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Abstract Psychophysiology is the study of the relationship between psychology
and its physiological manifestations. That relationship is of particular importance
for both game design and ultimately gameplaying. Players’ psychophysiology of-
fers a gateway towards a better understanding of playing behavior and experience.
That knowledge can, in turn, be beneficial for the player as it allows designers to
make better games for them; either explicitly by altering the game during play or
implicitly during the game design process. This chapter argues for the importance
of physiology for the investigation of player affect in games, reviews the current
state of the art in sensor technology and outlines the key phases for the application
of psychophysiology in games.

1 Introduction

Computer game players are presented with a wide and rich palette of affective stim-
uli during game play. Those stimuli vary from simple auditory and visual events
(such as sound effects and textures) to complex narrative structures, virtual cine-
matographic views of the game world and emotively expressive game agents. Player
emotional responses may, in turn, cause changes in the player’s physiology, reflect
on the player’s facial expression, posture and speech, and alter the player’s attention
and focus level. Computer games, opposed to traditional music and video content,
are highly interactive media that continuously react to the users’ input. This interac-
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tivity can naturally accommodate mechanisms for real-time adaptation of game con-
tent aimed at adjusting player experience and realizing affective interaction [110].

The study of the relationship between psychology and its physiological manifes-
tations defines the area of psychophysiology [15]. Physiology has been extensively
investigated in relation to affect ([3, 17] among many others) so the relationship
between physiology and affect is by now undeniable; the exact mapping, however,
is still far from known. What is widely evidenced is that the sympathetic and the
parasympathetic components of the autonomic nervous system are involuntary af-
fected by affective stimuli. In general, arousal-intense events cause dynamic changes
in both nervous systems: an increase and a decrease of activity, respectively, at the
sympathetic and the parasympathetic nervous system. Alternatively, activity at the
parasympathetic nervous system is high during relaxing or resting activities. In turn,
such nervous system activities cause alterations in one’s electrodermal activity, heart
rate variability, blood pressure, and pupil dilation [15, 88].

This relation between physiology and affect has been exploited in game research
to detect player affect [109]. While some studies have investigated physiological
reactions in isolation, researchers often look at the reactions to aspects of the game
context [65, 62, 79]. The context of the game during the interaction is a necessary
input for appropriately detecting the psychophysiological responses of players. The
game context — naturally fused with other input modalities from the player — has
been used in several studies to predict different affective states and other dissimilar
mental states relevant to playing experience ([71, 86, 83] among others). The fusion
of physiology and gameplay or player behavioral metrics has been explored in a
small number of studies, typically by analyzing the physiological responses to game
events [20, 38, 79] but also using physiological and gameplay statistical features [66,
63]. Other modalities that have been explored extensively but are covered in other
parts of this book include facial expressions [49, 4, 36, 14, 112], muscle activation
(typically face) [20, 26], body movement and posture [5, 96, 49, 28, 11], speech
[97, 47, 45, 43, 7], brain interfaces [81, 1] and eye movement [5].

At the moment of writing there are a few examples of commercial games that
utilize physiological input from players. Most notably Nevermind (Flying Mollusk,
2015) is a biofeedback-enhanced adventure horror game that adapts to the player’s
stress levels by increasing the level of challenge it provides: the higher the stress the
more the challenge. A number of sensors are available for affective interaction with
Nevermind which include skin conductance and heart activity. The Journey of Wild
Divine (Wild Divine, 2001) is another biofeedback-based game designed to teach
relaxation exercises via the player’s blood volume pulse and skin conductance. It
is also worth noting that AAA game developers such as Valve have already experi-
mented with the player’s physiological input for the personalization of games such
as Left 4 Dead (Valve, 2008) [2].

This chapter builds upon the important association between player experience
and physiology in games, it provides a quick guide on the sensor technology avail-
able, and it outlines the key phases for building effective physiology-based affec-
tive interaction in games: annotation, modeling, and adaptation. The chapter explic-
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itly excludes electroencephalography (EEG) from the physiological signals covered;
EEG defines the core topic of another chapter of this book.

