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ABSTRACT 

______________________________________ 

 
 

Active noise control has been a field of growing interest over the past few 

decades. The challenges thrown by active noise control have attracted the notice of the 

scientific community to engage them in intense level of research. Cancellation of 

acoustic noise electronically in a simple and efficient way is the vital merit of the active 

noise control system. A detailed study about existing strategies for active noise control 

has been undertaken in the present work. This study has given an insight regarding 

various factors influencing performance of modern active noise control systems. The 

development of new training algorithms and structures for active noise control are 

active fields of research which are exploiting the benefits of different signal processing 

and soft- computing techniques. The nonlinearity contributed by environment and 

various components of active noise control system greatly affects the ultimate 

performance of an active noise canceller. This fact motivated to pursue the research 

work in developing novel architectures and algorithms to address the issues of nonlinear 

active noise control. 

 One of the primary focus of the work is the application of artificial neural 

network to effectively combat the problem of active noise control. This is because 

artificial neural networks are inherently nonlinear processors and possesses capabilities 

of universal approximation and thus are well suited to exhibit high performance when 

used in nonlinear active noise control. The present work contributed significantly in 

designing efficient nonlinear active noise canceller based on neural network platform. 

Novel neural filtered-x least mean square and neural filtered-e least mean square 

algorithms are proposed for nonlinear active noise control taking into consideration the 

nonlinear secondary path.  Employing Legendre neural network led the development of 

a set new adaptive algorithms such as Legendre filtered-x least mean square, Legendre 



vi 

 

filtered-e least mean square, Legendre filtered-x recursive least square and fast 

Legendre filtered-x least mean square algorithms. The proposed algorithms 

outperformed the existing standard algorithms for nonlinear active noise control in 

terms of steady state mean square error with reduced computational complexity. 

Efficient frequency domain implementation of some the proposed algorithms have been 

undertaken to exploit its benefits. Exhaustive simulation studies carried out have 

established the efficacy of the proposed architectures and algorithms. 
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Chapter 1 

Introduction 

1.1 Background  

Industrialization and ever increasing use of technology in our daily life has led to 

exponential increase of acoustical noise pollution. Noise is an irritant and causes mental 

strain. It has an adverse psychological effect on living beings and creates an unhealthy 

working environment. Continuous exposure to noise has a detrimental effect leading to 

temporary or permanent loss of hearing and mood swing. Acoustic noise problem in the 

environment is gaining attention due to the tremendous growth of technology that has led 

to noisy engines, heavy machinery, pumps, home appliances and a myriad other noise 

sources. Exposure to high levels of sound proves damaging to humans from both physical 

and psychological aspect. The problem of controlling the noise level in the environment 

has been the focus of a tremendous amount of research over the years. Legislations have 

been enforced on industries and manufacturers to keep the maximum noise level of their 

products under specified limits. However, as long as the quest for larger machinery using 

light material continues, the noise pollution level will be on the rise. Due to these reasons, 

noise control has gained considerable importance in the recent years. Human desire for a 

high-tech but comfortable and noise free living has fueled the development of acoustic 

noise control techniques.   

              Acoustic noise control techniques can be broadly classified into two categories: 

passive control technique and active control technique. The combination of passive 

control technique with active control technique can yield better overall performance than 

for either one alone. In many respects, active noise control (ANC) is a complementary 

technology to passive silencing [1]. 

1.2 Noise Control Techniques 

1.2.1 Passive Noise Control 

                Passive noise control techniques employ sound absorbing material, enclosures, 

barriers and silencers to attenuate the undesired noise. These passive techniques are 
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effective for high attenuation over a broad frequency range; but are unable to absorb low 

frequency noise. For low frequency noise the passive techniques become relatively larger 

and heavier thus considerably increasing the cost. This often makes the passive approach 

to reduce low frequency noise very impractical. But the fact is people are more 

uncomfortable with low frequency noise rather than high frequency noise because low 

frequency noise is not only annoying but produces fatigue, irritation and loss of 

concentration, therefore affecting productivity. If low frequency noise is mixed with 

speech, it reduces speech intelligibility [1], [2]. In a noise generating system the 

amplitude of the low frequency noise is mostly higher than other frequencies. Hence 

there is a growing demand for reducing low frequency noise. 

1.2.2 Active Noise Control 

The design of an active noise controller using a microphone and an electronically 

driven loudspeaker to generate a cancelling sound was first proposed and patented using 

a purely analog electronic approach in 1930 in France by Coanda [4] and  in US  by Lueg 

in 1936 [5]. The patent outlined the basic idea of ANC, shown in fig.1.1, but at that time 

it could not be applied to practice because of a number of factors. Advanced and accurate 

electronic instruments (microphone, loudspeakers, digital personal computers) were not 

available, digital signal processing and the concept of adaptive systems were not started 

then and there was no proper knowledge on noise and various sources of noise.  During 

the latter half of the 20
th

 century, emergence of digital signal processing made ANC a 

viable technique for practical noise reduction. Latter on advances in adaptive systems and 

adaptive signal processing which facilitate a time varying system with the ability to adapt 

to changing environment, not only revolutionized ANC but also further opened up its 

field of applications. Development of high speed special purpose digital signal processors 

helped realize practical ANC. More recently fusion of the soft computing approaches like 

artificial neural network, fuzzy logic and hybrid techniques (neuro-fuzzy techniques) 

with existing ANC techniques have made ANC powerful than ever before. ANC is 

currently being researched for use to control noise from jet engines, helicopter, motor 

vehicle engines, ventilation systems, generators, transformers, industrial machinery, 

traffic, MRI units, torpedoes, headphones and even amplified music.  
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Fig 1.1 Lueg’s Active Noise Control Patent (U.S. Patent No. 2043416, June 1936) [5]. 

The ANC is an electroacoustic device that is based on the principle of destructive 

interference where the unwanted sound is cancelled by generating an antisound 

(antinoise) of equal amplitude and opposite phase. The original unwanted noise and the 

antinoise superimpose acoustically, resulting in the cancellation of both sounds. For 

example, fig. 1.2 shows the waveforms of a typical unwanted noise (called the reference 

noise), the cancelling noise (called the antinoise), and the residual noise that results when 

they superimpose. For cancellation of the reference noise the amplitude of antinoise must 

be same as that of reference noise but phase should be opposite (180
0
 out of phase). So 

the effectiveness of cancellation of the reference noise depends on the accuracy of the 

amplitude and phase of the generated antinoise.  
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Fig 1.2 Basic Principle of Active Noise Control. 

As discussed earlier passive noise control approach is effective for controlling 

noise over the entire frequency range except at low frequency (below 600 Hz). Hence the 

demand is to develop ANC which should be able to control low frequency noise. ANC 

take advantage of this situation as lower noise frequency allow lower sampling rate (as 

low as 1200 Hz) resulting in comparatively higher sample period (approximately 

0.833millisecond for a sampling frequency of 1200Hz). An ANC has to finish all the 

computation to generate antinoise within a single sample period and should be ready to 

accommodate the next sample of reference signal as soon as it arrives (reference noise 

signal samples are available at the rate of one sample every sample period). A larger 

signal sample period not only allow the ANC to finish it computation in time but also 

facilitates employment of more complicated and computationally intensive adaptive 

algorithms for achieving better noise cancellation performance.  

So active attenuation is an attractive means to achieve large amounts of noise 

reduction electronically, particularly at low frequencies. Another advantage of low 

frequencies noise is, it allow plane wave propagation making the job of an ANC easier as 

the sound field is not complicated. In essence, active noise control shows real advantages 

to control low frequency noise. So ANC has received considerable research interest and 

has shown significant potential to control low frequency noise. The creation and superpo- 



CHAPTER-1       INTRODUCTION 

 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.3 Diagram of the basic arrangement for an ANC in a duct. 

sition of the antinoise for controlling three dimensional reference noise is very complex, 

since this involves reconstruction of the whole acoustic event. The discussion in this 

thesis restricts itself to one-dimensional ANC in long ducts. One basic arrangement to 

cancel noise in a duct is shown in the fig. 1.3. 

Working with low frequency noise in ducts has got the following advantages: 

firstly, the sound will travel as plane waves upto a certain frequency called cutoff 

frequency. The noise of higher frequencies will decay within a short distance from the 

source. So the mixing of the reference noise and antinoise is easier. Secondly, the low 

frequency noise has a longer wavelength, so that the phase angle changes slowly with 

time. This makes the fine control of phase of secondary wave easier. Hence, a stable 

interference pattern is possible that results in larger noise reduction. Lastly, the sound 

wave travels at much slower speed than the electrical signals, so that a large operation 

time for generating the antinoise is available, if secondary source is suitably located. 

Acoustic noise can be broadly classified into two types: broadband noise and narrowband 

noise.  
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1.3 Classification of Noise 

1.3.1 Broadband Noise 

            Broadband noise is caused by turbulence and is random in nature. Turbulent noise 

distributes its energy evenly across the frequency bands. The examples are the low-

frequency sounds of jet planes and the impulse noise of an explosion.  

1.3.2 Narrowband Noise  

            In narrowband noise most of its energy is concentrated at specific frequencies. 

This type of noise is related to rotating or repetitive machines, so it is periodic or nearly 

periodic in nature. Examples of narrowband noise include the noise of internal 

combustion engines in transportation, compressors as auxiliary power sources and in 

refrigerators, and vacuum pumps used to transfer bulk materials in many industries. The 

transformer noise which is the hum noise due to the magneto-striction consists of higher 

harmonics of the power-line frequency. In another way the noise can be classified into 

two types: linear noise and nonlinear noise. The broadband noise is mostly linear. But 

there are situations where noise coming from a dynamic system may be nonlinear and 

deterministic. Such nonlinear but deterministic noise is referred to as chaotic noise. Some 

examples of chaotic noise are Logistic chaotic noise, Lorenz chaotic noise and Duffing 

chaotic noise [11]. One practical example of chaotic noise is the fan noise which often 

shows chaotic behavior. 

1.4 Adaptive Active Noise Control 

           The acoustic noise source and the environment are time varying, the frequency 

content, amplitude, phase, and velocity of the undesired noise are nonstationary (time 

varying). So an active noise control system must be adaptive in order to cope with these 

changing characteristics. This is the reason why modern active noise control systems 

depend heavily on digital signal processing because in the field of digital signal 

processing, there are classes of  systems called adaptive systems which have the 

capability to vary their coefficients in order to cope with changing environment. Adaptive 

systems can be implemented as transversal—finite impulse response (FIR), recursive—

infinite impulse response (IIR), lattice filters, transform-domain filters. Correspondingly 

ANC can also be implemented using FIR filter, IIR filter, lattice filters or transform-
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domain filters. These yield varieties of ANC different from each other in many aspects. 

Performance of each of them is well researched and documented in literature [1]. 

The coefficients of an adaptive filter are tuned to minimize a predefined cost 

function which is generally a function of error signal. The process of adaptation is 

automated by DSP adaptation algorithms. Depending on the problem, a large number of 

adaptation algorithms have been developed to adapt the system quickly and efficiently. 

The pros and cons of available adaptive algorithms have been analyzed mathematically, 

through exhaustive computer simulation and also real time implementations. A large 

number of researchers are still involved in developing new adaptation algorithms by 

exploring advanced digital signal processing techniques and soft computing techniques in 

order to optimize the overall performance of the ANC.   

1.4.1 Adaptive Algorithms for ANC 

          The ANC system can be implemented using different adaptive learning algorithms. 

The most common algorithm applied to adaptive filters is the least mean-squared (LMS) 

algorithm [1]-[3],[7]. The reference noise signal and error signal are used as input to an 

adaptive algorithm, which adjusts the adaptive filter coefficients to model (estimate) the 

acoustic-channel effects. For ANC, taking into account presence of secondary path, LMS 

algorithm is suitably modified to develop an efficient but simple algorithm known as 

filtered-x LMS (FXLMS) algorithm which was derived by Widrow [1]. With advances in 

digital signal processing, FXLMS algorithm is further modified by many researchers to 

improve the ANC overall performance. All the developed algorithms have their relative 

merits and demerits in terms of speed of convergence, residual noise, computational 

complexity, stability and robustness.  

1.4.2 Multiple-Channel ANC 

 In applications where noise field is complex or the required zone of silence is 

quite large, use of single reference microphone, single secondary loudspeaker or an error 

microphone is not sufficient to reduce noise to a desirable limit. In this scenario, several 

numbers of secondary loudspeakers, error microphones and reference microphones are 

employed. The most important aspect is proper positioning of sensors to have overall 

global noise suppression and also to optimize the service of each sensor. 
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1.4.3 Nonlinear ANC 

FXLMS algorithm and all its variants are useful for linear ANCs i.e. when the 

primary path, secondary path and the reference noise are linear. But practically there are 

many sources of nonlinearity which exist in an ANC. So most of the ANCs are found to 

be nonlinear in nature hence the present arrangement with linear FXLMS algorithm or all 

its variants exhibit performance degradation. There is ample scope for performance 

improvement by employing various nonlinear structures and algorithms.  Volterra filter is 

a nonlinear adaptive filter best suited for this type of problem. The real advantage of 

using Volterra adaptive filter lies with the fact that it can be trained by linear type 

adaptive algorithms. So FXLMS algorithm and most of its variants can be extended to 

train ANC designed using Volterra adaptive filter.  

Different neural networks such as multi layer perceptron (MLP) with derivative 

based back propagation training algorithm, radial basis function networks, fuzzy logic 

and neuro-fuzzy have also been used for nonlinear ANC. Research is in nascent stage for 

using derivative free evolutionary techniques such as genetic algorithm and particle 

swarm optimization for nonlinear ANC. 

             ANC systems may soon be available for many noisy environments. As industry 

adopts mechatronic design techniques, acoustic considerations can be made from the 

outset of the design process. ANC can be expected to be an integral part of vehicle and 

industrial design. 

1.4.4 ANC Applications 

ANC applications can be broadly classified under the following categories 

• Duct noise: This is the major application area of ANC because of widespread 

industrial applications like heating, ventilating and air conditioning systems. In 

air conditioning systems noise is controlled using ANC in the ducts, which is the 

transmission path of noise.  

• Personal hearing protection: The headphone falls into this classification, where 

the loudspeaker generates not only the desired sound but also an antinoise which 

cancel the low frequency ambient noise. Headphones also have ear shells which 

attenuate high frequency noise.  
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• Enclosure Noise: Suppression of noise inside an enclosure like the noise inside 

the passenger cabin of a propller-driven aircraft is a typical example of enclosure 

noise ANC.    

• Open field noise: Transformer noise cancellation or creating a zone of silence 

near the ears of a person sitting in a chair by providing two loudspeakers to 

generate antinoise near the headrest.  

• Virtual Microphone: Placing a microphone at the desired place of noise reduction 

is not always practical like noise in a duct carrying industrial fluid. Virtual 

acoustic sensor techniques have been developed to overcome this problem. Here 

virtual acoustic sensors create a zone of silence at the desired location which may 

be remote from the physical sensor position. 

 

1.5 Motivation 

It has been reported in the literatures that various problems are encountered while 

practical implementation of the ANC systems are carried out. Some of these are: 

1.5.1 Nonlinearity Effect 

In almost all applications of ANC primary path and secondary path exhibit 

nonlinear characteristics. In some applications reference noise is also produced by a 

nonlinear noise process. This is called nonlinear active noise control (NANC). 

Nonlinearity associated with noise process and the paths create problems in linear 

adaptation of the ANC. In the recent literatures, several methods have been proposed for 

NANC. With advances in digital signal processing and soft computing techniques much 

remain to be done to improve the overall performance of NANC.     

1.5.2 Secondary Path effect 

 In order to enable the adaptive filter to learn properly to a desired solution, it is 

necessary to compensate for the transfer function of the secondary path, )(zB , from the 

secondary source to the error sensor. Presence of secondary path following the adaptive 

filter prevents straight forward applications of the adaptive algorithms. This requires 

careful modification of the algorithms to be successfully applied to ANC.  This leads to 

the modification of least mean square (LMS) algorithm to develop filtered-x least mean 
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squares (FXLMS) algorithm by Widrow [1]. Development of new algorithms which take 

care of secondary path is still an open area of research. 

1.5.3 Computational Overload 

 Filtered-x least mean square (FXLMS) algorithm based ANC needs hundreds of 

taps to realize appreciable noise cancellation. As the number of taps increase the 

computational complexity of the FXLMS algorithm increases significantly. Also in 

FXLMS algorithm the reference signal is required to be filtered through the secondary 

path estimate. In practical ANC system, the secondary path estimate also has hundreds of 

taps. Hence, involvement of large computational complexity is a major problem with 

regards to implementation. A number of research works have been undertaken with an 

aim to reduce the computational complexity and make the ANC computation fast. 

1.5.4 Feedback Effect 

The acoustic feedback from the loudspeaker to the reference microphone, which 

causes degradation in the performance of the ANC system, is known as the feedback 

effect. Many investigators have proposed different structures to circumvent this problem. 

However, their models are practically not implementable or do not provide perfect 

cancellation of feedback noise. The online adaptive feedback cancellation (AFC) based 

ANC system also shows poor performance if the reference signal is narrowband or 

periodic. 

From the literature survey on the topic, it has been concluded that attempts have 

been made to resolve the associated problems of ANC. However, further scope still exists 

to improve on the performance by devising efficient techniques to tackle these problems. 

Hence, these observations provide the motivation to undertake research work on these 

problems of ANC. The objective of the thesis is to develop novel algorithms using soft 

computing and DSP techniques to efficiently mitigate various issues of NANC. 

1.6 Objective and Scope  

Efficient ANC for real time implementation has been a challenging task as 

evident from the literature survey and has opened up new avenues to develop high 

performance based ANC for nonlinear environment. The present work primarily focuses 

in addressing the following issues. 

• To study the performance of available nonlinear ANC. 
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• To develop new ANC meant for nonlinear scenario employing soft computing 

approaches like artificial neural network. 

• Reduction in computational complexity requirement of the ANC without 

compromising with noise cancellation performance. 

• To explore frequency domain implementation of multichannel ANC and 

nonlinear ANC techniques. 

1.7 Organization of the thesis 

The work in this thesis is organized as follows: 

Chapter-I: This chapter presents an introduction where various problems linked with 

ANC implementation are discussed. A brief literature survey, motivations for doing 

research, objective and scope of the thesis and organization of the thesis are also 

presented. 

Chapter-II: This chapter deals with an exhaustive study of existing linear and nonlinear 

ANC schemes. Various factors affecting the noise cancellation performance are 

discussed. The role played by ANC and the apparent benefits of employing an ANC in 

these applications are analyzed extensively. The problems encountered in the real time 

applications of ANC are also highlighted. 

Chapter-III: The multilayer perceptron (MLP) is employed as the controller and new 

synaptic weight update algorithm is developed. This adaptive algorithm is found to be a 

generalized version of FXLMS algorithm. In order to reduce complexity, FELMS 

algorithm is also explored by using adjoint secondary path. 

Chapter-IV: A novel reduced structure Legendre neural network for nonlinear ANC is 

proposed for active mitigation of nonlinear noise processes. Low complexity Legendre 

filtered-x LMS (LFXLMS) algorithm, Legendre filtered-e LMS (LFELMS) algorithm, 

Legendre filtered-x RLS (LFXRLS) algorithm are developed.  

Chapter-V: Frequency domain block algorithms are developed, both for filtered-x and 

filtered-e paradigm, basically to reduce computational complexity. The proposed 

algorithms are extended to incorporate multichannel ANC systems. The Legendre neural 

network developed in the previous chapter is also implemented in frequency domain. 

Chapter-VI: The overall conclusion of the thesis and the scope for further research are 

outlined in this chapter. 
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1.8 Contribution of the Thesis 

This thesis proposes solutions to a number of burning issues of ANC system and 

suggests some novel methods using DSP and soft computing techniques to mitigate them. 

The problems dealt in this thesis are secondary path effect, nonlinearity effect, 

computational overload and multichannel effect. DSP techniques used in this thesis are 

adaptive filtering and discrete transforms like FFT. The soft computing tools used are 

Volterra filters, functional link artificial neural network and Legendre neural network. 

These are suitably applied to develop efficient ANC systems. 

Development of new nonlinear ANC structure and pertinent algorithms is the 

principal thrust of this study. The multilayer perceptron is used as the controller and 

associated adaptive algorithms are developed.  The new neural based adaptive algorithm 

is found to be an extended version of FXLMS algorithm. The specific advantage of the 

developed ANC relies on the fact that it can incorporate nonlinear secondary path without 

using a second neural network for nonlinear secondary path modeling. This is possible by 

deriving a time varying virtual secondary path. In an effort to reduce computational 

complexity FELMS algorithm is also explored by using adjoint secondary path concept. 

To validate the proposed controller and the algorithms, exhaustive simulation study is 

carried out. Performances of the proposed algorithms are compared with Volterra based 

algorithms. Neural based algorithms are found to be clearly outperforming the Volterra 

based algorithms.                                                                                                                           

           A novel Legendre neural network for nonlinear active noise control is also 

proposed. Legendre polynomial is used for functional expansion of the reference input of 

the controller. Filter bank implementation of the controller is carried out and the 

equations relative to weight adaptation are derived. Various block oriented models such 

as Linear-Nonlinear-Linear model are successfully used for nonlinear secondary path 

modeling in case of the developed Legendre neural network for NANC. Recursive least 

square (RLS) algorithm is also explored to develop Legendre filtered-x RLS (LFXRLS) 

algorithm. A fast algorithm is also developed which reduces computational complexity 

by updating the weight vector once in two iterations without sacrificing the system 

performance.    
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          Frequency domain block algorithms are developed basically to reduce 

computational complexity. The proposed algorithms are extended to incorporate 

multichannel ANC systems. The nonlinear ANC using Legendre neural network 

developed in the present work is also implemented in frequency domain to reduce 

computational complexity and is found to be an efficient candidate for nonlinear ANC 

systems.  

1.9 Summary 

This thesis proposes solutions to a number of critical issues of ANC system and 

suggests some novel methods using DSP and soft computing techniques to alleviate 

them. The problems generally considered in this thesis are nonlinearity effect, 

computational overload and adaptive filtering techniques employing both time domain 

and frequency domain approaches to study the problems associated with ANC. Further 

efficient ANC structure designs based on the platforms of neural network, Volterra 

filters, Legendre neural network and functional link artificial neural network have been 

developed to achieve better performances.  
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Chapter 2 

Study and Applications of Active Noise Control 

2.1 Background 

Active noise control is an attractive technique for mitigation of undesirable noise, 

particularly low frequency noise. ANC should be used in combination with passive noise 

control to get an overall noise reduction across the entire audible frequency range. 

