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ABSTRACT

The dissertation is concerned with the development and analysis of adaptive

algorithms for the rejection of unknown periodic disturbances acting on an unknown

system. The rejection of periodic disturbances is a problem frequently encountered

in control engineering, and in active noise and vibration control in particular. A

new adaptive algorithm is presented for situations where the plant is unknown and

may be time-varying. Known as the adaptive harmonic steady-state or ADHSS

algorithm, the approach consists in obtaining on-line estimates of the plant frequency

response and of the disturbance parameters. The estimates are used to continuously

update control parameters and cancel or minimize the effect of the disturbance. The

dynamic behavior of the algorithm is analyzed using averaging theory. Averaging

theory allows the nonlinear time-varying closed-loop system to be approximated by a

nonlinear time-invariant system. Extensions of the algorithm to systems with multiple

inputs/outputs and disturbances consisting of multiple frequency components are

provided.

After considering the rejection of sinusoidal disturbances of known frequency, the

rejection of disturbances of unknown frequency acting on an unknown and time-

varying plant is considered. This involves the addition of frequency estimation to

the ADHSS algorithm. It is shown that when magnitude phase-locked loop (MPLL)

frequency estimation is integrated with the ADHSS algorithm, the two components

work together in such a way that the control input does not prevent frequency tracking

by the frequency estimator and so that the order of the ADHSS can be reduced. While

MPLL frequency estimation can be combined favorably with ADHSS disturbance

rejection, stability is limited due to the local convergence properties of the MPLL.

Thus, a new frequency estimation algorithm with semiglobal stability properties is

introduced. Based on the theory of asynchronous electric machines, the induction



motor frequency estimator, or IMFE, is shown to be appropriate for disturbance

cancellation and, with modification, is shown to increase stability of the combined

ADHSS/MPLL algorithm. Extensive active noise control experiments demonstrate

the performance of the algorithms presented in the dissertation when disturbance and

plant parameters are changing.
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CHAPTER 1

INTRODUCTION

1.1 Applications
The focus on disturbances that are known to be periodic in nature makes this

research relevant to many applications involving rotating equipment, in which discrep-

ancy between the rotor’s geometric axis and inertial axis leads to unwanted vibrations.

The attenuation of unwanted vibrations by adaptive means is known as active vibra-

tion control (AVC). Rotating equipment and the accompanying vibrations oftentimes

lead to acoustic disturbances, which cause human discomfort and negatively affect

worker productivity. The reduction of acoustic disturbances by adaptive techniques

is known as active noise control (ANC). Due to the similarities involved, these fields

are collectively known as active noise and vibration control (ANVC). While in some

cases the frequency of the disturbance may be measurable, it is unlikely the exact

phase of the disturbance will be known due to random irregularities in the source. As

a result, active techniques must be used to maintain substantial attenuation of the

disturbance [23].

There are many applications related to ANVC where disturbance rejection is the

primary control objective. Among these applications are a variety of engineering

problems. Examples include active control of noise in turboprop aircraft [9], head-

phones for noise cancellation [22], vibration reduction in helicopters [2] [34], reduction

of optical jitter in laser communication systems [27], isolation in space structures of

vibrations produced by control moment gyroscopes and cryogenic coolers [25] [46],

suppression of gearbox housing vibrations [12], track following despite eccentricity in

disk drives [42], [51] and CD players [8], [47].

In several of the above-mentioned applications, the tracking of time-varying pa-

rameters is essential. An example is the active control of noise, where the dynamics
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of sound transmission can be considerably affected by people moving within the

space where sound propagates. As another example, [45] discusses the cancellation

of high-frequency noise in headsets, and reports that small movements in the headset

position can create significant changes in the secondary path dynamics (i.e., the

plant). In particular, due to the short wavelength associated with high frequencies,

the phase of the frequency response may change by more than 90 degrees with small

movements of the headset. In helicopters, the plant as well as the disturbance may

vary significantly due to changes in flight conditions. In applications involved with

space exploration, precision is paramount, and repair is very costly. Therefore, it

is preferable to have systems which can achieve optimal vibration reduction while

adapting to changes caused by aging or the harsh environment.

1.2 Periodic Disturbances Acting on
a Known Plant

To begin treatment of sinusoidal disturbances acting on unknown systems, it is

useful to first consider algorithms for the rejection of sinusoidal disturbances acting on

known systems. Perhaps the most common algorithm for ANVC applications, when

the plant is known, is the filtered-X LMS (FXLMS) algorithm. Independently derived

by Widrow and Burgess [23], the FXLMS algorithm is widely used in feedforward

applications which rely upon an accurate measure of the uncorrupted disturbance

signal. When a preview of the disturbance is available, feedforward techniques have

achieved significant attenuation of unwanted disturbances. In many cases, such a

preview is not available. Therefore, in this dissertation, the focus is on algorithms

of the pure feedback type. These problems are more difficult to solve and less well

understood.

Consider the feedback system shown in Fig. 1.1, where P (s) is a known bounded-

input bounded-output plant. On the figure, the desired value of y is assumed to be

yd = 0, and y(t) is fed back in order to determine the control signal u(t) needed to

reject the sinusoidal disturbance p(t). While the frequency of p(t) may be known, it is

generally assumed that the phase of p(t) is not known. Adaptation is used to identify
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Figure 1.1. Feedback control system.

the magnitude and exact phase of p(t) allowing an appropriate u(t) to be obtained.

Therefore, block C consists of an adaptive parameter identification scheme as well as

an algebraic control law.

While FXLMS algorithms have achieved some success, they require the entire

transfer function P (s) be known over the frequency range of interest. Since P (s)

may be high-order, these algorithms can involve significant computational complexity.

Other algorithms avoid this complexity by assuming that P (s) can be represented by

its steady-state frequency response at the disturbance frequency. This reduces the

number of parameters used to represent the plant to only two parameters for each

frequency component in the disturbance, namely the magnitude and phase of the

frequency response, or equivalently the real and imaginary part of the frequency

response.

From the steady-state assumption, a class of solutions based on the internal model

principle (IMP) of control theory has arisen. IMP states that for perfect disturbance

cancellation, a model of the disturbance must be embedded in the control path. This

requires that the frequencies present in the disturbance be known. If the disturbance

frequency is unknown or may vary with time, a reliable estimate must first be obtained

before cancellation of the disturbance is possible.
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1.3 Periodic Disturbance Rejection with
Online Plant Estimation

As previously stated, when the plant is known (possibly measured in a preliminary

experiment with white noise), a typical solution in ANVC is based on the well-known

FXLMS algorithm. Therefore, it is natural that methods for time-varying plants

[24] [54] [55] provide online plant estimation for this algorithm. While the adaptive

methods have been shown to work, they are computationally intensive and require

the injection of a significant amount of white noise to provide sufficient excitation.

Stability of the algorithms is also rarely addressed, due to the difficulty in decoupling

the two components of the algorithm. [52] analyzes the FXLMS algorithm with

online secondary path modeling and narrowband disturbances, and derives a closed

form expression for the mean squared error of the cancellation error in the presence of

estimation errors. It is shown that stability requires that the phase of the frequency

response of the secondary path must be within 90 degrees of the estimated path’s

frequency response.

A more recent and original approach can be found in [32]. Update of the controller

depends upon an estimate of the complex gain of the system and is based on the

recursive prediction error approach of [44]. This estimate is used to update a complex

valued control signal, with only the real part of the control applied to the plant. The

algorithm has been shown to work under certain random variations in the unknown

parameters through simulations involving the plant of [15]. We have found in similar

simulations that a large amount of measurement noise was sometimes needed to insure

cancellation of the disturbance.

1.3.1 Simulation demonstrating the limits of a current
method

Simulations were conducted using the same system as in [32] with a real valued

disturbance of constant magnitude and unknown phase. As in [32], the frequency

was taken as ω0 = 0.1 rad., and the system was tuned using identical parameters.

The variance of the measurement noise was taken as σ2 = 0.01. In Fig. 1.2, the

output of the plant is shown. After 40, 000 samples, the control algorithm is engaged
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and the disturbance is canceled. The time-varying stepsize is shown in Fig. 1.3.

As an appropriate control signal for cancellation of the disturbance is determined,

the stepsize converges to zero and the adaptive algorithm reaches steady-state. A

drawback of the algorithm is observed when the frequency of the disturbance is

decreased to ω0 = 0.08 rad. In Fig. 1.4, the output of the plant is shown. Even

though the simulation was conducted for the same number of samples as Fig. 1.2,

at approximately 3.5 × 105 samples, the output of the plant becomes undefined. In

Fig. 1.5, it is seen that an internal signal of the algorithm becomes unstable. While

the algorithm does take some precautions for dealing with growing signals, eventually

this growth causes other signals of the algorithm to become undefined. To insure

stability in this case, it was found that really large amounts of measurement noise

were needed. In fact, the level of noise was so high that no observable disturbance

rejection could be ascertained.

1.3.2 Internal model principle

Adaptive control theory provides another option for the control of unknown sys-

tems with unknown periodic disturbances. The idea, as proposed in [10], [11] [31],

is to apply the internal model principle within a model reference or pole placement

adaptive control strategy. Practically, the implementation is obtained by raising

the order of the controller and forcing some poles of the controller on the unit

circle (or the jω-axis in continuous-time). Global stability of such systems can be

proved in theory, even allowing for unstable plants and for tracking of arbitrary

reference inputs. Unfortunately, there is evidence of slow convergence and poor

robustness properties of these schemes in the literature [56] [4]. It is possible that

the robustness problems could be reduced or resolved using robust adaptive control

methods [48], [18]. However, practical viability of these methods in disturbance

rejection applications has not been demonstrated. Further, additional problems make

it difficult to apply the methods to the type of problems being considered:

• the number of adaptive parameters is two times the order of the plant plus two
times the number of sinusoidal components. Considering that an appropriate
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Figure 1.2. Output of plant with ω0 = 0.1 rad.

Figure 1.3. Magnitude of the time-varying stepsize with ω0 = 0.1 rad.
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Figure 1.4. Output of plant with ω0 = 0.08 rad.

Figure 1.5. Magnitude of an internal signal with ω0 = 0.1 rad.
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model for an active noise control system is a finite impulse response (FIR)

system with 200 parameters or so, the adaptive controller is of very high order,

and identification of the parameters is difficult.

• model reference and pole placement methods assume a known plant delay. In
ANC, this delay is not known a priori, and may vary.

1.3.3 Harmonic steady-state

Harmonic steady-state (HSS) methods have simplified the problem by approxi-

mating the plant by its steady-state sinusoidal response. In [34], Pratt and coworkers

described an HSS algorithm known as higher harmonic control (HHC), for use in

the reduction of vibrations in helicopters. In [7], the algorithm was used for the

cancellation of periodic noise in an acoustic drum. A proof of stability was provided in

[7], although the authors assumed the injection of an excitation signal to ensure correct

identification of the plant. The HSS algorithm of [7] updates an online estimate of

the system’s frequency response based on the processing of batches of data, which

results in some delay in tracking variations in the system plant.

1.4 Research Problems Considered in the
Dissertation

1.4.1 Disturbance of known frequency acting on an
unknown/time-varying plant

The starting point for the rejection of sinusoidal disturbances of known frequency

acting on an unknown system is the assumption that the plant can be represented

by its steady-state frequency response. Inspired from the harmonic steady-state

algorithm of [7], this allows a linear expression in terms of the unknown frequency

response and disturbance parameters to be constructed at the output of the plant.

From this linear expression, an estimate of the frequency response and disturbance

parameters is obtained using a gradient or least-squares algorithm. An appropriate

control signal is found by using the estimated parameters in the same controller

that would be used if the parameters were known exactly. This is known as a

certainty equivalence control law and, as the parameter estimates converge to their
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steady-state value, the control signal converges to the nominal value needed to cancel

the disturbance. The resulting algorithm is known as the so-called adaptive harmonic

steady-state (ADHSS) algorithm.

The ADHSS algorithm offers several advantages over other HSS algorithms:

• a remarkably simple adaptive HSS algorithm that eliminates the need for batches
of data as in [7] (control parameters are updated continuously).

• a verification of the performance of the algorithm through active noise control

experiments, demonstrating the ability to track abruptly or continuously time-

varying system parameters in a challenging, practical application.

• a stability analysis based on the theory of averaging that does not require
the addition of external excitation signals and provides useful insight into the

dynamics of the adaptive system.

Note that rigorous stability proofs have been the subject of much research in

adaptive control, but often turn out to be very complicated and to provide no insight

about the dynamics of the systems. As an alternative, averaging methods have

provided approximate results that are far more useful [1] [43] [20]. Averaging theory

shows how a set of nonlinear time-varying differential equations can be approximated

by a much simpler averaged system. In [43] and other work, averaging theory was

found to provide invaluable information on the dynamic properties of specific adaptive

control systems. For periodic disturbance rejection problems, averaging theory is even

more powerful, because the conditions for the existence of the averaged system are

generally satisfied without additional assumptions, due to the periodic nature of the

signals. While averaging theory requires low adaptation gains, experience shows that

the approximation is useful for the typical adaptation gains used in practice, and

that the loss of rigor due to the approximation is more than compensated for by the

powerful insights that the approximation provides.

The averaging analysis shows that the ADHSS algorithm converges independent of

initial estimation errors in phase of the plant frequency response. In other words, the

algorithm converges for initial phase errors outside the 90 degree condition discussed

above. Further, the ADHSS possesses a four-dimensional equilibrium surface that
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can be divided into a stable half and an unstable half. Any point on the equilibrium

surface leads to cancellation of the disturbance. It is shown that trajectories of the

system starting near an unstable equilibrium travel along a sphere until reaching a

point along the stable half of the equilibrium. While a four-dimensional equilibrium

surface indicates that the system is over-parameterized, this over-parameterization is

not a problem and allows the local stability problem around an unstable equilibrium

point to be resolved.

1.4.2 Disturbance of unknown frequency acting on an
unknown/time-varying plant

The rejection of sinusoidal disturbances of unknown frequency acting on an un-

known system is a difficult problem for which few solutions exist in the literature.

These few typically require the presence of a significant level of noise for identification

of system dynamics. If this noise is not present, it must be artificially injected in the

form of an auxiliary signal. Often, one finds oneself in a situation where this auxiliary

signal is too small to enable rapid identification, or too large to avoid noticeable

degradation of system performance.

To avoid this pitfall, use of the HSS assumption allows the control signal used to

reject the disturbance to be used for identification of the plant. If the frequency of the

disturbance is unknown or may vary with time, a common approach is the so-called

indirect approach. The indirect approach is a two step procedure that first estimates

the disturbance frequency and then uses this estimate in a disturbance cancellation

algorithm for known frequency. Based on the ADHSS algorithm developed in Chapter

2, an indirect algorithm is developed that simultaneously updates estimates of the

disturbance frequency as well as the disturbance phase and the plant frequency

response. Frequency estimation is based on the magnitude phase-locked loop (MPLL)

algorithm of [49]. It is shown that when the ADHSS algorithm is combined with

MPLL frequency estimation, the control input does not interfere with estimation of

the disturbance frequency, and the MPLL frequency estimator allows the order of the

ADHSS to be decreased. As such, the additional consideration of unknown frequency

entails negligible increase in algorithm complexity. Averaging theory is used to explore
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the steady-state stability characteristics of the combined ADHSS/MPLL algorithm.

It is shown that the algorithm possesses a two-dimensional equilibrium surface and

that the allowable plant phase errors within the stable subset is reduced from the

known frequency ADHSS.

1.4.3 Improving the stability of disturbance rejection
algorithms for unknown frequency

In dealing with disturbances of unknown frequency using the ADHSS algorithm,

reliable frequency estimation is essential. While MPLL frequency estimation led to

favorable stability properties when used with disturbance cancellation algorithms,

stability of the MPLL frequency estimate requires that the initial frequency estimate

be sufficiently close to the true frequency [16]. This limits the stability of the

overall disturbance cancellation algorithm, and constrains the allowable changes in

the system parameters. A globally convergent frequency estimate could be used to

solve or at least extend the stability limits inherent in the use of the MPLL.

As such, new frequency estimators are obtained from models of AC (alternat-

ing current) electric machines. Specifically, induction machines are robust devices

whose mechanical speed track the angular frequency of the electric currents applied

to their windings. An induction motor model can therefore form the basis of a

frequency estimator where the rotor speed is the estimate of the frequency. In

practice, induction machines are asynchronous, meaning that the speed is slower

than the electrical frequency, due to load and friction. However, when a no-load

condition is simulated, convergence of the frequency estimator can be obtained. The

induction motor frequency estimation (IMFE) algorithm can also be combined with

a disturbance cancellation algorithm to reject disturbances of unknown frequency.

The approach is tested successfully in active noise control experiments using the

disturbance cancellation algorithm of [50]. The need for an a priori estimate of

the frequency is found to be relaxed with a negligible increase in computational

complexity.

The IMFE is also used to improve stability of the ADHSS algorithm when the

disturbance frequency is unknown. In Chapter 3, it is shown that even small frequency
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errors cause performance issues for the ADHSS. The IMFE frequency does not lock

onto the frequency of the disturbance and, in the presence of measurement noise,

similar performance issues are encountered. As such, the IMFE is first used to extend

the stability properties of the MPLL, and then the combined MPLL/IMFE frequency

estimator is used with the ADHSS algorithm. Averaging theory is used to investigate

the increase in stability of the overall algorithm over the algorithm of Chapter 3.

1.5 Contribution and Organization of
the Dissertation

The dissertation can be broken down into three main parts. In Chapter 2, the

rejection of sinusoidal disturbances of known frequency acting on an unknown and

time-varying plant is considered [37][39][40]. Specific contributions include:

• derivation of the adaptive harmonic steady-state (ADHSS) algorithm,
• a stability proof of the ADHSS algorithm base on the theory of averaging,

• an investigation of the convergence and steady-state stability properties of the
averaged ADHSS system,

• testing of the ADHSS algorithm through extensive active noise control (ANC)

experiments and a comparison of performance with a gradient algorithmwithout

online plant estimation,

• extension of the algorithm to consider multichannel systems and disturbances

containing multiple frequency components.

In Chapter 3, extension of the ADHSS algorithm for the rejection of sinusoidal

disturbances of unknown/time-varying frequency acting on an unknown/time-varying

system is considered [38]. Specific contributions include:

• study the effect of a frequency error on the ADHSS algorithm,
• the addition of frequency estimation to the ADHSS algorithm and study the

interaction of the two components. It is shown that a reduced order ADHSS

with even stronger stability properties may be used,

• a stability analysis based on the theory of averaging that yields conditions for
steady-state stability of the algorithm,

• testing of the ADHSS/MPLL algorithm through extensive ANC experiments.
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In Chapter 4, a new frequency estimation technique based on the theory of electric

drives is introduced [36]. Specific contributions of this section include:

• introduction of the induction motor frequency estimation (IMFE) for estimating
the unknown frequency of a sinusoidal signal,

• an averaging analysis that establishes semiglobal convergence of the IMFE
estimate to the true frequency,

• use of the IMFE in adaptive disturbance rejection for known plant with ANC
experimental results demonstrating performance of the algorithm and verifying

the analysis,

• modifications to the IMFE that allow it to be used with the ADHSS algorithm
for unknown plant,

• a stability analysis based on the theory of averaging that yields conditions for
steady-state stability of the algorithm,

• ANC experiments demonstrating the improvement resulting from the use of the
modified IMFE.

Chapter 5 concludes the dissertation with general observations and offers suggestions

for future work.



CHAPTER 2

SINUSOIDAL DISTURBANCES AND

UNKNOWN SYSTEMS

2.1 Introduction
This chapter introduces a new algorithm for the rejection of sinusoidal distur-

bances of known frequency acting on systems with dynamics that are unknown and

may vary in unpredictable ways. The plant is approximated by its steady-state

frequency response, so that an algorithm with far fewer parameters than a filtered-X

LMS algorithm is obtained. Inspired from the harmonic steady-state algorithm of [7],

a linear parametrization at the output of the plant allows a gradient—based identifier

to be used for estimation of both the plant frequency response and disturbance

parameters. The estimated parameters are then used in determining an appropriate

controller. Averaging theory is used to study the stability properties of the algorithm.

This chapter is organized as follows. After formulating the system’s equations,

the averaged system associated with the problem is found as defined in [43] and

simulations are used to demonstrate the closeness of the responses. Next, the equi-

librium points of the averaged system are determined and an eigenanalysis is used

to understand the system’s behavior around the equilibrium. This analysis enables

one to understand how the algorithm handles uncertainty in the plant parameters

in a way that a standard adaptive algorithm without plant adaptation is unable to.

Further simulations illustrate the results of the analysis of the averaged system, and

active noise control experiments validate the analysis further. Experimental results

using a standard LMS algorithm are presented for comparison. Finally, experiments

are reported using a least-squares identifier and demonstrate the ability of the algo-

rithm to track time-varying parameters. For clarity the presentation is confined to

a single-input single-output plant and a single tone disturbance; however, extensions
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of the algorithm to multi-input multi-output plants and multitone disturbances are

provided.

