

CRANFIELD UNIVERSITY

Ambreen Hussain

Use of Domain Specific Languages in Test Automation

School of Engineering

Software Test Automation

MSc by Research

Academic Year: 2012 - 2013

Supervisor: Dr. Stuart Barnes

April 2013

CRANFIELD UNIVERSITY

School of Engineering

Software Test Automation

MSc by Research

Academic Year 2012 - 2013

Ambreen Hussain

Use of Domain-Specific Language in Test Automation

Supervisor: Dr. Stuart Barnes

April 2013

This thesis is submitted in partial fulfilment of the requirements for

the degree of MSc

(NB. This section can be removed if the award of the degree is

based solely on examination of the thesis)

© Cranfield University 2013. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

The primary aim of this research project was to investigate techniques to

replace the complicated process of testing embedded systems in automotive

domain. The multi-component domain was composed of different hardware to

be used in testing procedure which increased the level of difficulty in testing for

an operator. As a result, an existing semi-automated testing procedure was

replaced by more simpler and efficient framework (ViBATA). A key step taken

in this scenario was the replacement of manual GUI interface with the

scriptable one to enhance the automation. This was achieved by building a

Domain-specific language which allowed test definition in the form of human

readable scripts which could be stored for later use.

 A DSL is a scripting language defined for a particular domain with compact

expressiveness. In this case the domain is testing embedded systems in

general and automotive systems in particular. The final product was a test case

specification document in the form of XML as an output of generated code from

this DSL which will be input to ViBATA to make test specification component

automated.

In this research a comparative analysis of existing DSLs for alternative domains

and investigation of their applicability to the presented domain was also

performed. The technologies used in this project are Xtext to define the DSL

grammar, Xtend to generate code in Java and Simple framework to generate

output in XML. The stages involved in DSL development and how these stages

were implemented is covered in this thesis.

The developed DSL for this domain is tested for automotive and calculator

systems in this thesis which proved that this is more general and flexible. The

DSL is consistent, efficient and automated test specification component of

testing framework in embedded systems.

Keywords:

Xtext, Xtend, Eclipse, Xbase, System Testing, Automotive Systems

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Stuart Barnes to confide in me and

giving this opportunity first and secondly for mentoring me from start till end of

this research by arranging meetings and resolving issues I had. I want to thank

my husband Mr. Mohsin as well for making nice curries for me. His support and

encouragement was very important for me to achieve these results. Last but not

least I am very much grateful to my parents, family and friends for their prayers

and wishes.

iii

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS.. ii

LIST OF ABBREVIATIONS .. vi

Glossary ... viii

1. INTRODUCTION ... 1

1.1 Kinds of DSL .. 2

1.1.1 External DSL ... 2

1.1.2 Internal DSLs .. 3

1.2 Benefits of building a DSL .. 5

1.2.1 Increase development productivity .. 5

1.2.2 Better communication with people in Domain 5

1.2.3 Change in Execution context .. 6

1.2.4 Alternative Computational Model .. 6

1.3 Problems with DSLs ... 7

1.3.1 Difficulty in learning languages ... 7

1.3.2 Building Cost ... 7

1.3.3 Densely populated Language ... 8

1.3.4 Blinkered Abstraction .. 8

1.4 Motivation ... 8

1.5 Aims and Objectives .. 9

2 Literature Review .. 12

2.1 Test Automation Techniques ... 12

2.1.1 Testing Framework/Workbench .. 12

2.1.2 Record/Playback Testing (R/P) ... 14

2.1.3 Model-Based Test Automation .. 15

2.2 Two approaches to perform Domain Analysis 16

2.3 External or Internal DSL ... 19

2.4 Textual or Graphical DSL ... 19

2.5 Tool comparison ... 21

2.5.1 Comparison of MSDSL tools and Eclipse modelling plug-ins

Framework .. 21

2.5.2 A Comparison of Tool Support for Textual Domain-Specific

Languages .. 22

2.6 Model Based Testing in Automotive Systems 23

2.7 Example Implementations of DSL based Systems 24

2.7.1 A DSL for Simulation Composition .. 24

2.7.2 CAST: Automated Software Tests for Embedded Systems 25

2.7.3 Habitation: A DSL for Home Automation 27

2.7.4 A Domain-Specific Language for Ubiquitous Healthcare 27

2.7.5 Domain Specific language for Cellular Interactions 28

iv

2.7.6 A DSL in Embedded Systems ... 29

2.7.7 MobDSL .. 29

2.7.8 SLCO .. 30

3 Theory and Technologies .. 32

3.1 Technologies used in the Project ... 32

3.1.1 Eclipse Xtext ... 32

3.1.2 Xtend .. 33

3.1.3 Simple Framework .. 35

3.2 Development Stages of DSL .. 35

3.2.1 Domain Analysis and DSL Behaviour ... 35

3.2.2 Define Concrete Syntax and Rules (Grammar) 36

3.2.3 Development of Language Artefacts ... 38

3.2.4 Model Constraint ... 38

3.2.5 Integrating DSL with target Platform ... 39

3.2.6 DSL to platform Transformation .. 40

3.3 Software Testing .. 42

4 Methodology .. 44

4.1 1st generation testing procedures - ControkDesk & Python scripts 44

4.2 2nd generation testing procedures - ViBATA 46

4.3 Overview of DSL .. 55

4.4 Implementation of Development stages of DSL 56

4.4.1 Domain Analysis ... 56

4.4.2 Using Domain Elements to Create Grammar Rules 57

4.4.3 Writing Code Generator in Xtend .. 62

4.4.4 Model Validation ... 72

4.4.5 Model Scoping .. 74

4.4.6 Content Assist ... 76

4.5 DSL to Platform Transference .. 77

4.5.1 Program in DSL .. 78

4.5.2 Generated Code ... 80

4.5.3 Output of the Code .. 82

4.6 XML Plugin for DSL output in JLR Project ... 82

5 Results, Analysis and Discussion .. 85

5.1 Use Cases ... 85

5.2 Validation of Use Cases ... 85

5.2.1 Define Environment and Test Case .. 85

5.2.2 Define Test Setup ... 95

5.2.3 Defining XML File and Location .. 96

5.3 Research Questions ... 99

5.4 Implications .. 100

5.4.1 Can this DSL work with other embedded system? 100

5.4.2 What will happen if Device Changes ... 105

v

5.4.3 What will happen if DSL program variable changes 106

5.4.4 What will happen if user selects an XML file having different

elements.. 106

6 Conclusion and Future work .. 108

6.1 Future Work ... 109

REFERENCES ... 111

APPENDICES .. 118

Appendix A Modifications done in Software .. 118

vi

LIST OF ABBREVIATIONS

JLR

ABB

IPC

Jaguar Land Rover

Asea Brown Boveri

Instrument Panel Cluster

APT Automatically Programmed Tool

BNF Backus-Naur Form

DSL

GPL

ViBATA

Domain-Specific Language

General Purpose Language

Visual Based Test Automation

AST

EBNF

ECU

SUT

TAF

ACT

GMF

OMG

TPT

HiL

MiL

SiL

MDE

oAW

API

JRE

JVM

JDT

OCL

TSM

TCM

TEM

HD

TD

TAC

MIC

CAST

TESLA

Abstract Syntax Tree

Extended Backus-Naur Form

Electronic Control Unit

System Under Test

Test Automation Framework

Air Traffic Controller

Graphical Modelling Framework

Object Management Group

Time Partitioning Testing

Hardware in the Loop

Model in the Loop

Software in the Loop

Model Driven Engineering

OpenArchitectureWare

Application Programming Interface

Java Runtime Environment

Java Virtual Machine

Java Development Tools

Object Constraint Language

Test Specification Manager

Test Configuration Manager

Test Execution Manager

Hardware Driver

Test Driver

Test Automation Core

Model-Integrated Computing

Computer-Aided Specification and Testing

Test Specification Language

vii

viii

Glossary

MiL: Model-in-the-Loop testing refers to the kind of testing done to verify the

accuracy / acceptability of a plant model or a control algorithm. [75]

HiL: Hardware-in-the-Loop refers to a process in which an embedded

system (e.g. real electronic control unit or real mechatronic component) via its

inputs and outputs to a matched counterpart, which generally HiL Simulator is

known and serves as a replica of the real environment of the system is

connected. [76]

SiL: In the method of software in the loop (SiL) as opposed to HiL no special

hardware is used. The created model is the software only converted to the code

understood by the target hardware (for example, a MATLAB / Simulink model to

C-code). This code is executed on the development computer, together with the

simulated model, instead of running as hardware in the loop on the target

hardware

http://de.wikipedia.org/wiki/Eingebettetes_System
http://de.wikipedia.org/wiki/Eingebettetes_System
http://de.wikipedia.org/w/index.php?title=HiL-Simulator&action=edit&redlink=1
http://de.wikipedia.org/wiki/MATLAB
http://de.wikipedia.org/wiki/Simulink

1

1. INTRODUCTION

A Domain-Specific Language (DSL) is a small computer programming

language that focuses on particular domain with limited expressiveness [1].

It is not a new technology as the concept has been there since the 1950s.

Examples include Automatically Programmed Tool (APT), a DSL for

numerically controlled machine tools programming, developed in 1957-1958

and Backus-Naur Form (BNF) is the well-known syntax specification

formalism developed in 1959 [30]. The opposite approach to DSL is a GPL

(General Purpose Languages) such as Java and C#. Although a GPL can

be used to solve any kind of computing problem, it might not always give the

best solution. A key difference between a GPL and a DSL is scope of DSL is

limited to a specific problem domain while GPL’s scope is much wider. GPL

follows an imperative computation model which tells the computer what

should happen in what sequence and how it should happen by using

conditional statements, variables and loops in program. The program in GPL

does not display the intent of the program instead a sequence of steps.

While DSL uses declarative programming model which concentrates more

on what should happen instead of how it should happen. Code written using

DSL shows the intent of the program [1]. A DSL can also adopt imperative

computational model mostly technical DSLs does it but it will still hide a lot of

information about the code [2]. DSL improves developers’ productivity and

communication with domain user. Examples of DSL include, Regular

expressions for text processing, Logo for pencil like drawing, Hyper Text

Markup Language (HTML) [45] and Ruby on Rails for building web

applications, Cascading Style Sheets (CSS) [46] for defining style of

elements on web page and Structured Query Language (SQL) [47] for

relational databases. [44]

2

1.1 Kinds of DSL

There are two main kinds of DSL: External DSL and Internal or embedded DSL.

In this section details of these styles of creating DSL are given

1.1.1 External DSL

An external DSL is a language with custom or borrowed (XML) syntax, separate

from the main language of the application it works with. This custom syntax is

formed by defining the grammar for DSL using notation like BNF, or Extended

Backus-Naur Form (EBNF) based Xtext. The grammar is a collection of rules

defined to make the syntax of language. A tool such as Another Tool for

Language Recognition (ANTLR) [48] or GNU Bison [49] generates a parser by

running over the code and produces an abstract syntax tree (AST). Program

written in an external DSL can be interpreted directly or can generate code in a

GPL to execute in target platform. The most common examples are SQL, CSS,

Regular expressions and XML configuration files. For example consider text

processing to validate an Israeli phone number 03-9876543. A code in GPL to

do this is shown in Figure 1.1

Figure 1.1 Code in GPL to validate phone number [2]

The code in figure 1.1 is concentrating more on how to check an input string

and validate if it is a phone number. This code is difficult to understand for a

non-programmer who will need an effort to comprehend it. Now consider using

a tool which is dedicated to text processing known as Regular Expressions.

3

Same task using this tool is confined to one line code only shown in Figure 1.2

[2]

Figure 1.2 code in Regular Expression to Validate Phone Number [2]

The code in Figure 1.2 is completing intent of DSL with less code without stating

how it is done in quite clearer way but to understand this line of code one will

need to understand syntax of the DSL in this case it is regular expressions.

1.1.2 Internal DSLs

Also known as embedded DSLs, an internal DSL is a particular way of using an

existing GPL. An internal DSL uses a subset of the host language’s features in

a particular style to handle one small aspect of the system. Examples of internal

DSL are Lisp, Ruby etc. Consider the following example which defines the

difference between the two kinds of DSL. In this example we are having a

problem of designing set of shapes and want to design a graphical modelling

tool. A grammar with some rules for this DSL is shown in figure 1.3 [16]

Figure 1.3: Grammar for the DSL [16]

4

In this grammar it is assumed the definitions for Id, Number and Color are

defined in grammar defining language. The rule Definitions is having arbitrary

number of rule Definition which is having some keywords such as Define, Width

and Height. ‘Eq’ points to another rule which defines equal (=) sign. Rule

‘Decorator’ defines position which is another rule. The following snippet of code

is defining a function for Rectangle shape using this grammar Figure 1.4

Figure 1.4 an example of code in external DSL [16]

This form of making DSL in which grammar is made first and parsed by a parser

generator known as external DSL but the same objective can be easily

achieved by the following script in C# (Figure 1.5) by using libraries and

structures previously defined for the shapes and drawings.

Figure 1.5 an internal DSL example [16]

Both of above techniques of creating DSL achieve the same goal. The intent of

the code is clear, expressive and complete. The focus is limited and approach is

declarative.

5

1.2 Benefits of building a DSL

DSLs are tools with limited focus and are not like object-oriented or agile

processes of developing software. DSL is a thin coating over a model where the

model can be a library or framework. The benefits of DSL should be kept

separate from those provided by model. DSLs have certain benefits which are

defined in this section. When anyone considers creating a DSL he should keep

these benefits in mind and decide which is applicable to his circumstances. [1].

1.2.1 Increase development productivity

Main advantage of a DSL is that it delivers the objective of system in more clear

and concise way. There is less probability of defects in code due to limited

expressiveness. The clarity of code makes it easier to write the code and easier

to find the defects. Defects in the system impact productivity because it takes

time to debug, find and fix these. The model alone provides quite substantial

improvement in productivity. It avoids duplication by gathering common code; it

also provides abstraction which makes easier to understand the problem. DSL

enhances benefits by providing more expressiveness to read and manipulate

the abstraction, thus increase development productivity. It can help people to

learn how to use an API and how different methods in API should be combined

together [1].

1.2.2 Better communication with people in Domain

The main reason of any software’s failure is lack of communication between its

user and developer. DSL can improve this communication by providing a

language focused on a particular domain. This benefit does not fit for every type

of DSL such as for regular expression. Because regular expressions exhibit

complex structure to solve the problem in text processing. The user needs to

learn each symbol to define an expression for processing text such as text to

validate email address as shown in section 1.1.1. It is a common argument that

with DSLs there will be no need of programmers anymore but that is not true.

Domain experts will not compose DSLs but only read, understand and write

programs using the language [1]. In this way they can find faults easily.

6

Involving domain experts can help to perform ‘Domain Analysis’ to build domain

models which will be described in section 2.2.

1.2.3 Change in Execution context

The reason that generated code can run in different environment is main driver

of using DSL. This usage brings limitations in case of internal DSL because it

uses host language to process. A model can be executed directly or code can

be generated from it. DSL allows execution of same behaviour in different

language environments using code generation. One can create business rules

to generate code in C# and Java or validations can be defined which can run in

C# on the server and JavaScript on the client [1].

1.2.4 Alternative Computational Model

A GPL uses an imperative computation model which means instructing the

computer to do things in a specific sequence, use conditional statements to

handle control flow, loops and variables. A software can be developed with

imperative logic but after a while developers think it could be done better with

Dependency Network e.g. to run a test compilation always need to be updated.

So the languages such as Ant which are designed to describe builds use

dependencies between tasks as primary structuring mechanism. This kind of

non-imperative programming also known as declarative programming because

it allows declaring what should happen instead of describing how should

happen. The behaviour of alternative computation model comes from Semantic

model. DSL makes it much easier for people to manipulate declarative

programs because it populates the semantic model [1]

The reasons because of which someone would be interested in making DSLs

are described in similar way by [2]

1. To make a technical task simpler for domain expert because of limited

expressiveness.

2. To express actions and rules using terms related to a particular domain

which are familiar to people in domain

3. To replace manual system by automating task and actions.

7

1.3 Problems with DSLs

One should not decide to create a DSL if the benefits given above are not

applicable to his problem or the benefits are not worth the cost of building the

DSL. Many problems with DSLs are related to any particular style of building

DSL. Even if a DSL is worth applying different problems arise that are

overstated because usually people are not familiar with how to develop a DSL.

This section defines problems with DSL mentioned by [1]

1.3.1 Difficulty in learning languages

One problem people report is difficulty in learning different languages if a project

has more than one DSL. They underestimate how hard to learn a GPL. Every

project has some abstractions in codebase which needs an effort to learn. If a

project is using a GPL, it will be using different libraries to capture those

abstractions. A DSL is much simpler to learn than a GPL but the question is

how hard it is to learn a model underlying a DSL on its own. A DSL makes it

easier to understand and manipulate that model which reduces the learning

cost.

1.3.2 Building Cost

As there is code to write and maintain a DSL that requires a small building cost.

A DSL should not be developed if the benefit is limited. Every library cannot be

benefited by having DSL wrapper over it such as if command-query API is

working fine then there is no need to build another API on the top of it.

