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Résumé

La reconnaissance d’activités humaines à partir de données vidéo est utilisée pour la sur-
veillance ainsi que pour des applications d’interaction homme-machine. Le principal objectif
est de classer les vidéos dans l’une des k classes d’actions à partir de vidéos entièrement ob-
servées. Cependant, de tout temps, les systèmes intelligents sont améliorés afin de prendre
des décisions basées sur des incertitudes et ou des informations incomplètes. Ce besoin nous
motive à introduire le problème de l’analyse de l’incertitude associée aux activités humaines
et de pouvoir passer à un nouveau niveau de généralité lié aux problèmes d’analyse d’actions.
Nous allons également présenter le problème de reconnaissance d’activités par intervalle de
temps, qui vise à explorer l’activité humaine dans un intervalle de temps court. Il a été dé-
montré que l’analyse par intervalle de temps est utile pour la caractérisation des mouvements
et en général pour l’analyse de contenus vidéo. Ces études nous encouragent à utiliser ces
intervalles de temps afin d’analyser l’incertitude associée aux activités humaines. Nous allons
détailler à quel degré de certitude chaque activité se produit au cours de la vidéo.

Dans cette thèse, l’analyse par intervalle de temps d’activités humaines avec incertitudes sera
structurée en 3 parties. i) Nous présentons une nouvelle famille de descripteurs spatiotem-
porels optimisés pour la prédiction précoce avec annotations d’intervalle de temps. Notre
représentation prédictive du point d’intérêt spatiotemporel (Predict-STIP) est basée sur l’idée
de la contingence entre intervalles de temps. ii) Nous exploitons des techniques de pointe pour
extraire des points d’intérêts afin de représenter ces intervalles de temps. iii) Nous utilisons
des relations (uniformes et par paires) basées sur les réseaux neuronaux convolutionnels entre
les différentes parties du corps de l’individu dans chaque intervalle de temps. Les relations
uniformes enregistrent l’apparence locale de la partie du corps tandis que les relations par
paires captent les relations contextuelles locales entre les parties du corps. Nous extrayons les
spécificités de chaque image dans l’intervalle de temps et examinons différentes façons de les
agréger temporellement afin de générer un descripteur pour tout l’intervalle de temps.

En outre, nous créons une nouvelle base de données qui est annotée à de multiples intervalles
de temps courts, permettant la modélisation de l’incertitude inhérente à la reconnaissance
d’activités par intervalle de temps. Les résultats expérimentaux montrent l’efficience de notre
stratégie dans l’analyse des mouvements humains avec incertitude.
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Abstract

Recognizing human activities from video data is routinely leveraged for surveillance and
human-computer interaction applications. The main focus has been classifying videos into
one of k action classes from fully observed videos. However, intelligent systems must to make
decisions under uncertainty, and based on incomplete information. This need motivates us
to introduce the problem of analysing the uncertainty associated with human activities and
move to a new level of generality in the action analysis problem. We also present the problem
of time-slice activity recognition which aims to explore human activity at a small temporal
granularity. Time-slice recognition is able to infer human behaviours from a short temporal
window. It has been shown that temporal slice analysis is helpful for motion characterization
and for video content representation in general. These studies motivate us to consider time-
slices for analysing the uncertainty associated with human activities. We report to what degree
of certainty each activity is occurring throughout the video from definitely not occurring to
definitely occurring.

In this research, we propose three frameworks for time-slice analysis of dyadic human activity
under uncertainty. i) We present a new family of spatio-temporal descriptors which are opti-
mized for early prediction with time-slice action annotations. Our predictive spatiotemporal
interest point (Predict-STIP) representation is based on the intuition of temporal contingency
between time-slices. ii) we exploit state-of-the art techniques to extract interest points in
order to represent time-slices. We also present an accumulative uncertainty to depict the un-
certainty associated with partially observed videos for the task of early activity recognition.
iii) we use Convolutional Neural Networks-based unary and pairwise relations between human
body joints in each time-slice. The unary term captures the local appearance of the joints
while the pairwise term captures the local contextual relations between the parts. We extract
these features from each frame in a time-slice and examine different temporal aggregations to
generate a descriptor for the whole time-slice.

Furthermore, we create a novel dataset which is annotated at multiple short temporal windows,
allowing the modelling of the inherent uncertainty in time-slice activity recognition. All the
three methods have been evaluated on TAP dataset. Experimental results demonstrate the
effectiveness of our framework in the analysis of dyadic activities under uncertainty
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Foreword

Four chapters of this thesis are composed of material already published or under review in
technical conferences or journal papers. In this thesis, text and figures have been modified in
order to be consistent with the rest of the document. Some material which did not find place
in the original papers has been added to better clarify the ideas behind each method. Here, I
detail my contributions to 4 research papers.

Paper 1: M. Ziaefard and R. Bergevin, “Semantic Activity Recognition: A Literature Review,”
Pattern Recognition Journal, Volume 48, Issue 8, August 2015, Pages 2329–2345. This paper
reviews the state-of-the-art methods in activity recognition which use semantic features.

Paper 2: M. Ziaefard, R. Bergevin, and L.P. Morency, “Time-slice Prediction of Dyadic Hu-
man Activities,” In British Machine Vision Conference (BMVC), Pages 167.1-167.13, BMVA
Press, September 2015. In this paper, we introduce the problem of time-slice activity recog-
nition which aims to explore human activity at a small temporal granularity (time-slice).
Furthermore, we collect a new dataset which is annotated at multiple short temporal win-
dows, allowing the modelling of the inherent uncertainty in time-slice activity recognition.
The experiments were conducted at Institute for Creative Technologies (ICT) at University
of Southern California while I was doing my internship under the supervision of Professor
Morency.

Paper 3: M. Ziaefard and R. Bergevin, “Integration of Uncertainty in the Analysis of Dyadic
Human Activities,” In 13th Conference on Computer and Robot Vision (CRV), June 2016.
The main focus of this paper is to analyse the uncertainty associated with dyadic human
activities and move to a new level of generality in the action analysis problem. Analysing the
uncertainty, here, refers to categorizing the likelihood of activities in the time-slices.

Paper 4: M. Ziaefard, R. Bergevin, and J-F Lalonde, “Deep Uncertainty Interpretation in
Dyadic Human Activity Prediction,” Submitted to 28th British Machine Vision Conference
(BMVC 2017). In this paper, we proposed a method exploiting Convolutional Neural Net-
works (CNNs) to extract unary and pairwise probabilities of human body pose to analyse the
uncertainty associated with human activities.
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Introduction

0.1 The perspective

Analysing human activities from video data is leveraged for surveillance and human-computer
interaction applications. In this context, there is a large body of work that analyse human ac-
tivities from fully observed video sequences. However, analysing activities in shorter windows
returns detailed information on what activities occur throughout the video. Therefore, in this
thesis, we are more interested in exploring human activities at a small temporal granularity
(time-slice).

Time-slice analysis infers human behaviour throughout the video. Considering a human action
video starting with the initiation of an action, there is more confusion and uncertainty in the
first few frames. As time passes by and informative frames are given, recognizing or predicting
activities becomes easier. Humans can naturally model the uncertainty associated with with
each activity. We do not need to see a full handshake video before being able to recognize it.
This ability of humans to recognize an action before seeing it in full inspired us to introduce the
time-slice activity analysis. We divide a video into several time fragments which are referred to
as time-slice and analyse the possibility of the occurrence of different activities. In other words,
instead of classifying a whole video to a single label, we analyse the possibility of occurrence
of different activities and the uncertainty associated with activities in each time-slice.

Time-slice analysis is helpful for motion characterization and in general for video content
representation. Extracting content of video automatically will extend the current scope of
possibilities for video indexing and retrieval. For instance, we will be able to search for the
parts of a video in which a certain activity is (not) occurring. An instance of real-world
applications for the time-slice analysis is to automatically detect violent shots in movies in
order to prevent children to watch them.

In the literature, human activities are categorized into atomic actions, people interactions,
human-object interactions, and group activities in terms of the number of people involved in
performing the activity. The focus of this thesis is analysing interactions between two people
which is referred to as dyadic activities.
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Conventional approaches recognize activities based on either the whole video sequence (holistic
approach) or the early part of the video (early recognition). However, our time-slice study
generalizes the part to any short-term observation anywhere in the video sequence. It is
noteworthy to mention that the locations of the time-slices are unknown in both our learning
and test phases. Another key difference of this work with the previous work is the integration
of uncertainty in the activity analysis. That is, obtaining a measure to show how likely each
possible activity occurs throughout the video which leads to a new level of generality in the
action analysis problem.

The integration of uncertainty in the activity analysis helps to investigate this problem: to
what extent the activity of interest is likely to occur during each time-slice throughout the
video? Analysing the uncertainty associated with human activities has important applications
for practical scenarios, where decisions have to be made even if the occurred activity cannot
be predicted precisely.

Another outstanding aspect of this thesis is that it re-examines the problem of activity pre-
diction with the state-of-the-art Convolutional Neural Network (CNN) models inspired by
recent success of deep learning approaches in other computer vision domains. We propose a
new framework for this problem and compare its performance with the results obtained by
hand-crafted features.

0.2 Thesis outline

In the second chapter of this thesis, we present a comprehensive literature review and our
motivations for analysing human activities in this thesis. Our contributions are the following:

− We present a detailed review on recent action recognition frameworks based on semantic
information;

− We introduce a semantic space for feature descriptors;

− The performance of semantic and non-semantic methods is computed.

Chapter 3 is devoted to presenting a novel human activity recognition approach based on
time-slices. In this chapter, we are interested in analysing our understanding of activities
occurring within time-slice observations. Our contributions are threefold:

− We introduce the problem of time-slice activity recognition and compare time-slice recog-
nition with the conventional approaches;

− We propose a new set of spatio-temporal features using time-slice action annotations
that identify descriptors with broad temporal coverage;

2



− We collect a new dataset of time-slice annotations.

In Chapter 4, we introduce the problem of analysing the uncertainty associated with dyadic
human activities in time-slices. Conventional methods have been classifying videos into certain
action classes. In contrast, our focus in this chapter is to categorize the likelihood of activities
occurring in each time-slice. Our contributions are the following:

− We propose a model to integrate uncertainty in the analysis of dyadic human activities
in videos;

− We introduce a learning framework addressing this model;

− We compare different instantiations of the framework;

− We present a novel technique for evaluating the performance of early activity recognition
methods based on the uncertainty associated with partially observed videos.

In Chapter 5, inspired by the strong performance of Convolutional Neural Networks (CNN) in
other computer vision applications, we propose a CNN-based algorithm to analyse the uncer-
tainty associated with dyadic activities. Deep learning techniques have offered a compelling
alternative to hand-crafted features. We use a deep learning method to extract frame descrip-
tors containing the probabilities of the presence of body joints and locations of other joints
in the adjacency. Thus, we use deep learning along with human pose information to propose
a method for time-slice activity analysis. We compare the proposed method with the results
obtained by hand-crafted features. Our contributions in this chapter are:

− We introduce a novel way of exploiting CNN in time-slice analysis;

− We propose a technique to integrate unary and pairwise pose information to measure
the uncertainty associated with activity recognition;

− We present a Single-Stream deep learning framework addressing this technique.

Finally, in Chapter 6, conclusions are drawn, and some of the possible applications based on
the material developed in this dissertation are reviewed.

3



Chapter 1

Literature Review

The problem of analysing human activities in images and videos has received growing interest
in the computer vision community. Analysing human activities refers to recognize or predict
activities from single images or fully or partially observed videos. Given the significant litera-
ture in the area, we focus only on the most relevant works to our proposed algorithms in this
chapter.

Semantic Human Activity Recognition: A Literature Review

Abstract
This paper presents an overview of state-of-the-art methods in activity recognition using se-
mantic features. Unlike low-level features, semantic features describe inherent characteristics
of activities. Therefore, semantics make the recognition task more reliable especially when the
same actions look visually different due to the variety of action executions. We define a seman-
tic space including the most popular semantic features of an action namely the human body
(pose and poselet), attributes, related objects, and scene context. We present methods ex-
ploiting these semantic features to recognize activities from still images and video data as well
as four groups of activities: atomic actions, people interactions, human-object interactions,
and group activities. Furthermore, we provide potential applications of semantic approaches
along with directions for future research.

1.1 Introduction

Human activity recognition is being leveraged for an increasingly wide variety of computer
vision applications. What all of these works have in common is to study some aspects of
human-computer interaction. Recognizing activities can range from a single person action to
multi-people activity recognition. Generally, an action is defined as a single person activity
but we use the terms action and activity interchangeably.
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Figure 1.1: Kicking action. The same actions appear different due to different camera angles,
clothes, body shapes, etc

A number of surveys have been published in activity recognition during the last decade. Most
of the earlier reviews have focused on the introduction and general summarization of activity
recognition methodologies (70; 5; 71). A study by (6) covered human activity recognition
methods with a categorization based on the complexity of activities and recognition method-
ologies. Various challenges in action recognition were addressed and limitations of different
approaches were discussed in (7). Recently, Aggarwal and Ryoo (73) conducted a survey
emphasizing activity recognition methods for four groups of activities (atomic action, people
interaction, human-object interaction, and group activity). They classified activity recogni-
tion methodologies into two categories: single-layered approaches and hierarchical approaches.
Single-layered methods represent and recognize human activities directly based on sequences
of images. On the other hand, hierarchical approaches describe high-level human activities
by using simpler activities called sub-events which are suitable for the analysis of complex
activities. Aggarwal and Ryoo (73) also mentioned a few semantic approaches without clearly
explaining what semantics is and why it should be used. In this survey, we aim to cover the
methods in the literature which address semantic activity understanding.

Human activity recognition methods can also be classified according to their input data.
Traditional action recognition approaches used videos or image sequences while recent studies
started to explore action recognition in still images. Compared to the video-based action
recognition, still image-based action recognition has some special properties. For example,
there is no motion in a still image, and thus many spatio-temporal features and methods that
were developed for traditional video-based action recognition are not applicable to still images.
A recent survey (74) presents a detailed overview of the existing approaches in still image-
based action recognition and explains various features as well as related databases which have
been used in analysing actions in still images.

Different levels of features have been used in activity recognition methods. Traditional action
recognition methods rely mostly on tracking, and motion capture. Mid-level features such as
spatio-temporal and bag-of-word features are used by recent approaches. Semantic features,
meanwhile, are aimed to answer questions such as “what does it mean to perform an action?”
or “How do we understand an action?”. The term semantics refers to the study of meaning.
For example, it is meaningful that a car and road appear in the same images, while a giraffe
and a kitchen should not. A detailed definition of this term will be provided in Section 1.2.

5



Semantic features are useful to address the problem of intra-class variability. Intra-class vari-
ability refers to the differences in the same group of actions and how different instances of
the same action resemble each other. As shown in Figure 1.1, people may perform the same
action in different ways or even the same person may perform one action differently in different
situations. In addition, humans vary significantly in appearance due to changes in clothing,
body shape and viewpoint. Semantic features help to distinguish similar actions that differ
visually but have common semantics.

Semantic approaches apply the human understanding of the activity. The human ability to
recognize actions does not rely only on visual analysis of human body postures but also requires
additional sources of information such as context or scene, knowledge about objects related
to activities, or knowledge about the visual characteristics of activities. On the other hand,
non-semantic approaches, here, refer to methods representing actions only in some form of low-
level features such as silhouette, gradients, optical flow, etc. They do not incorporate human
knowledge about activities. Non-semantic approaches capture the appearance and motion
characteristics while semantic approaches describe inherent characteristics of activities. Non-
semantic approaches are ideally appropriate for simple actions. However, they fail in complex
situations due to the lack of semantics they represent.

To classify semantic approaches, we introduce a feature space called the “semantic space”
which includes human knowledge about activities such as the body part (pose and pose-
let), object, scene, and attribute features. The semantic space is illustrated schematically in
Figure 1.2. Based on exploiting these features, we categorize semantic methods into three
categories: methods based on body parts, methods based on objects/scenes, and methods
based on attributes.

