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Abstract

An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph.
In 2011, Harutyunyan conjectured that every planar digraph on n vertices without
directed 2-cycles possesses an acyclic set of size at least 3n/5. We prove this conjec-
ture for digraphs where every directed cycle has length at least 8. More generally,
if g is the length of the shortest directed cycle, we show that there exists an acyclic
set of size at least (1− 3/g)n.
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1 Introduction

A proper vertex coloring of an undirected graph G partitions the vertices into independent
sets. It is natural to try to reformulate this notion for directed graphs (digraphs). An
acyclic set in a digraph is a set of vertices whose induced subgraph contains no directed
cycle. The digraph chromatic number of a digraph D, denoted χA(D), is the minimal
number of acyclic sets into which the vertices of D may be partitioned. In this paper, we
consider oriented graphs, which are digraphs such that at most one arc connects any pair
of vertices.

Although recent results [1, 3, 8, 10] suggest that the digraph chromatic number be-
haves similarly to the undirected chromatic number, much still remains to be learned.
For instance, Neumann-Lara conjectured that all oriented planar graphs have digraph
chromatic number at most 2.

Conjecture 1 ([12]). Every oriented planar graph is digraph 2-colorable.
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The fact that Conjecture 1 holds if one allows three colors instead of two is well-known
and is an immediate consequence of 5-degeneracy of planar graphs (see, for instance [3]).
One approach to Conjecture 1 has been to look for lower bounds on the size of the largest
acyclic set of a planar oriented graph. Borodin [4] showed that in any undirected planar
graph there exists an induced forest of size 2n/5, where n denotes the number of vertices
of the graph. This result implies that there must exist an acyclic set of size at least 2n/5
in any oriented planar graph. Albertson and Berman [2] moreover conjectured that every
undirected planar graph has an induced forest of size at least n/2, which would imply
that every oriented planar graph has an acyclic set of size n/2. Harutyunyan and Mohar
[7] recently conjectured an even stronger bound on the maximum size of an acyclic set,
which, if true, would be tight:

Conjecture 2 ([7]). Every oriented planar graph on n vertices contains an acyclic set of
size at least 3n/5.

Finding the largest size of an acyclic set in a digraph is equivalent to finding a set of
vertices of minimum size which has a non-empty intersection with each directed cycle. In
[9], Jain et al. investigated the applications of this problem in deadlock resolution.

The digirth of a directed graph is the length of its shortest directed cycle. Fox and
Pach [5] considered how many vertices must be removed from an undirected graph G
to yield a forest, where G belongs to a hereditary family of graphs with small separators
(such as the family of planar graphs). Their approach also applies to the directed case and
shows that in an oriented planar graph there is always an acyclic set of size (1− c/√g)n,
where c is an absolute constant and g is the digirth.

Recently, Harutyunyan and Mohar [7] proved that every oriented planar graph of
digirth at least 5 is digraph 2-colorable, and therefore contains an acyclic set of size at
least n/2. They used an intricate vertex-discharging method to show that any minimal
counterexample must contain at least one of 25 specific configurations of vertices and arcs.
The authors posed the problem of finding a simpler approach for considering digraph
colorings in oriented planar graphs.

In this paper, we introduce such an approach to prove Theorem 7, which improves
known lower bounds on the largest acyclic set in oriented planar graphs of digirth at least
4. Specifically, we give a short proof of the fact that every oriented planar graph on n
vertices and of digirth g possesses an acyclic set of size at least (1− 3/g)n, thus proving
Conjecture 2 when g > 8. We also give a slightly stronger bound for the cases g = 4 and
g = 5. We prove Theorem 7 by using a corollary of the Lucchesi-Younger theorem [11] to
find an upper bound on the size of the minimum feedback arc set of an oriented planar
graph.