Maintaining a DSL is quite crucial, a simple internal DSL can be problematic if

most of members of development team find it hard to understand and with

parsers external DSL is intimidating for them. One thing which increases the

cost of DSL development is that people are not used to building it and there are

new techniques to learn. Although these costs should not be ignored they can

lessen with time. The cost of building DSL is the cost over the cost of building a

model. Every complicated area has some mechanism to overcome its

8

complexity, if it is complicated to build a DSL then it is complicated enough to

benefit from a model. A DSL can help to think about a model (library or

framework) and reduce its building cost. It can make it easier to deal with bad

library by wrapping it up.

1.3.3 Densely populated Language

If a company builds its systems using an in-house built language, it becomes

difficult to hire new staff and keep up with technology change. A DSL should not

have too much functionality that it accidently becomes a GPL. A focus on its

limited expressiveness should not be ignored. If it needs more functionality it is

better to consider creating more than one language and combine them instead

of making one DSL too big. Secondly for a particular problem if there is already

a DSL available and it is open source, it is better to use that instead of making

one from scratch.

1.3.4 Blinkered Abstraction

A DSL always has some abstraction which enables to think about a subject

area and allows expressing the behaviour of the domain in easier way.

Blinkered abstraction is something that puts blinkers on one’s thinking and does

not fit in the abstraction. It takes a lot of time and effort to fit it in instead of

changing abstraction to absorb the new behaviour. With any abstraction, a DSL

should be looked like something evolving not finished [1].

1.4 Motivation

The need of Domain-Specific Language for test automation in this project came

from software needed by testing team at JLR (Jaguar Land Rover). This

software named as ViBATA (Visual Based Test Automation) is built by Cranfield

University and is currently working at JLR. The purpose of this software is to

replace a tightly coupled semi-automated testing system. The previous manual

testing involved reading test case from Excel sheets; sending signals to

9

Instrument Panel Cluster (IPC) with the help of graphical component of

ControlDesk which is experiment software for seamless Electronic Control Unit

(ECU) development; and getting output on IPC. This manual testing was

replaced by semi-automated testing system which introduced the use of camera

to capture output as an image which could be recorded by software named

Insight. The details of this previous implementation of testing procedure are

given in section 4.1 of this thesis.

Transference of test cases from Excel sheet to ViBATA is done by efficient

functionality which allows copying a test case and paste it on the software but is

still manual. On executing a test, input lines of the test case can send signals to

the IPC and output lines compare the result obtained from camera with the

expected outcome. The detailed overview of the software is described in section

4.2.

Now the problem is test case transference in ViBATA is manual. User need to

copy each test case and paste it onto the software. This transference can be

made automated by introducing even more efficient programming code which

could read excel sheet and recognise test case and enter into the system in

their respective categories and IPCs. But would this functionality be consistent

with every release of test case specification excel sheet and enter test cases

without any mistake. This question gave the idea of using Domain-Specific

language because of its limited expressiveness, clarity and descriptive nature.

With DSL test case transference can be made automated and it can bring a lot

of flexibility.

1.5 Aims and Objectives

To automate the test case transference DSL will be the best choice because of

its declarative nature and limited expressiveness. Test cases could be defined

by using a interface but that would not be that efficient as DSL could be.

Different versions of SUT will have same test case specifications with little detail

10

changed which can be made easily by using DSL and test cases can be created

for each version of SUT in no time. Scripting language is always a good choice

to specify test cases in any testing system. The main objectives of this research

in this regard are

1. Build a domain-specific language to provide domain user with a facility to

define test cases and information about device used. He can define test

setup. He should also be able to update and delete the test cases

2. Language should be easy to understand and learn for domain user

3. The output of the code generated by program written in DSL should be

consistent and readable for ViBATA

4. The code generation from DSL should be flexible which will bring the

novelty in testing embedded systems

5. Language should be able to detect errors

6. Language should facilitate user with code completion

The approach of using DSL in domain of testing embedded system is also used

by Wahler [9] at ABB [50]. The testing framework is decoupled and language is

external type of DSL with custom syntax explained in detail in section 2.7.2. The

novelty brought by current study is the introduction of flexible code generation.

Wahler used Scala interpreter to execute the language instructions while this

approach will use code generator to produce code in developer’s choice GPL.

Two research questions are also observed during the development of this DSL,

first is what are the characteristics of the DSL for testing embedded systems

and second is what we need to extend it to specific environment i.e. automotive.

Both of these research questions are answered in detail in section 5.3.

In this chapter an introduction to DSL, its kinds, benefits and problems with

DSLs are given. The problem in automation of testing for embedded system is

also mentioned which became the motivation to build a DSL. Also aims and

objectives of this thesis are described in this chapter.

11

12

2 Literature Review

This chapter gives first introduction to work observed by people in the field of

test automation, comparison between tools and types of DSL, and then current

state of the art is discussed.

2.1 Test Automation Techniques

In this section different forms of test automation are discussed such as Testing

framework [5], Record/Playback [18] and model-based test automation [20].

2.1.1 Testing Framework/Workbench

Testing framework like JUnit is one of test automation approaches used for

regression testing. JUnit is set of Java classes that user can extend to build an

automated testing framework. Individual test is an object which is executed by

the test runner. The tests should be written in a way that shows whether the

tested system has behaved as expected. A software testing workbench consists

of tools is used to perform testing. Apart from the ability that facilitate automated

test execution testing workbench may also provide functionality to simulate

other parts of the system and to generate test data [5].

13

Figure 2.1 A Testing Workbench [5]

A testing workbench is shown in Figure 2.1 which might have tools illustrated

below

A Test Manager manages the whole system of running tests. It keeps track of

test data, expected results and program facility tested. Example is JUnit

A Test Generator generates data for the program to be tested. Data can be

fetched from database or by using patterns to generate random data

Oracle provides the predictions of expected test results. An oracle can be either

previous version of the program or prototype systems. Back-to-back testing is

running the oracle and program under test in parallel and differences in their

outputs are noted.

14

A File Comparator compares the test results with the previous results and

reports the differences. Comparators are usually used in regression testing

where test results of different program versions need to be compared.

A Report Generator provides report definition and generation facilities for the

test results

A Dynamic Analyzer analyses the number of times each statement in the

program is executed and generates execution profile

Simulator: Target simulator simulates the machine where program will run.

“User Interface simulators are script-driven programs that simulates multiple

simultaneous user interactions” [5]

There are many advantages of using automated test tools. It is easy to execute

regression tests automatically with a press of single button without any attendee

overnight or on weekend. It provides the ability to rerun all automated test cases

or selected subset of test cases against new build or release and a confidence

that modifications in the system have not impacted adversely on existing

functionality [4].

2.1.2 Record/Playback Testing (R/P)

In record and playback type of test automation, user performs actions on UI of

System under Test (SUT) which are recorded in the form of test tool’s language

script when it is in the record mode. These scripts can be replayed back into UI

thus executing test automatically. Most commercial record/playback test tools

are WinRunner [51], QARun [52], QuickTest Pro [53], and IBM Rational Robot

[54] etc. In R/P testing each test run for once per release and on every release

new test needs to be created because change in the system fails old recorded

test so maintenance of testing scripts is very crucial [18].

15

There are certain limitations of Record/Playback testing which include: It is

difficult to maintain scripts because of long list of user actions and re-running of

tests sometimes interrupted because of synchronization problems. Data used

for such recorded tests is hardcoded which is from software development point

of view is not a good practice. Tests cannot handle unexpected error. Same

kind of limitations are given by [19] like behaviour, interface, data and context

sensitivity; if any of these changes the test fails making bad reputation of

record/playback test automation.

There are ways suggested by [19] to make record/playback a successful mean

of test automation which include making the system context insensitive by

configuring it with a known starting point in terms of data and date. Whenever

functionality changes a new test should be recorded but when UI changes there

should be other tests which can check if it is changed so the tests for the

business logic should not get failed.

Record/playback should only be considered when time, cost and programming

skills of hand-written scripts is not affordable [19].

2.1.3 Model-Based Test Automation

A Model based automated testing approach with a use of Test Automation

Framework (TAF), supports modelling methods for requirement and design

representation. A tester creates a model from available information provided by

requirements engineer. T-VEC, a test generation component of TAF, creates

tests after models are translated. T-VEC supports test vector and driver

generation; requirement test coverage analysis and test results reports. Test

vector consist of inputs and expected outputs. A test generator takes in outputs

from test vector and test driver mappings as inputs to produce test scripts. Test

16

scripts are then executed and text execution analysis compares the actual

output with expected outputs and produces a test report [20].

Benefits of Model-based approaches like TAF include: use of models help in

requirement defect analysis, automating test design, generating test scripts,

saving cost and producing high quality code. Models can use same driver

schema to produce test scripts. When system’s functionality changes only

models get updated, by using existing driver schema scripts are regenerated.

But if the test environment changes the schema needs to be updated and

scripts are regenerated without changing models. Parallel modelling during

development life cycle helps identify defects at early stage because testing

team starts work at the start of the project and stays involved throughout the

process [20].

2.2 Two approaches to perform Domain Analysis

Domain analysis is the first stage of DSL development which involves gathering

knowledge about domain and building domain model. For this project domain

knowledge is obtained by working on the ViBATA software explained in detail in

section 4.2 and also by continuous involvement of domain experts in the

development of this software.

In this section two approaches taken by [21] and [22] to perform domain

analysis are discussed. One way of doing domain analysis is to develop

ontologies for the domain. If ontologies for a particular domain already existed

then those can be used otherwise it is a beneficial approach to develop them

first. (Tairas, Mernik and Gray) investigates ontology development during

domain analysis phase of DSL development and its contribution to the language

design. “Ontologies seek to represent the elements of a domain through a

vocabulary and relationships between these elements in order to provide some

type of knowledge of the domain.[21]” Authors discovered two properties of

ontologies: one vocabulary representation of domain e.g. elements of domain

and second relationship between those elements [21].

17

The domain model defines [21]

 scope of the domain,

 the domain terminology (vocabulary, ontology), descriptions of domain

concepts

 Commonalities and variabilities of domain concepts and their

interdependencies.

Two competency questions are proposed by [21] to serve the purpose of

ontology: one what are the concepts of the domain and interdependencies

between those concepts? And what are the commonalities and variabilities of

the domain? They develop ontology using a tool Protégé 2000 [55] for a domain

which focuses on communication between an air traffic controller (ATC) at the

airport and pilot in a plane by defining classes, slots and allowed values for

these slots and filling in values for slots for instances of those classes. From the

class definition a class diagram is created from which initial context free

grammar (CFG) is formed for this domain and ultimately a small program using

this DSL.

The same process of domain analysis is done by [22] by describing domain

abstractions as a sub process of main process ‘Define DSL core Language

Model’. Describing domain abstractions means defining domain entities or

elements like classes for the class model. These abstractions integrated to form

the core language model. Next step is to explain the relationship between

entities and constraints for the abstractions followed by checking of

completeness and correctness from domain-oriented perspective. Software

engineers with the help of domain experts check the language model if it is

complete and correct. In case there is need to add or change abstraction they

repeat the whole process until it is accepted by both, the process is shown in

Figure 2.2.

18

Figure 2.2 Subprocess define DSL core language model [22]

Certain guidelines are given by [23] for each activity of DSL development

process out of which related to domain analysis phase ‘Language Purpose’ are:

identifying the uses of the language, people who will use language should be

asked questions by people who work on DSL development and the language

should be platform independent.

19

2.3 External or Internal DSL

The authors of [12] have experience of creating several external DSLs in the

field of trace analysis e.g. HAWK [56], EAGLE [57], RULER [58] and LOGSCOP

[59], they observed two important things. One, it is difficult to amend an external

DSL once it is created and secondly user demand features which can be

handled more easily with general purpose programming language. This leaves

an option to create an internal DSL instead. The authors created an internal

DSL for trace analysis named as TRACECONTRACT [60] in SCALA [61]. They

chose SCALA for two reasons: one, this language has built-in support for

defining internal DSL; secondly, it supports functional as well as object oriented

programming. Creating an internal DSL can be termed as shallow which means

use of host language constructs as part of DSL, as well as deep which means a

separate internal representation (abstract syntax) is made that is then

interpreted or compiled like an external DSL. A shallow embedding is

disadvantageous as it cannot be analysed easily. The arguments in favour of

internal DSLs are: less effort is required to implement because of direct

execution of DSL constructs; it gives direct tool support from the host language

e.g. IDE, debugger, static analyser and testing tools. Disadvantages of an

internal DSL include: it is difficult to analyse an internal DSL without working

with the host language compiler; the domain user will need to be a programmer

to work with DSL and will need to learn the big host programming language

[12].

So in the light of arguments given above especially the learning costs involve for

the DSL user in case of internal DSL, for the current project the decision is to

make an external DSL.

2.4 Textual or Graphical DSL

After deciding the solution is DSL and gathering domain knowledge it is now

time to decide which form of DSL to be made: a textual or graphical. A textual

20

DSL has syntax to write a program as described in section 1.1 whereas

graphical DSL uses shapes and lines to express the intent rather than text. UML

[62] is good example which uses activity diagrams, class diagrams and

sequence diagrams for describing software systems. There are separate tools

and plug-ins to create both kinds of DSLs, the tool comparison is given in next

section.

There are many advantages of text-based modelling over graphical modelling

for the user of DSL: e.g. it takes more space for graphical models to represent

some information which is time consuming, writing and printing text is easy

while for graphical models the size of graph can exceed the size of paper.

During development process sometimes things can be described more

efficiently by using text instead of drawing models like conditions and actions.

Formatting text is easier and results of automatic algorithms are of good quality.

Writing, reading, modifying text does not need any specific platform and can be

done almost in every text editor. No additional tools or plug-ins are required.

Version control systems are very important today during software development

process like CVS [63] and SVN [64] which are text based and can be used for

text based models [11].

Text-based models also have some disadvantages like graphics are more

intuitive to give first orientation which is slightly compensated by text-based

models by giving outline of code in the form of list or tree. Simulation and

animation is more easy using graphics [11].

From a DSL’s programmer point of view text-based models are advantageous

too: A textual language can be written in any text editor and if auto-completion

and syntax highlighting is required that can be done in any editing environment.

Tools like MontiCore [65], ASF + SDF [66], TCS [67] and Xtext [31] support

effortful but efficient way of creating text-based languages although MetaEdit+

[68] gives a simplified way of creating graphical language. Tools like parser can

be easily developed by using ANTLR or DSL-Definition framework MontiCore

which allows development of internal representation of abstract syntax

according to the given textual model. Defining rules is much easier with the

21

textual models. Some languages are extension of a programming language like

ArchJava [69] or LINQ [70] to improve the usability of programming language.

The composition of modelling language which enables re-use of existing

languages is much easier with textual languages [11].

The advantages of text-based modelling is further extended by [13]: textual

artefacts integrated with existing tooling template, it is simple to update a textual

model by using search and find technique and text-based DSLs are more

appreciated because “Real Developers don’t draw pictures” [13].

Since the arguments given above are more favourable towards text-based DSL,

the decision is to create a textual DSL for this project.

2.5 Tool comparison

Although a decision has been taken to create a textual DSL, a comparison

between tools to create graphical DSL is also given in the following section to

give the reader an overview of these too.

2.5.1 Comparison of MSDSL tools and Eclipse modelling plug-ins

Framework

A comparison is given by [14] between Microsoft DSL Tools (MSDSL) [72] and

Eclipse modelling Framework (EMF) [71] on the basis of developing model-

based languages i.e. Graphical DSL. An experiment was conducted with two

groups of 48 undergraduate computer science students. One group was given

MSDSL tools to develop a DSL including code generator and other Eclipse

Modelling plug-ins. Students of each group did not know the features of tool

using by the other group. They developed research questions in five categories

which were Metamodelling, Graphical Editor, Code Generator, Satisfaction, and

General Questions. On the basis of answers given by students to these

research questions, comparison was formulated.

The main differences they presented were MSDSL Tools provide proprietary

notation and graphical environment to build metamodel whereas EMF uses

22

Ecore which provides a complete metamodelling and model management

environment. MSDSL Tools provide XML proprietary format where EMF

supports XMI or user defined XML-schema format for the serialization of

models. Eclipse provides Graphical Modelling Framework (GMF) which is more

comprehensive graphical editor than that of provided by MSDSL tools. MSDSL

tools lack support for model-to-model transformation and Eclipse provides plug-

ins for such transformations. With regards to model-to-text transformations,

MSDSL tools provide a primitive template language which enables the injection

of C# or VB on the other hand Eclipse provides Java-based template languages

[14].

The results obtained from experiment were: Ecore and EMF are easier to

understand than proprietary notation provided by MSDSL tools. Graphical editor

provided by both are difficult to use and generate incomplete graphical

modellers. Using Eclipse users accepted to generate code with it while MSDSL

tools users found it difficult and preferred some other language than the

template language. Eclipse users were more satisfied than MSDSL tool users

and they think Eclipse Modelling plug-ins are more mature and robust.

Moreover, MSDSL tools are vendor dependent (Microsoft) without any support

to Object Management Group (OMG) standards [14].

