3,149 research outputs found

    Kecenderungan kerjaya sebagai usahawan di kalangan pelajar bumiputera di Politeknik Sultan Haji Ahmad Shah, Kuantan, Pahang

    Get PDF
    Usahawan memainkan peranan penting dalam pembangunan ekonomi sesebuah negara. Walau bagaimanapun, jika dilihat senario sekarang, masih ramai Bumiputera yang kurang berminat untuk menceburi bidang keusahawanan. Justeru itu, kajian ini bertujuan untuk menyelidik tentang tahap kecenderungan keijaya sebagai usahawan di kaiangan pelajar Bumiputera tahun akhir Diploma Akauntansi Politeknik Sultan Haji Ahmad Shah, Kuantan (POLISAS). Secara khususnya, kajian ini akan menyelidik sejauh mana cita-cita pelajar Bumiputera untuk menjadi seorang usahawan dipengaruhi oleh ciri-ciri peribadi pelajar, faktor keluarga, faktor pengajian, pengalaman keija dan faktor persekitaran. Responden kajian terdiri daripada pelajar Bumiputera POLISAS iaitu seramai 51 orang. Data dikumpul menggunakan soal selidik dan dianalisis dengan menggunakan prosedur Ujian T, Crosstabs dan Korelasi Pearson melalui perisian SPSS (Statistical Package For Social Sciences). Dapatan kajian menunjukkan hanya faktor persekitaran (iaitu faktor pihak yang paling mempengaruhi pelajar untuk berniaga) yang dapat menarik minat pelajar untuk melibatkan diri dalam perniagaan. Faktor-faktor lain didapati kurang memberikan sumbangan dalam menarik minat pelajar untuk cenderung kepada bidang keusahawanan. Oleh itu, beberapa cadangan telah dibuat bagi menangani masalah ini agar kaum Bumiputera tidak jauh ketinggalan berbanding kaum lain dan seterusnya memenuhi hasrat kerajaan dalam merealisasikan matlamat Dasar Ekonomi Baru (DEB) yang masih belum dicapai sepenuhnya hingga ke hari ini

    'Create the future': an environment for excellence in teaching future-oriented Industrial Design Engineering

    Get PDF
    In 2001, the University of Twente started a new course on Industrial Design Engineering. This paper describes the insights that have been employed in developing the curriculum, and in developing the environment in which the educational activities are facilitated. The University of Twente has a broad experience with project-oriented education [1], and because one of the goals of the curriculum is to get the students acquainted with working methods as employed in e.g. design bureaus, this project-oriented approach has been used as the basis for the new course. In everyday practice, this implies a number of prerequisites to be imposed on the learning environment: instead of focusing on the sheer transfer of information, this environment must allow the students to imbibe the knowledge and competences that make them better designers. Consequently, a much more flexible environment has to be created, in which working as a team becomes habitual, and where cutting-edge technologies are available to facilitate the process. This can be realized because every student owns a laptop, with all relevant software and a full-grown course management system within reach. Moreover, the learning environment provides the fastest possible wireless network and Internet access available [2]. This obviously has its repercussions on the way the education is organized. On the one hand, e.g. virtual reality tools, CAD software and 3D printing are addressed in the curriculum, whereas on the other hand more traditional techniques (like sketching and model making) are conveyed explicitly as well. Together with a sound footing in basic disciplines ranging from mathematics to design history, this course offers the students a profound education in Industrial Design Engineering. The paper describes in more detail the curriculum and the education environment, based on which it is assessed if the course on Industrial Design Engineering can live up to its motto: ‘Create the future’, and what can be done to further enable the students to acquire the full denotation of that motto

    THE DEVELOPMENT OF A MECHATRONICS AND MATERIAL HANDLING COURSE: LABORATORY EXPERIMENTS AND PROJECTS

    Get PDF
    Mechatronic systems integrate technologies from a variety of engineering disciplines to create solutions to challenging industrial problems. The material handling industry utilizes mechatronics to move, track, and manipulate items in factories and distribution centers. Material handling systems, because of their use of programmable logic controllers (PLC), PLC networks, industrial robotics, and other mechatronic elements, are a natural choice for a college instructional environment. This thesis offers insight and guidance for mechatronic activities introduced in a laboratory setting. A series of eight laboratory experiments have been created to introduce PLCs, robotics, electric circuits, and data acquisition fundamentals. In-depth case studies synthesize the technologies and interpersonal skills together to create a flexible material handling system. Student response to the course and laboratory material was exceptional. A pre and post course questionnaire was administered which covered topics such as teamwork, human factors, business methods, and various engineering related questions. Quantitative scores resulting from these questionnaires showed a marked improvement by students, especially in regards to technical/engineering questions. The responses from students generally indicated an excitement about course material and a thorough understanding of the various syllabus topics. In this thesis, the multi-disciplinary mechatronics (and material handling systems) laboratory will be presented. An in-depth examination of each laboratory will be offered as well as the discussion of two material handling case studies. The Appendixes contain the PLC and robot code for a order fulfillment case study

