoner (see Section 3.4) was used to provide the student with
AFFECT BOOSTS, INSTRUCTIVE feedback, OTHER PROBLEM SOLV-
ING support, or REFLECTIVE prompts. How this feedback was presented
(high- or low-interruptive) was determined by the Bayesian network in the
a↵ective state presentation model (see Section 3.5).
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Table 3 Feedback type and presentation in the a↵ect and non-a↵ect conditions

ADAPTATION MECHANISM FEEDBACK PRESENTATION
FEEDBACK
TYPE

AFFECT
CONDITION

NON-
AFFECT
CONDITION

AFFECT
CONDITION

NON-
AFFECT
CONDITION

Talk aloud Delivered when
the student has
not spoken for
30 seconds.

n/a High-
interruptive

n/a

A↵ect
boosts

Determined by
the Bayesian
model in the
a↵ective state
reasoner.

n/a Determined by
the Bayesian
network in the
a↵ective state
presentation
model.

n/a

Instructive Rules take into
account
interaction and
previous
feedback

Low-interruptiveOther
problem
solving
Reflective
Reflective
(final)

Delivered when the student
has completed the task. High-interruptive

A�rmation
Task
sequence

Delivered when the student
presses the ‘next’ button but
has not completed the task.

If students did not speak for 30 seconds, the system provided a TALK
ALOUD prompt. This was always provided in a high-interruptive way as it
was important in the a↵ect condition that students talked aloud so that the
system could detect the student’s a↵ective states from their speech.

When students attempted to move on to the next task (by clicking the
‘next’ button) without having finished the current task, the system provided
a TASK SEQUENCE prompt (as described in Section 3.4). This prompt also
was provided in a high-interruptive way to improve the chance that the student
did not miss it (a high-interruptive prompt has to be responded to before a
student can continue).

When students finished the Fractions Lab task they received an AFFIR-
MATION prompt and a final REFLECTIVE prompt. Both of those prompts
were provided in a high-interruptive way in order to let the student know that
the task is completed and to ask the student to reflect on their overall task
performance.

4.2.2 Non-a↵ect condition

In the non-a↵ect condition, a narrower range of message types were provided
than in the a↵ect condition. In addition, how feedback was presented to stu-
dents also di↵ered.

Only student performance was used to determine the type of feedback
provided to students in the non-a↵ect condition, which meant that (because
of the absence of the a↵ective learner model) AFFECT BOOSTS were not
provided and (because speech was not analysed) TALK ALOUD prompts were
not provided. TALK ALOUD prompts were also not provided because asking



Improving engagement and enhancing learning with a↵ect-aware feedback. 21

the students to talk without them perceiving any benefit could have been
found intrusive by some students (Mavrikis et al., 2014; Grawemeyer et al.,
2015a,b).

In the non-a↵ect condition, INSTRUCTIVE feedback, OTHER PROB-
LEM SOLVING support, and REFLECTIVE prompts were provided in a
low-interruptive way, as research (Mavrikis et al., 2013) has shown that stu-
dents can find it very disruptive when they are interrupted during a learning
activity.

TASK SEQUENCE prompts were provided when students attempted to
move on to the next task but had not yet finished the current task (this is
the same as in the a↵ect condition). This prompt was presented in a high-
interruptive way as a direct response to student’s clicking the ‘next’ button as
described above.

In the same way as in the a↵ect condition, AFFIRMATION and final
REFLECTIVE prompts were provided when students finished the task. These
prompts were provided in a high-interruptive way in order to let the students
know that the task is completed and to ask them to reflect on their overall
task performance.

4.3 Procedure

The participating students were roughly stratified, according to previous teacher
assessments of the children’s mathematical ability, and then randomly allo-
cated to two sub-groups (approximately equal in size, with each group having
approximately the same number of high, middle and low achieving students).
The first group (N=41) was assigned to the a↵ect condition: the students were
given access to the full iTalk2Learn system, which uses the student’s a↵ective
state to determine the type of feedback and its presentation, as described
above. The second group of students (N=36) was assigned to the non-a↵ect
condition: these students were given access to a version of the iTalk2Learn
system in which feedback is based on the student’s performance only.

Two series of sessions, one for each condition, were undertaken over several
days in each school (in the school computer rooms, each of which was equipped
with around 30 individual computers) at a variety of times of day which were
balanced as far as possible between conditions. At the beginning of each ses-
sion, students completed an online questionnaire that assessed the students
knowledge of fractions (the pre-knowledge test - see Section 4.4 below). This
was followed by 40 minutes during which the students engaged with fractions
tasks.