2.2 Adaptive Algorithm
2.2.1 System formulation

Consider the feedback system shown in Fig. 1.1. The output of the plant

y(t) = P (s)[u(t)] + p(t) (2.1)

is fed back in order to determine the control signal u(t) needed to reject the sinusoidal

disturbance p(t). The notation P (s)[(·)] represents the time-domain output of the
system with transfer function P (s). P (s) is assumed to be a bounded input-bounded-

output stable linear time-invariant system, but is otherwise unknown. Although the

plant is fixed in the analysis, experiments show that the use of adaptation allows the

plant to vary significantly over time. The compensator C is generally a nonlinear

and time-varying control law consisting of a parameter identification scheme and a

disturbance cancellation algorithm.

The disturbance is assumed to be a sinusoidal signal given by

p(t) = pc cos(ω1t) + ps sin(ω1t) = wT
1 (t)π∗ (2.2)

where

π∗ =

µ
pc
ps

¶
, w1 =

µ
cos(ω1t)
sin(ω1t)

¶
(2.3)

and ω1 is the known frequency of the disturbance signal. Under these conditions, a

control signal of the form

u(t) = θc cos(ω1t) + θs sin(ω1t) = wT
1 (t)θ (2.4)
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is sufficient to cancel the disturbance in steady-state, provided that the controller

parameter vector

θ =

µ
θc
θs

¶
(2.5)

is chosen appropriately.

2.2.2 Adaptive harmonic steady-state algorithm

For the derivation of the algorithm, the response of the plant is approximated by

the sinusoidal steady-state response [34]

y(t) ' yss(t) = wT
1 (t)G∗θ + p(t) = wT

1 (t) (G∗θ + π∗) (2.6)

where

G∗ =

µ
P ∗R P ∗I
−P ∗I P ∗R

¶
(2.7)

is a so-called frequency response matrix whose elements P ∗R, P
∗
I are the real and

imaginary parts of the plant’s frequency response evaluated at ω1

P (jω1) , P ∗R + jP ∗I (2.8)

Although the expression may not look familiar to the reader, the result is a straight-

forward application of the general formula for the steady-state sinusoidal response of

a linear time-invariant system [19].

In the problem considered here, there are four unknowns: two are associated with

the plant (PR and PI) and two are associated with the disturbance (pc and ps). The

parameters, whose estimate will be part of the internal state of the controller, are

collected in a vector

x∗ =
¡
P ∗R P ∗I pc ps

¢T
(2.9)
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so that the steady-state output of the plant (2.6) can be written as

yss(t) = W T (t, θ)x∗ (2.10)

where W (t, θ) is a so-called regressor matrix

W (t, θ) =

⎛⎜⎜⎝
θc cos(ω1t) + θs sin(ω1t)
θs cos(ω1t)− θc sin(ω1t)

cos(ω1t)
sin(ω1t)

⎞⎟⎟⎠ . (2.11)

On the basis of the linear expression in (2.10), an estimate x of the unknown

parameter vector x∗ can be obtained using a gradient or a least-squares algorithm

[43]. For example, a gradient algorithm for the minimization of the squared error

e2 =
¡
W Tx− y

¢2
that uses the approximation y(t) ' yss(t) is given by

ẋ(t) = − W (t, θ)
¡
W T (t, θ)x(t)− y(t)

¢
(2.12)

The parameter > 0 is the adaptation gain, which will be assumed to be small in the

application of the averaging theory in Sec. 2.3.

Having derived an algorithm for the estimation of the unknown parameters, it

remains to define the control law. Note that, from (2.6), the disturbance is known to

be cancelled exactly in steady-state for a nominal control parameter

θ∗ = −G∗−1π∗ (2.13)

Given an estimate of the unknown parameter vector x, a certainty equivalence control

law [43] will redefine θ as θ(x), a function of the estimate x, using

G(x) =

µ
x1 x2

−x2 x1

¶
, π(x) =

µ
x3

x4

¶
(2.14)
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and

θ(x) =

µ
θc(x)
θs(x)

¶
= −G−1(x)π(x)

= − 1
x2
1+x2

2

µ
x1x3 − x2x4

x1x4 + x2x3

¶ (2.15)

The nominal values satisfy

G∗ = G(x∗), π∗ = π(x∗), and θ∗ = θ(x∗) (2.16)

A state-space representation of the overall system can be obtained as follows.

With xP denoting the states of P (s) = C(sI − A)−1B, the plant has the following

state-space representation

ẋP (t) = AxP (t) + Bu(t)

= AxP (t) + BwT
1 (t)θ(x)

y(t) = CxP (t) + p(t) = CxP (t) + wT
1 (t)π∗

(2.17)

Defining

E(x) =

µ
D(x)
I2×2

¶
, D(x) =

µ
θc(x) θs(x)
θs(x) −θc(x)

¶
(2.18)

the matrix W (t, θ) is given by

W (t, θ) = E(x)w1(t). (2.19)

Then, the overall system is described by a set of differential equations with two vectors

x and xP composing the total state vector and

ẋP = AxP + BwT
1 (t)θ(x)

ẋ = − E(x)w1(t)
¡
wT

1 (t)ET (x)x− CxP − wT
1 (t)π∗

¢ (2.20)

with (2.15), (2.18) giving the functions θ(x) and E(x). Note that this set of differential

equations is both time-varying and nonlinear, making direct analysis difficult. For-
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tunately, under the assumption of small gain , the application of averaging theory

produces an approximate nonlinear time-invariant system whose dynamics can be

analyzed and provide interesting insights in the behavior of the system.

2.2.3 Alternative solution

In the formulation presented in the dissertation, the algorithm has the structure

of Fig. 2.1, where

ũ(t) = w̃T
1 (t)θ

w̃1(t) =

µ
− sin(ω1t)
cos(ω1t)

¶ (2.21)

In [40], a different implementation of the same concept was proposed, whereby the

regressor variables would vary at a slower rate. The vector ya was defined as

ya =

µ
yc
ys

¶
= AVG [2w1(t)y(t)] = G∗θ + π∗. (2.22)

where the averaging operation AVG could be performed by averaging the signals over

some multiple of the period T of the signals. Using this approach, the system was

parameterized in terms of the regressor

W (t) =

µ
θc(t) θs(t) 1 0
θs(t) −θc(t) 0 1

¶T

(2.23)

which corresponds to the system of Fig. 2.2. In this formulation, the regressor

signals (2.23) vary at a slower rate as compared to (2.11), which varies with the

periodic fluctuation of w1(t). Both approaches have been tested in experiments, with

comparable results. In the implementation of [40], the averaging operation was simply

neglected, on the basis that slow adaptation would provide the necessary smoothing.

Here a similar argument is used for the analysis of the adaptive system, relying on a

more formal application of averaging theory.
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Figure 2.1. Proposed control system.

Figure 2.2. Alternative control system.
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2.3 Averaging Analysis
2.3.1 Averaged system

Averaging theory allows a set of nonlinear and time-varying differential equations

to be approximated by a set of nonlinear time-invariant equations and is a powerful

tool in analyzing the stability of adaptive algorithms. Essential to application of the

theory is the satisfaction of assumptions B1-B6 given in Appendix A. Other aspects

of the relevant theory can also be found in Appendix A. The ADHSS algorithm fits

into the averaging framework with the following definitions

f(t, x, xP ) = −E(x)w1(t)
¡
wT

1 (t)ET (x)x− CxP − wT
1 (t)π∗

¢
h(t, x) = BwT

1 (t)θ(x)
(2.24)

For small, x is a slow variable, while xP varies faster, except through its dependency

on x. It remains to determine what the averaged system is, whether the assumptions

are satisfied, and what interesting properties the averaged system may have. The

parameter vector x is frozen in the computation of the averaged system [43]. Further,

all of the time variation in the functions is due to sinusoidal signals, and the systems

to which they are applied are linear time-invariant systems. The outcome is that

the average of the function f(t, x, xP ) is well-defined and can be computed exactly.

Specifically, the function

v(t, x) =
tR

0

eA(t−τ)Bw1(τ)dτ · θ(x)

= xP,ss(t) + xP,tr(t)

(2.25)

where xP,ss(t) is the steady-state response of the state of the plant to the sinusoidal

excitation w1(t) and xP,tr is a transient response that decays to 0 exponentially, given

that A is exponentially stable.

The averaged system is obtained by computing the average of

fav(x) = − lim
T→∞

1

T

t0+TZ
t0

E(x)w1(τ)
¡
wT

1 (τ)ET (x)x− Cv(τ, x)− wT
1 (τ)π∗

¢
dτ (2.26)
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where

Cv(t, x) + wT
1 (t)π∗ = CxP,ss(t) + CxP,tr(t) + wT

1 (t)π∗

= yss(t) + ytr(t)
(2.27)

and ytr(t) = CxP,tr(t). Equations (2.10) and (2.19) imply that

yss(t) = wT
1 (t)ET (x)x∗ (2.28)

and since the transient response of the plant does not affect the average value of the

function,

fav(x) = − limT→∞
1
T

t0+TR
t0

E(x)w1(τ)
¡
wT

1 (τ)ET (x)x− wT
1 (τ)ET (x)x∗

¢
dτ

= −E(x)

Ã
limT→∞

1
T

t0+TR
t0

w1(τ)w
T
1 (τ)dτ

!
ET (x)(x− x∗)

= −1
2
E(x)ET (x)(x− x∗)

(2.29)

In other words, the averaged system is simply given by

ẋ = −
2

µ
D(x)
I2×2

¶¡
D(x) I2×2

¢
(x− x∗) (2.30)

with (2.15) and (2.18) giving

D(x) =
1

x2
1 + x2

2

µ
x1x3 − x2x4 x1x4 + x2x3

x1x4 + x2x3 −x1x3 + x2x4

¶
(2.31)

Although (2.30)-(2.31) describe a nonlinear system, the method of averaging has

eliminated the time variation of the original system, providing an opportunity to

understand much better the dynamics of the system.

2.3.2 Application of averaging theory

The application of the theory is relatively straightforward, and verification of the

assumptions is left to Appendix B. A technical difficulty is related to the fact that
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both the adaptive and the averaged systems have a singularity at x2
1 + x2

2 = 0 (see

equations (2.15) and (2.31)). Such singularities are quite common in adaptive control,

occurring any time the estimate of the gain of the plant is zero. Here, the singularity

occurs when the estimate of the plant’s frequency response is zero, a problem that is

somewhat unlikely to occur as two parameters need to be small for the singularity to

be reached. Nevertheless, a cautious implementation of the algorithmwould apply one

of the available techniques to address singularities. For example, a simple practical

fix consists in using in the control law either the parameter x if x2
1 + x2

2 > δ > 0,

where δ is a small parameter, or else the last value of the estimated parameter x that

satisfied the condition. As far as the theory is concerned, given assumptions B1-B6

in Appendix A, this difficulty is avoided by adding the following assumption:

B7 Assume that trajectories of the original and averaged system are such that x2
1 +

x2
2 > δ for some δ > 0.

Using assumptions B1-B7, it is verified in Appendix B that the system given by

(2.12)-(2.17) satisfies the conditions of the theory. Thus, Lemma 1 and Lemma 2 can

be applied. In the verification of assumption B3, one finds that d(t, x) has a bounded

integral with respect to time, suggesting that ξ( ) in Lemma 1 is of the order of

. Lemma 2 establishes that (2.30) can be used as an order of approximation of

(2.12)-(2.17) for all t ∈ [0, T/ ]. Note that Lemma 2 only shows closeness of the

original and averaged systems over finite time. Any stability properties connecting

the original and the averaged system would require a different theorem. The theorems

of [43] do not apply because they assume a unique equilibrium point of the averaged

system. As will be seen, this is not the case here.

2.3.3 Simulation example

To show the closeness of the responses (2.12)-(2.17) and (2.30), let ω1 = 330π and

take the plant to be a 250 coefficient FIR transfer function. The transfer function was

measured from an active noise control system using a white noise input and a gradient

search identification procedure. The frequency response of the system can be seen in
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Fig. 2.3. The initial parameter estimate was x(0) = xav(0) =
¡

1.0 1.0 0 0
¢T
.

In Fig. 2.4, the response of the first adaptive parameter x1 is shown. Four responses

are shown: the averaged system with = 1 and the actual system for = 100, 50,

and 1. As decreases, one finds that the trajectory of the original system approaches

that of the averaged system. Note that the parameter estimates do not converge to

the nominal values, indicating that the regressor (2.11) is not persistently exciting

[43]. However, the control parameters θc and θs do converge to the nominal values,

resulting in cancellation of the disturbance for all values of . The control parameters

are shown in Fig. 2.5, along with θ∗, the nominal value that exactly cancels the

disturbance (the constant line).

2.4 Properties of the Averaged System
Several properties of the averaged system can be derived from the rather simple

form that was obtained in (2.30)-(2.31), enabling one to gain insight on the behavior

of the closed-loop system.

2.4.1 Equilibrium surface

From the expression of the averaged system (2.30), it is deduced that an equilib-

rium point of the averaged system must satisfy

ET (x)(x− x∗) =
¡
D(x) I2×2

¢
(x− x∗) = 0 (2.32)

Therefore, x = x∗ is an equilibrium point of the system. It is not the only one,

however. Using (2.14)-(2.15)

¡
D(x) I2×2

¢
x =

µ
θc(x) θs(x)
θs(x) −θc(x)

¶µ
x1

x2

¶
+

µ
x3

x4

¶
=

µ
x1 x2

−x2 x1

¶µ
θc(x)
θs(x)

¶
+

µ
x3

x4

¶
= 0

(2.33)

In other words, ET (x)x = 0 and equilibrium points must satisfy
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Figure 2.3. Frequency response of the plant: magnitude and phase responses.

Figure 2.4. The response of the first adapted parameter x1 for the averaged system
with = 1 (solid line), the actual system for = 100 (dashed dot), the actual system
for = 50 (dashed), and the actual system for = 1 (circles).
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Figure 2.5. Trajectories of control parameters for the averaged system with = 1
(solid line), the actual system for = 100 (dashed dot), the actual system for = 50
(dashed), and the actual system for = 1 (circles).



27

ET (x)x∗ = 0 (2.34)

(2.34) can be rewritten as

µ
θc(x) θs(x)
θs(x) −θc(x)

¶µ
x∗1
x∗2

¶
+

µ
x∗3
x∗4

¶
=

µ
x∗1 x∗2
−x∗2 x∗1

¶µ
θc(x)
θs(x)

¶
+

µ
x∗3
x∗4

¶
= 0

(2.35)

or

µ
θc(x)
θs(x)

¶
= −

µ
x∗1 x∗2
−x∗2 x∗1

¶−1µ
x∗3
x∗4

¶
=

µ
θ∗c
θ∗s

¶ (2.36)

The last equation shows that any equilibrium state results in the cancellation of the

disturbance, confirming the observation made in Sec. 2.3.3. Equation (2.36) also

implies, with (2.14)-(2.15), that

µ
x1 x2

−x2 x1

¶−1µ
x3

x4

¶
= −

µ
θ∗c
θ∗s

¶
(2.37)

or, reorganizing the terms,

µ
x3

x4

¶
= −

µ
θ∗c θ∗s
θ∗s −θ∗c

¶µ
x1

x2

¶
(2.38)

In other words, the set of equilibrium points is a two-dimensional linear subspace of

the four-dimensional state-space. The set includes the nominal parameter x∗. Note

that, for x constant,

f(t, x, xP,ss) = −E(x)w1(t)w
T
1 (t)ET (x)(x− x∗). (2.39)

Therefore, any equilibrium state of the averaged system is also an equilibrium state of

the original system. This result further explains why, in Sec. 2.3.3., all the trajectories
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were such that θ converged to θ∗. Further, (2.28) indicates that any equilibrium state

corresponds to a perfect rejection of the disturbance. In practice, measurement noise

and quantitization errors result in a small residual.

2.4.2 Local stability

The local stability of the averaged system can be determined by linearizing (2.30)

around an equilibrium state x. The following eigenvalues were computed using the

Maple kernel

λ =

⎛⎜⎜⎜⎜⎝
0
0³

x∗2+jx∗1
x2+jx1

´
β³

x∗2−jx∗1
x2−jx1

´
β

⎞⎟⎟⎟⎟⎠ (2.40)

where β = −
2

³
x∗21 +x∗22 +x∗23 +x∗24

x∗21 +x∗22

´
. The two eigenvalues at zero confirm the two-

dimensional nature of the linear equilibrium surface. The nonzero eigenvalues are

complex conjugates that lie in the open left-half plane if and only if

x1x
∗
1 + x2x

∗
2 > 0 (2.41)

or equivalently

x3x
∗
3 + x4x

∗
4 > 0. (2.42)

For the reverse signs, the eigenvalues lie in the open right-half plane. The stability

condition can be interpreted in the (x1, x2) plane, as shown in Fig. 2.6. Specifically,

the line going through the origin that is perpendicular to the line joining (0, 0) and

(x∗1, x
∗
2) defines the boundary between the stable and unstable states. Interestingly,

this is the same boundary that delineates the stable and unstable regions of a standard

LMS algorithm that does not identify the plant parameters [29], as will be discussed in

Sec. 2.5.2. In this case, however, the nonlinear dynamics ensure that all trajectories

eventually converge to the stable subset of the equilibrium surface.
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Figure 2.6. Relationship between the location on the equillibrium surface and
stability
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2.4.3 Lyapunov analysis

Lyapunov arguments can be used to establish further stability results for the

averaged system. Specifically, the Lyapunov candidate function

V = kx(t)− x∗k2 (2.43)

evaluated along the trajectories of (2.30) gives

V̇ = −
°°ET (x) (x− x∗)

°°2 ≤ 0 (2.44)

which implies that

kx(t)− x∗k ≤ kx(0)− x∗k (2.45)

for all t > 0. Since x and ẋ are bounded (using (2.30) and assumption B7), one may

also deduce that ET (x) (x− x∗) → 0 as t → ∞. In turn, it can be further verified
that ET (x)x = 0. As such, (2.28) implies that the disturbance is asymptotically

cancelled.

Further results may be obtained by noting that

¡
−I2×2 D(x)

¢
E(x) = 0 (2.46)

so that

¡
−I2×2 D(x)

¢
ẋ = 0 (2.47)

Using (2.14)-(2.15)

D(x) =

µ
θc(x) θs(x)
θs(x) −θc(x)

¶

= −
µ

x1 x2

−x2 x1

¶−1µ
x3 x4

x4 −x3

¶ (2.48)
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The result implies that

µ
x1 x2 x3 x4

−x2 x1 x4 −x3

¶
ẋ = 0 (2.49)

From the first equation, one has that

kx(t)k = kx(0)k (2.50)

for all t > 0. In other words, while the norm of the parameter error vector is

monotonically decreasing, the norm of the parameter vector is constant. In particular,

the norm of the state is bounded for all time by its initial value, regardless of the

local instability around one half of the equilibrium surface. (2.50) along with (2.15)

indicate that any decrease in the magnitude of the first two estimated parametersq
x2

1,av + x2
2,av must result in an increase in the magnitude of the other two estimated

parameters
q
x2

3,av + x2
4,av, and vice versa. Note that if the two magnitudes changed

proportionally in the same direction, there would be no change in control parameter

and no impact on the output error. The second equation in (2.49) yields a further

constraint on the state vector but is not as easily integrated as the first one.

2.4.4 Simulation

In this section, an example is discussed that illustrates the properties of the

averaged system. Consider the nominal parameter

x∗ =
¡

1.0 1.0 1.0 1.0
¢T

, (2.51)

with the initial vector x(0) =
¡

1.1 −2.0 −2.0 1.0
¢T
and the gain = 2.0. The

eigenvalues of (2.30) are given in (2.40). x(0) was chosen in the neighborhood of

an unstable equilibrium point whose eigenvalues have relatively large imaginary part.

The trajectories of the parameter estimates were projected into the (x1,av, x2,av) plane

for visualization in the simulation result of Fig. 2.7.
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Figure 2.7. Responses of identified parameters.
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With the initial conditions chosen close to the unstable region of the equilibrium

surface, the trajectory spirals with exponential growth as predicted, then crosses over

into the stable region. The trajectory spirals back with exponential decay towards the

equilibrium surface, as the eigenvalues turn out to also have large imaginary parts in

that region. The unstable, highly oscillatory initial response was obtained by setting

the initial estimate of the phase of the plant at

]P̂ (jωo) = −61.2o. (2.52)

while the phase of the plant was

]P (jωo) = 45o (2.53)

resulting in a phase difference of ]P (jωo) − ]P̂ (jωo) = 106o (beyond the 90o angle

condition, but close to it to ensure oscillatory behavior). The 90o angle condition

pertains to the mixed time scale system (A.1) when the plant estimate is not updated

online, such as the standard LMS algorithm. It states that for stability of the averaged

system (A.2), it is both sufficient and necessary that PRP̂R+PIP̂I > 0, or equivalently¯̄̄
]P (jωo)−]P̂ (jωo)

¯̄̄
< 90o [43]. Although not shown, it was verified that the norm

of trajectories remained constant at kx(t)k = kx(0)k = 3.20.

