12 research outputs found

    Active Noise Control with Sampled-Data Filtered-x Adaptive Algorithm

    Full text link
    Analysis and design of filtered-x adaptive algorithms are conventionally done by assuming that the transfer function in the secondary path is a discrete-time system. However, in real systems such as active noise control, the secondary path is a continuous-time system. Therefore, such a system should be analyzed and designed as a hybrid system including discrete- and continuous- time systems and AD/DA devices. In this article, we propose a hybrid design taking account of continuous-time behavior of the secondary path via lifting (continuous-time polyphase decomposition) technique in sampled-data control theory

    A Simulation Environment to Evaluate the Effect of Secondary Source Coupling for Noise Reduction in an Automotive Application

    Get PDF
    Passenger comfort has always been of pivotal importance in the interior design of an automobile. A critical aspect in reaching this goal in the automotive industry is the design and implementation of an effective active sound management system with the ability to personalize the acoustic environment inside the car. This, in turn, requires designing an active noise control (ANC) system to mitigate the unwanted noise and an active sound profiling system to implement the desired sound. Due to the complexity of the sound field inside the car cabin, having a high-fidelity model that reflects all details is a challenging task. Therefore, in this paper, we develop a simulation platform to be able to evaluate the performance of the ANC system and the distribution of the sound field as a result of this mechanism. This helps to get a better insight into the behaviours of the sound field inside the cabin before its actual implementation. One important feature of this model, which may also have a significant effect on the performance of the ANC system, is the inclusion of a full-scale numerical model of the loudspeaker. The realistic model of the loudspeaker developed in this way allows to model the effect of loudspeaker coupling in an enclosed space and investigate its effect on the ANC system. The model is compared against the simplified mathematical model of the enclosure developed in the previous work by the authors to see how the approximate geometry and simplified model of the loudspeaker would degrade the performance of the ANC system and measure the changes in the acoustic radiation impedance of the loudspeaker

    Doctor of Philosophy

    Get PDF
    dissertationThe dissertation is concerned with the development and analysis of adaptive algorithms for the rejection of unknown periodic disturbances acting on an unknown system. The rejection of periodic disturbances is a problem frequently encountered in control engineering, and in active noise and vibration control in particular. A new adaptive algorithm is presented for situations where the plant is unknown and may be time-varying. Known as the adaptive harmonic steady-state or ADHSS algorithm, the approach consists in obtaining on-line estimates of the plant frequency response and of the disturbance parameters. The estimates are used to continuously update control parameters and cancel or minimize the effect of the disturbance. The dynamic behavior of the algorithm is analyzed using averaging theory. Averaging theory allows the nonlinear time-varying closed-loop system to be approximated by a nonlinear time-invariant system. Extensions of the algorithm to systems with multiple inputs/outputs and disturbances consisting of multiple frequency components are provided. After considering the rejection of sinusoidal disturbances of known frequency, the rejection of disturbances of unknown frequency acting on an unknown and time-varying plant is considered. This involves the addition of frequency estimation to the ADHSS algorithm. It is shown that when magnitude phase-locked loop (MPLL) frequency estimation is integrated with the ADHSS algorithm, the two components work together in such a way that the control input does not prevent frequency tracking by the frequency estimator and so that the order of the ADHSS can be reduced. While MPLL frequency estimation can be combined favorably with ADHSS disturbance rejection, stability is limited due to the local convergence properties of the MPLL. Thus, a new frequency estimation algorithm with semiglobal stability properties is introduced. Based on the theory of asynchronous electric machines, the induction motor frequency estimator, or IMFE, is shown to be appropriate for disturbance cancellation and, with modification, is shown to increase stability of the combined ADHSS/MPLL algorithm. Extensive active noise control experiments demonstrate the performance of the algorithms presented in the dissertation when disturbance and plant parameters are changing

    Development of Novel Techniques to Study Nonlinear Active Noise Control

    Get PDF
    Active noise control has been a field of growing interest over the past few decades. The challenges thrown by active noise control have attracted the notice of the scientific community to engage them in intense level of research. Cancellation of acoustic noise electronically in a simple and efficient way is the vital merit of the active noise control system. A detailed study about existing strategies for active noise control has been undertaken in the present work. This study has given an insight regarding various factors influencing performance of modern active noise control systems. The development of new training algorithms and structures for active noise control are active fields of research which are exploiting the benefits of different signal processing and soft- computing techniques. The nonlinearity contributed by environment and various components of active noise control system greatly affects the ultimate performance of an active noise canceller. This fact motivated to pursue the research work in developing novel architectures and algorithms to address the issues of nonlinear active noise control. One of the primary focus of the work is the application of artificial neural network to effectively combat the problem of active noise control. This is because artificial neural networks are inherently nonlinear processors and possesses capabilities of universal approximation and thus are well suited to exhibit high performance when used in nonlinear active noise control. The present work contributed significantly in designing efficient nonlinear active noise canceller based on neural network platform. Novel neural filtered-x least mean square and neural filtered-e least mean square algorithms are proposed for nonlinear active noise control taking into consideration the nonlinear secondary path. Employing Legendre neural network led the development of a set new adaptive algorithms such as Legendre filtered-x least mean square, Legendre vi filtered-e least mean square, Legendre filtered-x recursive least square and fast Legendre filtered-x least mean square algorithms. The proposed algorithms outperformed the existing standard algorithms for nonlinear active noise control in terms of steady state mean square error with reduced computational complexity. Efficient frequency domain implementation of some the proposed algorithms have been undertaken to exploit its benefits. Exhaustive simulation studies carried out have established the efficacy of the proposed architectures and algorithms

    Active control of fluid-borne noise

    Get PDF

    Active noise cancellation headset

    No full text
    In this paper, a new design for headset with active noise cancellation capability is presented. For the proposed headset, a Variable-Step-Size Normalized Least-Mean-Square (VSS-NLMS) algorithm is adopted in the combined audio and feedback active noise cancellation system. Experimental results show that for the same set of signals, the average noise reduction using the proposed adaptive algorithms is 38dB compared with 36dB using Normalized Least-Mean-Square algorithm and 14 dB using the Least-Mean-Square algorithm. The speed of convergence using the proposed approach is also faster compared with the other two cases. Informal listening tests also favor the adoption of the proposed VSS-NLMS adaptive algorithm.Published versio
    corecore