2,419 research outputs found

    Energy Efficiency in the ICT - Profiling Power Consumption in Desktop Computer Systems

    Get PDF
    Energy awareness in the ICT has become an important issue. Focusing on software, recent work suggested the existence of a relationship between power consumption, software configuration and usage patterns in computer systems. The aim of this work was collecting and analysing power consumption data of general-purpose computer systems, simulating common usage scenarios, in order to extract a power consumption profile for each scenario. We selected two desktop systems of different generations as test machines. Meanwhile, we developed 11 usage scenarios, and conducted several test runs of them, collecting power consumption data by means of a power meter. Our analysis resulted in an estimation of a power consumption value for each scenario and software application used, obtaining that each single scenario introduced an overhead from 2 to 11 Watts, which corresponds to a percentage increase that can reach up to 20% on recent and more powerful systems. We determined that software and its usage patterns impact consistently on the power consumption of computer systems. Further work will be devoted to evaluate how power consumption is affected by the usage of specific system resource

    Context awareness computing in smart spaces using stochastic analysis of sensor data

    Get PDF
    In building a smart space, it becomes more critical to develop a recognition system which enables to be aware of contexts, since the appropriate services can be provided under the accurate recognition. As services satisfying for desires of individual human residents are more demanding, the necessity for more sophisticated recognition algorithms is increasing. This paper proposes an approach to discover the current context by stochastically analyzing data obtained from sensors deployed in the smart space. The approach proceeds in two phases, which is to build context models and to find one context model matching the current state space, however we mainly focus on the phase building context models. Experimental validation supports the approach and approved validity

    Archiving and Delivery of 3DTI Rehabilitation Sessions

    Get PDF
    In this paper we present CyPhy: a cyber-physiotherapy system that brings daily rehabilitation to patient’s home with supervision from trained therapist. With its archiving and delivery features, CyPhy is able to 1) capture and record RGB-D and physiotherapy-related medical sensing data streams in home environment; 2) provide efficient storage for rehabilitation session recordings; 3) provide fast metadata analysis over stored sessions for review recommendation; 4) adaptively deliver rehabilitation session under different networking capabilities; 5) support smooth viewpoint changing during 3D video streaming with scene rendering schemes tailored for devices with different bandwidth and power limitations; and 6) provide platform-independent streaming client for various mobile and PC environments

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed

    Ontology-based Activity Recognition Framework and Services

    Get PDF
    This paper introduces an ontology-based integrated framework for activity modeling, activity recognition and activity model evolution. Central to the framework is ontological activity modeling and semantic-based activity recognition, which is supported by an iterative process that incrementally improves the completeness and accuracy of activity models. In addition, the paper presents a service-oriented architecture for the realization of the proposed framework which can provide activity context-aware services in a scalable distributed manner. The paper further describes and discusses the implementation and testing experience of the framework and services in the context of smart home based assistive living

    Energy-Aware Mobile Learning:Opportunities and Challenges

    Full text link

    Propulsion Controls and Diagnostics Research at NASA Glenn Research Center

    Get PDF
    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the National Aeronautics and Space Administration (NASA) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch (CDB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This paper describes the current activities of the CDB under the NASA Aeronautics Research and Exploration Systems Missions. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems

    Use of domain-specific language in test automation

    Get PDF
    The primary aim of this research project was to investigate techniques to replace the complicated process of testing embedded systems in automotive domain. The multi-component domain was composed of different hardware to be used in testing procedure which increased the level of difficulty in testing for an operator. As a result, an existing semi-automated testing procedure was replaced by more simpler and efficient framework (ViBATA). A key step taken in this scenario was the replacement of manual GUI interface with the scriptable one to enhance the automation. This was achieved by building a Domain-specific language which allowed test definition in the form of human readable scripts which could be stored for later use. A DSL is a scripting language defined for a particular domain with compact expressiveness. In this case the domain is testing embedded systems in general and automotive systems in particular. The final product was a test case specification document in the form of XML as an output of generated code from this DSL which will be input to ViBATA to make test specification component automated. In this research a comparative analysis of existing DSLs for alternative domains and investigation of their applicability to the presented domain was also performed. The technologies used in this project are Xtext to define the DSL grammar, Xtend to generate code in Java and Simple framework to generate output in XML. The stages involved in DSL development and how these stages were implemented is covered in this thesis. The developed DSL for this domain is tested for automotive and calculator systems in this thesis which proved that this is more general and flexible. The DSL is consistent, efficient and automated test specification component of testing framework in embedded systems
    • 

    corecore