More or less same comparison is given by [15] but it included Xactium’s XMF-

MOSAIC [73] as well in his comparison. Microsoft DSL tools support more

graphical DSL than textual one, but in the form of embedded DSL only which

will be extension of languages like C# or VB [16]

2.5.2 A Comparison of Tool Support for Textual Domain-Specific

Languages

A comparison between tools that support textual Domain specific languages is

given by [17]. These tools included Xtext, Meta Programming Systems (MPS)

[74], Monticore and IDE Meta-Tooling Platform (IMP). The criteria of

23

comparison were language, transformation and tool support. All tools represent

concrete syntax as text but MPS stores model as XML document and present it

as text in editor. Xtext and Monticore use single source to define concrete and

abstract syntax, MPS uses abstract syntax in the form of concept which then

defined as concrete syntax whereas IMP defines concrete syntax only which

derives abstract syntax automatically. Xtext provides good transformation

support by early error detection and code completion support. IMP has no

support for built-in transformation. All tools except IMP support model-to-text

mapping however MPS requires mode-to-model transformation prior to it.

Monticore provides model-to-model mapping as well. All tools except MPS

generate language workbench based on Eclipse platform. Xtext and MPS both

give a comprehensive template support using constraint language with code

completion and validation while typing but for the current study choice will be

Xtext because MPS editor is cell based instead of free text and in MPS model-

to-text transformation needs model-to-model mapping first.

2.6 Model Based Testing in Automotive Systems

Bringmann and Kramer [6] presented a model-based testing approach in

automotive systems. They introduce a testing tool TPT (Time Partition Testing)

which is based on graphical test models. There are three objectives of TPT [6]

1. Supporting test modelling technique to allow systematic selection of test

cases

2. Providing representation of test cases for model-based automotive

development in more precise and portable form

3. Providing an infrastructure for automated test execution and assessment

even for real time environments

Test cases are modelled graphically, compiled into byte code and executed by a

dedicated virtual machine. Assessment script which contains expected results

also created for test case during compile time. Test assessment is done by

evaluating recorded test data with the assessment script. TPT uses Python as

24

scripting language and Python interpreter is used as runtime engine. TPT test

cases are reusable at different test platforms like MiL (Model in Loop), SiL

(Software in Loop) and HiL (Hardware in Loop) [6].

Another approach of model-based testing is given by Siegl et al. [7]. They

introduced Timed Usage Model (TUM) which is based on Markov Chain Usage

Models (MCUM). It provides the possibility to describe timing and data

dependencies of SUT (System under Test). Model supports test planning and

generation. The applied models allow systematic generation of test cases and

assessment with respect to coverage of requirements.

2.7 Example Implementations of DSL based Systems

Apart from commonly used DSLs like regular expressions, SQL and CSS there

are other DSLs produced by people who needed them in a particular domain

like embedded systems, mathematics, Smart Grids, electronics, bioinformatics

etc. Some of them are illustrated in this section.

2.7.1 A DSL for Simulation Composition

Schutte [8] defines an approach to describe formal scenarios and simulation

specification. A DSL in combination with a simulation framework is able to

interpret the description and allows the automatic composition of the

simulations. This DSL with the simulations framework is built for a GridSurfer

project that analyses the impact of electrical vehicles on the distribution grid.

The domain of this project is SmartGrids. He used Xtext and Xpand for the

development of this DSL and Model-Integrated Computing (MIC) because it

allows people without in-depth knowledge of simulation framework to create

domain specific modelling layer [8]

The DSL is of external kind with own grammar and ultimately syntax. An

interesting aspect in this project is that the scenario specification generated is

loosely coupled with the simulation framework. In case of any change in

simulation framework being made the Xpand generator will need to be adapted

25

instead of changing a large number of scenario specifications. Figure 2.3 shows

the whole process

Figure 2.3 MIC-Based approach for SmartGrid Simulation [8]

2.7.2 CAST: Automated Software Tests for Embedded Systems

Wahler [9] introduces CAST (Computer-Aided Specification and Testing) an

approach to tests automation in embedded systems. CAST consists of three

parts, a DSL named as TESLA (TEst Specification LAnguage) which allows

specifying test cases using familiar syntax, a test execution engine which allows

executing tests either automatically or with human interaction and an interface

which is a form of connection between engine and embedded systems. He used

Eclipse IDE and Xtext plugin to create the execution engine and SCALA to write

interpreter for TESLA. The architecture of CAST is shown in figure 2.4

26

This is an external type of DSL with grammar to describe syntax of the

language. Components of CAST are loosely coupled; if Hardware builder is not

required and other interface is needed to be used CAST can still be used by

replacing this with any other interface which supports OPC and updating Device

Interface. There are some test cases which need physical interaction and thus

resist automation in which case tests cannot be run in batch and left for

overnight or weekend. Test coverage is not part of generated test report by

CAST at the moment. CAST used Scala interpreter for language generation

which means no code is generating. Some aspects of DSL are platform specific

like download and actions commands. This DSL cannot be used for the current

study because of the fact it is using Scala interpreter for interpreting which will

be needed if DSL applies to other embedded system and secondly DSL

elements are specific to testing systems at Asea Brown Boveri (ABB) Ltd. [50].

The DSL does not support user with facilities such as error detection, scoping

and content assistance. CAST architecture is shown in Figure 2.4

Figure 2.4 Architecture of CAST [9]

27

2.7.3 Habitation: A DSL for Home Automation

Home automation uses MDE (Model-Driven Engineering) approach in reactive

systems. It offers management of energy, security and communications through

interaction with the environment. Habitation [10] (Development of home

automation applications using a model-driven approach) combines DSL with

MDE to handle the life cycle of home automation system design. The authors

used Eclipse Graphical Modelling Framework (GMF) to develop the DSL which

consists of three parts

1. A drawing area where graphic models for catalogue and applications are

made

2. A graphic palette contains elements which can be dragged on drawing area

3. An area where properties like attributes and parameters are displayed and

can be modified for an element

The author used Java Emitter Template tool (JET) for model to text

transformations. To generate code developer needs a specific platform which

must be supported by international standards and provide tools for

programming the devices, in this case these requirements are fulfilled by KNX

[79] and LonWorks [78]. So the environment is coupled for a moment and they

are working on completing code generation implementation for commercial tool

(ETS) [10].

2.7.4 A Domain-Specific Language for Ubiquitous Healthcare

Aspect Language for Pervasive Healthcare (ALPH) is a domain-specific

language in ubiquitous healthcare domain. Ubiquitous healthcare means

presence of healthcare everywhere. It is an emerging technology that consists

of large number of environmental and patient sensors and actuators to improve

patients’ mental and physical condition. It provides a domain-specific aspect

language (DSAL) which contains extensible high-level constructs. Use of any

construct by a programmer initiates implementation of ubiquitous health-care

concern from the library. It is a declarative language implemented as a pre-

28

processor to an existing aspect language AspectJ. The main entities of this

domain are mobility, context awareness and infrastructure. The ALPH program

is compiled by an ALPH compiler into an aspect language. The final executable

ubiquitous health care application is composed of aspects which contain

ubiquitous healthcare behaviour from the library which are merged into the base

application using the aspect language weaver. ALPH is extensible in three

ways: the language and compiler can be extended by extending language

model definition and semantics; the aspect library can be extended by adding

new constructs with the help of code and construct’s parameterisation which

supports customize behaviour. A formal definition of translating ALPH program

into concrete base language (GPL) is defined in compiler generator which

allows developers to provide definitions to translate ALPH program into multiple

GPLs [24].

To evaluate the new language author conducted an experiment by

implementing an application named as MedHCP based on a scenario from

ubiquitous healthcare domain using a (GPL) Java as well as ALPH language.

This application was deployed on the Motion C5, the mobile clinical assistant

created by (DHG) at Intel Health. The results obtained showed reduction of

coupling by 33-75%, dependencies on external modules by 40% and

application size by 25%. ALPH language is significantly expressive and

constructs can fulfil 50% of domain specific requirements by 20% of action

terms from domain [24].

2.7.5 Domain Specific language for Cellular Interactions

CellSys is a DSL embedded in Haskell (GPL) specific to bioinformatics domain,

is used to model life cycle of microorganisms like bacteria. The objective of this

DSL is to allow biologist to create a model which can describe complex

interactions between tissues and organisms with abstraction and accuracy,

visualize organism’s development by executing these models, help language

user to improve understanding of organism’s behaviour and structure by

suggesting refinements and compare cellular system’s models between

29

different organisms or stages of development of an organism. Each CellSys

program has some actions to describe its behaviour with respect to itself and

environment. This DSL bridges the gap between a biologist and computer

scientist [25].

2.7.6 A DSL in Embedded Systems

DevC [26] is a DSL in the domain of embedded systems which allows

concurrent development of device controller simulation model and device driver

code by specifying different characteristics like services, constraints, sequence

of commands, mechanism of communication between controller and processor

and interface with the operating systems. The syntax of DevC is similar to

SystemC [81] and ArchC [80]. Currently, the language is used to develop USB

controller and graphic display [26].

2.7.7 MobDSL

In application development for mobile devices industry there is no platform

which can be used to build an application which can be deployed to multiple

mobile platforms like Apple iPhone, Google Android and Microsoft Windows

Mobile. MobDSL (Mobile DSL) is made for the mobile application development

domain and address the problem explained. Currently there are two approaches

to create applications in this industry: by using frameworks and mobile web

application. The authors have done domain analysis by presenting two iPhone

application case studies on Tour de France and Lyrical Genius for local SME.

Tour de France application was to help support people in following the 2009

series of Tour de France. Lyrical Genius was a game that consists of quiz

questions relating to different lyrics in the songs. They identified domain

features like limited screen size; layout control in XML; GUI element

containership; event driven application; hardware features like camera,

accelerometer, GPS, microphone and close range sensors; concurrency by

using threading; object oriented language use (like C++, Java); and state

machine transitional behaviour of mobile devices. The calculus for mobile

30

applications language is based on lambda-calculus extended with the widgets

for managing mobile application components. Author describes how features

required by mobile application development described above can be supported

by the mobile calculus. Authors proposed architecture to implement this DSL for

making platform independent applications consist of three tiers: the application

written and compiled using DSL; DSL specific engine and libraries; and running

platform which can be Java, C#, Android, or iOS. The virtual machine (VM) for

target platform contains two parts: platform libraries (MobLib) which contains

platform API calls, engine which will run the compiled code and make the

appropriate platform calls. Benefits of the DSL with VM for different platforms

include: avoidance of application installation source lock-in which gives security

to the users and small application size because VM contains all the functionality

which makes downloading easy as well [27].

2.7.8 SLCO

Simple Language of Communicating objects (SLCO) is designed and

implemented by [29] in the domain of distributed communicating systems. The

DSL is to model the structure and behaviour of the system consists of

concurrent communicating objects. Models specified using this DSL can be

transformed into models for simulation, verification and execution. It provides

constructs for system objects that operate in parallel and communicate with

each other. The authors used Eclipse Modelling framework to describe SLCO

models and Xtext for defining concrete syntax with a textual SLCO editor. All

transformations used to bridge the gaps in platform are implemented using

Xtend model transformation techniques.

In this chapter approaches applied by people in area of automated testing are

observed such as JUnit, record/playback testing, model based test automation.

A comparison between external and internal DSL, textual and graphical DSL

31

and tools to build these forms of DSL are discussed. Some examples of DSLs

are also given which people have used in their domains to solve the particular

problems. For this project decision is to build a textual DSL using Eclipse

framework to automate the test specification component of ViBATA.

32

3 Theory and Technologies

In this chapter detail of technologies used in this project is provided including an

introduction to software testing, and the stages involved in the DSL

development lifecycle, after domain analysis which was described in 2.2.

3.1 Technologies used in the Project

The technologies used in this project are Eclipse Xtext, Xtend, Java, and Simple

framework. In chapters 4 and 5 the use of these technologies in DSL’s

development stages and analysis is documented. In this section an introduction

to these technologies is illustrated which will help understanding the next

chapters.

3.1.1 Eclipse Xtext

Eclipse [41] is open source software for individuals and organisations to build

open development platform projects. These projects are comprised of

extensible frameworks, tools and runtime for building, deploying and managing

software across the lifecycle. Eclipse was originally created by IBM in

November 2001 and supported by a consortium of software vendors [41].

Xtext [31] is part of openArchitectureWare (oAW) which is part of Eclipse. Xtext

is a framework which allows creating external textual DSL by using Xtext’s

EBNF based grammar language [42]. It defines several application

programming interfaces (APIs) to describe different aspects of language such

as scoping API defines which elements are referable by a certain reference

(section 4.4.5). It uses Dependency Injection (DI) framework, Google Guice

[38], for integrating all of language components. That means if one component

needs functionality of another component, it declares the dependency by

providing @Inject annotation as shown in Figure 3.1 Dependency Injection. This

line means that the code generator is using interface IQualifiedNameProvider

which provides the functionality to define the full name of the element in AST.

33

Figure 3.1 Dependency Injection

 Xtext provides a language development framework and one can create his own

language by creating grammar composed of number of rules. A rule consists of

number of symbols or tokens which can be either a reference to another rule in

the same grammar or super grammar from which new grammar is inherited i.e.

Terminals or Xbase. A rule results in meta type, the symbols (token) used in the

rule are mapped to properties of that type sometimes referred as features or

attributes (3.2.2 for details). In an Xtext file, there is a generator declaration

which generates artefacts such as a parser that can read textual syntax and

returns an Eclipse modelling framework (EMF) based metamodel: abstract

syntax tree (AST). AST is in-memory object graphs which are instances of EMF

Ecore models. Ecore model consist of an EPackage containing EClasses,

EDataTypes, and EEnums and defines the structure of instantiated objects. It

also generates full-featured Eclipse Text Editor which provides syntax

highlighting, code completion, a configurable outline view and validation for the

given syntax. Java Runtime Environment (JRE) is necessary to install to work

with Eclipse project. It provides full implementation of a language running on

Java Virtual Machine (JVM). The compiler components of the language such as

parser, abstract syntax tree (AST), serializer and code formatter, scoping

framework and linking, compiler checks and validation, code generator or

interpreter are based on (EMF). Xtext is used in this project to build the syntax

of the DSL. Rules are formulated using Xtext in order to build the language

syntax (sections 3.3.3 and 4.4.2). [31], [38], [42]

3.1.2 Xtend

Xtend [34] is programming language shipped with Eclipse which translates to

Java source code. Syntactically and semantically it is compatible with Java

programming language and provides interoperability but enhances on many

aspects such as

 It removes syntactical noise: no need of semicolons and no empty parenthesis

34

 It extends existing Java APIs by providing extension methods and lambda

expressions. For example method toFirstUpper(String s) is defined in

StringExtensions library and takes string as an argument. But instead of

passing string argument it can be used with string as if this method is defined

for a string Figure 3.2

Figure 3.2: Extension methods in Xtend

Other features of Xtend are

 It is easy to learn for Java users because it uses existing Java concepts. It uses

Java type system unlike Scala which is JVM language but implements a new

type system.

 Xtend does not have statements instead everything is defined in expression

which provide return value. Expressions are more concise, expressive and

readable. For example use of try catch block on the right side of an assignment

 It provides great user experience by provision of better tool support in the form

of Eclipse-based IDE integrated with Java Development Tools (JDT). Features

such as call-hierarchies, rename refactoring, and debugging enhances IDE

support. [34]

Template Expressions

Another powerful aspect of Xtend is the provision of ‘Template Expressions’

which allow readable string concatenation surrounded by triple quotes (‘’’).

Template Expressions allow code generation in any GPL such as current

project is using template expressions to generate code in Java. A template

expression is composed of one or more lines. The expression to evaluate is

placed inside template expression defined between guillemets

If and Switch conditional statements can be used between guillemets which

have their own syntax. [34]

35

3.1.3 Simple Framework

Simple [43] is a configuration framework for Java and is used to perform XML

serialization. In this project simple framework is used to create XML output from

Java code generated by program in DSL. To define each element in XML file

this framework used annotation for class and its properties. For example if an

object is root element in XML file, @Root annotation needs to define above this

object. This framework exposes two classes Serializer class which is an

instance of Persister class to serialize an object in Java. A java.io.File object is

created with name and location information to create XML file with specified

name on specified location. The write() method of the Persister class performs

serialization by taking Java object and file location as arguments and serialize

object on the file location. For details and example see sections 4.5.2 and 4.5.3.

[43]

3.2 Development Stages of DSL

As described earlier the aim of this project is to create an external type of

domain-specific language for domain of embedded systems in general and

automotive in particular to automate test case definition. To create this DSL we

are using Eclipse IDE. There are stages involved in the development of DSL

which are briefly described in this section. Implemental details of these stages

for current project are described in sections 4.4 and 4.5.

3.2.1 Domain Analysis and DSL Behaviour

In the literature review, an introduction to first stage of DSL development

‘Domain Analysis‘ and the definition of domain elements is defined in section

2.4. Implementation of domain analysis for current project is given in 4.4.1

Describing ‘DSL Behaviour’ means to investigate how DSL elements interact

with each other to exhibit behaviour which is complete and correct as specified

by domain experts. During this stage behaviour of single element or group of

related elements is specified. The behaviour can be explained with the help of

control flow models, detailed behavioural models that are used in model-driven

generation or precise textual specification. The DSL behaviour specification

36

also referred to as dynamic semantics. It also defines how DSL element

interacts at runtime [22]. For this project, behaviour of DSL as whole and its

elements is defined in precise textual specifications in section 4.4 and 5.2.