For the purposes of this evaluation (to ensure that each student experienced
a variety of exploratory and structured practice tasks), the SNA was configured
to deliver two Fractions Lab exploratory tasks followed by four Whizz Maths
structured practice tasks, a sequence that was repeated for the 40 minutes
duration. The task provided to each student was based mainly on the student’s
performance in the previous task (which was calculated on the basis of the
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amount of feedback provided: the more feedback provided in the previous task,
the worse the student’s performance was inferred to be). To enable students
to proceed if they did not know what to do in a particular task, students
were able to exit that task without finishing it but only after having been
presented twice with a TASK SEQUENCE prompt that asked them to check
and complete the task.

After the 40 minutes, students completed a second online questionnaire (the
post-knowledge test) that again assessed their knowledge of fractions and also
asked them about their experience using the system and emotional responses.

While students engaged with the system, a randomly allocated subset of
students (a↵ect condition: N=25; non-a↵ect condition: N=22) sat at comput-
ers in the centre of the computer room in a way that allowed researchers to
walk all around them, were monitored using the Baker-Rodrigo Ocumpaugh
Monitoring Protocol (BROMP, Ocumpaugh et al., 2012). The researchers who
undertook the coding, and who were trained in the BROMP method, recorded
the student a↵ective states and task behaviour data using the Human A↵ect
Recording Tool (HART) Android mobile app.

The BROMP specifies strict guidelines for how a↵ective states and task
behaviour are detected. Each student is observed by a trained observer for up
to 20 seconds. The student’s body posture, facial expression and engagement
with the learning environment are interpreted to infer whether the student is
in flow, confused, frustrated, bored, surprised, or delighted. At the same time,
the student’s behaviour towards the task (whether the student is o↵ task, or
on task, or having an on task conversation, or having an on task reflection,
or is gaming the system) is also monitored. At the end of the observation,
the coder’s interpretation of the student’s a↵ective state and behaviour is
entered into the HART Android mobile app, and the researcher turns to the
next student. The use of the app restricts the observers to the predetermined
categories above (with the student being in in flow and on task as the default).
However, when the a↵ective state of the student was unclear to the observer,
they are able to apply an unknown state (a questionmark in the app). This
process is continuously repeated, thus logging multiple data points for each
student, for the duration of the session.

4.4 Knowledge tests

Two isomorphic versions of six fractions problems were designed (see Figure 8).
Students were randomly allocated one version at the first time of measurement
(pre-test) and the other version at the second time of measurement (post-
test). The students received one point for each correctly answered problem
and consequently obtained an aggregated score that we used as an overall
measure of fractions knowledge. Internal consistency of this scale was ↵=.57
at both pre- and post-test.
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Fig. 8 Example extract from the pre- and post- questionnaires.

5 Results

5.1 Tasks provided to students

As described earlier, students were provided with a sequence of exploratory
tasks (in the learning environment Fractions Lab) interleaved with structured
practice tasks (in the learning environment Whizz Maths). In the a↵ect condi-
tion, students engaged in 263 Fractions Lab tasks (M=6.41, SD=2.61) and 416
Whizz Maths tasks (M=10.15, SD=4.60). In the non-a↵ect condition, students
engaged in 293 Fractions Lab tasks (M=10.15, SD=2.92) and 450Whizz Maths
tasks (M=12.50, SD=4.81). Independent t-tests revealed significant di↵erences
between the conditions in the number of Fractions Lab tasks (t(75)=-2.738,
p=.008, d=-.63) and the number ofWhizz Maths tasks (t(75)=.-2.182, p=.032,
d=-.50).

5.2 A↵ect detection

As described earlier, in the a↵ect condition, a student’s a↵ective state was de-
tected automatically by the system (henceforward, automatic-detection), by
analysing the student’s speech and interaction. In addition, the student’s af-
fective states were monitored and noted by two researchers using the BROMP
method and HART mobile app (henceforward, human-detection). As described
earlier, only a subset of students (a↵ect condition: N=25; non-a↵ect condition:
N=22) were monitored in respect to their a↵ective states.

The a↵ective states that were both automatically and human-detected
were in flow, confusion, frustration, boredom, and surprise. An additional af-
fective state, delight, was human-detected. During the human-detection, the
researchers were restricted to these 6 a↵ective states (with the student being
in flow as the default). However, when the a↵ective state of the student was
unclear to the researcher (during the human-detection), a “?” was annotated.



24 Beate Grawemeyer et al.

Both sets of data (from the automatic and human detection) include time
stamps, identifying when a particular a↵ective state was detected. This allowed
the two sets of data to be matched (within a 10 seconds window). There was a
moderate agreement between the automatically-detected a↵ective states and
the human-detected a↵ective states, Kappa=.522, p<.001.

