172 research outputs found

    Time-slice analysis of dyadic human activity

    Get PDF
    La reconnaissance d’activités humaines à partir de données vidéo est utilisée pour la surveillance ainsi que pour des applications d’interaction homme-machine. Le principal objectif est de classer les vidéos dans l’une des k classes d’actions à partir de vidéos entièrement observées. Cependant, de tout temps, les systèmes intelligents sont améliorés afin de prendre des décisions basées sur des incertitudes et ou des informations incomplètes. Ce besoin nous motive à introduire le problème de l’analyse de l’incertitude associée aux activités humaines et de pouvoir passer à un nouveau niveau de généralité lié aux problèmes d’analyse d’actions. Nous allons également présenter le problème de reconnaissance d’activités par intervalle de temps, qui vise à explorer l’activité humaine dans un intervalle de temps court. Il a été démontré que l’analyse par intervalle de temps est utile pour la caractérisation des mouvements et en général pour l’analyse de contenus vidéo. Ces études nous encouragent à utiliser ces intervalles de temps afin d’analyser l’incertitude associée aux activités humaines. Nous allons détailler à quel degré de certitude chaque activité se produit au cours de la vidéo. Dans cette thèse, l’analyse par intervalle de temps d’activités humaines avec incertitudes sera structurée en 3 parties. i) Nous présentons une nouvelle famille de descripteurs spatiotemporels optimisés pour la prédiction précoce avec annotations d’intervalle de temps. Notre représentation prédictive du point d’intérêt spatiotemporel (Predict-STIP) est basée sur l’idée de la contingence entre intervalles de temps. ii) Nous exploitons des techniques de pointe pour extraire des points d’intérêts afin de représenter ces intervalles de temps. iii) Nous utilisons des relations (uniformes et par paires) basées sur les réseaux neuronaux convolutionnels entre les différentes parties du corps de l’individu dans chaque intervalle de temps. Les relations uniformes enregistrent l’apparence locale de la partie du corps tandis que les relations par paires captent les relations contextuelles locales entre les parties du corps. Nous extrayons les spécificités de chaque image dans l’intervalle de temps et examinons différentes façons de les agréger temporellement afin de générer un descripteur pour tout l’intervalle de temps. En outre, nous créons une nouvelle base de données qui est annotée à de multiples intervalles de temps courts, permettant la modélisation de l’incertitude inhérente à la reconnaissance d’activités par intervalle de temps. Les résultats expérimentaux montrent l’efficience de notre stratégie dans l’analyse des mouvements humains avec incertitude.Recognizing human activities from video data is routinely leveraged for surveillance and human-computer interaction applications. The main focus has been classifying videos into one of k action classes from fully observed videos. However, intelligent systems must to make decisions under uncertainty, and based on incomplete information. This need motivates us to introduce the problem of analysing the uncertainty associated with human activities and move to a new level of generality in the action analysis problem. We also present the problem of time-slice activity recognition which aims to explore human activity at a small temporal granularity. Time-slice recognition is able to infer human behaviours from a short temporal window. It has been shown that temporal slice analysis is helpful for motion characterization and for video content representation in general. These studies motivate us to consider timeslices for analysing the uncertainty associated with human activities. We report to what degree of certainty each activity is occurring throughout the video from definitely not occurring to definitely occurring. In this research, we propose three frameworks for time-slice analysis of dyadic human activity under uncertainty. i) We present a new family of spatio-temporal descriptors which are optimized for early prediction with time-slice action annotations. Our predictive spatiotemporal interest point (Predict-STIP) representation is based on the intuition of temporal contingency between time-slices. ii) we exploit state-of-the art techniques to extract interest points in order to represent time-slices. We also present an accumulative uncertainty to depict the uncertainty associated with partially observed videos for the task of early activity recognition. iii) we use Convolutional Neural Networks-based unary and pairwise relations between human body joints in each time-slice. The unary term captures the local appearance of the joints while the pairwise term captures the local contextual relations between the parts. We extract these features from each frame in a time-slice and examine different temporal aggregations to generate a descriptor for the whole time-slice. Furthermore, we create a novel dataset which is annotated at multiple short temporal windows, allowing the modelling of the inherent uncertainty in time-slice activity recognition. All the three methods have been evaluated on TAP dataset. Experimental results demonstrate the effectiveness of our framework in the analysis of dyadic activities under uncertaint