In Section 2, we prove our main result, Theorem 7. In Section 3, we describe some
potential extensions of Theorem 7 and difficulties that arise.
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2 Bounds on the largest acyclic set

In this section, we use a corollary of the Lucchesi-Younger theorem to prove Theorem 7.
We begin with some definitions. Given a directed graph D and a subset X of its vertices
V (D), we define X̄ = V (D)\X. If every arc between X and X̄ is directed from X to
X̄, then the set of such arcs is called a directed cut. A dijoin is a set of arcs that has a
non-empty intersection with every directed cut.

The Lucchesi-Younger theorem [11] gives the minimum size of a dijoin of a digraph:

Theorem 3 (Lucchesi-Younger [11]). The minimum cardinality of a dijoin in a directed
graph D is equal to the maximum number of pairwise disjoint directed cuts of D.

In the case that D is planar, the Lucchesi-Younger theorem has a useful corollary for
the dual of D. Given an oriented planar graph D, the dual of D, denoted D?, is defined as
follows. For a given planar embedding of D, construct a vertex of D? within each face of
D. For each arc uv of D separating faces f and g of D, a corresponding arc f ?g? ∈ A(D?)
is drawn between vertices f ? and g?. The direction of arc f ?g? is defined so that as it
crosses uv, v is on the left. It is simple to verify that the graph D? does not depend on
the planar embedding of D.

The following well-known result establishes a bijection between the directed cycles of
an oriented planar graph and the directed cuts in its dual:

Proposition 4. If D is an oriented planar graph, then the directed cycles of D are in
one-to-one correspondence with the directed cuts in D?.

Proof. Pick a planar embedding of D and then embed D? in the plane as defined above.
Given a directed cycle C in D, notice that all arcs of D? crossing an arc of C must travel
in the same direction: specifically, if C is oriented clockwise, then all arcs of D? crossing
C point inwards, and if C is oriented counterclockwise, then the arcs of D? crossing C
point outwards. Let X ⊂ V (D?) consist of the vertices of D? corresponding to all faces
of D inside C, and therefore the arcs of D? connecting X and V (D?)\X form a directed
cut.

Conversely, given a directed cut of V (D?), we reverse the method above to obtain a
directed cycle of D.

Given a directed graph, a feedback arc set is a set of arcs, the removal of which
eliminates all directed cycles. We will be concerned with minimum feedback arc sets,
namely those of minimum cardinality. Proposition 4 establishes the following corollary of
the Lucchesi-Younger theorem:

Corollary 5 ([11]). For an oriented planar graph, the minimum size of a feedback arc set
is equal to the maximum number of arc-disjoint directed cycles.

Proof. Given an oriented planar graph D, by the Lucchesi-Younger theorem, the minimum
cardinality of a dijoin of D? is equal to the maximum number of disjoint directed cuts of
D?. Now, by Proposition 4, any dijoin of D? corresponds to a unique feedback arc set of
D of the same size, and any set of disjoint directed cuts of D? corresponds to a unique set
of arc-disjoint directed cycles of D, also of the same size. This completes the proof.
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We also need one well-known lemma, which follows easily from Euler’s formula for
planar graphs.

Lemma 6. Any planar graph G with n vertices and m arcs satisfies m 6 3n− 6.

We now are ready to state and prove our main theorem.

Theorem 7. If D is an oriented planar graph with digirth g on n vertices, then there
exists an acyclic set in D of size at least n − 3n/g. Moreover, if g = 4, there exists an
acyclic set of size at least 5n/12, and if g = 5, there exists an acyclic set of size at least
7n/15.

Proof. A vertex cover of a given arc set A is a set S of vertices for which every arc in A is
incident to some vertex in S. Observe that if S is a vertex cover of a feedback arc set in
a digraph D, then the complement of S in V (D) is an acyclic set. This is because every
directed cycle must include an element of the feedback arc set.