The di↵erence between automatic- and human-detection was partly due to
the a↵ective state (delight) that was detected by the researchers and annotated
with the HART tool but not detected automatically by the system. In addition,
we knew from our Wizard-of-Oz studies that surprise and boredom are di�cult
to detect automatically. Excluding those a↵ective states, there was a higher
agreement between the automatically-detected a↵ective states and the human-
detected a↵ective states, Kappa=.643, p<.001. However, this is lower than the
commonly accepted Kappa threshold of .70 and it is important to note two
caveats. First, if delight, surprise and boredom are excluded, we are ignoring
some important aspects of human skills in a↵ect detection. Second, the use of
the BROMP protocol suggests that the annotated a↵ective states may be less
transient than they probably are. Nevertheless, given the authentic setting and
our overall goal we consider this results acceptable but recognise that there is
room for improvement. From a pedagogical point of view, we take into account
that the e↵ect of a misclassification will probably have a relatively low cost to
a student’s learning (first, a misclassification does not always lead to feedback
being delivered or seen by a student and, second, any inappropriate feedback
is unlikely to have a long term detrimental e↵ect).

Table 4 displays the number of the automatically-detected students a↵ec-
tive states and (in parentheses) the ‘precision’ of each detector i.e. the percent-
age of automatically-detected states that agreed with the human-detection. In
our interpretation of the results we consider ‘recall’ (the percentage of correct
detections of a state over the total number of cases in our dataset) even though
this data is limited here because the ‘gold standard’ human-detected cases are
sparse. Nevertheless, recall can help us judge the relative contribution of each
component in the combined classification as well as the relative completeness
of the whole system.

As mentioned earlier, keywords were used to detect all five di↵erent af-
fective states whereas the PTDC component uses prosodic features to clas-
sify students as either under-, over- or appropriately challenged. The output
from the PTDC were matched to the human-detected a↵ective states as fol-
lows: under-challenged was matched to boredom, appropriately challenged to in
flow, and over-challenged to confused. The interaction data included whether
the student viewed the most recent feedback and whether the student followed
that feedback. This information was used to calculate the probability that a
student was either in flow or confused and, in combination with the PTDC,
to determine whether students were frustrated or bored (as shown in Figure
3).

When keywords were detected, the match with the human-detected student
a↵ect was very high (in flow : 100.0% precision; confused : 96.7% precision).
Unfortunately, however, as we further discuss in Section 6, keywords were
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Table 4 Comparison of human- and automatically-detected student a↵ective states. The
figure in parentheses gives the precision of the automatic detectors, the percentage of the
automatically-detected states that were correct (i.e., matched the human-detected a↵ective
state).

BROMP Automatically-detected
A↵ective state annotation Keywords PTDC Interaction Combined

In flow 222 36 (100%) 139 (92.7%) 198 (82.5)% 187 (86.2%)
Confused 91 58 (96.7%) 87 (48.9%) 73 (59.8%) 73 (57.9%)
Frustrated 5 0 (0.0%) n/a n/a 4 (28.6%)
Bored 37 0 (0.0%) 8 (36.4%) n/a 4 (80.0%)
Surprised 4 0 (0.0%) n/a n/a 0 (0.0%)

not detected that often (recall in flow : 16.2%; recall confused : 63.7%). The
detection of in flow by the PTDC (based on prosodic features of speech) was
satisfactory (precision: 92.7%; recall: 62.6%). The precision of the detection
of in flow from the interaction data was not as high (82.5%), however, the
recall of in flow from the interaction data was high (89.2%). Combining the
di↵erent sources did not lead to the highest precision or recall values for all of
the di↵erent a↵ective states, such as in flow (precision: 86.2%; recall: 84.2%).
However, the combination of speech and interaction enabled the detection of
frustration (precision: 28.6%; recall: 80.0%) and boredom (precision: 80.0%;
recall: 10.8%).

5.3 Adapting the feedback type

In the two experimental conditions, di↵erent approaches were used to deter-
mine the type of feedback provided to the students. As described in Section 4.2,
in the a↵ect condition the feedback type was adapted based on the students’
a↵ective states as they answered the task, while in the non-a↵ect condition the
feedback type was based on students’ performance. In addition, two feedback
types (AFFECT BOOSTS and TALK ALOUD prompts) were only provided
in the a↵ect condition (please see Table 3).

In the a↵ect condition, a total of 1971 feedback messages were provided to
students (on average 48.07 messages per student, SD=14.58, min=25, max=92).
In the non-a↵ect condition, a total of 2007 messages were provided to students
(on average 55.75 messages per student, SD=11.77, min=34, max=88). Figure
9 shows the di↵erent feedback types provided in each condition.

In order to investigate di↵erences between the two conditions (a↵ect and
non-a↵ect), a multivariate ANOVA was conducted for the di↵erent feedback
types. Using Pillai’s trace, there was a significant e↵ect of the condition on the
number of di↵erent types of feedback messages received, V=.929, F(5,71)=187.045,
p=.000, ⌘2p=.929. Separate t-tests on each feedback type were conducted. Al-
pha level was set to .01 following the Bonferroni correction for five compar-
isons. The t-tests revealed significant e↵ects of adapting feedback type based
on a↵ect.
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Fig. 9 Feedback types provided in the a↵ect and non-a↵ect condition.