The first feature of the semantic space is the body part. Neuropsychological studies indicate
that semantic knowledge of human body parts might be distinct from knowledge of other
object categories. Downing et al. (75) identified a subpart of the human extrastriate cortex
involved in the visual processing of the human body and body parts, namely extrastriate
body area or EBA. Their experimental results reveal that the EBA responds strongly and
selectively to a variety of pictures of human bodies and body parts. The EBA may be crucial
for perceiving the position and configuration of one’s body, possibly as part of a general system
for inferring the actions and intentions of others. Also, EBA may be involved in perceiving
the configuration of one’s own body. Peelen and Downing (76) and Schwarzlose et al. (77)
worked also on the body selectivity of the brain. Methods for pose-based action recognition
can either use pose estimation results as input for the action recognition step or address both
pose estimation and action recognition concurrently. The latter approach has the advantage
that errors due to inaccurate pose estimation will have less of an affect on the final quality
of activity recognition. Semantics also captures salient body parts during an action which is
referred to as a poselet. In 2D/3D images, a poselet is specified as a subset of the human

6



Figure 1.2: Semantic Space. Observing an action, e.g. “playing soccer”, the human uses his
knowledge to recognize the activity. We define a semantic space containing pose (specific body
pose in soccer), poselet (extended right arm, straight left arm), object ( soccer ball, interaction
between one leg and a soccer ball), scene (soccer field), and attribute (looking-down head)
which are illustrated in the figure.

pose. It usually refers to the union of adducent limbs, for example half of a torso and a left
hand or a frontal view of both legs walking forward.

Semantic information can also be extracted from the scene where the action is performed.
For instance, if an action scene context is recognized as a soccer field, it is more likely that
the performed action is “playing soccer”. In addition to the scene context, objects related to
Human-Object Interaction (HOI) are used in semantic action recognition. Given a human
action, there might be objects related to that action. Different actions are related to different
objects. Knowing the related objects helps to recognize the corresponding actions. For exam-
ple, a horse (with a human) is possibly related to the action of “riding a horse” while a phone
(with a person) could be related to the action of “phoning”.

Attributes are another important type of semantic feature which can be directly linked with
the visual characteristics of actions. They can describe high-level activities better than the
raw features (color, edge, etc.) extracted from images or videos. They use human knowledge
to create descriptors that capture intrinsic properties of actions. Attributes describe spatial
and temporal movements of the actor. For example, arm pendulum-like motion or the motion
pattern of two legs, putting one foot in front of the other, are potential attributes for a walking
action.

Despite the fact that some thinking about semantic activity recognition approaches has been
provided in existing surveys, important issues still remain, such as how semantics is really
useful and how reliable semantic features can be. The contributions of this paper are threefold.
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First, this paper explains the term semantics including a review of semantics in neuroscience to
show how action understanding relies on conceptual knowledge. It also introduces a semantic
space to describe semantic features in detail and their use in other computer vision applications
as well as their advantages and drawbacks. Secondly, it discusses and reviews semantic activity
recognition methods in detail for both single images and video data considering four groups
of activities. Finally, it compares the performance of semantic and non-semantic approaches
to better understand the present level of semantic methods. Overall, this survey provides a
comprehensive state-of-the-art review in semantic activity recognition. The purpose of this
survey is to attempt to draw attention to high-level features and encourage researchers to
propose semantic methods for action recognition. We show the taxonomy of semantic features
and the publications that are reviewed in this study in Table 1.1.

The outline of the paper is as follows. The term semantics and a background of semantics
in neuroscience are described in Section 1.2, followed by a presentation of semantic space in
Section 1.3. Section 1.4 explains semantic approaches using body parts (pose and poselet).
Section 1.5 and 1.6 describe methods based on objects/scenes and attributes respectively. The
action recognition performance on the most popular datasets is presented in Section 1.7. Sec-
tion 1.8 presents other semantic approaches and potential applications of semantic approaches.
Finally, Section 1.9 concludes the paper and provides directions for future research.

1.2 What is Semantics?

It has been shown that semantics plays a key role in recognition in the human visual percep-
tion. Taking semantics into account to improve visual recognition has received considerable
attention in the recent time. In this section, we first give a definition of semantics. Then,
a review of semantics in neuroscience is studied to indicate how the human brain functions
when it understands actions and how action understanding relies on semantic knowledge.

1.2.1 Definition of semantics

Generally, semantics refers to what the sender and receiver of a message mean and how they
infer the context of the message. Semantics is the study of meaning. Meaning originates from
the language spoken by the Angles and Saxons (or Old English) and is still related today with
the German verb “meinen”, i.e. to think or intend (78).

In action recognition, the semantic understanding enables users to apply prior knowledge to
the recognition process. Semantics interprets an action as a relation between its features (e.g.
body parts, corresponding objects, scene, etc.). The meaning of each action generally can
be decomposed into the meanings of its features. For example, handshaking action can be
interpreted as the certain movement of two people’s hands.
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Table 1.1: Taxonomy of mentioned methods based on types of features and input data on
human activity recognition

Video Single Image

Pose

Park and Aggarwal (125) Raja et al. (114)
Lv and Nevatia (124) Yao and Fei-Fei (116)
Eweiwi et al. (119) Meng et al. (118)
Cheema et al. (122) Yukita (85)
Vahdat et al. (123) Khan et al. (126)
C. Wang et al. (117)
Chaaraoui et al. (121)
Mukherjee et al. (115)

Poselet

Raptis and Sigal (1) Yang et al. (127)
Nabi et al. (129) Maji et al. (94)
J. Wang et al. (130) Zheng et al. (128)

Chen and Grauman (131)

Scene

Jones and Shao (136) Li and Fei-Fei (146)
Ullah et al. (135)
Zhang et al. (133)
Liu et al. (134)
Ikizler-Cinbis and Sclaroff (147)
Han et al. (148)
Marszalek et al. (132)

HOI

Ikizler-Cinbis and Sclaroff (147) Delaitre et al. (142)
Han et al. (148) Desai et al. (143)
Gupta et al. (138) Yao and Fei-Fei (144)
Filipovych and Ribeiro (140) Yao and Fei-Fei (145)
Wu et al. (139) Gupta et al. (138)
Gupta and Davis (137) Li and Fei-Fei (146)
Kuniyoshi and Shimozaki (141)

Attribute

Liu et al. (104) B. Yao et al. (154)
Qiu et al. (151) Sharma et al. (149)
Rohrbach et al. (153)
Cheng et al. (175)
Zhang et al. (152)

Park and Aggarwal (125)
Linguistic Rohrbach et al. (153)
descriptions Motwani and Mooney (167)

Guadarrama et al. (166)

1.2.2 Semantics in neuroscience

Understanding the semantics and perception of actions in humans is a challenging task. It is
an interdisciplinary research combining several scientific programs from computer science to
brain science and psychology. To further clarify semantic action recognition, we review action
understanding in neuroscience and present how the brain distinguishes activities.
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Our understanding of the brain mechanisms for the recognition of actions has grown rapidly
over the past decades. Early neuroscientific studies on monkeys (e.g. Gallese et al. (79)
) have revealed that neurons of the rostral part of the inferior area, i.e. Mirror neurons,
became active both when the monkey performed a given action and when it observed a similar
action performed by the experimenter. The main property of the mirror neurons is to match
observation of motor acts (goal-directed movements) with the execution of the same or similar
motor acts. In other words, the mirror system provides a way to match observation and
execution of events. A matching system, similar to that of mirror neurons in monkeys exists
in humans and could be involved in the recognition of actions.

The semantic-level understanding of an action involves making a meaningful description of
the action. It is more efficient for the brain to organize object and action categories into a
continuous space that represents the semantic similarity between them. A study conducted
by Huth et al. (80) showed that similar categories are located next to each other in the brain.
The results of this research determined that brains of different people represent object and
action categories in a common semantic space.

Based on neuropsychological evidence, humans recognize both the movement (physical) goals
and action (semantic) goals of individuals with whom they are interacting. Physical movement
goals are related to the kinematics of specific goal-directed movements (e.g., reaching towards
the left), and semantic action goals show functional expectations that lead to movement ex-
ecution (e.g., reaching towards a person to push him). Action goals rely on prior semantic
knowledge and could be associated with expectation of multiple movement goals. The recog-
nition of others’ semantic action goals can be deliberate or spontaneous. For example, when
you are having breakfast with your friend and reaching to the left for a knife, you are able to
recognize your friend’s physical goal towards a cup. You can also recognize his semantic goal
that he is having coffee even though these goals are not directly related to your own behaviour.

1.3 Semantic space

Humans analyse the body posture along with the immediate physical and social setting in
which an activity happens to recognize the activity. From the same point of view, we introduce
a semantic space as a feature space including only features using human understanding to
distinguish activities. Therefore, the elements of our semantic space are body parts (pose and
poselet), objects related to actions, scenes, and attributes. These elements are described in
the following subsections.

1.3.1 Pose

Park and Aggarwal (81) performed the first attempt in considering the human body in order
to recognize activities. They estimated human poses using a stick figure model and recognized
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interactions between two people. More similar to recent methods, Ikizler and Duygulu (82)
discriminated actions according to the configuration of body parts. The body is represented
by a set of oriented rectangles using the algorithm of Forsyth and Fleck (83). Rather than
localizing the exact configuration of body parts, the distribution of the rectangular regions is
extracted. Based on orientations and positions of these rectangles, a histogram is formed in
order to define the pose descriptor for each frame. Then, four different methods are utilized to
evaluate the performance of the pose descriptor: frame-by-frame voting, global histogramming,
SVM classification, and dynamic time warping. Afterwards, human bodies are extracted from
stick figures (87), 2D contours (88), or volumetric models such as cones, elliptical cylinders
and spheres (89) based on the complexity required in applications. Stick figures, 2D contours,
and volumetric models are illustrated in Figure 1.3(a), (b), and (c) respectively.

As discussed earlier, pose is a high-level cue for activity recognition. Pose estimation, mean-
while, is a basic building block of many activity recognition algorithms. It refers to the process
of estimating the configuration of fundamental parts or skeletal structure of a person. It has
an effect on many tasks such as image understanding and gesture recognition. Recently, pose
estimation has become more practical in real-time with the release of Kinect (90). Kinect
has the ability to reliably estimate poses of the human user in real time using the output of
a depth sensor. This system first determines to which body parts each pixel of the depth
image belongs and then uses this information to localize different body joints. It is beyond
the perspective of this survey to analyse all approaches in pose estimation. However, a review
of pose estimation related to action recognition is covered in Section 1.4.1.

Should pose estimation and activity recognition be performed jointly? A. Yao et al. (91) dis-
cussed whether action recognition benefits from pose estimation. They showed that pose-based
features outperform low-level appearance features even in the case of heavy noise. Adequate
information is hidden in the pose of a human that is sufficient enough to distinguish actions.
Pose-based methods are more robust to intra-class variety than appearance-based methods
and are more meaningful and compact. However, it is not necessary to correctly extract a
complete pose configuration in order to recognize actions.

1.3.2 Poselet

The notation of poselet was proposed first by Bourdev and Malik (92) and further developed
by Bourdev et al. (93) for person detection and segmentation. Poselet is described as a specific
part of the human pose. A poselet usually consists of more than one limb such as half of a
torso and a left hand or a frontal view of two legs walking forward. The main advantage of
poselets is that they capture the important parts of the body involved in actions. Therefore, it
is possible to recognize actions as long as discriminative poses are detected even if other body
parts are occluded or hard to localize. Figure 1.4 illustrates example poselets of the walking
action. As we can see, each set of patches may look visually different, but they have a very
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(a)

(b) (c)

Figure 1.3: Pose representation of different models. a) Stick figures of two actions: baseball
and badminton (84) b) 2D contours (rectangles) (85) c) Volumetric model (86).

similar semantic meaning.

Poselet was introduced since humans do not always need to see the whole person to make
inferences about their activities. Given 3D annotation, the original poselet (92) was proposed
based on two criteria to localize people, torso bounds, and key points: 1) configuration space
and 2) appearance space. The former space refers to 3D coordinates of body joints and
the latter shows pixel values. A poselet should be clustered easily in both spaces. Poselet
classifiers were trained to distinguish the visual variation with common semantics. Given
human annotation patches, poselet candidates were found by searching and finding the closest
patches in a training set. Then, histograms of oriented gradients (HOG) were extracted from
these poselets to train linear support vector machines (SVMs). Some poselets were more
discriminative than others. Therefore, a Max Margin Hough Transform (95) was used to
weight poselets. Some poselets were discarded because they were too close to each other
(redundant examples) or there were few examples of them (rare examples) or the trained
SVM scored lower than a threshold.

Apart from 3D information, poselets can be extracted from 2D annotations. Not surprisingly,
2D annotation makes the task much simpler than 3D annotation although it carries less
information. Bourdev et al. (93) developed an algorithm for detecting and segmenting people
using poselets from 2D annotations. It considers the empirical spatial distribution of key-points
to cluster poselet activations for the detection of people. They used the spatial distribution
of key-points because two consistent poselet activations will make a similar prediction of the
position of the person’s key-points.
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Figure 1.4: Example poselets of the walking action. The top row shows windows that capture
legs while images of the bottom row show torsos and limbs. Each set may look visually
different, but they have a very similar semantic meaning. The figure has been reproduced
from (94).

In addition to people detection, human segmentation and pose estimation are two other appli-
cations of poselets. Wang et al. (96) introduced hierarchical poselets for parsing human pose.
They proposed that rigid body parts are not necessarily the most salient features for visual
recognition and might be confused with rectangles and parallel lines of objects in the back-
ground. They used 20 parts ranging from the configuration of the whole body to small rigid
parts to represent humans. This representation captures more than one rigid part in addition
to primitive parts (i.e. torso, head, limbs). Parameters of the model were learned in a max-
margin fashion. Holt et al. (97) proposed another approach for static pose estimation using
poselets. Poselets are extracted from training data. A multi-scale scanning window is applied
over depth test images to detect poselets. Each window is evaluated by Random Decision For-
est (98) as opposed to HOG to identify poselet activations. Body part locations are predicted
by poselet activations. A combination of key-point prediction and a graphical model infer
overall configuration. Pishchulin et al. (99) estimated human poses relying on poselet-based
features in still images. They proposed a conditional model in which all parts are a-priori
connected based on the pictorial structure (part-based estimation). They exploited poselet
to capture complex dependencies between non-connected body parts. The limitation of this
model is its dependency on torso detection. To form a feature vector, the position of the torso
is first predicted in the test image and then the maximum poselet response in a region around
the torso is computed.

The interest in using poselets has led to more research. Motivated by the success of poselets
in human detection and pose estimation, recent work uses this context for human action
recognition. Poselet-based methods are reviewed in Section 1.4.2. A list of approaches which
have used poselets in people detection, pose estimation, and action recognition is shown in
Table 1.2. From the table, one can see that poselet-based action recognition methods have a
very short history although there are more publications in recent years.
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Table 1.2: Summary of different approaches using poselet

First Year People Pose Action
author detection estimation recognition

Bourdev 2009 √

Bourdev 2010 √

Yang 2010 √

Holt 2011 √

Maji 2011 √ √

B. Yao 2011 √

Wang 2011 √

Zheng 2012 √

Chen 2013 √

Nabi 2013 √

Pishchulin 2013 √

Raptis 2013 √

Wang 2014 √

1.3.3 Object and scene

The background usually refers to the region without the foreground (human and/or object).
It may be taken as the context or scene of a performed action. Background information
can be extracted from the whole image, or only from the area of human bounding box, or a
combination of both.

The semantic relationship between actions and background settings could be learned as a
complementary concept for action recognition. Klaser et al. (100) showed that background
suppression limits the classification performance and removes valuable context in realistic
settings.

Although the action scene helps action recognition, it may also have negative effects when the
scene is too noisy and cluttered. Moreover, one scene may include different actions and not
provide helpful information to distinguish those actions.

In addition to the scene context, visual features extracted from a person interacting with a spe-
cific object in a specific manner are fundamental to human cognition for recognizing activities.
Vaina and Jaulent (101) suggested that action comprehension requires understanding the goal
of an action that is related to the compatibility of human movements and corresponding ob-
jects. In addition the co-occurrence of humans and objects, human-object configuration is also
important. For example, the relative position of arms and a musical instrument distinguishes
whether the person plays or simply holds the instrument.
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Indoor related: Yes
Outdoor related: Yes

Translation motion: Yes
Arm pendulum-like motion: Yes

Torso up-down motion: No
Torso twist: No

Having stick-like tool: No
Naming: Walking
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Indoor related: No
Outdoor related: Yes

Translation motion: No
Arm pendulum-like motion: No

Torso up-down motion: No
Torso twist: Yes

Having stick-like tool: Yes
Naming: Golf Swinging

Figure 1.5: Example attributes of walking and golf swinging. The figure was originally shown
in (104).

1.3.4 Attributes

Attributes have been introduced as a type of semantic feature to assist in object recognition.
Attributes are used by Farhadi et al. (102) to describe objects rather than simply name them,
e.g. “metallic car” not just “car”. This enables new objects to be recognized with few or no
visual training examples. Object attributes can be semantic (metallic body) or discriminative
(cars can have a metallic body but animals cannot). Semantic attributes describe parts (a
car’s wheels), shape (rectangular), and materials (metallic).