3.2.2 Define Concrete Syntax and Rules (Grammar)

Concrete syntax of the DSL represents the user interface of the language. It is

suggested by [22] to perform this activity of defining concrete syntax in parallel

with defining DSL behaviour because these activities can have influence on

each other especially in case of embedded DSLs because syntax and

behaviour of host language will have effect on DSL. A concrete syntax can be a

graphical or textual. Implementation of concrete syntax includes implementing

GUI editor, grammar and a parser, or extending an interpreter. Defining

concrete syntax starts from defining graphical or textual symbols or tokens for

each rule. While defining rules standard programming language conventions

should be taken care of such as how to define comments, strings and numbers

which in this case defined in super grammar Terminals

(org.eclipse.xtest.common.Terminals) [31]. Next is to define the composition

rules of the syntax which explains how rules can be composed to make legal

expressions in DSL. While creating these rules it is always useful to ask domain

experts questions about ease of using syntax such as what keywords and

expression formalism in the language is easy to use for them [22].

First rule of any grammar is used as an entry point like in the Figure 3.3 [31]

Figure 3.3: Starter Rule [31]

As this project is going to use Xtext for defining the grammar a snapshot of what

grammar means and looks like is shown in Figure 3.4. In this figure grammar of

the language is shown.

37

Figure 3.4: Defining Grammar [31]

In Figure 3.3 rule is ‘Model’, property is ‘greetings’ and ‘Greeting’ (token) is call

to another rule defined in the same grammar . There are two kinds of

assignments in defining rules. The ‘=’ sign assigns the value returned from the

token to the property (the property will have the type of token) which in Figure

3.5 is ‘name’ and ‘+=’ signs add the value to the property (the property will have

the type List<tokenType>) [42]. The rule in Figure 3.3 means that Model

contains arbitrary (*) number of Greeting which will be added (+=) to feature

greetings. Next rule defines Greeting in Figure 3.5

Figure 3.5: Defining anther rule [31]

This rule means Greeting starts with a keyword ‘Hello’ followed by an identifier

which is parsed by a rule called ID. The rule ID is defined in the super grammar

38

org.eclipse.xtext.common.Terminals and value returned by the call to ID is

assigned to feature name, followed by a keyword ‘!’ [31].

3.2.3 Development of Language Artefacts

When Xtext project is created it consists of three sub projects. One is to define

the language, second to define the tests for the language and third for user

interface of the language. This thesis concentrates more on language project,

test project is out of scope and a little customization is done in user interface

project in section 4.4.6. Language project consist of a folder named as src

which contains file with .xtext extension to define rules for the language. There

are two other folders one is src-gen folder and other is xtend-gen folder which

are empty in the beginning. Once rules are defined in the .xtext file language

infrastructure will need to be generated. This would accomplish by right clicking

.xtext file and choose Run-As ->Generate Xtext Artefacts. This step will

populate src-gen folder with sub-projects for Validation, Scoping, Serializer etc

and xtend-gen with generator project with Xtend file. Running the language

project as new Eclipse application will allow testing the language in the editor.

[31]

3.2.4 Model Constraint

After grammar is defined, the generated DSL editor can detect syntax errors in

the program code but there is still a possibility of defining illegal models like

several datatype definitions with the same name (Figure 3.6). To overcome

such situations constraints are needed to define in Check file (Figure 3.7).

Check language was provided by openArchitectureWare (Eclipse) to define

constraint to ensure the validity of the models [42].. Syntax of Check Language

is similar to Object Constraint Language (OCL). A constraint starts with a

keyword ‘context’ followed by name of type for which this constraint must hold

[28]. The error is highlighted (Figure 3.6) by defining same datatype.

39

Figure 3.6: Error in the output of grammar [28]

Figure 3.7: Model Constraint [28]

The constraint line above in Figure 3.7 means each model may have only one

dataType with same name. Check language was introduced in first release of

Eclipse. In latest release of Eclipse Juno on creating artefacts a validation

package is generated within src folder of the project which contains a .java

validator class inherited from AbstractJavaValidator class to define the

validation for model. A @Check annotation is used above each validation

function defined in this class (details of implementation in section 4.4.4) [31].

3.2.5 Integrating DSL with target Platform

The last two activities of DSL development are interdependent. In these

activities DSL artefacts are mapped with the target platform and code is

generated according to it. There are two parts of the target platform: generic

platform artefacts like Enterprise JavaBeans (EJB) or Microsoft.Net and DSL-

40

specific platform artefacts. DSL artefacts like language model, behaviour

definition, and concrete syntax must be mapped to the target platform. The first

activity is to decide which existing features of the platform can be used with

artefacts, sometimes because of lack of feature support platform needs to be

extended (Figure 3.9) [22]. Here in figure 3.8 our target platform is Eclipse

which will show the output of the grammar we created above and will generate

the code in target language Java. The only extension is done in this platform is

addition of Simple framework defined in section 3.1.3. It is needed to add the

framework’s .jar file into projects JRE System Library folder (Figure 3.8)

Figure 3.8: Output of Grammar [31]

3.2.6 DSL to platform Transformation

In this stage DSL-to-platform transformation is performed which is also referred

as Code Generation. According to Fowler [1] there are two styles of code

generation one is Model Ignorant Generation and the other is Model Aware

Generation and two kinds of processes of code generation i.e. Transformer

Generation and Template Generation. The difference between the two

41

transformations is the former uses Semantic Model directly to create the output

while later uses an embedment helper. So generation using Xtend is Model

Aware Generation because it uses process of Transformer Generation. Details

of both styles and processes are given in his book. The transformation is a

straight forward activity in case of embedded DSLs but in case of external DSLs

transformation rules are defined. These transformation rules convert the DSL

language models to the platform, the generator in openArchitectureWare (oAW)

convert concrete syntax into EMF models and its transformation language

Xpand, which is now replaced with Xtend, allows defining transformation rules

which convert EMF model to the target platform. At this stage, integration

testing can be performed to check if all artefacts are working properly. Unit

testing should be done throughout the process and finally user acceptance test

for the concrete syntax should be performed. If language is completed then

language engineering process is over and DSL is ready to use [22]. The whole

procedure of integrating DSL with target platform and transformation is shown in

the Figure 3.9

42

Figure 3.9: DSL integration with target platform and transformation [22]

3.3 Software Testing

Software testing is the most important part of software development life cycle to

bring the quality and completeness. The software developed for JLR (ViBATA)

is discussed in section 4.2, is developed to provide a facility to test the system

automatically. This section is to provide an overview of software testing.

The most precise definition of software testing is given by [3]

“Testing is the process of executing a program with the intent of finding

errors.”

43

Testing is an important part of software development cycle and is part of all

software development models e.g. Waterfall model. People involve in software

development have intuitive view of testing and its purpose, most common

reasons of testing are: Ensuring software corresponds to its specification;

finding defects in the software; confirming system works properly;

understanding how far software can be pushed before it fails and the risks

involved in releasing the software to the users [4].

Figure 3.10: A model of the software testing process [5]

The software testing process shown in Figure 3.10, showing test cases which

specify inputs to the test and expected outputs from the system along with a

statement of what to test. Test Data is inputs used to test the system which can

be generated automatically sometimes. The program runs with test data

provided. Output of the test can only be predicted by people who understand

the system and check the expected output with the actual output and decide

whether test passed or failed [5]. This whole process is performed automatically

in test automation software as discussed in section 2.1 of literature review.

This chapter gives an introduction to technologies used in this thesis such as

Xtext to define Grammar, Xtend to generate code in Java and Simple

framework to create output in XML. It also provides information about

development stages of DSL which will be applied to build DSL for current study

in Chapter 4.

44

4 Methodology

Visual Based Test Automation (ViBATA) is software built by Cranfield University

to support automated testing in the automotive systems. This project gave an

opportunity to identify, analyse and gather knowledge about the automotive

domain which is most important and first step in the development cycle of DSL.

This software has provided with an insight into automated testing in automotive

and domain knowledge of automotive industry which was quite helpful to

understand how the DSL should look like and what should constitute it. In this

chapter details of previous testing procedures at JRL, ViBATA, and

implementation stages of DSL in current study are given.

4.1 1st generation testing procedures - ControkDesk & Python

scripts

This section provides an idea about the hardware used and previous testing

procedures at JLR. Instrument Panel Cluster (IPC) consists of a LCD panel to

display information. On the left of the panel a speedometer and right a

tachometer graphic was located. The centre of the panel allowed the display of

contextual information along with configuration of vehicle through a hierarchical

menu system shown in Figure 4.1.

Figure 4.1: Instrument Panel Cluster [33]

Using a physical cursor pad located on the steering column this message centre

display could navigated. To simulate the vehicle and form the hardware-in-the-

loop testing environment a dSpace Autobox simulator was used to compile and

45

execute the car models. The simulator communicated with the IPC through

CAN network connection. The camera used to monitor the output from IPC

display panel was Cognex In-Sight camera system. The software provided with

this camera installed on PC could store images for each test case and save it in

.job file format inside camera’s on board limited memory. Camera was

communicating through an Ethernet connection. The manual testing system

required the operator to identify the test cases with inputs and outputs from an

Excel document and apply them to the SUT using the software ControlDesk

supplied by dSpace Autobox. Using ControlDesk operator could create complex

graphical representations to relate the values of CAN signals with visual

displays of ECU on screen. In this way operator could follow the test case

specification and instruct the values of inputs by activating the related graphical

representation. This manual testing process was lengthy and complicated

shown in Figure 4.2.

Figure 4.2: Manual Testing system at Jaguar Land Rover [32]

 So the first level of test automation was to instruct inputs without using

graphical components. To accomplish this semi-automated testing system was

introduced. That semi-automated testing project used an application to generate

python scripts and introduced a vision system to observe the output from IPC

[33]. The testing system consisted of an application written in Python. This

application could convert the test case specifications into the python scripts.

46

ControlDesk software provided the facility to execute the Python application

within it. To make the process easier a template system was introduced to

generate the python scripts. In this way a library of python scripts was created.

This process still needed operator to locate and initiate the python script within

ControlDesk software for a test case to send CAN signals to IPC. The

drawbacks of this testing system were all the components involved in the

system were tightly coupled for example camera was strongly linked with the

simulation environment which provided the limited control of it. Also vision jobs

could not be loaded into the camera’s memory from the local storage but only

those could be used present inside camera’s limited memory. In case any of

hardware changes the whole testing system will need to be implemented again

from scratch. Secondly, change in version of IPC change slightly test

specification and completely expected output which requires test to be rewritten

to ensure correct result. This will need to manage the test specification

separately from test execution which is addressed in current testing procedure

[32]

4.2 2nd generation testing procedures - ViBATA

ViBATA is inherited from an earlier implementation of semi-automated testing

procedure of IPC described in section 4.1. It eliminates the need of graphical

interface in ControlDesk software and communicates directly with simulation

hardware through plugin. The testing system is loosely coupled and introduces

a plug-in architecture which means if any hardware changes a new plug-in can

be written for that hardware only leaving rest of the system unchanged. The

software is designed in a way to support automation of test execution on the

HIL testing rig which provides flexibility of test reuse between different versions

of IPC and reduces the dependence on specific test equipment. The software

has four components: Test Specification Manager (TSM) ensures management

and coordination of test cases after transferred from Excel sheet. This

transference is still manual but provides an efficient way to perform it; Test

Configuration Manager (TCM) ensures when test is executed correct output is

selected for the version of IPC being studied; Test Execution Manager (TEM)

47

ensures tests are executed correctly on components in test environment; and

Test Automation Core (TAC) ensures correct operation of test automation and

communication between the different components [32]. The software

architecture is shown in Figure 4.3

Figure 4.3: Software architecture of ViBATA [32]

Software Design

The software design used a modular approach to ensure that different

components of the software work independently. This means that the

component responsible for capturing output from the SUT works without direct

connection with component responsible to specify and execute tests. For

example a test case might check that if vehicle is in motion the seat sensor

detects a passenger and the seatbelt sensor does not detect the belt, then a

seatbelt warning image should be illuminated on the car dash board. In this

case the test case success needs the illumination of the image only but oracle

(section 2.1.1) function depends on the version of IPC because the warning

image will be different for different versions of IPC. This will require creating a

separate output for each version for the same or slightly changed test

specification. This has accomplished by using decoupled architecture and

48

defining the test case in general way and storing version specific information

into the database. The example is shown in Figure 4.4

Figure 4.4: Separating the oracle function from Test Management [32]

In addition to the requirement of separating test case specification system from

the test output capturing system the software supports the specific requirements

for the current camera system known as Cognex Insight. The management

functions of camera could be undertaken only by the interface exposed by the

camera known as Insight-Explorer [40]. This led to the requirement of

integration of these functions into the user interface of the software. For

example many functions monitoring test output were based upon the pattern

recognition operation exposed by the Insight-Explorer. The pattern recognition

could be for a text or image output. So automation software had to provide the

functionality for the operator to define job to monitor test output using these

pattern recognition methods without the direct use of functionality defined in

Insight-Explorer. To achieve this, a template system was introduced for each

kind of pattern recognition method. The operator could choose a template for a

particular test output according to its specification and supply the parameters for

the template to generate a Cognex vision job in the background and the job

could be saved on the local storage. The camera’s functionality described in a

generic way in a separate plugin which allowed the commands specific to the

49

camera system to be translated into the local language. The plugin architecture

will allow replacing the camera system with any other vision system as long as it

supplies the same functionality. In case of replacement the integration of new

plugin for the new system will be required.

The decoupling of vision system from rest of the software led to idea of

separating the rest of the system communicating with the other hardware

components. TEM of the user interface is a point of contact to other hardware

such as Simulink model. TEM is divided into two parts one is Test Driver (TD)

and second is Hardware Driver (HD). TD is responsible for test execution by

selecting the correct test specification for a version of IPC, send it to the

hardware and receive the output from the camera system. It also defines the

test workflow such as starting and stopping test, or putting delays between the

different inputs of the test. HD is responsible for interpreting the instructions

received by TD into the format understandable by hardware components. For

example in case of dSpace Autobox, the HD consisted of Python interface

which was exposed by Controldesk software and could search the required path

for input signal in Simulink model and read/write its value. For Cognex camera

HD consisted of telnet interface exposed by camera for communication. First

level of decoupling is achieved by writing HD for each hardware contained in a

separate plugin. In case of new hardware is introduced a new plugin for that

hardware will be required to be written. Second level of decoupling required

eliminating the test driver functionality from the TEM. In this case a third party

application will be responsible of controlling the test cases such as Mx-vDev

which could define its own relationship with hardware in test environment by

exposing application programming interface (API) so that plug-in could be

written [32].

Overview of User Interface

The software is made using Microsoft Windows Presentation Foundation with

C# and Access database. This section illustrates an overview of user interface

of ViBATA which gives an idea about the software and functionality of different

software sections. An overview of software architecture is shown in Figure 4.5.

50

Figure 4.5: Overview of ViBATA and Integration with other Components

The user interface of the software is shown in Figure 4.6. The left hand side of

the software shows information about all the IPCs, entered into the database, in

hierarchical structure. On expanding IPC, categories listed are shown in each

IPC and each category contains test cases which can be seen on expanding

Categories. On clicking each test case right side of the software populates.

Right side of the user interface contains five tabs relating to tests named as

Test Definition which divides into Main Test and Pre-Requisite Test, Test

Execution, History which further divides into Test History and Batch History,

Batch Testing and Test Searching. The Test cases are comprised of more than

one DVP Entries which consist of Input and Output Lines.

Figure 4.6: User Interface of ViBATA

51

Tests are identified in DVP (Figure 4.7) and are copied (Figure 4.8) and pasted

into software’s DVP Entries section from which input and output lines are

identified and entered into respective sections.

Figure 4.7: Test case in Excel sheet (DVP Entries)

Figure 4.8: Copying and pasting DVP Lines from excel sheet into

Software

Input line(s) consists of value and path maps to CAN signal in .sdf file, and

output line(s) consists of either a signal output (Figure 4.9) or a pattern output.

A signal output returns a value from a CAN signal and pattern output matches

the image/text stored into the system with the image/text captured by camera

shown on the IPC in response to signals sent from the input lines.

52

Figure 4.9: ViBATA Software sending output signal’s path and getting

value back

When Test is entered and saved into the database. It can be run in Test

Execution tab and results can be matched with the pattern saved in the system

to decide whether test passed or failed as shown in Figure 4.10.

Figure 4.10: Test Execution tab to run Test

53

History tab is divided into Test History and Batch History sub tabs. Test history

sub tab shows last 20 results of a test execution order by date. Batch History

shows results of test executed in batch in last seven days showed in Figure 4.11.

Figure 4.11: Batch History of Tests

Batch Testing allows running tests in batch and generating test reports into .csv

format. Tests can be selected one by one by checking checkboxes in front of

tests or by selecting radio buttons on the page with descriptive labels. Batch

testing is shown in Figure 4.12.

54

Figure 4.12: Batch testing tab

Test Search tab allows searching of already present test case in new DVP

(excel sheet) file when it arrives. It allows browsing for excel file in the system

and enter worksheet name and brings back the test case if it is present in the

file. If found then it gets copied and can be pasted onto DVP entries section on

Test Definition tab. Test Search tab is shown in Figure 4.13.