AFFIRMATION prompts, INSTRUCTIVE feedback and TASK SEQUENCE
prompts were provided less often in the a↵ect condition than in the non-
a↵ection condition. In contrast, OTHER PROBLEM SOLVING support and
REFLECTIVE prompts were provided more often in the a↵ect condition
than in the non-a↵ect condition. As described earlier, AFFECT BOOSTS
and TALK ALOUD prompts were only provided in the a↵ect condition. See
Table 5 for statistical details.

The reason why many more INSTRUCTIVE feedback messages were pro-
vided in the non-a↵ect condition can be seen in the di↵erent aims of the two
conditions. While the aim of the non-a↵ect condition is to support students
to reach a solution (based on the student’s performance), the aim of the a↵ect
condition is not only to help student’s solve the task, but also to improve a stu-
dent’s a↵ective state. This can explain the larger amount of INSTRUCTIVE
feedback messages in the non-a↵ect condition, as the student is supported to
reach a solution (or to perform a particular sub-task for this solution) through
instructive feedback.

It is worth noting that intrinsic systematic di↵erences between the two
conditions, like di↵erences in student a↵ect, behaviour and/or learning, may
have been introduced simply by monitoring and responding to a↵ect rather
than necessarily individualising the response to each student’s a↵ective states.
We elaborate on this in Section 6.6.
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Table 5 Statistical details of the feedback types provided.

Mean Std. dev.
Feedback type a↵ect non

a↵ect
a↵ect non

a↵ect
t-test

AFFECT BOOSTS 0.80 0.0 1.40 0.0 -

AFFIRMATION 2.51 5.33 2.09 2.41 t(75)=-5.50, p=.000, d=-1.25

INSTRUCTIVE 10.32 37.14 7.04 11.75 t(55.703)=-11.94, p=.000, d=-2.769

OTHER PROBLEM
SOLVING 6.05 0.97 2.55 2.21 t(74.991)=9.36, p=.000, d=2.129

REFLECTIVE 7.80 5.53 3.49 2.21 t(68.501)=3.46, p=.001, d=0.846

TALK ALOUD 17.46 0.0 5.92 0.0 -

TASK
SEQUENCE 3.12 6.78 2.60 4.22 t(56.679)=-4.50, p=.000, d=1.044

5.4 Responses to low-interruptive feedback

We were also interested in exploring whether there was a di↵erence in the
students’ behaviour when o↵ered low-interruptive feedback (i.e. whether or
not the student clicked the light bulb). In the a↵ect condition, students were
provided with 389 low-interruptive messages (M=9.49, SD=3.551); while in
the non-a↵ect condition, students were provided with 1441 low-interruptive
messages (M=40.03, SD=12.098) (the di↵erence being due to the way in which
the low-interruptive feedback was provided in the two conditions as explained
in section 4.2). When feedback was low-interruptive, students could ignore the
light bulb and therefore not see the feedback. In the a↵ect condition, students
ignored 74 of the low-interruptive feedback messages (M=1.80, SD=2.076). In
the non-a↵ect condition, students ignored 448 of the low-interruptive feedback
messages (M=12.44, SD=10.814). In percentage terms, the students in the
a↵ect condition were more likely to view the low-interruptive feedback (81%)
than students in the non-a↵ective condition (69%). A t-test showed that this
di↵erence was a medium e↵ect size and was statistically significant, t(75)=2.40,
p=.019, d=.55. However, the di↵erence in the rate of viewing and ignoring low-
interruptive feedback between the two conditions may result from the greater
frequency of low-interruptive feedback in the non-a↵ect condition.

5.5 A↵ect and task behaviour

As described earlier, for a subset of students in both conditions (a↵ect condi-
tion: N=25; non-a↵ect condition: N=22) the students’ a↵ective states and task
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behaviour were annotated by researchers using the Baker-Rodrigo Ocumpaugh
Monitoring Protocol (BROMP) and the Human A↵ect Recording Tool (HART)
Android mobile app (Ocumpaugh et al., 2012). This human detected a↵ect
data was used for further analysis as described below.

5.5.1 human-detected a↵ect using BROMP

Figure 10 shows the di↵erent a↵ective states that were annotated using the
BROMP protocol.

Fig. 10 A↵ective states annotated using the BROMP protocol (during the evaluation ses-
sions in both conditions).

A multivariate ANOVA using Pillai’s trace showed a significant e↵ect of
adaptive support on the a↵ective states overall, V=.268, F(5,41)=3.006,
p=.021, ⌘2p=.268. In both conditions, students were mainly in flow. This was
followed by confusion and boredom. Only rarely were students frustrated, de-
lighted, or surprised. Follow-up t-tests showed that the e↵ect of a↵ect adap-
tation was statistically significant only for boredom (please see Table 6 for
statistical details), which was only half as frequent in the a↵ect condition as
in the non-a↵ect condition.