Given an oriented planar graph D of digirth g, let H be a collection of arc-disjoint
directed cycles, each of which must have length at least g. Thus, by Lemma 6 the number
of cycles in H is at most a(D)/g 6 3n/g, where a(D) denotes the number of arcs of D.
Corollary 5 implies that there exists a feedback arc set with cardinality at most 3n/g.
Removing a vertex cover of this feedback arc set, we are left with an acyclic set of at least
n− 3n/g vertices.

For the cases g = 4, 5, we now derive a better bound by using the greedy algorithm to
obtain a smaller vertex cover of the feedback arc set. This is possible because 3n/g > n/2,
meaning that some vertices are incident to 2 or more feedback arcs. Suppose that our
feedback arc set consists initially of f arcs, where f 6 3n/g.

Let d equal the number of feedback arcs minus half the number of vertices. Thus,
initially d = f − n/2. At each step, we remove the vertex v that is incident to the most
feedback arcs, together with all feedback arcs incident to v. As long as d > 0, each step
removes one vertex and at least two feedback arcs. Such a step decreases d by at least
3/2. Let m be the number of steps taken before d 6 0, and let d′ 6 0 be the final value
of d. We conclude that

m 6
f − n/2− d′

3/2
=

2f − n− 2d′

3
.

After m steps, the number of vertices remaining is n−m, so the number of feedback
arcs remaining is d′ + (n−m)/2. We remove one vertex from each of these feedback arcs
so that the vertices remaining at the end form an acyclic set. The total number of vertices
removed is

m+ d′ +
n−m

2
6

n

2
+ d′ +

1

2
· 2f − n− 2d′

3
=

n+ f + 2d′

3

6
n+ f

3
6

n

3
+
n

g
.
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The number of vertices remaining in our acyclic set is thus at least

2n

3
− n

g
.

This is equal to 5n/12 for g = 4 and 7n/15 for g = 5.

Note that our result for g = 5 and g = 6 is already known; in fact, as mentioned
before, the main result of [7] implies the existence of an acyclic set of size at least n/2
for g > 5. However, our bound of 5n/12 improves all previous results for g = 4 and our
bound of n− 3n/g improves all previous results for g > 7.

3 Further directions

In this section we describe methods that might be used to strengthen our main result,
and difficulties that arise.

3.1 Digraph 2-colorings

Harutyunyan and Mohar [7] asked whether there is a simple proof of the fact that oriented
planar graphs of large digirth are digraph 2-colorable. We showed above that we can find
a very large acyclic set in an oriented planar graph of large digirth. It is natural to ask
whether, given a minimum feedback arc set as in Theorem 7, we can choose a vertex cover
Y of the feedback arc set such that Y induces an acyclic subgraph. This would imply
that oriented planar graphs of large digirth are digraph 2-colorable, because the subgraph
induced by V (D)\Y contains no feedback arcs and hence is acyclic. We now show that
there are oriented planar graphs for which no such Y can be found.

Proposition 8. There exists an oriented planar graph D such that, for any minimum
feedback arc set F of D, and for any vertex cover Y of F , there is a directed cycle in the
subgraph induced by Y .

Proof. We show that the digraph D in Figure 1 satisfies the necessary conditions. The
unique minimum feedback arc set {ab, bc, ac, ed, gf, hi} is indicated with dashed lines.
Notice that any vertex cover of the minimum feedback arc set must contain at least 2
vertices from the central triangle abc, suppose a and b without loss of generality. We must
now choose either d or e to cover arc de. However, if we choose d, then abd is a directed
3-cycle, and if we choose e, then abe is a directed 3-cycle. This completes the proof.