2.5 Experiments
2.5.1 Results with the adaptive algorithm

The performance of the algorithm given by (2.11), (2.12), and (2.15) was examined

through single-channel active noise control experiments. The active noise control

system diagrammed in Fig. 2.8 was the same system used to identify the 250

coefficient FIR transfer function used in Sec. 2.3.3. In the experiments of this

subsection and of the subsection that follows, the parameters of the plant remain

unchanged. The algorithm was coded in C and implemented via a dSpace DS1104

digital signal processing board. A sampling frequency of 8 kHz was used. A constant

amplitude sinusoidal disturbance with frequency of 185 Hz was generated by one
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Figure 2.8. Diagram of the single channel active noise control system.

loudspeaker, while the control signal was produced by another. The phase of the

plant was estimated experimentally at 93.2◦. The initial plant estimate was set at

P (jω) =
¡
−0.01 0.1

¢T
, corresponding to a phase angle of 95.7◦ and a phase

difference of 2.5◦. Using these initial conditions along with an adaptation gain of

10, chosen to insure stability as well as quick convergence, results in the parameter

convergence seen in Fig. 2.9. The corresponding error attenuation is shown in Fig.

2.10. The parameters converge to values which give significant noise attenuation.

Next, an initial plant estimate with P (jω) =
¡

0.1 −0.01
¢T
was used, corre-

sponding to a phase angle of −5.7◦ and a phase difference of 98.9◦, beyond the 90◦

phase condition. After some initial oscillations, the parameters are seen to converge in

Fig. 2.11 . The corresponding error is shown in Fig. 2.12. Starting from the unstable

region simply results in a slightly longer transient. Although the initial conditions of

the system produce a locally unstable adaptive system, the dynamics are such that

convergence to a nonunique equilibrium state is eventually achieved. In the transient,

the parameter error vector and the parameter vector remain bounded by their initial

value. In the steady-state, the parameter vector is such that the nominal control

vector is reached.
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Figure 2.9. Adaptive algorithm with small initial phase difference: parameter
convergence.

Figure 2.10. Adaptive algorithm with small initial phase difference: error attenua-
tion.
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Figure 2.11. Adaptive algorithm with large initial phase difference: parameter
convergence.

Figure 2.12. Adaptive algorithm with large initial phase difference: error attenua-
tion.
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2.5.2 Comparison to standard LMS algorithm

A standard algorithm in active noise and vibration control is the filtered-X LMS

algorithm [23]. It is a gradient-type algorithm of which an implementation is presented

here for the sake of comparison. Recalling (2.6), the steady-state output of the plant

is

y = wT
1 G

∗θ + p = wT
1 G

∗ (θ − θ∗) (2.54)

The error y2 can be minimized by using the gradient algorithm [50]

θ̇ = − G∗Tw1y (2.55)

The corresponding averaged system

θ̇ = −
2
G∗TG∗ (θ − θ∗) (2.56)

has a unique equilibrium at θ = θ∗ that is exponentially stable if G∗ 6= 0. If G∗ is not

known, an a priori estimate G of G∗ is used, and the averaged system becomes [50]

θ̇ = −
2
GTG∗ (θ − θ∗) (2.57)

θ = θ∗ is still an equilibrium, but it is unique and exponentially stable if and only if

the eigenvalues of

GTG∗ =

µ
x1 −x2

x2 x1

¶µ
x∗1 x∗2
−x∗2 x∗1

¶
(2.58)

lie in the open right half plane. As in Fig. 2.6, the condition for stability is again

that

x1x
∗
1 + x2x

∗
2 > 0 (2.59)
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which requires that the phase of the initial estimate of the plant be within 90◦ of the

true value.

Experiments with the filtered-X LMS algorithm show the benefits of the algorithm

of (2.11), (2.12), and (2.15). In the first experiment, the plant estimate P (jω) has

a phase difference of 1.7◦ with respect to the actual plant. Using the estimate along

with an adaptation gain of = 75, the responses of the parameters can be seen in Fig.

2.13, and the corresponding error attenuation can be seen in Fig. 2.14. As expected,

the parameters converge to values that result in significant noise cancellation. Next,

a phase difference of 99.8◦ was applied In Fig. 2.15, the parameters are seen to

experience divergence which results in the exponential growth of the error in Fig.

2.16. Comparing these results with those obtained in the previous section, one finds

interesting similarities between the stability regions of the algorithms. With the

algorithm of (2.11), (2.12), and (2.15), however, on-line identification produces a

nonlinear system where trajectories eventually converge to the vicinity of a stable

equilibrium, regardless of the initial error in the estimate of the phase of the true

plant.

2.6 Experiments with Least-squares Algorithm
and Time-varying Systems

In the experiments of this subsection, the parameters of the plant are allowed

to change significantly with time. In some situations, it may be desirable to use

a least-squares algorithm for its superior convergence properties. A discrete-time

implementation [3] is available that incorporates a stabilizing mechanism to insure

stability while still allowing for rapid convergence. The parameter vector x is obtained

by minimizing the cost function

E [x(n)] =
nX

k=1

(y(k)−W T (k)x(n))2λn−k + α |x(n)− x(n− 1)|2 (2.60)

where λ is a forgetting factor and α is a stabilizing factor. Note that this criterion

incorporates a penalty on the parameter variation, while for α = 0, the standard
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Figure 2.13. LMS algorithm with small initial phase difference: parameter conver-
gence.

Figure 2.14. LMS algorithm with small initial phase difference: error attenuation.
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Figure 2.15. LMS algorithm with large initial phase difference: parameter conver-
gence.

Figure 2.16. LMS algorithm with large initial phase difference: error attenuation.
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least-squares with forgetting factor is recovered. Setting ∂E/∂x̂(n) = 0, the estimate

that minimizes (2.60) is

x(n) =

µ
nP

k=1

W (k)W T (k)λn−k + αI4x4

¶−1

×
µ

nP
k=1

W (k)y(k)λn−k + αx(n− 1)

¶ (2.61)

From this batch formula, an equivalent recursive formulation can be found as

K−1(n) = λK−1(n− 1) + W (n)W T (n) + α(1− λ)I4x4

x(n) = x(n− 1) + K(n)W (n)(y(n)−W T (n)x(n− 1))

+αλK(n)(x(n− 1)− x(n− 2))

(2.62)

where

K−1(0) = αI4x4. (2.63)

A forgetting factor λ < 1 causes the influence of old data on the identification of x to

be reduced as time proceeds, enabling the algorithm to track variations in the true

parameters. From [3], the averaged system corresponding to (2.62) is given by

K−1
av (n) = λK−1

av (n− 1) + E(x)ET (x) + α(1− λ)I4x4

xav(n) = xav(n− 1)−Kav(n)E(x)ET (x)xav(n− 1)

+αλKav(n) (xav(n− 1)− xav(n− 2))

(2.64)

The least-squares algorithm was tested with challenging test conditions requiring

continuous adaptation. A constant amplitude sinusoidal disturbance with frequency

of 185 Hz was assumed. Plant parameters were initialized at x1(0) = x2(0) = 1.0,

and disturbance parameters were initialized at x3(0) = x4(0) = 0. A forgetting factor

λ = 0.999 was used. This choice corresponds to a time constant of 1, 000 samples,

or 0.125 seconds. A value of α = 75 was chosen. The covariance matrix was started
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at (2.63). (2.62) was used to update K−1(n) and the inverse was taken for use in

updating x. These results were obtained using the control structure of Fig. 2.1.

An error microphone provided feedback to the algorithm, and attenuation results

can be seen in Fig. 2.17. The estimated parameters can be seen in Fig. 2.18. The

control algorithm was engaged after approximately 0.75s and convergence occurred

in less than one half second. Unknown to the algorithm, the microphone used for

cancellation was abruptly switched at approximately 2.75s to a microphone located

some 4 feet away. After a brief time interval, the algorithm was able to compensate

for the change in plant parameters, again in less than half a second.

The ability to track slow time variations in system parameters was also explored.

In Fig. 2.19 and Fig. 2.20, the results of manually moving the error sensor within

the field of cancellation are shown. In these figures, the parameters were frozen after

reaching the initial steady-state. The error signal is shown along with the frozen

control signal. Significant errors occur once the microphone has moved sufficiently

to alter the characteristics of the system in a significant way. In Fig. 2.21, the

algorithm is allowed to track the time-varying parameters. Significant attenuation

is now observed despite the fact that both plant and disturbance parameters are

changing. The identified parameters are shown in Fig. 2.22.

2.7 Extension of the Algorithm
2.7.1 MIMO case

In the extension of the algorithm of (2.11), (2.12), and (2.15), assume that there

are i outputs of P (s) and j inputs. Take the disturbance as consisting of a single

sinusoidal component, and apply the algorithm of (2.11), (2.12), and (2.15) at each

output. At each plant output, there are 2j plant parameters and 2 disturbance

parameters to be identified, giving a regressor at each output of the form

Wi(t, θ) =

⎛⎜⎜⎝
uv
ũv

cos (ω1t)
sin (ω1t)

⎞⎟⎟⎠ (2.65)
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Figure 2.17. Error and control signals with fixed true parameters and microphone
switched at ≈ 2.75 s.

Figure 2.18. Identified parameters when true parameters suddenly change.
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Figure 2.19. Error and control signals with continuously changing parameters but
frozen estimates.

Figure 2.20. Parameter estimates frozen after reaching steady-state.
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Figure 2.21. Error and control signals with continuously changing system parame-
ters.

Figure 2.22. Tracking of continuously changing parameters.
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where

uv =

⎛⎜⎝ u1(t)
...

uj(t)

⎞⎟⎠ , ũv =

⎛⎜⎝ ũ1(t)
...

ũj(t)

⎞⎟⎠ (2.66)

and each uj, ũj correspond to a plant input. This leads to a state vector of the form

xi(t) =
¡
P̂Ri1 · · · P̂Rij P̂Ii1 · · · P̂Iij p̂ci p̂si

¢T
(2.67)

For clarity, the individual elements of the vector xi(t) are denoted by the estimate of

the corresponding element of x∗i . For calculation of the control coefficients, the states

of each algorithm can be combined as

G =

µ
P̂R P̂I

−P̂I P̂R

¶
, π =

µ
p̂c
p̂s

¶
(2.68)

where

P̂R =

⎛⎜⎝ P̂R11 · · · P̂R1j
...

. . .
...

P̂Ri1 · · · P̂Rij

⎞⎟⎠ , P̂I =

⎛⎜⎝ P̂I11 · · · P̂I1j
...

. . .
...

P̂Ii1 · · · P̂Iij

⎞⎟⎠ (2.69)

and

p̂c =

⎛⎜⎝ p̂c1
...
p̂ci

⎞⎟⎠ , p̂s =

⎛⎜⎝ p̂s1
...
p̂si

⎞⎟⎠ (2.70)

The control coefficients are determined by

θ = −G−1π (2.71)

where

θ =
¡
θc1 · · · θcj θs1 · · · θsj

¢T
(2.72)
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In (2.71), the appropriate pseudo-inverse should be used for cases where i 6= j. The

initial conditions of each xi must be chosen so that G is not singular, but all other

initial conditions can be 0. The jth plant input is found as

uj(t) = θcj cos (ω1t) + θsj sin (ω1t) (2.73)

In order to demonstrate this extension of the algorithm, an active noise control

experiment is presented. The plant consists of 2 inputs (control loudspeakers) and

2 outputs (error microphones). The disturbance is a 160 Hz sinusoid. The initial

conditions of each xi were chosen as

x1(0) =
¡

1 1 0 0 0 0
¢T

x2(0) =
¡

0 0 1 1 0 0
¢T (2.74)

The results of the experiment can be seen in Fig. 2.23, where significant attenuation

is observed at each output of the plant.

Figure 2.23. Output error with 2 inputs and 2 outputs.
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2.7.2 Multiple frequency components

The algorithm of (2.11), (2.12), and (2.15) can also be extended for the rejection

of a periodic disturbance consisting of multiple sinusoidal components. A disturbance

consisting of m sinusoidal components is written in the form of (2.2) as

p(t) = wT
mπ

∗ (2.75)

where the vector

wm(t) =

µ
vcos

vsin

¶
(2.76)

consists of

vcos =

⎛⎜⎝ cos(ω1t)
...

cos(ωmt)

⎞⎟⎠ , vsin =

⎛⎜⎝ sin(ω1t)
...

sin(ωmt)

⎞⎟⎠ (2.77)

and the vector

π∗ =

µ
pc
ps

¶
(2.78)

consists of

pc =

⎛⎜⎝ pc,1
...

pc,m

⎞⎟⎠ , ps =

⎛⎜⎝ ps,1
...

ps,m

⎞⎟⎠ (2.79)

Each ωm, pc,m, ps,m corresponds to a specific sinusoidal component of the disturbance.

The regressor is given by

W (t, θ) =

⎛⎜⎜⎝
uv
ũv

cos (ωt)
sin (ωt)

⎞⎟⎟⎠ (2.80)
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where

uv =

⎛⎜⎝ u,1(t)
...

u,m(t)

⎞⎟⎠ , ũv =

⎛⎜⎝ ũ,1(t)
...

ũ,m(t)

⎞⎟⎠ (2.81)

and

u,m(t) = θc,m cos (ωmt) + θs,m sin(ωmt)

ũ,m(t) = θs,m cos (ωmt)− θc,m sin(ωmt)
(2.82)

These definitions lead to a vector of identified parameters of the form

x(t) =
¡
P̂R,1 · · · P̂R,m P̂I,1 · · · P̂I,m p̂c p̂s

¢T
(2.83)

where

p̂c =

⎛⎜⎝ p̂c,1
...

p̂c,m

⎞⎟⎠ , p̂s =

⎛⎜⎝ p̂s,1
...

p̂s,m

⎞⎟⎠ (2.84)

Again for clarity, the individual elements of the vector x(t) are denoted by the estimate

of the corresponding element of x∗. Calculation of the control coefficients can be

combined as

G =

µ
P̂R P̂I

−P̂I P̂R

¶
, π =

µ
p̂c
p̂s

¶
(2.85)

where

P̂R =

⎛⎜⎝ P̂R,1 0 0

0
. . . 0

0 0 P̂R,m

⎞⎟⎠ , P̂I =

⎛⎜⎝ P̂I,1 0 0

0
. . . 0

0 0 P̂I,m

⎞⎟⎠ (2.86)

The control coefficients are found similar to (2.71) by

θ = −G−1π (2.87)
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but now

θ =
¡
θc,1 · · · θc,m θs,1 · · · θs,m

¢T
(2.88)

The control signal is found as

u(t) = u,1(t) + u,2(t) + · · ·+ u,m(t) = wT
mθ (2.89)

In order to demonstrate this extension of the algorithm, an active noise control

experiment is presented. The plant consists of a single input (loudspeaker) and a

single output (microphone). The disturbance consisted of two sinusoidal components

of 180 Hz and 160 Hz, respectively. The initial x was

x =
¡
−0.04 −0.7 1.04 1.4 0 0 0 0

¢T
(2.90)

The result of the experiment can be seen in Fig. 2.24, where significant attenuation

is observed.

Figure 2.24. Plant output with disturbance consisting of 2 frequency components.
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2.8 Conclusions
An adaptive algorithm for the rejection of periodic disturbances of known fre-

quency affecting unknown plants was considered. Typically, in active noise and

vibration control applications, the plant is approximately linear, allowing a linear

expression at the output of the plant to be derived. The unknown parameters were

collected in a vector, and an estimate of this vector formed the states of a nonlinear

controller. Since the overall closed-loop system was nonlinear and time-varying,

averaging theory was applied to analyze the system. By averaging over time, a much

simpler time-invariant system was obtained, whose dynamics closely approximated

the dynamics of the actual system. It was shown that the averaged system for

the algorithm under consideration was a four-dimensional nonlinear system with a

two-dimensional equilibrium surface. Half of the surface was locally stable and the

other half was unstable. Generally, trajectories converged to the stable subset of the

equilibrium surface, resulting in cancellation of the disturbance. Further properties

of the trajectories of the system were obtained from an analysis of the averaged

system. A lyapunov analysis showed that trajectories of the averaged system traveled

along a path of constant norm. Simulations and single-channel active noise control

experiments illustrated the results. It was found that stability was achieved in

situations that would be unstable with simpler algorithms that do not provide plant

adaptation. In addition, the ability to track abruptly or continuously time-changing

system parameters was demonstrated. While disturbances of known frequency have

been considered, many real-world scenarios contain unknown frequencies that may

drift over time. In the next chapter, disturbances of unknown and time-varying

frequency acting on unknown and time-varying systems are considered.



CHAPTER 3

UNKNOWN DISTURBANCES AND

UNKNOWN SYSTEMS

3.1 Introduction
This chapter introduces a new algorithm for the rejection of sinusoidal distur-

bances of unknown frequency acting on an unknown system. The algorithm builds

on the ADHSS algorithm of the previous chapter by adding magnitude/phase-locked

loop (MPLL) frequency estimation [49]. It is shown that the MPLL algorithm

combines favorably with the ADHSS algorithm. However, combination of the two

components of the algorithm is not trivial. Indeed, combination of the two algorithms

is where the challenge begins. Specifically, the ADHSS algorithm injects a control

signal in the plant that adds itself to the disturbance signal measured by the MPLL

and interferes with its operation. Conversely, any frequency error in the MPLL

contributes a disturbance in the ADHSS which results in bursting, unless eliminated.

Fortunately, analysis shows that the MPLL is able to lock on the unknown frequency

despite the presence of the control signal and further enables a reduction of the

order of the ADHSS system. Thus, the reduced-order ADHSS is investigated, after

which the overall system consisting of the reduced-order ADHSS and the MPLL is

considered. Equilibrium points of the system are found that ensure perfect rejection

of the disturbance in ideal conditions, and local stability is guaranteed under certain

conditions. Finally, multiple active noise control experiments with variations in plant

and disturbance parameters demonstrate the performance of the algorithm under

challenging conditions.
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3.1.1 Effect of a frequency error

While it was shown in the last chapter that the ADHSS algorithm possesses

desirable convergence and stability properties when the frequency of an unwanted

sinusoidal disturbance is known, unfortunately, the ADHSS algorithm does not tol-

erate well a frequency error. To explain this characteristic, account for a frequency

error by introducing a new definition of the disturbance

p(t) = m∗ cos(α∗1(t)) (3.1)

where

α∗1(t) = α∗1(0) +

Z t

0

ω∗1dτ (3.2)

and ω∗1 is the true frequency of the disturbance. With the phase

α1(t) =

Z t

0

ω1(τ)dτ (3.3)

where ω1 is the frequency estimate used by the adaptive algorithm, and its equations

remain unchanged. Note that the disturbance can be written as

p(t) = m∗ cos(α1(t) + (α∗1(t)− α1(t)))

= wT
1 (t)π(t)

(3.4)

where

π(t) =

µ
pc(t)
ps(t)

¶
= m∗

µ
cos(α(t)− α∗1(t))
sin(α1(t)− α∗1(t))

¶
(3.5)

Thus, (2.2) and (2.6) remain valid, but with the vector π and its components pc and

ps becoming functions of time. For small frequency error, the disturbance vector π

slowly rotates in the two-dimensional space.
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The effect of such rotation is illustrated through a simulation. The plant P (s)

is taken to be a 250 coefficient FIR transfer function identified from an active noise

control system. The frequency of the disturbance is ω∗1 = 160 Hz, while the estimate

is ω1 = 159 Hz. The frequency error creates a drift of x with time. Its components

rotate to follow the rotation of the disturbance vector, while staying within the

equilibrium surface where the disturbance is cancelled. Unfortunately, the unstable

subset of the equilibrium surface is encountered eventually, causing a bursting of the

control signal u(t) and of the error e(t), as shown in Fig. 3.1 from the simulation.

Fig. 3.2 shows the left side of (2.41), which verifies that the system bursts when the

expression becomes negative. While the system returns to the stable subset of the

equilibrium surface, bursting of the control and error signals is undesirable and repeats

indefinitely. This demonstrates the necessity of obtaining an accurate estimate of the

disturbance frequency if the adaptive harmonic steady-state algorithm is to be used

for disturbances of unknown frequency, and is to track this frequency if the frequency

varies.

3.2 Use of Frequency Estimation
3.2.1 Magnitude/phase-locked loop frequency estimator

In this section, the MPLL frequency estimator of [49], which was further analyzed

in [16], is reviewed. The algorithm was successfully used in active noise control

applications, and achieves the continuous tracking of time-varying frequencies. As

opposed to a conventional phase-locked loop, the magnitude of the signal is also

tracked, which yields the property that, under ideal conditions, all signals converge

to their nominal values without residual oscillations.