5.5.2 Task behaviour using BROMP

Figure 11 shows the di↵erent task behaviours that were annotated using the
BROMP protocol.
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Table 6 Statistical details of students’ a↵ective states.

Mean Std. dev.
A↵ective
state

a↵ect non
a↵ect

a↵ect non
a↵ect

t-test

bored 9.74 20.38 14.01 12.41 t(45)=-2.739, p=.009, d=-0.81

confused 27.41 27.69 23.87 17.87 t(43.94)=-.046, p=.964, d=-0.01

delight 0.85 0.00 2.11 0.00 t(24.00)=2.011, p=.056, d=0.80

in flow 59.78 48.91 23.91 14.98 t(40.884)=1.891, p=.066, d=0.56

frustrated 1.48 2.67 2.81 4.66 t(45)=-1.075, p=.288, d=-0.32

surprised 0.74 0.35 1.52 1.64 t(45)=.843, p=.404, d=0.25

Fig. 11 Student task behaviour annotated using the BROMP protocol (during the evalu-
ation sessions in both conditions).

A multivariate ANOVA using Pillai’s trace showed a significant e↵ect
of adaptive support on task behaviour overall, V=.226, F(4,42)=3.071,
p= .026, ⌘2p=.226. In both conditions, students were mainly on task. Fewer
students had an on task conversation, were o↵ task, or reflecting on the task.
Only seldomly were students gaming the system. Follow-up t-tests showed
that the e↵ect of a↵ect adaptation was significant only for o↵-task behaviour.
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O↵ task behaviour was only half as frequent in the a↵ect condition as in the
non-a↵ect condition. Please see Table 7 for statistical details.

Table 7 Statistical details of students’ task behaviour.

Mean Std. dev.
A↵ective state a↵ect non

a↵ect
a↵ect non

a↵ect
t-test

gaming 0.67 0.12 2.31 0.55 t(24.00)=1.445, p=.161, d=0.58

o↵ task 5.75 12.31 6.95 8.75 t(45)=-2.862, p=.006, d=-0.84

on task 81.87 80.67 14.92 10.65 t(43.268)=.320, p=.751., d=0.09

on task conversation 7.41 6.75 8.74 6.66 t(45)=.284, p=.778, d=0.08

on task reflection 4.31 0.27 12.29 1.25 t(24.568)=1.636, p=.115, d=0.60

5.6 A↵ect, task behaviour and performance

In the pre- and post-test questionnaire, students were scored according to how
well they answered questions about fractions. In order to investigate if there
was a relationship between a↵ect, task behaviour and performance, we cor-
related the variables from the human-detected a↵ect data (annotated with
BROMP) with the post-test scores, while controlling for pre-test scores. How-
ever, there were no significant partial correlations of a↵ect or task behaviour
variables with the post-test scores.

5.7 Learning

Figure 12 shows the students’ performance when answering fractions tasks
before (in the pre-test) and after (in the post-test) they used the learning
environment in the di↵erent conditions.

In the a↵ect condition, students increased their knowledge of fractions from
M=2.49 (SD=1.65) to M=3.83 (SD=1.46). In the non-a↵ect condition, stu-
dents increased their knowledge fromM=2.44 (SD=1.58) to M=3.33 (SD=1.71).
A repeated measures ANOVA showed a statistically significant increase of
knowledge in both conditions (F(1,75)=43.94, p=.000, ⌘2p=.369) but there were
no significant di↵erences between conditions at pre-test (t(75)=.12, p=.91,
d=.03) or at post-test (t(75)=1.37, p=.17, d=.32), nor was there a signifi-
cant interaction e↵ect of time and condition (F(1,75)=1.81, p=.183, ⌘2p=.024).
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However, the observed tendency of the a↵ect condition to show higher learning
gains is promising and warrants further investigation.

Fig. 12 Student learning gains in the a↵ect and non-a↵ect condition.

To explore a possible moderation e↵ect of prior knowledge, we also calcu-
lated the conditional e↵ects of condition on the post-test scores at the mean
and plus/minus one SD from the mean of the pre-test scores (as suggested by
Hayes, 2013). As can be seen in Figure 13, the e↵ect of adapting support to
a↵ect is largest for students with low scores on the pre-test. However, because
of the small sample size, we do not formally test this moderation model.

6 Discussion

The aim of our research is to enhance a student’s learning experience and per-
formance in a digital learning environment by providing intelligent formative
feedback which takes into account students’ a↵ective states. This section dis-
cusses the results of our ecologically-valid evaluation in relation to our main
research questions.