Researchers have shown interest continuously for the last few decades to develop 

efficient ANC. The development was greatly influenced by advances in digital signal 

processing and adaptive filtering. More recently domain of ANC benefitted hugely by 

applying soft computing techniques. The present research work is particularly focused on 

designing better ANC controller employing new architecture/structure and/or developing 

novel adaptive algorithms. The effort is concentrated in studying the factors which 

greatly influence the real time application of ANC.  Some of these important factors are 

the steady-state noise reduction capability, rapid convergence and reducing 

computational complexity to reduce response time.    

ANC has been in use and currently being researched to be used in diverse field of 

engineering and technology. Some of the application areas are, to name a few, heating, 

ventilating and air conditioning, headphone, earplug (headset), hearing protection, 

hearing aid, infant incubator, transformer noise reduction, functional Magnetic 

Resonance Imaging (fMRI), vehicle interior noise reduction, noise reduction in airplane 

and locomotives, active voice control, noise reduction in industry and mines and military 

etc. 

In this chapter an in-depth study of existing ANC techniques is carried out. The 

study can be subdivided into two categories  

  i)  Study on linear ANC  

ii) Study on nonlinear ANC. 
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Effort has also been made in this chapter to study some of the important applications of 

ANC till date. 

 2.2   Broadband Feedforward Control 

        Structurally active noise control can be implemented in two different ways such 

as feedforward control and feedback control. Depending on the characteristic of noise to 

be cancelled feedforward control is further classified as broadband feedforward control 

system and narrowband feedforward control system. The schematic diagram of a 

broadband feedforward noise cancellation system in a long duct is shown in fig.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 Schematic diagram of a broadband feedforward ANC system. 

Broadband feedforward ANC system use acoustic sensor (reference microphone) to 

pickup a coherent reference noise and generates the necessary antinoise (by secondary 

loudspeaker) before it propagates past the secondary loudspeaker. Broadband noise 

cancellation requires knowledge of the noise source (the reference noise) in order to 

generate the antinoise signal. Hence the reference noise is received by a reference 

microphone and is fed as an input to the noise canceller. After superposition of noise and 

antinoise most of the noise cancel and a small amount of residual noise may remain 

which is called as error. This error signal is observed by a microphone called error 
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microphone. By the time noise canceller generate the antinoise via secondary 

loudspeaker, the reference noise will travel a distance and reach at the position of 

secondary loudspeaker. Care should be taken so that there is time alignment between the 

reference noise reaching the secondary loudspeaker and the antinoise. Any mismatch in 

time alignment will result in causality problem and performance of ANC will be poor. 

 

 

 

 

 

 

 

 

   

 

Fig. 2.2 Block diagram of a single-channel feedforward ANC. 

The reference noise is distorted by the path while travelling to the secondary loud 

speaker position. So the characteristic of this path should be analyzed to achieve good 

results.  The basic block diagram representing the scheme of ANC of fig.2.1 is shown in 

fig.2.2. The path from primary microphone to error sensor is defined as primary path and 

is denoted by )(zA . Similarly the characteristic of the path from secondary loudspeaker to 

error microphone is also important and should be analyzed thoroughly. This path is 

defined as secondary path and denoted by )(zB .The secondary path also includes the 

D/A(digital to analog) converter, reconstruction filter, power amplifier, loudspeaker, 

acoustic path from loudspeaker to error microphone, preamplifier, antialiasing filter, and 

A/D (analog to digital) converter [1],[10].  Typical primary path impulse response and 

secondary path impulse response estimated practically are shown in the fig.2.3 and fig.2.4 

respectively.  While designing the active noise canceller, the presence of primary path 
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and secondary path must be taken into account as both the paths distort the noise and 

antinoise signals. 

The acoustic noise source and the environment are time varying, the frequency 

content, amplitude, phase, and velocity of the undesired noise are nonstationary (time 

varying). So an active  noise control  system must be adaptive in order to cope with these       

 

Fig 2.3 Impulse response of primary path (V. DeBrunner and D. Zhou [12]). 

 

Fig 2.4 Impulse response of Secondary path (V. DeBrunner and D. Zhou [12]). 
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changing characteristics. This is the reason why modern active noise control systems 

depend heavily on digital signal processing because in the field of digital signal 

processing, there are classes of  systems called adaptive systems which have the 

capability to vary their coefficients in order to cope with changing environment. Adaptive 

systems can be implemented as transversal—finite impulse response (FIR), recursive—

infinite impulse response (IIR), lattice filters, transform-domain filters. The coefficients 

of an adaptive filter are adapted to minimize a predefined cost function which is generally 

a function of error signal. The process of adaptation is automated by DSP adaptation 

algorithms. 

At first glance it seems quite easy to apply directly already available least mean 

square (LMS) algorithm to adapt the system to time varying environment. But presence 

of a secondary path is found to be a hindrance to do this. Direct use of LMS algorithm 

ignoring the presence of secondary path will affect the performance of ANC severely. 

This leads to the development of filtered-x LMS (FXLMS) algorithm by Widrow [10]. 

 

2.2.1 FXLMS Algorithm                 

Least mean square (LMS) algorithm would have been sufficient for adaptive filter 

weight update if there was no secondary path transfer function in the ANC. But as 

mentioned earlier, the secondary path transfer function, )(zB follows the adaptive filter, so 

the conventional LMS algorithm must be modified to ensure convergence. The solution to 

this problem is to place an identical secondary path filter in the reference signal path to the 

weight update of the LMS algorithm. This realizes the so called filtered-x (FXLMS) 

algorithm for ANC. The block diagram of a single channel feedforward ANC using 

FXLMS algorithm is shown in fig.2.2.  Referring to fig.2.2, )(nx is the reference noise 

generated by the noise source at time n. Reference noise travels through the primary path 

to reach at the cancellation point. So, )(nd  is the noise to be cancelled at the cancellation 

point which is obtained by convolving reference noise with primary path as follows 

∑
=
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k naknxnd
0

)()()(             (2.1) 



CHAPTER-2                  STUDY AND APPLICATIONS OF ANC 

 19  

 

where )(nak is the k
th 

element of the impulse response of the primary path at time n and 

aL is the order of primary path. )(ny is the control signal generated by the controller or the 

adaptive filter, which is given by 

∑
−

=

−=
1

0

)()()(
N

k

k nwknxny             (2.2) 

where )(nwk is the k
th 

element of the impulse response of the adaptive filter )(nw at time 

n and N is the order of adaptive filter. )(ˆ nd is the antinoise generated by the ANC via the 

secondary loudspeaker, which is obtained by filtering the controller signal, )(ny , through 

the secondary path filter 
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where )(nbk is the k
th 

element of the impulse response of the secondary path )(nb  at time 

n and M is the order of secondary path. The residual noise or error signal collected by the 

error microphone after noise cancellation is denoted as )(ne . The residual noise is 

expressed as )(ne  

)(ˆ)()( ndndne −=  

 )(*)()( nnnd yb−=  

 )]()([*)()( nnnnd T xwb−=                                                     (2.4) 

where T

N nwnwnwn )](,),(),([)( 110 −= Lw  

is the coefficient vector of adaptive filter )(zW  at time n, and 

TNnxnxnxn )]1(,),1(),([)( +−−= Lx  

is the reference signal vector at time n. 

The objective of the adaptive filter is to minimize the instantaneous squared error, the cost 

function, as given below  
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)()( 2 nen =ξ               (2.5) 

To achieve this, the most widely used method is the stochastic gradient or LMS algorithm 

which updates the coefficient vector in the negative gradient direction on the MSE surface. 

The weight update equation is defined as 
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∇−=+ ww             (2.6) 

where )(nξ∇  is an instantaneous estimate of gradient on the MSE surface at time n. This 

can be expressed as  
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But )(nd is independent of )(nw so the gradient becomes 
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So )(nx′ is the reference noise signal vector filtered through secondary path filter. Putting 

the above value in (2.6) we obtain 

)()()()1( nnenn xww ′+=+ µ                   (2.7) 

where µ is the step size which regulates speed of convergence and stability. This is 

popularly known as filtered-x LMS (FXLMS) algorithm. This algorithm shows that when 

secondary path, )(zB , follows the adaptive filter, this transfer function must also be placed 

in the reference signal path. The basic ANC system described above perform quite well in 

reducing broadband as well as narrowband noise in ducts under plane wave conditions. In 

this arrangement primary path and secondary path are assumed to be linear in nature and 

so represented by linear transfer functions. This type of arrangement is called linear ANC 
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and is adapted by the relatively simple FXLMS algorithm which requires less 

computation. 

  To implement FXLMS algorithm the secondary path filter )(zB is to be estimated 

first. Many offline and online methods are available for identifying the secondary path 

filter. FXLMS algorithm found to be tolerant to errors made in the estimation of )(ˆ zB . 

FXLMS algorithm generally converge even with a phase estimation error of upto 090± , 

within the limit of slow adaptation [13]. 

The maximum allowable step size for FXLMS algorithm is approximately [10] 

)(

1
max

∆+
=

′ NPx

µ              (2.8) 

where )]([ 2
nxEPx

′=′ is the mean square value or power of the filtered reference 

signal )(nx′ , N is the number of adaptive filter coefficients and ∆ is the number of samples 

corresponding to the overall delay in the secondary path. The delay in the secondary path 

is the most significant factor influencing the convergence behavior of the ANC system, 

thus reducing the maximum step size in the FXLMS algorithm. 

2.2.2 FELMS Algorithm 

E. A. Wan [14] and Popovich [15] introduced an alternative to FXLMS algorithm 

by developing adjoint LMS algorithm. Instead of filtering the reference input by estimated 

secondary path (this is pre-estimated before the ANC adaptation), they suggested filtering 

the error signal by an adjoint secondary path. The block diagram of ANC system using 

this technique is shown in fig.2.5. The adjoint LMS algorithm is given below 

)1()()()1( +−′+=+ Mnnenn xww µ            (2.9) 

where )(ne′ is the error signal filtered through the adjoint secondary path filter and M is 

the order of secondary path filter. Here sufficient number of delays must be added to 

reference signal to keep the reference and error signals properly time aligned. The number 

of delays is generally order of secondary path filter. In another method, secondary path 

equalization (SPE) [1], error signal is filtered through the inverse of secondary path 

transfer function and delays are provided to reference signal to keep the reference and 
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error signals time aligned. Both the methods involve filtering the error signal and so the 

algorithm is called filtered-e LMS (FELMS) algorithm. V. DeBrunner and D. Zhou [12] 

introduced hybrid filtered error LMS algorithm to further enhance the convergence rate.  

The FELMS algorithms result in identical residual MSE performance compared to 

FXLMS algorithm. The computational complexity of the FELMS algorithm is much less 

compared to FXLMS algorithm particularly for multi-input ANCs. However, FELMS 

algorithm introduces delays to the update step of the algorithm, which slows down the 

speed of convergence.  

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig.2.5 Block diagram of ANC using adjoint LMS algorithm. 

2.2.3 Feedback Effect 

 The antinoise generated by the secondary loudspeaker to cancel the reference noise 

may travel towards the noise source direction. If this antinoise is able to reach the 

reference microphone, it will collect antinoise along with reference noise signal. This 

results in a corrupted reference signal )(nx . This is called feedback effect which results in 

potential instability if the gain of this feedback loop becomes too large. Solution to this 

problem is to use directional microphones and loudspeakers, provide a feedback 

neutralization filter or use IIR filter. 
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Fig. 2.6 Schematic diagram of ANC with feedback neutralization filter. 

 The basic arrangement to neutralize feedback effect in a duct by introducing a 

feedback neutralization filter is shown in fig.2.6. The block diagram representation of the 

above arrangement is presented in fig. 2.7. Here the feedback component of the reference 

microphone signal is cancelled by the output of feedback neutralization filter which 

models the transfer function from secondary loudspeaker input to reference microphone 

output. The signal actually captured by the reference microphone is the reference noise as 

well as the feedback signal given by 

)(*)()()( nfnynxnu +=           (2.10) 

Finally the input signal provided to the ANC is calculated as follows 

)(ˆ*)()()( nfnynunx −=           (2.11) 

where )(ˆ and)( nfnf are the impulse response of feedback path and estimated feedback 

path filter respectively.  The success of this technique depends on the accuracy of  )(ˆ zF  in 

Duct 

ANC 

Update 

Algorithm 

Noise  

Source 

Reference 

Microphone 
Secondary 

Loudspeaker 

Error 

Microphone 

Feedback 

Neutralization 

Filter 
Σ 

+ 

- 

Noise 

Antinoise 



CHAPTER-2                  STUDY AND APPLICATIONS OF ANC 

 24  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 2.7 Block diagram of ANC with feedback neutralization filter. 

estimating of )(zF . The estimation is done offline in the absence of reference noise and is 

keep fixed during the ANC operation. But in some cases feedback path vary with time. In 

that case )(ˆ zF is to be estimated online, along with adaptation of ANC adaptive 

filter )(zW . This create problem as )(ny  is highly correlated not only with feedback 

antinoise signal (which is essential for adapting )(ˆ zF ) but also with the reference noise 

(which is  essential for adapting )(zW ). In this situation )(ˆ zF will continue to adapt even 

after removing the feedback component from the input signal and so create problems in 

the adaptation of )(zW  if the convergence  rate of )(ˆ zF and )(zW are comparable. This is 

the reason why online estimation of feedback path filter is generally avoided. 

2.2.4 ANC using IIR Filter 

 It is well known that IIR adaptive filters have the ability to yield matching 

characteristics with fewer filter coefficients compared to FIR adaptive filters. Reduction in 

number of filter coefficients leads to reduction in computational complexity for ANC 
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implementation. Acoustic feedback in ANC introduces poles in the system. In this 

situation IIR adaptive filters can better match the physical system as they have zeros as 

well as poles where as FIR filters have only zeros. 

The dashed box in the fig.2.8 shows the IIR adaptive filter. The output of the 

adaptive filter is calculated as  

)1()()()()( −+= nnnnny
T

b

T

f ywxw                     (2.12) 

where )(nfw is the weight vector of )(zW f  at time n and )(nbw  is the weight vector of 

)(zWb at time n. )1(and)( −nn yx are defined as below 

 

 

 

  

 

  

 

 

 

  

 

 

 

 

 

 

 

Fig. 2.8 Block diagram of ANC (with feedback) using IIR adaptive filter. 
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Define a new overall weight vector 
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Then IIR adaptive filter output can be written as 

)()()( nnny T uw=            (2.13) 

Now proceeding in the similar line as for the FXLMS algorithm, the weight update 

equation for IIR adaptive filter can be written as 

)()()()1( nennn uww ′+=+ µ          (2.14) 

where )(nu′ is the )(nu filtered through the estimated secondary path filter )(ˆ zB . This 

algorithm can be partitioned to derive two separate weight update equation for )(nfw  and 

)(nbw  as described below 

)()()()1( nennn ff xww ′+=+ µ          (2.15) 

)()1()()1( nennn bb −′+=+ yww µ          (2.16) 

where )(*)()( nnn xbx =′ and )1(*)()( −=′ nnn yby  

This algorithm for IIR adaptive filter is called filtered-u recursive LMS algorithm. The 

only drawback of this algorithm is that even though experimentally it works well, the 

stability and global convergence is not guaranteed.  

2.2.5   Narrowband Feedforward Control 

           In applications where the reference noise is produced by rotating or reciprocating 

machines, reference noise is generally periodic (or nearly periodic). This refers to 

periodic noises generated by engines, compressors, motors, fans, and propellers. In this 

case, direct observation of the mechanical motion (such as speed) of such noise sources is 
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possible by using an appropriate sensor. So, here reference microphone can be replaced 

by a nonacoustic sensor (such as tachometer). This sensor provides an electrical reference 

signal with the same fundamental frequency as the reference noise emitted. Because all of 

the repetitive noise occurs at harmonics of the machine’s basic rotational frequency, the 

control system can model these known noise frequencies and generate the antinoise 

signal. This type of control system is desirable in a vehicle cabin, because it control 

engine noise but will not affect vehicle warning signals, radio signals or speech, which 

are not normally synchronized with the engine rotation.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Schematic diagram of narrowband feedforward ANC. 

Unfortunately the antinoise produced by secondary loudspeaker propagate in both 

downstream and upstream direction. So antinoise not only cancels the reference noise but 

also radiates upstream and reach the reference microphone resulting in a corrupted 

reference signal. This effect is called feedback effect which introduces poles in the 

response of the model and thus results in potential instability if the gain of this feedback 

loop becomes too large. The principal advantage of narrowband feedforward ANC 

systems is due to the use of nonacoustic sensor (e.g. tachometer) to generate reference 

input, feedback effect is eliminated. Fig. 2.9 depicts the schematic diagram of a 

narrowband ANC system.  
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2.3 Feedback Control 

             Olson and May [6] first proposed feedback ANC system which uses a carefully 

designed amplifier matched to the response of error microphone and secondary 

loudspeaker. The feedback ANC systems use only an error microphone and the active 

noise controller try to control the noise without having any knowledge about the 

upstream reference input. Since feedback ANC uses only an error microphone, it also 

avoids the secondary-to-reference feedback problem inherent in many broadband feedfo- 

 

 

 

 

 

 

 

 

 

 

Fig.2.10 Schematic diagram of feedback ANC. 

rward ANC systems. Schematic diagram of feedback ANC is shown in the fig. 2.10. 

Feedforward active noise control is found to be robust and stable in comparison to 

feedback active noise control [1].       

2.4 Multichannel Active Noise Control 

Controlling noise inside an enclosure or a large dimension duct is difficult as the 

noise field is complicated. Another example is transformer noise cancellation. Use of one 

reference microphone, one secondary loudspeaker and one error microphone is not 

enough to control such type of complicated noise pattern. So multiple number of 

reference microphones, secondary loudspeakers and error microphones are employed 

which is called multiple channel ANC. Multiple channel ANC has large number of 

primary paths, secondary paths and adaptive filters. All the adaptive filters are generally 
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adapted independently. Multiple error FXLMS algorithm developed by Elliott and 

colleagues is generally used for multiple channel ANC [1][2]. Schematic diagram of a 

multiple channel ANC for an enclosure is shown in the fig. 2.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11 Schematic diagram of multi-channel ANC for an enclosure. 

2.5 Virtual Sensor Technique (VST) 

All the ANCs analyzed above can be put within one bracket of the so called local 

active noise control system. Local ANC put all its effort to minimize undesired noise near 

the error microphone (physical sensor). While this result in a small localized zone of 

silence being created around the error microphone, the surrounding zone of silence is 

quite small. Additionally, the noise level outside the zone of silence is likely to be higher 

than the original noise alone. Virtual acoustic sensors have been developed to overcome 

the problems associated with local ANC. Virtual acoustic sensors shift the zone of quiet 

to a desired location that is remote from the error microphone, as shown in fig. 2.12 [16].  
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Fig. 2.12 Schematic diagram of ANC using virtual sensor technique. 

In this figure, the zone of silence has been moved from the error microphone to the 

virtual sensor region. The block diagram for the above scheme is shown in fig. 2.13. This 

technique is also reported as remote microphone technique (RMT) in [17]. In virtual 

sensor technique the error signal at the virtual location, )(ˆ nev , is estimated using the error 

signal available from the error microphone (physical microphone), )(nep . To accomplish 

this task virtual sensor technique requires a preliminary identification stage in which a 

second physical microphone is temporarily placed at the virtual location. The secondary 

path transfer functions at the physical and virtual locations, )(ˆ zB p and )(ˆ zBv respectively, 

are estimated during the preliminary identification stage along with the primary path 

transfer function between the physical and virtual locations, )(ˆ zAv . A block diagram of 

the virtual sensor technique is given within the dotted box of fig. 2.13. Referring fig. 

2.13, first an estimate of the primary disturbance, )(ˆ nd p , at the physical microphone is 

calculated using  

)()()(ˆ nynend ppp −=            (2.17) 
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Fig. 2.13 Block diagram of ANC using virtual sensor technique. 

where )(nep is the actual error signal measured by the error microphone (physical sensor) 

and )(ny p is obtained by filtering )(ny  through the estimated secondary path at physical  

microphone, )(ˆ zB p . Then an estimate of the primary disturbance, )(ˆ nd v , at the virtual 

sensor is calculated as follows 

)(ˆ*)(ˆ)(ˆ ndnand pvv =            (2.18) 

where )(ˆ nav is the filter impulse response corresponding to the transfer function )(ˆ zAv . 

Finally an estimate of the virtual error signal at the virtual sensor position is calculated as 

follows (this can also be verified from the block diagram) 

)(ˆ)(ˆ)( nyndne vvv +=            (2.19) 

where )(ˆ nyv is the estimated secondary disturbance at the virtual sensor position. Thus an 

estimate of the virtual error signal has been calculated from the physical error signal. The 
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adaptive filter having transfer function )(zW can be updated using the traditional FXLMS 

algorithm as below 

)()()()1( nnenn v xww ′+=+ µ          (2.20) 

where )(nx′ is reference input filtered through )(ˆ zBv . 

2.6 Frequency Domain Approach 

 Frequency domain adaptive filters have three major advantages over time-domain 

adaptive filters  

(i) The potential saving in the computation by using Fast Fourier Transform (FFT)  

(ii) More accurate estimation of the gradient due to the averaging of the samples in  

      the whole data block and  

(iii) Rapid convergence by using normalized step sizes for each frequency bin 

 

 

 

 

 

 

 

 

 

  

 

 

Fig.2.14 Block diagram of ANC using frequency–domain FXLMS algorithm. 

ANC can be implemented in the frequency domain to take benefits of the above 

mentioned advantages.  Block diagram for frequency domain implementation of ANC is 

shown in the fig.2.14. A block of reference signal samples are transformed to the 

frequency domain signal )(nX  using FFT. )(nX  is then filtered through the frequency 
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domain adaptive filter )(zW to produce frequency domain output )(nY . Then by IFFT of  

)(nY  we get the time-domain output signal vector )(ny . The residual error )(ne  and 

filtered reference signal )(nx′  are also transformed to frequency-domain by FFT to get 

)(nE and )(nX′  respectively.  Now the adaptive filter coefficients are updated by the 

complex LMS algorithm expressed as [1] 

)()()()( nnnNn EXWW ′+=+ µ           (2.21) 

 where N is the input signal block length. This is called frequency-domain FXLMS 

algorithm. Instead of filtering the signal sample by sample, frequency-domain FXLMS 

algorithm processed the signal block by block. This create N sample of delay in the 

adaptation process causing difficulty in controlling broadband random noise because of 

the causality constraint. But for periodic reference noise, the effect of block processing 

delay can be tolerated. 