    Supervised learning and inference of semantic information from road scene images

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014Nowadays, vision sensors are employed in automotive industry to integrate advanced functionalities that assist humans while driving. However, autonomous vehicles is a hot field of research both in academic and industrial sectors and entails a step beyond ADAS. Particularly, several challenges arise from autonomous navigation in urban scenarios due to their naturalistic complexity in terms of structure and dynamic participants (e.g. pedestrians, vehicles, vegetation, etc.). Hence, providing image understanding capabilities to autonomous robotics platforms is an essential target because cameras can capture the 3D scene as perceived by a human. In fact, given this need for 3D scene understanding, there is an increasing interest on joint objects and scene labeling in the form of geometry and semantic inference of the relevant entities contained in urban environments. In this regard, this Thesis tackles two challenges: 1) the prediction of road intersections geometry and, 2) the detection and orientation estimation of cars, pedestrians and cyclists. Different features extracted from stereo images of the KITTI public urban dataset are employed. This Thesis proposes a supervised learning of discriminative models that rely on strong machine learning techniques for data mining visual features. For the first task, we use 2D occupancy grid maps that are built from the stereo sequences captured by a moving vehicle in a mid-sized city. Based on these bird?s eye view images, we propose a smart parameterization of the layout of straight roads and 4 intersecting roads. The dependencies between the proposed discrete random variables that define the layouts are represented with Probabilistic Graphical Models. Then, the problem is formulated as a structured prediction, in which we employ Conditional Random Fields (CRF) for learning and convex Belief Propagation (dcBP) and Branch and Bound (BB) for inference. For the validation of the proposed methodology, a set of tests are carried out, which are based on real images and synthetic images with varying levels of random noise. In relation to the object detection and orientation estimation challenge in road scenes, this Thesis goal is to compete in the international challenge known as KITTI evaluation benchmark, which encourages researchers to push forward the current state of the art on visual recognition methods, particularized for 3D urban scene understanding. This Thesis proposes to modify the successful part-based object detector known as DPM in order to learn richer models from 2.5D data (color and disparity). Therefore, we revisit the DPM framework, which is based on HOG features and mixture models trained with a latent SVM formulation. Next, this Thesis performs a set of modifications on top of DPM: I) An extension to the DPM training pipeline that accounts for 3D-aware features. II) A detailed analysis of the supervised parameter learning. III) Two additional approaches: "feature whitening" and "stereo consistency check". Additionally, a) we analyze the KITTI dataset and several subtleties regarding to the evaluation protocol; b) a large set of cross-validated experiments show the performance of our contributions and, c) finally, our best performing approach is publicly ranked on the KITTI website, being the first one that reports results with stereo data, yielding an increased object detection precision (3%-6%) for the class 'car' and ranking first for the class cyclist