First assume that the control signal is equal to zero. Then, the output y(t) is

equal to the disturbance, which is assumed to be of the form (3.1). The algorithm

reconstructs estimates m(t), α1(t) and ω1(t) that yield an estimate of the output

ŷ(t) = m(t) cos(α1(t)) (3.6)

Defining the signal estimation error
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Figure 3.1. Control and error signals exhibiting bursting due to a constant frequency
error.

Figure 3.2. The expression x1x
∗
1 + x2x

∗
2 versus time.
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e(t) = y(t)− ŷ(t) (3.7)

and the vector

µ
ec(t)
es(t)

¶
= 2

µ
cos(α1(t))
− sin(α1(t))

¶
e(t) (3.8)

the rest of the MPLL algorithm is given in the Laplace domain by

m(s) = gm
s
ec(s)

ω1(s) = gω
s
es(s)

α1(s) = ks+1
s

ω1(s)

(3.9)

where gm, gω, and k are positive constants. Note that (3.3) is now replaced by

α1(t) = kω1(t) +

Z t

0

ω1(τ)dτ (3.10)

Other equations remain the same and, except for a bias, the phase estimate α1 is the

integral of the frequency estimate in steady-state. The benefit of a nonzero k will

become obvious later. Fig. 3.3 shows the structure of the MPLL algorithm.

The averaging analysis of [49] is similar to the conventional method of analysis

of phase-locked loops and starts by computing the average values of the error signals

assuming constant parameters

Figure 3.3. Diagram of MPLL frequency estimator.
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AV E

∙µ
ec
es

¶¸
=

µ
m∗ cos (α1 − α∗1)−m

m∗ sin (α∗1 − α1)

¶
'
µ

m∗ −m
m∗ (α∗1 − α1)

¶
(3.11)

where the second approximation results from linearization of the first around the

nominal trajectories. The equilibrium is at m = m∗ and α1 = α∗1 and, with (3.9), the

approximation leads to the conclusion that the linearized system is the combination

of two linear time-invariant systems whose poles are the roots of

s + gm = 0 (3.12)

s2 + kgωm
∗s + gωm

∗ = 0 (3.13)

From this, one can conclude that the linearized system is stable for all positive values

of the design parameters k, gω gm.

3.2.2 Interaction of MPLL with ADHSS algorithm

Combination of the MPLL estimator with the ADHSS algorithm brings significant

issues. Similar problems are found in other approaches that try to solve the difficult

problem involving both an unknown plant and an unknown disturbance frequency.

Interestingly, the MPLL and ADHSS algorithms have specific features that allow

them to be integrated successfully. The main issue to consider is that the output

signal y(t) is composed not only of the disturbance, but also of the effect of the

control input. When control is applied, the output signal contains two sinusoids

with distinct frequencies: one at the disturbance frequency and one at the estimated

frequency. When the frequency estimate is exact, the frequencies are the same, but the

output converges to zero (if all goes well), leaving no signal for frequency estimation.

Guaranteeing that the components of a combined algorithm interact favorably in such

conditions is nontrivial. In other situations, the effect of the control input has been

eliminated by subtracting from the plant output a signal equal to the contribution of

the control signal to the output. However, this approach is not feasible if the plant

is unknown.

The averaging analysis of the MPLL can be extended when the plant output

includes the effect of a control input of the form (2.4). With constant parameters,
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the nonlinear and linear approximations of (3.11) become

AV E

∙µ
ec
es

¶¸
=

µ
m∗ cos (α1 − α∗1)−m + x∗1θc + x∗2θs

m∗ sin (α∗1 − α1) + x∗2θc − x∗1θs

¶
'
µ

m∗ −m + x∗1θc + x∗2θs
m∗ (α∗1 − α1) + x∗2θc − x∗1θs

¶ (3.14)

As a result, the linearized system is described by the same characteristic polynomials

and is stable under the same conditions. A remarkable property of the MPLL is that

the frequency estimate converges to the true frequency despite the presence of an

additional component on the output signal at a different frequency. As long as the

second component is at the MPLL frequency, however, it is rejected by the MPLL.

Nevertheless, there is a catch, in that the equilibrium state is shifted and m and α1

satisfy different nonlinear equations

m−m∗ cos (α1 − α∗1) = x∗1θc + x∗2θs

m∗ sin (α1 − α∗1) = x∗2θc − x∗1θs
(3.15)

Therefore, a new necessary and sufficient condition for the existence of an equilibrium

of the MPLL is that

¯̄̄̄
x∗2θc − x∗1θs

m∗

¯̄̄̄
< 1 (3.16)

In other words, the effect of the control signal on the output must not be greater than

the disturbance magnitude for phase-lock to be possible.

The derivations bring another interesting result regarding the interactions between

the two algorithms. Specifically, (3.15) and (3.5) indicate that, if phase-lock occurs,

−P ∗I θc + P ∗Rθs + pS = 0 (3.17)

This equation is the second equation of G∗θ + π∗ = 0, which guarantees perfect

disturbance cancellation. The first equation is
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P ∗Rθc + P ∗I θs + pc = 0 (3.18)

and does not involve ps. In other words, cancellation of the disturbance can be

achieved in a combined algorithm regardless of x4, the estimate of ps. In particular,

the parameter x4 can be set to zero, which is equivalent to assuming that ps = 0. In

reality, ps is not zero, but the phase of the MPLL converges to a value such that one

may make this assumption in the ADHSS. For this reason, now consider an ADHSS

algorithm with 3 parameters instead of 4, i.e., an ADHSS algorithm that assumes a

known phase of the disturbance signal.

3.2.3 ADHSS with known frequency and phase

3.2.3.1 Adaptive algorithm and averaged system

The algorithm is obtained by dropping the parameter x4 in the previous algorithm.

The result is a simpler algorithm, with even stronger properties. The vector of control

parameters becomes

θ(x) =

µ
θc(x)
θs(x)

¶
= − 1

x2
1 + x2

2

µ
x1x3

x2x3

¶
(3.19)

The vector of unknowns is

x∗ =
¡
P ∗R P ∗I m∗ ¢T (3.20)

and the regressor used for adaptation is

W (t, θ) = E(x)w1(t) (3.21)

where

E(x) =

⎛⎝ θc(x) θs(x)
θs(x) −θc(x)

1 0

⎞⎠ (3.22)

Other equations of the algorithm remain the same.
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Taking A, B, and C to be the matrices of a minimal state-space realization of the

plant, so that P (s) = C(sI −A)−1B, the overall equations describing the system are

given by

ẋP = AxP + BwT
1 (t)θ(x)

ẋ = −gE(x)w1(t)
¡
wT

1 (t)ET (x)x− CxP − cos(α1)x
∗
3

¢ (3.23)

where the fact that m∗ = x∗3 and

p(t) = cos(α∗1)x
∗
3 = cos(α1)x

∗
3 (3.24)

were used when the frequency and phase of the disturbance are known.

Averaging theory can be used to analyze this system as in [37]. The averaged

system corresponding to the adaptive system is simply

ẋ = −g
2
E(x)ET (x) (x− x∗) (3.25)

The applicable theory is given in Appendix A. The Basic Averaging Lemma can be

applied so that the averaged system (3.25) can be used as an approximation of (3.23)

over any time interval of fixed length (after rescaling by a factor of g). Verification

of assumptions B1-B7 is required, which mostly guarantee certain boundedness and

continuity conditions. B7 is an assumption related to the fact that both the adaptive

and the averaged systems have a singularity at x2
1+x2

2 = 0 (see equation (3.19)). Such

singularities are quite common in adaptive control, occurring any time the estimate

of the gain of the plant is zero. Here, the singularity occurs when the estimate

of the plant’s frequency response is zero, a problem that is somewhat unlikely to

occur, because two parameters need to be zero for the singularity to be reached.

Nevertheless, a cautious implementation of the algorithm would apply one of the

available techniques to address singularities. For example, a simple practical fix

consists in using in the control law either the parameter x if x2
1 +x2

2 > δ > 0, where δ

is a small parameter, or else the last value of the estimated parameter x that satisfied

the condition.
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3.2.3.2 Equilibrium subset

Because EETx = 0 if and only if ETx = 0, and since

ET (x)x = − 1

x2
1 + x2

2

µ
x1x3 x2x3

x2x3 −x1x3

¶µ
x1

x2

¶
+

µ
x3

0

¶
= 0

equilibrium points of the averaged system are determined by

ET (x)x∗ = 0 (3.26)

Reorganizing terms, one finds that

ET (x)x∗ =

µ
x∗1 x∗2
−x∗2 x∗1

¶µ
θc(x)
θs(x)

¶
+

µ
x∗3
0

¶
(3.27)

so that equilibrium points are also such that

µ
θc(x)
θs(x)

¶
= − 1

x∗21 + x∗22

µ
x∗1x

∗
3

x∗2x
∗
3

¶
=

µ
θ∗c
θ∗s

¶
(3.28)

In other words, an equilibrium point corresponds to a control parameter vector equal

to the nominal one, and results in exact cancellation of the disturbance.

From (3.26), one can also conclude that any equilibrium point satisfies

(x1x
∗
1 + x2x

∗
2)x3 = x∗3(x

2
1 + x2

2)

x2x
∗
1 − x1x

∗
2 = 0

(3.29)

so that the equilibrium set can be parameterized as a function of a single variable.

For example, if x∗1 6= 0, one can express x2 and x3 as functions of x1 with

x2 =
x∗2x1

x∗1
, x3 =

x∗3x1

x∗1
(3.30)
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In general, the set of equilibrium points is a line connecting the origin of the three-

dimensional state-space and the nominal parameter x∗. For x constant and xP = xP,ss,

(3.23) becomes

E(x)w1(t)w
T
1 (t)ET (x)(x− x∗) = 0 (3.31)

so that any equilibrium of the averaged system is also an equilibrium of the original

system.

3.2.3.3 Local stability of equilibrium points

Linearizing (3.25) with (3.22) around an equilibrium state x, the following eigen-

values can be computed

λ1 = 0, λ2 = −gx
∗
i

xi

x∗23
x∗21 + x∗22

, λ3 = −gx
∗
i

xi

µ
1 +

x∗23
x∗21 + x∗22

¶
(3.32)

where i = 1, 2, or 3 (whichever corresponds to a nonzero xi). Thus, the condition for

stability of an equilibrium point is that

sign(xi) = sign(x∗i ) (3.33)

which means that the equilibrium point is stable if it is on the same side of the origin

as the nominal parameter x∗. A corresponding orthogonal set of eigenvectors is given

by

v1 =

⎛⎝ x∗1
x∗2
x∗3

⎞⎠ , v2 =

⎛⎝ −x∗2x∗1
0

⎞⎠ , v3 =

⎛⎝ x∗1x
∗
3

x∗2x
∗
3

−x∗21 − x∗22

⎞⎠ (3.34)

Note that |λ2| < |λ3| and may be much smaller if x∗23 ¿ x∗21 + x∗22 . In such cases,

convergence of the state x3 (the estimate of the disturbance magnitude) occurs fast,

followed by a slower convergence within the x1 − x2 plane.
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3.2.3.4 Trajectories of the averaged system

Using the Lyapunov function V = kx(t)− x∗k2, one finds that V̇ ≤ 0 and

kx(t)− x∗k ≤ kx(0)− x∗k (3.35)

Since x and ẋ are bounded (using (3.25) and assumption B7), one may again deduce

that ET (x) (x− x∗)→ 0 as t→∞. Also, ET (x)x = 0 and (2.28) with x∗4 = 0 imply

that the disturbance is asymptotically cancelled. Therefore the equilibrium line is

reached, and the disturbance is asymptotically cancelled. Using V = kx(t)k2 and

ET (x)x = 0, one finds that V̇ = 0, so that

kx(t)k = kx(0)k (3.36)

for all t. Because all trajectories converge to the equilibrium line, the steady-state

value of x must satisfy (3.29) as well as (3.36). Combining the equations, one gets

the remarkable property that, asymptotically

xi = x∗i
kx(0)k
kx∗k , for all i (3.37)

The reverse sign is also allowed by the equations, but the stability property determines

that the positive sign must be used. Thus, trajectories of x travel along the sphere that

is centered at the origin and includes x(0), and eventually converge to the intersection

of the sphere with the line connecting the origin to x∗, on the same side as x∗.

3.2.3.5 Illustrative simulations

The first set of simulations shows the closeness of (3.23) and (3.25). The plant is

the 250 coefficient FIR transfer function used in the previous simulation and the

disturbance frequency is ω∗1 = 330π. The initial parameter estimate is x(0) =¡
1.0 1.0 0

¢T
. The adaptation gain takes the place of the parameter in the

averaging theory, so g = . The response of x1 is shown in Fig. 3.4. Four simulations

are plotted: the averaged system with = 1 (solid line), the actual system for = 100



64

(dashed dot), the actual system for = 50 (dashed), and the actual system for

= 1 (circles). As decreases, one finds that the trajectory of the adaptive system

approaches that of the averaged system. The parameter estimates do not converge

to the nominal values: however, they converge to the same steady-state value for all

(as expected since the initial condition remains the same). As seen in Fig. 3.5, the

control parameters θc and θs converge to their nominal values, resulting in cancellation

of the disturbance for all values of .

The second set of simulations highlights the stability properties of the adaptive

system. The disturbance frequency is now ω∗1 = 320π. The plant is the same, the

adaptive gain g = 100 and

x∗ =
¡

0.7471 .1548 0.1
¢T

(3.38)

The initial vector is

x(0) =
¡
−1 1 0

¢T
(3.39)

and corresponds to an initial estimate of the phase of the plant

tan−1(x2(0)/x1(0)) = 135o (3.40)

while the actual phase of the plant is

tan−1(x∗2/x
∗
1) = ]P (jω∗1) = 11.7o (3.41)

The phase difference of 123.3o is beyond the 90o angle condition. The state trajectory

can be seen in Fig. 3.6. Although initially diverging from the unstable half of

the line, the trajectory eventually reaches the stable side. As predicted from the

stability analysis, there is a slower mode of convergence within the x1−x2 plane that

corresponds to a near constant value of x3. Although not shown, it was verified that

kx(t)k = kx(0)k .
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Figure 3.4. Responses of x1 for the averaged system with = 1 (solid) and for the
actual system with = 100 (dashed dot), = 50 (dashed), and = 1 (circles).

Figure 3.5. Responses of control parameters for the averaged system with
= 1(solid) and for the actual system with = 100 (dashed dot), = 50 (dashed),
and = 1 (circles).
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Figure 3.6. State trajectory and relation to the line equilibrium.
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3.3 Adaptive Algorithm with Unknown
Frequency and Unknown Plant

3.3.1 Adaptive algorithm and averaged system

The algorithm for the general problem of unknown frequency and plant is obtained

by combining the MPLL algorithm with the (reduced) ADHSS algorithm for known

phase and frequency, resulting in the differential equations

ẋ = −gE(x)w1(t)
¡
wT

1 (t)ET (x)x− y
¢

ṁ = 2gm cos(α1)(y −m cos(α1))

ω̇1 = −2gω sin(α1)(y −m cos(α1))

α̇1 = ω1 − 2kgω sin(α1)(y −m cos(α1))

(3.42)

with positive constants g, gm, gω, and k, and the algebraic equations

u = wT
1 (t)θ(x)

w1(t) =

µ
cos(α1)
sin(α1)

¶
θ(x) = − 1

x2
1+x2

2

µ
x1x3

x2x3

¶

E(x) =

⎛⎝ θc(x) θs(x)
θs(x) −θc(x)

1 0

⎞⎠
(3.43)

The plant and the disturbance are described by the equations

ẋP = AxP + Bu = AxP + BwT
1 (t)θ(x)

y = CxP + m∗ cos(α∗1) = CxP + m∗w1(t)

µ
cos(α1 − α∗1)
sin(α1 − α∗1)

¶
α̇∗1 = ω∗1

(3.44)

The overall system is described by complex, nonlinear time-varying differential

equations, so it is not very hopeful that a rigorous stability proof could be devel-

oped for this system. Again, averaging theory presents the best prospect for an

approximation that would give insight into the dynamics of the system. The two
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components of the controller were already studied using averaging and were shown

to possess desirable stability properties. It remains to show that their combination,

including coupling effects, does not produce undesirable interactions (at least close

to the nominal operating mode).

The system fits the averaging theory for mixed time scales systems, where the

plant state xP varies fast and the controller states vary slowly. This assumes that

the gains g, gm, gω are small enough. Averaging analysis of the MPLL alone is found

in [16], and may be combined with the ADHSS. In order for the theory to work, the

adaptive gains are defined as functions of through

g = , gm = ḡm, gω = 2ḡω, k =
k̄

(3.45)

where ḡm, ḡω, k̄ are arbitrary positive values of the MPLL gains for = 1. The

initial error ω1(0) − ω∗1 must also be of the order of , due to the presence of the

integrator. Omitting the tedious details of a formal averaging analysis, focus instead

on the interesting properties of the averaged system.

In previous analyses, the effect of the ADHSS on the MPLL was included in the

averaging analysis, but the effect of a phase error on the known phase ADHSS was

not. A correction term must be added in the averaged system, similar to what was

done to study the effect of a frequency error on the 4-parameter ADHSS algorithm.

Since

p(t) = m∗wT
1 (t)

µ
cos(α1 − α∗1)
sin(α1 − α∗1)

¶
(3.46)

instead of

p(t) = m∗ cos(α1) (3.47)

the correction term to be added to the steady-state output is

∆yss = m∗wT
1 (t)

µ
cos(α1 − α∗1)− 1

sin(α1 − α∗1)

¶
(3.48)
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Adding the correction term to yssand substituting δα1 = α1−α∗1, and δω1 = ω1−ω∗1,

the overall averaged system becomes

ẋ = −g
2
E(x)

µ
ET (x) (x− x∗)−m∗

µ
cos(δα1)− 1

sin(δα1)

¶¶
ṁ = gm (m∗ cos (δα1)−m + x∗1θc + x∗2θs)

δω̇1 = −gω (m∗ sin (δα1)− x∗2θc + x∗1θs)

δα̇1 = δω1 − kgω (m∗ sin (δα1)− x∗2θc + x∗1θs)

(3.49)

3.3.2 Equilibrium points

Since ET (x)x = 0, the equilibrium points are determined by

ET (x)x∗ + m∗
µ

cos(δα1)− 1
sin(δα1)

¶
= 0 (3.50)

as well as

m∗ cos (δα1)−m+ x∗1θc + x∗2θs = 0

m∗ sin (δα1)− x∗2θc + x∗1θs = 0

δω1 = 0

(3.51)

Overall, there are 5 equations to determine 6 variables (3 variables in x plus m, δω1,

δα1): the equilibrium subset must be (at least) one-dimensional. Expanding (3.50)

and using x∗3 = m∗, one finds that (3.50) is equivalent to

θcx
∗
1 + θsx

∗
2 + m∗ cos (δα1) = 0

θsx
∗
1 − θcx

∗
2 + m∗ sin (δα1) = 0

(3.52)

which brings two interesting observations: (3.51) implies that m = 0, and the first

equation of (3.51) and the second equation of (3.52) are identical. The first conclusion

is not surprising, in hindsight. If the control signal cancels the disturbance, then the

output of the plant including the disturbance should converge to zero. Therefore, the

disturbance is cancelled in the equilibrium subset. The second conclusion means that
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the equilibrium set, instead of being one-dimensional, is actually two-dimensional,

similarly to the ADHSS for known frequency and unknown phase. This is perhaps

more surprising.

Using the expression for (3.43), the conditions for the equilibrium points can be

written as

x3
x1x

∗
1 + x2x

∗
2

x2
1 + x2

2

= m∗ cos(δα1)

x3
x2x

∗
1 − x1x

∗
2

x2
1 + x2

2

= m∗ sin(δα1)
(3.53)

Define kPk, kP ∗k, φ, and φ∗ so that

x1 = kPk cos (φ)

x2 = kPk sin (φ)
(3.54)

and

x∗1 = kP ∗k cos (φ∗)

x∗2 = kP ∗k sin (φ∗)
(3.55)

the conditions become

x3
kP ∗k cos(φ− φ∗)

kPk = m∗ cos(δα1)

x3
kP ∗k sin(φ− φ∗)

kPk = m∗ sin(δα1)
(3.56)

Due to the two-dimensional nature of the equilibrium subset, one can pick two free

variables. If kPk and φ are picked , x1 and x2 are given by (3.54) and δα1 and x3 can

take one of two possible values

δα1 = φ− φ∗ + nπ

x3 = (−1)n m∗ kPk
kP∗k

(3.57)

with n = 0 or 1. Note that, for n = 0, the estimate of the magnitude of the disturbance

is correct and the PLL phase error is zero if the estimate of the plant is exact. In
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general, the estimate of the magnitude of the disturbance is weighted by the ratio of

the plant magnitude to the plant magnitude estimate, and the PLL phase error is

equal to the plant phase error φ − φ∗. For n = 1, the magnitude estimate changes

sign and the phase simply shifts by 180◦ to compensate for it.