55

Figure 4.13: Test Searching Tab

4.3 Overview of DSL

For every car model a new excel sheet of test cases is built. As described

earlier, the transference of test cases from Excel sheet to TSM component of

ViBATA (section 4.2) is still manual which can be automated as well. This might

achieve by implementing a functionality into software which would be smart

enough to recognise start and end of test case in the excel sheet, IPC name

from the name of the sheet’s title, category name from name of the workbook,

and enters into the system. No doubt it can be achieved but would this

functionality be consistent with every release of excel sheet and can be used in

long run. A minor mistake would enter all test cases in wrong category or

input/output lines in wrong test case. If we take account of time consumption

from typing test scripts in an excel sheet to entering these into the system. DSL

consumes less time and makes the process more efficient. So DSL is the best

choice to define test scripts. Learning DSL for a domain user is easier because

of containment of abstractions familiar to him. He will write a program in a DSL

to generate a code in GPL which will execute in target platform. The DSL

studied in this research will address only TSM of ViBATA to automate it. The

56

user will instruct inputs and outputs of the test cases in program written using

DSL which will generate code in Java to produce an output in the form of XML

file readable by ViBATA. Just to remind you that we are using Eclipse for

making this DSL. This is an external type of textual DSL. Xtext is shipped with

Eclipse to define grammar rules defined in 4.4.2. The GPL for code generation

in this project is Java because a program written in Java can execute within

Eclipse and gives desired output.

4.4 Implementation of Development stages of DSL

This section provides a detail implementation of technologies defined in chapter

3 and whole process of DSL development studied in this thesis as shown in

Figure 4.14.

Figure 4.14: Developmental stages of a DSL

4.4.1 Domain Analysis

The first stage in development of DSL is the ‘Domain Analysis’ as defined

earlier. This stage involves gathering information about the domain. The domain

in this case is test specification in testing automotive systems. The structure of

this DSL is made more general so it can accommodate test case specification

for all embedded systems. For these reasons keywords common to a test case

in testing environment are used such as Input, Output, Test, Device, TestCase,

Grammar creation

using Xtext

Write Generator using

Xtend to generate code

in Java

Write validator to

validate DSL program

Write scoping to define

variable scopes if

necessary

Domain Analysis

57

and TestSuite. The main elements of this domain, having certain

characteristics, are: Inputs, Outputs, Device, and Test Case. Inputs and outputs

constitute a test case as showed in Figure 4.6. There are four characteristics of

an input: SRSID, description, path, and value (Figure 4.6). Similarly

characteristics of an output are: SRSID, description and expected value (Figure

4.6). Device such as camera has characteristics like: name, connection

settings, username and password. SRSID for input and output are unique for

each model of IPC which provides the basis of creating test name. Each test

case belongs to a category which belongs to an IPC. Categories in one IPC are

unique as well. So the first thing come up from these domain elements is we

need classes in GPL with all these characteristics as properties and have some

functionality inside main method of the program to manipulate these classes

with set values to generate an output in the form of XML file.

4.4.2 Using Domain Elements to Create Grammar Rules

In this section some of grammar rules are defined to give an idea how to use

domain elements to compose grammar rules. As explained in chapter 3,

grammar rules make the concrete syntax of DSL and in this project Xtext is

used for rule composition. Detail instruction on how to write the grammar rules

is defined in [31]. Important part of a grammar is its header because it gives

name to the grammar and decides whether project will be using generator or

JvmModellInferrer class for code generation. Header also decides if this

grammar will inherit from pre-defined super grammar and reused rules defined

in it. Super-grammar Xbase and Terminals are part of Eclipse and a grammar

can inherit any of these grammars. The grammar showed in Figure 4.15 is

inherited from a super grammar Terminals which defines terminal rules like ID,

STRING, and COMMENTS. Rule ID defines the name of the element and

corresponds to a regular expression which means it is a sequence of

characters, digits and underscore and rule SRING defines sequence of

characters enclosed in single/double quotes. Rules ID and STRING are mostly

used in the construction of rules in current study. Using Terminals on creating

artefacts generator package will be created which is used to generate code for

the model in standalone scenario. On the other hand if grammar is inherited

58

from Xbase, which supports expressions and cross links to Java types, instead

of Generator IJvmModelInferrer stub will be generated which is used to

translate model directly to Java code as explained in next section. Inheriting

grammar from Xbase can also create Generator stub by changing runtime

module of the source project as explained in [35] but that is out of scope in the

current study. For this project, requirement is to implement Generator so that

code can be generated in any GPL. This is the reason grammar for this DSL is

created using Terminals grammar. The approach used for this project can

generate code in any GPL which in this case is Java language. Figure 4.15

shows the first rule ‘Domainmodel’ (1) of DSL which states the program will start

with a keyword Package followed by its name. It also defines that within open

and closed curly brackets arbitrary number (*) of Import (5) and

AbstractElement (2) can be added (+=) to properties imports and elements. An

‘AbstractElement’ (2) points to rules ‘Type’, ‘Communication’ (section 5.2.3),

and ‘Suite’. A ‘Type’ (3) can be a ‘DataType’ or ‘Entity’. A ‘DataType’ is having

property classifier ‘DataType’ (4) with a name. The property classifier is

explained later in this section. The ‘Import’ rule starts with a keyword ‘import’

followed by a name ‘importedNamespace’ which if used in parser rule the

framework treats the rule as an import and ‘QualifiedNameWithWildcard’ returns

string as ‘QualifiedName’ [31].

59

Figure 4.15: Grammar of DSL in CATT.xtext File (1)

In the Figure 4.16 rules in addition to the above rules defined in Catt.xtext file

are shown. The rule ‘Declaration’ (1) points to rules ‘varDec’ (2) and ‘listVarDec’

(3) which declare a single variable and a list variable with name and type refers

to rule ‘Type’ defined above. This grammar borrows Entity and Feature rules

from Xtext documentation [31]. The difference is the introduction of classifier

with rule Entity (4) which can be Input, Output, Test and Device; and Node with

rule Feature (5). The name property in any rule cannot be restricted. By

introducing classifier entity declaration in DSL and class declaration in Java can

be restricted. The reasons for this restriction are first DSL is for test domain so

classifiers are domain elements and second this will allow user to build entities

with these classifiers only and maintain consistency between the output of DSL

which is in XML and plug-in in ViBATA. This is shown in section 4.4.4 that

whatever ‘name’ user gives to the Entity the class generated in Java will be with

name of ‘classifier’ and not with ‘name’ of Entity. For example entity with

classifier ‘Input’ always generates Input.java this is shown in detail in section

4.5.3. The user can build only one entity with one classifier to avoid duplication.

Name of the entity is to define the type of the variable only in ‘Case’ block. The

‘Node’ (6) rule defines that a Feature could have a node ‘Ele’, ‘Attr’, or ‘EleList’

which produces annotation for a Feature in generated Code e.g. ‘Ele’ node will

create @Element annotation for a feature and will be generated as an element

in XML file. It is described in section 4.4.3 that how to generated annotation

from ‘Node’ and result will be shown in section of 5.2. To generate output in

XML this project uses Simple framework which requires annotation for each

property in a Java class as described in chapter 3.

60

Figure 4.16: Grammar of DSL in CATT.xtext File (2)

For the DSL expressions are created in the grammar from scratch as shown in

Figure 4.17. An expression could be a conditional or assignment but for this

grammar only assignment expressions are used. Assignments in this DSL are

of two types. One is for single variable and other is for the variable holds list of

elements. There are two kinds for both of these assignments. One is

assignment for variable declared in the ‘Case’ block and other assignment is for

the block itself. Rule ‘dotFunc’ (Figure 4.17) defines an expression for variable

with left part refers to rule ‘varDec’ followed by ‘.’ and right part refers to rule

‘Feature’. Rule ‘myFunc’ is same as ‘dotFunc’ with difference of inclusion of ‘my’

keyword for the ‘Case’ block (shown and explained later in this section) to

assign values to its own features. Rules ‘myFuncAssignment’ and

‘myFuncListAssignment’ are for ‘Case’ block and rules ‘Assignment’ and

‘listAssignment’ are for declared variable in ‘Case’ block. Similarly there are two

kinds of functions one is for ‘Case’ block to add it to ‘Suite’ and one is to add a

variable in declared list variable. These functions are defined in rules ‘AddFunc’

61

and ‘meAddFunc’. Left part of rule ‘AddFunc’ refers to a list variable followed by

keyword ‘.add’ and right part refers to variable to be added in the list enclosed in

brackets. Rule ‘meAddFunc’ has keywords ‘me.add’ and ‘=’ followed by bool

literal which can be true or false. This is to decide whether specified ‘Case’

should be part of ‘Suite’ or not to be generated in final output XML file.

Figure 4.17: Expressions and Assignments in DSL

The same technique of using classifier attribute is used with rules ‘Case’ and

‘Suite’ as shown in Figure 4.18. Classifiers for rule ‘Suite’ are ‘TestSuite’ and

‘DeviceSuite’ and for rule ‘Case’ are ‘TestCase’ and ‘DeviceInfo’. For rule ‘Case’

an attribute request is also defined which sets the mode of Test/Device case

and goes to an Enum Rule ‘RequestType’ defined in the grammar. Enum

‘RequestType’ can be ‘Create’, ‘Update’ or ‘Delete’ which means a test can be

created, updated or deleted. This will be shown in chapter 5 under section 5.2.

62

Figure 4.18: Grammar rules for Case and Suite

4.4.3 Writing Code Generator in Xtend

Eclipse introduces Xtend Language to write a code generator for a program

written in DSL. There are more than one ways to implement a code generator in

Xtend. It can be generated in any GPL by using template expression or any

specific language by injecting a compiler or interpreter. A generator can be

written by implementing the Xtext interface IGenerator or extending

AbstractModelInferrer in Xtend. Full documentation on how to write a code

generator using Xtend is available at [34]. If grammar is inherited from Xbase

the code will be generated only in Java. Xbase is integrated with Java Type

system and provides both control structures and program expressions. Most of

the programming languages share common understanding of expressions

which is an effort to build from scratch for a new DSL. This is the reason Xbase

is introduced so programmers can use it in Xtext to define expressions,

assignments and type-systems [36]. In this section, first type of code generation

63

used which is template expression in the current study, challenges faced using

this technique and later example using Xbase and why it is not used is

explained.

Template Expression

 As mentioned before the current project is using Template Expression to

generate code for each element in Semantic Model. This is not Template

Generation mentioned in section 3.2.6 but in 3.1.2. A template expression can

be composed of multiple lines and is used to allow string concatenation

surrounded by three single quotes [34]. In this part of section, the use of

‘Template Expression’ to generate code is defined. The ‘Generator’ class in this

project generates two types of java classes. One for the main java program and

other for each entity defined in the DSL program. The code stub which does this

in Xtend is shown in Figure 4.19.

Figure 4.19: Xtend stub to generate .java file for main program and for

Entity

The code consists of a function ‘doGenerate’ which takes arguments of type

‘Resource’ and IFileSystemAccess. It takes the ‘Resource’ which is DSL

program and iterate over each element in it to look for ‘Entity’, creates a .java

file with name defined as classifier in the entity and goes to a function ‘compile’

for entity. Secondly, it calls two functions one ‘className’ for ‘Resource’ and

brings back the name of the file on the left side of ‘.’ extracted from the

resource’s URI and second toJavaCode with arguments of type ‘Domainmodel’

and ‘Entity’ explained later in this section. The code stub of function compile()

for Enity is shown in Figure 4.20. This part of function checks if entity’s classifier

64

is Test/Device if yes it creates a class named as TestSuite/DeviceSuite in the

same .java file for Entity and declare a variable and property which define, set

and get list of elements of type Test/Device.

Figure 4.20: Xtend stub to generate TestSuite/DeviceSuite Class

The second part of function which is shown in Figure 4.21 performs two tasks.

First it defines class declaration and an additional property ‘Mode’ for entity with

classifier Test/Device which will be set by ‘RequestType’ in the rule ‘Case’ will

be shown later in section 5.2.

65

Figure 4.21: Defining Mode property of the class Test/Device

Secondly, it calls another function compile() for each ‘Feature’ of the entity

which will get and set the java property with ‘name’ and ‘type’ of ‘Feature’

defined under entity as shown in Figure 4.22

Figure 4.22: Creation of java property for each ‘Feature’ with annotation

The code checks for the ‘Node’ first through a createAtt() function call and sets

the annotation according to the node of the ‘Feature’. Then it checks if ‘Feature’

is of type ‘Entity’ if true the type will come from classifier otherwise name of the

type and if node is ‘EleList’ then will create a list variable as will be shown in

section 4.5.2.

66

Challenges

The initial challenge faced in generating code using template expression was

the iteration through model elements especially from one level to level down.

First have a look at Figure 4.23 and Figure 4.24

Figure 4.23: Accessing one model element from another element

Figure 4.24: Accessing one model element from another element

In these screenshots some rules are shown like ‘Case’, ‘Declarations’, ‘VarDec’

and ‘ListVarDec’. Rules ‘VarDec’ and ‘ListVarDec’ are on same level under rule

67

‘Declaration’. To access a feature like ‘name’ and ‘type’ of rule ‘VarDec’ or

‘ListVarDec’ from ‘Case’ one will need to access ‘Declaration’ first then check

what type of ‘Declaration’ it is. Same property names, of the rules on one level

separated by vertical line, will appear on code completion window by pressing

Ctrl and Space otherwise one will need to cast the top rule element into

required low level rule element. To illustrate this first how to access features in

code generator if rules have the same property names, and later if properties

are different how to cast them is demonstrated. Consider Figure 4.25 and see

how it is done in code generator

Figure 4.25: Code Generation snippet to understand Element Access

ToIterable() extension method of class IteratorExtensions gives TreeIterator in

for loop to iterate over the contents of a certain element and get all containing

features and elements through getAllContents() method [31]. In Figure 4.25

‘Suite’ is accessed same way we got ‘Entity’ in the section above and rule

‘Case’ is contained in it as shown in Figure 4.18. As mentioned before here

classifier is used to restrict user to create ‘Case’ of type ‘TestCase’ and

‘DeviceInfo’. Here code is generating according to the classifier of the ‘Case’.

To check the type of ‘Declaration’ classifier property distinguishes between

68

Type of ‘Entity’ and ‘DataType’. Both rules VarDec and ListVarDec has features

‘name’ and ‘type’ so these features can be access directly from code completion

window as shown in Figure 4.25. Now In Figure 4.26 rules ‘AddFunc’,

‘listAssingment’ and ‘myFunctionListAssignment’ are under main rule ‘Function’

on same level but having different property names for example ‘AddFunc’ is

having first property ‘ldec’ and second varDec but rule ‘listAssignment’ and

‘myFunctionListAssignment’ both having first property ‘dot’ and second ‘lisVar’.

Figure 4.26: Accessing rule from top level rule

To access these low level rules one will need to cast the top level rule into lower

level rule. In this case the property names will not appear in the code

completion window. In Figure 4.27 to access ‘AddFunction’ from functrions

property of ‘Case’ one will need to cast the rule ‘Function’ into ‘Addfunc’ and

then can access its properties on code completion window to write code for

them as shown in Figure 4.27.

69

Figure 4.27: Accessing rule from top level rule

Why not Xbase

Now this part of current section explains how to use Xbase in Xtext first and

then Inferrer class to generate code from it. Both Figure 4.28 and Figure 4.29

show an excerpt from Xtext documentation [31]. Consider Figure 4.28 first, the

rules are defined in a grammar which are inherited from Xbase. Here type of

rule ‘Property’ is JvmTypeReference which is given in super-grammar Xbase

and defines Java-like type names.

Figure 4.28: Using Xbase in Xtext

70

Figure 4.29: JVM Model Inferrer Class

In Figure 4.29 some methods are shown exposed by java model inferrer class

like toClass, toGetter and toSetter. These methods generate class, setter and

getter directly for the model object ‘Enity’ in Java.

It is important to note that in the inferrer class the acceptor.accept() method is

used to recognise every JvmDeclared type which takes it as a parameter. Here

it is taking ‘Entity’ so that it can be recognized as JvmType. In case this is not

done an error will be shown in program written in DSL that states “Couldn’t

resolve reference to JvmType”. For example consider a tutorial on Fowler’s

statemachine example implemented with Xtext and Xtend 2.3 using Xbase and

inferrer class in [37]. In this tutorial author defines rule ‘Service’ with type

JvmTypeReference and name (Figure 4.30). In the inferrer method he is not

using acceptor method for rule ‘Service’ to recognise its type. That is why when

we create a program in DSL the error shows up (Figure 4.31). To overcome this

we need to create a Java class with name of declared ‘Service’ type and put it

71

inside source folder of project and this error will be resolved as shown in Figure

4.32

Figure 4.30: Service Rule in DSL and Code Generation in Inferrer

Figure 4.31: Error shown because DoorService is not identified as JvmType

Figure 4.32: Error resolved by creating Java class on runtime

For current study the objective is to build a DSL which could be transformed into

any GPL including Java. This was the top reason of building it with template

expression otherwise using Xbase with Inferrer class was more convenient way

72

to generate code in Java. Besides it took time to understand each of the

challenges described above. In this project Simple framework is used to

serialize test cases into XML which requires annotation for each of the element

in the test case. This was another challenge with inferrer class which was made

possible by using template expressions as shown in this section.

4.4.4 Model Validation

Code analysis and validation are quite important features while building a

language with Xtext. These features improve language user support while

typing a program in DSL. Most of the validation is done automatically. There are

three different kinds of validation exposed by Xtext.

