13 research outputs found

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus läbi aastate jõudnud järgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lüh IoT). IoT ei tähista ühtainsat tehnoloogiat, see võimaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel üle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu näiteks nutitelefon ja tahvelarvuti on saanud meie igapäevased kaaslased ning oma mitmekülgse võimekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kätkevad endas võimekaid protsessoreid ja 3G/4G tehnoloogiatel põhinevaid internetiühendusi. Kuid kui kasutada seadmeid järjepanu täisvõimekusel, tühjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasäästlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasäästlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö käsitleb põhjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö käigus loodud raamistikud on kontseptsiooni tõestamiseks katsetatud mitmetes juhtumiuuringutes päris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Investigation into a best practice model for providing an integrated user experience with mobile cloud applications

    Get PDF
    Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience

    The Elements of Big Data Value

    Get PDF
    This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation

    On the role of Computational Logic in Data Science: representing, learning, reasoning, and explaining knowledge

    Get PDF
    In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions

    Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial

    Full text link
    Este documento contiene el proyecto docente e investigador del candidato Germán Moltó Martínez presentado como requisito para el concurso de acceso a plazas de Cuerpos Docentes Universitarios. Concretamente, el documento se centra en el concurso para la plaza 6708 de Catedrático de Universidad en el área de Ciencia de la Computación en el Departamento de Sistemas Informáticos y Computación de la Universitat Politécnica de València. La plaza está adscrita a la Escola Técnica Superior d'Enginyeria Informàtica y tiene como perfil las asignaturas "Infraestructuras de Cloud Público" y "Estructuras de Datos y Algoritmos".También se incluye el Historial Académico, Docente e Investigador, así como la presentación usada durante la defensa.Germán Moltó Martínez (2022). Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial. http://hdl.handle.net/10251/18903
    corecore