    Lego Based Computer Communication for Business and Learning

    Get PDF

    MECHATRONIC SYSTEM DESIGN - A HYDRAULIC-BASED ENGINE COOLING SYSTEM DESIGN AND REFINEMENT OF A TECHNICAL ELECTIVE MECHATRONICS COURSE

    Get PDF
    The improvement of consumer products and industrial processes, in terms of functionality and reliability, has recently focused on the integration of sensors and real time controllers with attached actuators into the given physical system. The likelihood of long-term market penetration of smart devices has placed an emphasis on preparing engineering graduates for technology leadership roles in the workforce. This thesis examines mechatronic systems in two manners. First, an intelligent automotive internal combustion engine cooling system is studied for ground vehicles using hydraulic actuators which offer the opportunity for greater versatility and performance. Second, improvements to a technical elective mechatronics course at Clemson University in the Department of Mechanical Engineering have been completed to offer a better educational experience for both undergraduate and graduate students. Traditional and modern internal combustion engine cooling systems typically use a mechanical wax based thermostat along with a number of mechanical and/or electric actuators to remove the excessive heat of combustion from the engine block. The cooling system\u27s main objective is to maintain the engine temperature within a prescribed range which optimizes engine performance and promotes mechanical longevity. However, the cooling system adds to parasitic engine losses and vehicle weight, so a mechatronic based smart thermal management system has been designed to explore the higher power density and controllability of hydraulic actuators. In this research project, the experimental data has been initially gathered using a 4.6L gasoline engine with a mechanical wax based thermostat valve, engine driven coolant pump, and a hydraulic motor driven radiator fan with classical feedback control. A series of mathematical models for the hydraulic, electric, and thermal automotive subsystems have been developed to estimate the engine, coolant, and radiator temperatures as well as the overall system performance for various operating conditions. The experimental test platform features a medium duty eight cylinder internal combustion engine, stand-alone radiator, engine dynamometer, smart cooling system components, high speed data acquisition system, and real-time control algorithm with associated sensors. Specifically, J-type and K-type thermocouples measure the engine block, coolant, and radiator core temperatures at various locations. A multiplexer switches these input signals at predetermined intervals to accommodate the large number of temperature probes. Further, optical sensors measure the engine and radiator fan speeds, and pressure sensors record the hydraulic line pressures. A hydraulic direction control valve was used to adjust the speed of the radiator fan. The experimentally recorded engine data was compared with the numerical simulation results to estimate the engine\u27s thermal behavior for warm up and idle conditions. The findings demonstrated that the proposed experimental model and mathematical models successfully controlled the engine temperature within ±1.5°K . In the future, the mathematical models can be used for linear quadratic regulator and Lyapunov-based nonlinear controllers after further refinement and the addition of state variables for the engine thermal management system. To implement such a mechatronic-based cooling system, engineers must have a fundamental understanding of system dynamics, control theory, instrumentation, and system integration concepts. Given the growing industrial demand for graduates with diverse engineering knowledge, a mechatronic systems course has been designed in the Department of Mechanical Engineering at Clemson University. This mechatronics course, ME 417/617, has been designed to introduce both engineering and personal skills. The students, who would successfully complete the course, will be able to join global work teams designing smart products. The course uses various teaching paradigms such as classroom activities, laboratory experiments, team based design projects, and plant tours to introduce the concepts and offer hands-on experience. As part of a continuous improvement process, the course has been evaluated using assessment methods such as pre- and post-tests, qualitative measures, and advisory panel observations. Over a four course offering period (2008-2011), the pre- and post-tests reflect improvements in the students\u27 personal growth (7.0%), team building (12.8%), mechanics/engineering (25.4%), and human factor (17%) skills. The qualitative assessment was completed using student feedback regarding the course content. Most of the students reported that they liked the course and its \u27hands-on\u27 experimental approach. An advisory panel, consisting of industry experts, course instructors, and faculty analyzed the progress of students and evaluated the course materials. The advisory panel\u27s recommendations established the direction for continuous improvements to successfully teach the concepts of mechatronics and better meet the student needs. Going forwards, the mechatronic systems course will serve an important role in preparing graduates for future endeavors

    The MARVEL EU project: A social constructivist approach to remote experimentation