1. Automatic

2. Custom

3. Manual.

Automatic involves mostly syntactic validation which is done by parser and error

messages are shown by its underlying technology. Details of each validation

type are given in Xtext documentation [31] [38]. Custom validation is more

related to semantics of the language. So we are more interested in custom

validation for the sake of current project. With the custom validation we can

specify additional constraints for our Ecore model. On creating model artefacts

a required EValidator API is registered in generator fragment which is Java-

based known as JavaValidatorFragment. This will generate two java classes

one is abstract class derived from AbstractDeclarativeValidator in scr-gen folder

and other which is derived from this class in src folder of the project. The

second class named as CATTJavaValidator.java is the one which we will modify

and put custom validation code in it.

As explained earlier, names of the domain elements in the current study were

restricted for the user so he can create entities or test case of given classifier.

There was a need of validation so that user cannot create two domain elements

with the same classifier. A Check annotation is placed above every method in

this class which invokes automatically when validation takes place. These

73

methods take parameters to state what type the respective constraint method is

for.

Figure 4.33: Constraint method to validate Unique Entity

Figure 4.33 shows a custom validation method which checks Entity’s classifier

is unique in the program. On creating two entities with same classifier it shows a

custom error which states “This type of Entity is already defined”. Figure 4.34

shows implementation of this validation in DSL program.

Figure 4.34: Unique Entity Validation

Similarly, other methods are in place to check if feature name is unique in

certain Entity and test name is unique in test Suite of the program. There is

74

another important method which validates if assignment is unique i.e. same

feature cannot have two assignments. Automatic fixes for an error and/or

warning can also be implemented which fixes the error while typing. To do this

the underlying cause of the error should be known first. This is done by

providing QuickFixProvider fragment in generator fragment which generates, on

creating artefacts, an empty QuickFixProvider class in DSL’s UI project [31][38].

This is out of scope of this study.

This is our 5th objective to enable DSL to detect errors which is accomplished by

validating model.

4.4.5 Model Scoping

Scoping defines which elements in a model are referable by certain reference.

For example consider Figure 4.35. This grammar states the rule ‘dotFunc’ is

having cross reference ‘dec’ which can have only instances of rule ‘varDec’ and

‘feature’ with instances of rule ‘Feature’ only. But this doesn’t explain what is the

type of ‘varDec’ and if type of Feature is compatible with it. This is explained by

scoping implemented by IScopeProvider responsible for providing IScope for a

given EObject and EReference. The returned IScope object should contain all

target elements for a given EObject and cross-reference [31]

Figure 4.35: Rule defining Scoping

 With other artefacts ScopeProvider Java class is also generated which can be

customised to provide scope for objects in model. For the above rule a method

is created which checks the type of variable and if type is ‘Entity’ it provides the

features contained in the code completion window. Figure 4.36 shows this

method in ScopeProvider class and Figure 4.37 shows its result in DSL

program. There are two types of scoping Global and Local. If model definition is

75

spread across many files then scope for objects is provided by Global scoping.

If every domain element is contained in single file then local scoping is used as

shown in this section. Details on how to implement Global scoping is provided in

[31].

Figure 4.36: Implementation of Feature scope in DotFunc

76

Figure 4.37: Implementation of scope of Features according to Entity

4.4.6 Content Assist

In the UI project of the language Xtext generates two files. One in src-gen folder

named as AbstractCATTPropsalProvider and in src folder

CATTProposalProvider. AbstractProposalProvider class contains

complete_method for each assigned property and rule in the grammar.

CATTProposalProvider inherits from AbstractProposalProvider which can be

customised to facilitate user with content assistant [31]. Figure 4.38, Figure 4.39

and Figure 4.40 show rules, method in CATTProposalProvider class for rules

and its result in program respectively.

Figure 4.38: Rule for myFunctionListAssignment

77

Figure 4.39: Method Implementation Content Assistant in ProposalProvider class

Figure 4.40: Showing possible Content according to method

This is one of our objectives to facilitate user with code completion which is

achieved by both scoping in section 4.4.5 and content assistance in this section.

4.5 DSL to Platform Transference

This is the last and final stage when DSL is completed and run in new instance

of Eclipse to test in editor where code is generated and executed. As Eclipse is

Java friendly IDE and needs JRE (Java Runtime Environment) to install, code

generated in Java can be run within the environment on generation. So there is

no need to transfer the generated code to the target platform. If the generated

code was in some other language like C# it would need to be transferred to

Visual Studio and run from there to get output. A full tutorial is given in the

78

documentation on how to configure settings and launch new instance of Eclipse

to try DSL in editor. When new instance of Eclipse launches a new Java or

Plug-in project is created. Within this new project a file with extension of DSL

created in the language project is created. This file will go in src folder of the

project and is used to write program using DSL as shown in next section. On

saving this program a src-gen folder is created automatically which contains all

the generated code shown in 4.5.2 [31].

4.5.1 Program in DSL

The program written in DSL is saved in file named as version15 with extension

.catt which is short for (Cranfield Automated Testing TestBench). This file on

saving generates one main java file named after it and one java file for each

entity defined named after the entity’s classifier. In this case java files for Input,

Output, Test, Device and version15 (main file) will be generated as shown in

next section. The main file contains a public java class version15 with main()

function. Each file for entity contains two java classes if entity’s classifier is

‘Test’ or ‘Device’ otherwise one java class. The other class for ‘Test’ or Device

is for ‘Suite’ which contains a java property to get and set the list of tests or

devices as shown in section 4.4.3. There are two kinds of cases defined one is

‘TestCase’ and other is ‘DeviceInfo’ within their respective suites. Last code

stub is taking locations of file and generating the code to serialize the suite into

XML file.

79

The program in our DSL is shown in Figure 4.41 and Figure 4.42

Figure 4.41: Program in DSL (1)

Figure 4.42: Program in DSL (2)

80

4.5.2 Generated Code

When the above program is saved in the project a src-gen folder is created

which contains all the generated code. This includes four Java Beans named as

Input, Output, Test and Device and one file with main() Java method named

after file created for DSL program. Figure 4.43 shows the folders in the project

and Figure 4.44 shows the generated code respectively.

Figure 4.43: Eclipse Plug-in Project

81

Figure 4.44: Generated Code

82

The code is generated in Java by using template expressions which can be

replaced by code in any other GPL according to client requirement. This way

code generation is made flexible which is one of our main objectives.

4.5.3 Output of the Code

On executing the main Java file the output produced is shown in Figure 4.45.

TestSuite is the root element in this file. Each ‘testSuite’ element can have one

or more children test elements. Each element ‘Test’ has attributes

‘CategoryName’, ‘IPCName’, ‘Name’ and mode; and children elements ‘Inputs’,

‘Outputs’ and ‘Run’. Details of the output are given in section 5.2

Figure 4.45: Output Generated by executing main java File

4.6 XML Plugin for DSL output in JLR Project

A plugin has been written for manipulating output of the DSL for the JLR project.

Using this plugin ViBATA can read test cases in the XML file and add them to

database and run them. This plugin is a class library project named as

XMLplugin as shown in Figure 4.46

83

Figure 4.46: XMLPlugin for JLR Poject

This plugin consists of a generated xml schema named as TestCases.xsd

which exposes a class act as an object to work on data provided by XML file; a

class named Xml.cs which is used by a presentation layer to define the XML file

to work on and manipulate data using schema class. From user interface user

browses and selects XML file generated from DSL which saves all the tests,

categories and IPC information defined in XML file if new and updates if already

existed. If RunTest attribute of a test is set to true it checks the checkbox next to

the test name. Figure 4.47 and Figure 4.48 show user interface in ViBATA

Figure 4.47: Searching and browsing for XML file into the system

84

Figure 4.48: User Interface of ViBATA to choose generated .xml file

In this chapter an introduction to previous testing procedures used at JLR are

described. An overview of ViBATA and DSL with full implementation of

development stages of DSL using technologies defined in chapter 3 are

illustrated to meet the objectives defined in chapter 1. Methodologies are

applied to build the syntax of DSL and do its validation; code is generated from

program in DSL which can be executed to give the desired output.

85

5 Results, Analysis and Discussion

In this chapter use cases of this DSL are illustrated and validated. A use case is

a list of steps taken by the user interacting with software to achieve a goal. For

each use case an introduction, DSL script, generated script, integration with

ViBATA and result is given. Research questions and implications are also parts

of this chapter.

5.1 Use Cases

Use cases are to check if objectives set in the beginning are met. In this section

list of use case definition is given only. Why these are chosen and comparison

of each use case with the objective is given in next section.

1. User can define the environment he is going to work in such as device

information e.g. for camera and Controldesk.

2. He can define the initial setup of the test

3. He can define the test case with the information about Category and IPC it is

in and the inputs and outputs it contains.

4. He can send instructions to create, delete and update a test

5. He can instruct to run the test case by defining the test name in specific

Category of specific IPC

6. He can serialize the test cases he wants by giving instructions

5.2 Validation of Use Cases

In this section use cases are defined according to objectives and validated. Use

case number 1, 3 and 4 are accommodated in section 5.2.1 because building of

these use cases in DSL is related. Use case 5 and 6 are validated in section

5.2.3 and 2 is described in section 5.2.2.

5.2.1 Define Environment and Test Case

Introduction

Different devices together make the environment of the software. Our first

objective was to build a DSL to provide the domain user a facility to define,

86

update and delete test cases and information about device used. That is why

use cases number 1, 3 and 4 are set to achieve this objective.

In ViBATA each of devices has a plugin developed in the software and has

certain configuration settings describe in the XML file named as TAS.config. A

class Config.cs read these configurations and supply when it comes to establish

a connection between ViBATA and the device. For example TAS.config file has

connection settings for Insight camera which include settings for host, port,

username and password as shown in Figure 5.1.

Figure 5.1: TAS.config file in ViBATA

In ViBATA test case is defined in Test Configuration Manager (TSM) section of

the software. User copies the test case from Excel sheet and paste on this

section which can be saved into the database by clicking ‘Save’ button as

showed in the section 4.2 of this thesis. This is how test case environment and

test case definition works in ViBATA. In next sections the same task is done

through DSL is shown.

DSL Script

In this script Device and Test entities are declared with features. Each feature

has a node (Attr, Ele, ELelist). DeviceSuite and TestSuite are declared with

87

DeviceInfo and TestCase inside with variables to set the features for inputs and

outputs and for case itself.

Figure 5.2 is showing the implementation of DSL script

Figure 5.2: DSL script for defining the Device and Test

Keyword ‘Create’ sets ‘mode’ attribute of a DeviceInfo/TestCase to set ‘mode’ to

‘Create’ in XML file which will tell ViBATA to create new DeviceInfo/TestCase in

the system. Using DeviceInfo/TestCase for each Device/Test can set its feature

values. To set a feature value for Case my keyword is used and to include a

case in suite me keyword is used both keywords showed in rules section 4.4.2.

The reason of using these keywords is to avoid declaration of variable of type

Case to set its features. When Case is defined an instance of type case is

declared in Java. In Figure 5.2 a ‘DeviceInfo’ case is setting all the features of

the device to a value for example in this case it is setting feature values for

‘Insight’ camera such as Name, Host, Port, User and Password. And for the

TestCase it is setting its name, category and IPCName. In ‘Case’ declaration

when a feature is of type another entity then a variable declaration of that type

is needed to set its feature’s value. As in case of TestCase two kinds of

variables of type Input are declared one of which is list variable and other is

single. Then values are assigned to single variable’s features. Once that is

88

done, single variable is added to the list variable and then it is assigned to list

feature of the test for example in this case variable ‘Ins’ is assigned to ‘Inputs’

feature of TestCase as shown in Figure 5.3

Figure 5.3: Assignments to single and list variables in TestCase

Generated Code

In this section, code generated from Figure 5.3 is described and shown. Device

entity generates a file Device.java and Test entity generates Test.java.

Device/Test.java files contains two java classes one DevSuite/TestSuite and

other Device/Test. These classes are having annotation of @Root which will

show them at root level in output XML file. Device/Test class contains getter

and setter for all the features with annotation above defined in node attribute for

it. For example if feature is ending with attribute ‘Ele’ it will have an annotation

of @Element above it. DevSuite/TestSuite will have only one feature which is

list of devices/tests. Device.java and Test.java classes are shown in Figure 5.4.

89

Figure 5.4: Device/Test.java files Generated from Entity Device/Test

Figure 5.5 shows the code in main() function for the above code stub in DSL. It

creates an instance of Serializer class from Simple framework, and of class

DeviceSuite and TestSuite. Creates an object of type class Device and Test

and calls and creates methods buildDeviceInfoCamera () and

buildTestCasethiscase() which returns new instance of Device/Test class. The

code in main function and other functions for both cases DeviceInfo/TestCase is

shown in Figure 5.5.

90

Figure 5.5: Code for Device and Test cases in main File

Output and Integration with ViBATA

The execution of the main java file generates two XML files which are shown in

Figure 5.6 and Figure 5.7. The XML file for DeviceSuite replaces TAS.config

and TestSuite is read by the Xml.cs in XmlPlugin of ViBATA to perform declared

tasks mentioned.

Figure 5.6: Xml File for Device Suite

91

Figure 5.7: Xml Output for Test Suite

The Xml.cs in ViBATA checks the IPC, Category and mode of the Test Case. If

mode is create/update it checks for test case name in the system if present it

updates the test otherwise create new one. If the mode of Test is ‘Delete’ it

deletes the test case for the category in IPC. The snapshot of code in this class

is shown in Figure 5.8

Figure 5.8: Xml.cs in ViBATA

Creation of Test Case through ViBATA by reading XML file

In this section, test case creation is illustrated in ViBATA through the XML

output obtained from DSL. In Figure 5.9 it is showed that category ‘Exterior

92

Lighting’ is not present for IPC named L405(8.6) and ultimately no test case for

this category is present.

Figure 5.9: Category Exterior Lighting is not present for the IPC

The output from DSL is shown in Figure 5.10 which has mode ‘Create’ with

Category/IPC Name and inputs/outputs for the Test with RunTest element set to

‘true’.

Figure 5.10: The DSL output to insert Test Case into ViBATA

In figures Figure 5.11 and Figure 5.12 it is shown how on single click of

choosing the XML file from ViBATA creates Category and Test Case within IPC

and checks the checkbox next to it. To select the XML file click on Tools on

main screen. On dropdown click on option ‘Search Xml File’. A window will

93

appear to browse the XML file into the system. Select the file and Click OK. The

test case with its input lines and output lines is created. All is need to click on

Test Execution tab to run the test to check if it works. There is code written to

provide dummy values to inputs and outputs on the basis of which ViBATA

decides whether test is passed or failed which is shown in Figure 5.13. The

dummy values are provided because of the absence of actual hardware and

Simulink model.

Figure 5.11: Choosing TestCases XML file from ViBATA

94

Figure 5.12: Test creation on single click from ViBATA

Figure 5.13: Code stub with dummy values for Input and Output in Test case

The result of test execution on Test execution tab after clicking Run Test button

is shown in Figure 5.14

95

Figure 5.14: Result shown on Test Execution Tab

5.2.2 Define Test Setup

One of our objectives is to define the test setup. A test setup is set of

instructions sent to IPC to put IPC in a certain condition before test case is run.

Defining a test setup was part of use cases and objectives but not included in

the DSL for two reasons. The first reason is the purpose of this DSL is to only

implement the part of ViBATA which specify test cases (TSM) not running the

test cases from DSL. For those test cases which require a setup a desired

output is needed in return which decides the running of a test case or values of

certain inputs or outputs. This desired output cannot be read by the DSL. For

some test cases setups only require an instruction to put the system in certain

condition and not output returned. These instructions are actually inputs into

system. A test case in the DSL already consists of inputs so the setup

instructions can be part of these test inputs. Secondly, this DSL is made in a

general way so that it can accommodate most of the embedded systems which

will not be accomplished by defining the setup as part of DSL.

96

5.2.3 Defining XML File and Location

Introduction

It is one of our objectives to generate consistent output readable by ViBATA.

The XML is chosen because of this reason because it is a standard for

interoperability. So the last use case defined is to allow serialization of desired

test cases is achieved by specifying which suites should be part of generated

XML file, how many files should be generated, where this file should be saved

and what the name of the file is.

DSL Script

The rules for defining this in Xtext are shown in Figure 5.15

Figure 5.15: Rules for Serialization

These rules define how serialization will declare in DSL program. The

‘Communication’ rule is part of top rule AbstractElement. The rule ‘Serialize’

contains keywords ‘Write XML File’ then file feature calls rule ‘File’ to declare

one or more ‘FileLocation’ and ‘Destination’. The command feature calls rule

‘RunCommand’ starting with keyword ‘run’ this rule shows that command can

either be one or many. The DSL stub for serialization is shown in Figure 5.16

97

Figure 5.16: DSL script for Serialization

Generated Code

As defined earlier, for serialization this DSL is using Simple framework which

uses Serializer to generate XML. Because this is necessary for the output

generation the instance of this Serializer is declared in the beginning of the

main() function through template expression. When DSL program contains the

code for ‘Serialization’ and defines the file name and location then write()

method of Serializer is called. In figure Figure 5.17and Figure 5.18 shows the

code in Xtend and generated code in Java respectively.