Apart from object classification, attributes have been used in describing people and activities.
Attributes for person categories can be the gender, hairstyle, types of clothes, etc. Bourdev et
al. (103) decomposed people images into a set of parts and poselets, each capturing a salient
pattern corresponding to a given viewpoint. A separate attribute classifier is trained for each
type of poselet based on the presence of a body part in the attribute. For example, a leg
poselet is not used to train the “has-hat” attribute. Moreover, attributes have been considered
for the task of activity recognition. Action attributes represent the visual characteristic of
the actor or the scene wherein the action takes place. Examples of attributes in golf swinging
vs. walking are illustrated in Figure 1.5. From the figure, it is clear that some attributes
happen in walking, while some others occur in a golf swing that make it easier to distinguish
the activities.

New types of objects/actions that have not been seen in training examples may appear in
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the test set (Section 1.8.1). By learning the attributes, algorithms will be generalized to
recognize unseen objects/actions. Even though an attribute-based algorithm may not name
these new objects/actions, it is able to say something about them. Lampert et al. (105) used
semantic attributes to detect new classes of objects. They employed the attributes to transfer
knowledge between classes. Attributes are assigned to each class of objects in training and
attribute values are predicted at test times and infer the output class label even for previously
unseen classes.

However, an attribute-centric representation has the disadvantage of being sensitive to the
process of selecting and assigning attributes to relevant action classes. One possible way to
select attributes is to manually identify a set of high-level concepts that characterize action
classes and choose appropriate attributes for each class of actions. But, a concern here is
that if attributes are selected manually, it does not guarantee that all important patterns
characterizing an action class are captured. Another issue is whether selected attributes
capture intra-class variation. For instance, some examples of the golf swinging action may
contain the attribute torso twist and some others may not. Potential approaches addressing
these problems will be discussed further in Section 1.6.

1.4 Methods based on body parts

The human body can be detected automatically or labeled manually. Generally, the bounding
box and human contour are used to show where the person is in the frame and determine the
appropriate region for feature extraction. When performing different actions, body parts are
in different poses. Poses can be extracted from the whole human body or some body parts
(poselets). In this section, we focus on methods extracting the human body pose for action
recognition.

1.4.1 Pose-based methods

In computer vision, human pose estimation refers to the localization of the multiple parts
of a human body in an image. It is challenging to extract human pose especially in real
world situations since poses are varied during actions and many degrees of freedom need to
be estimated.

Analysis of human body parts is divided into different categories. Moeslund and Granum (106)
proposed a general categorization for pose estimation. They separated pose estimation algo-
rithms into three categories based on their use of a prior human model: model-free, indirect
model, and direct model. Two well-established presentations i.e., part-based (107; 108) and
exemplar-based approaches (109; 110) fall into the model-free category. Part-based models
represent the human body as a set of rigid parts (e.g. torso, head, and limbs) while exemplar-
based methods find images with close whole body configurations and assign poses of those
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Figure 1.6: Joint pose estimation and action recognition originally shown in Raja et al. (114):
Training images (red frames) are manually labeled. Part positions (yellow boxes) and action
labels in test images are determined by optimizing the global graph energy.

well-matched training images to a test image. Both exemplar- and part-based approaches
have advantages and disadvantages. Exemplar-based approaches are fast but limited in re-
quiring good matching of the entire body. For example, exemplar-based approaches cannot
perform well when a test image has common body parts with two different training images.
In contrast, part-based approaches detect parts and assemble detected parts into a global
configuration. These methods usually do not specify how the whole body looks in the image
since the configuration of the body is typically defined as a pairwise relation between body
parts.

Methods use a-priori model as a reference or look-up tables to interpret extracted data in
indirect model classes (111). In this class, typical positions of the head, limbs or a bounding
box of the entire human body represent the pose. Direct model class (112) uses 3D models
representing poses by kinematic structures and requires more expensive computations during
the matching procedure.

The majority of previous pose-based methods focused on fitting a body model to the image.
The more complex the model, the better the results obtained. However, it requires more
processing and training time.

Activity recognition and pose estimation are typically published as two separate research
problems. However, we try to combine these two related research problems in this section.
Holte et al. (113) reviewed both human pose estimation and activity recognition. They studied
multi-view approaches for human 3D pose estimation and activity recognition. They compared
several methods for multi-view human action recognition. Moreover, they discussed the future
directions of 3D body pose estimation and human action recognition. Yukita (85) proposed
a method that iteratively performs action classification and pose estimation. Initial action
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(a) (b)

Figure 1.7: 2.5D graph representation, originally shown in Yao and Fei-Fei (116). The his-
tograms represent appearance features extracted from the corresponding image regions. (b)
The human body skeleton from the other views.

classification is achieved by employing sets of object detectors to represent scenes and objects
as features and SVMs as classifiers. Next, pose estimation is performed using action-specific
deformable part models. The estimated pose is then merged with the global features. The
normalized relative positions of parts with respect to their centers are used for action re-
classification. In another work, Raja et al. (114) connected similar images of actions into a
graph as illustrated in Figure 1.6 to jointly address the problem of pose estimation and action
recognition. The assumption behind the method is that regions with small distances in the
image space will often have similar semantics. A graph is created with five body parts and a
class label. There are constraints on the relative positions of body parts and their appearance.

Graphical models have been used widely for pose estimation. These models represent the
connections and the relations between different body parts and performers. Poses are usually
nodes in the graph and edges depict specific relationships between poses. Mukherjee et al. (115)
proposed a graph theoretic approach to recognize interactions. They generated the dominating
poses of each performer and used these as nodes of the graph. All possible combinations of
dominating poses of two performers, doublets, are created for each interaction and ranked
using a graph to produce dominating pose doublets. The distinctive set of dominating pose
doublets is selected to represent the corresponding interaction. Another approach using a
graphical model is a 2.5D graph representation proposed by Yao and Fei-Fei (116) to recognize
actions from single images. It considers key joints of the body (graph nodes) along with spatial
relation between key joints (graph edges). Each key joint is represented by 3D positions
and 2D appearance features. An exemplar-based representation is used to classify actions.
The similarity between actions is measured by matching their corresponding 2.5D graphs
(Figure 1.7).
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Many approaches model human poses by localizing body joints. A spatial configuration of body
joints represents poses. C. Wang et al. (117) used body joints to model spatial pose structure
as well as temporal pose evolution to recognize actions in a video. They estimated human joint
locations and obtained the best estimated joints for each frame. Then they grouped estimated
joints into five body parts and obtained sets of distinctive co-occurring pose sequences of
body parts in spatial and temporal domains. For example, the “lifting” action involves the
right and left arms moving up concurrently. In the test mode, histograms of detected part
sets are created as inputs of SVM classifiers. Meng et al. (118) used the locations of the body
joints to recognize human interactions. They called interactions between the parts of the same
person and between the parts of different persons intra-person and inter-person interactions,
respectively. Joint relative locations are represented as semantic spatial relation features to
learn the model.

Some methods model actions as a sequence of key-poses using a compact representation instead
of using body poses of all frames. For example in a pushing action, key-poses of the subject
(who performs the action) are stepping forward, placing his hands in front, and pushing. For
the object (which is pushed), the key-poses are a defensive pose, stepping backward, and falling
back. Temporal key-poses reduce the intra-class variation within the same action and increase
the inter-class variation between different actions. Eweiwi et al. (119) extracted spatial and
temporal information (120) of each pose at each frame of the action sequence. To present the
key-poses of each action, K-means clustering is used for each action separately. Chaaraoui
et al. (121) represented a human body by contour points. To learn key-poses, they grouped
all frames of the same action class into K clusters where the center of each cluster represents
an initial key-pose. The process of clustering is repeated to avoid local minima. Results are
generated by determining the Euclidean distance between training poses and initial key-poses.
The best matches to initial key-poses are taken as the final key-poses. The key-pose learning
process is repeated for the training samples of each action class. Cheema et al. (122) proposed
a similar approach. However, they assigned rewards and penalties to key-poses. The key-poses
which occur only within one action class and are distinguishable have higher weights. Vahdat
et al. (123) proposed an algorithm to model interactions as sequences of key-poses. K-means
is used to extract various human poses from given trajectories of people in the video. Initial
key-pose candidates are provided by the nearest samples of the training set to the K-means
centers. The parameters of the model are learned to find the key-poses in a test sequence and
recognize the activity class.

Selecting key-poses follows certain rules such as taking into account the temporal order of an
action. For example in “walking”, crossing two legs should occur between left leg stepping and
right-leg stepping. Furthermore, the transitions between different actions have a specific order;
“sitting” cannot become “walking” without “standing up” in between. Lv and Nevatia (124)
considered these rules and modeled actions from 3D positions of body joints. The difference
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between joints of bodies in successive frames is computed and used to define key-poses.

Park and Aggarwal (125) studied the evolution of poses in activities to develop a method for
human interaction recognition. The poses of tracked body parts are estimated at the low-
level, and the overall body pose is estimated at the high level. The dynamics of the body
pose changes during the interaction is analysed by a dynamic Bayesian network. Spatial and
temporal constraints are defined to achieve interaction recognition. Spatial constraints are
the relative position and orientation of the two persons’ body parts. Temporal constraints
were defined as causal and coincident relations of body pose changes. For instance, a kicking
interaction contains two successive events:“a person moves forward with a stretched leg toward
the second person” followed by “the backward movement of the second person” as a result of
kicking.

Khan et al. (126) proposed a semantic pyramid approach based on extracted information from
the full-body, upper-body, and face to recognize activities from still images. They used a set
of pre-trained upper-body and face detectors to exploit semantic information automatically.
The best candidate is selected from each body part detector for feature extraction. Semantic
information from the full-body, upper-body, and face are combined into a single vector for
classification.

1.4.2 Poselet-based methods

As aforementioned, conventional pose estimation methods deal with identifying full body parts
and building human pose structure. The drawback of these approaches is that they fail in the
case of severe occlusion and clutter. On the other hand, methods based on poselets are more
reliable because the ongoing action can be recognized as long as important body parts in that
action are visible. Although poselets of the same action might look different in appearance,
they are similar semantically. In this section, we review methods that proposed algorithms
for action recognition based on poselet descriptors.

Poselet is extracted from body parts and captures the salient body poses related to certain
actions. Yang et al. (127) trained a system to localize important body parts for different ac-
tions in static images. It is the first work that uses the poselet context for activity recognition
purposes. The method does not result in a perfect pose estimate but tries to detect discrim-
inative poses for each action. The pose of the person is learned as a latent variable rather
than using a pose estimation method. A four-part star-structured model is used to present
the configuration of the body. The parameters of the model are learned to assign a class label
to an unseen image. Similar to this approach, Maji et al. (94) conducted tasks of 3D pose
estimation and action recognition. Poselet detectors are run in a scanning window over the
image. The 3D orientation of heads and torsos of people is estimated using an activation vec-
tor. The activation vector is the sum of scores of detected poselets. For recognizing activities,
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List of Poselets:
1.LegsExtended
2.HandDown
3.LegsStraight
4.BendHand
5.LegsOpen
6.Hand45◦

7.Hand90◦

8.LegHigh45◦

9.HandExtension

...
23.Far Approaching
Hands
24.Approaching
Hands
25.Hands Contact
26.Person Approach-
ing
27.Pushing Contact
28.LegHigh90◦

Figure 1.8: Samples of annotated poselets. The figure has been reproduced from (1).

poselet and appearance information are extracted from bounding boxes of people. They also
considered the information extracted from the interaction with objects to distinguish actions.

There are important poses related to certain actions. Raptis and Sigal (1) trained a model
to recognize actions in videos using key-frames as latent variables while the temporal order of
key-frames is important. Key-frames are important poses of actors in certain actions that are
learned in a max-margin discriminative framework. They annotated 28 types of poselets for
different activities such as extended leg, approaching hand, pushing contact etc (see Figure 1.8
for examples of annotated poselets). Based on these pre-defined poselets and using HOG and
BoW features (SIFT, Histogram of Optical Flow and Motion Boundaries), poselet classifiers
are learned. The highest score from each classifier is collected and a poselet activation vector is
built as the frame descriptor. A multi-class linear SVM is used to combine the scores obtained
from each action model. This method is also applicable in the case of dropped frames or
partially observed videos.

A poselet-based spatio-temporal method was proposed by Nabi et al. (129) to localize people
and recognize multiple activities in a single video. This method models human interactions in
crowded environments. A poselet activation pattern over time called TPOS (temporal poselet)
was designed to extend the context of poselet. TPOS is obtained by concatenating all spatial
poselet vectors of frames. Figure 1.9 illustrates TPOS representing the activations of three
different poselets (face, torso, and legs) in time for a 10-frame video of a running person.
The activation score of a bank of 150 poselet detectors is calculated. Temporal poselets with
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Figure 1.9: Temporal poselets. The correlation of three types of poselets (head, torso, and
legs) is illustrated as blue, red, and green lines in a 10-frame video during the “running”
activity (top-right). These types of poselets are displayed as profiles (top-left) and in the
video (bottom). The figure has been reproduced from (129).

a score lower than a prefixed empirical threshold are removed and a K-means algorithm is
used to cluster remaining poselets. Histograms representing the frequency of the K temporal
poselets in each video are created. These histograms and corresponding activity labels train
a SVM classifier to classify the activity in the input video.

Poselets have also been used to recognize actions from views that are unseen in the training
videos. J. Wang et al. (130) took advantage of the Kinect skeleton data and 3D poselet
detectors for cross-view action recognition from 2D video input. They designed a data mining
method to find discriminative 3D poselets. The view-invariant 3D poselet detectors are trained
and applied to all of the frames of the input video. Given an input video from a new viewpoint,
the scores of all the 3D poselet detectors projected to all possible views are calculated. The
highest detection score among all of the views is utilized as the 3D poselet detection score.
Videos are divided into 3-scale pyramids in the spatio-temporal dimensions. The detection
scores of the 3D poselet detectors at different scales are pooled and used as the features to
train a linear SVM for action classification.

While most approaches use poselet to determine the class of activity, Chen and Grauman
(131) proposed a poselet-based algorithm to expand training data from unlabeled videos to
recognize activities. Padding training data helps to leverage prior knowledge of the system to
be close to the human viewer. This method compares poses of a training set with unlabeled
videos and enhances training poses with the matched pose and its neighbors. The system
learns how human pose changes over time and uses this information to recognize activities in
new images or videos. The poselet activation vector describes pose and domain adaptation,
merging real and generated data to train action classifiers. This approach requires tracking
information of actors of the unlabeled video. The algorithm is applied on both static images
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and videos. Besides action recognition, this method is useful to augment benchmark dataset
where data are sparse.

Using both pose and context information, Zheng et al. (128) proposed a method for static
activity recognition. Poselet- and context-based classifiers are learned for each action. The
former uses a poselet activation vector as features and the latter is obtained by sparse coding
on the foreground and background. Given a test image, probabilities of classifiers are summed
up. The classifier with the highest score is chosen as the predicted action label. Methods
using context are reviewed in depth in the next section.

1.5 Methods based on objects and scenes

Given a human action, there may be objects related to that action. Different actions are
related to different objects. Knowing the related objects helps to recognize the corresponding
actions. For example, a horse (with a human) is possibly related to the action of “riding a
horse” while a phone (with a person) could be related to the action of “phoning”. In addition,
some actions are executed in certain scenes, e.g. swimming in water and driving on the road.
So extracting information from the action context or the whole scene is likely to be helpful for
action analysis and recognition.

Learning methods using scene detectors have been used for activity recognition. Marszalek
et al. (132) developed a joint scene-action SVM-based classifier by training several scene de-
tectors. They used movie scripts to annotate videos and discover the re-occurring relation
between scenes and actions. However, detector-based learning needs the prior knowledge
about scene categories and usually depends on the dataset. Therefore, it is not generative and
robust to dataset changing. It is also computationally expensive to collect annotated data for
each scene category.

As a replacement for detector-based learning, Zhang et al. (133) proposed a generative learning
method to recognize actions from scenes according to Multinomial and Dirichlet distributions.
They segment each frame into person and background regions. Then, spatio-temporal interest
points from the person region as well as color, shape, and local features from the background
region are detected. These features are described in HOG, color histograms, Gist descriptors,
and SIFT representing a bag-of-feature model.