2.7 Active Noise Control in Headset 

Headset is generally used for blocking outside noise reaching the ear in highly 

noisy environment such as flying aircraft or in a subway train. Headphone is also used for 

listening prerecorded music or voice communication in aviation or military. But in case 

of a highly noisy environment, outside noise leakage corrupt the desired signal. ANC can 

be used to cancel the leakage outside noise in headset. In H. F. Olson and E. G. May [6] 

system a microphone is placed to collect noise and loudspeaker is used to generate 

antinoise. Shiang-Hwua Yu and Jwu-Sheng Hu [18], Ying Song, Yu Gong, and Sen M. 

Kuo [19],  Thomas Schumacher, Hauke Kr¨uger, Marco Jeub, Peter Vary, Christophe 

Beaugeant [20] and Cheng-Yuan Chang and Sheng-Ting Li [21] developed ANC heatset 

basically using feedback control.  Huge change in the primary path and secondary path is 

observed when the position of the headset is changed and possesses the real challenge in 

this application. Romain Serizel, Marc Moonen,  Jan Wouters, and Søren Holdt Jensen 

[22] and Romain Serizel,  Marc Moonen,  Jan Wouters, and Søren Holdt Jensen [23] use 

ANC technique in hearing aid where as W. S. Gan and S. Kuo [24] developed a 

headphone having an integrated audio and active noise controller. Here the headphone 

speaker playing the music also generates antinoise to cancel the outside leakage noise. 
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Fig. 2.15 Schematic diagram of ANC used for headphone or headset. 

2.8 ANC in functional Magnetic Resonance Imaging (fMRI) 

Magnetic Resonance Imaging (MRI) was widely used in medical and clinical 

researches during the past 20 years. functional MRI (fMRI) has also been applied in 

neuroscience and psychology studies. High speed echo planar imaging (EPI) technique is 

usually applied in fMRI study to acquire high temporal resolution signals [25]. However, 

fast switch of magnetic gradients during EPI acquisition induced loud acoustic noise, 

which will up to 100 dBL or even louder in higher magnetic field. This acoustic noise can 

interfere in the communication between staff and volunteers or patients, impair the 

hearing ability, and suppress brain activations in fMRI study. People usually used passive 

component, such as earmuff or earplug, to prevent hearing damage from the MRI noise. 

However, the noise reduction was limited by the design and the material of the passive 

components and the passive components can also hardly solve the communication 

problem between staff and volunteers. The other choice for reducing the MRI noise is 

active noise cancellation (ANC) system.  Active Noise Control (ANC) of fMRI acoustic 

noise using the conventional FXLMS approach results in poor cancelation performance 

and slow convergence due to its broadband nature and the need for high order adaptive 

filters. High order adaptive filters are needed to effectively model the long acoustic 

impulse responses. Existing methods to improve the performance of FXLMS based 

broadband ANC systems are either computationally expensive or need elaborate 

implementation. Casper K. Chen, Tzi-Dar Chiueh and Jyh-Horng Chen [25] introduced a 
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new neural-network architecture for reducing the acoustic noise level in magnetic 

resonance (MR) imaging processes. The proposed neural network (NN) consists of two 

cascaded time-delay NN’s (TDNN’s). This NN is used as the predictor of a feedback 

active noise control (ANC) system for reducing acoustic noises. Experimental results 

with real MR noises show that the proposed system achieved an average noise power 

attenuation of 18.75 dB. Kuan-Hung Cho, Tzi-Dar Chiueh, Ching-Po Lin, Casper K. 

Chen, Jyh-Horng Chen [26] experimented an ANC for fMRI using an IIR filter. They 

have showed that the ANC system could provide extra 9.4 dB reduction at 937 Hz, which 

is the main frequency of the EPI noise. Besides, the fMRI results showed that there was 

apparent enhancement in both activated pixel numbers and the activation strength in 

visual cortex (VC). Govind Kannan, Ali A. Milani, Issa M.S. Panahi, Nasser Kehtarnavaz 

[27] developed Wiener initialized FXLMS (WI-FXLMS) algorithm and demonstrated the 

effectiveness of this approach for the active noise control of functional MRI acoustic 

noise and several other realistic noise sources. 

2.9 ANC in Infant Incubators 

Intense level of noise inside infant incubators like neonatal intensive care unit 

(NICU) is due to the operation of various medical instruments. These loud noises can 

cause serious psychological effects in infants such as changes in heart rate, blood 

pressure, oxygenation, respiration, intestinal peristalsis, and glucose consumption. 

Lichuan Liu, Shruthi Gujjula and Sen M. Kuo [29] used ANC to reduce this noise. They 

have done real time experiments with single channel, multi channel and pseudo-multi 

channel ANC. Multi channel ANC, 221 ×× (1 reference microphone, 2 secondary speaker 

and 2 error microphone), yield better noise reduction results but require more 

computational complexity which is a problem for real time implementation. They 

proposed pseudo multi channel ANC with same number of sensors as in multichannel 

ANC ( 221 ×× ). Here after the digital output y(n) is converted to analog signal, it is 

amplified to drive both loudspeakers  and two analog signals picked up by two error 

microphones are mixed by an analog mixer to get an single analog error signal. So here 

computational complexity remains same as single channel ANC.   
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Other Applications of ANC 

 ANC has been used for other applications like transformer noise cancellation by 

X. Qiu and C. H. Hansen [30] and vehicle interior noise by Ji-guang Jiang , Deng-feng 

Wang, Yue Zeng, Jun-ting Wang, Xiao-lin Cao [31]. 

2.10 Study on Nonlinear ANC 

The ANC systems discussed till now use an adaptive filter which is either a finite 

impulse response (FIR) filter or an infinite impulse response (IIR) filter. The adaptive 

algorithm derived for ANC using FIR adaptive filter is FXLMS algorithm. The ANC 

using IIR structure as the adaptive filter is based on filtered-u least mean square 

(FULMS) algorithm. Both the filter structures, FIR and IIR filter, have a linear form in 

the sense that the output has a linear relationship with filter coefficients and reference 

input. This enable the adaptive filters, using either FIR or IIR structure, to perform noise 

reduction when the primary path and secondary paths are linear. But real time 

implementation reveals that nonlinearity exists in ANC. Some of the areas which lead to 

the appearance of nonlinearity in the ANC are listed below 

• The reference noise at the cancellation point may exhibit nonlinear distortion due 

to the nonlinear transfer function of the primary path, for example,  primary noise 

propagating in a duct with very high sound pressure. 

• The secondary path between the speaker and the error microphone may exhibit 

nonlinear behavior, for example when the amplitude of the antinoise is greater 

than the saturation limit of the speaker or the frequency of the antinoise is less 

than the cutoff frequency of the speaker.   

• The reference noise may itself exhibit nonlinearity. The noise from a dynamic 

system may be a nonlinear and deterministic (chaotic rather than stochastic, 

white, or tonal) noise process. For example, fan noise often shows chaotic 

behavior. 

• The reference and error sensors may be saturated in real world applications if the 

noise level exceeds the dynamic range of the sensors. The loudspeaker, for 

example, can excite both the frequency of interest and its associated harmonics. 

• Nonlinearity arising out of specific applications (personal hearing aid, long duct). 
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Careful examination of a practical ANC system revealed that the nonlinearity 

must be taken into account in order to achieve better overall performance. This analysis 

paved the way for the development of a new class of nonlinearity tolerated ANC 

henceforth called nonlinear active noise control (NANC) system. 

Nonlinearity sneaks into the ANC systems because of one or more or combination 

of above mentioned factors. This leads to a class of new ANC better known to the 

researchers as nonlinear active noise control (NANC). Under this circumstances if the 

existing ANC techniques (which use FIR or IIR filter as the adaptive filter) discussed 

earlier are employed, performance degradation is noticed. The obvious reason being 

application of a linear technique for an ANC which is actually nonlinear in nature. The 

solution to this problem is to explore various available nonlinear filtering techniques. 

These methods need proper analysis and be suitably modified to apply conveniently to 

the problem of nonlinear ANC. The following methods reported in the literature have 

been applied to address the issue of nonlinear ANC. 

• Adaptive Volterra Filter (AVF) 

• Adaptive Bilinear Filter (ABF) 

• Mutli-Layer Artificial Neural Network (MLANN) 

• Radial Basis Function (RBF) 

• Recurrent Neural Network (RNN) 

• Fuzzy Logic (FL) 

• Fuzzy Neural Network (FNN) 

• Functional Link Artificial Neural Network (FLANN) 

• Genetic Algorithm (GA) 

• Particle Swarm Optimization (PSO) 

While application of MLANN and FLANN have been analyzed in detail in the 

subsequent chapters, other methods mentioned above are discussed briefly here. Different 

variations of the above mentioned techniques exist. The variations generally include 

modifications in the update algorithm. However, none of them provide global minimum 

so far as the error minimization is concerned in the sense that if one works well for a 

given application fails to achieve the same in the other application.  These methods can 



CHAPTER-2                  STUDY AND APPLICATIONS OF ANC 

 38  

 

be evaluated based under the following characteristics embedded into the algorithm 

(i)Mean Square Error (MSE) achieved after convergence (ii) Speed of convergence (iii) 

Computational complexity requirement (iv) Stability 

2.10.1 Adaptive Volterra Filter (AVF) Approach 

In [32][33] V. John Mathews explains how Volterra series expansion can be used 

to build adaptive filters to deal with polynomial model of nonlinearity. This is found to be 

very useful for practical applications which involve nonlinear processing of signals. 

Filters involving Volterra series expansion are attractive in adaptive filtering applications 

because the expansion is a linear combination of nonlinear functions of the input signal. 

In another way, the output of this filter is linear with respect to filter coefficients.  

 Li-Zhe Tan and Jean Jiang [34] reported an adaptive filtered-x algorithm for ANC 

using second order Volterra filter. The developed algorithms can be used as alternatives 

in the case where the standard filtered-x LMS algorithm does not perform well e.g. for 

nonlinear ANC. The block diagram of ANC using second order Volterra filter is shown 

in the fig. 2.16. 

 

 

 

   

 

 

 

 

 

 

 

 

Fig.2.16 Block diagram of ANC using filtered-x second order Volterra adaptive 

algorithm. 
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Consider a second order Volterra filter described be the following input and output 

relationship 

)1(),0(

)1()(),()(),()(),()(

1,2

1 1

0

2

0

1,2

2

0,21

+−++

−−−+−+−=

−

−

=

−

=

−

=

∑ ∑ ∑

Nnxnw

inxinxniwinxniwinxniwny

N

N

oi

N

i

N

i

K

   (2.22) 

where )(and)( nynx represents the filter input and output respectively, N is the memory 

span and ),0(,),,(),,(),,( 1,21,20,21 nwniwniwniw N −K are filter coefficients. The above 

equation is implemented as a number of filters operating in parallel. Unlike FXLMS 

algorithm where one adaptive FIR filter is used this method use N+1 number of FIR 

adaptive filters. The coefficient vector of the adaptive filters involved are defined below 
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The order of first filter is N, next starting from second filter the filter order reduces from 

N to 1. 

The input to the adaptive filters are defined below 
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The adaptive filters output are obtained by filtering the inputs through the corresponding 

adaptive filter and then are added to get the output of the controller as follows 

1,20,21 )()( −+++= Nyynyny L          (2.23) 

As shown in the figure residual error signal is given by 

 )(*)()()( nynndne b−=           (2.24) 
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where )(nb is the impulse response of the secondary path transfer function )(zB . 

Tan and Jiang [34] used the standard FXLMS algorithm to develop filtered-x 

second order Volterra LMS algorithm and update the adaptive filter. Similar to FIR filter 

here the goal of the adaptive algorithm is to minimize the instantaneous square error 

using the steepest descent algorithm. Weight update formula for the adaptive filters are 

written as follows 
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′+=+

µ

µ
         (2.25) 

where i=0,1,2,. . .,N-1., 1µ is the step size for first adaptive filter and 2µ is the step size 

for all other adaptive filters. 

Here it can be noticed that the input to first adaptive filter is )(nx  with its delayed 

samples. The input to second adaptive filter is )(2 nx  with its delayed samples (squared 

terms) and to all other adaptive filters are etc.)2()(),1()( −− nxnxnxnx with their delayed 

samples(cross-terms). So the first adaptive filter represents linearity of the ANC where as 

all other filters represent nonlinearity of the system. 

They have also used FXRLS algorithm to develop filtered-x second order Volterra RLS 

algorithm as follows 
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)()()()1( nennn kww 11 +=+           (2.27) 
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where )10( ≤<< λλ is the forgetting factor, )(nk is the gain vector and 1x′ is the filtered 

input signal for the first adaptive filter. Similarly update equations for other adaptive 

filters are given below 

)()1()(1

)()1(
)(

,2,2

1

,2

1

nnPn

nnP
n

T

ii

i

xx

x
k

′−′+

′−
=

−

−

λ

λ
          (2.29) 

)()()()1( ,2,2 nennn ii kww +=+          (2.30) 

)1()()()1()( ,2

11 −′−−= −−
nPnnnPnP ixkλλ         (2.31) 



CHAPTER-2                  STUDY AND APPLICATIONS OF ANC 

 41  

 

The algorithms gave better results in terms of MSE for nonlinear ANC. The filtered-x 

second order Volterra RLS algorithm shows better convergence speed than its LMS 

counterpart. 

Subsequently, Li-Zhe Tan and Jean Jiang [35] reported another paper giving 

exhaustive theoretical analysis of the above algorithm and named it as Volterra FXLMS 

(VFXLMS) algorithm.  Here the analysis is not limited to second order Volterra filters 

but higher order filters are included. Inclusion of higher order Volterra filters obviously 

increases the number of adaptive filters which may enhance the MSE performance of the 

ANC but raises the computational complexity of the algorithm substantially. They 

implemented the algorithm in multichannel structure. This structure can be called as filter 

bank structure [36] in order to avoid confusion with multichannel ANC. They have 

shown by computer simulation that VFXLMS algorithm gives better MSE result 

compared to the FXLMS in the following two situations 

 1) The reference noise sensed by a reference microphone is a nonlinear and predictable 

noise process, while the secondary path transfer function of an ANC system has 

nonminimum phase. 

2) The primary path exhibits nonlinear behavior. 

2.10.2 Adaptive Bilinear Filter (ABF) Approach 

In [32], [33] V. John Mathews and G. L. Sicuranza discussed that Bilinear filters 

is a popular class of adaptive filter described by the following input and output 

relationship 
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where the filter coefficients )(and),(),,( ,21 nwniwniw ji can have different length but for 

simplicity they are assumed to have equal length, N. )(and)( nynx are input and output of 

the filter. ),(1 niw are the feedforward filter coefficients corresponding to input )(nx , 

),(2 niw are feedback filter coefficients corresponding to output )(ny  and )(, nw ji are 

cross filter coefficients corresponding to cross terms )1()( −nynx . In spite of the 

simplicity, this is an important nonlinear model since a large class of nonlinear systems 
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can be approximated with arbitrary precision using bilinear system models with finite 

number of filter weights.   

In [37], [38] Sen M. Kuo and Hsien-Tsai Wu used adaptive bilinear filters for 

nonlinear ANC. There are two types of adaptive bilinear filters: equation-error methods 

and output-error methods [32], [37], [38]. The output-error algorithm computes the filter 

output using a truly recursive model since the output signal )(ny is fed back to generate 

the adaptive estimate of the desired signal )(nd . The equation-error algorithm calculates 

the output signal using the input signal )(nx  and the desired signal )(nd , thus is not a 

truly recursive estimator. In addition, the equation error method results in biased steady-

state solutions, whereas the output-error method provides unbiased estimates. 

Furthermore, the desired signal )(nd , is not available for real-time ANC systems in 

practical applications, thus the equation-error filter cannot be directly used in them. 

Therefore they used the adaptive output error bilinear filter for ANC systems. The block 

diagram of ANC using adaptive bilinear filter is shown in the fig. 2.17, below. 

 

 

 

 

 

 

 

 

 

Fig. 2.17 Block diagram of ANC using the adaptive output-error bilinear filter. 
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All the filter coefficient vectors can be combined to form a single vector  

)](,),(),([)( ,21 nnnn jiwwww K=  

The input vector for the three filter coefficient vectors can also be rearranged to form the 

following vectors 

i) )]1(,),1(),([)(1 +−−= Nnxnxnxn Kx  

ii) )](,),2(),1([)( Nnxnynyn −−−= K2x  

iii) LL ,)1()1(),()(,),1()([)(3 −−−−= nynxNnynxnynxnx  

                       ])()(,,)()1(, NnyNnxNnynx −−−− L  

Similar to the filter coefficient vector three signal vectors are combined to form a 

generalized signal vector 

)](),(),([)( 3 nnnn xxxx 21=  

Therefore the output signal from the bilinear filter can be written as 

)()()( nnny Txw=  

The error signal of the ANC is obtained as 

)(*)()()( nbnyndne −=           (2.33) 

Similar to the adaptive FIR filter, the goal of the adaptive algorithm for the 

bilinear filter is to minimize the instantaneous square error using the steepest descent 

algorithm. So following the same procedure as FIR filter, the update algorithm for the 

adaptive bilinear filter for ANC can be obtained as  

)()()1()1( nennn xww ′++=+ µ          (2.34) 

From the definition of )(nw , equation (2.34) can be partitioned as following three 

independent vector equations 

)()()()1( 1111 nennn xww ′+=+ µ          (2.35) 

)()()()1( 2222 nennn xww ′+=+ µ          (2.36) 

)()()()1( 33,, nennn jiji xww ′+=+ µ          (2.37) 

The simulation results provided by Sen M. Kuo and Hsien-Tsai Wu [37],[38] 

proved that bilinear filters not only have better MSE performance but also faster 

convergence speed compare to FIR and Volterra filters under strong nonlinearity 

situation. But because of feedback the stability of the bilinear filter is always doubtful. 
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2.10.3 Radial Basis Function (RBF) Approach 

Riyanto T. Bambang, Lazuardi Anggono and Kenko Uchida [39] reported an 

ANC using radial basis function neural network. As shown in the fig. 2.18 and fig. 2.19, 

it consist of two stages, first, the nonlinear secondary path is identified using a radial 

basis function network and its learning algorithm. Secondly another radial basis function 

 

   

 

  

 

   

   

     

 

 Fig. 2.18 Block diagram for ANC using RBF. 
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Fig. 2.19 Structure of the two RBF networks for ANC. 
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network is used for the controller which generates the antinoise. The algorithm developed 

turned out to be filtered-x version of RBF algorithm and so named FX-RBF algorithm. 

Real time implementation was conducted to evaluate the proposed ANC system. The 

centre of Gaussian functions for both model and controller network were trained using K-

means clustering algorithm. Riyanto T. Bambang [40], [41] designed an ANC using 

recurrent radial basis function network where the strategy was analogous to the previous 

described work but instead of RBF network recurrent RBF network was used. The 

recurrent RBF network used is shown in fig. 2.20. The delayed and weighted output of 

each hidden node is feedback to the same node. 

 

 

 

   

 

 

 

 

 

 

 

           Controller recurrent RBF                             Secondary path model recurrent RBF 

Fig. 2.20 Structure of the two recurrent RBF networks for ANC. 

Jiang Lifei [42] developed an ANC based on the analysis of the characteristics of 

practical noises in a driver’s cab, using radial basis function neural network. The training 

algorithm was also provided in the paper with results. Tokhi and Wood [55] also used 

RBF for nonlinear ANC. 

2.10.4 Fuzzy Logic (FL) Approach  

Since the introduction of fuzzy sets by Zadeh in 1965, many researchers have 

applied this theory to diverse engineering topics. In general, the knowledge base and rule 

1−z  

1−z  

1−z  

Σ 

1−z  

1−z  

1−z  

Σ 

M  M  

iw       
iw       

)(nx  

)(ˆ nd  



CHAPTER-2                  STUDY AND APPLICATIONS OF ANC 

 46  

 

base are designed from expert experience, and then an inference engine is selected to 

make up a fuzzy system. C. Y. Chang and K. K. Shyu [43] reported a simple architecture 

to apply fuzzy logic to nonlinear ANC. They proposed seven rules to form a fuzzy FIR 

filter, which acts as an antinoise filter to cancel undesired noise. The developed algorithm 

resembles FXLMS algorithm so it is called fuzzy filtered-x algorithm.  This method tunes 

the free parameters automatically and changes the IF–THEN rules adaptively to minimize 

the residual noise as new information becomes available. 

 Traditionally, active noise controllers are designed on the basis of a mathematical 

description of the plant and its linearized model. However, it is difficult to control 

undesired noise in a nonlinear duct plant. The conventional filtered-x based ANC systems 

often require hundreds of weights to control undesired noise. Therefore, resulting 

numerical errors, such as the round-off and quantization error are inevitable. Therefore 

self-tuned fuzzy-based ANC system can process both the numerical data and linguistic 

information to adapt the ANC system. Another advantage of the proposed algorithm 

includes the reduction of system complexity and the property of nonlinear compensation.  

  Cheng-Yuan Chang and Kuo-Kai Shyu [44] proposed a self-tuning fuzzy filtered-

u algorithm which instead of complex designing procedures of traditional algorithms uses 

few mathematical transfer functions to design the ANC system. They have also provided 

a fuzzy-based self-tuning algorithm is to adjust the free parameters of the fuzzy filtered-u 

algorithm. In addition, the proposed method protects ANC systems against unstable poles 

which occur in conventional filtered-u design. 

 

 

 

 

 

 

 

 

Fig. 2.21 Block diagram of ANC using fuzzy logic. 
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2.10.5 Fuzzy-Neural Approach 

Huynh Van Tuan and Duong Hoai Nghia [45] reported a fuzzy-neural network for 

feedback active noise controller. The fuzzy –neural model they have used is shown in the 

fig. 2.22 where the term node, G, represent a Gaussian membership function to express 

the input fuzzy linguistic variables and “rule nodes, R” represent the fuzzy rules. Node, 

N, performs the normalization of the firing strengths coming from pervious layer. They 

also developed fuzzy neural-based filtered-x least-mean-square algorithm and proved the 

convergence of the algorithm using a discrete Lyapunov function. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.22 Structure of neuro-fuzzy controller used for ANC. 