3.3.3 Local stability of equilibrium points

The local stability of the equilibrium points can be obtained by linearizing (3.49)

around an equilibrium state. This computation and others to follow are best per-

formed using a symbolic computation engine. With the following definitions

a1 = m∗2

kPkkP∗k , a2 = m∗

kPk

a3 = m∗2

kP ∗k , a4 = kP∗k
kPk

(3.58)

the Jacobian of the system evaluated around an equilibrium point can be computed

to be

J =

⎛⎜⎜⎜⎜⎜⎜⎝
−g

2
a1 cos(φ− φ∗) −g

2
a1 sin(φ− φ∗) (−1)n g

2
a2 cos(φ∗)

g
2
a1 sin(φ− φ∗) −g

2
a1 cos(φ− φ∗) (−1)n g

2
a2 sin(φ∗)

(−1)n g
2
a2 cos(2φ− φ∗) (−1)n g

2
a2 sin(2φ− φ∗) −g

2
a4 cos(φ− φ∗)

(−1)n gma2 cos(2φ− φ∗) (−1)n gma2 sin(2φ− φ∗) −gma4 cos(φ− φ∗)

(−1)n+1 gωa2 sin(2φ− φ∗) (−1)n gωa2 cos(2φ− φ∗) gωa4 sin(φ− φ∗)

(−1)n+1 kgωa2 sin(2φ− φ∗) (−1)n kgωa2 cos(2φ− φ∗) kgωa4 sin(φ− φ∗)

· · ·

0 0 −g
2
a3 sin(φ∗)

0 0 g
2
a3 cos(φ∗)

0 0 (−1)n+1 g
2
m∗ sin(φ− φ∗)

−gm 0 (−1)n+1 gmm
∗ sin(φ− φ∗)

0 0 (−1)n+1 gωm
∗ cos(φ− φ∗)

0 1 (−1)n+1 kgωm
∗ cos(φ− φ∗)

⎞⎟⎟⎟⎟⎟⎟⎠
(3.59)

The characteristic equation det(λI − J) = 0 has the following form

λ2 (λ + gm)
¡
c3λ

3 + c2λ
2 + c1λ + c0

¢
= 0. (3.60)

The 2 eigenvalues at λ = 0 are associated with the two-dimensional equilibrium

subset, and the stable eigenvalue at λ = −gm is associated with the state m, which
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depends on but does not influence other states. The stability of the three remain-

ing eigenvalues can be ascertained by considering the third-order polynomial with

coefficients

c3 = 1

c2 = cos (φ− φ∗)
¡
ga1 + 1

2
ga4 + (−1)n 2kgωm

∗¢
c1 = (−1)n 1

2
gkgωm

∗ (a1 + a4) + g2

4
(a2

1 + a2
2) + (−1)n gωm

∗ cos (φ− φ∗)

c0 = (−1)n 1
2
ggωm

∗ (a1 + a4)

(3.61)

By application of the Routh-Hurwitz test [35], when n = 1, c0 is negative indicating

there are always eigenvalues in the right-half plane. If n = 0, the stability of the

system is guaranteed if and only if

|φ− φ∗| < 90◦ and c2c1 − c3c0 > 0 (3.62)

The condition c2c1 − c3c0 > 0 is equivalent to

cos2 (φ− φ∗) + b1 cos (φ− φ∗)− b0 > 0 (3.63)

where (reintroducing the original variables)

b1 = g
¡
kP ∗k2 + m∗2¢ 2kgωkPkkP∗k+gm∗

4gωkPk2kP∗k2

b0 =
g(kP∗k2+m∗2)

g(kP∗k2+m∗2)+gm∗2+2kgωm∗kPkkP ∗k

(3.64)

Therefore, (3.62) is satisfied if and only if

|φ− φ∗| < φ̄ (3.65)

where

φ̄ = cos−1

Ãp
b21 + 4b0 − b1

2

!
(3.66)
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φ̄ is well-defined and less than 90◦ because b1 > 0 and 1 > b0 > 0.

In conclusion, there is always a positive range of angle φ around the nominal angle

φ∗ for which the system is stable. The range is reduced from the previous range of

±90◦. It depends in a complicated manner on the system parameters, and also on the

location on the equilibrium surface through the parameter kPk. The range becomes
±90◦ again if b0 → 0 or b1 →∞. These conditions are guaranteed as k →∞. Thus,

for k chosen sufficiently large, the stability region of the averaged system approaches

the same region as the ADHSS with known frequency.

3.3.4 Simulations

In order to demonstrate the closeness of the responses of the adaptive system and

of the averaged system, a simulation is presented. The plant is the 250 coefficient

transfer function used in the simulation of Sec. 2.3 and the disturbance frequency is

ω∗1 = 320π. The initial conditions are x = ( 0.1 0.1 0 ), m = 0, ω1 = 310π. The

difference between the actual system response and the averaged system response is

shown in Fig. 3.7, where the first three states are plotted. The three other states

are plotted on Fig. 3.8. Results corresponding to values of = 1 (solid line) and

= 10 (dashed line) are shown. For the smaller value of = 1, the difference between

the values of the actual and averaged systems settles more quickly and approaches

a steady-state value of zero. For the larger value = 10, the difference settles more

slowly and, in the case of the first two responses, in Fig. 3.7, approach a nonzero

steady-state value. This result is consistent with the assumption that, as decreases,

the response of the actual system and the averaged system approach each other.

3.4 Experiments
3.4.1 Practical considerations

If the initial parameters x1(0) and x2(0) satisfy the stability condition of the

adaptive HSS given by (2.41) and the initial frequency estimate is sufficiently close to

the true frequency, convergence of the algorithm is immediately observed. However,

for larger initial errors, the frequency must be identified before convergence of the

adaptive HSS is observed. Thus, it is useful to use a two-phase start-up routine.
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�

Figure 3.7. Difference between actual states of ADHSS and the averaged states for
= 1 (solid line) and = 10 (dashed line).

�

�

Figure 3.8. Difference between the actual states of the MPLL and the averaged
states for = 1 (solid line) and = 10 (dashed line).
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After start-up, the full algorithm is engaged and can track parameter variations.

The two-phase start-up proceeds as follows: over the time interval t ∈ [t0, t1], the

control signal u(t) = 0 and the MPLL is engaged. For t = t1 large enough, an

accurate estimate of the frequency is obtained and α1 − α∗1 ' 0. For t ∈ [t1, t2],

the frequency estimate is frozen, and the adaptive HSS is engaged. With the phase

correctly identified and the frequency estimate frozen, the ADHSS converges, resulting

in the cancellation of the disturbance. For t > t2, the MPLL is re-engaged, and the

6 states of the controller are updated continuously.

Another issue is that the ADHSS with known phase may result in quick conver-

gence of x3 followed by slower convergence within the x1 − x2 plane. This property

sometimes results in a large transients when the initial phase of the plant estimate

is large. To avoid this situation, the gain g may be replaced by a gain matrix of the

form

Γ =

⎛⎝ g12 0 0
0 g12 0
0 0 g3

⎞⎠ (3.67)

For small g3, the eigenvalues become closer to each other and the system dynamics

are improved.

3.4.2 Experiments with plant changes

The performance of the algorithm was examined through single-channel active

noise control experiments. The system was diagrammed in Fig. 2.8 and is the

same system as was identified to produce the 250 coefficient FIR transfer function

used in simulations. The algorithm was coded in C and implemented in a dSpace

DS1104 digital signal processing board. A sampling frequency of 8 kHz was used. A

constant amplitude sinusoidal disturbance with frequency of 180 Hz was generated

by a loudspeaker, while the control signal was produced by another loudspeaker. A

microphone was used to measure the cancellation error. The plant consists of the

hardware and transmission in the environment from the control signal output to

the error microphone input, including the propagation effects of the surrounding air.
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The experiments were conducted in a small room where many signal reflections are

present. This is a challenging problem that helps to illustrate the performance of the

algorithm in difficult conditions. Gains g12 = 100 and g3 = 1 were used.

In the experiments of this section, the disturbance remained constant and the effect

of a time-varying plant was investigated. During the first 0.8 seconds of operation, the

control was not engaged, and the disturbance frequency was identified. Afterwards,

the control signal was engaged, and the states of the ADHSS were allowed to converge.

After reaching steady-state, the MPLLwas engaged, and the frequency response of the

plant was changed by manually moving the error microphone. In Fig. 3.9, the control

signal is seen to change to compensate for the moving microphone and disturbance

rejection is maintained. The states of the adaptive HSS can be seen in Fig. 3.10. In

contrast, Fig. 3.11 shows the control signal and the resulting output error when the

same procedure is used but the MPLL is not re-engaged. One finds that y(t) varies

widely and the disturbance is poorly rejected. In Fig. 3.12, the states are plotted for

this experiment.

Figure 3.9. The output of the plant y(t) and the control signal u(t) when the
estimate x is free to track time variation in the plant.
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Figure 3.10. The states of the adaptive HSS are free to track time variation in the
plant.

Figure 3.11. The output of the plant y(t) and the control signal u(t) when the
estimate x is frozen.
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Figure 3.12. The frozen states of the adaptive HSS.

3.4.3 Experiments with disturbances of time-varying
magnitude

In the following two experiments, the frequency of the disturbance and the plant

were fixed, but the magnitude of the disturbance m∗ varied significantly. First,

results are shown where the disturbance magnitude goes to zero in three steps. Fig.

3.13 shows the disturbance, whose magnitude goes to zero and then returns to its

value roughly 1 second later. The control signal changes in equal proportion, and

disturbance cancellation is maintained. Fig. 3.14 shows the states of the adaptive

HSS. As one would expect, the decrease in m∗ is reflected primarily in x3. Fig. 3.15

shows the frequency estimate ω1. Fig. 3.16, Fig. 3.17, and Fig. 3.18 show similar

results when the disturbance suddenly goes away in one step. From the oscillations

in the frequency estimate of Fig. 3.15 and Fig. 3.18, it is observed that the MPLL

does not loose phase-lock until the disturbance has gone completely away.
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Figure 3.13. Disturbance, control signal, and the output of the plant when the
disturbance goes away in three steps and then comes back.

Figure 3.14. The states of the adaptive HSS when the disturbance goes away in
three steps and then comes back.
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Figure 3.15. The MPLL frequency estimate when the disturbance goes away in
three steps and then comes back.

Figure 3.16. Disturbance, control signal, and output of the plant when the
disturbance suddenly goes away and comes back.
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Figure 3.17. The states of the adaptive HSS when the disturbance suddenly goes
away and then comes back.

Figure 3.18. The MPLL magnitude and frequency estimate when the disturbance
suddenly goes away and then comes back.
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3.4.4 Experiments with disturbances of time-varying
frequency

In these experiments, the frequency changed linearly from 180Hz to 200Hz in

approximately 6 seconds. Note that a change in frequency of the disturbance produces

a change in the plant frequency response. The magnitude of the disturbance was held

constant and the algorithm was allowed to reach steady-state in the first 5 seconds.

Then, the frequency change was initiated. Fig. 3.19 shows the frequency estimate ω1

along with the true value ω∗1. The estimate is directly on top of the true value. Fig.

3.20, shows the control signal u(t), which varies to maintain significant disturbance

rejection. The variation in the magnitude of u(t) is indicative of the change of the

frequency response of the plant P (jω1) as ω1 tracks ω∗1. Fig. 3.21 shows the states

of the adaptive HSS which vary in order to produce an appropriate u(t) and reduce

y(t).

In the next experiment, the ability to deal with a step change in the disturbance

frequency was investigated. Once the system reached steady-state, the disturbance

frequency was abruptly changed from 180Hz to 185Hz. Fig. 3.22 shows the frequency

estimate, which tracks the sudden change in the disturbance frequency. Fig. 3.23

shows the output of the plant. When the disturbance frequency changes, a small spike

in y(t) is noted. However, the system quickly recovers, and significant disturbance

rejection is maintained.

3.5 Conclusions
An adaptive algorithm for the rejection of a sinusoidal disturbance of unknown/time-

varying frequency acting at the output of an unknown and time-varying plant was

presented. The algorithm had a disturbance rejection component based on an adap-

tive harmonic steady-state algorithm that estimates the plant frequency response at

the disturbance frequency along with the disturbance parameters. Because this com-

ponent required that the frequency be known exactly, a second component providing

frequency estimation was added. It was found that the magnitude/phase-locked loop

algorithm used for frequency estimation was able to deal with the effect of the control

signal on the plant output. Under steady-state approximations, the MPLL was found
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Figure 3.19. MPLL frequency estimate tracking when the time-varying disturbance
frequency changes linearly from 180Hz and 200Hz over approximately 6 seconds.

Figure 3.20. Control signal and output of the plant when the disturbance frequency
changes linearly from 180Hz and 200Hz over approximately 6 seconds.
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Figure 3.21. States of the adaptive HSS when the time-varying disturbance fre-
quency changes linearly from 180Hz and 200Hz over approximately 6 seconds.

Figure 3.22. Frequency estimate when the disturbance frequency is stepped from
180Hz to 185Hz.
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Figure 3.23. The plant output and control signal when the disturbance frequency
is stepped from 180Hz to 185Hz.

to be locally stable, while the ADHSS was globally stable.

Further analysis showed that the properties of the MPLL enabled a simplification

of the ADHSS algorithm. Instead of the four ADHSS parameters needed in Chapter

2, only three parameters were needed. It was shown that the simplified ADHSS

in the ideal case is equivalent to assuming that the exact phase of the disturbance

is known. The properties of the simplified ADHSS in the ideal case were studied

using an analysis similar to the one used to study the averaged ADHSS algorithm

in Chapter 2. Similar properties were observed, but the simplified system dynamics

allowed further insight into the convergence of the algorithm. It was found that

convergence of the third adapted parameter occurred much faster than convergence

of the first two adapted parameters. This fact was used later in the chapter to show

the importance of using a gain with the structure of a matrix.

The combination of the ADHSS and MPLL resulted in an overall system described

by 6 nonlinear time-varying differential equations. The theory of averaging was

applied to find that the equilibrium of the system was a two-dimensional surface.
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Any point on the surface resulted in cancellation of the disturbance. The Jacobian

matrix of the averaged system linearized around the equilibrium surface revealed that

a subset of the surface was locally stable. This subset was described by a bound on the

allowable steady-state phase error of the plant estimate. Various ANC experiments

demonstrated the ability of the algorithm to track variations in both system and

disturbance parameters. A two-phase start-up procedure was used to be sure that

the stable subset of the equilibrium surface was reached.



CHAPTER 4

FREQUENCY ESTIMATION BASED ON

ELECTRIC MACHINES

4.1 Introduction
The main objective of this chapter is to show that a new type of frequency

estimator can be obtained from models of AC (alternating current) electric machines

[6]. After reviewing the relevant theory from electric drives, the induction motor

frequency estimation (IMFE) equations are presented. Averaging theory is used to

show that the algorithm possesses three equilibrium points and, for positive initial

frequency estimate, the algorithm is guaranteed to converge to the disturbance fre-

quency. For negative initial estimate, the algorithm converges to the negative of the

disturbance frequency. It is further shown that in the context of averaging, the IMFE

is semi-globally stable and locally exponentially stable.

IMFE frequency estimation is used in two distinct disturbance rejection schemes.

In the first, the IMFE algorithm is combined with a disturbance cancellation al-

gorithm to reject disturbances of unknown frequency acting on a known system.

The approach was tested successfully in active noise control experiments using the

disturbance cancellation algorithm of [50]. The need for an a priori estimate of

the frequency was found to be relaxed with a negligible increase in computational

complexity. However, to avoid a bias in the frequency estimate, the effect of the

control signal at the input to the estimator must be eliminated. Practically, this

involves subtracting the effect of the control signal at the output of the plant from

the input to the IMFE and requires the frequency response of the plant at the control

signal frequency be known.

In the second disturbance rejection scheme, the IMFE algorithm is combined with

a disturbance cancellation algorithm to reject disturbances of unknown frequency
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acting on an unknown system. The benefits of the IMFE algorithm are used to

improve the stability of the ADHSS algorithm with frequency estimation presented

in Chapter 3. In Chapter 2, it was shown that the ADHSS algorithm obtains estimates

of the plant and disturbance that result in cancellation of the disturbance but that it

is unlikely the estimated values will be equal to the true values. As such, eliminating

the effect of the control signal at the input to the IMFE is not possible. Therefore,

modifications to the original IMFE equations are given that lead to an unbiased

frequency estimate. Namely, any signal that varies at the modified IMFE frequency is

rejected allowing the frequency of the disturbance to be identified. However, the phase

corresponding to the modified IMFE frequency estimate does not lock onto the phase

of the disturbance, causing minor perturbations in the frequency estimate to interact

unfavorably with the ADHSS. Thus, the dynamics of the modified IMFE are combined

with those of the MPLL. This dramatically improves stability of the MPLL frequency

estimator so that larger initial frequency errors can be tolerated. Averaging theory is

used to explore the effect of combining the modified IMFE with the ADHSS/MPLL

algorithm of the previous chapter. It is found that through appropriate selection

of the fixed parameters of the modified IMFE the local stability of the algorithm is

improved.

4.2 Induction Motor Frequency Estimation
Algorithm

4.2.1 Model of a two-phase induction motor

The model of a two-phase induction motor with one pole pair and current com-

mand is given by the equations

dψRA

dt
= − 1

TR
ψRA + M

TR
iSA − ωψRB

dψRB

dt
= − 1

TR
ψRB + M

TR
iSB + ωψRA

dω

dt
= M

JLR
(iSB ψRA − iSA ψRB)

(4.1)



89

where ψRA and ψRB are the total rotor flux linkages along phases A and B, iSA and

iSB are the currents in the phase windings A and B, TR is the rotor time constant,

M is the mutual inductance between the stator and the rotor, ω is the mechanical

speed of the rotor, J is the inertia of the rotor, and LR is the rotor self-inductance.

The model assumes that there is no load or friction torque.

The currents in the stator windings are assumed to be of the form

µ
iSA
iSB

¶
= Im

µ
cos(ωet)
sin(ωet)

¶
(4.2)

where ωe is the (angular) electrical frequency of the sinusoidal currents. The difference

between the two frequencies, S = ωe − ω, is an important quantity known as the slip

frequency. The torque generated by the motor is a nonlinear function of the slip

frequency, but is approximately linear for small slip. Thus, for small S, induction

motor theory predicts that

dω

dt
' k(ωe − ω) (4.3)

for some constant k. Therefore, the rotor speed converges to the electrical frequency

with the desirable dynamics of a first-order system. For large slip, the torque is

reduced, but remains of the same sign, so that global convergence of ω to ωe is

ensured.

4.2.2 IMFE algorithm

Consider now the task of estimating the frequency ω∗1 of a sinusoidal signal

y(t) = m∗ cos(α∗1(t)) (4.4)

where α∗1(t) = ω∗1t. The proposed method is to solve this problem by implementing an

induction motor model with ω becoming the estimate ω1 of ω∗1. Thus, the algorithm

will be given by
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ẋ1F (t) = −a1x1F + a1x1 − ω1x2F

ẋ2F (t) = −a1x2F + a1x2 + ω1x1F

(4.5)

and

ω̇1 = gω (x2(t)x1F (t)− x1(t)x2F (t)) (4.6)

where a1 and gω are positive constants. Note that x1 can be defined as MiSA so that

the two constants in (4.5) can be assumed to be equal.

The signal x1 is simply

x1(t) = y(t) (4.7)

but a difficulty is that the signal x2 associated with the second winding is not available.

The situation has a parallel in induction machines operated on residential single-phase

supplies. In such cases, single-phase induction motors are two-phase motors where

the second winding is connected in series to a capacitor, and then in parallel with the

first winding. The capacitor is selected so that the current in the second winding is

approximately 90◦ out of phase with the first winding.

In the context of a numerical frequency estimator, the limitations of a physical

implementation can be avoided, and other means of shifting the phase by 90◦ can be

used. For example, a possible choice is the filter

H1(s) =
ω1 − s

s + ω1
(4.8)

which has a gain of 1 and a phase lead of 90◦ at the frequency ω1. An approximation

of the second winding current is the signal x2(t) defined through

x2(t) = H1(s) [x1(t)] (4.9)
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where the notation H1(s) [·] represents the time domain output of the system with

transfer function H1(s). (4.9) can be implemented as

ẋ3 = −ω1x3 + ω1x1

x2 = 2x3 − x1

(4.10)

The overall frequency estimator is defined by (4.5), (4.6), and (4.10). Note that the

algorithm is quite different from other frequency estimation algorithms, such as [30],

[41].