The problem of local features is that they ignore temporal relation among features. In order
to benefit from the dynamic property of actions, Liu et al. (134) proposed a trajectory-based
method using scene context to infer activities. Also, Ullah et al. (135) used non-local cues
available at the region-level of a video by capturing scene context. Videos are decomposed
into region classes (e.g., road, side walk, and parking lot) augmenting local features to provide
prior information for action recognition.
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Jones and Shao (136) exploited the scene to improve unsupervised human action clustering.
They proposed a dual assignment K-means clustering algorithm (DAKM) which captures the
relationship between actions and scenes. The algorithm learns two clusterings of a dataset
according to two views of the dataset. One view (extracted from motion features) is generated
by the action of the video and the other view (extracted from static features) is generated by
the scene of the video to improve both action and scene clustering.

Regarding object-based activity recognition, Gupta and Davis (137) conducted research for
joint recognition of objects and actions based on shape and motion. They use the coherence
between object type, action type, and object reaction to improve the recognition performance.
Following this work, Gupta et al. (138) presented a Bayesian method integrating information
from humans and objects. They combined contextual information and applied spatial and
functional constraints to recognize human-object interactions in videos and static images.
The semantic relationships between scene and scene objects are also considered in the static
image setting. However, interactions here are limited to three sets of motions i.e., reaching,
manipulation, and object reaction. Similarly, a dynamic Bayesian network model is applied in
(139) to recognize activities. Radio-Frequency Identification Tags (RFID) and SIFT features
are combined to categorize activities and corresponding objects. However, this method does
not have a good performance if there is more than one action/object per video, more than one
person per action, or occlusion.

Some methods use the fact that spatial configurations and motion patterns between actor and
object become constrained by the target object. For example, actors may perform the “grasp a
cup” activity at different speeds and with different configurations. However, at the moment of
physical contact, actors’ motions, appearances, and actor-object spatial configurations become
constrained by the manipulated object. Filipovych and Ribeiro (140) showed that constrained
motion and spatial configurations are descriptive of the specific actor-object interaction. They
proposed a probabilistic framework that automatically learns models linking information about
the interaction’s dynamics, static appearances, and joint actor-object configurations. Likewise,
Kuniyoshi and Shimozaki (141) considered spatial and temporal patterns constrained using
neural network-based method.

As mentioned earlier, objects and human poses can serve as a mutual context for each other
with respect to HOI activities. For example, knowing that the player is in the starting position
with the golf club makes it easier to estimate the player’s pose and having a player’s pose helps
to accurately detect the small golf ball. Models using this mutual context discover the relevant
poses for each type of activity, and moreover the connectivity and relationships between the
objects and body parts (142; 143; 144; 145).

Some works combine the advantages of both object and scene features in activity recognition.
Li and Fei-Fei (146) proposed the first work on classifying events in static images by exploiting
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scene and object categorizations. A generative graphical model using appearance and geometry
information of local patches for the scene and objects is created to help recognition. Yet,
they did not take into account the relationship among the objects and between objects and
scenes. Ikizler-Cinbis and Sclaroff (147) combined the features of video elements i.e., objects,
scene, and actions in a multiple instance-learning framework. However, they did not learn the
relationship between these elements for action identification. They use motion information to
extract object candidates along with Gist and color features as scene-centric features. Finally,
Han et al. (148) proposed a Gaussian process classification approach for action recognition
based on bag-of-detectors considering relations between object parts in the scene.

1.6 Methods based on attributes

As discussed earlier in Section 1.3, attributes are an element of our semantic space. Recent
work has shown that attributes are effective features that describe a basic or an intrinsic
characteristic of an activity. Occasionally, it is possible to assign an attribute to more than
one action. For example, the “riding” attribute can be assigned to both “riding a bike” and
“riding a horse”. Therefore, it is important to select discriminative attributes which result in
more accurate outputs. In this section, we explore several methods using attributes to model
human actions.

Liu et al. (104) introduced action attributes to recognize human actions from videos. They
modeled attributes as latent variables and formulated the classification problem using a latent
linear SVM framework which selects the most discriminative and representative attributes
for each action class. This method integrates manually specified and automatically extracted
attributes. The absence or presence of each attribute forms a binary vector for the action
class. To address the problem of action intra-class variability, they treated attributes as latent
variables.

Sharma et al. (149) described activities with the expanded parts model (EPM) by modeling
the appearance of humans. This model uses a collection of part templates to explain specific
regions in images. The model selects discriminative parts of the action class and skips non-
discriminative background regions. The immediate context around the person in the image
e.g., the bike in “riding bike” (Figure 1.10) and the grass in “running” is also taken into
account. The model scores a test image by representing it with the learned part templates.
Parts compete to explain activities and only discriminative ones win. For instance, considering
riding bike and riding horse, the person that has a similar pose is removed and the hair and
helmet are taken as important parts to distinguish the actions.

An activity can be defined as a sequence of the action attributes. For example, the activity
“retrieving an object from a box” is defined as the sequence of the action attributes “insert hand
in box”, “grab object”, “remove hand from box”, and “drop object”. The modeling of attribute
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Figure 1.10: Expanded Parts Model, originally shown in Sharma et al. (149): in “riding bike”.
The model scores an image by representing it with the learned part templates.

dynamics is more discriminant than the modeling of attribute frequencies, i.e. simply recording
the occurrence of the action attributes “remove”, “grab”, “insert”, and “drop”. In the absence
of information regarding the sequence, attribute dynamics help to distinguish the activity
“retrieving object from box” from the “storing object in box” which is defined as “remove
hand from box”, “grab object”, “insert hand in box”, and “drop object”. While most of the
attribute-based approaches represent actions as orderless attribute vectors, Li and Vasconcelos
(150) proposed an algorithm to model dynamics of activity attributes. They used the binary
dynamic system (BDS) to learn both the distribution and dynamics of different activities in
attribute space. The BDS combines binary PCA and a least-square problem. A similarity
measure between BDSs is introduced to design activity classifiers.

Qiu et al. (151) described an action video by a set of compact and discriminative action
attributes. They proposed a dictionary-based method to learn human action attributes. Dic-
tionary learning is an approach to learn dictionary items from a set of training samples. The
dictionary items are considered as attributes in this algorithm. They exploited the appearance
information between dictionary items and also the class label information associated with dic-
tionary items. The mutual information for appearance information and class distributions is
used to define the objective function. The objective function is optimized through a Gaussian
process model as a sparse representation that speeds up the optimization process.

In the work of Zhang et al. (152) action classification and attribute classification were assumed
to be two separate main and auxiliary tasks, respectively. They did not follow the conventional
multi-task learning methods for joint class-attribute learning due to the fact that the attribute
and class label contained different amounts of semantic information. They defined attribute
regularization as a penalty term which gives a high penalty if outputs of the attribute classifiers
are very different from human-defined attributes.
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Many human activities are complex and composite such as assembling furniture or food prepa-
ration. In order to handle the diversity of composite activities, one efficient way is to represent
the activities by shared and transferred contexts across activities and exploit their composi-
tional nature. Rohrbach et al. (153) learned models for a large set of attributes shared across
composite activity classes for the recognition of cooking activities. They took into account the
co-occurrence and context of each activity and respective objects. Basic-level activities and
participants are attributes of composite activities. For instance, pan and onion (participants)
and fry (basic-level activity) are considered as attributes of the “preparing onion” compos-
ite action. They also used textual descriptions to connect a certain attribute to a specific
composite activity.

Some methods use several semantic features to recognize activities. B. Yao et al. (154) ex-
ploited poselets, objects, and attributes to assist in action recognition in still images. They
defined attributes as a verb related to the action such as sitting, biking, horse riding and parts
consisting of related objects (helmet, bike...) and human poselets. For instance, the “riding”
attribute is likely to co-occur with objects such as “horse” and “bike”, but not “book” while
the “pendulum-like arm” poselet is more likely to co-occur with the “walking” attribute. A
sparse set of parts and attributes that are meaningful to the contents of each action are used
to model actions. Attribute classifiers and part detectors are implemented on a test image. A
normalized vector of obtained scores is used to represent the image and an SVM classifier is
trained for action classification.

A system using several semantic features must recognize activities reliably and correctly even
when one of those features fails. One solution is to design a framework that compensates
for the failures of the features with the use of the decisions made by the other feature or
recognition results of actions (155).

1.7 Semantic action recognition performance

To understand the present level of semantic action recognition performance, we compare action
recognition accuracies obtained in previous approaches. We decided to present the reported
action recognition results on the most popular datasets, namely UT-Interaction (156), Willow
datasets (157), and Pascal VOC 2010 Action (158).

We report results of representative semantic and non-semantic methods on the three mentioned
datasets in Table 1.3, Table 1.4, and Table 1.5, respectively. The performance of approaches
is judged based on Average Precision (AP), which is the area under the Precision-Recall (PR)
curve. AP has become a standard measure to validate algorithms in action recognition.

From Table 1.3, we can see that the semantic approaches are better than the non-semantic
approaches for most cases in the UT-Interaction dataset, except for the work of Meng et al.
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Table 1.3: Performance of different methods on the UT-Interaction dataset. The best results
are marked in bold.

Methods Semantic Non-semantic AP (%)

Ryoo and Aggarwal (160) √ 70.8
A. Yao et al. (159) √ 88
Delaitre et al. (157) √ 76.73
Matikainen et al. (161) √ 46.58
Ryoo (2) (best) √ 85
Vahdat et al. (123) √ 93.3
Kong et al. (162) √ 88.3
Meng et al. (118) √ 87.7
Rapti and Sigal (1) √ 93.3
Mukherjee et al. (115) (best) √ 86.67

Table 1.4: Performance of different methods on the Willow dataset. The best result is marked
in bold.

Methods Semantic Non-semantic AP (%)

Lazebnik et al. (163) √ 63.7
Delaitre et al. (157) √ 62.88
Maji et al. (94) √ 41
Delaitre et al. (142) √ 64.1
Zheng et al. (128) √ 65.4
Sharma et al. (149) √ 67.6
Khan et al. (164) √ 68
Khan et al. (126) √ 72.1

(118) and Mukherjee et al. (115) whose results are slightly lower than the best result in non-
semantic methods, obtained by a Hough transform-based voting framework (159). Results are
shown as the average of Set1 and Set2 in the UT-Interaction dataset. The UT-Interaction
dataset contains a total of 20 video sequences for 6 classes of human-human interactions
(“shake-hands”, “point”, “hug”, “push”, “kick”, and “punch”) in two sets taken on a parking lot
and on a lawn.

The Willow action dataset is a challenging database for action recognition consisting of 7
action classes and 968 images downloaded from the internet. Action classes are “interacting
with computer”, “photographing”, “playing instrument”, “riding bike”, “riding horse”, “running”,
and “walking”. Experiments show that the semantic method proposed by Khan et al. (126)
achieves the best result methods with 72.1% AP in this dataset (Table 1.4).

The VOC 2010 action dataset contains 454 images and 9 types of actions: “phoning”, “playing
instrument”, “reading”, “riding bike”, “riding horse”, “running”, “taking a photo”, “using com-
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Table 1.5: Performance of different methods on the PASCAL VOC 2010 dataset. The best
result is marked in bold. SURREY-MK and UCLEAR-DOSP are the approaches presented
in the PASCAL challenge (158).

Methods Semantic Non-semantic AP (%)

SURREY-MK √ 62.2
UCLEAR-DOSP √ 61.1
Delaitre et al. (157) √ 52.9
B. Yao et al. (154) √ 65.1
Maji et al. (94) √ 59.7
Delaitre et al. (142) √ 60.66
Zheng et al. (128) √ 68.8
Khan et al. (165) √ 62.4
Khan et al. (126) √ 66.35

puter”, and “walking”. Using body parts only cannot achieve a very good performance on this
dataset because there are different activities which share similar poses. These classes also have
widely varying object types. Therefore, adding the object model boosts the performance of
categories such as “riding bike” and “using computer” significantly. In addition, the context
information improves the performance of activities such as “playing instrument” and “running”
as these are often group activities. Table 1.5 shows a state-of-the-art comparison on the Pascal
VOC 2010 dataset. The three best results belong to the semantic methods of Zheng et al.
(128) combining human pose and context information, B. Yao et al. (154) based on semantic
pyramids from body parts, and Khan et al. (126) using action attributes and parts with 68.8%,
65.1%, and 63.5% AP respectively.

Both groups of semantic and non-semantic methods have their expected advantages and draw-
backs. In particular, body-part based methods rely heavily on the pose difference in actions.
If poses of one action are not significantly different from those of other actions, these methods
may fail, e.g. running versus walking. However, in the presence of distinguishable poses,
they obtained the best performance. This is mainly because of semantic descriptors which
act like human perception. On the other hand, non-semantic methods utilize low/mid-level
features regardless of the body-parts and attributes and hence they are less sensitive to shared
poses/attributes in different actions. However, low-level representations lack semantic inter-
pretation since they usually disregard the context and extract information from the image
locally. These descriptors are more sensitive to the appearance and unrelated information
such as the background.
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1.8 Applications and other semantic approaches

Recent approaches have aimed at structured representation of activities that go beyond the
bags-of-words method. They have shown how semantic information is related to an action.
Semantic features are not limited to what has been discussed here. We have reviewed the
most important features in semantic space. One semantic feature that needs more research is
linguistic description (125; 153; 166; 167). It learns relationships between subject/verb/object
(S, V, O) of the action. For example, knowing “person” as the subject, “egg” as the object,
and “make” as the predicted model, the most likely verb is “cook”. Guadarrama et al. (166)
mined (S, V, O) triplets from the natural language descriptions and built semantic hierarchies
showing semantic relationships among parts of the triplets. Then, they learned a language
model from a web-scale text dataset and used it as a prior on triplets to infer verbs.

In some other semantic approaches, a hierarchical representation and reasoning mechanism
have been used to recognize activities. A set of rules that encode logical relationships among
individual concepts is referred to as a reasoning mechanism. Real-world activity recognition
systems typically follow a hierarchical approach. Modules such as background/foreground
segmentation, tracking and object detection create the lower levels and action recognition
modules create the mid-level. At the high-level, the reasoning engines encode the activity
semantics based on the lower level. Thus, it is necessary to understand both hierarchical
and reasoning mechanisms to deploy real-world applications. Chen et al (168) used a hier-
archical framework for semantic understanding of activities. This method is a bottom-up
process to recognize complex activities. First, lower-level actions are recognized by conven-
tional machine learning methods (HMM classification and optical flow features). Afterwards,
a resolution based reasoning method (169) is applied to recognize the composite activity us-
ing the recognized lower-level actions and logical rule representation. The logical rules reflect
the semantic relationship between different actions. Therefore, the hierarchical structure is
constructed based on low-level features, mid-level actions, and high-level activity. In other
words, the recognition process has a hierarchical mechanism from low-level data to high-level
semantic understanding.

In another work, Chen et al. (170) took uncertainty, temporal order, and spatial relation-
ship into consideration and proposed another hierarchical approach based on the semantic
understanding and logical uncertainty reasoning mechanism (171). The uncertainly reasoning
mechanism indicates whether high-level logical rules hold or not. In a similar way, Ryoo and
Aggarwal (172) represented a hierarchical approach composing complex activities into sub-
events and specifying temporal, spatial, and logical relationships among sub-events. Recog-
nition of human activities is performed by semantically matching constructed representations
with actual observations. Ramirez-Amaro et al. (173) proposed a two-stage framework based
on a reasoning mechanism to extract human activities from videos. In the first stage, they
extract spatio-temporal features directly from video data to recognize general motions i.e.
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Figure 1.11: Zero-shot learning. Transferring knowledge from known actions (prepare onion
and separate egg) to unknown action (prepare scrambled eggs). The figure was originally
shown in (153).

moving, not moving or tool used. In the second stage, semantic rules are generated to reason
about more specific activities such as reach, take, etc.

Thus far, we have discussed different semantic approaches and the features used in these
approaches. Here, we present potential applications where semantic approaches may be of
assistance.

1.8.1 Zero-shot learning

A semantic model is a powerful representation for recognizing action categories that have
not been seen in the training phase. Semantic data allows the use of external knowledge
to determine relevant information for a new activity. This type of recognition is referred to
as zero-shot learning (174). It is based on transferring knowledge from known classes (with
training samples) to unknown classes (without training samples).

Zero-shot learning represents new actions by incorporating human knowledge rather than
training the system for the new input. For example, the new “preparing scrambled eggs”
activity can be recognized by knowing activities such as “separate egg” and “preparing onion”
as shown in Figure 1.11.

Many human activities share the same basic attributes. For example, the attribute “sitting” can
be observed in the activities “watching television” and “working at the office”. Cheng et al. (175)
developed an attribute-based algorithm to recognize unseen activities. They used raw sensor
data and extracted low-level signal features from the processed sensor data. Low-level features
are transformed into a vector of semantic attributes and form an activity-attribute matrix.
The activity-attribute matrix has the binary values indicating whether a certain attribute is
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Problem: What is this activity?

Observation:

Problem: What is this activity?