 Jian Liu, Jinwei Sun and Guo Wei [46] proposed a new narrowband ANC system 

using an ANFIS (adaptive neuro-fuzzy inference system) as an adaptive controller. For 

the purpose of computational cost reduction, the nonlinear premise parameters in the 

ANFIS are kept fixed and only its linear consequent parameters are adjusted based on a 

gradient descent method. The block diagram is shown in fig. 2.23. 

 

                        

 

Fig. 2.23 Block diagram of ANC using ANFIS. 

)(ˆ nd  

Cosine  

Wave 

Generator 
ANFIS 

Secondary 

path Σ 
)(nx  )(ne  )(nd  )(ny  

+  

−  

G 

G 

G 

1−
z  

1−
z  

1−
z  

R 

R 

R 

N

N 

N 

Σ 

G 

)(ny  

)(ˆ nd  
w  



CHAPTER-2                  STUDY AND APPLICATIONS OF ANC 

 48  

 

Navid Azadi, Abdolreza Ohadi [47] proposed an enhanced multi-channel active 

fuzzy neural network noise controller in a rectangular enclosure. The block diagram of 

the ANC system they used and the fuzzy neural network they employed is shown in the 

fig.2.24 and fig. 2.25 respectively. They proposed a multi-channel enhanced fuzzy neural 

network (EFNN) error back propagation algorithm while taking into account the 

secondary path effect in derivation of equations. The results provided shown that 

enhanced FNN algorithm outperformed FXLMS algorithm when there is a highly 

nonlinear primary path in the ANC system. 

 

 

 

 

 

 

Fig. 2.24 Block diagram of ANC using fuzzy-neural network. 

 

 

 

 

 

 

 

 

 

Fig. 2.25 Structure of fuzzy-neural network controller for ANC. 
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2.10.6 Genetic Algorithm (GA) Approach 

Fabrizio Russo and Giovanni L. Sicuranza [48], [49] investigated the performance 

of genetic optimization for nonlinear active noise control based on nonlinear Volterra 

filters. They showed two advantages of using genetic algorithm (GA) for nonlinear ANC 

problem. i) While standard filtered-x algorithms may converge to local minima, GA may 

handle this problem efficiently. ii) This class of algorithms does not require the pre-

identification of the secondary paths because unlike the class of FXLMS algorithm, 

estimated secondary path transfer function is not required in adaptation process. Here GA 

is used to optimize the filter coefficients of the nonlinear Volterra filter. The block 

diagram they suggested is reproduced in the fig. 2.26 below. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig.2.26 Block diagram of the genetic ANC system. (Fabrizio Russo and Giovanni L. 

Sicuranza [48]). 
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Cheng-Yuan Chang and Deng-Rui Chen [50] proposed an adaptive genetic 

algorithm (AGA) for an ANC system to eradicate the problem of FXLMS algorithm 

converging to local minimum.   The conventional ANC system implements the FXLMS 

algorithm to update the coefficients of the linear finite-impulse response (FIR) filters. For 

nonlinear ANC using nonlinear Volterra filters require Volterra FXLMS (VFXLMS) 

algorithm. The proposed method replace FXLMS algorithm with FIR adaptive genetic 

algorithm (FAGA) for FIR filters and VFXLMS algorithm with Volterra adaptive genetic 

algorithm (VAGA) for Volterra filters. The proposed AGA method does not require pre-

identifying the secondary path for the ANC operation thereby making the system immune 

to secondary path identification error. Performance of the FAGA and VAGA are 

compared with FXLMS and VFXLMS algorithms. 

2.10.7 Particle Swarm Optimization (PSO) Approach 

Nirmal Kumar Rout, Debi Prasad Das and Ganapati Panda [51]   presented a new online 

ANC algorithm using PSO-based training.  Particle swarm optimization (PSO) is a 

nongradient but simple evolutionary computing-type algorithm. Conventionally PSO-

based algorithm is shown to be ineffective to regain convergence in the case of 

occurrence of an abrupt change in primary and/or secondary paths (time varying primary 

path and/or secondary path). To cope with this problem, in the paper, the conventional 

PSO algorithm is modified to introduce a new conditional reinitialized particle swarm 

optimization (CRPSO) algorithm which is used to optimize the weights of an FIR filter. 

The added advantage of the algorithm is that it doesn’t require pre-estimation of 

secondary path, thereby, making the system immune to secondary path identification 

error. Performance of the PSO is compared with FXLMS algorithm and GA based 

algorithms. The strategy adopted by Nirmal Kumar Rout, Debi Prasad Das and Ganapati 

Panda [51] is represented by the block diagram below, fig 2.27. Nithin V. George and 

Ganapati Panda presented a robust evolutionary active noise control system using 

Wilcoxon norm and particle swarm optimization algorithm [80]. 
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Fig. 2.27 Block diagram of PSO-based training of an ANC system (Nirmal Kumar Rout, 

Debi Prasad Das and Ganapati Panda [51]). 

 

2.11 Summary 

A comprehensive study of existing ANC schemes have been carried out in this 

chapter. The study categorize the available ANC schemes into two categories, i) study of 

linear ANC ii) study of nonlinear ANC. Literature is rich and well documented for linear 

ANC where as research is continuing for nonlinear ANC. Various sources, responsible 

for introducing nonlinearity into the ANC system are highlighted. Strategies adopted for 

applications of soft computing techniques like multi-layer artificial neural network, radial 

basis function network, recurrent radial basis function network, fuzzy logic, neuro-fuzzy 

technique, etc. and evolutionary techniques like genetic algorithm and particle swarm 

optimization, etc. for nonlinear ANC have been presented. The necessity of ANC in 

diverse field of engineering and technology are discussed. The role played by ANC and 

the apparent benefits of employing an ANC in these applications are analyzed 

extensively. The problems encountered in the real time applications of ANC are also 

highlighted. Some of the broad conclusions made from the study are as follows 
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• Extensive documentation exists with reference to linear ANC, so analysis can be 

done easily. 

• The very introduction of nonlinearity even in a carefully designed ANC degrades 

the quality of noise cancellation quite significantly and hence must be taken into 

consideration to improve the ANC performance. 

• More indepth investigation is needed to develop improved techniques for 

nonlinear ANC to yield better noise control performance. 

• Research can be focused on one of the following subcategories 

� Development of new architecture or structure for  the ANC controller. 

� Development of new algorithms which will support the new structures. 

� Modifications in the existing schemes of ANC with specific emphasis to 

structural minimization without sacrificing performance.  

� Development of new strategy to reduce computational complexity 

requirement from the implementation point of view. 

� Customizing the developed schemes for different application areas. 

� Utilize the recent knowledge of DSP, soft computing and evolutionary 

techniques for achieving better performance. 
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CHAPTER 3 

Neural Network Approach to Nonlinear Active 

Noise Control 

3.1 Background

                 Active noise control (ANC) has attracted a lot of research interest because of 

rapid increase of acoustical noise pollution and insufficiency of passive techniques for 

noise control. In an ANC, noise is deliberately introduced with an objective to cancel 

another undesirable noise. ANC employ the superposition principle, where the undesired 

noise is reduced by adding another noise called antinoise with the same amplitude but 

opposite polarity. Antinoise is generated by actuators such as loudspeaker. Linear 

adaptive FIR filter along with the filtered-x LMS (FXLMS) algorithm is the most 

common strategy applied in both feed-forward and feedback ANC due to its ease in 

implementation [2]. It has been mentioned earlier (detail discussion in this chapter) that 

there are a number of   sources of nonlinearity in an ANC. This gives rise to a situation 

where linear FIR filter with FXLMS algorithm will show performance degradation and 

even fail in some situations. This is due to the fact that a linear type adaptive system has 

been used for approximating a system which exhibit nonlinear characteristics. Thus 

avenues are wide open to use adaptive systems with nonlinear approximation capability 

like artificial neural network, fuzzy logic and polynomial filter etc. This chapter is 

entirely devoted to the study of artificial neural network for nonlinear ANC.  

 

3.2 Multilayer Artificial Neural Network (MLANN) 

  It has already been established that multilayer artificial neural network based 

ANCs have significant performance improvement over the conventional linear ANCs 

based on FXLMS or FXRLS adaptive algorithms [52]-[61]. The basic objective of the 

present work is primarily aimed at developing new ANC in the MLANN domain having 

reduced structural complexity so that these can be easily implemented in real-time. The 
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learning algorithms developed to update the weights of different structures utilize the 

backpropagation algorithm concept. However, with reference to presence of secondary 

path certain modifications have been included in the weight adaptation equation. 

In [52] Snyder and Tanaka proposed feedforward control of vibration using a 

neural network-based control system, with the aim to derive an architecture which might 

be capable of supplanting the commonly used FIR filter with FXLMS algorithm. Fig.3.1 

shows the ANC developed by Snyder and Tanaka. They have employed two multilayer 

perceptron (MLP) networks, one network was exclusively employed to model the 

nonlinear secondary path. This network is trained offline using standard backpropagation 

algorithm while the ANC is not in operation. Once converged its weights are frozen and 

are, latter on, used for stable operation of the ANC. The other network is called the 

controller network which is used to produce the antinoise. At the first glance this problem 

may seem trivial, as application of the standard backpropagation algorithm can update the 

weights. But owing to the presence of the tapped delay line input to the secondary path 

model, the standard backpropagation algorithm cannot be used directly in this 

arrangement as it must backpropagate through a tapped delay line. Therefore, the 

standard backpropagation algorithm is modified resulting in a formulation of a new 

algorithm which enables stable adaptation of the neural controller. The algorithm was 

shown to be simply a generalization of the linear filtered-x LMS algorithm.  

Martin Bouchard, Bruno Paillard, and Chon Tan Le Dinh [53] presented an 

improved training algorithm for the neural network in ANC. They used the same neural 

network structure as Snyder and Tanaka [52] but introduced new heuristical training 

algorithms with the objective to develop faster convergence speed (by using nonlinear 

recursive-least squares algorithms) and/or lower computational loads (by using an 

alternative approach to compute the instantaneous gradient of the cost function). The 

block diagram of ANC using neural network is shown in fig. 3.1 

In [54] Martin Bouchard introduced a heuristic procedure for the development of 

recursive-least-squares algorithms based on the filtered-x and the adjoint gradient 

approaches.  He also used the same structure for ANC, as in [52] and [53], employing 

two multilayer feedforward neural networks. But he developed new recursive-least-

squares algorithms for the training of the neural network controller in the two network ca- 
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Fig. 3.1 Block diagram of ANC using two neural networks. 

scaded structure. It has been seen from the results that these new algorithms yielded 

better convergence performance than previously published algorithms. 

Cheng-Yuan Chang and Fang-Bor Luoh [56] and Cheng-Yuan Chang and Shing-

Tai Pan [60]
 

presented a new architecture for nonlinear ANC using only one multilayer 

feedforward network. The ANC they developed is shown in fig.3.2. Here the neural 

network is used for ANC controller where as the secondary path is modeled using a linear 

adaptive FIR filters.  The network has only three layers, input layer, hidden layer and 

output layer. Output layer has only one node where as other layers have more than one 

nodes. The activation function of both the hidden layer nodes and output layer node are 

taken as linear function, basically to avoid premature saturation of back propagation 

algorithm. They developed a new neural network update algorithm using 
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backpropagation and gradient descent methods. The ANC architecture and the developed 

algorithm are simple and easy to implement but the major drawback of this technique is it 

employ a FIR filter for secondary path modeling. As discussed earlier, in actual 

implementation of ANC there exist a number of factors which contribute to nonlinearity 

of secondary path. So using adaptive FIR filter for secondary path modeling degrades the 

performance of the ANC.  

3.3 Proposed Neural Network Technique  

 

 

 

 

 

 

 

 

 

Fig 3.2 Block diagram of ANC using neural network. 

In this chapter, a feedforward nonlinear active noise control system employing a 

multilayer neural network is developed. The multilayer neural network involved is shown 

in the fig.3.3. Two separate update algorithms are derived for two situations. First 

algorithm is derived when secondary path is modeled as a FIR filter (which assume 

secondary path to be linear). Another algorithm is developed when secondary path is 

modeled as difference equation representing the nonlinear secondary path. Both the 

algorithms are found to be extended version of filtered-x LMS algorithm. 

Filtered-e LMS is an algorithm for ANC well known for its low computational 

complexity requirement. Both the developed algorithms are modified to accommodate 

filtered-e LMS algorithm which results in reduced computational complexity. 

Performances of the proposed algorithms are validated through extensive computer 

simulations.                             
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Fig 3.3 Neural network controller. 

      The neural network which will be used as the controller for NANC is shown in 

fig. 3.3. The network has three layers, input layer, hidden layer and output layer. Output 

layer has only one neuron but hidden layer may have many neurons. Neurons in the 

hidden layer have nonlinear activation function where as the neuron in the output layer 

has linear activation function. Total number of neurons of input layer and neurons in the 

hidden layer are I and J respectively. The network has IJ numbers of  hidden layer 

synaptic weights represented by )(nwij where i=0,1,2,3,……,I-1and j=0,1,2,3,……,J-1. 

The network has J number of output layer synaptic weights jv , j=0,1,2, . . . J-1. 

The net internal activity level )(nc j for j
th

 hidden layer neuron at n
th

 instant is 

)()()(
1

0

nwinxnc
I

i

ijj ∑
−

=

−=               for  j=0,1, 2,  . . . ,J-1        (3.1) 

Considering F as the activation function, the output of the j
th

 hidden layer neuron at n
th 

instant is calculated as  

))((F)( ncnu jj =              (3.2) 

 The final output from the network, at n
th

 instant, is computed considering the node in the 

output layer to be a summing unit as given by  

)(nwij  
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The final output of the neural network is passed through the secondary path to generate  

the antinoise, )(ˆ nd . The equation for the antinoise generated by the ANC is given by 

∑
−

=

−=
1

0

)()()(ˆ
M

k

k knynbnd             (3.4) 

where kb is k
th

 coefficient of impulse response of secondary path model and M is the 

order of secondary path filter. For the ANC, )(nd is the undesired noise to be cancelled at 

the zone of silence. After the noise cancellation process is over the residual noise is 

sensed by the error microphone. This residual noise called error signal, at n
th

 instant, is 

calculated as follows 

)()(ˆ)( ndndne −=            (3.5) 

The error signal )(ne actuates a control mechanism, the purpose of which is to apply 

corrective adjustments to the synaptic weights. This objective is achieved by minimizing 

a cost function or index of performance, )(nξ . A commonly used cost function based on 

the mean-squared-error criterion has been applied here.                                                      

)]([
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nen =ξ  
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1
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        ∑
−
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1

0

2)]()()([
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1 M

k

k knunbnd        (3.6) 

Now the synaptic weight update equation can be derived. The update equations are 

formulated separately for two situations 

• secondary path is assumed linear (modeled by FIR filter)                                                                      

• secondary path is assumed nonlinear (modeled by a difference equation 

having higher order terms and cross terms) 
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3.3.1 Linear Secondary Path 

            When the secondary path is linearly modeled, the synaptic weight update 

equations for output layer and hidden layer are derived separately. 

Output layer synaptic weight update 

Using back-propagation and gradient descent methods the synaptic weights of 

output layer are updated by adding a negative gradient of the cost function with respect to 

the weights of interest 

)()()1( nvnvnv jjj ∆−=+ µ                       j=0, 1, 2, . . . , J-1                  (3.7) 

where µ   is the learning rate (step size) 

 Above equation can also be written as 

)()()1( nnn vvv ∆−=+ µ             (3.8) 

where ])(,),(),([)( 110 nvnvnvn J −= Lv  is the output layer synaptic weight vector. 

The gradients of cost function with respect to output layer synaptic weights is defined as 

follows 
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Putting (3.6) in the above equation we get 
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Since undesired noise )(nd is independent of the neural network synaptic weights, the 

following relation is obtained 
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Taking the expressions for )(ˆ nd and )(ny  from (3.4) and (3.5) respectively and putting in 

the above equation it is found that 
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where M is the order of secondary path model and )(nbk is the k
th

 coefficient of 

secondary path model impulse response. Putting (3.11) in the (3.7), update equation for 

output layer synaptic weights are as follows        
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Hidden layer synaptic weight update  

               Similar to output layer synaptic weights, the hidden layer synaptic weights are 

updated as 

)()()1( nwnwnw ijijij ∆−=+ µ                                    (3.13) 

where i=0, 1, . . . , I-1 and j=0, 1,  . . . , J-1           

The update equation for hidden layer weights can also be written as follows 

)()()1( nnn www ∆−=+ µ           (3.14) 
where )(nw the hidden layer synaptic weight matrix, at n

th
 instant, defined by 
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The gradient of the cost function with respect to hidden layer synaptic weights is 
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Since the desired signal is independent of the hidden layer synaptic weights  
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Assuming that synaptic weights are adapted slowly it can be written that 
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Taking the expressions for )(and)( knukny j −− from (3.3) and (3.2) and putting in the 

above equation it is found that 
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Taking the value of )( knc j − from (3.1) and putting in above equation it is observed that 
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Putting values of (3.16) and (3.15) in (3.13) the update equation for hidden layer synaptic 

weights can be expressed as given below 

∑
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                                where,   i=0, 1,2, …… , I-1.  and  j=0, 1, 2,…….., J-1                          

 

3.3.2 Nonlinear Secondary Path 

                 The equations expressed in the previous section are valid when secondary path 

is modeled as linear FIR filter.  To take care of the nonlinearity in the secondary path, the 

secondary path can be modeled as a difference equation having higher order terms and 

cross terms. An example is given below 

4444444 34444444 214434421
termscrosstermsquare

2 )5()3(2.0)3()2(4.0)2(6.0)1(8.0)()(ˆ −−+−−+−+−+= nynynynynynynynd  

where )(ny and )(ˆ nd are  input and output of the secondary path filter model. 
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For this type of nonlinear secondary path model the synaptic weight update equation 

derived in the previous section have to be modified to develop a complete set of new 

equations. 

Output layer synaptic weight update 

The synaptic weights of output layer are updated by adding a negative gradient of 

the cost function with respect to the weights of interest 

)()()1( nvnvnv jjj ∆−=+ µ          j=0, 1, 2, . . . , J-1         (3.18) 

where µ  is the learning rate (step size) and 
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The gradient of the cost function with respect to output layer synaptic weights is 
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Putting the expression of )(ne in (3.5) it is found that 
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Since the undesirable noise )(nd is independent of neural network synaptic weights 
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Assuming that the weights are adapted slowly the second term of the summation can be 

written as                            
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Putting this value in equation (3.19) it is found that 
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The first term of the summation is represented as follows 
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Here a FIR filter can be defined with )(
~
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1210 nbnbnbnb M −L  as its coefficients. 

But here )(
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10 nbnb M −L are varying with respect to time. But still a filter with time 

varying filter coefficients can be defined as  
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 This filter, represented as )(
~

nb , is called virtual secondary path filter [62]. 

Putting (3.21) and (3.22) in (3.20) the following is obtained 
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Finally putting (3.23) in weight update equation (3.18) results in the following 

∑
−

=

−+=+
1

0

)()(
~

)()()1(
M

k

jkjj knunbnenvnv µ            j=0, 1, 2, . . . , J-1    (3.24) 

Hidden layer synaptic weight update 

              Update equation for hidden layer synaptic weights can be written as 
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Proceeding in the similar line as in the case of linear secondary path the following is 

obtained  
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Finally putting (3.26) in (3.25) it is found that update equation becomes 
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This algorithm is termed as neural filtered-x LMS (NFXLMS) algorithm.  

3.4 Development of Neural Filtered-e LMS Algorithm 

     Adjoint LMS algorithm developed by E. A. Wan [14] is a simple alternative to 

FXLMS algorithm which reduces computational complexity specifically for multichannel 

ANC. Unlike FXLMS algorithm where a secondary path model is placed in the reference 

signal path, here an adjoint of secondary path model can be placed in the error path as 

shown in the fig. 3.4. In the figure )(ˆ
_ zB  is adjoint of secondary path model )(ˆ zB . This 

algorithm is called filtered-error LMS or filtered-e LMS (FELMS) algorithm. 

FELMS algorithm adaptive equation is 

)()1()()1( neMnnn ′+−+=+ xww µ         (3.28) 

where delay(equal to the order of secondary path model) is provided to reference signal 

to compensate for the delay in the error path. )(ne′ is the filtered error signal generated by 

filtering the error signal by the estimated adjoint secondary path filter denoted by )_(ˆ zB . 

Adjoint secondary path filter is obtained by simply writing the filter coefficients in the 

reverse order. On the basis of FELMS algorithm the synaptic weight update algorithm 

equations of ANC using neural network can also be modified to obtain neural filtered-e 

LMS (NFELMS) algorithm. 

 

                                      

 

 

 

 

 

 

 

 

Fig 3.4 Block diagram of ANC system using FELMS algorithm. 
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Here again two situations are considered for discussion,  

• secondary path is assumed linear (modeled by FIR filter)                                

•    secondary path is assumed nonlinear (modeled by a difference equation having 

higher order terms and cross terms) 

3.4.1 Linear Secondary Path 

Output layer synaptic weights 

The synaptic weight update equation for output layer weights is obtained by 

modifying (3.12) as follows. 
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  )()1()( neMnunv jj
′+−+= µ                    j = 0, 1, 2, . . ., J-1    (3.29) 

where )(ne′  is the error signal filtered through the estimated adjoint secondary path filter. 