2 Why Physiology in Games?

Arguably several modalities of player input are still nowadays implausible within
commercial-standard game development. Pupillometry and gaze tracking are very
sensitive to distance from screen and variations in light and screen luminance, which
makes them rather impractical for use in a game application. Camera-based modal-
ities (facial expressions, body posture and eye movement) require a well-lit envi-
ronment often not present in home settings (e.g. when playing video-games) and
they can be seen by some users as privacy hazards (as the user is continuously
recorded). Even though highly unobtrusive the majority of the vision-based affect-
detection systems currently available cannot operate well in real-time [112]. Speech
is a highly accessible, real-time efficient and unobtrusive modality with great po-
tential for gaming applications (see corresponding chapter on speech); however, it
is only applicable to either games where speech forms a control modality (as e.g. in
conversational games for children [48, 111]) or collaborative games that naturally
rely on speech for communication across players (e.g. in collaborative first person
shooters). Aside the potential they might have, the appropriateness of facial expres-
sion, head pose and speech for emotion recognition in games is questionable since
experienced players tend to stay still and speechless while playing games [6]. Fur-
ther details about affect detection in games via images, videos and speech are given
in other chapters of this book.

Recent years have seen a significant volume of studies that explore the interplay
between physiology and gameplay by investigating the impact of different gameplay
stimuli to dissimilar physiological signals ([90, 68, 59, 58, 78, 95, 29, 65] among
others). Such signals are usually obtained through electrocardiography (ECG) [108],
photoplethysmography [108, 95], galvanic skin response (GSR) [59, 39, 40, 41],
respiration [95], EEG [70] and electromyography (EMG).

Existing hardware for EEG, respiration and EMG require the placement of body
parts such as the head, the chest or parts of the face to the sensors making those
physiological signals rather impractical and highly intrusive for most games. On the
contrary, recent sensor technology advancements for the measurement of electroder-
mal activity (skin conductivity), photoplethysmography (blood volume pulse), heart
rate variability and skin temperature have made those physiological signals even
more attractive for the study of affect in games. Real-time recordings of these can
nowadays be obtained via comfortable wristbands and stored in a personal computer
or a mobile device via a wireless connection.

It is evident that we can measure physiological responses to external stimuli via
several modalities of player input. Due to space constraints, however, in this chap-
ter we focus primarily on the two most popular, real-time efficient and appropriate
signals for affective games: electrodermal activity and heart activity. Before delving
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into the details of the sensor technology available and the methods for modeling
player’s affect via physiology we herein outline the key properties of these two
core physiological signals and their importance for psychophysiological studies (in
games and beyond).

2.1 Heart activity

Heart rate variability (HRV) refers to the physiological phenomenon that causes
variation in the time window between consequent heartbeats. HRV and heart rate are
derived through the detection of heart beats. The two core methods used to detect
heart beats include the electrocardiogram (ECG) and the pulse wave signal derived
from a photoplethysmograph (PPG) — also known as blood volume pulse sensor.
While ECG is generally considered superior compared to blood volume pulse (as it
provides a much clearer signal) it is not practical for affective gaming applications
since it requires the use of electrodes placed on a player’s chest.

There are numerous studies suggesting that heart rate and HRV are associated
with emotional arousal. In particular, the high-frequency (HF) band of HRV activ-
ity has been found to decrease with elevated anxiety [44]. On that basis, HRV has
been shown to be reduced under reported stress and worry states [13]. Moreover, it
has been suggested that the HF band of HRV is mainly driven by respiration and
appears to derive mainly from vagal activity [35]. Specifically, the energy of the
HF range, representing quicker changes in heart rate, is primarily due to parasym-
pathetic activity of the heart which is decreased during mental or stress load [35].
The multimodal association of heart rate and HRV to emotion and the real-time ef-
ficiency of available HRV sensors have made it a very popular measure of emotive
activity in games (see [104, 41] among many).

2.2 Electrodermal activity

Electrodermal activity (EDA) is the ability of the human body to cause continuous
variation in the electrical characteristics of the skin [12]. EDA is a core bodily re-
sponse when the sympathetic branch of the autonomic nervous system is activated
due to a stimulus. What is unique about the human skin is that is the only organ
that responds solely to alterations of the sympathetic nervous system; skin is not
affected by activities on the parasympathetic nervous system. Essentially, an ex-
ternal or internal stimulus may activate the sympathetic nervous system, which in
turn, activates the glands to release sweat. Sweat yields increased electrical activ-
ity which can be detected via electrical potentials between electrodes placed on the
skin. These electrodes are usually placed on the fingertips, the toes or the wrist.