Observation:

Figure 1.12: Early activity recognition. Top row shows activity classification from fully ob-
served video and the bottom row shows the early activity recognition problem. The figure is
reproduced from (2).

associated with an action. Given the activity-attribute matrix, attribute classification classifies
the detected attribute as one of the activity classes. To reinforce activity recognition accuracy,
the method uses an active learning parameter estimating the uncertainty of the recognition
result. If the result is estimated to be highly uncertain, a user is asked to label it as a ground-
truth label. Then using the labels, models for attribute detection and activity classification
are re-trained and updated.

Algorithms proposed by Liu et al. (104); Qiu et al. (151); Rohrbach et al. (153) (Section 1.6)
are zero-shot recognition methods that use attributes. These methods use attributes as a
bridge to transfer knowledge from known classes to unknown classes.

Chen and Grauman (131) (Section 1.4.2) used the poselet activation vector to recognize ac-
tivities from novel single images that were not observed in the set of training static images.
They created a pool of plausible poses from training images and unlabeled videos to infer new
actions.

1.8.2 Early activity recognition

Approaches recognizing activities from videos mostly classify activities after having fully ob-
served videos. It would be more interesting if the system could recognize activities from par-
tially observed videos and as early as possible. The overall goal of early activity recognition
methods is illustrated in Figure 1.12 schematically.

Early recognition of ongoing activities has several practical applications. Early recognition
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can help when the whole video stream is not available and activities are not recorded from the
start to the end. It can also be useful in surveillance applications to identify thieves before a
robbery occurs.

Although the bag-of-words feature is a popular method in human activity recognition, it is
not an appropriate method for the task of early recognition since it ignores the temporal or
sequential information of the activity. Furthermore, the initial part of the activity may not
be sufficient to build an appropriate bag-of-words representation. Instead, semantic represen-
tations are useful for early recognition. Using semantic features allows an action to become
distinguishable when we have access to only a fraction of frames since similar actions share the
same meaning across frames. The semantic approach by (1) outperforms other existing ap-
proaches in early activity recognition. As mentioned before, (1) uses a poselet representation
to extract key-frames and recognize activities.

Ryoo (2) performed the first attempt in early activity recognition. He represented an activity
as an integral histogram of spatio-temporal features and modelled the distribution of features
over time. His recognition methodology is named dynamic bag-of-words.

Li and Fu (8) proposed a method to model the temporal order of activities for early recog-
nition using an autoregressive moving average model, ARMA. An ARMA model is a tool for
understanding and predicting future observations of a time series. A combination of HMM
and ARMA is used in this method.

In another work, (9) proposed an approach to train temporal event detectors for early event
detection. The algorithm detects the temporal location and duration of an activity from a
video. The performance of the method is evaluated on facial expressions, hand gestures and
action datasets.

1.8.3 Gapped-video based activity recognition

Activity videos may include a temporal gap (e.g. dropped signal when making a video) that
may occur any time and with any duration. If the video stream contains several activities
sequentially, the temporal gap may divide the video into two different activity subsequences
and make the recognition more challenging.

Cao et al. (176) conducted the only work in recognizing human activity from gapped videos
using spatio-temporal features. Each activity is divided into temporal segments and sparse
coding is applied to extract the activity likelihood for each segment. Likelihoods are combined
for all segments to achieve a global posterior for the activity. The posterior is maximized to
recognize the activity.

Learning semantic contexts enables an algorithm to describe the relation between the action
category and each frame even in the presence of multiple actions in a gapped video. Therefore,
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semantic approaches are likely to be helpful for gapped-videos.

1.8.4 Activity forecasting

Activity forecasting refers to predicting future unobserved actions and it is different from
simply classifying a partial sequence as a given activity. Extracted semantic information such
as scene understanding helps to forecast actions. Recent semantic scene labeling methods
propose reliable ways of recognizing scene features such as pavement, building and car (177;
178). Having the knowledge of the human preference for using a certain physical environment
(sidewalks, streets, etc.) allows us to perform higher levels of reasoning concerning future
human actions. For instance, people desire to walk on sidewalks rather than streets. Therefore,
when a person wants to approach his car which is parked further away, we predict that he will
walk on the sidewalk as long as possible to reach his car. Furthermore, we can benefit from
human knowledge of possible consequences of executing an action as semantic information for
activity forecasting (179) e.g., what do I learn by doing this action? (immediate rewards),
what will be the consequences of my actions in the future? (expected future rewards), and
what do I intend to accomplish? (goals).

Kitani et al. (180) combined semantic scene understanding and noisy tracker observations to
forecast activities. They predicted the walking path of a person in an urban environment such
as road, sidewalk, and entrance based on historical data.

1.8.5 Activity analysis

Identification and description of activities are referred to as activity analysis. For example in
some sports training applications, it is necessary to carefully analyse the video for effective
training. Sports analysis can be performed by searching important poses of the athlete’s body
in the video. More generally, an activity can be analysed by extracting a few atomic key
actions using semantic evidence.

Wu et al. (181) search key-frames in sport training videos based on poselet representation.
An independent classifier is trained for each poselet. Classifiers are applied on test frames
and poselets are detected in multi-scale scanning mode. The number of detected poselets by
the first poselet classifier is computed for each frame. A frame with the maximum detection
number is chosen as the key frame of the first poselet. Key-frames of other poselets are
obtained in a similar way.

Some of the mentioned applications have already used semantic approaches, but they are still
in their early stages. We believe this is just the beginning of using semantics and human
knowledge in action recognition and it still requires more research when compared to the
intensive studies in spatio-temporal based recognition.
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1.9 Conclusion

Recent action recognition methods rely on low-level and mid-level features such as spatio-
temporal interest points and trajectories. Although these methods provide reasonable results
on several datasets, they fail with complex data due to the lack of semantics they represent.
Several new approaches have aimed at structured representation of activities that go beyond
low/mid- level features. We have focused on recent action recognition frameworks based on
semantic information in this paper. We introduced a semantic space which mainly includes
pose, poselet, object/scene context, and attributes. Linguistic descriptors and reasoning-based
hierarchical semantic representation have also been used as semantic features. Different action
recognition methods have been proposed using these meaningful features. We discussed that
relying on low-level features is sub-optimal due to significant variation in scales, viewpoint,
and pose in real-world data. Therefore, semantic descriptions that can capture meaningful
information and are robust to visual variations are needed.

Experiments show that semantic methods outperform non-semantic based methods in most
cases except when different activities share similar poses/attributes. In such cases, combining
several features improves the performance.

In order to exploit the full potential of semantic methods, certain topics need further investi-
gation. We have discussed applications of semantic approaches. One promising direction for
exploiting semantic methods is recognizing new activities that have not been seen in train-
ing examples, referred to as zero-shot learning. Models using semantic information are able
to incorporate human knowledge to describe new activities. Learning a model with human-
specified knowledge is similar to the young infants learning process which enables them to
interpret new observed actions. Semantic models, furthermore, allow an action to be distin-
guished even when we have access to only a fraction of frames. Semantic methods are useful
in such a case since similar actions share the same meaning and characteristics across frames.
Thus, extracting common characteristics enables the algorithm to recognize the ongoing ac-
tivity although some frames are missing. There are other innovative topics in which semantic
methods are likely to be helpful such as activity forecasting and activity analysis. What all of
these topics have in common is the understanding of human activity as a core component of
various kinds of context-aware and user-centric applications.

Semantic action recognition is a relatively new area. The existing work still requires more
research when compared to the intensive studies in spatio-temporal based recognition. Future
algorithms may better explore this aspect to connect algorithms to human knowledge. We
hope this survey motivates future researchers to devote more attention to semantic information
in modeling human actions.
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Chapter 2

Time-slice Prediction of Dyadic
Human Activities

Abstract
Recognizing human activities from video data is being leveraged for surveillance and human-
computer interaction applications. In this paper, we introduce the problem of time-slice
activity recognition which aims to explore human activity at a smaller temporal granularity.
Time-slice recognition is able to infer human behaviours from a short temporal window. It has
been shown that the temporal slice analysis is helpful for motion characterization and in general
for video content representation. These studies motivate us to consider time-slices for activity
recognition. To this intent, we propose a new family of spatio-temporal descriptors which
are optimized for early prediction with time-slice action annotations. Our predictive spatio-
temporal interest point (Predict-STIP) representation is based on the intuition of temporal
contingency between time-slices. Furthermore, we introduce a new dataset which is annotated
at multiple short temporal windows, allowing the modeling of the inherent uncertainty in time-
slice activity recognition. Our experimental results show performance comparable to human
annotations.

2.1 Introduction

Humans are good at anticipating and correctly predicting the activities of others during social
interactions. For example, we do not need to see a full handshake before being able to recognize
it. In fact, two people getting closer and lifting hands will most likely shake hands. Humans can
naturally model the uncertainty associated with activity recognition. While great progress has
been made in computer-based human activity recognition this past decade, computational al-
gorithms are often lacking the predictive capabilities of humans. Also, most recent approaches
are expecting a complete video with a large temporal window. Based on intuition from social
psychology, we introduce a time-slice approach to human activity recognition which is based
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Figure 2.1: An illustration of human activity recognition problems. The first row illustrates
“time-slice” recognition and the labels, i.e., Handshake (Hsh.), Hug, and Punch for different
time-slices. The second and third rows show “early” recognition and “holistic” approaches
where the label is the same for the whole sequence.

on short-term observations. We are interested in improving our understanding of the inherent
uncertainty occurring with time-slice observations and building computational algorithms to
properly model them. This work has several practical applications, outside the basic research
question of better understanding human and computer perception of dyadic actions. It can be
beneficial when the whole video stream is not available and activities are not recorded from
the start to the end. It can also be useful in video indexing, retrieval, and analysis.

We present in Figure 2.1 an overview of our approach based on time-slice action prediction and
contrast it with the conventional approaches which recognize actions based on either the whole
video sequence (referred as “holistic” approach) or the first part of it (early recognition) (2).
Our time-slice approach studies not only the beginning of the action sequence but generalizes
this to any short-term observation anywhere in the video sequence. Another key novelty is in
the explicit modeling of the uncertainty occurring when predicting actions based on time-slices.

In this paper, we propose a new set of spatio-temporal descriptors using time-slice action
annotations for early activity prediction. We show our predictive spatio-temporal interest
point (predict-STIP) representation is able to infer time slices of human activities based on
discriminative descriptors. We select feature descriptors which are discriminative when an
action is clearly occurring during a time-slice and is also visible outside on time-slices with
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Figure 2.2: An overview of our method, Predict-STIP. Given an input video sequence, we first
extract discriminative segments and then detect Predict-STIPs. HOG3D representation and
BoW models are applied to prepare inputs for SVM classifiers.

uncertain action. Given their broader temporal range, we hypothesize that these descriptors
can be better at prediction actions. An overview of our method “Predict-STIP” is illustrated
in Figure 2.2. Our goal is to identify descriptors with broad temporal coverage. The details
on how we do it can be described later. Our representation is amenable to early activity
recognition. We show the comparison results of this work with the state-of-the-art in early
activity recognition.

We introduce a new dataset, named Time-slice Action Prediction (TAP) dataset, to evaluate
our proposed feature descriptors and enable future research on this topic. Our dataset could
also be used for early activity recognition as well as holistic activity recognition. The dataset
was created by extracting time-slices from existing public human action datasets and perform
a perception study with multiple annotators giving continuous ratings for each action. The
continuous ratings allow to represent the uncertainty in time-slice action prediction.

The outline of the paper is as follows. Section 2.2 provides an overview of the most rele-
vant works to our paper in activity recognition. We present our new dataset in Section 2.3.
Section 2.4 explains the methodology of our proposed method. Section 2.5 shows our exper-
imental results, followed by conclusions in Section 2.6.

2.2 Related Work

A number of surveys have been published in activity recognition over the past decade (7; 6; 5).
Given the significant literature review in this area, we focus only on the most relevant works.

Partially observed videos: Very few works have been devoted to recognizing activities from
partially observed videos. Ryoo (2) performed the first attempt in early activity recognition
and studied how feature distributions change over time. Li and Fu (8) used an autoregressive
moving average model, ARMA, to model the temporal order of activities for early recognition.
Raptis and Sigal (1) trained a model to recognize actions in videos using key-poselets as latent
variables for partially observed activity recognition. Yu (10) trained a model using relative
locations of space-time points to the center position. A Semantic framework was proposed
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by Li et al. (11) for early recognition of long-duration complex activities by discovering the
causal relationships between action units. Early event detection and recognition of human
activity from gapped videos have also been studied in (9; 12) which used partially observed
videos as input.

Space-time interest points: Recently, space-time interest points (STIPs) have received
increasing interest due to their reasonable performance for activity recognition. STIP-based
methods are invariant to geometric transformations which result in low variation by changes in
scale, rotation, and viewpoint. Laptev and Lindeberg (13) proposed the notion of STIP built
on the idea of the Harris and Stephens interest point operators (14). Several other methods
have been reported (15; 16; 17) to improve STIP detection for human activity recognition.
Chakraborty et al. (18) proposed a model for robust Selective STIP detection (S-STIPs)
by applying background suppression as well as local and temporal constraints. This method
outperforms existing STIP detection techniques and detects more stable and distinctive STIPs.
We benefit from the advantages of S-STIPs to extract the initial interest points in our work.
For exploring more approaches, we refer readers to a recent comprehensive survey of human
action recognition with STIP detector by Das Dawn and Shaikh (19).

Key-components: The use of informative components (frames or time-slices) is in contrast
to most research in video-based action recognition which often extracts features from much
longer videos. Using a sparse set of frames allows the model to focus on the most discriminative
parts of the action which are referred to as key-frames in literature review (20; 21; 22; 23).
Key-frames are discrete sets of frames that capture discriminative parts of a video. On the
other hand, time-slices are continuous sets of frames which represent temporal ordering and
dynamic structure of the discriminative part of a video. This paper is the first effort to
introduce time-slice for activity recognition.

Trajectory data: Among the local space-time features, tracking interest points through
video sequences have been shown to be an efficient representation for action recognition (24;
25; 26). Shape, appearance, and motion descriptors are extracted from the trajectories of
interest points to analyze detailed levels of human movements. Sun et al. (26) represented
activities using trajectory transition and trajectory proximity descriptors. The trajectory
extraction process is based on matching SIFT descriptors between two consecutive frames.
The descriptors that are too far apart are discarded. Wang and Schmid (24) proposed a
method using improved dense feature trajectories. They estimated the camera motion and
removed it from the optical flow to have better motion-based descriptors. In this paper,
we track specific spatiotemporal interest points backward and forward in time and extract
predictive features based on the persistency of this trajectory data.
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2.3 TAP Dataset

We are interested in social interactions, more specifically dyadic interactions. We use publicly
available datasets so that people can replicate and extend our experiments. We focus on
datasets with similar action labels in order to make the time-slice annotation task possible for
crowd-sourcing.

We have extracted 2119 time-slices from 4 challenging datasets, i.e., UT-Interaction (seg-
mented sets 1 and 2) (27), HMDB (28), TV Interaction (29), and Hollywood (30) datasets.
Each time-slice contains one of seven interactions: handshake, high five, hug, kick, kiss, punch,
and push. We performed a preliminary experiment to validate how many frames were neces-
sary to have good agreement between annotators. We requested some annotators to recognize
dyadic interaction examples with 5-, 10- and 15-frame time-slices. We decided to choose 10-
frame time-slices for our work since 5-frame time-slices were too short and 15-frame time-slices
were not fit to our goal which is studying the inherent uncertainty in activities. Our dataset
is available as a public dataset to encourage researchers to continue this line of research. 1

During our experiments, we grouped videos from constrained and unconstrained datasets.
Constrained, here, refers to the restriction in the settings and activity execution. UT-interaction
is our constrained dataset which contains acted interactions with a fixed background and pro-
file viewpoint that are performed for research purpose. On the other hand, unconstrained
datasets include activities which are taken in realistic settings, e.g. from TV shows. Uncon-
strained datasets are more challenging for activity recognition. HMDB, TV Interaction, and
Hollywood are our unconstrained datasets. We selected videos of these datasets based on a
camera angle ranging from -45 to +45 degree.

All time-slices were annotated by multiple online annotators (using the Crowdflower platform
(31)). Three annotators rated each time-slice on how likely a specific action is occurring. For
each time-slice and for each action, the annotator was asked to pick one of 5 likelihoods, i.e.,
definitely not occurring, unlikely to occur, neither likely nor unlikely to occur, likely to occur,
and definitely occurring. Since time-slices are very short video clips (10 frames), annotators
were allowed to replay each time-slice as many times as they wanted before making decisions. A
sample design of our tasks in the Crowdflower platform along with some reports on contributors
are illustrated in Figures 2.3 - 2.5.