Hidden layer synaptic weights 

Similarly the synaptic weight update equation for output layer synaptic weights is 

derived by modifying (3.17) as follows. 
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    )())1((F)1()( neMncMnvnw jjij
′+−+−+= µ          (3.30)                   

                         i=0,1,. . . , I-1  and j=0,1, . . .,J-1 

 3.4.2 Nonlinear Secondary Path 

Nonlinearity in secondary path is frequently encountered in ANC systems which 

must be taken into account. Virtual secondary path concept can be employed to deal with 

nonlinear secondary path. Using the filtered error based algorithm developed in [62] the 

adjoint virtual secondary path filter coefficient vector is defined as  
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Output layer synaptic weights 

Using adjoint virtual secondary path filter, the update equation for output layer 

synaptic weights is derived from (3.24) as follows 
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where )(
~

1 knb kM −−− is the k
th

 coefficient of adjoint virtual secondary path filter at )( kn − th
 

instant . The above equation can also be written as 

)()1()()1( neMnunvnv jjj
′+−+=+ µ                           

where )(*)(
~

)( nenne _b=′  

Hidden layer synaptic weights 

                The update equation for output layer synaptic weights is derived from (3.27) 

using adjoint virtual secondary path filter as follows 
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 i=0,1, . . . ,I-1 and j=0,1, . . ., J-1 

The above equation can also be written as   

)())1((F)1()()1( neMncMnvnwnw jjijij
′+−+−+=+ µ                            (3.33) 

 i=0,1, . . . ,I-1 and j=0,1, . . ., J-1 

 3.5 Simulation and Results 

 Extensive simulation work has been done for various nonlinear situations, 

activation functions and some selected results are presented here to demonstrate the 

effectiveness and performance of the proposed algorithms. In all the experiments the 

mean-square error (MSE), defined by 

))((log10 2

10 neEMSE =                (3.34) 

has been obtained through simulations in MATLAB 7.6.0 (R2008a) environment to 

assess the performance and validate the proposed algorithms. Here, )(2 ne  is the square 

of the error at n
th

 iteration, and E(.) is the expectation operator. In each of the 

experiments, fifty independent trials are conducted and the average MSE(dB) is 

computed to obtain smoother convergence characteristics. 

3.5.1 Experiment I 

              The first experiment considered a nonlinear ANC with nonlinear secondary path. 

The nonlinear primary path from noise source to error microphone is considered as in[62] 

3)6()12(05.0)11(4.0)10(1.0

)9(5.0)8(2.0)7(6.0)6(8.0)(

−+−−−+−

−−−−−−+−=

nxnxnxnx

nxnxnxnxnd
      (3.35) 



CHAPTER-3                                          NEURAL NETWORK APPROACH TO NONLINEAR ACTIVE NOISE CONTROL 

 67  

 

The nonlinear secondary acoustic path from secondary source to error microphone 

considered is  

)2()(4.0

)1()(05.0)2(09.0)1(35.0)()(
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nunu

nunununununy
     (3.36) 

The reference noise is generated by filtering a uniformly distributed white noise 

through a lowpass filter of order 10 and cutoff frequency 350Hz. Simulations are done 

for proposed NFXLMS algorithm and are compared with Volterra filtered-x LMS 

(VFXLMS) algorithm. VFXLMS algorithm is the standard algorithm for nonlinear ANC. 

The structure of the MLP chosen is 10-3-1. The memory size of the second-order 

adaptive Volterra filter is 10. The step size for NFXLMS algorithm is chosen to be 0.03. 

However for VFXLMS algorithm the step sizes chosen are 0.003 and 0.0003 for linear 

and nonlinear coefficients respectively. Average mean square error (MSE) of fifty 

independent run of the algorithm is plotted with respect to number of iteration. Three 

different nonlinear activation functions are used for hidden layer neurons where as for all 

the experiments output layer neuron has linear activation function. Fig. 3.5 shows the 

performance when the activation function of the neurons in the hidden layer is 
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Fig.3.6 shows the performance when the activation function of the neurons in the hidden 

layer is 
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Fig. 3.7 shows the performance when the activation function of the neurons in the hidden 

layer is 
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               In all the experiments hidden layer synaptic weights and output layer synaptic 

weights of neural controller are initialized as uniformly distributed random number in the 

range -0.5 to 0.5. All the weights of Volterra filter are also initialized to uniformly 

distributed random number in the range -0.5 to 0.5.  The steady state MSE(dB) obtained 

by NFXLMS and VFXLMS algorithms is -26dB and -22dB respectively. The proposed 
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NFXLMS algorithm yield lower steady state MSE(dB) compared to standard VFXLMS 

algorithm for all the activation functions.  

3.5.2 Experiment II 

              The nonlinear primary acoustic path from noise source to error microphone and 

nonlinear secondary acoustic path from secondary source to error microphoneare are 

same as that of simulation-I. The reference noise, MLP structure and weight initialization 

scheme also remain same as experiment-1 but the adaption algorithms are based on 

filtered-error method. MSE plot for NFELMS algorithm and VFELMS  algorithm are 

shown in fig. 3.8, fig. 3.9 and fig. 3.10 for the three activation functions respectively. The 

step size for NFELMS algorithm is 0.03, while for VFELMS algorithm are 0.003 and 

0.0003 for linear coefficients and nonlinear coefficients respectively. The steady state 

MSE(dB) obtained by NFELMS and VFELMS algorithms are -22dB and -18dB 

respectively. The proposed NFELMS algorithm yield much lower steady state MSE(dB) 

compared to VFELMS for all the activation functions.  
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Fig. 3.5 MSE(dB) plot for NFXLMS and VFXLMS algorithms (activation function-I). 
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Fig. 3.6 MSE(dB) plot for NFXLMS and VFXLMS algorithms (activation function-II). 
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Fig. 3.7 MSE(dB) plot for NFXLMS and VFXLMS algorithms (activation function-III). 
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Fig. 3.8 MSE(dB) plot for NFELMS and VFELMS algorithms (activation function I). 
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Fig. 3.9 MSE(dB) plot for NFELMS and VFELMS algorithms (activation function-II). 
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Fig. 3.10 MSE(dB) plot for NFELMS and VFELMS algorithms (activation function-III). 

 

3.5.3 Experiment III 

The reference noise signal is chosen to be a logistic chaotic type, which is 

generated using the recursive equation [64] 

)](1[)()1( nxnxnx −=+ λ           (3.40) 

where 4=λ and x(0) =0.9 are chosen. This nonlinear noise process is then normalized to 

have unity signal power. In this experiment the primary path transfer function considered 

is 

765 2.03.0)( −−− +−= zzzzA              (3.41) 

and  the secondary path transfer function is chosen to be the non minimum-phase model 

defined by 

432 5.1)(ˆ)( −−− −+== zzzzBzB        (3.42) 

               Simulations are done for proposed NFXLMS algorithm and are compared with 

VFXLMS algorithm. The structure of the MLP chosen is 10-3-1. The memory size of the 

second-order adaptive Volterra filter is 10. The step size for NFXLMS algorithm is 0.02 

and for VFXLMS algorithm are 0.003 and 0.0003 for linear and nonlinear coefficients 
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respectively. Average mean square error (MSE(dB)) of fifty independent runs of the 

algorithms are plotted with respect to number of iteration. Similar to experiment-I, three 

different nonlinear activation functions are used for hidden layer neurons where as output 

neuron has linear activation function. Fig. 3.11, fig. 3.12 and fig. 3.13 show the 

performance of ANC for activation function I, II, III respectively. The steady state 

MSE(dB) obtained for NFXLMS and VFXLMS algorithms are -25dB and -22dB 

respectively. 

 

3.5.4 Experiment IV 

               The primary path from noise source to error microphone and secondary path 

from secondary source to error microphoneare are same as that of experiment-III. The 

reference noise, MLP structure and weight initialization scheme also remain same as 

experiment-III but the adaption algorithms are based on filtered-error method. MSE plot 

for NFELMS algorithm and VFELMS  algorithm are shown in fig. 3.14, fig. 3.15 and fig. 

3.16 for the three activation function respectively. The step size for NFELMS algorithm 

is 0.03, and for VFELMS algorithm are 0.003 and 0.0003 for linear coefficients and 

nonlinear coefficients respectively. The steady state MSE(dB) obtained for NFELMS and 

VFELMS algorithms is -21dB. 
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Fig. 3.11 MSE(dB) plot for NFXLMS and VFXLMS algorithms (activation function-I). 
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Fig. 3.12 MSE(dB) plot for NFXLMS and VFXLMS algorithms (activation function-II). 
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Fig. 3.13 MSE(dB) plot for NFXLMS and VFXLMS algorithms (activation function-III). 
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Fig. 3.14 MSE(dB) plot for NFELMS and VFELMS algorithms (activation function-I). 

 

 



CHAPTER-3                                          NEURAL NETWORK APPROACH TO NONLINEAR ACTIVE NOISE CONTROL 

 75  

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
-35

-30

-25

-20

-15

-10

-5

0

Number of Iteration

M
S

E
(d

B
)

 

 

NFELMS

VFELMS

 

 

Fig. 3.15 MSE(dB) plot for NFELMS and VFELMS algorithms (activation function-II). 
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Fig. 3.16 MSE(dB) plot for NFELMS and VFELMS algorithms (activation function-III). 
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3.5.5 Experiment on Real Time Signals 

  To evaluate the performance of the proposed ANC structures and update 

algorithms in practical situations all the above experiments are repeated on some real 

time signals. Noise data from a Signal Processing Information Base (SPIB) are used. 

SPIB database have been provided by the Rice University [79]. The first signal is factory 

floor noise acquired by recording samples from 2/1 ′′ B&K condenser microphone on to 

digital audio tape (DAT). This noise was recorded near plate-cutting and electrical 

welding equipment. The second signal considered is a Buccaneer Jet cockpit noise.  

Buccaneer noise acquired by recording samples from 1/2" B&K condenser microphone 

onto digital audio tape (DAT). The Buccaneer was moving at a speed of 450 knots, and 

an altitude of 300 feet. The sound level during the recording process was 116 dBA.  The 

detail information about both the noise are given below and are also plotted in fig. 3.17 

and fig. 3.18 respectively. 

Sampling  rate :19.98 KHz 

A/D: 16 bit 

Pre-filter : Anti aliasing filter 

Pre-emphasis : None 

Filter : None 

Duration-235sec 

Length (uncompressed) : approx  9Mb 

Taken from:  

NOISE-ROM-0 signal.021 

NATO: AC243/(Panel 3)/RSG-10 

ESPRIT: Project No. 2589-SAM 

Produced by: 

Institute for Perception-TNO, The Netherlands 

Speech Research Unit, RSRE, United Kingdom 

Copyright: 

TNO, Soesterberg, The Netherlands, Feb 1990 

For more information: 

Institute for Perception-TNO, 
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PO-box 23, 

3769 ZG Soesterberg, 

The Netherlands. 
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Fig. 3.17 Factory Floor Noise. 
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Fig. 3.18 Buccaneer Jet Cockpit Noise. 
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3.5.6 Experiment V (Real time signal) 

              In this experiment two real life noise signals are considered. The primary path, 

secondary path, neural network structure and adaptive Volterra filter structure same as 

that of experiment-I. Activation functions for hidden layer neurons are activation 

function-I where as output neuron has linear activation function. Fig. 3.19 and fig. 3.20 

show the MSE(dB) plot of the  proposed NFXLMS and VFXLMS algorithms for factory 

floor noise and Buccaneer jet cockpit noise respectively. The step size in case of factory 

floor noise for NFXLMS algorithm is 0.05 and for VFXLMS algorithm are 0.003 and 

0.0003 for linear and nonlinear coefficients respectively. The step size in case of 

Buccaneer jet cockpit noise for NFXLMS algorithm is 0.01 and for VFXLMS algorithm 

and are 0.001 and 0.0001 for linear and nonlinear coefficients respectively. The steady 

state MSE(dB) obtained for NFXLMS and VFXLMS algorithms with factory floor noise 

are -28dB and -25dB and with Buccaneer jet cockpit noise are -25dB and -22 dB . 

3.5.7 Experiment VI (Real time signal) 

               The proposed NFELMS and VFELMS algorithms are tested on two noise data 

collected from real world environment. MSE(dB) plots  for factory floor noise and 

Buccaneer jet cockpit noise are shown in fig. 3.21 and fig. 3.22 respectively. The primary 

path and secondary path, neural network structure and adaptive Volterra filter structure 

are same as that of experiment-II. Activation functions for hidden layer neurons are 

activation function-I where as output neuron has linear activation function. The step size 

in case of factory floor noise for NFELMS algorithm is 0.04 and for VFELMS algorithm 

are 0.003 and 0.0003 for linear and nonlinear coefficients respectively. The step size in 

case of Buccaneer jet cockpit noise for NFELMS algorithm is 0.01 and for VFELMS 

algorithm are 0.001 and 0.0001 for linear and nonlinear coefficients respectively. The 

steady state MSE(dB) obtained for NFELMS and VFELMS algorithms with factory floor 

noise are -27dB and -20dB and with Buccaneer jet cockpit noise are -23dB and -18 dB 

respectively. 
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Fig. 3.19 MSE(dB) plot for NFXLMS and VFXLMS algorithms( Factory Floor  Noise). 
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Fig. 3.20 MSE(dB) plot for NFXLMS and VFXLMS algorithms( Jet Cockpit  Noise). 
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Fig. 3.21 MSE(dB) plot for NFELMS and VFELMS algorithms( Factory Floor  Noise). 
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Fig. 3.22 MSE(dB) plot for NFELMS and VFELMS algorithms(Jet Cockpit  Noise). 
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 3.5.8 Experiment VII (Real time signal) 

                  This experiment is conducted considering two real time signals as reference 

noise. The primary path and secondary path, neural network structure and adaptive 

Volterra filter structure are same as that of experiment-III. Activation functions for 

hidden layer neurons are activation function-I where as output neuron has linear 

activation function. The step size in case of factory floor noise for NFXLMS algorithm is 

0.05 and for VFXLMS algorithm are 0.003 and 0.0003 for linear and nonlinear 

coefficients respectively. The step size in case of Buccaneer jet cockpit noise for 

NFXLMS algorithm is 0.01 and for VFXLMS algorithm are 0.001 and 0.0001 for linear 

and nonlinear coefficients respectively. Fig. 3.23 and fig. 3.24 show the MSE(dB) plot of 

the  proposed NFXLMS and VFXLMS algorithms for factory floor noise and Buccaneer 

jet cockpit noise respectively. The steady state MSE(dB) obtained for NFXLMS and 

VFXLMS algorithms with factory floor noise are -30dB and -26dB and  with Buccaneer 

jet cockpit noise are -33dB and -27 dB . 

 

3.5.9 Experiment VIII (Real time signal) 

                 In this experiment two real time reference signals are considered. The primary 

path and secondary path, neural network structure and adaptive Volterra filter structure 

are same as that of experiment-IV. MSE(dB) plots  for factory floor noise and Buccaneer 

jet cockpit noise are shown in fig. 3.25 and fig. 3.26 respectively. The step size in case of 

factory floor noise for NFELMS algorithm is 0.04 and for VFELMS algorithm are 0.003 

and 0.0003 for linear and nonlinear coefficients respectively. The step size in case of 

Buccaneer jet cockpit noise for NFELMS algorithm is 0.01 and for VFELMS algorithm 

are 0.001 and 0.0001 for linear and nonlinear coefficients respectively. The steady state 

MSE(dB) obtained for NFELMS and VFELMS algorithms with factory floor noise are -

26dB and -22dB and with Buccaneer jet cockpit noise are -33dB and -27 dB respectively. 

               In all the experiments, considering real time signals as reference noise, it has 

been observed that the proposed neural based algorithms exhibit lower steady state 

MSE(dB) performance compared to standard Volterra based  algorithms with comparable 

convergence time. 
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Fig. 3.23 MSE(dB) plot for NFXLMS and VFXLMS algorithms(Factory Floor Noise). 
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Fig. 3.24 MSE(dB) plot for NFXLMS and VFXLMS algorithms(Jet Cockpit Noise). 
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Fig. 3.25 MSE(dB) plot for NFELMS and VFELMS algorithms(Factory Floor Noise). 
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Fig. 3.26 MSE(dB) plot for NFELMS and VFELMS algorithms(Jet Cockpit Noise). 
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6 Summary 

This chapter focuses on developing a MLP based neural network controller for 

nonlinear ANC. Separate algorithms were developed for nonlinear ANC, firstly when 

secondary path is assumed linear and then secondly when secondary path is assumed 

nonlinear. When secondary path is nonlinear, the developed algorithm is modified using 

virtual secondary path filter concept. By computer simulation it has been found that the 

developed algorithms are performing well for both linear secondary path and nonlinear 

secondary path. The performance of developed algorithms is also evaluated for real time 

reference signals.  The proposed algorithms outperformed VFXLMS algorithm in terms 

of steady state MSE(dB). In order to take advantage of low computational complexity 

offered by filtered error LMS algorithm, both the developed algorithms are suitably 

modified. Performance of the modified algorithms are also analyzed from computer 

simulations and compared with that of VFELMS algorithm. The neural based ANC have 

resulted in improved performance in comparison to the Volterra based ANCs. 
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CHAPTER 4  

Legendre Neural Network for Nonlinear Active 

Noise Control 

4.1 Background

            Based on the rapid progress of high-speed and low-cost computing devices such 

as digital signal processor (DSP), digital active noise control (ANC) techniques have 

been receiving much attention because of the better performance over conventional 

passive methods. Passive methods of noise control are effective over a broad frequency 

range except at the lower end (below 600 Hz). On a contrary active noise control is 

suitable for low frequency noise only and it is not implementable for higher frequencies. 

So very often passive and active noise control methods are employed simultaneously in 

order to get an overall noise suppression. In some applications where only low frequency 

noise is present employing only ANC is sufficient.  

Presence of inherent nonlinearity in the ANC makes the antinoise generation 

process very complex. In [35] L. Tan and J. Jiang proposed a nonlinear ANC using 

adaptive Volterra filter and developed Volterra FXLMS (VFXLMS) algorithm. They 

demonstrate that the developed algorithm can improve control performance over the 

linear standard filtered-x LMS algorithm under the following conditions. 

i) The reference noise sensed by a reference microphone is a nonlinear and predictable 

noise process, while the secondary path transfer function of an ANC system has 

nonminimum phase. 

ii) The primary path exhibits nonlinear behavior 

The drawback of this algorithm is high computational complexity. In [34] L. Tan 

and J. Jiang proposed a truncated second order Volterra structure for NANC which is 

computationally more efficient. 
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Y. H. Pao [63] proposed an alternate neural network structure called functional 

link artificial neural network (FLANN) with an object to reduce the training time of the 

neural network and to improve convergence speed. Unlike MLANN where the nodes have 

nonlinear activation functions, in case of FLANN the links have nonlinear functions. In 

[64] D. P. Das and G. Panda employed FLANN to develop filtered-s LMS (FSLMS) 

algorithm (here this algorithm is termed as FLANN-FXLMS or FFXLMS algorithm) for 

nonlinear ANC. FFXLMS algorithm outperform VFXLMS algorithm in terms of steady 

state mean square error and has less computational requirement. D. P. Das and G. Panda 

[64] also proposed fast FFXLMS algorithm with a objective to reduce computational 

requirement. In [62] D. Zhou and V. DeBrunner compared the VFXLMS algorithm and 

FFXLMS algorithm and represented both by a generalized function expansion equation. 

They have extended the algorithms to deal with nonlinear ANC with nonlinear secondary 

path (NSP) by introducing virtual secondary path concept. They have also introduced 

adjoint virtual secondary path to employ filtered-e based algorithms. Block oriented (such 

as, Wiener, Hammerstein and Linear-Nonlinear-Linear structure) representation of 

nonlinear secondary path was discussed by them. Basically algorithms for nonlinear ANC 

can now be classified as nonlinear ANC with linear secondary path (LSP) and nonlinear 

ANC with nonlinear secondary path (NSP).  

In this chapter Legendre neural network (LNN) is used for nonlinear ANC. The 

adaptive algorithm for Legendre neural network is also developed. The algorithm is found 

to be simple and easy to implement and have low computational complexity. In order to 

reduce computational complexity further a reduced structure Legendre neural network has 

been proposed. The reduced structure Legendre neural network reduces the computational 

complexity without sacrificing the performance. Weight update algorithms for reduced 

structure LNN based on Filtered-x least mean square (FXLMS), Filtered-e least mean 

square (FELMS) and Filtered-x recursive least square (FXRLS) are developed. These are 

named as reduced structure LFXLMS algorithm, LFELMS algorithm and LFXRLS 

algorithm respectively. These algorithms require less computation compared to FFXLMS 

algorithm and are modified to deal with NSP which rests upon virtual secondary path 

concept. [66]-[72] reported different strategies to derive fast LMS algorithms.  Based on 

these papers, in order to reduce computational complexity further, a faster version of 
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reducecd structure LFXLMS algorithm is also developed this chapter in which unlike 

LFXLMS algorithm, weights are updated in every alternative iterations.  

4.2 Reduced Structure Legendre Neural Network for 

Nonlinear ANC 

4.2.1 Legendre Polynomial 

The Legendre polynomials are denoted by )(xLp , where p=0,1, 2, …, P,  P  is the 

order of expansion and x is the argument of the polynomial. )(xLp  constitute a set of 

orthogonal polynomials as solutions to the differential equation  

.0)1()1( 2 =++





− ynn

dx

dy
x

dx

d
 

The zero and the first order Legendre polynomials are, respectively, given by  

1)(0 =xL  

and xxL =)(1 . 

 The higher order polynomials are given by           

)13(
2

1
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2 −= xxL                

)35(
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1
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3 xxxL −=                                            
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)33035(
8

1
)( 24

4 +−= xxxL
  

The recursive formula to generate higher order Legendre polynomials is expressed as 

)]()()12[(
)1(

1
)( 11 xnLxxLn

n
xL PpP −+ −+

+
=                             (4.1) 

Some of the important properties of Legendre polynomials are that (i) they are 

orthogonal polynomials, (ii) they arise in numerous problems especially in those 

involving spheres or spherical coordinates or exhibiting spherical symmetry and (iii) in 

spherical polar coordinates, the angular dependence is always best handled by spherical 

harmonics that are defined in terms of Legendre functions. 
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In case of an ANC Legendre polynomial of a reference noise signal sample )(nx is 

computed and rearranged to form a vector as follows  

))}](())(()()12{(
)1(

1

,)),(3)(5(
2

1
)],1)(3(

2

1
),(,1[))((

1

32

nxnLnxLnxn
n

nxnxnxnxnxL

Pp −−+
+
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Reference noise signal vector at n
th

 instant consist of )(nx and it’s delayed samples and is 

defined as )]1(,),2(),1(),([)( +−−−= Nnxnxnxnxn Lx  

Legendre polynomial of )(nx can be obtained by expanding each sample of )(nx as  
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Fig. 4.1 Legendre polynomial expansion. 
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4.2.2 Legendre Neural Network 

The elements of above Legendre polynomial expansion of )(nx  are rearranged 

and partitioned to form P new vectors. Taking first element of each row from above 

equation a vector ],1,1,1,1[)(0 L=ns  is formed. Taking the second element of each row 

from above equation a second vector )(1 ns  is formed as shown below 

)]1(,,)1(,)([)(1 +−−= Nnxnxnxn Ls .  