The direct relationship between EDA and sympathetic arousal is well researched
and evidenced by now. As a result EDA is the most popular method for investigat-
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ing human psychophysiological phenomena [12] and skin conductivity is currently
amongst the most common modalities for measuring emotive responses that are
associated to arousal such as stress, frustration and anxiety (see [79, 39, 41, 104]
among many). Beyond affect, EDA has also been associated with manifestations of
cognitive processes [24].

3 Sensor Technology

Physiological sensor technology has seen significant advancements over the last
decade. The 8-channel ProComp Infiniti1 (see Figure 1c) was among the first hard-
ware devices used broadly for research in psychophysiology in e.g. physical inter-
active games [101, 104] (blood volume pulse and skin conductance), and racing
games [95] (respiration, blood volume pulse, skin conductance, and skin tempera-
ture). While providing signals of clinical-standard resolution, the ProComp Infiniti
device proved to be cumbersome for use in games due to its sensitivity to move-
ments and impractical for broad use due to its cost. In addition, all aforementioned
studies report the significant technical challenges faced with the blood volume pulse
sensor and its placement. Due to the lack of a grip for appropriate attachment to a
finger or ear lobe (see Figure 1c), the BVP sensor yielded noise-enhanced signals
that were challenging to process, to extract features from and/or to derive the heart
rate and heart rate variability of the player. Some other popular devices for measur-
ing skin conductance and/or heart activity include the Biopac GSR100C [10], the
Affectiva’s2 Q Sensor (which is no longer available), the BodyMedia Sensewear
[53], the BodyBugg armband and the Nymi band 3. All above devices, however,
have seen very limited use in gaming applications as they a) do not allow access
to real-time data (BodyMedia Sensewear, BodyBugg, Nymi), b) are highly intru-
sive (the Boipac device requires the application of conductive gel), c) they are very
sensitive to movement (Q sensor, Biopac), or d) they are very expensive for broad
gaming applications (e.g. Q sensor, ProComp Infiniti).

In recent years physiological sensor technology has delivered a plethora of sen-
sors that — compared to the aforementioned devices — are both more reliable for
data collection and more appropriate for gaming applications. A notable example is
the IOM biofeedback device which consists of three sensors: two electrodes for skin
conductance and one blood volume pulse sensor placed on the subject’s fingertips
(see Figure 1a). The use of small and accurate commercial apparatus like the IOM
biofeedback device in the least intrusive way minimizes (psychological) experiment
effects caused by the presence of recording devices and maximizes data reliability.
For its real-time efficiency, low cost and good data quality — mainly due to the ro-
bust finger grips of the sensors — IOM has been used extensively in several studies

1 http://thoughttechnology.com/
2 http://www.affectiva.com
3 https://www.nymi.com/
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(a) The IOM device used during the data collec-
tion experiment reported in [108].

(b) Empatica’s Embrace wristband

(c) The blood volume pulse sensor of the Pro-
Comp Infiniti device

(d) The Cardiio application for smartphones

Fig. 1: The key physiological signal sensors and devices discussed in this chapter.

for psychophysiology in games (e.g. see [108, 39, 41] among many). Furthermore,
IOM is the key sensor for commercial biofeedback games such as Nevermind (Fly-
ing Mollusk, 2015) and The Journey of Wild Divine (Wild Divine, 2001). Another
example of a successful wearable sensor is the Empatica’s4 Embrace wristband (see
Figure 1b). Embrace is built on the technical know how of the E4 wristband (used
e.g. in [41]) and the Q sensor and measures skin conductivity, skin temperature
and 3D movement (via an accelerometer and a gyroscope). It is real-time efficient,
highly unobtrusive for both home gaming settings and mobile gaming in the wild
and provides more reliable data compared to earlier wrist-based devices.