Figure 2.6 illustrates how annotators rated two example videos. From the figure, one can
see the confusion and uncertainty of annotators in the first time-slices of videos. As time
passes and more information about the activity of interest is observed, annotators will better
recognize the activity.

1http://vision.gel.ulaval.ca/users/maryam/TAP/
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Figure 2.3: Sample design of our tasks in the Crowdflower platform. Choices 1 to 5 are 5
likelihoods which are defined in the instruction.

2.4 Methodology

Our approach to dyadic human activity recognition consists of three major contributions: i) a
new learning approach in which discriminative video segments are used on the basis of human
annotations and efficient spatio-temporal features (called predictive) are obtained on the basis
of their persistence and ii) a more general definition of the activity recognition problem in which
the uncertainty arising from observing a short time-slice from anywhere in the video sequence is
explicitly taken into account, and iii) a demonstration that a baseline multi-label classification
method can reproduce the features of the human annotation using the proposed learned model
for this problem. We introduce discriminative segments since we need feature descriptors which
are good when humans agree that an action is clearly occurring. We also require descriptors
which have predictive powers when their broader temporal range is considered. We first
determine discriminative segments of each video activity based on annotated data where all
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Figure 2.4: Contributors report for a sample task in the Crowdflower platform.

Figure 2.5: Contributor satisfaction for a sample task in the Crowdflower platform.
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Figure 2.6: Human annotation. This figure shows the average rate of 3 annotators for two
video examples: hug and push. For each possible activity and for each time-slice, the label
provided by one annotator is first converted to a number on a linear scale from 0 to 1. The
average of those numbers for more than one annotator (we used 3 here) is called the average
rate annotation for the time-slice. This average rate is used to evaluate the performance of
our method. Time-slices between dashed lines is the discriminative segment of the interaction
given to the annotators.

annotators agreed an interaction of interest is occurring. We then use these segments to
select predictive space-time interest points. Each predictive point is described by motion and
appearance descriptors to learn the model. In the following subsections, the above steps are
explained in more detail.

2.4.1 Discriminative segments

When analysing an interaction, we can definitely recognize the ongoing activity from specific
time slices such as “two people are shaking each other’s hands” slice in handshaking activity.
These slices are referred to as discriminative segments in this paper. Discriminative segments,
therefore, encode the most relevant slices of video to interested interaction. We define the
temporal location of a discriminative segment based on annotated data. In preparing our
dataset, we asked 3 users to annotate each time-slice as described in Section 2.3. To measure
the reliability of agreement between annotators, we used Fleiss’ kappa coefficient k (32) that
assesses the agreement between more than two raters. This coefficient takes into consideration
the agreement occurring by chance as shown in Equation 2.1. For each interaction video, time-
slices where the annotators are in complete agreement, i.e. k=1, on definitely including the
interaction of interest, are selected as discriminative segments.

k =
Pl − P̄i
1− P̄i

(2.1)
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where P̄i is the mean value to which annotators agreed for the certain interaction of interest
and Pl is the summation over the square quantity of all time-slices assigned to certain likelihood
categories. 1 − P̄i shows the degree of agreement that is attainable and Pl − P̄i shows the
degree of agreement that actually achieved. k between 0.81 and 1.00 shows an almost perfect
agreement.

2.4.2 Predict-STIP

In this paper, we follow the recent progress in STIP-based recognition strategy. Existing STIP
detectors are vulnerable to model the inherent uncertainty in partially observed action recog-
nition and prediction, and therefore, are insufficient for time-slice recognition. To overcome
this problem, we introduce a predictive representation which measures how long STIPs are
observable in a video. STIPs which are active during the whole video are selected as Predict-
STIP (P-STIP). In other words, P-STIPs are the STIPs that exist in first frames of the video
and will still appear in upcoming frames.

Given a set of interaction video sequences {Ai | i = 1 : n} and their associated discriminative
segments {Si | i = 1 : n}, our purpose is to detect P-STIPs Pi of each Ai. Our input variables
are sequences of frames Ai = {f1i , ..., f

ei
i } and Si = {s1i , ..., s

Ni
i } where ei and Ni are the

length of the full video and the discriminative segment, respectively. To extract P-STIP, we
first detect “stipNew” of s1i as initial landmarks. We then track them backward and forward
using Kanade-Lucas-Tomasi (KLT) algorithm (33; 34) to f1i and feii and check whether or
not they have existed during the whole video. We repeat these steps for all frames of Si.
Landmarks that are continuously observable are selected as P-STIPs Pi:

Pi = {p(xj,t,yj,t) ∈ s
t
i, t = 1, ..., Ni | ∀p Vp = 1} (2.2)

where V is a validity matrix providing a logical array, indicating whether or not each point
has existed during the whole video. (xj,t, yj,t) is the position of stipNew pj in the frame sti.

To speed up the tracking step and increase the efficiency of our algorithm, we select a new
subset of S-STIPs (18), stipNew, instead of using all densely sampled S-STIPs from Si. We
initialize stipNew as S-STIPs extracted from s1i and track them. We then generate putative
matches between previously tracked-stipNew, stipT , and extracted S-STIPs, stipE , of the
current frame by finding points that have minimal differences in oriented phase data within
windows surrounding each point (35). Only points that correlate most strongly with each
other in both directions are returned as matched points, stipM . Oriented phase data matcher
performs better compared to normalized grayscale correlation. We also set a maximum search
radius threshold for matching points to improve speed and accuracy since we do not want to
match points, e.g. from an arm with points extracted from a leg. Consequently, only points
whose Euclidean distance is below the threshold are considered for matching. Afterward, we

44



Algorithm 1 Predict-STIP detection from a discriminative segment
Input: Discriminative segment (H ×W ×N): S ;
S = {si | i = 1 : N} (contains all frames of a discriminative segment)
Definition:
f1: The first frame of the full video
fe: The last frame of the full video
V : Validity matrix provides a logical array, indicating whether or not each point has existed
Ensure: Predict-STIP: PredectivePoints

1. N = size(S, 3); (Total no. of the discriminative segment’s frames)
2. Initialize stipNew
3. Initialize stip
4. for i = 1→ N do
5. Track stipNew backward to f1 and forward to fe and restore V matrixes
6. Let stipT be stip tracked from si−1

7. Let stipE be S-STIPs extracted from si

8. Match stipT with stipE and set stipM = stipT ∩ stipE
9. Update stipNew via stipE /∈ stipM
10. Update stip via stipNew ∪ stipT
11. end for
12. Check V matrixes
13. Find points where Vpoints are always equal to 1 and set as PredectivePoints
14. Return (PredectivePoints)

employ RANSAC algorithm (36) to exclude outliers and identify strong inliers. Figure 2.7.a
illustrates the matching result of a sample frame. Finally, we update stipNew via stipE that
does not belong to stipM . Therefore, the stipNew is a new subset of S-STIPs that are not
tracked from previous frames and still appear in each frame. The pseudo code for the full
predictive feature detection is described in Algorithm 1. Figure 2.7.b also shows P-STIPs
extracted by our approach compared with S-STIPs resulting from (18).

2.4.3 Descriptors and vocabulary building

Several local and global descriptors have been proposed in the past few years for STIP-based
methods (37; 38; 39; 40). In this paper, we use HOG3D descriptors (40) to represent each
interaction video. The HOG3D descriptor is based on histograms of 3D gradient orientations,
where mean gradient vectors are computed using integral videos. With integral videos, 3D
gradients can be efficiently calculated for any arbitrary point in a video. Given P-STIPs of
each interaction video, we construct the HOG3D representation. Local regions are determined
first by extracting P-STIPs and then histograms of gradient orientations are computed over
a set of gradient vectors from the cuboid neighbourhood (4x4x4) around the P-STIPs. All
histograms are concatenated to one descriptor vector for each video.

We compute the basic Bag-of-words model and quantize the descriptor vectors, HOG3D ex-
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(a) (b)

Figure 2.7: Predict-STIP detection. The matching result of a sample “high five” action is
shown in the left figure. The right figure displays S-STIP (18) and our predict-STIP extracted
from the example.

tracted at P-STIPs, into 1000 bins associated with visual words using K-means clustering.
BoW features are normalized so their L1 norm is 1.

2.4.4 Learning

The goal of our Predict-STIP method is to determine the interaction category of time-slices
of video X among a set of classes {1, ...,K}. Therefore, our purpose is to learn a mapping
f(O) → {1, ...,K} where O ⊂ X refers to the time-slice observations and may occur at any
time in the video. We present the videos with BoW descriptors obtained from P-STIPs. For
each class of interaction, we learn a model with the corresponding BoW descriptors using
multi-class SVM framework in the training phase.

At test time, a query video vi which is a time-slice of a longer video is matched to the
models according to the learned appearance and motion predictive features. To this intent,
we extract S-STIPs (18) from vi and match them to the pool of trained P-STIPs. S-STIPs of
vi that match to P-STIPs are selected as descriptors of P-STIPs of vi (lookup table technique).
HOG3D are applied on P-STIPS and BoW descriptors of vi are extracted. Classification is
made based on the score of interaction class-specific models applied on BoW descriptors.

2.5 Evaluation of predictive model

We present experimental results on two scenarios of our TAP dataset: constrained and un-
constrained sets.
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2.5.1 Constrained set

Samples in constrained set are time-slices of 5 interactions (handshake, hug, kick, punch, and
push) collected from UT-Interaction dataset. To extract Predict-STIPs, we use a matching
function with two adjustable parameters: matching window size and maximum search radius.
We set the matching window size to 11 empirically and maximum search radius to 10 according
to the resolution of images in the dataset. The number of P-STIPs is different from one action
to another action and varies between 15-30.

We evaluate the time-slice recognition performance by using the standard “leave-one-out”
method, one video is out each time, and fit the recognition problem in the context of multi-
class classification. The average precision for all interactions ( compared to human annotation)
is given in the second column of Table 2.1. In order to visualize the performance of our method,
we draw its average precision on a per time-slice basis and compare it to the average rate of
human annotators (see Figure 2.8). Because the number of time-slices might be different in a
few cases in our dataset, we compute the averages using video examples with the same number
of time-slices. From the figure, we can see in some time-slices our approach outputs higher
values than human annotators, e.g. time-slices 11 and 12 for the Hug action. In those cases,
our method is thus better in recognizing the action from some limited time-slices.

Interestingly, since Predict-STIP is sufficient for holistic and early activity recognition, we
can also compare it with the state-of-the-art on UT-Interaction dataset for those two different
recognition context problems. Table 2.2 shows that our predictive representation outperforms
all the state-of-the-art methods.

2.5.2 Unconstrained set

The unconstrained set is more challenging than constrained set in terms of background clutter,
the number of people in the scene, the number of interactions, camera motion, and changes
of viewpoints. This set includes time-slices of 6 realistic human interactions (handshake, high
five, hug, kick, kiss, and punch) collected from HMDB, TV Interaction, and Hollywood TV
show datasets.

The experimental setting of this set is similar to the constrained set. The performance of
Predict-STIP on this set is also reported in Table 2.1. The results are obtained based on
the number of correctly labeled time-slices compared to the human annotation. From the
table, we can see that the results on the constrained set are better than the unconstrained set
because the unconstrained set is more challenging. We can also see that the best results are
obtained in handshake interaction for both datasets. High five interaction, meanwhile, has
the minimum accuracy rate among 7 listed interactions.
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Figure 2.8: Comparison results of our method with the human annotation. Dashed and
black lines show average rate by annotators and average precision of our method at test time,
respectively.

Table 2.1: The average precision of Predict-STIP on constrained (UT-interaction dataset)
and unconstrained sets (selected videos from HMDB, TV Interaction, and Hollywood TV
show datasets).

constrained set unconstrained set
handshake 82% 76.3%
high five – 61.4%
hug 81% 71%
kick 78% 73.7%
kiss – 74%
punch 80% 76.2%
push 75% –

Table 2.2: Performance comparison on the UT-Interaction Dataset. Early recognition and
holistic recognition results are reported on the second and third columns, respectively.

Method Accuracy with Accuracy with
half observation full observation

Our Model 83% 95%
Raptis and Sigal (1) 73.3% 93.3%
Yu et al. (10) 80% 91.7%
Ryoo (Best) (2) 70% 85%
Ryoo and Aggarwal (Best) (27) 31.7% 85%
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2.6 Conclusions

In this paper, we introduced a predictive representation for a new problem of time-slice activity
recognition. Time-slice activity recognition aims at exploring and recognizing an activity using
a portion of the whole activity. We represented each video based on spatio-temporal descriptors
of predictive features extracted from discriminative video segments. We also showed the
effectiveness of our approach in a new dataset and compared it to the state-of-the-art. This
dataset is available as a public dataset to encourage researchers to explore human activities
at a smaller temporal granularity.
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Chapter 3

Integration of Uncertainty in the
Analysis of Dyadic Human Activities

Abstract
Action analysis from video data has been attracting more and more attention in computer
vision over the past decade. The main focus has been classifying videos into one of k action
classes from fully observed videos. However, intelligent systems are always enforced to make
decisions under uncertainty and based on incomplete information. This need motivates us to
introduce the problem of analysing the uncertainty associated with dyadic human activities
and move to a new level of generality in the action analysis problem. Analysing the uncertainty,
here, refers to categorizing the likelihood of activities in trimmed video clips called time-slices
which are extracted from the full video. To this intent, we exploit the state-of-the-art methods
to extract interest points in time-slices and represent them. We also present an accumulative
uncertainty to depict the uncertainty associated with partially observed videos for the task of
early activity recognition. The experiments demonstrate the effectiveness of our framework
in analysing dyadic activities under uncertainty and in evaluating the performance of early
activity recognition methods.

3.1 Introduction

Uncertainty is an essential and inevitable feature of daily life. A parent does not know exactly
why a baby is crying. A speaker does not know exactly what the audience understands. An
investor does not know exactly how the stock market changes.

Intelligent systems have to exploit whatever information they have when it comes to making
decisions. There are many frameworks for solving problems involving a sequence of decisions
with uncertain outcomes: Markov decision process, planning under uncertainty, model-free
and model-based reinforcement learning, and batch reinforcement learning, to name a few.
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Figure 3.1: Integration of uncertainty in the analysis of dyadic human activities in videos. Full
videos are divided into time-slices (we use time-slices of 10 consecutive frames) and human
interactions (we use 7 interactions: handshake (Hs), high-five (Hf), hug (Hg), kick (Kc), kiss
(Ks), punch (Pn), and push (Ps)) are analysed in these time-slices. The likelihood of each
activity is reported from a list of categorical likelihoods in each time-slice.

In order to deal with uncertainty intelligently, we need to represent it and reason about it.
There is an active domain called uncertainty reasoning in computer science (see (41) for more
details). However, our interest here is not uncertainty reasoning per se but the representation
of uncertainty associated with activity recognition.

Uncertainty abounds in every phase of computer vision. Recognizing objects that do not come
from a database of geometrically precise models and scene understanding with either missing
information or ambiguity in interpretation are examples of uncertainties in computer vision.
Dominant uncertainties arise from lack of data (e.g. occlusions) versus lack of knowledge
(weak models). The uncertainties that arise from a lack of data are the focus of this work.

With a similar purpose to this paper, i.e. analyzing the uncertainty in human activities,
Schindler and Van Gool (42) investigated how many frames need to be accumulated over
time to enable action classification. They used the entire video sequences as well as very short
sub-sequences of videos, which are called snippets, and extracted local edges and optical flow
to recognize single person actions. Recently, a few works have been proposed to recognize ac-
tivities from partially observed videos ( (1; 12)). Although these methods consider uncertainty,
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they always analyse the beginning of the action sequence to classify videos into one of k action
classes. In this context, the question arises as to whether it is feasible to obtain a measure
of uncertainty associated with the labeled activity (or other possible activities) throughout
the video. This paper tries to answer this particular question by the explicit modeling of the
uncertainty occurring at a smaller temporal granularity referred to as time-slices which are a
set of consecutive frames anywhere in the video.

Figure 3.1 illustrates the basic proposal behind our work. Different from conventional ap-
proaches in activity recognition, we do not aim to classify the video into one of k action
classes. Instead, we want to analyse each time-slice extracted from the full video and classify
the occurrence of activities in it into one of k categorical likelihoods. Categorical likelihoods
are the following: definitely not occurring, unlikely to occur, neither likely nor unlikely to oc-
cur, likely to occur, and definitely occurring. Activities of interest in this paper are 7 human
interactions: handshake, high-five, hug, kick, kiss, punch, and push.