4.2.3 Stability analysis of the IMFE algorithm
using averaging

The system can be fitted in the averaging theory for mixed time scales systems [43],

where the frequency estimate (4.6) varies slowly, and the signals (4.7), (4.9), and (4.5)

vary at a faster or mixed time scale. In finding the averaged system, the frequency

estimate is held constant, and the responses of the fast variables are approximated

by their steady-state responses. Then, the signals x1 and x3 become

x1 = m∗ cos(α∗1)

x3 = m∗

ω2
1+ω∗21

(ω2
1 cos(α∗1) + ω1ω

∗
1 sin(α∗1))

(4.11)

To find the steady-state values of the filtered signals (4.5), rewrite the equations as

x1F = H2(s) [x1]−H3(s) [2x3 − x1]

x2F = H2(s) [2x3 − x1] + H3(s) [x1]
(4.12)

where

H2(s) = a1(s+a1)

(s+a1)
2+ω2

1

H3(s) = a1ω1

(s+a1)
2+ω2

1

(4.13)

Next, define the real and imaginary parts of the frequency responses of (4.8) and

(4.13) with
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H1(jω
∗
1) = HR1 + jHI1

H2(jω
∗
1) = HR2 + jHI2

H3(jω
∗
1) = HR2 + jHI2

(4.14)

The steady-state values of (4.12) are then given by

x1F = m∗w∗T1 (t)

µµ
HR2

HI2

¶
−
µ

HR3 −HI3

HI3 HR3

¶
×
µ

HR1

HI1

¶¶
x2F = m∗w∗T1 (t)

µµ
HR2 −HI2

HI2 HR2

¶µ
HR1

HI1

¶
+

µ
HR3

HI3

¶¶
(4.15)

where

w∗1(t) =

µ
cos(α∗1(t))
− sin(α∗1(t))

¶
(4.16)

Given the steady-state values, the right side of the frequency estimator equation

(4.6) can be averaged with

AV E [x2x1F − x1x2F ] = m∗2

2
(2HI1HI2 −HR3

× (H2
R1 + H2

I1 + 1))
(4.17)

Using (4.14), the averaged system is then given by

ω̇1 = −gωfav(ω1) (4.18)

with

fav(ω1) = m∗2a1ω1

(ω2
1+ω∗21 )

3ω∗21 +ω2
1+a2

1

(ω2
1−ω∗21 +a2

1)
2
+(2a1ω∗1)

2

× (ω2
1 − ω∗21 )

(4.19)
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To assess the stability of (4.18), note that fav(ω1) = 0 implies the existence of

three real equilibrium points at ω1 = 0 and ω1 = ±ω∗1. Evaluating ∂fav/∂ω1 at the

equilibrium points gives

∂fav
∂ω1

¯̄̄̄
ω1=0

= gωm
∗2 a1(3ω∗21 +a2

1)
(ω∗21 +a2

1)
2

∂fav
∂ω1

¯̄̄̄
ω1=±ω∗1

= −gωm∗2 1
a1

(4.20)

indicating that the equilibrium point ω1 = 0 is repulsive, while ω1 = ±ω∗1 are both
attractive. Thus, with a positive initial estimate ω1(0), ω1 will converge to ω∗1. As

ω1 → ω∗1 (4.18) becomes, approximately

ω̇1 ' −
gωm

∗2

2a1
(ω1 − ω∗1) (4.21)

so that convergence is exponential in the vicinity of ω∗1. In Fig. 4.1, a typical plot

of the right side of (4.18) is shown. The linear convergence around ω∗1 is comparable

to the linear convergence of the induction motor for small slip. The quadrature filter

(4.8) is the source of the two additional equilibrium points, which are not useful, but

do not cause any problem either.

4.2.4 Discrete-time implementation

The implementation of the estimator on a microprocessor requires the derivation

of a set of difference equations that can be used to recursively update the system

states. It was found that direct implementation of the algorithm using an Euler

approximation resulted in a bias of the frequency estimate. Thus, an equivalent

discrete-time algorithm was derived that did not suffer from this problem. The input

of the estimator is the discrete-time signal

x1(k) = y(k) (4.22)
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Figure 4.1. Phase plot of ( 4.18).

Let Ω1(k) be the estimate of the discrete-time frequency Ω∗1 = ω∗1TS, where TS is the

sampling period. Define the auxiliary signal

r(k) = cos(Ω1(k))/ (1 + sin(Ω1(k))) (4.23)

The discrete-time algorithm is given by

x3(k) = r(k)x3(k − 1) + x1(k − 1)

x1F (k + 1) = ad1x1F (k) + (1− ad1)x1(k)

− sin (Ω1(k))x2F (k)

x2F (k + 1) = ad1x2F (k) + (1− ad1)x2(k)

+ sin (Ω1(k))x1F (k)

(4.24)

where ad1 = 1− a1TS and

x2(k) =
¡
1− r(k)2

¢
x3(k)− r(k)x1(k) (4.25)

The frequency update is given by



95

Ω1(k + 1) = Ω1(k) + gdfd (4.26)

with

fd = x2(k)x1F (k + 1)− x1(k)x2F (k + 1)

gd = gωT
2
S

(4.27)

4.3 Application of the IMFE Algorithm in
Sinusoidal Disturbance Cancellation

4.3.1 Gradient-based disturbance cancellation

The IMFE can be combined with a gradient-based disturbance cancellation al-

gorithm to reject sinusoidal disturbances of unknown frequency. The system under

consideration is shown in Fig. 4.2, where d(t) is an unknown sinusoidal disturbance

and the output of the plant is given by

y(t) = P (s) [u(t) + d(t)] (4.28)

The goal is to find an appropriate u(t) such that y(t) is minimized. Expressing the

disturbance in terms of its sin and cos components gives

d(t) = w∗T1 (t)π, π =

µ
dc
ds

¶
(4.29)

dc and ds are unknown parameters. w∗1 is given by (4.16) where α
∗
1(t) = ω∗1t and ω∗1

is the frequency of the disturbance. The control signal is chosen to be

u(t) = wT
1 (t)θ, θ =

µ
θc
θs

¶
(4.30)

where

w1(t) =

µ
cos(α1(t))
− sin(α1(t))

¶
(4.31)



96

Figure 4.2. Diagram of the disturbance rejection problem.

and the phase

α1(t) =

Z t

0

ω1dτ (4.32)

where ω1 is an estimate of the frequency of the disturbance.

The so-called inverse-G algorithm [50] is a gradient-based algorithm that updates

θ using

θ̇(t) = −gGTw1(t)y(t). (4.33)

where g > 0 is an adaptation gain,

G =

µ
PR −PI

PI PR

¶
(4.34)

and PR, PI are the real and imaginary parts of the frequency response at the estimated

frequency, i.e., P (jω1) = PR + jPI .

The disturbance cancellation algorithm can be combined with the IMFE algorithm

by using the frequency estimate ω1 of the IMFE in the reconstruction of the angle α1.

One difficulty is that the control signal produces an output that interferes with the

frequency estimator. The problem can be avoided by using in the IMFE a modified

signal

x1 = y(t)− P (s)[u(t)] = P (s)[d(t)] (4.35)
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so that the signal used by the IMFE is the same as if the control input was zero.

Alternatively, the signal x1 can be replaced by the simpler expression

x1 = y(t)− wT
1 Gθ (4.36)

which corresponds to a steady-state approximation with slowly varying parameter

θ. The implementation is especially useful in cases where the plant is difficult to

model with a finite-order transfer function (due to delays, resonances,...). A frequency

response can often be obtained accurately in practice, even when a good finite-order

fit cannot be obtained. Fig. 4.3 shows a diagram of the overall closed-loop system

(with yu = wT
1 Ĝθ and Ĝ is an estimate of G).

4.3.2 Averaging analysis of the overall adaptive
system

The states of the closed-loop system can be divided into two sets, a set of slow

variables and a set of fast variables. Assuming that the adaptive gains g and gω are

small, the slow variables are the control parameter vector and the frequency estimate,

described by

θ̇ = −gGTw1y

ω̇1 = gω (x2x1F − x1x2F )
(4.37)

Figure 4.3. Diagram of indirect disturbance cancelation with IMFE frequency
estimation.
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With xP denoting the internal states of P (s), the fast variables consist of the plant

states

ẋP = AxP + B
¡
w∗T1 π − wT

1 θ
¢

y = CxP
(4.38)

as well as the IMFE dynamics

ẋ3 = −ω1x3 + ω1x1

ẋ1F = −a1x1F + ax1 − ω1x2F

ẋ2F = −a1x2F + ax2 + ω1x1F

x1 = y − wT
1 Gθ

x2 = 2x3 − x1

(4.39)

Using the technique of [13], the angle α1 can also be treated as a slow variable.

In finding the averaged system corresponding to (4.37)-(4.39), the responses of

the fast variables are taken as the steady-state responses, and the dynamics of the

slow variables are averaged over time. Thus, the frequency estimate and the control

vector θ are assumed to be constant in calculating the responses of the fast variables.

The averaged system for the IMFE is the same as was derived in Sec. 4.2.3 because,

in steady-state

x1 = yss + P (s)[d(t)]− wT
1 Gθ = P (s)[d(t)] (4.40)

The stability result from Sec. 4.2.3 applies: for gω sufficiently small, the frequency

estimate ω1 converges to the disturbance frequency ω∗1. Close to the disturbance

frequency, convergence is exponential.

For the disturbance cancellation component, the steady-state output of the plant

can be written

yss = wT
1 G (θ − θ∗) (4.41)
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where

θ∗ = −G−1

µ
cos (α̃) sin (α̃)
− sin (α̃) cos (α̃)

¶
G∗π (4.42)

and α̃ = α1 − α∗1. As in Sec 2.2.2, the matrix

G∗ =

µ
P ∗R −P ∗I
P ∗I P ∗R

¶
(4.43)

is a matrix whose elements correspond to the frequency response of P (s) at the

disturbance frequency ω∗1. The averaged dynamics of the control parameter update

are given by

θ̇(t) = −gGTG (θ − θ∗) (4.44)

For ω1 = ω∗1, the control signal converges to

u(t) = −w∗T1 π (4.45)

Thus, as the frequency error ω1 → ω∗1, θ converges exponentially to a value θ
∗such

that the disturbance is exactly canceled. Note that the equilibrium θ∗ is not unique,

as it depends on the phase associated with the integration of the frequency estimate.

However, this nonuniqueness simply produces a rotation of the control vector without

the dangers normally associated with nonuniqueness and parameter drift.

4.3.3 Experimental results

The performance of the inverse-G/IMFE algorithm was examined through single-

channel active noise control experiments. (4.37) was discretized using the Euler

approximation so that

θ(k) = θ(k − 1)− gθG
Tw1(k − 1)y(k). (4.46)
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where gθ = gTS, and the IMFE was discretized as described in Sec. 4.2.4. The

algorithm was coded in C and implemented in a dSPACE DS1104 digital signal

processing board. A sampling frequency of 8 kHz was used. A constant amplitude

sinusoidal disturbance with frequency of 160 Hz was generated by a loudspeaker,

while the control signal was produced by another loudspeaker. A microphone was

used to measure the cancellation error. The plant consists of the hardware and trans-

mission in the environment from the control signal output to the error microphone

input, including the propagation effects of the surrounding air. The experiments

were conducted in a small room where many signal reflections were present. In all

experiments, the following parameters were used: ad1 = 0.6875, gd = 31.25 × 10−6,

gθ = 0.001875.

In the first experiment, the initial IMFE frequency was f1(0) = 130 Hz for an

initial frequency error of 50 Hz. After 2 seconds, the inverse-G and the IMFE were

engaged simultaneously, and the algorithm was allowed to reach steady-state. After

approximately 3.5 seconds, the frequency of the disturbance was increased by an

additional 50 Hz. Fig. 4.4 shows the frequency estimate and Fig. 4.5 shows the

measured output y. The figures show that the algorithm is able to adjust for the

change in frequency while maintaining significant rejection of the disturbance. The

components of the control vector θ are shown in Fig. 4.6.

Figure 4.4. IMFE frequency estimate.
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Figure 4.5. Measured output with inverse-G disturbance cancelation and IMFE
frequency estimation.

Figure 4.6. θ with IMFE frequency estimation.
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In the second experiment, the IMFE frequency estimator track a slowly varying

disturbance frequency. After 2 seconds, the inverse-G and the IMFE were engaged

simultaneously, and the algorithm was allowed to reach steady-state. Approximately

3 seconds later, the frequency of the disturbance was increased at a rate of 15 Hz

per 10 seconds. In Fig. 4.7, the ability of the algorithm to track a slowly varying

frequency is shown, and in Fig. 4.8, significant attenuation of the disturbance is seen

despite the changing frequency. The components of the control vector θ are shown in

Fig. 4.9.

In the next experiment, results using the inverse-G disturbance cancellation algo-

rithm and a MPLL frequency estimator are shown for comparison (implementing the

algorithm of [13] ). The initial frequency estimate was set at f1(0) = 150 Hz, closer

to the true value to insure convergence of the MPLL algorithm. After 2 seconds, the

algorithm was engaged, resulting in significant attenuation of the disturbance. After

an additional 4 seconds, the frequency of the disturbance was increased by 50 Hz.

Fig. 4.10 shows the MPLL frequency. The MPLL frequency estimator was not able

to compensate for the change in frequency. Fig. 4.11 shows the measured output y,

which exhibits good reduction under tracking conditions, but large errors otherwise.

Figure 4.7. IMFE frequency estimate tracking changes in the disturbance frequency.
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Figure 4.8. Measured output with inverse-G disturbance cancelation and IMFE
frequency tracking.

Figure 4.9. θ with IMFE frequency tracking.
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Figure 4.10. MPLL frequency estimate.

Figure 4.11. Measured output with inverse-G disturbance cancelation and MPLL
frequency estimation.
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4.4 Modified IMFE
4.4.1 Changes to the model

An alternative frequency estimator is possible by relaxing the present analogy and

departing slightly from the equations of the induction motor. Neglecting the coupling

between the phases of the rotor, the model equations (4.1) become

dψRA

dt
= − 1

TR
ψRA + M

TR
iSA

dψRB

dt
= − 1

TR
ψRB + M

TR
iSB

dω

dt
= M

JLR
(iSB ψRA − iSA ψRB)

(4.47)

(4.47) describes a theoretical motor that generates no torque and whose slip frequency

S is always zero. A reliable frequency estimate can be designed to mimic this behavior.

4.4.2 Frequency estimation equations

In Sec. 4.2.2, signals corresponding to the stator currents were constructed using

a special filter to shift the input signal by 90◦. Here, a different technique is used.

Define the vector µ
xC(t)
xS(t)

¶
= 2

µ
cos(α1(t))
sin(α1(t))

¶
y(t) (4.48)

where

α1(t) =

Z t

0

ω1dτ (4.49)

with ω1 an estimate of unknown frequency ω∗1.(4.48) contains components at two

different frequencies. One component varies at the difference between the actual and

assumed frequencies, and the second higher frequency component varies at the sum

of the actual and assumed frequencies. The high frequency component of (4.48) must

be eliminated through filtering. Consider the SISO first-order system

H4(s) =
a2

s + a2
(4.50)
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with pole a2 > 0, whose output is given by

µ
x1(t)
x2(t)

¶
= H4(s)

∙µ
xC(t)
xS(t)

¶¸
(4.51)

The notation H4(s) [·] represents the time domain output of the system with transfer
function H4(s) applied to the elements of (4.48) separately. H4(s) acts as a lowpass

filter needed to remove the high frequency components from (4.48).

Next, consider the system

H5(s) =
a3

s + a3
(4.52)

with pole a3 > 0, whose output is given by

µ
x1F (t)
x2F (t)

¶
= H5(s)

∙µ
x1(t)
x2(t)

¶¸
(4.53)

The IMFE frequency estimate is updated using

ω̇1 = g0ω (x2(t)x1F (t)− x1(t)x2F (t)) (4.54)

where g0ω is a positive constant. The time domain signals of the modified IMFE are

diagramed in Fig. 4.12.

4.4.3 Stability analysis of the modified IMFE
using averaging

The system fits the averaging theory for mixed time scales systems, where the

frequency update (4.54) varies slowly, and the vectors of signals (4.51) and (4.53) vary

more quickly. In finding the averaged system, the frequency estimate is held constant,

and the response of the fast variables are approximated by their corresponding steady-

state response. Using the steady-state responses, the dynamics of the frequency

estimate are averaged over time.
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Figure 4.12. Diagram of the IMFE estimator.

Write (4.48) as

µ
xC(t)
xS(t)

¶
= m∗

µ
cos(α1 − α∗1) + cos(α1 + α∗1)
sin(α1 − α∗1) + sin(α1 + α∗1)

¶
(4.55)

whose components vary at the frequencies ω1 − ω∗1 and ω1 + ω∗1. Due to the lowpass

nature of H4(s), the high frequency components can be neglected so that at steady-

state the vector (4.51) is given by

µ
x1

x2

¶
= m∗

µ
H4R H4I

−H4I H4R

¶µ
cos(α̃)
sin(α̃)

¶
(4.56)

where

H4(j (ω1 − ω∗1)) = H4R + jH4I

=
a2
2−ja2(ω1−ω∗1))

(ω1−ω∗1)
2
+a2

2

(4.57)

The filtered signals are given by

µ
x1F

x2F

¶
= m∗

µ
H5R H5I

−H5I H5R

¶µ
H4R H4I

−H4I H4R

¶µ
cos(α̃)
sin(α̃)

¶
(4.58)

where

H5(j (ω1 − ω∗1)) = H5R + jH5I

=
a2
3−ja3(ω1−ω∗1)
(ω1−ω∗1)

2
+a2

3

(4.59)
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Applying the averaging operator

AV E [x2x1F − x1x2F ] = m∗2 ¡H2
4R + H2

4I

¢
H5I (4.60)

The averaged system corresponding to (4.54) can now be written as

ω̇1 = − g0ωa
2
2a3m

∗2¡
(ω1 − ω∗1)

2 + a2
2

¢ ¡
(ω1 − ω∗1)

2 + a2
3

¢ (ω1 − ω∗1) (4.61)

To access stability of the modified IMFE, consider the Lyapunov candidate

v = ω̃2 (4.62)

where ω̃ = ω1 − ω∗1. In terms of this frequency error, the first derivative with respect

to time evaluated along the trajectories of (4.61) is given by

dv

dt
= − 2g0ωa

2
2a3m

∗2

(ω̃2 + a2
2) (ω̃2 + a2

3)
ω̃2 ≤ 0 (4.63)

For finite ω̃, (4.63) indicates that ω1 = ω∗1 is a stable equilibrium point of (4.61). As

ω1 → ω∗1, (4.63) becomes approximately

dv

dt
' −2g0ωm

∗2

a3
ω̃2 ≤ 0 (4.64)

so that convergence is exponential. In Fig. 4.13, a plot of the right side of (4.61)

using the error ω̃ = ω1−ω∗1 as ω̃ is varied in the range ω̃ ∈ [−500, 500] is shown. The

plot confirms the analysis. Implicit in the analysis is the assumption of a positive

initial frequency estimate. This assumption is a result of the form of (4.55) and is

hidden in the assumption that the ω1 + ω∗1 components are high frequency and can

be neglected at the output of H4(s).
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Figure 4.13. Phase plot of ( 4.61).

4.4.4 Modified IMFE with a constant control signal

Let

y(t) = u(t) + p(t) (4.65)

The input to the IMFE consists of a sinusoidal disturbance

p(t) = m∗ cos(α∗1) (4.66)

at the frequency ω∗1 as well as the constant control signal

u(t) = −m cos(α1) (4.67)

at the IMFE frequency ω1. It is desirable to estimate the frequency of the disturbance

despite the presence of the control signal. At steady-state, (4.48) becomes

µ
xC
xS

¶
= m∗

µ
cos(α1 − α∗1) + cos(α1 + α∗1)
sin(α1 − α∗1) + sin(α1 + α∗1)

¶
−
µ

m
0

¶
(4.68)

The filtered signals are given by



110µ
x1

x2

¶
= m∗

µ
H4R H4I

−H4I H4R

¶µ
cos(α̃)
sin(α̃)

¶
−
µ

m
0

¶
µ

x1F

x2F

¶
= m∗

µ
H5R H5I

−H5I H5R

¶µ
H4R H4I

−H4I H4R

¶µ
cos(α̃)
sin(α̃)

¶
−
µ

m
0

¶ (4.69)

where α̃ = α1 − α∗1. Now,

AV E [x2x1F − x1x2F ] = − g0ωa
2
2a3m

∗2

(ω̃2 + a2
2) (ω̃2 + a2

3)
ω̃ (4.70)

As long as the control signal varies at the same frequency as the internally generated

sinusoids of the vector (4.48), it is rejected by the estimator, and it is as though the

input to the estimator consists solely of the disturbance.