    Get PDF
    The work presented in this paper proposes a conceptual model where remote experimentation is envisaged as a tool to achieve instructional objectives via social constructivist learning methods. The conceptual model described considers remote experiments as embedded activities in an e-learning framework that integrates the necessary tools to support the acquisition of theoretical concepts, synchronous communication via video-conferencing, interface panels to the equipments available in the remote workbench, and the necessary management tools to support this architecture. Each remote experiment is perceived by the students as a broader activity (called workshop activity) that enables them to achieve pre-defined learning goals, where collaborative actions and peer-review activities are at the basis of the underlying social constructivist learning model. The outcome of these activities is itself a learning object that provides evidence that the learning goals were achieved

    Integrated quality and enhancement review : summative review : Farnborough College of Technology

    Get PDF

    METODOLOGIAS ATIVAS NO ENSINO SUPERIOR: UM MAPEAMENTO SISTEMÁTICO NO CONTEXTO DOS CURSOS DE ENGENHARIA

    Get PDF
    Active learning is all pedagogical alternatives that place the focus of learning on the students. With the mediation of competent teachers, the students learn by discovery, by investigation, and by problems. Such methodologies commonly promote more content retention and comprehension once the students are engaged in activities, whether through research, group collaborations, discussion, and problem solving. This work aimed to verify the temporal evolution of active learning methods in higher education Engineering courses, based on a systematic mapping of the literature. We observed which are the main researchers in this field, their geographic location and which methodologies are preferred in the context of these courses. From the results, we observe a growth of scientific publications on active learning methodologies and Engineering Education, especially in the last five years of the period analysed (between 2015 and 2020). We also see researchs on this field in all continents, with a predominance of studies led by American and European researchers. In the mapped studies, the inverted classroom and problem-based learning were the most identified methodologies. It demonstrates a concern of teachers in this area to promote activities with high involvement, which allow the development of personal and professional skills and competencies, even during their training period.Las metodologías activas pueden entenderse como alternativas pedagógicas que ponen el foco del aprendizaje en los alumnos. Con la mediación de profesores competentes, los alumnos aprenden a partir del descubrimiento, la investigación y los problemas. Estas metodologías suelen promover una mayor retención y comprensión de los contenidos enseñados, ya que el alumno participa en actividades, ya sea a través de la investigación, la colaboración en grupo, el debate y la resolución de problemas. Este trabajo tuvo como objetivo verificar la evolución temporal del uso de las metodologías activas en el contexto de los cursos de educación superior en Ingeniería, a partir de un mapeo sistemático de la literatura. A partir de un protocolo de investigación debidamente definido, se buscó verificar cuáles son los principales investigadores en esta área, su ubicación geográfica y cuáles son las metodologías preferidas en el contexto de estos cursos. A partir de los resultados, se pudo observar que el crecimiento en el número de publicaciones científicas sobre metodologías activas en el contexto de la Enseñanza de la Ingeniería, especialmente en los últimos cinco años del período analizado (entre 2015 y 2020). Se puede observar la realización de investigaciones en este contexto en todos los continentes, con un predominio de estudios dirigidos por investigadores americanos y europeos. En los estudios mapeados, el flipped classroom y el aprendizaje basado en problemas fueron las metodologías más identificadas. Esto demuestra una mayor preocupación entre los profesores de la zona por promover actividades con alta implicación que permitan el desarrollo de habilidades y competencias personales y profesionales durante el periodo de formación.As metodologias ativas podem ser entendidas como alternativas pedagógicas que colocam o foco do aprendizado nos estudantes. Com mediação de docentes competentes, os alunos aprendem a partir da descoberta, da investigação e por problemas. Tais metodologias comumente promovem uma maior retenção e compreensão de contéudos ensinados, uma vez que o aprendiz se encontra engajado nas atividades, seja por meio de pesquisa, colaborações em grupo, discussão e resolução de problemas. Este trabalho teve como objetivo verificar a evolução temporal do uso de metodologias ativas, no contexto dos cursos superiores de Engenharia, a partir de um mapeamento sistemático da literatura. A partir de um protocolo de pesquisa devidamente definido, buscou-se verificar quais os principais pesquisadores desta área, sua localização geográfica e quais as metodologias preferidas no contexto destes cursos. A partir dos resultados, foi possível observar que o crescimento do número de publicações científicas sobre metodologias ativas no contexto da Educação em Engenharia, em especial nos últimos cinco anos do período analisado (entre 2015 e 2020). Pode-se notar a realização de pesquisas neste contexto em todos os continentes, com predomínio de estudos liderados por pesquisadores americanos e europeus. Nos estudos mapeados, a sala de aula invertida e a aprendizagem baseada em problemas foram as metodologias mais identificadas. Isso demostra uma maior preocupação dos professores da área em promover atividades com elevado envolvimento, que permitam o desenvolvimento de habilidades e competências pessoais e profissionais, ainda no período de formação