There is a variety of work with promising results in the field of activity recognition. The
majority of the works recognize an activity of interest occurring in a full video. However, one
problem still remains: to what degree of certainty the activity of interest is occurring and
other activities are not occurring during the video? To sidestep this problem, we propose
a learning framework to integrate uncertainty in the analysis of human activities in videos.
In particular, we explore the potential of different low-level feature detection and encoding
techniques in capturing the uncertainty in activities and perform a quantitative comparison of
these techniques. The details concerning this problem will be described later in Sections 3.3
and 3.4.

We quantify the performance of our proposed method using mean average precision (mAp)
to evaluate classified categorical likelihoods as well as a metric to evaluate the uncertainty
associated with each time-slice. We also report the uncertainty associated with time-slices
in each activity. Besides reporting results on categorical likelihoods and uncertainty in time-
slices, we show the effect of combining evidence from different time-slices and its effect on
evaluating the performance of an early activity recognition method. Section 3.5 describes our
experimental results in more detail.

In summary, our first contribution is a proposal to integrate uncertainty in the analysis of
dyadic human activities in videos (Figure 3.1). It consists in categorizing the likelihood of
activities, from a closed world, in each time-slice of a video. Methods developed under this
proposal have important implications for practical scenarios, where decisions have to be made
even if the occurring activity cannot be predicted precisely. Other application domains are
content-based video search, indexing, retrieval, and summarization where the goal is to explore
the content of the video and return time-slices where an activity of interest is (not) occurring
with a specific degree of uncertainty.
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Our paper offers three more contributions: i) a learning framework addressing this proposal
(Figure 3.2), ii) a quantitative comparison of different instantiations of the framework using
state-of-the-art techniques (Figure 3.3), and iii) a novel technique for evaluating the perfor-
mance of early activity recognition methods based on the uncertainty associated with partially
observed videos (Sections 3.3.4 and 3.5.3). The outline of the paper is as follows. In Sec-
tion 3.2 we provide an overview of the most relevant work in activity analysis. In Section 3.3
we explain the framework of our proposed approach. In Section 3.4 we describe our time-slice
representation. In Section 3.5 we report our experimental results, followed by conclusions in
Section 3.6.

3.2 Related Work

Discriminative approaches have been widely used to recognize activities over the past decades.
Most of these approaches make use of action descriptors with a bag-of-words (BoW) frame-
work. Classical action descriptors include SIFT, SURF, MBH, and HoG which are computed
in local space-time features. Among the local space-time features, space-time interest points
(STIPs) (43) have shown a promising performance. Several methods have been reported
(44; 18) to improve STIP detection for human activity recognition. For more details, we refer
readers to a recent comprehensive survey of human action recognition with STIP detector by
Das Dawn and Shaikh (19). Selection of encoding techniques is important to recognition per-
formance in the BoW framework. Wang et al. (45) evaluated most of the encoding methods
(vector quantization, soft-assignment encoding, sparse encoding, locality-constrained linear
encoding, and Fisher kernel encoding) for action recognition and reported the Fisher coding
method as the most effective method among them.

The time-slice representation has been used before in (44) for activity prediction. Discrim-
inative segments of videos are extracted and predictive space-time interest points of these
segments are detected. The HOG3D descriptor and BoW model are applied to the interest
points preparing them for SVM classifiers. However, our goal is different from (44) which
follows the conventional methods in terms of classifying videos into k action classes.

One way of seeing time-slice analysis of activity videos is as activity prediction. Li and Fu
(11) proposed a model to depict predictability of long-duration activities. They represented
activities as sequences of discrete action units and characterized the predictability using infor-
mation entropy changes along action units. Yang et al. (46) exploited the shape and motion
information to generate a temporal bag-of-words algorithm to predict daily activities. Huang
and Kitani (47) showed how the actions of one person can be used to predict the actions
of another person in dual-agent interaction. They modelled interaction as a Markov decision
process where the actions of the initiating agent induce a cost topology over the reactive agent
poses. Here, we use a simpler approach where the uncertainty for each time-slice is represented
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Figure 3.2: Method pipeline. Given a query time-slice, interest points (IPs) are detected
(by SIFT/S-STIP/Predict-STIP). Detected IPs are described with SIFT features. Visual
vocabularies are extracted from a learnt visual dictionary (by GMM/KNN). Features are
encoded (by FV/BoW) and normalized to feed into pre-trained SVM classifiers (linear/non-
linear with RBF kernel) to determine categorical likelihoods. In the case of FV encoding,
features are sampled and their dimensionality is reduced by PCA. More details about the
mentioned techniques are given in Section 3.4.

as categorical likelihoods which allows both activity prediction from any time-slice (versus the
first time-slices of the video) and the uncertainty estimation.

3.3 Our Framework

Figure 3.2 shows the test pipeline of our framework. A training phase must precede the
execution of this pipeline. The output of the pipeline is a categorical likelihood for each
possible activity.

3.3.1 Categorical Likelihoods

In the training phase, we learn a mapping f(T ) → Ln where T = {t1, ..., tl} denotes a time-
slice with l frames. L = {1, ..., k} is a set of categorical likelihoods and n = 7 is the number
of possible dyadic activities, i.e. handshake, high-five, hug, kick, kiss, punch, and push. We
set k = 5 where the activity is definitely not occurring if L = 1, unlikely to occur if L = 2,
neither likely nor unlikely to occur if L = 3, likely to occur if L = 4, and definitely occurring
if L = 5.

3.3.2 Training

Given a collection of time-slices of n activities in the training phase, we extract interest points
(IPs) from them. We exploit local space-scale and general space-time features to extract IPs
allowing us to capture distinctive information in space and time. We then describe extracted
IPs with SIFT descriptors.

54



In order to build a compact representation of extracted features, we build a sequence of
visual vocabularies on top of SIFT descriptors. We then use encoding algorithms on visual
vocabularies and normalize the results to represent them as encoded features. Finally, the
encoded features are fed into SVM classifiers to learn SVM parameters and train the model.

3.3.3 Testing

At test time, a query time-slice T is given to determine categorical likelihoods of n possible
activities in it. From the given T , IPs are detected and described with SIFT features. Visual
vocabularies of time-slice T are extracted from learnt visual vocabularies. Features are encoded
and normalized to construct time-slice representations. These representations enter into SVM
classifiers, which are pre-trained in the learning phase, to determine categorical likelihoods in
T .

3.3.4 Uncertainty

In this paper, we analyze the uncertainty associated with a time-slice T with an uncertainty
metric λT extracted from the uncertainty theory in mathematics (48). The uncertainty theory
is used to indicate the belief degree that an uncertain event may occur or may have occurred.
We cannot model the degree of belief with the probability theory since the probability theory
models frequencies. Frequency is a factual property of an indeterminate event and does not
vary with our state of knowledge and preference. In other words, the frequency exists in the
long term and is relatively invariant, whether we can observe it or not, e.g. “the number
6 appearing when rolling a dice” event. On the other hand, in many cases, no samples are
available to estimate a probability distribution of occurring events, e.g. “it will be sunny next
week” event. In these cases, the uncertainty theory evaluates the belief degree that each event
will occur.

Here, we are interested in investigating how uncertain/predictive a time-slice may be. We
convert the output of the pipeline (the output in Figure 3.2) to one uncertainty measure by
assigning a number to the uncertainty degree of each time-slice.

We first map the categorical likelihoods (L = {1, 2, 3, 4, 5}) to a scale from 0 to 1 based on
associated uncertainties and call them uncertainty values, i.e. u = {0, 0.5, 1, 0.5, 0}. We then
define the uncertainty metric λT as the average of all u in a time-slice T :

λT =
1

n
×

n∑
i=1

ui (3.1)

where n is the number of activities. A time-slice has no uncertainty if its uncertainty metric
is 0 (λT = 0) because we then believe that the time-slice is a combination of u = 0, i.e. L = 1

and L = 5 where an activity is definitely not occurring or definitely occurring, respectively.
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A time-slice is the most uncertain if its uncertainty metric is 1 (λT = 1) because both the
occurring activity and not occurring activity may be regarded as equally likely. The closer λT
is to 1, the more uncertain the time-slice is. Considering the output categorical likelihoods in
Figure 3.2, λT is equal to 0.57 which shows the degree of uncertainty in this example.

We also report λA for each activity defined as the equation below to show the average uncer-
tainty associated with the time-slices in each kind of activity.

λA =
1

t
×

t∑
τ=1

uA,τ (3.2)

A is the activity of interest, t is the number of time-slices containing the activity of interest,
and uA,τ is the uncertainty value of activity A in time-slice τ .

Furthermore, we show the effect of combining evidence from different time-slices and its ef-
fect on evaluating the performance of an early activity recognition method. We define the
accumulative uncertainty Ux as the average distance between λT and 1, over x time-slices as:

Ux =
1

x
×

x2∑
T=x1

(1− λT ) where x = x2 − x1 + 1 (3.3)

We then compute the mean square error (MSE∗) based on Ux to evaluate the result of the
early activity recognition method as follows:

MSE∗ =
1

v
×

v∑
i=1

Ux × (ŷi − yi)2 (3.4)

where v, ŷi, and yi are the number of partially observed videos, the result activity label,
and the ground-truth activity label respectively (ŷi and yi ∈ {0, 1}). Ux is the accumulative
uncertainty of each partially observed video test. We assign a weight to a misclassified test
video on the basis of its accumulative uncertainty to penalise the misclassification regards to
the level of the uncertainty in the video. Regarding Equation 3.3 when λT = 0, Ux is equal
to 1. In this case, the test video is certain; therefore with setting the weight to 1, we penalise
the method more if it misclassified a non-uncertain video. In other cases if Ux = 0, there is
the most uncertainty in all x time-slices and it means that all λT = 1 in the test video. This
shows that when there is maximum uncertainty in all time-slices of a video test, it is hard to
recognize the occurred activity and thus does not warrant a penalty.
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3.4 Time-Slice Representation

In this section, we first present our feature extraction and encoding pipelines along with
implementation details. We also present the dataset and discuss evaluation criteria.

3.4.1 Feature Extraction

SIFT features have proven to be extremely successful for a variety of datasets. These features
are invariant to any scaling, rotation or translation of the image. The SIFT approach can
be used for both interest point localization and description. SIFT densely detects interest
point locations in the scale-space. However, we intend to describe time-slices with appearance
features as well as motion features. Therefore, we use space time interest points, Selective
STIP (S-STIP) (18) and Predictive STIP (Predict-STIP) (44), and compare the results of
these three interest point detectors (See Figure 3.3).

S-STIP detection applies background suppression as well as local and temporal constraints to
discard unwanted points. Predict-STIP measures how long STIPs are observable in a video and
selects STIPs which are active during the whole video as Predict-STIPs. Default parameters
are used for both methods.

We compute SIFT descriptors of detected interest points in each time-slice using a set of 16
histograms, aligned in a 4x4 grid, each with 8 orientation bins. These histograms result in a
feature vector containing 128 elements which are used to characterize time-slices.

3.4.2 Feature Encoding

Once the features are extracted, we use bag-of-words (BoW) and Fisher vector (FV) algorithms
1 to encode them. The FV is an extension of the BoW technique, which uses both the number
of assigned visual vocabulary and their mean and variance using a Gaussian Mixture Model
(GMM). Since the FV encodes more information, the amount of visual words in the FV is
significantly lower than in the BoW and, therefore, the FV is faster to compute.

For the BoW features, we train a dictionary with K-means using 60,000 randomly sampled
features, where the size of visual vocabulary (K) is set to 1000. An SVM classifier with a RBF
kernel using the standard leave-one-out method is applied for classification.

Differently from the BoW encoding, we sample the features to reduce their dimensionality by
PCA and compute a GMM. For a GMM of size d, we need about 1000*d training features. We
set the GMM size to 64 and randomly sample a subset of 64,000 descriptors from the training
set to compute PCA and estimate the GMM. As proposed in (49), we performed a preliminary
experiment to represent FVs. We considered two strategies. First, we computed one FV per
time-slice and then applied the normalization. Second, we computed and normalized one FV

1We use the VLFeat publicly available library for extracting SIFT and FVs.
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per frame, and then averaged and renormalized the per-frame FVs. The results showed that
the first option was more effective and it was used in all of our experiments. A linear SVM
using the standard leave-one-out method is applied for classification with C=128 which has
shown good results on validation data samples. Figure 3.3 indicates that the FV encoding
method results in a better performance.

3.4.3 Dataset and Evaluation Criteria

The performance of our proposed method was quantified using the TAP dataset (44). This is
the only dataset suitable for this task since it contains the annotations corresponding to cate-
gorical likelihoods of activities. The TAP dataset contains pre-temporally trimmed video clips
(time-slices) of 7 dyadic human activities. As in (44), we use time-slices with 10 consecutive
frames (without overlap) since it best shows the goal of studying the inherent uncertainty in
activities. In (44), it was shown that 10-frame time-slices are more effective compared to 5-
and 15-frame time-slices and that 5-option categorical likelihood best describes the occurrence
of activities compared to 3- and 7-option categorical likelihoods. There are two sets in the TAP
dataset: constrained and unconstrained sets. The constrained set includes 1129 time-slices
extracted from staged scenarios of the UT-Interaction dataset (27). There are 990 time-
slices in the unconstrained set which are extracted from a subsample of real-world scenarios of
HMDB (28), TV Interaction (29), and Hollywood (30) datasets. This sub-sample is selected
based on the camera angle ranging from -45 to +45 degrees. Each time-slice was annotated
by 3 different annotators on how likely it is that each of the 7 dyadic activities are occurring.
The annotators were requested to pick one of 5 categorical likelihoods from 1 (definitely not
occurring) to 5 (definitely occurring). We set the medians of the 3 annotated values as the
ground-truth class labels. Performance on the dataset is measured in terms of mean average
precision (mAp) across the categories. This calculates the number of true labeled categorical
likelihoods compared to ground-truth labels.

3.5 Experimental Results

In our experimental evaluation, the performance of our proposed framework was quantified as
described above in turn for both constrained and unconstrained sets.

3.5.1 Comparison of different techniques

In our first experiment we compare SIFT, S-STIP, and Predict-STIP as interest point detec-
tors and BoW and FV as encoding techniques. In Figure 3.3, we present the performance
of different settings S1 (SIFT+BoW), S2 (S-STIP+ BoW), S3 (Predict-STIP+ BoW), S4
(SIFT+FV), S5 (S-STIP+ FV), S6 (Predict-STIP+ FV) in terms of mAp for constrained and
unconstrained sets, respectively. The results are obtained based on the number of correctly
classified categorical likelihoods in time-slices compared to the human annotation.
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Figure 3.3: Performance comparison of different settings

As shown in Figure 3.3, the best results for classified categorical likelihoods belongs to L = 1

and L = 5. This is due to the fact that time-slices in these two categories contain more relevant
motion or visual information. For instance, the “two people are shaking each other’s hands”
time-slice is easy to categorize as “push is definitely not occurring” (L = 1) and “handshake
is definitely occurring” (L = 5). Also, we notice that L = 3 which is the most uncertain
category gives the worst results, probably because of the lack of information in time-slices of
this category in either space or time.

Generally across all settings, FV with Predict-STIP leads to significantly better performance
than others. Using the same interest point detector techniques, settings with the FV encod-
ing method have better results than BoW. This confirms that encoding both first (number
of assigned vocabularies) and second order (mean and variance) statistics is more effective.
Settings with SIFT as the interest point detector result in lower mAps since SIFT does not
consider the motion information carried in the video.

Using the best setting from these experiments, i.e. S6, the confusion matrix of our framework is
illustrated for both sets in Figure 3.4. In both sets, L = 2 and L = 3 are the most misclassified
categories. L = 2 is confused with L = 1 in most cases while L = 3 is misclassified more as
L = 4 in the constrained set and L = 1 in the unconstrained set.

We show some examples of the successes and failures of our framework using the S6 setting
in Figure 3.5. Three matched categorical likelihoods between the result of our framework and
the annotation is the threshold to determine success or failure. Our framework works well
on time-slices with less uncertainty. In the example with the green bounding box including
kiss and hug interactions, the annotation shows that kiss is definitely occurring while hug is
definitely not occurring. However, our method shows that hug is definitely occurring as well
which indicates the outperformance of our algorithm. Our framework tends to fail when the
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Figure 3.4: Confusion matrix of our second framework using S6.

time-slice does not contain enough information and even human annotators may fail. For
instance, the time-slice with the red bounding box is labeled as push in the constrained set
while human annotators stated that “hug is likely to happen” in this time-slice.

3.5.2 Time-slice uncertainty analysis

In our second experiment we compute the uncertainty associated with a time-slice. We assign
λT to each time-slice on both the constrained and unconstrained sets using equation 3.1. λT
shows how uncertain a time-slice is in classifying activities on average.