Figure 5.17: Code in Xtend for rules for Serializer

Figure 5.18: Code generated in Java

The output of this program is already shown in first use case

98

Result

The previous approach (ViBATA) consists of long excel sheet and test cases

are entered into the system by copying test cases from this excel sheet on to

the system. As compared to the previous approach defining a test case through

DSL is made simpler. Using ViBATA interface on selecting XML file new IPC,

Category and Test case is created in single click. If run attribute of test case is

true the checkbox next to it get selected as well. If we consider applying both

approaches for couple of thousands of test cases, DSL approach takes less

time to define them. In the previous approach operator had to check manually if

test case is created already in a particular category of a particular IPC. Then he

had copy and paste the test case from excel sheet to software interface and

save it. DSL uses a declarative approach which tells what should happen rather

than how it should happen. It spares the DSL user from thinking about what is

happening behind the scene. It provides a limited functionality which is easier to

grasp for person in domain. Using search and find technique in DSL would

make a lot easier for user to change the details of test cases. For example

same test cases can be defined for different models with little detail change like

name of IPC and all the cases created for one model can be created for another

model in single click. In case there are thousands of tests which need to be run

in a batch mode of software using DSL only ‘RunTest’ feature of a test case will

need to set to ‘True’ by search and find technique. And with single click it will

check the checkboxes in front of all those test case irrespective of their

Category or IPC whereas in previous approach test cases will need to be ticked

one by one if they belong to different IPCs or Categories.

99

5.3 Research Questions

1. What are the characteristics of a DSL for testing embedded systems?

The sole purpose of this DSL is to automate test case specification for testing in

embedded system. The structure of this DSL is made more general so it can

accommodate test case specification for all embedded systems. For these

reasons keywords common to a test case in testing environment are used such

as Input, Output, Test, Device, TestCase, and TestSuite. User is made

restricted to use these elements which will allow consistency in subsequent

releases. A test case consists of some inputs and outputs which will have

certain features. For the current study the features of an Input are ‘SRSID’,

‘Name’, ‘Value’, ‘Description’. For a different embedded system these features

will be different. For example if we consider a calculator as another embedded

system, the features of an input might be ‘ID’, ‘Description’ and ‘Number’ only. A

‘Test’ in a calculator will need to define an operation on numbers which will be

its own feature in addition to its Name and Description. Similarly for a room

controller device with temperature sensor the features of an ‘Input’ would be

‘Power’, ‘Temperature’, and ‘On. For an output there will always be a

‘Description’, and ‘Expected value’ to compare it with the actual value in test

Oracle. According to every embedded system there will be some inputs and

outputs for tests or may be only tests with its own features. If DSL is extended

according to other embedded systems the target platform specifications will

need to be amended. The generated file will always be in XML. The xml

schema will need to be generated according to target platform specifications

and plugin will need to be written in order to manipulate XML file. So the DSL

can specify test cases for all embedded system. The DSL is tested for a

calculator in section 5.4.

2. What do we need to extend it to specific environment i.e. automotive?

The DSL can be extended for a specific environment like automotive by

introducing detailed information on Inputs and Outputs as is done for all

example programs written using current DSL. JLR uses a certain ‘Path’ for an

100

Input and Pattern/Variables for an ‘Output’. The ‘Path’ for an Input is not given

in actual test specification. For this DSL ‘Path’ is used because for the test case

used an example to demonstrate the use of DSL in automated testing ‘Path’ for

inputs are known. So the DSL example shown in section 5.2.1 is particular to

the JLR system. In this example the Paths to inputs are provided. But in

actuality these paths are not known and there is a need to search this path

through ViBATA functionality in file with extension .sdf in ControlDesk as

explained in section 4.2. This DSL can be extended by defining ‘Path’ as

separate entity with features and linked to Input. An instruction can be given to

search for the path by supplying keywords if path is found it should be used for

Input to enter into database. Same way there is pattern defined for ‘Output’. A

pattern could be added as additional entity with certain features. There are

some special test cases for JLR which need a Pre-Requisite Test. This pre-

requisite test is attached to a certain input. In ViBATA a test case is created first

and then a pre-requisite test is defined for an input. The output of the pre-

requisite test decides the value of the input to which it is attached. The DSL can

be extended to accommodate this functionality as well.

5.4 Implications

In this section, some implications are defined for the current system. And what

would need to be done under such circumstances.

5.4.1 Can this DSL work with other embedded system?

To test if DSL works for other embedded system, a simple calculator is tested

using this DSL and ViBATA software. This software application for calculator is

chosen because it is simple and easy to use, developed as a WPF application

like ViBATA and available at [39]. The calculator application will be tested from

ViBATA and it needs to be saved in ViBATA database. So for this application,

features of entities in DSL are not changed according to ‘Calculator’ domain

101

which can be changed as explained in section 5.3. Only ‘TestCase’ part of this

Calculator DSL is shown in Figure 5.19

Figure 5.19: TestCase for Calculator DSL

In Figure 5.19 the IPC for this test case is defined as ‘Calculator’ and ‘Category’

as ‘Addition’. The descriptions of the inputs are ‘Number’ and ‘Second Number’

and ‘Values’ are 6 and 4. Description of output is ‘Add numbers to get Expected

value’ and ‘ExpectedValue’ is 10. The generated Xml file from this DSL is

shown in Figure 5.20

102

Figure 5.20: Output of Calculator DSL

This XML file is read by ViBATA which created IPC ‘Calculator’ with category

‘Addition’ and test case in it with checkbox selected because RunTest attribute

of test case is set to true. A small procedure is created in calculator application

which takes input values and category from the ViBATA and computes the

values of inputs and brings output back. Where ViBATA takes this output value

and compares it with the expected value and decides if test is passed or failed.

The Figure 5.21 shows the test case in ViBATA.

103

Figure 5.21: Test case for Calculator in ViBATA

A method is made in RunTest.cs of ViBATA named as DummyExecuteTest()

which is a replacement of actual method to run test. For Catt DSL this method

provides dummy values because of absence of Simulink model for actual

hardware and SUT but for calculator it provides values from inputs and add

them if category is Addition. The code of this method and result are shown in

figures Figure 5.22, Figure 5.23 and Figure 5.24.

104

Figure 5.22: DummyExecTest Function in RunTest.cs of ViBATA

Figure 5.23: Execution of Test case from ViBATA in Calculator Application

105

Figure 5.24: Execution of Test case for Calculator

Because of calculator validation through ViBATA major changes cannot be

made in DSL for test specification such as change of features. So the difference

between the DSL program for Catt and Calculator is the feature definition for

entities input and output. For example for catt file full known path for input is

given but for calculator it is just a string. When Xml.cs in ViBATA finds

calculator.xml it doesn’t enter this path for inputs. To validate test case for

calculator only test case will be entered without input and output values. These

will need to be selected from the stored templates in the database to run and

validate the test case. For both cases it was needed to provide dummy values

for inputs done by writing separate code stub.

5.4.2 What will happen if Device Changes

In case any of device changes for example Camera is changed from Insight to

web cam. First of all, through DSL the device specific configuration will need to

106

be set. Second a plugin will be required to meet platform specific needs like

how to connect the camera, how to capture image from camera, recognition of

pattern of image, saving the pattern and comparing it with the one showed on

actual device. For example with Insight camera software establishes a

connection through TCP/IP. For web cam these connection settings will be

different. Software comes with Insight camera exposes means of capturing the

image, saving the image file and matching the pattern against the actual image

to show the results.

5.4.3 What will happen if DSL program variable changes

If a variable changes in the DSL program that will not make any affect. For

example consider figure 5.2 the variable Input1 in the TestCase has type

myInput which is name of entity Input. The serialized TestCase in Figure 5.7

has this Input1 as input because on serialization it takes the entity’s classifier.

So whatever name user chooses for entity’s name identifier or type of declared

variable’s identifier the XML file will be consistent. Changing variables will have

no effect on the resulting output.

5.4.4 What will happen if user selects an XML file having different

elements

If user selects from ViBATA an XML file with different elements having root

element other than TestSuite or it does not contain any Tests or he selects a

different file like a text file then what will happen. This is the reason xml schema

file in place which checks the formation of XML file. For XML file having different

elements schema will not be able to match and exception will be thrown which

will be caught and display a user friendly message in a message box as shown

in Figure 5.25 if xml file does not contain any test it will check and display a

message saying file does not contain any tests. For a different system with

different domain elements the schema will need to be regenerated according to

XML file.

107

Figure 5.25: Friendly message on choosing wrong file

In this chapter use case are defined which are experiments to test the DSL to

see if the required objectives are achieved. The detailed information about use

cases and the reason to choose these is given. It is also explained how goals

are achieved by testing all the use cases and results are shown. It is also

described how the DSL is made general to accommodate embedded systems

and how can it be extended for a particular domain such as automotive or

calculator. Implications are defined as well to show what would happen if

devices, program variables or xml file changes.

108

6 Conclusion and Future work

In this chapter detailed information about the background of the project,

analysis of objectives and results of this project is provided. It gives the answers

to what was the problem and reason behind building DSL and how it overcame

the problem.

The main objective of this project was to provide user with a facility of test

automation framework which could automate the testing procedure on HIL

testing rig in automotive industry (JLR). This was done by building software

ViBATA by Cranfield University. The test specification component of the

software which has a major role in this software and is important for any testing

framework was efficient but still manual. Instead of making another

programming functionality to do this job a research was taken to identify what

can be the best solution to this problem. The outcome of that research was that

scripting or procedural languages can provide the means to create scripts for

test automation. Domain-specific language is a scripting language with its

declarative nature, limited expressiveness focused on a particular problem gave

answers to all questions.

To build a Domain-specific language research was undertaken to understand

what other people have performed work in this area and what the results were.

The most related work is done by Wahler [9] but that DSL cannot apply to our

problem because of its limitations described in section 2.7.2. Analysis of kinds

and forms of DSL and tools available to build a DSL was also performed which

resulted into building a textual DSL using Eclipse framework.

One of our aims of this DSL was to get an output which could specify test cases

and read by our software ViBATA. To achieve this aim this DSL is producing

output in XML which is a standard of providing interoperability between two

applications. Web services are in place for interoperability between different

software platforms also use XML to exchange data. This output will give the

flexibility in this regard and test cases built by DSL can be read by any other

109

application provided that it has a plugin to process XML file such as XML plugin

in ViBATA.

The second main objective was to enable DSL to generate code in any other

GPL. To achieve this goal template expressions in Xtend are used which is

producing code in Java for this DSL but can generate in other languages by

replacing the code in Java, the implementation of which is shown in section

4.4.3 and results were shown in section 5.2.1.

Third aim was to know if DSL can work with other embedded system in addition

to automotive. This aim is achieved by making structure of DSL in general way

and proved by using the same DSL for calculator. We observed in section 5.4.1

that the DSL specify test cases for the calculator the result of DSL was

generated in XML file which was read by Xml plugin and processed by the

plugin for calculator built in ViBATA. We ran the test cases and got the results.

The fourth objective was that it should specify the settings of devices used in

test environment. In case of ViBATA we were using XML file TAS.cofig to

provide the settings for different devices which can be replaced by XML file

produced by DSL for Device as shown in section 5.2.1.

Remaining objectives included to give the user an option to specify to create,

delete and update test cases which also achieved by providing keywords in

DSL as shown in section 5.2.1; to give user a facility of validation while typing

program in DSL to improve his experience which is done by customizing

validation folder in language infrastructure as shown in section 4.4.4; and to

provide user code assistance while typing which is also achieved by

customizing scoping folder in language project and proposal provider folder in

UI project of language as shown in sections 4.4.5 and 4.4.6 respectively.

6.1 Future Work

A future work in terms of DSL can be integrating functionality, to interact with

database directly, into the system as part of generated code. Our database built

110

in Microsoft Access for this project which could not be accessible through Java.

The functionality in generated code should take commands from DSL and

update the database which would be nice to have.

111

REFERENCES

1. Martin Fowler, Rebecca P., “Domain-Specific Languages”, (2011), ISBN: 0-

321-71294-3, publisher: Addison-Wesley Professional

2. Ayende Rahien, “DSLs in Boo: Domain-Specific Languages in .NET”, (2010),

ISBN: 978-1-933988-60-3, publisher: Manning Publications Co.

3. Glenford J. Myers, “The Art of Software Testing”, (2004), pp. 10, Second

Edition, ISBN: 0-471-46912-2, publisher: John Wiley & Sons, Inc.

4. John Watkins, Simon Mills, “Testing IT”, (2010), pp. 92, Second Edition,

ISBN: 978-0-521-14801-6, publisher: Cambridge University Press

5. Ian Sommerville, “Software engineering”, (2007), pp. 561-563, 8th Edition,

ISBN: 9781408251195, publisher: Addison-Wesley Professional

6. Eckard Bringmann, Andreas Krämer, “Model-based Testing of Automotive

systems”, In Proc. Software Testing, Verification, and Validation, pages 485-

493. IEEE, (2008)

7. Sebastian Siegl, Kai-Steffen Hielscher, Reinhard German, Christian Berger, “

Formal Specification and Systematic Model-Driven Testing of Embedded

Automotive Systems”, (2011)

8. Steffen Sch¨utte, “A DOMAIN-SPECIFIC LANGUAGE FOR SIMULATION

COMPOSITION”, (2011), pp.146-152

9. Wahler, M., Ferranti, E., Steiger, R., Jain, R. and Nagy, K., “CAST:

Automating Software Tests for Embedded Systems”, (2012)

10. Manuel Jiménez, Francisca Rosique, Pedro Sánchez, Bárbara Álvare,

Andrés Iborra, “Habitation: A Domain Specific Language for Home

Automation”, (2009)

11. Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler and

Steven Volkel, “Text-based Modeling”, (October, 2007)

12. Howard Barringer and Klaus Havelund, “Internal versus External DSLs for

Trace Analysis Extended Abstract”. In Proc. of the 2nd Int. Conference on

Runtime Verification (RV’11), volume 7186 of LNCS, pages 1–3. Springer,

2011, (2011)

13. Markus Voelter, “A Family of Languages for Architecture Description”,

OOPSLA Workshop on Domain–Specific Modeling, (2008)

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init

112

14. Vicente Pelechano, Manoli Albert, Javier Munoz and Carlos Cetina,

“Building tools for model driven development. Comparing Microsoft DSL tools

and Eclipse Modelling Plug-ins”, In Proceedings of Desarrollo de Software

Dirigido por Modelos--DSDM'06, (2006)

15. B. Langlois, C.E. Jitia, E. Jouenne, “DSL Classification”, In 7th OOPSLA

Workshop on Domain-Specific Modeling, (2007)

16. Steve Cooke, Gareth Jones, Stuart Kent and Alan Cameron Wills, “

Domain-Specific Development with Visual Studio DSL Tools”, (2007) pp. 15-

17

17. Michael Pfeiffer, Josef Pichler, “A Comparison of Tool Support for Textual

Domain-Specific Languages”, In Proceedings of the 8th OOPSLA Workshop

on Domain-Specific Modeling (October 2008), pp. 1-7

18. John Kent M.Sc., “Test Automation: From Record/Playback to

Frameworks”, at: http://www.simplytesting.com, paper given at EuroSTAR

(2007)

19. G. Meszaros, "Agile Regression Testing Using Record &

Playback," Companion of the 18th Ann. ACM SIGPLAN Conf. Object-

Oriented Programming, Systems, Languages, and Applications

(OOPSLA 03), ACM Press, (2003), pp. 353–360.

20. Mark Blackburn, Robert Busser, Aaron Nauman, “Why Model-Based test

Automation is different and what you should know to get started”, In

International Conference on Practical Software Quality and Testing, (2004)

21. Tairas, R., Mernik, M., Gray, J.: “Using ontologies in the domain analysis of

domain-specific languages”, In: Proceedings of the 1st International

Workshop on Transforming and Weaving Ontologies in Model Driven

Engineering 2008. CEUR Workshop Proceedings., CEUR-WS.org, vol. 395

(2008)

22. Mark Strembeck and Uwe Zdun, “An approach for the systematic

development of domain-specific languages”, SOFTWARE—PRACTICE AND

EXPERIENCE, (2009); vol. 39, pp. 1261–1273

http://www.simplytesting.com/

113

23. Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin

Schindler, Steven Völkel, “Design Guidelines for Domain Specific

Languages”, In 9th OOPSLA Workshop on Domain-Specific Modelling, (2009)

24. Munnelly, J.; Clarke, S.; "A Domain-Specific Language for Ubiquitous

Healthcare, Pervasive Computing and Applications”, (2008), ICPCA 2008.