3.2 Improving bounds for small g

For small g, the bound we obtain in Theorem 7 on the maximum acyclic set of an oriented
planar graph on n vertices is less than n/2, and it is natural to ask whether we can improve
upon our bound. In Propositions 9 and 10, we now present two classes of planar oriented
graphs, of digirth 3 and 4, respectively, for which the minimum size of a set of feedback
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Figure 1: The oriented planar graph D. The unique minimum feedback arc set of D is
shown in dashed lines. Note that D is planar since arc ea can be relocated around abeqd,
and similarly for gb and ci.

arcs is significantly greater than n/2. Therefore, removing one vertex from each feedback
arc yields an acyclic set of size less than n/2. Although some feedback arcs may overlap
in certain vertices, as we demonstrate in the proof of Theorem 7, applying the greedy
algorithm still does not show the existence of an acyclic set of size at least n/2. Hence
these classes of graphs suggest that the methods used in Theorem 7 are unlikely to prove
significantly stronger bounds for digirth 3 and 4.

Given a digraph D, let f(D) denote the size of a minimum set of feedback arcs.

Proposition 9. There exists an infinite family of digraphs D3, such that for all D ∈ D3:

• D is planar, with digirth 3.

• f(D) = |V (D)| − 2.

Proof. We define Di ∈ D3 recursively. Let D0 be a directed 3-cycle, and for i > 0,
construct Di+1 as follows from a planar embedding of Di. Pick some face abc of Di that
forms a directed 3-cycle. Construct vertices d, e, f within abc, with arcs as shown in
Figure 2.
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Observe that |V (Di+1)| = |V (Di)|+3 and f(Di+1) = f(Di)+3. Since |V (D0)| = 3 and
f(D0) = 1, it follows by induction that f(Di) = |V (Di)| − 2 for every i. By construction,
Di is planar and has digirth 3.

a

bc

d

e f

Figure 2: Directed octahedral pattern for generating graphs of digirth 3 with large mini-
mum feedback arc set.

Proposition 10. There exists an infinite family of digraphs D4, such that for all D ∈ D4:

• D is planar, with digirth 4.

• f(D) = 5
8
|V (D)| − 3

2
.

Proof. As with D3, we define Di ∈ D4 recursively. Let D0 be a directed 4-cycle, and for
i > 0, construct Di+1 as follows from a planar embedding of Di. Pick some face abcd of
Di that forms a directed 4-cycle. Construct vertices e, f, g, h, i, j, k, l within abcd, with
arcs as shown in Figure 3.

Observe that |V (Di+1)| = |V (Di)|+8 and f(Di+1) = f(Di)+5. Since |V (D0)| = 4 and
f(D0) = 1, it follows by induction that f(Di) = 5

8
|V (Di)|− 3

2
for every i. By construction,

Di is planar and has digirth 4.

We have defined a class of digraphs D3 by recursive addition of an octahedral pattern,
and a class D4 by recursive addition of a cuboctahedral pattern. It is possible to define
a similar class D5, containing planar digraphs of digirth 5, by recursive addition of an
icosidodecahedral pattern. However, the resulting relation on f(D) falls short of |V (D)|/2:

f(D) =
11

25
|V (D)| − 6

5
.

Thus, for D ∈ D5, removing a vertex from each of a minimum set of feedback arcs yields
an acyclic set of size greater than |V (D)|/2. We cannot say whether the methods of
Theorem 7 may hold for general planar graphs of digirth 5.

the electronic journal of combinatorics 22(3) (2015), #P3.7 7



a b

cd

e

f

g

h

i j

kl

Figure 3: Directed cuboctahedral pattern for generating graphs of digirth 4 with large
minimum feedback arc set.

Acknowledgements

The authors would like to thank Jacob Fox for calling our attention to this problem and
Tanya Khovanova for helpful discussions and review. We would also like to thank the MIT
Department of Mathematics, the Center for Excellence in Education, and the Research
Science Institute for their support of this research.

References

[1] R. Aharoni, E. Berger, and O. Kfir. Acyclic systems of representatives and acyclic
colorings of digraphs. Journal of Graph Theory, pages 177–189, 2008.

[2] M. O. Albertson and D. M. Berman. A conjecture on planar graphs. Graph Theory
and Related Topics (J.A. Bondy and U.S.R. Murty, eds.), page 357. Academic Press,
1979.
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