Similarly third vector is formed 

)]1)1(3(
2

1
),,,)1)1(3(

2

1
),,)1)(3(

2

1
[)( 222

2 −+−−−−= Nnxnxnxn Ls .  

Similar manner P new vector, )(0 ns )(1 ns , )(2 ns , . . ., )(nPs can be formed. The vectors 

)(,,)(,)(,)( 210 nnnn Pssss L represent 0
th

, 1
st
, 2

nd
 ,. . . , P

 th
 order Legendre expansion. 

Using these vectors Legendre Neural Network is formed as shown in fig.4.2 where 

)(,),(),( 10 nnn Pwww L are adaptable weight vectors. All the vectors can be combined to 

form a single vector )(ns . 

)](,,)(,)(,)([)( 210 nnnnn Psssss L=  

 

 

 

 

 

 

 

 

 

  

 

Fig. 4.2 Legendre neural network. 
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Fig. 4.3 Block diagram of ANC using reduced structure Legendre neural network. 

 

4.3 LFXLMS Algorithm 

 Structure of the ANC using Legendre Neural Network is shown in fig. 4.3 where 

the input vector )]1(.....)1()([)( +−−= Nnxnxnxnx  is transformed into an output vector 

)(ns  given by ))(()( nLn xs = . The nonlinear function ))(( nL x  represents a set of the 

orthogonal basis functions, implemented in the ‘‘Legendre expansion’’ block. Here the 

N-dimensional input pattern )(nx  is enhanced to an N(P+1)-dimensional enhanced 

pattern 

 ]...)()([)( Pnnn ssss 10= .                               

where 

]1 ofnumber ....111[))(()( 00 NnLn == xs  
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)]1(...)1()([))(()( 11 +−−== NnxnxnxnLn xs  

)]1)1(3(
2

1
...)1)1(3(

2

1
)1)(3(

2

1
[))(()( 222

22 −+−−−−== NnxnxnxnLn xs  

. . . . . . . . . . . . . . . . . . . . . . . 

Comparing to FLANN where trigonometric functions are used in the functional 

expansion, LNN uses Legendre orthogonal functions. The major advantage of LNN over 

FLANN is that the evaluation of Legendre polynomials involves less computation 

compared to that of the trigonometric functions. Therefore, LNN offers faster training 

compared to FLANN. Corresponding to P+1 expanded input vectors the network has 

P+1 number of adaptive filters )(,),(),( 10 nnn Pwww L , operating in parallel. This 

approach is called filter bank implementation [36]. The order of each adaptive filter is N. 

Employing filter bank implementation output of LNN at time n is obtained by summing 

outputs of all the adaptive filters. 

 ∑∑
==

==
P

i

T

ii

P

i

i nnnyny
00

)()()()( ws                                                     (4.3) 

where )(niw is the weight vector of i
th

 adaptive filter at n
th 

instant. Estimated desired 

signal )(ˆ nd  is obtained by filtering LNN output by the estimated secondary path )(zB . 

Error at time n is defined as )(ˆ)()( ndndne −= . A popularly used cost function based on 

the mean-squared-error criterion is chosen here.   

2

2

)](ˆ)([
2

1

)]([
2

1
)(

ndnd

nen

−=

=ξ

 

Using the FXLMS algorithm the weight vectors of each adaptive filter is updated as  

)()()()1( nnenn iii sww ′+=+ µ                                        (4.4) 

where )(nis′ is the input signal, )(nis , filtered through the estimated secondary path and µ  

is the step size which control convergence and stability. This algorithm is called 

Legendre FXLMS (LFXLMS) algorithm. In Legendre neural network for P
th

 order 

Legendre expansion P+1 number of adaptive filters operate in parallel. But it is observed 

that the input vector for first adaptive filter always contain 1, so it not dependant on 
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reference noise signal and it don’t carry any information about the reference noise signal. 

Intuitively it is concluded that removing first adaptive filter from the network may not 

affect the network performance. This has been confirmed from extensive simulation work 

that removing the first adaptive filter did not degrade the network performance. This new 

structure is called as reduced structure Legendre neural network. The advantage of 

reduced structure Legendre neural network is to reduce the computational complexity. It 

has been seen that for 2
nd

 order Legendre expansion, the saving in computational 

complexity is 33%, while for 3
rd

 order expansion saving is 25%. From simulation study it 

has been observed that 3
rd

 order expansion is sufficient to obtain noise reduction. 

Increasing the order of expansion does not result in further mean square error reduction.  

The output of reduced order Legendre neural network can now be written as 

∑∑
==

==
P

i

T

ii

P

i

i nnnyny
11

)()()()( ws  

In LFXLMS algorithm all the expanded input vectors have to be separately 

filtered through the estimated secondary path.  Here also dropping the first input vector 

results reduction in number of filtering required so computational requirement is further 

reduced.  

4.3.1 Nonlinear Secondary Path 

For nonlinear active noise cancellation with nonlinear secondary path the update 

equation for weight vectors is written as  

)(

)(

2

1
)()1(

n

n
nn

i

ii
w

ww
∂

∂
−=+

ξ
µ   
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∂

∂
+=

)(

)(ˆ
)()(

n

nd
neEn

i

i
w

w µ               where i=1, 2, … P 

As in the classic LMS algorithm, we can use the instantaneous value to approximate the 

ensemble mean, yielding 
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)(ˆ
)()()1(

n
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nenn
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w

ww
∂
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+=+ µ          

Note that 
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where M is the memory size of the NSP. Assuming that for small step size, )(niw is 

slowly varying it can be written that  

)(

)(

)(

)(

mn

mny

n

mny

ii −∂

−∂
≈

∂

−∂

ww
                  (4.5) 

But )()()( mnmnmny i

T

i −−=− sw  

Putting this value in (4.5) we get  

)(
)(

)(
mn

n

mny
i

i

−=
∂

−∂
s

w
 

The update equation of )(niw can now be written as 

)(
)(

)(ˆ
)()()1(

1

0

mn
mny

nd
nenn i

M

m

ii −
−∂

∂
+=+ ∑

−

=

sww µ                           (4.6) 

The first term of summation of (4.6), is found to be  













+−∂

∂

−∂

∂

−∂

∂

∂

∂
=

−∂

∂

)1(

)(ˆ
,...,

)2(

)(ˆ
,

)1(

)(ˆ
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)(ˆ

)(

)(ˆ

Mny

nd

ny

nd

ny

nd

ny

nd

mny

nd
             (4.7) 

The elements of above vector are found to be time varying. This vector is called virtual 

secondary path, denoted by )(
~

nb and defined as follows [62] 

[ ])(
~

,),(
~

,)(
~

)(
~

110 nbnbnbn M −= Lb  

 Putting (4.7) in (4.6) the weight update equation now becomes  

∑
−

=

−+=+
1

0

)()(
~

)()()1(
M

m

imii mnnbnenn sww µ  

)('~)()()1( nnenn iii sww µ+=+                                                (4.8)        

where '~
is is the expanded input signal filtered through virtual secondary path. This update 

algorithm is LFXLMS algorithm for nonlinear secondary path. 

 

4.4 LFELMS Algorithm 

        Adjoint LMS algorithm was developed by Wan [14] and provides a simple 

alternative to the FXLMS algorithms. In adjoint LMS, the error signal (rather than the 

input signal) is filtered through an adjoint secondary path filter. This algorithm is 

alternatively termed as filtered error least mean square (FELMS) algorithm. FELMS 
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algorithm drastically reduces computational complexity of FXLMS algorithm for 

multichannel ANC. The degree of saving in computational complexity increases with 

increase in number of channels. Saving in computational complexity can also be achieved 

for our LFXLMS algorithm by using the technique of FELMS algorithms. Structure of 

Legendre neural network is such that a number of adaptive filters operate in parallel 

which is called as filter bank approach. The key for the application of FELMS algorithm 

is to develop the adjoint secondary path. In case secondary path is linear one (LSP) 

adjoint secondary path is obtained by writing the coefficients of secondary path in reverse 

order. Thus adjoint secondary path can be written as follows  

)](,...,)(,)([)_( 021 nbnbnbn MM −−=b                                             (4.9) 

 The block diagram of secondary path filter and adjoint secondary path filter are shown in 

fig. 4.4 and fig. 4.5 respectively.  

 

 

 

 

 

   

 

  

Fig.  4.4 Secondary path filter 

 

 

 

 

 

 

 

 

Fig. 4.5 Adjoint secondary path filter 
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When secondary path is nonlinear (NSP) the adjoint secondary path cannot be 

formed directly by writing the coefficients in reverse order. First the virtual secondary 

path filter is obtained and then adjoint virtual secondary path filter can be derived from it. 

Since virtual secondary path is a time varying filter so its adjoint version can be obtained 

by not only reversing the filter coefficients but also using delayed filter coefficients. The 

adjoint virtual secondary path is defined as follows [62]  

)]1(
~

...)1(
~

)(
~

[)_(
~

021 +−−= −− Mnbnbnbn MMb                                    (4.10) 

The block diagram of secondary path filter and adjoint secondary path filter are shown in 

fig. 4.6 and fig. 4.7 respectively. 

 

 

 

 

 

 

 

 

 

Fig. 4.6 Virtual secondary path filter 

 

  

 

 

 

 

 

 

Fig. 4.7 Adjoint  virtual secondary path filter 
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The weight update equation can be written as  

)1()()()1( +−′+=+ Mnnenn iii sww µ         (4.11) 

where )(' ne  is the error filtered through the adjoint secondary path for LSP and adjoint 

virtual secondary path for  NSP. M is the length of virtual secondary path. 

4.5 LFXRLS Algorithm 

Generally recursive least square (RLS) algorithm is employed to enhance speed of 

convergence but at the cost of increase in computational complexity [7], [8]. RLS 

algorithm for Legendre neural network is used to develop Legendre filtered-x recursive 

least square (LFXRLS) algorithm. The summary of the LFXRLS algorithm is as follows  

The weight update equation for the adaptive filters is given below 

)()()()1( nnenn iii kww µ+=+                                                   (4.12) 

where, Pi ,....,1,0= is the number of adaptive filters. 

The individual Kalman gain vector is defined below 

1)()(

)(
)(

+
=

nn

n
n

ii

i

i
zs

z
k                                                 (4.13) 

)()1()( 1
nnn

T

iii sQz −= −λ                                    (4.14) 

and the inverse of the autocorrelation matrix  

                           (4.15) 

 

where 10 <≤ λ is the forgetting factor, which weights the recent data more heavily in 

order to accommodate nonstationary signals.  

 

4.6 Fast LFXLMS Algorithm 

                The filter-bank implementation of the LFXLMS algorithm is shown in fig. 4.3. 

In such a scheme, the residual error sensed by the error microphone, is expressed by 

)()()()( nynbndne ∗+=                                            (4.16) 

In (4.16), )(nb  represents the impulse response of the secondary path transfer function 

and )(ny  is the output of the Legendre neural network, which is computed as 

[ ])()()1()(
1

nnnn iiii zkQQ −−= −λ
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∑
=

=
P

i

i nyny
1

)()(                                                     (4.17) 

where 

)()()( nnny i

T

ii ws=                                              (4.18) 

and PPi ,,....2,1= is the order of function expansion. Using LFXLMS algorithm the 

weight update equations at time 1−n and n , respectively, are written as  

)1()1()1()( −′−−−= nnenn iii sww µ                                   (4.19) 

)()()()1( nnenn iii sww ′−=+ µ                                             (4.20) 

where  )(nis′ is the input signal vector, )(nis filtered through the secondary path filter.  

 

Output of the controller  

The output of the controller at time 1−n and n , is written as 

)1()1()1( −−=− nnny
T

iii ws                                             (4.21) 

)()()( nnny
T

iii ws= , Pi ,,2,1 L=                                     (4.22) 

Inserting (4.19) into (4.22) yields 

)1()()1()1()()( −′−−−= nnnennny
T

ii

T

iii ssws µ                             (4.23) 

From (4.21) and (4.23) we obtained 
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Consider the first term on the right hand side of (4.24) 
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where 

[ ]
[ ]
[ ])(...)4()2(

)1(...)3()1(

)2(...)2()(
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1,

0,

Nnsnsns

Nnsnsns

Nnsnsns

iiii
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−−−=

+−−−=

+−−=

α

α

α

                                                                    (4.26) 

and 

[ ]TNjijijiji nwnwnwn )(...)()()( 2,2,,, −++=w            for j=0, 1                           (4.27) 
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Adding and subtracting )1(1,1, −nii wα  to the first row and )1(0,1, −nii wα to the second row 

on the right hand side of (4.25), the following expression is obtained 
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(4.28)                           

 

As the 2/N element vector, ))1()1(( 1,0,1, −+− nn iii wwα , in (4.28) is common to both the 

rows, it requires only a one time computation. Thus, (4.28) requires NP5.1  

multiplications for two time steps, which means NP75.0  multiplications on an average 

for each time step.  

NPM 75.01 =  

Therefore, this saves NP25.0  multiplications. 

Now, consider the second term on the right-hand side of (4.23). Let 

)1()()( −′= nnn
T

iii ssψ                                                (4.29) 

Further )(niψ can be computed with less number of computations as follows: 

[ ]
[ ])2()1()1()(

)2()1()1()()2()(

−−′−−+−−′−−

−′−+−′+−=

NnsNnsNnsNns

nsnsnsnsnn

iiii

iiiiii ψψ
       (4.30) 

Since the term [ ])2()1()1()( −−′−−+−−′− NnsNnsNnsNns iiii  in (4.30) has already 

been computed at time Nn − , )(niψ requires only P2 multiplications for two time steps, 

where P is the total number of FIR adaptive filters.  

            The terms 1,2, ii αα −  and 0,1, ii αα − in (4.28) require only one addition each, as all 

terms except the first term in these summations have already been computed at 2−n time 

step. Therefore, the number of multiplications required per time step, to compute (4.28), 

is given by )2(5.0 +NP . 

)2(5.01 += NPM          (4.31a) 

 In order to compute (4.30), we required P5.1 additions per sample. Therefore, the total 

number of additions required per sample to compute the output of the controller is equal 

to 1A  

)5(5.01 += NPA                                                                               (4.31b) 
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Secondary Path Filtering 

The terms )1( −′ nsi and )(nsi
′ can be computed in a similar manner as done in case 

of )1( −nyi  and )(nyi were computed in (4.24) and are shown below 

)()1()1( nnns
T

ii bs −=−′             Pi L,2,1=                                                    (4.32) 

)()()( nnns
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ii bs=′                                                (4.33) 
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where 

[ ]
[ ]
[ ])(...)4()2(

)1(...)3()1(

)2(...)2()(

2,

1,

0,

Mnsnsns

Mnsnsns

Mnsnsns

iiii

iiii

iiii

−−−=

+−−−=

+−−=

β

β

β

                                            (4.35) 

where M  is the order of the secondary path filter transfer function and 

[ ]TMjjjj bbb 22 .... −++=b                                                          (4.36) 

Equation (4.34) requires 1.5MP multiplications for two time steps, since the term 

)(1, 10 bbβ +i has to be computed only once. Therefore, the number of multiplications 

required per time step is 0.75MP,  

MPM 75.02 = .                        (4.37a) 

The term 10 bb + can be precomputed and stored. Hence, it requires no additions and the 

terms 1,, i2i ββ − and 0,1, ii ββ − requires one addition each. Therefore, the total number of 

additions required per sample is given by 

)2(5.02 += MPA                                                                                          (4.37b) 

Weight Update 

Substituting (4.33) into (4.32), we obtain 

)()()1()1()1()1( nnennenn iiii ssww ′−−′−−−=+ µµ                            (4.38) 
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where 
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and )(0, niw and  )(1, niw are defined as in (4.27) 

Rewriting (4.25) as 
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Adding and subtracting )(1, ne
T

iγµ  to the first row and )1(1, −ne
T

iγµ to the second row on 

the right-hand side of (4.41), the following equation is obtained 
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By following a similar analysis as we did for (4.34), the weight update (4.28) requires 

0.75NP   multiplications per iteration,  

NPM 75.03 =                                 (4.43a) 

The number of additions required to compute (4.42) is given by 3A  

)32(5.03 += NPA                                                             (4.43b) 

From (4.31a), (4.37a), and (4.43a), the number of multiplications per sample is given by  

),175.025.1(321 ++=++ MNPMMM  compared to the standard FFXLMS, which 

requires (2P +1)(2N +M) multiplications. From (4.31b), (4.37b), and (4.43b) the total 

number of additions is given by ),103(5.0321 ++=++ MNPAAA  whereas for the 

standard FFXLMS, this number is (2P+1)(2N+M-2).  Note that while comparing these 

algorithms, the multiplication due to step size ( µ ) has not been taken into account. 
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Table 4.1. 

Computational Complexity Comparison 

Algorithm LFXLMS LFELMS FFXLMS Fast LFXLMS 

N
u

m
b

er
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f 
m

u
lt

ip
li

ca
ti

o
n

s 
 r

eq
u

ir
ed

 

p
er

 s
am

p
le

 f
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m

p
u

ta
ti

o
n

 o
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Controller 

Output N(P-1) N(P-1) N(2P +1) 0.5P(N+2) 

Secondary 

path filtering M(P-1) M M(2P+1) 0.75MP 

Weight 

update 
N(P-1) N(P-1) N(2P +1) 0.75NP 

Total (2N+M)(P-1) 2N(P-1)+M (2P+1)(2N +M) P(1.25N+0.75M+1) 

N
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er
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re
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sa
m

p
le

 f
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ta
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n
 o
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Controller 

Output (N-1)(P-1) (N-1)(P-1) (N-1)(2P +1) 0.5P(N+5) 

Secondary 

path filtering (M-1)(P-1) M-1 (M-1)(2P+1) 0.5P(M+2) 

Weight 

update 
N(P-1) N(P-1) N(2P +1) 0.5P(2N+3) 

Total (2N+M-2)(P-1) (2N-1)(P-1)+M-1 (2P+1)(2N+M-2) 0.5P(3N+M+10) 

 

4.7 Simulation and Results 

            Extensive simulation work has been done for various nonlinear ANC and some 

selected results are presented to validate the proposed algorithms. The performance of the 

proposed LFXLMS algorithm, LFELMS algorithm and LFXRLS algorithm are compared 

with FLANN based algorithm (FFXLMS algorithm). A number of nonlinear ANC with 

linear secondary path and nonlinear secondary path are tested. Simulation result of fast-

LFXLMS is also compared with LFXLMS algorithm.  Mean square error (MSE) in dB 

defined by      

)}(({log10MSE(dB) 2

10 neE=                                                                                      (4.44) 
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is plotted for each simulation. In each of the experiments, hundred independent trials are 

conducted and the average MSE(dB) is plotted to obtain smoother convergence 

characteristics. 

4.7.1 Experiment I 

         In the first experiment a nonlinear ANC with the primary path transfer function 

defined below is considered [64]    

765 2.03.0)( −−− +−= zzzzA                                                                                          (4.45) 

The secondary path considered is a non-minimum-phase filter with transfer function  

2 3 4( ) 1.5B z z z z− − −= + −                                                                                                (4.46) 

Secondary path is assumed to be perfectly estimated i.e. )()(ˆ zBzB =  

 The reference noise is the logistic chaotic noise generated by the following equation [11] 

)](1)[()1( nxnxnx −=+ λ                                                                                              (4.47)  

where 4=λ and 9.0)0( =x are used. This noise process is then normalized to have unit 

signal power. MSE(dB) for proposed LFXLMS, LFELMS and LFXRLS algorithms are 

plotted and compared with that of FFXLMS algorithm. The step size for LFXLMS, 

LFELMS, FFXLMS, LFXRLS algorithms are 0.0004, 0.0003, 0.0004, 0.005 respectively  

and forgetting factor for LFXRLS algorithm considered is 0.99. MSE(dB) plots for all the 

algorithms are shown in the fig. 4.8. The steady state MSE(dB) obtained by LFXLMS, 

LFELMS, LFXRLS and FFXLMS algorithm are -30dB, -29 dB, -32 dB and -26 dB 

respectively. The proposed algorithms results in lower steady state MSE(dB) compared to 

FFXLMS algorithm which indicates LNN based algorithms perform better than FFXLMS 

algorithm.  

In order to verify tracking capability of the developed algorithms the primary path 

transfer function and/or secondary path transfer function are varied after the algorithms 

entered into convergence region. In the first test primary path is changed (the undesired 

noise at the cancellation point is changed from ( )d n to ( )d n− ) at 3000
th

 iteration.  The 

MSE(dB) plot is shown in fig. 4.9, which confirms that all the algorithms successfully 

converged even after variation in primary path. In the second test the secondary path 

transfer function is changed from 432 5.1)( −−− −+= zzzzB to 
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432 1.11.19.0)( −−− −+= zzzzB at 3000
th 

iteration and the MSE(dB) plots obtained are 

shown in the fig. 4.10. In the third test both the primary path and secondary path are varied 

at 3000
th

 iteration and the MSE(dB) plots are shown in the fig. 4.11. From all the three 

tests it can be concluded that the proposed algorithms are able to track variation in the 

primary and secondary paths. 

4.7.2 Experiment II 

        In order to analyze the performance of the proposed algorithms in case of 

nonlinear active noise canceller, nonlinear primary path as well as nonlinear secondary 

path is considered here. In this experiment the nonlinear primary path is defined by the 

following primary to desired signal relationship [62] 

 (4.48) 

 

Similarly nonlinear secondary path considered has the following input to output 

relationship 

 (4.49) 

 

Reference signal is considered to be white noise. MSE(dB) for the proposed LFXLMS and 

LFELMS algorithms are obtained using virtual secondary path and compared with that of 

FFXLMS algorithm. The step size for LFXLMS, LFELMS and FFXLMS algorithms are 

0.0002, 0.0001 and 0.0002 respectively  The steady state MSE(dB) obtained by LFXLMS, 

LFELMS and LFXRLS algorithm are -14dB, -12 dB and -12 dB respectively. The 

proposed LFXLMS algorithm outperformed FFXLMS algorithm in terms of steady state 

MSE(dB). But the vital advantage of the proposed algorithms is their low computational 

complexity. 