6.1 Can a student’s speech and interaction be used e↵ectively as inputs in
the detection of students’ a↵ective states?

The automatic-detection of students’ a↵ective states was based on their speech
and interaction with the learning environment. This was compared to the
human-detected a↵ective states that were annotated using BROMP with the
HART mobile app (by observing the students’ facial expressions, body posture
and engagement with the learning environment). When taking into account all
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Fig. 13 Student post-test scores (y-axis) in the a↵ect and non-a↵ect condition for low,
middle and high pre-test scores (x-axis).

of the automatically- and human-detected a↵ective states (in flow, confusion,
frustration, boredom, surprise, and the additional human-detected delight), the
comparison revealed a medium agreement (74.03%). The di↵erence is mainly
due to the quality of the automatic-detection, particularly in relation to sur-
prise and boredom, which are di�cult to detect automatically. This we knew
from the Bayesian model’s initial training, as there were far fewer instances.

However, when keywords were recognised in the students’ speech, a↵ect
detection was very accurate (although unfortunately, in our ecologically valid
setting, noisy real classrooms, keywords were recognised less often than in
our previous lab tests). This is where speech recognition precision plays an
important role and future research could aim to improve it.

As described earlier, the PTDC uses a student’s speech to extract prosodic
features (such as ‘um’s and pauses) to infer whether the student was under-,
appropriately-, or over-challenged. As this classifier was not trained to detect
a↵ective states, it is not surprising that the precision of its detection of con-
fusion or boredom was not high. However, although the recall of being in flow
from the PTDC module was only 62.6%, this module does provide useful in-
put for the overall detection of students being in flow (for which the overall
precision was very high: 92.7%).

In contrast, detecting a↵ective states from students interactions, revealed
a high recall of being in flow (89.2%), but a lower precision (82.2%). The main
advantage of detecting a↵ective states from student interactions can be seen in
combining it with the speech data to detect a↵ective states that were di�cult
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to detect from speech only, such as frustration or boredom. For example, the
precision of detecting boredom with the combined sources was 80.0%. However,
the recall for boredom was only 10.8%. This is not surprising as we did learn
from our earlier studies (as described in Section 5.2) that boredom is di�cult
to detect. Combining speech and interaction to detect frustration revealed a
high recall (80.0%) but low precision (28.6%).

Nevertheless, overall, our analysis confirms the potential of the automatic-
detection of a↵ective states using information from speech (as identified in
other work such as Forbes-Riley and Litman, 2011a) and that the combination
of interaction data is promising and warrants further research.

6.2 Is there a di↵erence (between the a↵ect and non-a↵ect conditions) in
how often feedback is accessed (based on the di↵erent feedback presentation
mechanisms)?

There was a di↵erence between the conditions in how often low-interruptive
feedback was accessed (by clicking the light-bulb). More feedback was ignored
by students in the non-a↵ect condition (a result that was statistically signif-
icant). The reason for this might be that students who were in a particular
a↵ective state, such as confusion or frustration, might have not realised that
feedback was available. Grawemeyer et al. (2015a) describe that when students
are in a particular a↵ective state, such as frustration, low-interruptive feedback
might be ignored because of cognitive load. In contrast, the presentation of
the feedback in the a↵ect condition took students’ a↵ective state into account.

However, the relatively large number of low-interruptive feedback mes-
sages in the non-a↵ect condition compared to the a↵ect condition (N=1441
vs N=389) might have had some additive e↵ects such that, after a point, stu-
dents became ‘immune’ and systematically disregarded the low-interruptive
feedback messages.

6.3 Are students in more positive a↵ective states when feedback is tailored to
the their a↵ective state?

In both conditions students were mainly in positive a↵ective states rather than
negative a↵ective states. Similar to Conati and MacLaren (2009), the reason
might be the nature of the learning environment (in our case, the exploratory
nature of Fractions Lab). However, there was a statistically significant di↵er-
ence in how often students experienced boredom, with the students in the a↵ect
condition being bored less often than students in the non-a↵ect condition. The
reason for this can be found in the way the feedback was adapted. Students in
the a↵ect condition received feedback that varied more often than did those
in the non-a↵ect condition. In addition, the variation of the feedback types
within the a↵ect condition was directly in response to student a↵ect. Finally,
by adapting and altering how the feedback delivery interrupted the student
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(interruptive or non-interruptive), students who are in negative a↵ective states
can be supported to move into a positive a↵ective state. In contrast, when feed-
back is not adapted based on a student’s a↵ective state, there is a risk that
feedback is ignored (especially and perhaps more critically when students are
in a negative a↵ective state).

While there are probably individual di↵erences in the e↵ectiveness of emo-
tional support (Santos et al., 2014), our trained Bayesian networks were able
to enhance a student’s learning experience by reducing boredom. However, it
would be interesting to explore whether there are individual di↵erences in the
e↵ectiveness of our di↵erent feedback types on a student’s a↵ective states and
learning.