4 http://www.empatica.com/
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Nowadays there are quite a few smartphone/tablet software applications that are
able to support camera-based pulse detection (contact-less physiological measure-
ment) such as the Strees Check app for Android by Azumio; however, access to
real-time HRV data is not available to the user in most of these apps (if not all). We
particularly note the heart rate Cardiio app5 (see Figure 1d) which is build on early
studies on face-based pulse detection [76]. Cardiio approximates heart rate through
the face’s light reflection which is affected by the amount of blood available on a
face. A heart beat increases the amount of blood into one’s face which results in
lower levels of light reflection. Measurement accuracy for all these mobile appli-
cations is very close (e.g. up to a 3 beat per minute difference) to a clinical pulse
oximeter; however, the data is reliable only when the mobile’s or the tablet’s camera
is used in a well-lit environment.

For an extensive discussion on available physiological sensors and their corre-
sponding strengths and weaknesses the interested reader may refer to [88].

4 Annotating physiology with psychological labels

The question of how to best annotate affect has been a milestone challenge for affec-
tive computing. Appropriate methods and tools addressing that question can provide
better estimations of the ground truth which, in turn, may lead to more efficient af-
fect detection and more reliable models of affect. Affect annotation becomes even
more challenging within games due to their fast-paced and rich affective interaction.

Manually annotating emotion in games is a challenge in its own right both with
respect to the human annotators involved and the annotation protocol chosen. On
one hand, the human annotators need to be skilled enough to be able to approximate
the perceived affect well and, therefore, eliminate subjective biases introduced to
the annotation data. On the other hand, there are many open questions left for the
designer of the annotation study when it comes to the annotation tools and proto-
cols used. Will the person experiencing the emotion (first person) or others (third-
person) do the labeling? How well trained (or experienced) should the annotators
be and how will the training be done? Will the labeling of emotion involve states
(discrete representation) or does it involve the use of emotion intensity or affect di-
mensions (continuous representation)? When it comes to time, should it be done in
real-time or offline, in discrete time periods or continuously? Should the annotators
be asked to rate the affect in an absolute fashion or, instead, rank it in a relative
fashion? Answers to the above questions yield different data annotation protocols
and, inevitably, data quality, validity and reliability.

Representing both time and emotion as a continuous function has been one of
the dominant annotation practices within affective computing over the last 15 years.
Continuous labeling with respect to emotion appears to be advantageous compared
to discrete states labeling for several reasons. The states that occur in naturalistic

5 http://www.cardiio.com/
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data hardly fit word labels or linguistic expressions with fuzzy boundaries. Further,
when states are used it is not trivial to capture variations in emotion intensity and,
as a result, earlier studies have shown that inter-rater agreement tends to be rather
low [21]. The dominant approach in continuous annotation is the use of Russell’s
two-dimensional (arousal-valence) circumplex model of affect [84]. Valence refers
to how pleasurable (positive) or unpleasurable (negative) the emotion is whereas
arousal refers to how intense (active) or lethargic (inactive) that emotion is.

Continuous labeling with respect to time has been popularized due to the ex-
istence of tools such as FeelTrace (and its variant GTrace [23]) which is a freely
available software that allows real-time emotional annotation of video content [22],
the continuous measurement system [67] which has also been used for annotating
videos, and EmuJoy [69] which is designed for the annotation of music content.
The real-time continuous annotation process, however, appears to require a higher
amount of cognitive load compared to e.g. offline and discrete annotation protocols.
Such cognitive load often results in low inter-rater agreement and unreliable data
annotation [27, 57].

The most direct way to annotate an emotion in games is to ask the players them-
selves about their playing experience and build a model based on these annotations.
Subjective emotion annotation can be based on either players free-response during
play (think aloud protocols) or on forced data retrieved through questionnaires. Al-
ternatively, experts or external observers may annotate the playing experience in a
similar fashion. Third-person emotion annotation entails the identification of partic-
ular affective states by user experience and game design experts. The annotation is
usually based on the triangulation of multiple modalities of player and game input
such as the players head pose, in-game behaviour and game context [87].

