319 research outputs found

    Hand gesture recognition in uncontrolled environments

    Get PDF
    Human Computer Interaction has been relying on mechanical devices to feed information into computers with low efficiency for a long time. With the recent developments in image processing and machine learning methods, the computer vision community is ready to develop the next generation of Human Computer Interaction methods, including Hand Gesture Recognition methods. A comprehensive Hand Gesture Recognition based semantic level Human Computer Interaction framework for uncontrolled environments is proposed in this thesis. The framework contains novel methods for Hand Posture Recognition, Hand Gesture Recognition and Hand Gesture Spotting. The Hand Posture Recognition method in the proposed framework is capable of recognising predefined still hand postures from cluttered backgrounds. Texture features are used in conjunction with Adaptive Boosting to form a novel feature selection scheme, which can effectively detect and select discriminative texture features from the training samples of the posture classes. A novel Hand Tracking method called Adaptive SURF Tracking is proposed in this thesis. Texture key points are used to track multiple hand candidates in the scene. This tracking method matches texture key points of hand candidates within adjacent frames to calculate the movement directions of hand candidates. With the gesture trajectories provided by the Adaptive SURF Tracking method, a novel classi�er called Partition Matrix is introduced to perform gesture classification for uncontrolled environments with multiple hand candidates. The trajectories of all hand candidates extracted from the original video under different frame rates are used to analyse the movements of hand candidates. An alternative gesture classifier based on Convolutional Neural Network is also proposed. The input images of the Neural Network are approximate trajectory images reconstructed from the tracking results of the Adaptive SURF Tracking method. For Hand Gesture Spotting, a forward spotting scheme is introduced to detect the starting and ending points of the prede�ned gestures in the continuously signed gesture videos. A Non-Sign Model is also proposed to simulate meaningless hand movements between the meaningful gestures. The proposed framework can perform well with unconstrained scene settings, including frontal occlusions, background distractions and changing lighting conditions. Moreover, it is invariant to changing scales, speed and locations of the gesture trajectories

    A Study of Boosting based Transfer Learning for Activity and Gesture Recognition

    Get PDF
    abstract: Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.Dissertation/ThesisM.S. Computer Science 201

    Hand Gesture and Activity Recognition in Assisted Living Through Wearable Sensing and Computing

    Get PDF
    With the growth of the elderly population, more seniors live alone as sole occupants of a private dwelling than any other population groups. Helping them to live a better life is very important and has great societal benefits. Assisted living systems can provide support to elderly people in their houses or apartments. Since automated recognition of human gestures and activities is indispensable for human-robot interaction (HRI) in assisted living systems, this dissertation focuses on developing a theoretical framework for human gesture, daily activity recognition and anomaly detection. First, we introduce two prototypes of wearable sensors for motion data collection used in this project. Second, gesture recognition algorithms are developed to recognize explicit human intention. Third, body activity recognition algorithms are presented with different sensor setups. Fourth, complex daily activities, which consist of body activities and hand gestures simultaneously, are recognized using a dynamic Bayesian network (DBN). Fifth, a coherent anomaly detection framework is built to detect four types of abnormal behaviors in human's daily life. Our work can be extended in several directions in the future.School of Electrical & Computer Engineerin

    Multi-modal human gesture recognition combining dynamic programming and probabilistic methods

    Get PDF
    In this M. Sc. Thesis, we deal with the problem of Human Gesture Recognition using Human Behavior Analysis technologies. In particular, we apply the proposed methodologies in both health care and social applications. In these contexts, gestures are usually performed in a natural way, producing a high variability between the Human Poses that belong to them. This fact makes Human Gesture Recognition a very challenging task, as well as their generalization on developing technologies for Human Behavior Analysis. In order to tackle with the complete framework for Human Gesture Recognition, we split the process in three main goals: Computing multi-modal feature spaces, probabilistic modelling of gestures, and clustering of Human Poses for Sub-Gesture representation. Each of these goals implicitly includes different challenging problems, which are interconnected and faced by three presented approaches: Bag-of-Visual-and-Depth-Words, Probabilistic-Based Dynamic Time Warping, and Sub-Gesture Representation. The methodologies of each of these approaches are explained in detail in the next sections. We have validated the presented approaches on different public and designed data sets, showing high performance and the viability of using our methods for real Human Behavior Analysis systems and applications. Finally, we show a summary of different related applications currently in development, as well as both conclusions and future trends of research

    Computer Graphics and Video Features for Speaker Recognition

    Get PDF
    Tato práce popisuje netradiční metodu rozpoznávání řečníka pomocí příznaků a alogoritmů používaných převážně v počítačovém vidění. V úvodu jsou shrnuty potřebné teoretické znalosti z oblasti počítačového rozpoznávání. Jako aplikace grafických příznaků v rozpoznávání řečníka jsou detailněji popsány již známé BBF příznaky. Tyto jsou vyhodnoceny nad standardními řečovými databázemi TIMIT a NIST SRE 2010. Experimentální výsledky jsou shrnuty a porovnány se standardními metodami. V závěru jsou jsou navrženy možné směry budoucí práce.We describe a non-traditional method for speaker recognition that uses features and algorithms used mainly for computer vision. Important theoretical knowledge of computer recognition is summarized first. The Boosted Binary Features are described and explored as an already proposed method, that has roots in computer vision. This method is evaluated on standard speaker recognition databases TIMIT and NIST SRE 2010. Experimental results are given and compared to standard methods. Possible directions for future work are proposed at the end.

    Deep Learning-Based Action Recognition

    Get PDF
    The classification of human action or behavior patterns is very important for analyzing situations in the field and maintaining social safety. This book focuses on recent research findings on recognizing human action patterns. Technology for the recognition of human action pattern includes the processing technology of human behavior data for learning, technology of expressing feature values ​​of images, technology of extracting spatiotemporal information of images, technology of recognizing human posture, and technology of gesture recognition. Research on these technologies has recently been conducted using general deep learning network modeling of artificial intelligence technology, and excellent research results have been included in this edition
    corecore