69 research outputs found

    Acyclic Subgraphs of Planar Digraphs

    Get PDF
    An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph. In 2011, Harutyunyan conjectured that every planar digraph on nn vertices without directed 2-cycles possesses an acyclic set of size at least 3n/53n/5. We prove this conjecture for digraphs where every directed cycle has length at least 8. More generally, if gg is the length of the shortest directed cycle, we show that there exists an acyclic set of size at least (1−3/g)n(1 - 3/g)n.Comment: 9 page

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,…,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,…,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+…+f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,…,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,…,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v

    Homomorphisms of (j,k)-mixed graphs

    Get PDF
    A mixed graph is a simple graph in which a subset of the edges have been assigned directions to form arcs. For non-negative integers j and k, a (j,k)−mixed graph is a mixed graph with j types of arcs and k types of edges. The collection of (j,k)−mixed graphs contains simple graphs ((0,1)−mixed graphs), oriented graphs ((1,0)−mixed graphs) and k−edge- coloured graphs ((0,k)−mixed graphs).A homomorphism is a vertex mapping from one (j,k)−mixed graph to another in which edge type is preserved, and arc type and direction are preserved. The (j,k)−chromatic number of a (j,k)−mixed graph is the least m such that an m−colouring exists. When (j,k)=(0,1), we see that these definitions are consistent with the usual definitions of graph homomorphism and graph colouring.In this thesis we study the (j,k)−chromatic number and related parameters for different families of graphs, focussing particularly on the (1,0)−chromatic number, more commonly called the oriented chromatic number, and the (0,k)−chromatic number.In addition to considering vertex colourings, we also consider incidence colourings of both graphs and digraphs. Using systems of distinct representatives, we provide a new characterisation of the incidence chromatic number. We define the oriented incidence chromatic number and find, by way of digraph homomorphism, a connection between the oriented incidence chromatic number and the chromatic number of the underlying graph. This connection motivates our study of the oriented incidence chromatic number of symmetric complete digraphs.Un graphe mixte est un graphe simple tel que un sous-ensemble des arêtes a une orientation. Pour entiers non négatifs j et k, un graphe mixte-(j,k) est un graphe mixte avec j types des arcs and k types des arêtes. La famille de graphes mixte-(j,k) contient graphes simple, (graphes mixte−(0,1)), graphes orienté (graphes mixte−(1,0)) and graphe coloré arête −k (graphes mixte−(0,k)).Un homomorphisme est un application sommet entre graphes mixte−(j,k) que tel les types des arêtes sont conservés et les types des arcs et leurs directions sont conservés. Le nombre chromatique−(j,k) d’un graphe mixte−(j,k) est le moins entier m tel qu’il existe un homomorphisme à une cible avec m sommets. Quand on observe le cas de (j,k) = (0,1), on peut déterminer ces définitions correspondent à les définitions usuel pour les graphes.Dans ce mémoire on etude le nombre chromatique−(j,k) et des paramètres similaires pour diverses familles des graphes. Aussi on etude les coloration incidence pour graphes and digraphs. On utilise systèmes de représentants distincts et donne une nouvelle caractérisation du nombre chromatique incidence. On define le nombre chromatique incidence orienté et trouves un connexion entre le nombre chromatique incidence orienté et le nombre chromatic du graphe sous-jacent

    Knots and distributive homology: from arc colorings to Yang-Baxter homology

    Full text link
    This paper is a sequel to my essay "Distributivity versus associativity in the homology theory of algebraic structures" Demonstratio Math., 44(4), 2011, 821-867 (arXiv:1109.4850 [math.GT]). We start from naive invariants of arc colorings and survey associative and distributive magmas and their homology with relation to knot theory. We outline potential relations to Khovanov homology and categorification, via Yang-Baxter operators. We use here the fact that Yang-Baxter equation can be thought of as a generalization of self-distributivity. We show how to define and visualize Yang-Baxter homology, in particular giving a simple description of homology of biquandles.Comment: 64 pages, 29 figures; to be published as a Chapter in: "New Ideas in Low Dimensional Topology", World Scientific, Vol. 5

    Two interactions between combinatorics and representation theory : monomial immanants and Hochschild cohomology

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1997.Includes bibliographical references (p. 125-128).by Harry Lewis Wolfgang III.Ph.D
    • …
    corecore