Annotations (either self-reports or third-person) can be classified as rating (scalar),
class and preference. In rating, annotators are asked to answer questionnaire items
given in a rating/scaling form (as in [59]) — such as the affective aspects of
the Game Experience Questionnaire [75] — which labels affective states with a
scalar value (or a vector of values). In a class-based format subjects are asked
to pick an affective state from a particular representation which could vary from
a simple boolean question (was that game level frustrating or not? is this a sad
facial expression?) to an affective state selection from e.g. the Geneva Emotion
Wheel [8]. Finally, subjects are able to provide answers in a rank-based (pref-
erence) format, in which they are asked to compare an affective experience in
two or more variants/sessions of the game ([102, 100] among others) (was that
level more engaging that this level? Which facial expression looks happier?). A
plethora of recent studies in the area of affective annotation in games (and beyond)
[107, 106, 39, 99, 95, 61, 98] have shown the supremacy of rank-based emotion
annotation over rating and class-based annotation.
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5 Models of psychophysiology in games

In this section we outline the key phases of modeling physiological responses which
are labeled with affect annotations— i.e. deriving the mapping between player affect
and its physiological manifestations — and the challenges games pose to each one
of these phases. The phases we describe follow the core affect detection steps [18]
and include signal processing, feature extraction and selection, and modeling.

5.1 Physiological signal processing

Physiological signals are unidimensional time series, the quality and reliability of
which is dependent on the sensor technology available and the experiment protocol
followed. In that regard the signals are subject to standard preprocessing and noise
removal methods. Popular techniques include wavelet transform thresholding and
least mean square adaptive filters [37].

Games pose additional challenges when it comes to data collection via physi-
ological signals. First, particular sensors such as EEG or electrocardiogram can be
highly intrusive which, in turn, affects the quality of play and data gathered. Second,
the interaction in games is fast-paced and rich causing rapid body movements and
quick alterations in emotive states. Finally, there are so many factors contributing to
player experience (and affecting it) that not even the most carefully designed con-
trolled experiment can eliminate the potential effects manifested through a player’s
physiology. For an extensive overview of techniques for data preprocessing on phys-
iological signals one may refer to [16].

5.2 Feature Extraction

Once data is denoised any feature extraction mechanism is applicable to the signals.
Examples of feature extraction methods include standard ad-hoc (manual) feature
extraction such as average and standard deviation values of the signal, principal
component analysis and Fisher’s linear discriminant analysis. Focusing on the par-
ticularity of skin conductance as a signal for feature extraction it is worth noting
that the trough-to-peak analysis of galvanic skin response can be subject to super-
positioning of phasic and tonic activity. This necessitates the subtraction of baseline
measures or other forms of signal correction [12]. It has been suggested that even
with such corrections one may still confound phasic and tonic skin conductance
[9] which is undesirable in games as they predominantly activate skin conductance
via particular in-game events. To address this issue, features of a player’s skin con-
ductance can be extracted using continuous decomposition analysis [9]. The method
allows for the decomposition of phasic and tonic electrodermal activity and has been
applied for stress detection in games [39].
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Physiological feature extraction is naturally enriched through the game context.
To this end important game events can be used to determine the response time win-
dow that features can be extracted from. A number of studies have been adopt-
ing this event-based feature extraction approach for variant psychological signals
[50, 79, 80, 62, 39].

Because of the rich affective interaction and the availability of multitude types
and amounts of emotion elicitors, physiological signals derived from games are
rather complex to extract relevant features from. While standard methods used in
affective computing might suffice evidence in the literature has shown that methods
such as sequence mining [62] and deep learning [60] yield richer representations
of affect manifestations in games. In the study of Martinez and Yannakakis [62]
frequent subsequent physiological manifestations are fused with in game events to
provide relevant features for affect modeling. In the study of Martinez et al. [60],
deep learning can derive more complex temporal signal features that yield higher
affect model accuracies compared to standard (ad-hoc) designed features.

5.3 Feature Selection

Once features are extracted the subset of the most relevant features for a particular
affective state or emotion dimension (e.g. arousal) need to be derived from the set
of features available. It is desired that the affective model constructed is dependent
on a minimal number of features that yield the highest prediction accuracy. The
primary reasons for minimizing the feature subset are improvements of model ex-
pressiveness (interpretability) and reduction of computational effort in training and
real-time performance. Therefore, feature selection is utilized to find the feature sub-
set that yields that most accurate affective model and save computational effort of
exhaustive search on all possible feature combinations. The quality of the predictive
model constructed (see next subsection) depends critically on the set of input data
features chosen. The resulting set of physiological features define the input to the
affect model. Studies within affective games have so far primarily used sequential
forward selection, sequential backward selection and genetic search-based feature
selection [63, 102].