6.4 Are students less o↵ task when feedback is tailored to their a↵ective
state?

Students in both conditions were mainly on task, which again might be ex-
plained by the nature or novelty of the exploratory learning environment,
which appeared to engage the students.

However, we found a di↵erence between the conditions in o↵ task be-
haviour. Students in the a↵ect condition were less o↵ task than students in
the non-a↵ect condition, a result that was statistically significant. Here, the
adaptations of the feedback type as well as the adaptation of the feedback’s
presentation based on the student’s a↵ective state had an e↵ect on their en-
gagement with the task. As discussed in Baker (2007), o↵-task behaviour is
likely to be related to a↵ective states. Hence, adapting feedback to a student’s
a↵ective states can improve the student’s task behaviour.

In addition, results from Section 5.1 showed that students in the a↵ect con-
dition encountered fewer exploratory (Fractions Lab) tasks and fewer struc-
tured practice (Whizz Maths) tasks, results that were statistically significant.
The results also show that students in the a↵ect condition made fewer at-
tempts to exit an exploratory task without finishing it (clicking the ‘next’
button and receiving a TASK SEQUENCE prompt, as described in Section
5.3), which again was statistically significant. This suggests that students in
the a↵ect condition were more engaged with the tasks and spent more time on
solving the task instead of trying to move quickly on to the next task without
finishing it. This also supports our result that students in the a↵ect condition
were less bored and also less o↵ task.

6.5 Do students have higher learning gains when feedback is adapted to their
a↵ective state?

Student knowledge of fractions was improved in both conditions, but the di↵er-
ence between the conditions was not statistically significant. Woolf et al. (2009)
show that a student’s on task behaviour leads to higher post-test scores, which,
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given that our results show that students in both conditions were mainly on
task, might explain why students in both conditions improved their knowledge
of fractions. Nevertheless, students in the a↵ect condition had slightly higher
learning gains, which although not statistically significant is encouraging.

Our results support Forbes-Riley and Litman (2011a) who describe how
the a↵ect-aware version of ITSPOKE led to higher learning than a control
condition, although the di↵erence was only statistically significant for a subset
of students (those who received the most uncertainty adaptations).

Our results also showed that the di↵erence between the conditions in re-
spect to learning gains was highest when students had low pre-test knowl-
edge scores. This supports research from D’Mello and Graesser (2013), which
showed that learning gains improved for students with low baseline knowledge
when the system responded to confusion.

As discussed above, the aim of our a↵ect-aware support is to enhance
a student’s a↵ective state - to move them from negative to positive a↵ec-
tive states - in order to improve student learning. Interestingly, our findings
suggest that students who had low pre-knowledge benefitted more from the
a↵ect-aware support. This is presumably because these low-attaining students
experienced more negative a↵ective states than those students who had high
pre-knowledge, and thus there were more opportunities for the system to move
them to a positive a↵ective state. This warrants further investigation.

6.6 Limitations

The limitations of this study are due mainly to practical constraints and our
decision to test the system in a setting as ecologically valid as possible.

The first two limitations are technical. First, we deliberately restricted our-
selves to voice and limited interaction data only, our goal being to test how
far these relatively straightforward and easily scalable modalities could be
taken. Unlike physiological sensing (such as facial expression or galvanic skin
responses monitoring), voice and interaction data are perceived by teachers
and parents as less intrusive and require only basic technology in the class-
rooms: voice data only requires a microphone, which are common in many
schools, while the interaction data requires no additional client-side technol-
ogy. In fact, given the promising results from our research (we were able to
detect e↵ectively students’ a↵ective states automatically based on their voice
and interaction data only), this limitation is also a strength.

Second, although we developed the exploratory learning environment (Frac-
tions Lab) and therefore were able to control its intelligent support compo-
nents, the structured practice environment (the pre-existingWhizz Maths) was
e↵ectively a black box. Presumably, more direct access to structured practice
interaction data would have enabled a richer and more accurate a↵ect diag-
nosis. Nevertheless, there is merit to black-boxing the learning activity and
establishing a protocol of communication between that part of the system and
the a↵ect modelling and intelligent support. In our case, it was su�cient for
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the environment to provide feedback counts and an analysis of whether the
feedback was followed and to expose di↵erent feedback types. However, it may
be necessary in other cases to modify the actual text provided or provide other
adaptations to the whole environment, all based on a↵ect.

Other limitations are due to the methodological choices we had to make.
First, to obtain comparative data, human annotated a↵ective states, we used
the BROMP methodology to collect observations of student a↵ect during the
sessions. This allowed us to achieve ecological validity but reduced the size of
the dataset for the evaluation to a subset of the students in the class.