    DEVELOPMENT OF A DIDACTIC SET OF PNEUMATICS AND SERVO PNEUMATICS IN ENGINEERING EDUCATION

    Get PDF
    Control of the work piece position is one of the most difficult and most common problems in manufacturing. This problem is in most cases solved by using an electric axis with a servo or step motor, servo pneumatic or classical pneumatic components. Having this in mind, a didactic set for controlling the work piece position in vertical tubes has been developed and will be described in this paper. This system has been realized by using servo pneumatics and classical pneumatics. In this system, feedback was used for controlling the work piece position in a servo pneumatic system. The feedback was obtained by using a photoelectric sensor. The developed system is a part of the laboratory equipment used by undergraduate and graduate students in the Industrial Engineering and Mechatronics study programme at the Faculty of Technical Sciences, University of Novi Sad, as well as by individuals who already work in industry. This didactic set encourages active participation of students in class and helps them with their tasks, which include learning about the structure of the set and the way of controlling the work piece position

    Monitieteisten opiskelijaprojektien verkkopohjainen tukeminen

    Get PDF
    The aim of this work is to investigate, how project courses can be supported with online tools. Especially learning in projects and supporting the progression of projects is inspected. The ultimate goal would be that the students would form a team and get started fluently as well as work efficiently in projects while also learning and getting feedback. Practical online methods are created especially for the needs of mechatronics and cell biology student projects at Aalto University. The literature review examines interdisciplinary projects, learning, teaching and assessment in projects, phases of a project and project management and software used in project courses. Challenges of projects are presented with the help of questionnaire results at the beginning of the research part. Different types of preliminary methods have been developed to tackle these challenges. These include a formation of a team exercise, instructions for online project management, visualizing a course process with a diagram as well as tools for self- and peer-assessment. A case course was available to test some of the methods. The experiences of the students were inspected with a questionnaire. Based on the research, a plan was created for example projects, where students in a cell biology course and students in a mechatronics course will cooperate. The plan includes, what the students do together and what separately and what teaching methods are used. This research provides the reader a good understanding about the utilization of online methods in project courses. It is brought out how the visualization of different aspects can support the progression of a project and what kind of documentation and instruction should be utilized. Based on the research, several practical recommendations can be given. For example, asking students to write down and share their working time was found to even out the workload of a team and the documentation of the students from previous years was seen as a useful baseline for the new students.Tämän työn tarkoituksena on tutkia, miten projektikursseja voidaan tukea verkkopohjaisilla menetelmillä. Erityisesti tarkastellaan oppimista projekteissa ja projektien etenemisen tukemista. Tavoitteena olisi, että opiskelijat ryhmäytyvät ja pääsevät liikkeelle sujuvasti sekä työskentelevät tehokkaasti projektissa samalla oppien ja saaden palautetta. Työssä on erityisesti tarkoitus luoda käytännöllisiä verkkopohjaisia menetelmiä Aalto-yliopiston mekatroniikan ja solubiologian opiskelijaprojekteja varten. Kirjallisuusselvityksessä tehdään katsaus monitieteisiin projekteihin, projekteissa oppimiseen, projektikurssien opettamiseen ja arviointiin, projektien vaiheisiin ja projektinhallintaan sekä projektikursseilla käytettyihin verkkopohjaisiin työkaluihin. Tutkimusosiossa on esitetty projektien haasteita kyselytulosten avulla. Verkkopohjaisia menetelmiä kehitettiin vastaamaan näihin haasteisiin. Näihin menetelmiin lukeutui ryhmäytymisharjoitus, ohjeistus verkkopohjaiseen projektinhallintaan, kurssin etenemisen visualisointi, sekä työkalu itse- ja vertaisarviointia varten. Tutkimusta varten oli käytössä case-kurssi, jolla osaa menetelmistä testattiin. Opiskelijoiden kokemuksia kerättiin kyselytutkimuksella. Tutkimuksen perusteella luotiin suunnitelma esimerkkiprojekteille, joissa solubiologian ja mekatroniikan kurssien opiskelijat tekevät yhteistyötä. Suunnitelma käsittää sen, mitä asioita opiskelijat tekevät yhdessä ja mitä erikseen, ja millaisia opetusmenetelmiä käytetään. Tämä työ tarjoaa lukijalle hyvän perusymmärryksen verkkopohjaisten menetelmien hyödyntämisestä projektikursseilla. Työssä tuodaan esille, millä tavoin projektin tekijöiden visualisointi voi tukea projektin etenemistä ja millaisia dokumentaatioita ja ohjeistuksia projekteissa tulisi hyödyntää. Tutkimustulosten perusteella voidaan antaa myös useita käytännön suosituksia. Esimerkiksi opiskelijoiden työskentelyajan kirjaamisen havaittiin tasaavaan ryhmän työkuormaa ja edellisten vuosien opiskelijoiden tuottama dokumentaatio nähtiin hyödyllisenä vertailukohtana uusille opiskelijoille
    corecore