5.4 Modeling Psychophysiology

A model of a player’s psychophysiology predicts some aspect of the experience of
a player in general, a type of player or a particular player would have in some game
situation. If data recorded includes a scalar representation of affect, or classes and
annotated labels of user states, any of a large number of machine learning (regres-
sion and classification) algorithms can be used to build affective models. Available
methods include neural networks, Bayesian networks, decision trees, support vector
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machines and standard linear regression. On the other hand, if the ground truth of
player experience is given in a pairwise preference (rank) format (e.g. game version
X is more frustrating than game version Y) standard supervised learning techniques
are inapplicable, as the problem becomes one of preference learning [33, 102].
Available preference learning approaches include linear discriminant analysis, de-
cision trees, artificial neural networks (shallow and deep architectures) and support
vector machines. A number of such methods are currently included in the open-
access Preference Learning Toolbox6 [32].

6 Adapting the game to affect models

For affective interaction to be realized the game logic needs to adapt to the current
state of the game-player interaction. Whether agent behavior or parameterized game
content, a mapping is required linking a user’s affective state to the game context.
That mapping is essentially the outcome of the emotion modeling phase described
above. Any search algorithm (varying from local and global search to metaheuristic
and exhaustive search) is applicable for searching in the parameterised search space
and finding particular game states (context) that are appropriate for a particular af-
fective state of a specific player. For example, one can envisage the optimization
of agent behavior attributes for maximizing engagement, frustration or empathy to-
wards a player [51]. As another example, the study of Shaker et al. [86] presents the
application of exhaustive search for generating Super Mario Bros (Nintendo, 1985)
levels that are maximally frustrating, engaging or challenging for any player.

There are a number of elements (i.e. game content) from the game world that
an adaptive process can alter in order to drive the player to particular affective pat-
terns. Game content may include every aspect of the game design such as game
rules [93], reward systems, lighting [25, 30], camera profiles [108], maps [92], lev-
els [86], tracks [91, 94], story plot points [34, 82], sound [56, 55] and music [31].
Even behavioral patterns of NPCs such as their navigation meshes, their parame-
terized action space and their animations can be viewed as content. The adaptive
process in this case is referred to as procedural content generation (PCG) which is
the generation of game content via the use of algorithmic means. According to the
taxonomy presented in [94] game content can be necessary (e.g. game rules) or op-
tional (e.g. trees in a level or flying birds on the background). Further, PCG can be
either offline or online, random or based on a parameterised space, stochastic or de-
terministic and finally it can be either constructive (i.e. content is generated once) or
generate-and-test (i.e. content is generated and tested). The experience-driven PCG
framework [110] views game content as an indirect building block of player affect
and proposes adaptive mechanisms for synthesizing personalised game experiences.

A critical question once an adaptation mechanism is designed is how often par-
ticular attributes should be adjusted. The frequency can vary from simple predeter-

6 http://sourceforge.net/projects/pl-toolbox/
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mined or dynamic time windows [105] but adaptation can also be activated every
time a new level [86] or a new game [103] starts, or even after a set of critical
player actions — such as in Façade [64]. The time window of adaptation is heavily
dependent on the game under examination and the desires of the game designer. Re-
gardless of the time window adopted, adaptation needs to be interwoven well with
design if is to be successful.

7 Psychophysiology beyond games

In this section we argue for the broad impact of psychophysiological research and
we identify and briefly survey two primary application domains: education (via in-
telligent tutoring systems) and health. While games have been used extensively in
both of these domains simpler modes of human computer interaction (such as mere
simulations of virtual agents or tutors) are more common.

7.1 Intelligent Tutoring Systems

Confusion, anxiety and frustration are cognitive and affective states with a direct
impact on students’ learning process and outcome [74, 85]. Consequently, affect de-
tection has become increasingly important in the intelligent tutoring systems (ITS)
community [83]. The core idea is to enhance the learning capacity of a student and
the learning experience (via e.g. minimizing frustration) through a virtual (intelli-
gent) tutor that is capable of detecting the affective state of the student and reacting
to it. Research in ITS has mostly focused on the detection phase [19], evaluating
dissimilar methods to model student confusion [36, 42], frustration [20, 65] and at-
tention [77]. An example of game-based virtual tutors that react to automatically
detected affect can be found in [83]. Even when tutoring systems are not realized
through games, one can argue that a learning activity via interaction with a vir-
tual tutor and a learning activity through a game-based scenario yield similar psy-
chophysiological patterns. As a consequence, the methodology covered throughout
this chapter is directly relevant for the study of of intelligent tutoring systems.