In addition, as with other similar studies in the field, there are reliability
and validity issues stemming from the fact that for part of the study we rely
on human observations. For example, we were not able to fully hide the ex-
perimental condition from the annotators - the setting and whether or not the
students were overtly speaking could have made this obvious and implicitly
bias the annotations. However, both annotators were trained in the BROMP
method, and one of them was not fully aware of the existence of di↵erent con-
ditions nor the exact research questions. However, the high agreement between
the two annotators gives us confidence in the human observations. There was
also promising correlations between the human observations and the system
measurements, which again support the validity of the a↵ect detection.

A final limitation, that challenges the internal validity of this study, con-
cerned us both at the design and analysis stages and relates to the direct
comparability of our two conditions (a↵ect and non-a↵ect). For various tech-
nical, practical and experimental reasons, these had to di↵er in many respects,
such that ultimately it blurs the aspects that are responsible for the e↵ects
that we have reported here. This is a well known issue in evaluating interac-
tive adaptive systems (c.f. Paramythis et al., 2010). Accordingly, we followed
a layered process to evaluate di↵erent aspects of the learner model, building
it on top of previously collected data (Grawemeyer et al., 2015a,b), and we
internally validated its robustness. Nevertheless, the non-a↵ect condition nec-
essarily restricted other interactive aspects of the system. This was important
in our case because we wanted to maintain the ecological validity of the study
and to ensure its pedagogical underpinning.

For both ethical and pedagogical reasons, it was better to compare our
a↵ective learning approach with the current state of play of interactive learning
environments (i.e. those that o↵er a↵ect-agnostic supportive feedback). But
this introduces an experimental confound, because the a↵ect condition had
additional prompts to the non-a↵ect condition. Although we could have let
the system provide, for example, prompts based on random a↵ect decisions,
we know from our previous studies (Mavrikis et al., 2014; Grawemeyer et al.,
2015b) that asking students to speak for the sake of speaking without them
perceiving some impact would be problematic. Nevertheless, we consider that
this confound does not have an adverse e↵ect on our e↵orts to determine the
potential impact of the a↵ect-aware support since we see the design of the
prompts integral to the availability of a↵ect modelling. Notwithstanding that,
further research is needed to tease apart any interaction e↵ects.
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7 Conclusion

We have developed an adaptive learning environment that provides intelligent
formative feedback according to students’ a↵ective states. Although a↵ect de-
tection is also used as input for the recommendation of di↵erent learning ac-
tivities (exploratory or structured practice), in this paper, we focus only on
feedback type selection and presentation as direct manifestations of the sys-
tem’s learner model. Our system includes two Bayesian networks that are able
to predict the type and presentation of feedback that has the highest likeli-
hood to improve a student’s current a↵ective state. The latter is inferred from
a combination of a student’s interaction with the learning environment and
keywords and prosodic features as they are talking aloud.

We evaluated our a↵ect-aware intelligent formative support by comparing
it to a non-a↵ect version, where feedback was provided based on students’ per-
formance. Although our results show only a non-significant di↵erence between
the a↵ect and non-a↵ect conditions on learning gains, the statistically signif-
icant increase of knowledge in both conditions and the higher learning gains
in the a↵ect condition are promising, have implications both for the design
of educational technology and for traditional teaching, and warrant further
research.

During our evaluation, the students’ a↵ective states and task behaviour
were annotated by observers. We have shown, this way, that the automatic-
detection of the students’ a↵ective states correlates highly with the human-
detected a↵ective states. Importantly, our results show that in the a↵ect con-
dition students were significantly less bored than students in the non-a↵ect
condition. In addition, students in the a↵ect condition showed significantly
less o↵ task behaviour than students in the non-a↵ect condition. These are
important findings and rea�rm common-sense assumptions, that by respond-
ing appropriately to student a↵ect, teachers (not just technologies) are likely
to encourage students in a more productive engagement, which in turn will
lead to better learning outcomes as boredom and o↵-task behaviour can have
a negative impact in learning.

Future work includes the refinement of the Bayesian networks and the de-
tection of student a↵ective states from keywords, prosodic features and inter-
actions (as shown in Figure 3) with the newly collected data. Also, it would be
interesting to compare our automatically-detected and human-detected a↵ec-
tive states with student self-reports of their a↵ective states. While the human-
detected and self-reports might both have challenges, their triangulation would
increase the trustworthiness of the automatic-detection of a↵ective states.We
also plan to analyse our data further by looking in depth at the relationship
between a student’s a↵ective states and interactions with the learning environ-
ment, which includes detecting interaction patterns that are associated with
particular a↵ective states. In addition, given the promising results of open
learner models (OLMs) on learning (c.f. Long and Aleven (2017)), exploring
the impact of an open a↵ective model would also be especially interesting.
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Finally, the platform overall allows for further experimentation that can
help tease apart any interaction e↵ects and explore related research questions
and hypothesis on the role of a↵ect-aware modelling. This has implications
in both the better design of intelligent support systems but also for human
teaching in that findings from such a platform can also inform pedagogical
strategies for responding appropriately to student a↵ective states.
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