 

 

)3()(7.0)2()(9.0

)1()(8.0)3(4.0)2(3.0)1(8.0)()(

−+−

+−−−+−+−+=

nxnxnxnx

nxnxnxnxnxnxnd

)2()(4.0)1()(5.0)2(09.0)1(35.0)()(ˆ −+−−−+−+= nynynynynynynynd
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Fig. 4.8 MSE(dB) plot for LFXLMS, FFXLMS, LFELMS and LFXRLS algorithm. 
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Fig. 4.9 MSE(dB) plot for LFXLMS, FFXLMS and  LFELMS algorithm when primary 

path is changed at 3000
th

 iteration. 
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Fig. 4.10 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm when secondary 

path is changed at 3000
th

 iteration. 
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Fig. 4.11 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm when both 

primary path and secondary path are changed at 3000
th

 iteration. 
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Fig. 4.12 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm. 

 

4.7.3 Experiment III 

Another experiment is conducted on the nonlinear active noise canceller. In this 

experiment the nonlinear primary path is defined by the following input to output relation 

[62] 

      

(4.50) 

 

The nonlinear secondary path considered is in cascade form. It consist of cascading of 

three blocks, Linear ( 1l )-Nonlinear ( N )-Linear ( 2l ) (LNL) shown in fig. 4.13.  

 

 )(1 nz  )(2 nz  )(ˆ nd   

  

 

Fig. 4.13 Block diagram of LNL nonlinear secondary path model. 

The blocks 21 ,, lNl are defined as follows  

                                        

1l  N  
2l  

)(ny  

)8()5(4.0)7()5(3.0

)6()5(2.0)8(4.0)7(3.0)6(8.0)5()(

−−+−−

−−−+−+−+−+−=

nxnxnxnx

nxnxnxnxnxnxnd
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                                        21

1 05.06.01 −− +−= zzl                                                         (4.51) 

                                         )](3.0tanh[3.3)( 11 nzzN =                                                    (4.52) 

                                         21

2 05.02.01 −− ++= zzl                                                        (4.53) 

The reference noise considered here is white noise. The step size for LFXLMS, LFELMS 

and FFXLMS algorithms are 0.0003, 0.002 and 0.0003 respectively.  Proceeding in the 

same manner as in [62] the MSE(dB) obtained by LFXLMS, LFELMS and FFXLMS 

algorithm are plotted in the fig. 4.14,  which suggest equivalent steady state MSE(dB) for 

all the three algorithms. But here it should be noted that the proposed algorithms have 

lower computational complexity requirement.  
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Fig. 4.14 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm. 

4.7.4 Experiment IV 

The primary path, secondary path and input signal are same as same that of 

experiment I. But adaptive algorithm for weight update is fast LFXLMS algorithm and 

LFXLMS algorithm. Step size for both the algorithms is 0.01. MSE(dB) plot for the 

algorithms are shown in fig.4.15.  Both the algorithms yield identical results but real 

advantage of fast LFXLMS algorithm is lower computational complexity. 
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Fig. 4.15 MSE(dB) plot for LFXLMS algorithm and Fast LFXLMS algorithm. 

 

4.7.5 Experiment on Real Time Signal 

 In order to assess the performance of the developed algorithms in a real time 

environment a few experiments are conducted on real time signals as reference noise.  

Two reference signals considered are Buccaneer Jet cockpit noise (used in previous 

chapter) and white noise. White Noise is acquired by sampling high-quality analog noise 

generator (Wandel & Goltermann) [79]. It exhibits equal energy per Hz. bandwidth.  

4.7.6 Experiment V (Real Time Signal) 

In this experiment two reference signals picked up from real world environment 

are considered. Fig.4.16 and fig.4.17 shows MSE(dB) plots of LFXLMS, FFXLMS and 

LFELMS algorithms for Buccaneer jet cockpit noise and white noise respectively. The 

primary path and secondary path are identical to the experiment-1. Step size(Buccaneer 

jet cockpit noise) for LFXLMS is 0.0005, FFXLMS is  0.0005 and  LFELMS is 0.0004. 

The step size (white noise) for LFXLMS is 0.0004, FFXLMS is 0.0005 and  LFELMS is 

0.0003. The steady state MSE(dB) obtained by LFXLMS, FFXLMS and  LFELMS 
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algorithm in case of jet cockpit noise are -27dB, -25dB and -27dB  and in case of  white 

noise are -23dB, -22dB and -22dB  respectively. 

4.7.7 Experiment VI (Real Time Signal) 

In order to verify the tracking capability of the developed algorithms the primary 

path transfer function is varied after the algorithms entered into convergence region. The 

primary path is changed (the undesired noise at the cancellation point is changed 

from ( )d n to ( )d n− ) at 3000
th

 iteration.  Fig.4.18, fig.4.19 shows MSE(dB) plots of 

LFXLMS and FFXLMS algorithms for Buccaneer jet cockpit noise and white noise 

respectively. Step size (Buccaneer jet cockpit noise) for LFXLMS is 0.0005 and  

FFXLMS is  0.0005. The step size (white noise) for LFXLMS is 0.0004 and FFXLMS is 

0.0005. The steady state MSE(dB) obtained by LFXLMS and  FFXLMS algorithms  

confirms that all the algorithms successfully converged  after variation in primary path.  

 

4.7.8 Experiment VII (Real Time Signal) 

Experiment-VI is conducted once again but this time secondary path rather than 

primary path is varied after the ANC entered into steady state region. The secondary path 

transfer function is changed from 432 5.1)( −−− −+= zzzzB to 

432 1.11.19.0)( −−− −+= zzzzB at 3000
th 

iteration and the MSE(dB) plots obtained are 

shown in the fig.4.20 and  fig.4.21 for Buccaneer jet cockpit noise and white noise 

respectively. From the above two tests it can be concluded that the proposed algorithms 

are able to track variations in the primary and secondary paths. 

 

4.7.9 Experiment VIII (Real Time Signal) 

Performances of the proposed algorithms are assessed in nonlinear environment. 

Here both the primary and secondary paths are considered nonlinear and their transfer 

functions are identical to experiment-II. Fig.4.22 and fig.4.23 shows MSE(dB) plot for 

LFXLMS, FFXLMS and LFELMS algorithms for Buccaneer jet cockpit noise and white 

noise respectively. The steady state MSE(dB) obtained for LFXLMS, FFXLMS and 

LFELMS algorithms in case of Jet Cockpit Noise are -9dB, -4dB, -7dB and in case of 

white noise are -10dB, -5dB and -9dB. 



CHAPTER-4                                                                          LEGENDRE NEURAL NETWORK FOR NONLINEAR ANC 

 110  

 

 

 

500 1000 1500 2000 2500

-30

-25

-20

-15

-10

-5

M
S

E
(d

B
)

Number of Iteration

 

 

LFXLMS

FFXLMS

LFELMS

 
 

Fig. 4.16 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm(Jet Cockpit 

Noise). 
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Fig. 4.17 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm(White Noise). 
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Fig. 4.18 MSE(dB) plot for LFXLMS and FFXLMS algorithm when primary path is 

changed at 3000
th

 iteration(Jet Cockpit Noise). 
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Fig. 4.19 MSE(dB) plot for LFXLMS and FFXLMS algorithm when primary path is 

changed at 3000
th

 iteration(White Noise). 
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Fig. 4.20 MSE(dB) plot for LFXLMS and FFXLMS algorithm when secondary path is 

changed at 3000
th

 iteration(Jet Cockpit Noise). 
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Fig. 4.21 MSE(dB) plot for LFXLMS and FFXLMS algorithm when secondary path is 

changed at 3000
th

 iteration(White Noise). 
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Fig. 4.22 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm(Jet Cockpit 

Noise). 
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Fig. 4.23 MSE(dB) plot for LFXLMS, FFXLMS and LFELMS algorithm(White Noise). 
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4.8 Summary 

This chapter proposes a computationally efficient reduced structure Legendre 

neural network for nonlinear active noise cancellation. Update algorithms Legendre 

FXLMS (LFXLMS) and Legendre FELMS (LFELMS) for the proposed network are 

derived. RLS algorithm is also employed to develop Legendre FXRLS (LFXRLS) 

algorithm to obtain faster convergence but at the cost of increase in computational 

complexity. A fast version of LFXLMS algorithm called fast LFXLMS algorithm is also 

developed which reduces computational complexity by almost 25%. Extensive simulation 

are conducted for various reference noises and the MSE(dB) plots are obtained. 

Experiments are also conducted considering real time reference signals such as 

Buccaneer jet cockpit noise and white noise. The experimental results presented here 

demonstrates the superior performance of the proposed algorithms in terms of MSE(dB) 

and computational complexity compared to standard FFXLMS algorithm.  
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CHAPTER 5 

Frequency-Domain Approach to Multichannel 

Nonlinear Active Noise Control 

5.1 Background 

Active noise control has been a field of growing interest over the past few 

decades. Traditionally ANCs are realized by adaptive filtering in time domain. Adaptive 

filtering in frequency domain is an attractive alternative to time domain adaptive filtering. 

The theory for frequency domain adaptive filtering is well developed and literature is 

thick. Frequency domain filters have primarily two advantages compared to time domain 

implementation. The first advantage is the potentially large scale savings in the 

computational complexity. The Fast Fourier Transform (FFT) is an efficient 

implementation of the Discrete Fourier Transform (DFT) which provides this savings. A 

second advantage is that DFT generate signals that are approximately uncorrelated 

(orthogonal). As a result a time varying step size can be used for each adaptive weight, 

thereby allowing faster convergence. Another secondary advantage of frequency domain 

adaptation is more accurate estimation of gradient due to the averaging of samples in a 

whole data block.  

Several researchers have implemented the ANC in frequency domain using 

different variations of the FXLMS algorithm. Q. Shen and A. S. Spanias [73], G. A. 

Clark, S. K. Mitra, and S. R. Parkar [74] proposed block implementation of the FXLMS 

algorithm, both in time and frequency domain, which is exact implementation of FXLMS 

algorithm. Sen M. Kuo, Mansour Tahernezhadi and Li Ji [75], M. R. Asharif, T. 

Takebayashi, T. Chugo and K. Murano[76], Reichard and Swanson[77], D. P. Das, G. 

Panda and S. M. Kuo[78] proposed different methods for frequency domain 

implementation of active noise cancellation.  

In this chapter, a simple and computationally efficient frequency domain 

algorithm for multichannel ANC is proposed. In addition, normalized LMS [3], [7] 
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algorithm is employed to facilitate variable step size. This new algorithm is termed as 

multichannel frequency domain block filtered-x normalized LMS (FBFXNLMS) 

algorithm. E. Wan [14] proposed adjoint LMS algorithm which led to the development 

FELMS algorithm which is an efficient alternative to FXLMS algorithm with an 

advantage of reduction in computational complexity for multiple input ANCs. A  

frequency domain implementation of FELMS algorithm has been proposed and is termed 

as frequency domain block filtered-e least mean square (FBFELMS) algorithm.  

Legendre neural network for nonlinear ANC, developed in the previous chapter is also 

implemented in frequency domain using Fast Fourier Transform (FFT). The developed 

algorithms are termed as frequency domain block Legendre filtered-x least mean square 

(FBLFXLMS)  and frequency domain block Legendre filtered-e least mean square 

(FBLFELMS) algorithm. 

5.2 The Filtered-x Least Mean Square (FXLMS) Algorithm 

       While developing the time domain block FXLMS algorithm, the FXLMS 

algorithm is first outlined. The FXLMS is the most common algorithm applied in both 

feedforward and feedback ANC due to its ease in implementation [2]. The basic ANC 

system is shown in fig 5.1 where the path from the noise source to the cancellation point 

is defined as primary path and it has a transfer function, )(zA . ANC also has secondary  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Block diagram of the basic active noise control system. 
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path which is defined as the path leading from the adaptive filter output to error sensor 

that measures the residual noise and it has a transfer function, )(zB . Most available ANC 

algorithms including FXLMS, require online or offline identification of secondary path. 

In an ANC system the secondary path transfer function, )(zB  follows the 

adaptive filter. Therefore, to ensure convergence, the conventional LMS algorithm is to 

be suitably modified. The most appropriate modification is by placing an estimate of this 

secondary path transfer function, )(ˆ zB  in the reference signal path to the weight update 

of the LMS algorithm. Hence the algorithm is referred to as filtered-x LMS (FXLMS) 

algorithm. Referring to fig. 5.1, the residual noise signal at n
th

 time instant is expressed as 

)(ˆ)()( ndndne −=                                                             (5.1) 

        )(ˆ*)()( nnnd by−=                                                     (5.2) 

        )(ˆ*)(*)()( nnnnd bxw−=                                                (5.3) 

where ).1(....)1()([)( +−−= Nnxnxnxnx  

)(nd = noise to be cancelled at the canceling point, 

)(ˆ nd  = output of the ANC, 

)(nb  = the impulse response of the secondary path transfer function, 

)(ˆ nb  = estimate of the impulse response of the secondary path transfer function,  

and * denotes linear convolution operation. 

)(nw  = estimate of the weight vector at n
th 

instant, 

          T

N nwnwnw )](....)()([ 110 −=  

The weight update equation in FXLMS algorithm is given by 

)()()1( nnn cww µ+=+                                                           (5.4) 

where  µ= convergence coefficient. 

)(*)(')( nenn xc =                                                                    (5.5) 

)(*)()(' nnn bxx =                                                                 (5.6) 

The FXLMS algorithm is thus described by (5.1) through (5.6), which involves three 

convolution operations to compute )(ˆand),(),( ndnn yx′ .  Out of these three linear 
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convolution operations, two are performed in actual implementation to 

evaluate )(and),( nn yx′ . But in case of ANC system the third convolution is actually not 

computed as the signal )(ˆ nd  corresponds to output of the speaker and is used as an 

antinoise signal. In the next section the time-domain block filtered-x least mean square 

(BFXLMS) algorithm is derived in detail. 

5.3 The Time Domain Block Filtered-x LMS (BFXLMS) 

Algorithm 

In block filtering instead of computing the ANC output sample by sample a block 

of  output is computed simultaneously and this is possible by  using overlap save or 

overlap add method. Out of these two methods the overlap-save method has been chosen 

as it is computationally more efficient. Now using overlap-save method the FXLMS 

algorithm is implemented by redefining (5.5) as follows 

)(*)(')( nnn exc =   

where )]()1(....)1([)( neneNnen −+−=e  

Computation of  )(nc  actually involve cross correlation, but writing )(ne in time 

increasing order the cross correlation operation is converted to convolution operation. In 

block FXLMS the computation of the three linear convolution operations (for 

obtaining )(  and),(),( nnn cyx′ ) can be implemented in a simple manner as:   
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where the matrix NI  is an NN ×  identity matrix and the matrix NO  is an NN × matrix 

with all zero elements and )].1(....)1()([)( +−++=+ nxNnxNnxNnx   
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5.4 Frequency Domain Block Filtered-x LMS (FBFXLMS) 

Algorithm 

 Fast Fourier Transform can be used to efficiently compute the associated linear 

convolutions in BFXLMS algorithm. It is shown in the previous section that the 

BFXLMS algorithm essentially consists of three linear convolutions defined in (5.7) to 

(5.9).  FFT based implementation of all the three linear convolutions can be done by 

defining 
2

F
N

and 1
2

F
N

−  as the 2N-point FFT and IFFT operators respectively. The linear 

convolution in (5.7) may be implemented using the 2N point FFT and IFFT as 



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)(
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[ ] [ ])()()( 1

2 nNnFNn NNN WXIOy ⊗+=+ −        (5.12) 

where ⊗  denotes point-by-point multiplication. Similarly, (5.8) may be implemented 

using the 2N point FFT and IFFT as  

)()( 2 nFn
N

N

N b
O

I
B 








=            (5.13) 

[ ] [ ])()()(' 1

2 nNnFNn NNN BXIOx ⊗+=+ −        (5.14) 

The FFT-based implementation of (5.9) can be written as 
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[ ] [ ])()(')( 1

2 NnENnFNn NNN +⊗+=+ −
XTOc        (5.17) 

The weight update equation of FBFXLMS algorithm becomes 

)()()1( Nnnn ++=+ cww µ          (5.18) 

Here weights are updated in time domain where as all the linear convolution operations 

required for executing the algorithm is done in frequency domain. 
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5.5 Frequency Domain Block Filtered-x Normalized LMS 

(FBFXNLMS) Algorithm 

The conventional linear adaptive filters based on the normalized LMS (NLMS) 

algorithm obtain rapid convergence for highly correlated signals, by improving a large 

eigenvalue spread. With similar reasoning, the proposed approach relies upon the NLMS 

algorithm in order to solve the slow convergence problem. Accordingly FXLMS 

algorithm is modified to yield filtered-x normalized least mean square (FXNLMS) 

algorithm. The weight update equation for FXNLMS algorithm is given by       

)()('
)()(

)()1( nen
nn

nn
T

x
xx

ww
ε

µ

+
+=+                                                        (5.19)  

where ε is a small constant. Incorporating block implementation and subsequently 

employing FFTs and IFFTs to reduce computational load the weight update equation 

(5.19) becomes           

)(
)()(

)()( Nn
NnNn

nNn
T

+
+++

+=+ c
xx

ww
ε

µ
                                        (5.20)  

This equation represents the frequency domain block filtered-x normalized LMS 

(FBFXNLMS) algorithm. 

5.5.1 The Reduced Structure FBFXNLMS algorithm 

Further reduction in computational complexity can be achieved by carefully 

observing the block diagram of fig.5.2 and discarding some steps. To complete the 

weight update process the reference signal is multiplied with the estimated secondary 

path in frequency domain. After multiplication the resulting signal undergoes two 

transformations; first from frequency domain to time domain and then again back to 

frequency domain. The steps followed are described as follows. (i) From frequency 

domain to time domain by a 2N point IFFT (ii) The first N samples are deleted (iii) 

Overlapping with previous N samples is done (iv) The signal is again transformed to 

frequency domain by a 2N point FFT. Thus process is to transform a frequency domain 

signal to time domain and again transforming the time domain signal to frequency 

domain. If these two transformations are removed, the above mentioned four steps 

become redundant but still the performance is preserved. So the resulting signal after 

reference signal is multiplied with the estimated secondary path in frequency domain is 
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directly used for weight update. By removing these steps, an approximate version is 

obtained [78]. In this way one FFT and one IFFT computations can be saved. The 

complete algorithm is shown in table 5.1. The block diagram of ANC using the 

FBFXLMS algorithm is shown in fig. 5.3.  

 

  

 

 

 

  

 

  

 

 

 

  

 

  

  

 

 

  

 

 

 

 

 

Fig.5.2 Block diagram of ANC using FBFXNLMS algorithm. 
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Fig.5.3 Block diagram of ANC using reduced structure FBFXNLMS algorithm. 
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5.6 Frequency Domain Block Filtered-e LMS (FBFELMS) 

Algorithm 

Filtered-e least mean square (FELMS) algorithm is widely used as an alternative 

to FXLMS algorithm in multiple input multiple output (MIMO) ANC which reduces 

computational complexity and memory requirements. Adjoint LMS algorithm for ANC 

was developed by E. A. Wan [14] which is a FELMS algorithm where error signal rather 

than input signal is filtered through adjoint of secondary path filter. Incorporating block 

processing and using FFT and IFFT, FELMS algorithm can be implemented in frequency 

domain as follows. 
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[ ] [ ])()()( 1

2 nNnFNn NNN WXIOy ⊗+=+ −        (5.23) 

where ⊗  denotes point-by-point multiplication. Similarly filtering of error block through 

estimated secondary path may be implemented using the 2N point FFT as follows 
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[ ])()()(' nNnNn BEE ⊗+=+          (5.26) 

where )(nrb is obtained by flipping )(nb . 

The FFT-based implementation of weight adaptation can be written as 

[ ] [ ])(')()( 1

2 NnNnFNn NNN +⊗+=+ −
EXTOc          (5.27) 

)()()( NnnNn ++=+ cww µ          (5.28) 

The complete algorithm is shown in table 5.2. 
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Fig.5.4 Block diagram of ANC using FBFELMS algorithm. 
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Table 5.1 

FBFXNLMS algorithm 

 

  Controller Output: 










+
=+

)(

)(
)( 2

Nn

n
FNn N

x

x
X  

 )()( 2 nFn
N

N

N w
O

I
W 








=      

[ ] [ ])()()( 1

2 nNnFNn NNN WXIOy ⊗+=+ −  

 

Filtering through secondary path: 

 

 

[ ] [ ])()()(' 1

2 nNnFNn NNN BXIOx ⊗+=+ −  

 

            Weight update: 










+
=+′

)('

)('
)( 2

Nn

n
FNn N

x

x
X  

     )()( 2 NnFNn
N

N

N +







=+ e

O

I
E     

 [ ] [ ])()(')( 1

2 NnENnFNn NNN +⊗+=+ −
XTOc  

 

)(
)()(

)()( Nn
NnNn

nNn
T

+
+++

+=+ c
xx

ww
ε

µ
 

 

 

 

)()( 2 nFn
N

N

N b
O

I
B 








=



CHAPTER-5                                           FREQUENCY DOMAIN APPROACH TO MULTICHANNEL NONLINEAR ANC 

 126  

 

 

Table 5.2 

FBFELMS algorithm 

 

  Controller Output: 
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5.7 Multichannel FBFXNLMS Algorithm 

            Noise control in a large dimension duct or enclosure requires a multiple channel 

ANC systems. Multiple channel ANC engage several secondary loudspeakers to control 

noise at multiple error microphone locations. It is assumed that in a multiple channel 

ANC, L number of reference microphones, P number of secondary loudspeakers and Q 

numbers of error microphones are employed. So in total LP numbers of adaptive filters 

are present and their impulse responses are represented as )(nlpw   and PQ number of 

secondary paths is represented as )(npqb . Applying multiple error LMS algorithm, 

proposed by Elliott [1], [2], multiple channel ANC problem can be solved by applying 

FBFXNLMS to all possible single channel paths in the multiple channel system. The 

weight update equation can be written as  

∑
=+++
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T
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lplp n
NnNn

nn
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               (5.29) 

For 1<l<L and 1<p<P and  
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where pqb is the impulse response of the secondary path extending from p
th

 loudspeaker 

and q
th

 error microphone.  

5.7.1 Computational Complexity     

In case of FXNLMS algorithm to obtain N samples of controller outputs, LPN
2
 

multiplications and LPN(N-1) additions are required. For filtering N samples of reference 

signal through the secondary path of length N, LPQN
2
 multiplications and LPQN(N-1) 

additions are required. For weight update, LP(Q+1)N
2
 multiplications and LP(Q+1)N

2
 

additions are required. Therefore the total number of multiplications required is 
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2LP(Q+1)N
2
 and the total additions required is NLP(Q+1)(2N-1). For FBFXNLMS 

algorithm, single channel ANC using overlap save method, the N-point FBFXNLMS 

algorithm involves the computation of (i) six 2N-point FFTs, (ii) three 2N point complex 

multiplications and (iii) N number of weight updates.  For real-valued input data, total 

number of real multiplications is 12Nlog2N+24N and the real additions is 

24Nlog2(N)+13N. 