Third International Conference on , vol.2, no., pp.757-762, 6-8 Oct. 2008

25. Harrison, W., Harrison, R., “Domain specific languages for cellular

interactions”, In: Proceedings of the 26th Annual IEEE International

Conference on Engineering in Medicine and Biology (2004)

26. Lisboa, E.B.; Silva, L.; Lima, T.; Chaves, I.; Barros, E.; "An approach to

concurrent development of device drivers and device controller," Advanced

Communication Technology, (2009), vol.01, pp.571-575

27. Dean Kramer, Tony Clark, and Samia Oussena. “Mobdsl: A domain specific

language for multiple mobile platform deployment”. In Proceedings of the

IEEE International Conference on Networked Embedded Systems for

Enterprise Applications. IEEE, (2010)

28. Peter Friese, Sven Efftinge, Jan Köhnlein, “Build your own textual DSL with

tools from the Eclipse Modeling project”, at:

http://www.eclipse.org/articles/Article-BuildYourOwnDSL/, (2008)

29. Marcel van Amstel, Mark van den Brand, and Luc Engelen. “An exercise in

iterative domain-specific language design”, In Proceedings of the Joint

ERCIM Workshop on Software Evolution (EVOL) and International Workshop

on Principles of Software Evolution, (2010)

http://doi.acm.org/10.1145/1862372.1862386

30. Marjan Mernik, Jan Heering, and Anthony M. Sloane, “When and how to

develop domain-specific languages”, pp. 316-344

31. Xtext Documentation at: http://www.eclipse.org/Xtext/documentation.html,

(2012) (visited: 01.07.2012)

32. Stuart Barnes, Ambreen Hussain and Alexandros Mouzakitis, “Automated

Testing of a Vehicle Instrument Cluster”, International Conference on

Systems Engineering, (2012).

http://www.citeulike.org/user/akumlehn/author/Karsai:G
http://www.citeulike.org/user/akumlehn/author/Krahn:H
http://www.citeulike.org/user/akumlehn/author/Pinkernell:C
http://www.citeulike.org/user/akumlehn/author/Rumpe:B
http://www.citeulike.org/user/akumlehn/author/Schindler:M
http://www.citeulike.org/user/akumlehn/author/Schindler:M
http://www.citeulike.org/user/akumlehn/author/V%c3%b6lkel:S
http://www.eclipse.org/articles/Article-BuildYourOwnDSL/
http://doi.acm.org/10.1145/1862372.1862386
http://www.eclipse.org/Xtext/documentation.html

114

33. YingPing Huang, Ross McMurran, Gunwant Dhadyalla, R. Peter Jones, and

Alexandros Mouzakitis, “Model-Based Testing of a Vehicle Instrument

Cluster for Design Validation using Machine Vision”, (2009).

34. Xtend Documentation available at:

http://www.eclipse.org/xtend/documentation.html, (2012) (visited:

12.07.2012)

35. Lorenzo Bettini, ‘Xtext 2.1: Using Xbase Expressions’ (2011), available at:

http://www.rcp-vision.com/?p=1640 (visited: 06.12.2012)

36. Sven Efftinge, Moritz Eysholdt, and Jan Kohnlein, “Xbase: Implementing

Domain-Specific Languages for Java”, (2012)

37. Sven Effting, “Martin Fowler’s State Machine DSL with Xtext 2.3”, (2012),

available at: http://blog.efftinge.de/2012/05/implementing-fowlers-state-

machine-dsl.html (visited: 20.09.2012)

38. Moritz Eesholdt and Heiko Behrens, “Xtext – Implement you Language

Faster than the Quick and Dirty way”, 2010

39. Calculator Demo, available at: http://msdn.microsoft.com/en-

gb/library/vstudio/ms771362(v=vs.90).aspx (visited: 15.02.2013)

40. In-Sight Explore (2013) available at: http://www.cognex.com/in-sight-

explorer.aspx (visited: 23.03.2013)

41. About the Eclipse Foundation (2013) available at:

http://www.eclipse.org/org/ (visited: 24.03.2013)

42. Sven Efftinge and Markus Volter, “oAW xText: A framework for textual

DSLs”, 2006

43. Simple XML Serialization available at

http://simple.sourceforge.net/home.php (visited: 24.09.2012)

44. Domain-Specific Language (2013) available at:

http://en.wikipedia.org/wiki/Domain-specific_language (visited: 22.02.2013)

45. HTML Introduction (2013) available at

http://www.w3schools.com/html/html_intro.asp (visited 22.05.2013)

46. CSS Introduction (2013) available at

http://www.w3schools.com/css/css_intro.asp (visited 22.05.2013)

http://www.eclipse.org/xtend/documentation.html
http://www.rcp-vision.com/?p=1640
http://blog.efftinge.de/2012/05/implementing-fowlers-state-machine-dsl.html
http://blog.efftinge.de/2012/05/implementing-fowlers-state-machine-dsl.html
http://msdn.microsoft.com/en-gb/library/vstudio/ms771362(v=vs.90).aspx
http://msdn.microsoft.com/en-gb/library/vstudio/ms771362(v=vs.90).aspx
http://www.cognex.com/in-sight-explorer.aspx
http://www.cognex.com/in-sight-explorer.aspx
http://www.eclipse.org/org/
http://simple.sourceforge.net/home.php%20accessed%20at%2024/03/2013
http://en.wikipedia.org/wiki/Domain-specific_language
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/css/css_intro.asp

115

47. SQL Introduction (2013) available at

http://www.w3schools.com/sql/sql_intro.asp (visited 22.05.2013)

48. What is ANTLR? (2012) available at http://www.antlr.org/ (visited

22.05.2013)

49. Introduction to Bison (2008) available at http://www.gnu.org/software/bison/

(visited 22.05.2013)

50. About ABB (2013) available at http://www.abb.com/ (visited 27.05.2013)

51. WinRunner – As a GUI based load testing tool (2004) available at

http://www.loadtest.com.au/Technology/winrunner.htm (visited 27.05.2013)

52. QARun Documentation (2012) available at

http://support.microfocus.com/documentation/ASQ/QARunDocs.aspx (visited

27.05.2013)

53. HP Unified Functional Testing (Quick Test Professional) (2011) available at

http://www.automation-consultants.com/products-

HP_Unified_Functional_Testing_(Quick_Test_Professional)-135 (visited

27.05.2013)

54. Rational Robot (2013) available at http://www-

03.ibm.com/software/products/us/en/robot/ (visited 27.05.2013)

55. Welcome to Protege(2013) available at http://protege.stanford.edu/ (visited

27.05.2013)

56. M. d’Amorim and K. Havelund, “Event-based runtime verification of Java

programs”, ACM SIGSOFT Software Engineering Notes, 30(4):1–7, (2005).

57. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. “Rule-based runtime

verification”. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer,

(2004).

58. H. Barringer, D. E. Rydeheard, and K. Havelund. “Rule systems for run-time

monitoring: from Eagle to RuleR”. J. Log. Comput., 20(3):675–706, (2010).

59. H. Barringer, A. Groce, K. Havelund, and M. Smith. “Formal analysis of log

files”. Journal of Aerospace Computing, Information, and Communication,

7(11):365–390, (2010).

60. H. Barringer and K. Havelund. “TraceContract: A Scala DSL for trace

analysis”. In 17th International Symposium on Formal Methods (FM’11),

http://www.w3schools.com/sql/sql_intro.asp
http://www.antlr.org/
http://www.gnu.org/software/bison/
http://www.abb.com/
http://www.loadtest.com.au/Technology/winrunner.htm
http://support.microfocus.com/documentation/ASQ/QARunDocs.aspx
http://www.automation-consultants.com/products-HP_Unified_Functional_Testing_(Quick_Test_Professional)-135
http://www.automation-consultants.com/products-HP_Unified_Functional_Testing_(Quick_Test_Professional)-135
http://www-03.ibm.com/software/products/us/en/robot/
http://www-03.ibm.com/software/products/us/en/robot/
http://protege.stanford.edu/

116

Limerick, Ireland, June 20-24, 2011. Proceedings, volume 6664 of LNCS,

pages 57–72. Springer, (2011).

61. Scala (2013) available at http://www.scala-lang.org (visited 27.05.2013)

62. UML (2013) available at http://www.uml.org/ (visited 27.05.2013)

63. Introduction to CVS (2006) available at http://cvs.nongnu.org/ (visited

29.05.2013)

64. Apache Subversion (2011) available at http://subversion.apache.org/

(visited 29.05.2013)

65. H. Krahn, B. Rumpe, and S. Volkel. “Integrated Definition of Abstract and

Concrete Syntax for Textual Languages”. In Proceedings of Models 2007

(2007)

66. Mark van den Brand et al. “The ASF+SDF Meta-Environment: a Component-

Based Language Development Environment”. In Proceedings of Compiler

Construction 2001 (CC 2001), LNCS. Springer, 2001.

67. F. Jouault, J. Bezivin, and I. Kurtev. “TCS: a DSL for the Specification of

Textual Concrete Syntaxes in Model Engineering”. In Proceedings of the fifth

international conference on Generative programming and Component

Engineering 2006

68. MetaCase (2013) available at http://www.metacase.com (visited

29.05.2013)

69. J. Aldrich, C. Chambers, and D. Notkin. “ArchJava: connecting software

architecture to implementation”. In ICSE, pages 187-197, 2002.

70. LINQ (2013) available at http://msdn.microsoft.com/en-

us/library/vstudio/bb397926.aspx (visited 29.05.2013)

71. Eclipse Modeling Project (2013) available at

http://www.eclipse.org/modeling/ (visited 29.05.2013)

72. Microsoft Domain-Specific Language Tools (2013) available at

http://www.microsoft.com/en-us/download/details.aspx?id=2379 (visited

29.05.2013)

73. Xactium (2013) available at http://www.xactium.com/ (visited 29.05.2013)

74. MPS (2013) available at http://www.jetbrains.com/mps/ (visited 29.05.2013)

http://www.scala-lang.org/
http://www.uml.org/
http://cvs.nongnu.org/
http://subversion.apache.org/
http://www.metacase.com/
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://www.eclipse.org/modeling/
http://www.microsoft.com/en-us/download/details.aspx?id=2379
http://www.xactium.com/
http://www.jetbrains.com/mps/

117

75. Model-in-the-Loop (2013) available at http://www.emmeskay.com/verification-

and-validation/model-in-the-loop-mil (visited 29.05.2013)

76. Hardware-in-the-Loop (2013) available at

http://de.wikipedia.org/wiki/Hardware_in_the_Loop (visited 29.05.2013)

77. Software-in-the-Loop (2013) available at

http://de.wikipedia.org/wiki/Hardware_in_the_Loop (visited 29.05.2013)

78. LonWorks (2013) available at http://www.echelon.com/technology/lonworks/

(visited 29.05.2013)

79. KNX (2013) available at http://www.knx.org/uk/ (visited 29.05.2013)

80. ArchC (2013) available at http://www.archc.org/ (visited 29.05.2013)

81. Bhasker, J. “A SystemC Primer”, Star Galaxy Publishing, 2002.

http://www.emmeskay.com/verification-and-validation/model-in-the-loop-mil
http://www.emmeskay.com/verification-and-validation/model-in-the-loop-mil
http://de.wikipedia.org/wiki/Hardware_in_the_Loop
http://de.wikipedia.org/wiki/Hardware_in_the_Loop
http://www.echelon.com/technology/lonworks/
http://www.knx.org/uk/
http://www.archc.org/

118

APPENDICES

Appendix A Modifications done in Software

ViBATA was initially started by a developer who built the infrastructure of the

software. Tests could be copied from the excel sheet into the software. Test

cases for a category in an IPC could be created and running a test was

implemented. My main responsibility was updating the software according to the

client’s requirement and maintaining it. In this Appendix list of some of

amendments done in software are defined

 The searching in .sdf file was case sensitive and allowed user to search

if he enters the exact word without spaces and underscores. Now two

checkboxes are given to user one is to ignore the case and second is to

use all words whether separated by underscores or spaces this change

was done in python file which run >python dscontrol.py to register COM

server

 Individual tests could run and show the result but ability to run a list of

tests was required. So batch mode of testing is implemented. User can

run as many tests as he wants by clicking check box in front of the tests

and executing them in Batch Testing tab

 Because of limited camera’s flash memory *.job file for all the tests

couldn’t store. Now when .job file is created it stores on disk on location

C:/InsightJobs. When a test runs the software picks .job file for the

particular test from this location and loads into camera’s memory and

after test result is shown it deletes this .job file from it.

 Implemented change flags which shows ‘Do you wish to Save…’

warnings to avoid loss of work.

 Previously only test could be copied from one category to another but

now categories along with all test contained in it can be copied from one

IPC to the other.

 Some tests require pre-requisite tests to be executed first. A pre-requisite

test is related to the input line of the main test and the signal value of that

119

input line depends on the result of the pre-requisite test. If a pre-requisite

test of kind decisive fails the whole test fails.

 Lazy loading of treeview for IPC and categories is resolved by

implementing load on demand.

 The searching of test lines is implemented if new DVP arrives, the tests

which are entered for the previous IPC from old DVP can now be

searched on Test Searching tab by browsing new DVP file and entering

name of the worksheet name to which test belongs to. The software

search for the test lines from that worksheet and if it is found copied it

onto the list below from where user can paste it onto DVP entries section

of the new test.

 Input/output template in the software was to only ease the process if

required by more than one test. The input/output line could be edited but

now to make software consistent if input/output line gets populated from

a template then it cannot be edited until that template is edited which will

edit all input/output lines populated from that template. If user tries to

update a line which is using a template a warning comes up. If a

template is deleted then will be deleted from all the input/output lines

having that template.

 On saving test, previously every time tests were getting deleted first and

getting saved in this way input/output lines were getting assigned new ids

in database but now if it is saved for the first time new ids are assigned

but saving after that will update the previous input/output and add new

line if there is any. This is done by comparing the new list of lines with

the old list.

 Saving output template is now working. Expected value can be entered

as >=90 also a template can be deleted as well.

 Some tests give output of images display in the cycle. To capture such

an image in a cycle there was a requirement to refresh the camera after

a certain interval and capture the image until image is found or the test

runs for a specific duration of time. To accomplish this user can now

enter duration and seconds fields on entering output for the test. If these

120

two fields are entered then image cycle will run after every duration for

seconds long entered

 Selecting all tests in IPC/Category is implemented in batch mode

 Selecting only failed tests in IPC/Category is implemented in batch mode

 Exporting of Test Results to a .csv file is implemented in both batch and

individual test execution

Detailed User and Developer’s guide; class diagrams and sequence diagrams

are developed for the software

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF ABBREVIATIONS
	Glossary
	1. INTRODUCTION
	1.1 Kinds of DSL
	1.1.1 External DSL
	1.1.2 Internal DSLs

	1.2 Benefits of building a DSL
	1.2.1 Increase development productivity
	1.2.2 Better communication with people in Domain
	1.2.3 Change in Execution context
	1.2.4 Alternative Computational Model

	1.3 Problems with DSLs
	1.3.1 Difficulty in learning languages
	1.3.2 Building Cost
	1.3.3 Densely populated Language
	1.3.4 Blinkered Abstraction

	1.4 Motivation
	1.5 Aims and Objectives

	2 Literature Review
	2.1 Test Automation Techniques
	2.1.1 Testing Framework/Workbench
	2.1.2 Record/Playback Testing (R/P)
	2.1.3 Model-Based Test Automation

	2.2 Two approaches to perform Domain Analysis
	2.3 External or Internal DSL
	2.4 Textual or Graphical DSL
	2.5 Tool comparison
	2.5.1 Comparison of MSDSL tools and Eclipse modelling plug-ins Framework
	2.5.2 A Comparison of Tool Support for Textual Domain-Specific Languages

	2.6 Model Based Testing in Automotive Systems
	2.7 Example Implementations of DSL based Systems
	2.7.1 A DSL for Simulation Composition
	2.7.2 CAST: Automated Software Tests for Embedded Systems
	2.7.3 Habitation: A DSL for Home Automation
	2.7.4 A Domain-Specific Language for Ubiquitous Healthcare
	2.7.5 Domain Specific language for Cellular Interactions
	2.7.6 A DSL in Embedded Systems
	2.7.7 MobDSL
	2.7.8 SLCO

	3 Theory and Technologies
	3.1 Technologies used in the Project
	3.1.1 Eclipse Xtext
	3.1.2 Xtend
	3.1.3 Simple Framework

	3.2 Development Stages of DSL
	3.2.1 Domain Analysis and DSL Behaviour
	3.2.2 Define Concrete Syntax and Rules (Grammar)
	3.2.3 Development of Language Artefacts
	3.2.4 Model Constraint
	3.2.5 Integrating DSL with target Platform
	3.2.6 DSL to platform Transformation

	3.3 Software Testing

	4 Methodology
	4.1 1st generation testing procedures - ControkDesk & Python scripts
	4.2 2nd generation testing procedures - ViBATA
	4.3 Overview of DSL
	4.4 Implementation of Development stages of DSL
	4.4.1 Domain Analysis
	4.4.2 Using Domain Elements to Create Grammar Rules
	4.4.3 Writing Code Generator in Xtend
	4.4.4 Model Validation
	4.4.5 Model Scoping
	4.4.6 Content Assist

	4.5 DSL to Platform Transference
	4.5.1 Program in DSL
	4.5.2 Generated Code
	4.5.3 Output of the Code

	4.6 XML Plugin for DSL output in JLR Project

	5 Results, Analysis and Discussion
	5.1 Use Cases
	5.2 Validation of Use Cases
	5.2.1 Define Environment and Test Case
	5.2.2 Define Test Setup
	5.2.3 Defining XML File and Location

	5.3 Research Questions
	5.4 Implications
	5.4.1 Can this DSL work with other embedded system?
	5.4.2 What will happen if Device Changes
	5.4.3 What will happen if DSL program variable changes
	5.4.4 What will happen if user selects an XML file having different elements

	6 Conclusion and Future work
	6.1 Future Work

	REFERENCES
	APPENDICES
	Appendix A Modifications done in Software