    Supervised learning and inference of semantic information from road scene images

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014Nowadays, vision sensors are employed in automotive industry to integrate advanced functionalities that assist humans while driving. However, autonomous vehicles is a hot field of research both in academic and industrial sectors and entails a step beyond ADAS. Particularly, several challenges arise from autonomous navigation in urban scenarios due to their naturalistic complexity in terms of structure and dynamic participants (e.g. pedestrians, vehicles, vegetation, etc.). Hence, providing image understanding capabilities to autonomous robotics platforms is an essential target because cameras can capture the 3D scene as perceived by a human. In fact, given this need for 3D scene understanding, there is an increasing interest on joint objects and scene labeling in the form of geometry and semantic inference of the relevant entities contained in urban environments. In this regard, this Thesis tackles two challenges: 1) the prediction of road intersections geometry and, 2) the detection and orientation estimation of cars, pedestrians and cyclists. Different features extracted from stereo images of the KITTI public urban dataset are employed. This Thesis proposes a supervised learning of discriminative models that rely on strong machine learning techniques for data mining visual features. For the first task, we use 2D occupancy grid maps that are built from the stereo sequences captured by a moving vehicle in a mid-sized city. Based on these bird?s eye view images, we propose a smart parameterization of the layout of straight roads and 4 intersecting roads. The dependencies between the proposed discrete random variables that define the layouts are represented with Probabilistic Graphical Models. Then, the problem is formulated as a structured prediction, in which we employ Conditional Random Fields (CRF) for learning and convex Belief Propagation (dcBP) and Branch and Bound (BB) for inference. For the validation of the proposed methodology, a set of tests are carried out, which are based on real images and synthetic images with varying levels of random noise. In relation to the object detection and orientation estimation challenge in road scenes, this Thesis goal is to compete in the international challenge known as KITTI evaluation benchmark, which encourages researchers to push forward the current state of the art on visual recognition methods, particularized for 3D urban scene understanding. This Thesis proposes to modify the successful part-based object detector known as DPM in order to learn richer models from 2.5D data (color and disparity). Therefore, we revisit the DPM framework, which is based on HOG features and mixture models trained with a latent SVM formulation. Next, this Thesis performs a set of modifications on top of DPM: I) An extension to the DPM training pipeline that accounts for 3D-aware features. II) A detailed analysis of the supervised parameter learning. III) Two additional approaches: "feature whitening" and "stereo consistency check". Additionally, a) we analyze the KITTI dataset and several subtleties regarding to the evaluation protocol; b) a large set of cross-validated experiments show the performance of our contributions and, c) finally, our best performing approach is publicly ranked on the KITTI website, being the first one that reports results with stereo data, yielding an increased object detection precision (3%-6%) for the class 'car' and ranking first for the class cyclist

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Learning graphs to model visual objects across different depictive styles

    Get PDF
    Abstract. Visual object classification and detection are major prob-lems in contemporary computer vision. State-of-art algorithms allow t-housands of visual objects to be learned and recognized, under a wide range of variations including lighting changes, occlusion, point of view and different object instances. Only a small fraction of the literature ad-dresses the problem of variation in depictive styles (photographs, draw-ings, paintings etc.). This is a challenging gap but the ability to process images of all depictive styles and not just photographs has potential val-ue across many applications. In this paper we model visual classes using a graph with multiple labels on each node; weights on arcs and nodes indicate relative importance (salience) to the object description. Visual class models can be learned from examples from a database that contains photographs, drawings, paintings etc. Experiments show that our repre-sentation is able to improve upon Deformable Part Models for detection and Bag of Words models for classification

    MeTRAbs: Metric-Scale Truncation-Robust Heatmaps for Absolute 3D Human Pose Estimation

    Full text link
    Heatmap representations have formed the basis of human pose estimation systems for many years, and their extension to 3D has been a fruitful line of recent research. This includes 2.5D volumetric heatmaps, whose X and Y axes correspond to image space and Z to metric depth around the subject. To obtain metric-scale predictions, 2.5D methods need a separate post-processing step to resolve scale ambiguity. Further, they cannot localize body joints outside the image boundaries, leading to incomplete estimates for truncated images. To address these limitations, we propose metric-scale truncation-robust (MeTRo) volumetric heatmaps, whose dimensions are all defined in metric 3D space, instead of being aligned with image space. This reinterpretation of heatmap dimensions allows us to directly estimate complete, metric-scale poses without test-time knowledge of distance or relying on anthropometric heuristics, such as bone lengths. To further demonstrate the utility our representation, we present a differentiable combination of our 3D metric-scale heatmaps with 2D image-space ones to estimate absolute 3D pose (our MeTRAbs architecture). We find that supervision via absolute pose loss is crucial for accurate non-root-relative localization. Using a ResNet-50 backbone without further learned layers, we obtain state-of-the-art results on Human3.6M, MPI-INF-3DHP and MuPoTS-3D. Our code will be made publicly available to facilitate further research.Comment: See project page at https://vision.rwth-aachen.de/metrabs . Accepted for publication in the IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM), Special Issue "Selected Best Works From Automated Face and Gesture Recognition 2020". Extended version of FG paper arXiv:2003.0295
    • …
    corecore