7.2 Health Technologies

Nowadays, a significant part of the world’s population is afflicted by depression
and anxiety-related disorders, which are directly connected to emotion and moods.
Affect detection can be the key for the diagnosis and computer-based treatment
of such mental health issues. Post-traumatic stress disorder (PTSD) has attracted a
lot of attention within the affective computing literature. Holmgaard et al. [41, 39]
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have conducted representative research in this area. They designed and developed a
game-based tool for treating PTSD based on stress inoculation and exposure therapy
techniques. Physiological signals such as galvanic skin response and HRV were
recorded from patients. Those signals would be processed to derive stress profiles
for the patient based on his skin conductance manifestations of stress on particular
in-game auditory and visual events. Those stress profiles can be used both as a
diagnostic and as an assistive tool for PTSD (see more details in the games for
health chapter of this book).

Another application of affect detection to health technologies is related to syn-
dromes such as autism that involve difficulties processing or expressing emo-
tions. There has been a large body of studies in affective computing research to-
wards developing tools to help parents, teachers and carers of children with autism
[73, 54, 46]. These tools detect the affective state of children and communicate it to
themselves or others, enhancing communication.

An additional application of psychophysiology to health technologies has been
explored in relation to tele-medicine. In this particular domain, emotion is not at the
core of the treated illness but it is regarded as an important element of the communi-
cation between the patient and the doctor. Detecting the affective state of the patient
can help the doctor to better diagnose or simply better interact with the patient. This
enhanced communication can improve the patient’s satisfaction and lead to a faster
recovery. Lisetti et al. [52] developed such a system, in which the affective state of
the patient was predicted from her physiological signals and directly communicated
to the doctor.

8 Limitations of physiology

As already mentioned, most existing hardware for physiological recording require
the contact of body parts (e.g. head, chest or fingertips) to sensors making physio-
logical signals such as EEG and respiration rather impractical and highly intrusive.
Furthermore some sensors are still very costly for a broad use in gaming. As seen in
Section 3, however, recent advances in sensor technology have resulted in low-cost
unobtrusive biofeedback devices appropriate for gaming applications (such as the
IOM and the Embrace wristband). In addition, contact-less heart activity detection
applications such as Cardiio offer a promising future for physiology-based gaming.

Another point of concern for the use of physiology-based game interaction is the
effect of signal habituation. Habituation is the learning process of the autonomic
nervous system when exposed to a particular stimulus several times. According to
Solokov [89] the nervous system creates a representation (model) of the stimulus
which is updated each time the stimulus is presented. The closer the expected rep-
resentation (model) comes to the actual stimulus the lower the affect to bodily re-
sponses, which in turn yield physiological habituation. Habituation is of particular
relation to game-related research and connected to learnability in games. The design
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of a successful game-based affective interaction approach should be able to provide
dissimilar stimuli or control for habituation.

Physiological responses are affected by numerous factors including mood, phys-
ical movement, physical state, age, blood sugar levels, caffeine consumption, and
drug use. To eliminate as many subjectivity biases as possible one needs to record
the physiological state of a subject during a short resting period prior to any game-
play session. Baseline recordings from that period shall be used to both offset the
signals prior to affect modeling and calibrate any resulting affect models during the
interaction [72].

9 Conclusions

This chapter explored the potential of psychophysiology in gaming applications and
argued for the importance of physiology for achieving affective interaction and en-
hanced player experience. Putting an emphasis on heart and electrodermal activity
we surveyed the current state of the art in sensor technology and outlined the key
phases of physiology-based affect detection and modeling. We also discussed the
evident potential of psychophysiology (through games or other applications) in do-
mains such as intelligent tutoring systems and health. Existing studies in the litera-
ture, available sensor technology and a plethora of commercial-standard games that
incorporate psychophysiological processes as game affordances suggest that physi-
ology is an important means for realizing affective interaction in games with a great
potential for further research and development.
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