4.4.5 Discrete-time implementation

Define the vector

µ
xC(k)
xS(k)

¶
= 2

µ
cos(α1(k))
sin(α1(k))

¶
y(k) (4.71)

where

α1(k) =
kX

n=0

Ω1(n) (4.72)

with Ω1 an estimate of the discrete frequency Ω∗1 = ω∗1TS. TS is an appropriate

sampling period. Implementation in discrete-time first requires defining the equivalent

discrete-time systems

H4(z) = 1−zd2
z−zd2

H5(z) = 1−zd3
z−zd3

(4.73)
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where zd2 = 1 − a2TS and zd3 = 1 − a3TS. The modified IMFE estimator is then

implemented with the following equations

x1(k) = zd2x1(k − 1) + (1− zd2)xC(k)

x2(k) = zd2x2(k − 1) + (1− zd2)xS(k)

x1F (k + 1) = zd3x1F (k) + (1− zd3)x1(k)

x2F (k + 1) = zd3x2F (k) + (1− zd3)x2(k)

Ω1(k + 1) = Ω1(k) + gd (x2(k)x1F (k + 1)− x1(k)x2F (k + 1))

αd1(k + 1) = αd1(k) + Ω1(k + 1)

(4.74)

where

gd = g0ωT
2
S (4.75)

4.5 Combined MPLL/IMFE Algorithm
Stability of the MPLL requires that the frequency estimate ω1 is sufficiently close

to the true frequency ω∗1. However, the dynamics of the IMFE can be combined with

the MPLL dynamics to extend the range of ω1 for which convergence is observed.

The frequency estimate of interest becomes the sum of the MPLL estimate and the

IMFE estimate. To do this, add the dynamics of the IMFE frequency update and the

MPLL frequency update. Also, set the IMFE phase equal to the MPLL phase. This

leads to the equations

ṁ = 2gmeC

ω̇1 = −gωeS + g0ω (x2x1F − x1x2F )

α̇1 = ω1 + kω̇1

(4.76)

with the positive constants gm, g0ω, gω, k. (4.76) represent the slow dynamics of the

system. The fast variables consist of the plant and the disturbance as described by

the IMFE signals
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ẋ1 = −a2x1 + a2eC

ẋ2 = −a2x2 + a2eS

ẋ1F = −a3x1F + a3x1

ẋ2F = −a3x2F + a3x2

(4.77)

and the positive constants a2, a3. With the vectorsµ
eC
eS

¶
= 2

µ
cos(α1)
sin(α1)

¶
(y −m cos (α1)) (4.78)

(4.76)-(4.77) completely describe the states of the closed-loop system.

The structure of the algorithm is diagramed in Fig. 4.14. It is seen that combining

the two components of the algorithm in this way is equivalent to using the IMFE

estimate to bias the MPLL frequency estimate. In the next section, it is shown that

doing by so, the IMFE dynamics significantly improve stability of the MPLL.

4.5.1 Averaged system for the combined algorithm

In this section, averaging is used to explore the effect of the IMFE on stability of

the MPLL. The closed-loop system fits into the averaging theory for a mixed time

scale system. The averaged system is found by approximating the response of the

fast variables by the steady-state response, and averaging the dynamics of the slow

variables over time. Defining the frequency error

δω1 = ω1 − ω∗1 (4.79)

leads to the phase error

δα1 = α1 − α∗1 (4.80)

The control signal u(t), which also changes with the phase α1, is rejected by the IMFE

giving the averaged IMFE dynamics as

AV E [x2x1F − x1x2F ] = − a2
2a3m

∗2

(δω2
1 + a2

2) (δω2
1 + a2

3)
δω1 (4.81)
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Figure 4.14. Diagram of improved MPLL algorithm.

Since the disturbance acts at the input of a plant, the magnitude of the frequency

response of P (s) shows up in the averaged dynamics. Recalling (3.11) allows the

overall averaged system to be written

ṁ = gm (m∗ cos(δα1)−m)

δω̇1 = − g0ωa
2
2a3m∗2

(δω2
1+a2

2)(δω2
1+a2

3)
δω1 − gωm

∗ sin(δα1)

δα̇1 = δω1 + k (δω̇1)

(4.82)

The averaged system has an equilibrium given by

m = m∗

δω1 = 0

δα1 = 0

(4.83)

Linearizing (4.82) around (4.83), the system’s Jacobian is

J =

⎛⎜⎝ −gm 0 0

0 −g0ωm
∗2

a3
−gωm∗

0 1− kg0ωm
∗2

a3
−kgωm∗

⎞⎟⎠ (4.84)
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with corresponding characteristic polynomial

det(sI − J) = (s + gm)

µ
s2 +

µ
g0ωm

∗2

a3
+ kgωm

∗
¶
s + gωm

∗
¶

(4.85)

Again, the linearized system is found to be the combination of two linear time-

invariant systems. As opposed to the roots of (3.13), now the poles are given by

the roots of

s + gm = 0

s2 +

µ
g0ωm

∗2

a3
+ kgωm

∗
¶
s + gωm

∗ = 0
(4.86)

The system continues to be stable for all positive values of the design parameters

g0ω, gω, gm, k. However, the combination of the MPLL with the simple dynamics of

the IMFE frequency estimate has increased the damping coefficient of the frequency

loop. From [49], it is known that this means the combined MPLL/IMFE can tolerate

larger initial frequency estimation errors than can the MPLL by itself.

4.5.2 Discrete-time implementation

To implement the combined MPLL/IMFE algorithm in the discrete time, the dis-

crete MPLL implementation of [13] is used in conjunction with the discrete modified

IMFE implementation described in Sec. 4.4.5. The discrete time equations are given

as

x1(k) = zd2x1(k − 1) + (1− zd2) eC(k)

x2(k) = zd2x2(k − 1) + (1− zd2) eS(k)

x1F (k + 1) = zd3x1F (k) + (1− zd3)x1(k)

x2F (k + 1) = zd3x2F (k) + (1− zd3)x2(k)

m(k + 1) = m(k) + gmdeC(k)

Ω1(k + 1) = Ω1(k)− gωdeS(k)

+gd (x2(k)x1F (k + 1)− x1(k)x2F (k + 1))

αd1(k + 1) = αd1(k) + kα (Ω1(k + 1)− zαΩ1(k))

(4.87)
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with the vectors

µ
eC(k)
eS(k)

¶
= 2

µ
cos(α1(k))
sin(α1(k))

¶
(y(k)−m(k) cos (α1(k))) (4.88)

and the positive constants gd, kα, zα, gmd = T 2
Sgm, and gωd = T 2

Sgω. A tuning

procedure for gmd, gωd, kα, and zα can be found in [13].

4.5.3 Simulation example

To demonstrate the advantage of biasing the MPLL frequency loop with the IMFE

estimate, the results of a simulation are presented. A sampling period of TS =

0.000125s was used, and the frequency of the input was taken as f∗1 = 160 Hz. The

following parameter values were used

gωd = 4.0× 10−4

gmd = 0.0075

kα = 267

zα = 1− 1
kα

zd2 = 0.99

zd3 = 0.7

gd = 0.125

(4.89)

In the first simulation, the MPLL estimator was used without the aide of the modified

IMFE. The initial frequency estimate was chosen as f1(0) = 100 Hz. The MPLL

magnitude, frequency, and phase estimates can be seen in Fig. 4.15. For an initial

frequency error of 60 Hz, the frequency estimate is seen to take a full 1.5 seconds

to converge to the true value. In the second simulation, the combined MPLL/IMFE

was used. The initial MPLL and IMFE frequency estimates was set at f1(0) = 0 and

f̄(0) = 100 Hz, respectively, so that the initial frequency error is again 60 Hz. The

results can be seen in Fig. 4.16. The combined frequency estimate is seen to converge

to the true value in substantially less than 0.5 seconds.
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Figure 4.15. States of the MPLL frequency estimator when the MPLL alone is used.

Figure 4.16. Frequency estimates of the MPLL, IMFE, and the combined estimate
when the combined MPLL/IMFE estimator is used.
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4.6 Sinusoidal Disturbances of Unknown
Frequency Acting on an

Unknown System
It has been shown that the rejection of sinusoidal disturbances of unknown fre-

quency acting on an unknown system can be accomplished by the ADHSS algorithm.

Additionally, it has been shown that when the MPLL frequency estimator is combined

with the ADHSS algorithm, the two components interact such that a known phase

version of the ADHSS algorithm can be used. Here it is shown how the stability of

the ADHSS/MPLL algorithm can be dramatically improved by combining the known

phase ADHSS with the MPLL/IMFE frequency estimator.

4.6.1 Combined ADHSS/MPLL/IMFE algorithm

The states of the ADHSS/MPLL/IMFE algorithm can be divided into a fast and

a slow time scale. The slow variables are given by the states of the ADHSS, the states

of the MPLL, and the IMFE frequency update. To avoid confusion with the signals

of the frequency estimator, the notation xθ is used to denote the state of the ADHSS.

This gives

ẋθ = −gE(xθ)w1(t)
¡
wT

1 (t)ET (xθ)xθ − y
¢

ṁ = gmeC

ω̇1 = −gωeS + g0ω (x2x1F − x1x2F )

α̇1 = ω1 + kω̇1

(4.90)

with the positive constants g, g0ω, gm, gω, and k, as well as the algebraic expressions

E(xθ) =

µ
θc(xθ) θs(xθ) 1
θs(xθ) −θc(xθ) 0

¶T

θ(xθ) = − 1
x2
θ1+x2

θ2

µ
xθ1xθ3
xθ2xθ3

¶
µ

eC
eS

¶
= 2

µ
cos(α1)
sin(α1)

¶
(y −m cos (α1))

(4.91)

The fast variables consist of the plant and disturbance



118

ẋP = AxP + Bu = AxP + BwT
1 (t)θ(xθ)

y = CxP + m∗ cos(α∗1) = CxP + m∗w1(t)

µ
cos(α1 − α∗1)
sin(α1 − α∗1)

¶
α̇∗1 = ω∗1

(4.92)

as well as the IMFE dynamics

ẋ1 = −a2x1 + a2eC

ẋ2 = −a2x2 + a2eS

ẋ1F = −a3x1F + a3x1

ẋ2F = −a3x2F + a3x2

(4.93)

4.6.2 Averaged system

The overall system is described by a complex set of time-varying nonlinear differ-

ential equations. While the components of the algorithm have been studied separately

and shown to have desirable stability properties, it remains to investigate the proper-

ties of the combined algorithm. To do this, averaging theory is employed once again.

In Sec. 3.3.1, it was shown that the influence of a phase error on the ADHSS required

a correction term to be added in the averaged system. Here, this is also the case.

After adding the correction term, the overall averaged dynamics are given by

ẋθ = −g
2
E(xθ)

µ
ET (xθ) (xθ − x∗θ)−m∗

µ
cos(δα1)− 1

sin(δα1)

¶¶
ṁ = gm (m∗ cos(δα1)−m + x∗θ1θc + x∗θ2θs)

δω̇1 = − g0ωa
2
2a3m∗2

(δω2
1+a2

2)(δω2
1+a2

3)
δω1 − gω (m∗ sin (δα1)− x∗θ2θc + x∗θ1θs)

δα̇1 = δω1 + k (δω̇1)

(4.94)

4.6.3 Equilibrium points

The procedure for finding the equilibrium points of (4.94) is identical to finding

the equilibrium points of (3.49) in Chapter 3. Namely, equilibrium points are known

to satisfy the following conditions
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m = 0

xθ3
xθ1x

∗
θ1 + xθ2x

∗
θ2

x2
θ1 + x2

θ2

= m∗ cos(δα1)

xθ3
xθ2x

∗
θ1 − xθ1x

∗
θ2

x2
θ1 + x2

θ2

= m∗ sin(δα1)

(4.95)

Defining kPk, kP ∗k, φ, and φ∗ so that

xθ1 = kPk cos (φ)

xθ2 = kPk sin (φ)
(4.96)

and

x∗θ1 = kP ∗k cos (φ∗)

x∗θ2 = kP ∗k sin (φ∗)
(4.97)

the conditions become

xθ3
kP ∗k cos(φ− φ∗)

kPk = m∗ cos(δα1)

xθ3
kP ∗k sin(φ− φ∗)

kPk = m∗ sin(δα1)

(4.98)

If kPk and φ are chosen as free variables, xθ1 and xθ2 are given by (4.96) and δα1 and

xθ3 can take one of two possible values

δα1 = φ− φ∗ + nπ

xθ3 = (−1)n m∗ kPk
kP∗k

(4.99)

with n = 0 or 1. For n = 0, the estimate of the magnitude of the disturbance is

correct and the PLL phase error is zero if the estimate of the plant is exact. As in

Chapter 3, the estimate of the magnitude of the disturbance is weighted by the ratio

of the plant magnitude to the plant magnitude estimate, and the PLL phase error is

equal to the plant phase error φ − φ∗. For n = 1, the magnitude estimate changes

sign and the phase simply shifts by 180 degrees to compensate for it.
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4.6.3.1 Local stability of equilibrium points

The local stability of the equilibrium points can be obtained by linearizing (3.49)

around an equilibrium state. This computation and others to follow are best per-

formed using a symbolic computation engine. With the following definitions

j1 = m∗2

kPkkP∗k , j2 = m∗

kPk

j3 = m∗2

kP ∗k , j4 = kP∗k
kPk

(4.100)

the Jacobian of the system evaluated around an equilibrium point can be computed

to be

J =

⎛⎜⎜⎜⎜⎜⎜⎝
−g

2
j1 cos(φ− φ∗) −g

2
j1 sin(φ− φ∗) (−1)n g

2
j2 cos(φ∗)

g
2
j1 sin(φ− φ∗) −g

2
j1 cos(φ− φ∗) (−1)n g

2
j2 sin(φ∗)

(−1)n g
2
j2 cos(2φ− φ∗) (−1)n g

2
j2 sin(2φ− φ∗) −g

2
j4 cos(φ− φ∗)

(−1)n gmj2 cos(2φ− φ∗) (−1)n gmj2 sin(2φ− φ∗) −gmj4 cos(φ− φ∗)

(−1)n+1 gωj2 sin(2φ− φ∗) (−1)n gωj2 cos(2φ− φ∗) gωj4 sin(φ− φ∗)

(−1)n+1 kgωj2 sin(2φ− φ∗) (−1)n kgωj2 cos(2φ− φ∗) kgωj4 sin(φ− φ∗)

· · ·

0 0 −g
2
j3 sin(φ∗)

0 0 g
2
j3 cos(φ∗)

0 0 (−1)n+1 g
2
m∗ sin(φ− φ∗)

−gm 0 (−1)n+1 gmm
∗ sin(φ− φ∗)

0 −g0ωm
∗2

a3
(−1)n+1 gωm

∗ cos(φ− φ∗)

0 1− kg0ωm
∗2

a3
(−1)n+1 kgωm

∗ cos(φ− φ∗)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.101)

This Jacobian is similar to (3.59) except for the elements in row five and six of the

fifth column. These elements have changed due to the influence of the modified IMFE

dynamics. The characteristic equation det(λI − J) = 0 has the following form

λ2 (λ + gm)
¡
c3λ

3 + c2λ
2 + c1λ + c0

¢
= 0. (4.102)

The 2 eigenvalues at λ = 0 are associated with the two-dimensional equilibrium

subset, and the stable eigenvalue at λ = −gm is associated with the state m, which
depends on but does not influence other states. The stability of the three remain-
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ing eigenvalues can be ascertained by considering the third-order polynomial with

coefficients

c3 = 1

c2 = cos (φ− φ∗)
¡
gj1 + 1

2
gj4 + (−1)n 2kg0ωm

∗¢+ g0ωm
∗2

a3

c1 = (−1)n 1
2
gkgωm

∗ (j1 + j4) + g2

4
(j2

1 + j2
2) + (−1)n gωm

∗ cos (φ− φ∗)

+gg02ωm
∗2

a3

¡
j1 + 1

2
j4
¢
cos (φ− φ∗)

c0 = (−1)n 1
2
ggωm

∗ (j1 + j4) + 1
4
g2g0ωj1
m∗a3

(4.103)

These coefficients are the same as (3.61) except for the last term in each coefficient.

The last term reflects the influence of the modified IMFE dynamics. As in Chapter 3,

stability of the equilibrium surface is ascertained through application of the Routh-

Hurwitz test [35]. In Chapter 3, it was found that when n = 1, c0 was negative

indicating there are always eigenvalues in the right-half plane. Now, it is found

that through the addition of the modified IMFE dynamics, it is possible to obtain

eigenvalues in the left-half plane. However, for the typical gain and system parameter

values used in practice, c0 remains negative for n = 1, and eigenvalues remain in the

right-half plane. If n = 0, the stability of the system is still guaranteed if and only if

|φ− φ∗| < 90◦ and c2c1 − c3c0 > 0 (4.104)

The condition c2c1 − c3c0 > 0 is equivalent to

cos2 (φ− φ∗) + b1 cos (φ− φ∗)− b0 > 0 (4.105)

where (reintroducing the original variables)

b1 =
(g3a2

3m
∗j6+2g2kgωa2

3kPkkP∗ka7)j5+N1

gg0ωm∗(g+2kgωkPkkP∗km∗)j26+D1

b0 =
2ggωj5kPkkP∗k(a3−kg0ωm∗2)

2ggωj6kPkkP∗k(a3+kg0ωm∗2)+D2

(4.106)
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with

N1 = 4g kPk2 kP ∗k2 m∗2 (k2g2
ωa

2
3j5 + g02ωm

∗j6 + 2gωg
0
ωa3 kPk kP ∗k)

D1 = 4kg2
ωa3 kPk2 kP ∗k2 m∗ + 2ggωa3 kPk kP ∗k j5

D2 = 4g2g0ωm
∗3j5 + kP ∗k2 m∗ ¡4kg2

ωa3 kPk2 + g2g0ω kP ∗k
2¢ (4.107)

and

j5 = kP ∗k2 + m∗2

j6 = kP ∗k2 + 2m∗2

j7 = kP ∗k2 + 3m∗2

(4.108)

As in Chapter 3, (4.104) is satisfied if and only if

|φ− φ∗| < φ̄ (4.109)

where

φ̄ = cos−1

Ãp
b21 + 4b0 − b1

2

!
(4.110)

While φ̄ still defines a range of φ about the nominal angle φ∗ that leads to stability

of the system, the modified IMFE dynamics have introduced a new mechanism for

increasing the value of φ̄. In Chapter 3 it was shown that for k sufficiently large, the

region of stability approached that of the known frequency algorithm. However, k

cannot become arbitrarily large without seriously affecting stability of the frequency

estimate. Now, the gain of the modified IMFE dynamics can also be used to increase

the range of φ leading to stability. Namely, for

a3 − kg0ωm
∗2 ≤ 0 (4.111)

stability of an equilibrium can be guaranteed. This condition is more easily satisfied.

(4.111) also implies that the disturbance magnitude m∗ must be sufficiently large.
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A similar condition was observed in Chapter 3, where experiments showed that the

algorithm was able to cope with sudden decreases in m∗.

4.7 Experimental Results
The performance of the ADHSS/MPLL/IMFE algorithm was examined through

single-channel active noise control experiments. The ADHSS equations were dis-

cretized using the Euler approximation so that

x(k) = x(k− 1)− gθE(x(k− 1))w1(k)
¡
wT

1 (k)ET (x(k − 1))x(k − 1)− y(k)
¢
(4.112)

where gθ = gTS, and the MPLL/IMFE was discretized as described in Sec. 4.5.2.

The algorithm was coded in C and implemented in a dSPACE DS1104 digital signal

processing board. A sampling frequency of 8 kHz was used. A constant amplitude

sinusoidal disturbance was generated by a loudspeaker, while the control signal was

produced by another loudspeaker. Amicrophone was used to measure the cancellation

error. The plant consists of the hardware and transmission in the environment from

the control signal output to the error microphone input, including the propagation

effects of the surrounding air. The experiments were conducted in a small room where

many signal reflections were present. In all experiments, the following parameters

were used

gωd = 4.4× 10−4

gmd = 0.0025

kα = 800

zα = 1− 1
kα

zd2 = 0.99

zd3 = 0.8

gd = 0.125

gθ =

⎛⎝ 200 0 0
0 200 0
0 0 2

⎞⎠TS

(4.113)
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4.7.1 Changes in the plant

In this experiment, changes in the plant’s frequency response are investigated.