In case of multichannel ANC the number of 2N point FFT/IFFT required for (i) 

input signal transform is L, (ii) adaptive filter output signal transform is P, (iii) adaptive 

filter transform is LP, (iv) secondary path transfer function transform is PQ, (v) error 

signal transform is Q, (vi) transform of product of filtered input signal and error is LP. So 

total number of FFT is L+P+2LP+PQ+Q. Each FFT requires 2Nlog2(N) real 

multiplications and 4Nlog2(N) real additions . Also LP,LPQ, LPQ number of 2N point 

frequency domain complex multiplications are required for computing adaptive filter 

output, filtered input signal, weight update respectively. Each 2N point complex 

multiplication involves 8N real multiplications and 4N real additions. Also the number of 

real additions required for weight update is LPN+2LPQN. So total real multiplications 

required is (L+P+2LP+PQ+Q)2Nlog2(N) +(LP+2LPQ)8N and real additions required is 

(L+P+2LP+PQ+Q)4Nlog2(N)+(LP+2LPQ)4N+LPN +2 LPQN. Computational 

complexity for multichannel FXNLMS and multichannel FBFXNLMS algorithms with 

L=2, P=2, Q=2 are tabulated in table 5.3 and plotted in fig. 5.5.  

Table 5.3. 

Computational Complexity per sample 

N              Number of multiplication                  Number of addition 

 FXNLMS FBFXNLMS FXNLMS FBFXNLMS 

32                  768                         340                        756                          532 

64                  1536                       376                        1524                        604 

128                3072                       412                        3060                        676 

256                6144                       448                        6132                        748 

512                12288                     484                        12276                      820 

1024              24576                     520                        24564                      892 
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 Fig.5.5 Comparison of Computational Complexity (a) Multiplications (b) Additions. 

From table 5.3 and fig 5.5 saving in computational requirement can be observed. 

5.8 Frequency Domain Implementation of Legendre Neural 

Network for Nonlinear ANC 

The Block diagram of the nonlinear ANC using Legendre neural network (LNN) 

as the controller, developed in the previous chapter, is shown in fig.5.6.  Here the 

reference noise vector )]1(.....)1()([)( +−−= Nnxnxnxnx  is transformed into an output 

vector )(ns  given by ))(()( nLn xs = . The nonlinear function ))(( nL x  represents a set of 

the orthogonal basis functions, implemented in the ‘‘Legendre expansion’’ block. Here 

the N-dimensional input pattern )(nx  is enhanced to an NP-dimensional enhanced pattern 

)(ns given by 

]...)()([)( 1−= Pnnn ssss 10 .                                                      (5.34) 

        ))]((....))(())(([ 110 nLnLnL P xxx −=   
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Fig.5.6 Legendre Neural Network for Nonlinear ANC. 

For reduced structure LNN the )(0 ns is discarded. Employing filter bank implementation 

output of LNN at time n is  
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where )(niw is the weight vector of i
th

 adaptive filter at time n. Estimated desired 

signal )(ˆ nd  is obtained by filtering LNN output through secondary path )(zB . Error at 

time n is defined as )(ˆ)()( ndndne −= . Considering a cost function of )]([
2

1
)( 2

neEn =ξ  

and using the FXLMS algorithm the all the weight vectors can be updated separately as  

)(')()()1( nnenn iii sww µ+=+                    for Pi  , ... 1,2,=                (5.36)          

where )(' nis is the input signal )(nis  filtered through the estimated secondary path and µ  

is the step size which control convergence and stability. 
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Exploiting the properties of FFT the above algorithm can be implemented in 

frequency domain with block filtering which reduces the computational burden of the 

algorithm. In this case all the convolutions and correlations are done in frequency 

domain. This algorithm is termed as frequency domain block Legendre FXLMS 

(FBLFXLMS) algorithm. Defining 2 NF and 1

2 NF
−  as the 2N-point FFT and IFFT the linear 

convolutions are implemented as follows  
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where ⊗  denotes frequency-by-frequency bin multiply or in more general way point-by-

point multiplication of two vectors. The NI is an N N×  identity matrix, the matrix NO  is 

an  N N×  matrix with all zero elements. Similarly filtering of reference signal through 

the estimated secondary path can be done in frequency domain as follows 
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Calculation of )( Nni +c , which are required for weight update are done in the following 

steps. 
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The weight vectors are updated as follows 

)()()( NnnNn iii ++=+ cww µ            (5.45) 
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The block diagram of ANC using Legendre neural network in frequency domain and 

updated by FBLFXLMS algorithm is shown in the fig. 5.7 and fig. 5.8. The complete 

algorithm is briefed in table 5.4 

In the reduced structure FBFXNLMS algorithm two FFTs are saved by removing 

two FFTs in the calculation of  )(' Nn +X . Here also two FFTs can be saved by removing 

two FFTs in the calculation of )(' Nn +iS . For P
th

 order Legendre expansion in total 2P 

number of FFTs can be saved. 

5.9 Frequency Domain Block Legendre FELMS (FBLFELMS) 

Algorithm. 

 In an ANC using Legendre neural network each of the expanded reference signal 

vectors )(nis (i=1,2,…, P)is to be filtered through the estimated secondary path. Number 

of filtering can be reduced by applying FELMS algorithm where only error signal is to be 

filtered through the estimated secondary path. Taking advantage of this fact 

implementation of ANC using Legendre neural network has been tried in frequency 

domain by employing FELMS algorithm. The resulting algorithm is named as frequency 

domain block Legendre FELMS algorithm (FBLFELMS) algorithm. 

 Referring to the previous section the steps of FBLFELMS algorithm is described 

as follows. Defining 2 NF and 1

2 NF
−  as the 2N-point FFT and IFFT, the linear convolutions 

are implemented as given below  
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[ ] [ ])()()( 1

2 nNnFNn iNNNi WSIOy i ⊗+=+ −        (5.48) 

where ⊗  denotes frequency-by-frequency bin multiply or in more general way point-by-

point multiplication of two vectors. The NI is an N N×  identity matrix, the matrix NO  is 

an  N N×  matrix with all zero elements. Similarly another convolution can be done as    
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and cross correlation can be done as  
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So the weights are updated as follows 

)(2)()( NnnNn iii ++=+ cww µ          (5.54) 

The block diagram of ANC using Legendre neural network in frequency domain and 

updated by FBLFELMS algorithm is shown in the fig. 5.7 and fig. 5.9. The complete 

algorithm is briefed in table 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.7 Frequency domain implementation of Legendre Neural Network for ANC. 
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Fig.5.8 Details of Ts block of fig. 5.7 (for FBLFXLMS Algorithm). 
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Fig.5.9 Details of Ts block of fig. 5.7 (for FBLFELMS Algorithm). 
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Table 5.4 

FBLFXLMS algorithm 

   

Controller Output: 

 

 

 )()( 2 nFn i

N

N

Ni w
O

I
W 








=  

[ ] [ ])()()( 1

2 nNnFNn iNNNi WSIOy i ⊗+=+ −  

 

 

Filtering through secondary path: 

)()( 2 nFn
N

N

N b
O

I
B 








=  

[ ] [ ])()()(' 1

2 nNnFNn NNNi BSIOs i ⊗+=+ −  

 

             Weight update: 










+
=+

)('

)('
)( 2

'

Nn

n
FNn

i

i

N
s

s
S i  

)()( 2 NnFNn
N

N

N +







=+ e

O

I
E  

[ ] [ ])()()( '1

2 NnNnFNn iNNNi +⊗+=+ −
ESIOc  

)()()( NnnNn iii ++=+ cww µ  

 

 

 

 










+
=+

)(

)(
)( 2

Nn

n
FNn

i

i

N
s

s
S i



CHAPTER-5                                           FREQUENCY DOMAIN APPROACH TO MULTICHANNEL NONLINEAR ANC 

 137  

 

Table 5.5 

FBLFELMS algorithm 

  

Controller Output: 
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5.10 Simulation and Results 

To analyze the performance of the proposed frequency domain multichannel ANC 

algorithms extensive simulation experiments studies have been carried out. Results of 

some of the experiments are shown here.  In all the experiments mean square error (MSE) 

in dB defined by   

)))(((log10MSE(dB) 2

10 neE=            (5.55) 

is obtained through simulation. MSE in dB plotted is average of twenty independent runs 

of the experiments to get a smoother curve. 

5.10.1 Experiment I 

In this experiment, a multichannel ANC with one reference microphone, two 

loudspeakers and two error microphones are considered )221( ×× . Memory size N is 

chosen to be 10. In this experiment the two linear primary path transfer functions 

considered are described by [62]  

765

11 2.03.0)( −−− +−= zzzzA  

765

11 1.04.0)( −−− +−= zzzzA  

and the four secondary path transfer functions considered are minimum-phase FIR 

models described below 

32

11 5.0)( −− += zzzB  

32

12 6.0)( −− += zzzB  

32

21 4.09.0)( −− += zzzB  

32

22 3.09.0)( −− += zzzB  

Reference noise is taken as white noise. MSE(dB) is obtained for the proposed 

frequency domain multichannel FBFXNLMS algorithm taking step size µ=0.09. For 

comparison with corresponding time domain algorithm, MSE(dB) for FXNLMS 

algorithm with µ=0.05 is also obtained. Simulation results are plotted in fig.5.10 and 

fig.5.11 respectively. Steady state MSE(dB) achieved by FBFXNLMS algorithm and 

FXNLMS algorithm is found to be same -27dB. From the results, it is evident that the 

proposed algorithm offers identical performance as the time domain FXNLMS algorithm 
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for multichannel ANC but the real advantage of the proposed algorithm is large saving in 

computational complexity.  
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Fig. 5.10 MSE(dB) plot of FBFXNLMS algorithm for multichannel ANC. 
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Fig. 5.11 MSE(dB) plot of FXNLMS algorithm for multichannel ANC. 
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Fig. 5.12 MSE(dB) plot of FBFXNLMS algorithm for multichannel ANC. 
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Fig. 5.13 MSE(dB) plot of FXNLMS algorithm for multichannel ANC. 
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5.10.2 Experiment II 

In this experiment, experiment I is repeated considering logistic chaotic noise as 

the reference noise. The logistic chaotic noise is generated using the recursive equation 

[62], [64]  

( 1) ( ) [1 ( )]x n x n x nλ+ = −            (5.56) 

where (0) 0.9x = , and λ =4.  

This nonlinear noise process is then normalized to have unity signal power. MSE(dB) is 

obtained for the proposed frequency domain multichannel FBFXNLMS algorithm and 

time domain FXNLMS algorithm. The step sizes used for FBFXNLMS and FXNLMS 

algorithm are µ=0.09 and µ=0.07 respectively. Simulation results for FBFXNLMS and 

FXNLMS algorithm are plotted in fig.5.12 and fig.5.13 respectively. Steady state 

MSE(dB) achieved by FBFXNLMS algorithm and FXNLMS algorithm is found to be 

same -21dB. From the results, it is evident that the proposed algorithm offers identical 

performance as the time domain FXNLMS algorithm for multichannel ANC. 

 

5.10.3 Experiment III 

In this experiment, a nonlinear multichannel ANC is considered. The ANC has 

one reference microphone, two secondary loudspeakers and four error microphones 

)421( ×× . The 2
nd

 order Legendre neural network is employed for nonlinear ANC and is 

updated by the proposed frequency domain block Legendre FELMS (FBLFELMS) 

algorithm. Memory size N is chosen to be 10. The reference noise is taken as logistic 

chaotic noise defined in experiment II. This nonlinear noise process is then normalized to 

have unity signal power. In the experiment four linear primary path transfer functions 

considered are described below [62]  
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The eight secondary path transfer functions are non-minimum-phase FIR models and are 

described by the following equations. 
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Step size for FBLFELMS algorithm taken is µ=0.0009. MSE(dB) obtained at 

each of the four error microphones and the overall MSE(dB) that combine results of the 

four error microphones are plotted in fig.5.14 , fig.5.15 , fig.5.16 , fig. 5.17, fig.5.18 

respectively. For comparison with corresponding time domain algorithm combined 

MSE(dB) using time domain LFELMS algorithm is plotted in fig. 5.19. The step size and 

memory length for LFELMS algorithm are 0.0005 and 10 respectively. Steady state 

MSE(dB) achieved at all the error microphones is found to be same -25dB. From fig. 

5.17 and fig.5.18 it is observed that overall MSE(dB) of  FBLFELMS algorithm and 

LFELMS  algorithm is -25dB. From the results, it is evident that the proposed algorithm 

offers identical performance as the time domain LFELMS algorithm for multichannel 

ANC but the real advantage of the proposed algorithm is large saving in computational 

complexity.  
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Fig.5.14 MSE(dB) plot of  FBLFELMS  algorithm at error microphone-1. 
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Fig.5.15 MSE(dB) plot of  FBLFELMS  algorithm at error microphone-2. 
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Fig.5.16 MSE(dB) plot of  FBLFELMS  algorithm at error microphone-3. 
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Fig.5.17 MSE(dB) plot of  FBLFELMS  algorithm at error microphone-4. 
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Fig.5.18 MSE(dB) plot of  FBLFELMS  algorithm of all the error microphones 

(combined). 
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Fig.5.19 MSE(dB) plot of LFELMS algorithm of all the error microphones (combined). 
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5.10.4 Experiment on Real Time Signal  

In an attempt to assess the performance of the proposed algorithms on signals 

picked up from real life environments, experiments are conducted once again. The 

reference signals considered are buccaneer jet cockpit noise, factory floor noise and white 

noise [79]. 

5.10.5 Experiment IV (Real Time Signal) 

This experiment is conducted on three reference noise signals collected from real 

life environment. The setup is same as experiment I and the signals used are buccaneer jet 

cockpit noise, factory floor noise and white noise. The MSE(dB) plots of FXNLMS 

algorithm and FBFXNLMS algorithm for buccaneer jet cockpit noise, factory floor noise 

and white noise are shown in fig. 5.20 - fig. 5.25. The step sizes used for FBFXNLMS 

and FXNLMS algorithm for white noise are 0.09 and 0.07 respectively. Similarly step 

sizes for factory floor noise and Buccaneer jet cockpit noise are 0.06, 0.05 and 0.06, 0.05 

respectively. From the results, it is evident that the proposed algorithm offers identical 

performance as the time domain FXNLMS algorithm for multichannel ANC.  

5.10.6 Experiment V (Real Time Signal) 

Experiment-III is repeated here considering the Buccaneer jet cockpit noise as 

reference signal. MSE(dB) for FBLFELMS algorithm obtained at each of the four error 

microphones and the overall MSE(dB) that combine results of the four error microphones 

are plotted in fig.5.26 - fig.5.30 respectively. Step size for FBLFELMS algorithm taken is 

µ=0.0009. From the results, it is evident that the proposed algorithm offers good 

performance as for multichannel ANC but the real advantage of the proposed algorithm is 

large saving in computational complexity.  
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Fig. 5.20 MSE(dB) plot of FXNLMS algorithm for white noise. 
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Fig. 5.21 MSE(dB) plot of FBFXNLMS algorithm for white noise. 
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Fig. 5.22 MSE(dB) plot of FXNLMS algorithm for factory floor noise. 
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Fig. 5.23 MSE(dB) plot of FBFXNLMS algorithm for factory floor noise. 
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Fig. 5.24 MSE(dB) plot of FXNLMS algorithm for Buccaneer jet cockpit noise. 
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Fig. 5.25 MSE(dB) plot of FBFXNLMS algorithm for Buccaneer jet cockpit noise. 
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Fig.5.26 MSE(dB) plot of  FBLFELMS  algorithm for Buccaneer cockpit noise at error 

microphone-1. 
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Fig.5.27 MSE(dB) plot of  FBLFELMS  algorithm for Buccaneer cockpit noise at error 

microphone-2. 
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Fig.5.28 MSE(dB) plot of  FBLFELMS  algorithm for Buccaneer cockpit noise at error 

microphone-3. 
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Fig.5.29 MSE(dB) plot of  FBLFELMS  algorithm for Buccaneer cockpit noise at error 

microphone-4. 
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Fig.5.30 MSE(dB) plot of  FBLFELMS  algorithm of all the error microphones 

(combined). 

 

5.11 Summary 

This chapter deals with frequency domain implementation of multichannel ANC. 

Frequency domain implementation is made possible by block processing and using FFTs. 

Frequency domain block filtered-x normalized LMS (FBFXNLMS) algorithm is 

developed for noise mitigation in multichannel ANC. The proposed algorithm employed 

normalized LMS algorithm to facilitate variable step size control. Normally 

computational complexity requirement for frequency domain implementation is lower 

than its time domain counterpart. Here also computational complexity analysis of the 

developed algorithm is found to be much lower than time domain FXNLMS algorithm 

for multichannel ANC.  Frequency domain block filtered-e LMS (FBFELMS) algorithm 

is developed which implement FELMS algorithm in frequency domain. New algorithms 

were developed for nonlinear ANC using Legendre neural network in the previous 

chapter. In this chapter frequency domain implementation of Legendre neural network for 

nonlinear ANC is also carried out. Detailed mathematical formulation of the algorithm 

for filter bank implementation is presented. Frequency domain Legendre filtered-e LMS 
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(FBLFELMS) is also developed which deals with frequency domain implementation of 

LFELMS algorithm. The validity of the proposed algorithms is demonstrated through 

extensive computer simulations. Performance of the proposed algorithms is also 

evaluated on signals collected from real life environment such as Bunnaneer jet cockpit 

noise, white noise and factory floor noise. The performance of proposed frequency 

domain algorithms is found to be equivalent to their time domain counterparts but the real 

advantage is in huge computational complexity reduction capability.  
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Chapter 6 

Conclusion and  

Scope for Further Research 

6.1 Conclusion 

The work described in the thesis is primarily concerned with the study and development 

of novel nonlinear active noise control systems. The main focus of this research work is to 

design novel ANC based on conventional feedforward neural network topology. In particular, 

development of weight update algorithms for the proposed nonlinear ANC is the main challenge 

of this dissertation.  Further, certain modifications in the existing and proposed algorithms have 

been incorporated to make them suitable for multichannel ANC. Development of adaptive 

algorithms for multilayer artificial neural network for nonlinear ANC with nonlinear secondary 

path model is one of the principal contribution of this dissertation. Development of adaptive 

algorithms for Legendre neural network in filter bank implementation is another major 

contribution of this thesis work. This dissertation work has also contributed immensely to the 

issues of   frequency domain implementation of nonlinear ANC. Some of the major 

achievements of the present study are mentioned below. 

One of the focus areas was on developing a MLP based neural network controller for 

nonlinear ANC. Two separate adaptive algorithms were developed for nonlinear ANC 

considering two situations (when secondary path was assumed linear or nonlinear). For nonlinear 

secondary path, adaptive algorithm was modified using virtual secondary path filter concept. By 

computer simulations it was observed that the proposed algorithms (using various nonlinear 

activation functions) outperformed standard VFXLMS algorithm in terms of steady state 

MSE(dB) with faster speed of convergence. In order to take advantage of low computational 

complexity of filtered error LMS algorithm, both the developed algorithms were suitably 

modified to develop NFELMS algorithm. Performance of the modified algorithms were also 

analyzed by computer simulation on real life signals and compared with that of VFELMS 

algorithm. Finally it has been concluded that the proposed adaptive algorithms for MLP based 

ANC controller are superior to the standard Volterra based algorithms. 
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Another primary area of focus was to explore Legendre neural network for nonlinear 

ANC. The adaptive algorithm for Legendre neural network used as controller of ANC was first 

developed. The algorithm was found to be simple and easy to implement and has low 

computational complexity. In order to reduce computational complexity further a reduced 

structure Legendre neural network was proposed. The reduced structure Legendre neural network 

with its reduced computational complexity was found out to be performing well with reference to 

steady state MSE(dB) level. LFXLMS algorithm, LFELMS algorithm and LFXRLS algorithm 

were developed for reduced structure LNN based on FXLMS algorithm, FELMS algorithm and 

FXRLS algorithm respectively. The developed algorithms require less computation compared to 

FFXLMS algorithm. The developed algorithms were modified to deal with nonlinear secondary 

path (NSP) which relies upon virtual secondary path concept.  In order to reduce computational 

complexity faster version of LFXLMS algorithm was also developed. 

The third zone of focus has been frequency domain implementation of multichannel 

ANC. Conventionally computational complexity requirement of frequency domain 

implementation is lower than its time domain counterpart. So FBFXNLMS algorithm was 

developed for multichannel ANC using efficient DSP tools like FFT and IFFT. The developed 

algorithm uses NLMS algorithm to facilitate variable step size. Observing that FELMS algorithm 

is an efficient alternative to FXLMS algorithm with an advantage of reduction in computational 

complexity frequency domain block filtered-e least mean square (FBFELMS) algorithm was 

proposed. The reduced structure Legendre neural network for nonlinear ANC was also 

implemented in frequency domain. Two new adaptive algorithms, frequency domain block 

Legendre filtered-x least mean square (FBLFXLMS) algorithm and frequency domain block 

Legendre filtered-e least mean square (FBLFELMS) algorithm were developed. Analysis of the 

results of computer simulation on synthetic data and real life data revealed identical performance 

(MSE(dB) and speed of convergence) with reference to the proposed frequency domain 

algorithms and their corresponding time domain algorithms but with lower computational 

complexity. 
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6.2 Scope for Further Research 

To conclude the thesis, following are some pointers for further work. 

� Multichannel implementation of neural ANC could be a research area, which should be 

explored. Multichannel implementation requires simultaneous operation of many neural 

networks which increases the complexity of the system. Study can be done to effectively 

manage the networks to optimize the overall performance of the ANC. 

� The implementation aspects in FPGA or hybrid FPGA and DSP combined platforms of 

some of these algorithms and structures should also be investigated. Implementing the 

whole system in FPGA or hybrid FPGA and DSP through many challenges. 

� Focus be concentrated to design efficient filter structures based on new topologies to 

address the ANC problems.  

� Different novel methods based on evolutionary and bio-inspired techniques be 

developed with the basic objective to optimally train the weights of the adaptive filter 

structures. Emergence of evolutionary and bio-inspired techniques and their highly 

effective variants can really change the world of ANC.  
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