The frequency of the disturbance was taken as 190 Hz. The true frequency response

parameters corresponding to the initial location of the microphone used to measure

the system’s error were

x∗1 = 0.1004

x∗2 = −0.7893
(4.114)

This is equivalent to a phase angle of φ∗ = −82.8 degrees. The algorithm was allowed

to reach steady-state and the estimated frequency response parameters were

x1 = 0.0802

x2 = −0.3522
(4.115)

This corresponds to an estimated phase angle of φ = −77.2 degrees and a phase

error of |φ− φ∗| = 5.6 degrees. After reaching steady-state, the microphone used

for cancellation was moved from its initial location towards a location whose true

frequency response parameters were given by

x∗1 = 0.3928

x∗2 = 0.1207
(4.116)

Corresponding to a phase angle of 17.1 degrees. This equals a change in the phase of

the true frequency response of 99.9 degrees. In Fig. 4.17, the states of the ADHSS

can be seen, and in Fig. 4.18, the phase angle corresponding to the estimated plant

parameters is seen. As the error |φ− φ∗| approaches the 90 degree barrier, oscillations

begin to appear. However, at approximately 15 seconds, the estimated phase angle

suddenly changes to approximately φ = 3.5 degrees and a phase error of |φ− φ∗| =

13.6 degrees. In Fig. 4.19, the control signal u and error signal y are shown. A spike is

seen in the error due to the local instability around |φ− φ∗| = 90 degrees.. However,

due to the nonlinear dynamics of the ADHSS, the algorithm is able to recover. The

frequency estimate can be seen in Fig. 4.20.
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Figure 4.17. States of the ADHSS while the phase of the true plant changes by
more than 90 degrees.

Figure 4.18. ADHSS phase estimate while the phase of the true plant changes by
more than 90 degrees.
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Figure 4.19. Control and error signals while the phase of the true plant changes by
more than 90 degrees.

Figure 4.20. Frequency estimate while the phase of the plant changes by more than
90 degrees.
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4.7.2 Changes in disturbance frequency

In this experiment, the ability of the ADHSS/MPLL/IMFE algorithm to deal with

changes in the frequency of the disturbance was investigated. Initially, the frequency

of the disturbance was taken to be 150 Hz. After 2 seconds, frequency estimation was

engaged and, 3 seconds later the ADHSS was engaged and significant attenuation of

the error resulted. After reaching steady-state, the frequency of the disturbance was

changed to 200 Hz. This corresponds to a change of 50 Hz in the frequency of the

disturbance. The results can be seen in Fig. 4.21. After some initial transients, the

error is able to recover and significant attenuation of the disturbance resumes. The

frequency estimate is shown in Fig. 4.22.

To demonstrate the significance of these results, the same experiment was repeated

with the ADHSS/MPLL algorithm of Chapter 3. In Fig. 4.23, it is seen that this

leads to poor rejection of the disturbance. In Fig. 4.24, it is seen that the frequency

estimation is unable to compensate for such a large step in the disturbance frequency.

Figure 4.21. ADHSS/MPLL/IMFE error signal with large change in disturbance
frequency.



128

Figure 4.22. ADHSS/MPLL/IMFE estimated frequency with large change in
disturbance frequency.

Figure 4.23. ADHSS/MPLL error with a large change in disturbance frequency.
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Figure 4.24. ADHSS/MPLL frequency estimate with a large change in the distur-
bance frequency.

4.8 Conclusions
In this chapter, a new frequency estimator was presented. Derived from the

model of a two-phase induction motor under current command, the induction motor

frequency estimator, or IMFE, simulated the equations of the model in the absence

of load or friction effects with a sinusoidal signal of unknown frequency being used

to construct the two-phase sinusoidal input to the motor. This enabled the torque

equation of the induction motor model to act as a frequency estimate update. Aver-

aging theory was used to show that global convergence (for positive initial conditions)

of the frequency estimator was ensured, with local exponential stability around the

nominal value. After presenting the equations needed for a discrete implementation

of the estimator, the IMFE was used in two distinct disturbance rejection situations.

In the first, the plant was assumed to be known, and the IMFE was combined with

a gradient-based disturbance cancellation algorithm for the rejection of sinusoidal

disturbances of unknown frequency. It was found that the control signal used for

disturbance cancellation introduced a bias into the frequency estimate requiring a

simple fix. Specifically, the effect of the control signal at the output of the plant was



130

subtracted before being used as input to the IMFE. Averaging theory was used to show

that the resulting disturbance cancellation algorithm was also globally convergent,

with an assumption of small gains. Active noise control experiments were used to

demonstrate performance of the algorithm and to verify the results of the analysis.

In the second disturbance cancellation situation, the plant was assumed to be

unknown, and the IMFE was combined with the ADHSS algorithm for unknown

plant. Since the plant was not known, it was not possible to implement the fix used

when the plant was known. Thus, the IMFE was redesigned to obtain an unbiased

estimator in the presence of a constant control signal. It was shown in Chapter 3 that

the performance of the ADHSS depended upon a precise frequency estimate. While

the IMFE was designed to estimate the frequency of the disturbance, the phase does

not lock onto the phase of the disturbance, so that minor variations introduced by

measurement noise can lead to an unstable disturbance cancellation algorithm. As

such, the IMFE was combined with the MPLL to obtain a frequency estimate whose

phase is locked to the disturbance phase while possessing better stability properties

than the MPLL alone. An averaging analysis showed that using the IMFE with

the ADHSS/MPLL algorithm of Chapter 3 provided an additional mechanism for

increasing the range of allowable phase errors in the steady-state plant estimate.

Active noise control experiments demonstrated the algorithm.



CHAPTER 5

CONCLUSIONS

5.1 Summary
The primary objective of the dissertation was to develop and analyze adaptive al-

gorithms for sinusoidal disturbances acting on an unknown and possibly time-varying

plant. First, an adaptive algorithm known as the so-called ADHSS algorithm was

developed based on the assumption that the system’s plant could be represented by its

sinusoidal steady-state frequency response and that the frequency of the disturbance is

known. Estimates of the plant frequency response and the disturbance magnitude and

phase were obtained based on a linear parameterization of a measure at the output of

the plant. Averaging theory provided justification for the steady-state assumption and

provided valuable insight into the behavior of the algorithm. The system’s equilibrium

was described by a four-dimensional surface containing the nominal parameters and

with any point on the surface other than the origin resulting in cancellation of the

disturbance. It was found that the line through the origin on the equilibrium surface

that is perpendicular to the line joining the origin and the nominal value of the

frequency response divides the equilibrium surface into stable and unstable halves,

with the nominal values residing on the stable half. A Lyapunov analysis showed

that trajectories beginning in the vicinity of the unstable region of the equilibrium

surface traveled along a sphere until reaching a stable equilibrium point. Numerous

active noise control experiments demonstrated performance of the algorithm when

the system’s plant changes both rapidly or slowly with time, and a comparison with

a similar implementation of the FXLMS algorithm without online plant estimation

was given. Finally, extensions of the algorithm for consideration of multiple inputs

and outputs as well as multiple frequency components were given and active noise

control experiments demonstrated use of the extensions.
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While the algorithm worked well when the frequency of the disturbance was

known exactly, the presence of even a small frequency error was shown to result

in periodic bursting of the control signal. To avoid bursting of the control signal

and thus the measured output in cases where the disturbance frequency is uncertain,

frequency estimation was added to the ADHSS algorithm. It was found that MPLL

frequency estimation could be combined with the ADHSS in a special way that

did not significantly increase the complexity of the algorithm. Indeed, the use of

MPLL frequency estimation allowed the order of the ADHSS to be decreased from

four states in the known frequency case to only three states. Combined with the

three states of the MPLL, the overall algorithm for consideration of disturbances of

unknown frequency involved only two additional states over the known frequency

ADHSS developed in Chapter 2 of the dissertation. After exploring the reduced

order ADHSS, the equations describing the overall closed-loop system consisting of

ADHSS disturbance rejection and MPLL frequency estimation were given and the

corresponding averaged system was found. The equilibrium of the averaged system

was a two-dimensional line. Local stability of the combined algorithmwas investigated

by assessing the eigenvalues of the system linearized about an equilibrium point.

It was found that there is always a positive range of equilibrium points around

the nominal frequency response parameters for which the system is stable. The

range was reduced from the ± 90 degrees in the known frequency case. However,

conditions in terms of the user-defined parameters of the algorithm under which the

angle approaches that of the known frequency case were given. Numerous active

noise control experiments demonstrated the ability to track changes in both the plant

frequency response and disturbance frequency.

While the combined ADHSS/MPLL algorithm was shown to perform well in

challenging conditions, a major limitation of the algorithm was due to the local

stability of the MPLL frequency estimate. As such, a new frequency estimation

algorithm known as the IMFE and possessing semiglobal convergence properties in

the context of averaging was introduced. Based on the theory of electric machines,

it was shown that the equations of the two-phase induction motor under current
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command could be used to estimate the frequency of a sinusoidal signal. Analysis of

the corresponding averaged system showed that positive initial frequency estimates

converged globally with convergence becoming exponential close to the true frequency.

Next, the IMFE was used in an indirect adaptive disturbance cancellation algorithm

for a known plant. It was found that the estimator was biased in the presence of

a constant control signal, requiring a simple fix. This fix consisted of subtracting

the effect of the control signal at the output of the plant from the input to the

estimator. However, if the new estimator was to be used with the unknown plant

ADHSS algorithm, it would be impossible to utilize this fix. Thus, a modified version

of the IMFE that remains unbiased in the presence of a constant control signal was

presented. Combining the modified IMFE with the MPLL resulted in an estimator

with a larger stability region that still locks onto the phase of the disturbance as

the frequency estimate approaches the true value. After combining the MPLL/IMFE

frequency estimator with ADHSS disturbance rejection, an eigenanalysis similar to

the one used in Chapter 3 for the MPLL alone combined with the ADHSS showed

that local stability about an equilibrium of the algorithm was improved. Namely, the

user-defined parameters of the modified IMFE could be used to increase the range of

equilibrium points around the nominal frequency response parameters for which the

system is stable. Active noise control experiments demonstrated the algorithm.

5.2 Future Work
5.2.1 Reduction of the ADHSS

It was shown that the excellent stability properties of the ADHSS where rooted

in a fundamental over-parameterization of the system that resulted in the linearized

system possessing two eigenvalues at the origin. However, if one of the eigenvalues

at the origin could be eliminated while maintaining the stability properties of the

algorithm, the order of the ADHSS could be reduced. Practically, this might involve

fixing one of the adapted disturbance parameters at a constant value, i.e. setting

x4 = 1. Preliminary simulations have shown that this development still leads to

convergence of the algorithm with a larger initial transient being observed. However,
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at steady-state, the algorithm appeared to posses the same properties as the original

algorithm. Future research might involve further development of this idea by dealing

with the issue of initial convergence.

5.2.2 Convergence of the ADHSS with
frequency tracking

While the local stability of the ADHSS algorithm combined with frequency esti-

mation has been explored, no insight into the region around an equilibrium for which

the local stability is valid has been provided. Due to the highly nonlinear nature

of the adaptive algorithm, this insight is very difficult to obtain. However, future

research could involve exploration of the region of attraction, possibly through a

Lyapunov analysis. If discovery of an appropriate Lyapunov function proves elusive,

a numerical study may produce useful results.

5.2.3 Extension of the algorithms

While the rejection of sinusoidal disturbances of known frequency acting on an

unknown system was demonstrated for multiple inputs/outputs and multiple fre-

quency components, only a single input/output and a single frequency component

was considered in the rejection of a sinusoidal disturbance of unknown frequency

acting on an unknown system. Since many disturbances consist of multiple distinct

frequency components affecting a three-dimensional space, future work should involve

the extension of all algorithms introduced in the dissertation. In particular, extending

the semiglobally convergent IMFE to include the estimation of multiple frequency

components is not at all trivial and would be extremely beneficial.



APPENDIX A

AVERAGING THEORY BACKGROUND -

MIXED TIME SCALE SYSTEMS

Of particular interest to our problem is the continuous-time averaging method for

mixed time scale systems as discussed in [43]. The theory is applied to systems of the

form

ẋ = f(t, x, xP )

ẋP = A(x)xP + h(t, x) + g(t, x, xP )
(A.1)

For sufficiently small, x is a slow variable, while xP varies faster, except through

its dependency on x. Averaging theory shows how the trajectories of (A.1) can be

related to the trajectories of the so-called averaged system

ẋ = fav(x) (A.2)

where

fav(x) = lim
T→∞

1

T

t0+TZ
t0

f(τ, xω, v(τ, x))dτ (A.3)

and

v(t, x) :=

tZ
0

eA(t−τ)h(τ, x)dτ. (A.4)
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Central to the method of averaging is the assumption that the limit in (A.3) exist

uniformly in t0 and x. In other words, there exists a strictly decreasing continuous

function γ(T ), such that γ(T )→ 0 as T →∞ and

¯̄̄̄
¯̄ 1T

t0+TZ
t0

f(τ, x, v(τ, x))dτ − fav(x)

¯̄̄̄
¯̄ ≤ γ(T ). (A.5)

The function γ(T ) is called the convergence function. If the limit exists, is sufficiently

small, and certain technical conditions are satisfied, the response of (A.1) is close to

the response of (A.2). Specifically, the theory is based on the following assumptions.

Given some arbitrary vector x ∈ Rn and for some h > 0 such that Bh =

{x ∈ Rn |kxk < h}

B1 The function f and g are a piecewise continuous function of time, and a contin-

uous function of x and xP . Moreover, f(t, 0, 0) = 0, g(t, 0, 0) = 0 for all t ≥ 0,

and for some l1, l2, l3, l4 ≥ 0

|f(t, xa, xP,a)− f(t, xb, xP,b)| ≤ l1 |xa − xb|+ l2 |xP,a − xP,b|

|g(t, xa, xP,a)− g(t, xb, xP,b)| ≤ l3 |xa − xb|+ l4 |xP,a − xP,b|
(A.6)

for all t ≥ 0, xa, xb ∈ Bh, xP,a, xP,b ∈ Bh. Also assume that f(t, x, v(t, x)) has

continuous and bounded first partial derivatives with respect to x for all t ≥ 0

and x ∈ Bh.

B2 The function f(t, x, v(t, x)) has average value fav(x). Moreover, fav(x) has

continuous and bounded first partial derivatives with respect to x, for all x ∈ Bh,

so that for some lav ≥ 0

|fav(xa)− fav(xb)| ≤ lav |xa − xb| (A.7)

for all xa, xb ∈ Bh.

B3 Let d(t, x) = f(t, x, v(t, x)) − fav(x), so that d(t, x) has zero average value.

Assume that the convergence function can be written as γ(T ) |x|. Additionally,
∂d(t,x)
∂x

has zero average value, with convergence function γ(T ).
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The following result can then be obtained [43]:

Lemma 1 (Perturbation Formulation of Averaging) If the mixed time scale sys-

tem (A.1) and the averaged system (A.2) satisfy assumptions B1-B4. Then, there

exists a bounded function w (t, x), whose first partial derivative with respect to time

is arbitrarily close to d(t, x) and a class K function ξ( ) such that the transformation

x = z + w (t, x) (A.8)

is a homeomorphism in Bh for all ≤ 1, where 1 > 0. Under the transformation,

system (A.1) becomes

ż = fav(z) + p1(t, z, ) + p2(t, z, xP , )

z(0) = x(0)
(A.9)

where

|p1(t, z, )| ≤ ξ( )k1 |z| (A.10)

and

|p2(t, z, xP , )| ≤ k2 |xP,zi| (A.11)

for some k1, k2 depending on l1, l2, lav.

A proof of Lemma 1 can be found in [43]. This proof establishes a link between

the convergence function γ(T ) and the order of the bound in (A.10). In particular, if

d(t, x) in assumption B3 has a bounded integral with respect to time, then γ(T ) ∼ 1
T

and it can be shown that ξ( ) is on the order of . The bound in (A.11) is determined

by the convergence properties of xP,zi = xP −v(t, x), which is the zero-input response

of xP .
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Lemma 1 is fundamental to the theory of averaging. It allows a system satisfying

certain conditions to be written as a perturbation of the averaged system and it

shows that the perturbation terms are bounded. By imposing further restrictions,

conclusions can then be drawn concerning the closeness of the original and averaged

systems. Consider the additional assumptions:

B4 A(x) is uniformly exponentially stable for all x ∈ Bh.

B5 Let xav(t) specify the solution of the averaged system (A.2). For some h0 < h,

|xav(t)| ∈ Bh0 on the time intervals considered, and for some h0, xP (0) ∈ Bh0.

B6 h(t, 0) = 0 for all t ≥ 0, and
°°°∂h(t,x)

∂x

°°° is bounded for all t ≥ 0, x ∈ Bh.

Then, the following result can be obtained.

Lemma 2 (Basic Averaging Lemma) If the mixed time scale system (A.1) and

the averaged system (A.2) satisfy assumptions B1-B6, then there is an T , 0 < T ≤ 0

and a class K function Ψ( ) such that

kx(t)− xav(t)k ≤ Ψ( )bT (A.12)

for some bT > 0 and for all t ∈ [0, T/ ] and 0 < ≤ T . Further, Ψ( ) is on the order

of ξ( ) + .

A proof of Lemma 2 can be found in [43]. Lemma 2 states that, for sufficiently small,

the trajectories of (A.1) and (A.2) can be made arbitrarily close for all t ∈ [0, T/ ].

This allows insight into the behavior of (A.1) by studying the behavior of (A.2). Also,

when d(t, x) in assumption B3 has a bounded integral with respect to time, Ψ( ) is

on the order of . This condition is satisfied for the system under consideration due

to the sinusoidal nature of the signals.

B7 Assume that trajectories of the original and averaged system are such that

x2
1 + x2

2 > δ for some δ > 0.

Assumption B7 is a technical assumption that allows the theory to avoid certain

singularities that sometimes occur in adaptive systems, specifically, any time the gain

of the plant approaches zero.



APPENDIX B

ADHSS: VERIFICATION OF THE

ASSUMPTIONS

The original system is given by

f(t, x, xP ) = −E(x)w1(t)
¡
wT

1 (t)ET (x)x− CxP − wT
1 (t)π∗

¢
(B.1)

with corresponding averaged system

fav(x) = −1

2
E(x)ET (x)(x− x∗) (B.2)

and

d(t, x) = f(t, x, v(t, x))− fav(x)

= −E(x)
¡
w1(t)w

T
1 (t)− 1

2
I2×2

¢
ET (x)(x− x∗) + E(x)w1(t)ytr(t)

(B.3)

where ytr(t) decays exponentially to zero. In the verification of B1-B6, assumption

B7 will be assumed to hold. Then, we have the following:

For some arbitrary vector x ∈ Rn and for some h > 0 such that

Bh = {x ∈ Rn |kxk < h}

B1 Due to the sinusoidal variation of w1, f is continuous in t. Due to assumption

B7 and the BIBO stability of P (s), f is a smooth continuous function in x, xP

for all t ≥ 0 and x, xP ∈ Bh. Again, as a result of B7, {∂f/∂[x, xP ]} is bounded
for all t ≥ 0 and x, xP ∈ Bh.

B2 In the main text it is shown that the averaged system (B.2) can be obtained from

the original system (B.1) and, due to assumption B7, ∂fav/∂x is continuous and

bounded for all x ∈ Bh.
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B3 Since averaging is done with respect to time, d(t, x) and ∂d(t,x)
∂x

have zero average

value. Further, the following bounds can be derived

¯̄̄̄
¯̄ 1T

t0+TZ
t0

d(τ, x)dτ

¯̄̄̄
¯̄ ≤ 1

T
γ1(T ) kxk+ γ̃(T )¯̄̄̄

¯̄ 1T
t0+TZ
t0

∂d(t, x)

∂x
dτ

¯̄̄̄
¯̄ ≤ 1

T
γ2(T )h

(B.4)

where

γ1(T ) = 1

2ωkP̂ (jω)k2

∙°°°P̂ (jω)
°°°2

kπk2 + kπ̂k2 kP (jω)k2

−2 kP (jω)k2
°°°P̂ (jω)

°°°2

(θcθ
∗
c + θsθ

∗
s)

¸ 1
2

γ2(T ) = 1

2ωkP̂ (jω)k2

∙
kx∗k2 + 4 kP (jω)k2

µ
kπ̂k2

kP̂ (jω)k2 − θcθ
∗
c − θsθ

∗
s

¶¸ 1
2

(B.5)

and γ̃(T ) converges exponentially to 0 with ytr for all x ∈ Bh. Then, one can

write

γ(T ) =
1

T
max[γ1(T ), γ2(T )h] (B.6)

for all x ∈ Bh. Further, by assumption B7 and due to the sinusoidal variation of

w1, d(t, x) has a bounded integral with respect to time for all t ≥ 0 and x ∈ Bh.

B4 This assumption can be verified for the vast majority of active noise and vibra-

tion control applications for which this algorithm is designed.

B5 This assumption follows directly from the constraint on the averaged system

(2.50) derived in the main text and the bounded-input bounded-output (BIBO)

stability of P (s).

B6 This assumption is satisfied as a consequence of the BIBO stability of P (s).

B7 This assumption is satisfied as long as the magnitude of the plant frequency

response does not approach zero. While the amplitude response in active noise



141

and vibration control applications may exhibit dramatic dips due to the inter-

action of signal reflections, this can be avoided by appropriate arrangement of

the hardware.
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