Figure 3.6 illustrates the histograms of λT for both sets. The closer λT is to 1 the more
uncertain the time-slice is. We cannot compare the uncertainties of the two sets directly
since the two sets do not contain the same number of time-slices. However, Figure 3.6 shows
that the constrained set is more uncertain than the unconstrained set generally, although the
constrained set looks visually simpler. This is due to the fact that the constrained set contains
staged scenarios and actors perform activities at a slow pace. Therefore, 10-frame time-slices
do not include enough information all the time while activities in the unconstrained set, which
contains real-world scenarios from TV shows, are executed at a faster pace and result in more
informative time-slices.

In another experiment, we report λA using Equation 3.2 for each activity of interest indicating
the average uncertainty associated with the time-slices of the activity (See Table 3.1). For each
activity of interest (A), the uncertainty which corresponds to that activity (uA) is considered
for all t time-slices containing the activity of interest. The average of all considered uA is
referred to as λA. Table 3.1 also shows that more uncertain and challenging activities (the
closest λA to 1) are punch and push in the constrained set and kiss in the unconstrained set.
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Figure 3.5: Successes (two top rows) and failures (two bottom rows) using S6 on both con-
strained and unconstrained sets. Frames are overlaid to show a complete time-slice as a single
image.

We also notice that high-five and kiss in the constrained set and push in the unconstrained
set have λA almost equal to 0. This is due to the fact that the constrained set does not
contain high-five and kiss activities, and the unconstrained set does not include any push
activity. Therefore, there is no uncertainty in the occurrence of these activities and the
average uncertainties associated with them in corresponding sets are almost 0 (the activity is
definitely not occurring).

3.5.3 Uncertainty fusion analysis

In our last experiment we combine uncertainty from different time-slices and show its effect
on evaluating the performance of our method in the task of early activity recognition.
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Table 3.1: λA for different activities.

Hs Hf Hg Kc Ks Pn Ps

Constrained set 0.4 0.02 0.45 0.51 0.02 0.62 0.7

Unconstrained set 0.43 0.29 0.12 0.38 0.67 0.37 0

Figure 3.6: Time-slice uncertainty analysis.

In early activity recognition (e.g. recognizing activities by observing the first half of videos),
all videos have the same weight. However, people perform the same activity in different ways
and at different paces. Therefore, partially observed videos may be more or less informative,
which affects the recognition results. Considering the uncertainty associated with partially
observed videos helps to identify what confidence should be associated with the results.

We aggregate uncertainties from time-slices of the first half of a video and calculate the
accumulative uncertainty Ux by Equation 3.3 where x1 = 1 and x2 = the middle frame in
each video. Since the constrained set contains more uncertainty and S6 results in a better
performance, we use them to run this experiment. One video is put aside each time and the
S6 training technique with linear SVM classifiers is applied on the rest to recognize activities
from the half videos. To calculate the misclassification rate, we weigh misclassified query
videos using Equation 3.4. In other words, the smaller error is assigned to misclassified videos
that have more uncertainty compared to misclassified videos containing less uncertainty. The
uncertainty-weighted misclassification rate obtained is improved with respect to the uniformly-
weighted rate (12.3% versus 15%), which shows that classification errors are more frequent
when the uncertainty is higher.
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Table 3.2: Uncertainty measurement comparison for early activity recognition in the con-
strained set.

Hs Hf Hg Kc Ks Pn Ps

Our method (Ux) 0.19 - 0.25 0.32 - 0.30 0.35

Baseline method 0.17 - 0.23 0.31 - 0.25 0.32

We compare our proposed uncertainty metric for early activity recognition (Ux) with a base-
line uncertainty measurement grounded in the Platt scaling method (50) on the probabilistic
interpretation of SVM scores. As the score of the classifier itself would also indicate the de-
gree of confidence, we convert that score to a probability measure to serve as another kind of
uncertainty to compare with Ux. The result of this comparison is given in Table 3.2 for each
action where x is equal to the half length of video sequences. In other word, classification
scores are transformed to class probabilities using Platt scaling. The difference between the
average of these probabilities from 1 is referred to as a baseline uncertainty measurement for
each video observation. For each activity, we compute the mean of all Ux as well as the mean
of all baseline uncertainty measurements of corresponding videos and report them in Table 3.2.
The baseline method computes the general uncertainty by fitting a logistic regression model
to the classifier’s scores while our method shows more detail by analysing uncertainty in every
time-slices throughout the video. Therefore, Ux depicts more uncertainties which results in
larger values in Table 3.2.

The accumulative uncertainty can also be of help in selecting training data. A subset of
videos which has less uncertainty improves training models. In case of activity recognition,
using time-slices to train a model in which Ux is greater so that an activity of interest is
definitely occurring/likely to occur may lead to a better performance of an algorithm.

3.6 Conclusion

In this paper, we proposed a novel approach for integrating uncertainty in the analysis of dyadic
human activities. The major contributions include classifying activity time-slices into one of
5 categorical likelihoods which show how likely each activity is occurring in the time-slice, a
learning framework for this classification, a quantitative comparison of different instantiations
of the framework using combinations of the state-of-the-art representations (Predict-STIP,
S-STIP, FV, SIFT, and BoW), and a novel technique for evaluating the performance of early
activity recognition methods. In our experimental results, we observed that across all of these
representations, the combination of Predict-STIP and FV outperforms other settings. We
also empirically showed that considering uncertainty is particularly beneficial for evaluating
the performance of an algorithm in early activity recognition. The more uncertain a partially
observed video is, the less likely it is to recognize the true activity. Uncertainty analysis is
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also helpful to improve training data and to select segments of videos in which the activity of
interest is occurring.
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Chapter 4

Deep Uncertainty Interpretation in
Dyadic Human Activity Prediction

Abstract
In this paper, we propose a deep learning framework to analyse the uncertainty associated
with dyadic human activities at a small temporal granularity. Such time-slice analysis is
able to infer human behaviours from short-term observations. This framework obtains a
distribution over the likelihood of human activity categories that are to occur in each time-
slice. Instead of classifying time-slices into k classes of activities, we report to what degree of
certainty each activity is occurring throughout the time-slice from “definitely not occurring”
to “definitely occurring”. To this end, we extract CNN-based unary probabilities and pairwise
relations between human body joints in each time-slice. The unary term gives cues on the
local appearance of the part while the pairwise term captures the contextual relations between
the parts. We extract these features from each frame in a time-slice and examine different
temporal aggregation schemes to generate a descriptor for the whole time-slice. Evaluation is
conducted on the TAP dataset which is well suited for time-slice activity analysis. Extensive
experiments demonstrate the effectiveness of our approach for the task of uncertainty analysis
in activity prediction.

4.1 Introduction

Uncertainty in videos comprise a large majority of the visual data in existence. Ambiguity in
surveillance systems about the tracking, detection, and recognition of objects and humans are
a few examples of uncertainty in real world. In computer vision and video analysis applica-
tions, complete knowledge of what is occurring in videos is impossible to acquire. Therefore,
understanding the content of videos despite uncertainty is of paramount importance.

In activity recognition, the majority of previous work, either using hand-crafted or deep fea-

65



Figure 4.1: Method pipeline: In unary, color-coding corresponds to the probabilities of the
presence of different body joints. Pairwise shows the probability of certain class c anywhere in
the image given the fixed location of other body parts c′ 6= c for all cross-part pairs (for clarity,
only pairwise probability of c =right wrist and c′ =right elbow of one person is illustrated by
yellow color).

tures, classify activities into one of k classes from a fully observed video. There are a few
approaches that take into account some aspects of uncertainty such as recognizing activities
from partially observed videos (42; 1; 12). However, these approaches still categorize activities
into k classes. Based on intuition from social psychology, humans are good at anticipating and
correctly predicting social interactions. But in a scenario with two people getting closer and
lifting hands, what is the activity most likely to occur? Even humans may not be able to tell
what activity is definitely occurring. They can only infer that handshake, hug, or high-five are
examples of possible activities. Therefore, labelling this scenario to one of k activity classes
is not suitable. In this context, the question arises as to whether it is feasible to measure the
degree of certainty/uncertainty that some activities occur and other activities do not. This
integration of uncertainty in activity recognition can be beneficial for practical scenarios such
as content-based video search, indexing, retrieval, and summarization e.g. when the goal is
to browse the content of videos and return sections of videos where an activity of interest is
(not) occurring with some degree of uncertainty.

Following the work of Ziaeefard and Bergevin (55), we address time-slice analysis of dyadic
human activities under uncertainty. Time-slice analysis aims to model the inherent uncertainty
of activities occurring at a small temporal scale. The uncertainty is measured by classifying
the occurrence of activities into one of k categorical likelihoods in time-slices (see Figure 4.1).
Categorical likelihoods are the following: definitely not occurring (1), unlikely to occur (2),
neither likely nor unlikely to occur (3), likely to occur (4), and definitely occurring (5). Our
method is different from (55) in the sense that (55) used hand-crafted feature descriptors
(e.g. SIFT and spatio-temporal interest points) in the context of Bag of Words and Fisher
Vector models, while we propose a semantic deep learning framework which exploits explicit
pose information.

We formulate our frame descriptor based on unary and pairwise pose information which are
built on a deep Residual Network (ResNet) (56). Given a set of part candidates and a set
of body part classes, e.g. head, shoulder, and knee, each part candidate has a unary score
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for every body part class. Additionally, for every pair of distinct body part candidates and
every two body part classes, the pairwise term is generated to predict the spatial relationships
between joints. Therefore, our frame descriptor contains the probabilities of the presence of
body joints and locations of other joints in the adjacency. Unary and pairwise terms help to
extract consistent information on body joint configurations for different activities. In this way,
similar features are returned from joints and joint relationships in intra-class likelihoods and
activities. An illustration of unary and pairwise terms is shown in Figure 4.1. More details
on unary and pairwise probabilities are given in Section 4.3.

As opposed to existing work which uses Two-Stream CNNs (one for spatial information and
one for temporal features) (57; 58; 59; 60), we employ a One-Stream model. This has the
benefit of capturing the configuration of body parts in each frame unary and pairwise which
is computationally efficient. Tracking the change occurring in the configuration of body parts
throughout the time-slice gives the required temporal information for uncertainty analysis.

In summary, our main contributions are three-fold: i) exploiting CNNs in time-slice analysis ii)
a proposal to integrate unary and pairwise pose information to measure the uncertainty asso-
ciated with activity recognition, and iii) a Single-Stream deep learning framework addressing
this proposal (Figure 4.1).

4.2 Related work

Compared to single image analysis, there is relatively small number of work on applying CNNs
to video classification and no work on time-slice analysis. Our interest here is not activity
recognition per se, but we can relate our work to this area of research in the literature. In
this section, we have a brief overview on CNNs 1 and then review the most relevant previous
research to our framework.

4.2.1 A brief overview on CNNs

Conventional methods for solving computer vision problems and the degree of success they
achieve have traditionally been due to carefully designed hand-crafted features. However, in
the past few years, deep learning approaches have offered more successful alternatives which
automatically extract features for a learning problem. Therefore, it is important to understand
what kind of deep learning models are fit to a given problem.

Over the past few years, image classification (namely on the challenging ImageNet dataset
(51)) using CNNs has influenced many works in computer vision. This work introduces a
particular form of CNN models (also known as AlexNet in the honour of the first author, Alex
Krizhevsky) which has since been widely used and updated by the computer vision community.

1This subsection is not part of the original paper. We add a brief overview on CNNs here to clarify the
concept.
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Figure 4.2: Hubel and Wiesel’s experiment on understanding the biological vision system

CNNs are biologically-inspired by Hubel and Wiesel’s early work on the visual cortex (52).
Hubel and Wiesel performed experiments to find out how the vision works in our biological
brain (Figure 4.2). They installed electrodes into the primary visual cortex area of the brain
of a cat. They showed slides of different objects (stimulus) such as a mouse, flower, etc. to
the cat and recorded the neural activities. They observed that fish and mouse slides did not
excite the neurons, however the neurons fired every time they change slides. They realized
the edges created by slides were changing and these moving edges drove the neurons. With
this experiment, they recognized that neurons are organized in columns in our brain and every
column of the neurons reacts to specific orientations of the stimulus. Therefore, the beginning
phase of a visual processing is not analysing the holistic object but rather its simple structure,
i.e. oriented edges.

Many neurally-inspired models have been proposed to solve problems in computer vision.
Among them, CNNs have had a huge success in the literature. They are very similar to or-
dinary Neural Networks in terms of performing non-linearity computations and including a
loss function on the last layer. However, they are less complex than fully connected networks
since they have fewer parameters to train. CNNs are comprised of several layers stacked on
top of each other to form a full architecture. There are three main types of layers: convolu-
tional, pooling (sub-sampling layer), and fully-connected (FC) layers. An overview of CNN
architecture is shown in Figure 4.3 and it will be discussed below in more detail.

The convolutional layer is the basic building block of a CNN model that does most of the
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Figure 4.3: An example of CNN architecture (3).

computations. The input to a convolutional layer is a m×m× c image where m is the height
and width of the image and c is the number of channels. For instance, an RGB image has
three channels, i.e. c = 3. The convolutional layer will have k filters of size n × n × q where
n is smaller than the dimension of the image and q can either be the same as the number of
channels c or smaller and may vary for each filter. Filters are each convolved with the image
to produce k feature maps of size m − n + 1 × m − n + 1. Figure 4.4 shows feature map
visualizations from Zeiler and Fergus model (4). It illustrates feature maps in different layers
along with the corresponding image patches. In this Figure, we observe that Layer 1 and
Layer 2 respond to low level information such as corners and other edge/color conjunctions.
On the other hand, Layer 3 has more complex pattern and can capture similar textures. For
instance, the sample in (Row 1, Column 1) shows mesh patterns and the sample in (Row 2,
Column 4) extracts text features.

A convolutional layer is followed by an additive bias and non-linearity called activation func-
tion. This activation function is applied to each element in the feature map. A sigmoid
function was often used historically but has lost favor compared to ReLU (Rectified Linear
Unit), which has been shown to work better and faster to train deep neural architectures on
large and complex datasets.

Each feature map is then subsampled in a pooling layer usually with mean or max pooling
over p× p windows where p varies between 2 for low dimension images (e.g. MNIST dataset
(53)) and it is typically not more than 5 for larger images. The purpose of pooling layer is
to progressively reduce the spatial size of the feature map to decrease the number of param-
eters and computation in the network and therefore to control the overfitting issue. Many
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Figure 4.4: Visualization of feature maps in some sample layers of a CNN model (4).

researchers do not agree with the pooling operation in the network and intend to discard this
layer. For example, Springenberg et al. (54) suggest to remove the pooling layer and repeat
convolutional layers. They proposed to occasionally use a larger stride in the convolutional
layer to decrease the size of the feature maps. It is possible that CNNs will consist of very
few or even no pooling layers in future.

Typically, the last layer is fully-connected and its task is to compute the class scores which
result in a vector of size 1× 1× l. Each of the l numbers correspond to a class score and each
neuron in this layer is connected to all the neurons in the previous layer. In this way, CNNs
transform the input image layer by layer from the original pixel values to the final class scores.
It is worthy to note that not all the layers contain parameters. In particular, convolutional
and fully-connected layers include the weights and biases parameters of the neurons. The
parameters in these layers are trained with the backpropagation algorithm. Hence, the class
scores that the CNN model computes in fully-connected layer are consistent with the labels
in the training set for each image.
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4.2.2 Previous research

Pose information: Body poses are highly informative to discriminate between human activ-
ities. Deng et al. (61) trained CNN models to address the problem of group activity under-
standing in videos. They considered dependencies between individual actions, body poses, and
group activities to predict class labels. Cheron et al. (62) proposed a Two-Stream pose-base
CNN algorithm, where particular patches of appearance (RGB) and optical flow for human
body parts are fed into CNN models for action recognition. Unlike their method, we do not
use pose information to crop video frame and feed CNNs with the cropped patches. In our
method, the deep descriptors are generated based on semantic relationships between body
joints.

Deep activity recognition: Karpathy et al. (57) proposed multiresolution CNNs architec-
tures to take advantage of both spatial and temporal information on the largescale Sports-1M
dataset. Simonyan and Zisserman (58) trained two separate CNNs using the VGG model
(63) to capture spatio-temporal features which are then combined by late fusion. Donahue et
al. (64) combined CNNs and LSTM to introduce Long-term Recurrent Convolutional Networks
for video activity recognition. Gkioxari and Malik (59) presented spatial- and motion-CNNs
models operating on RGB and flow signals. Wang et al. (65) presented an action video repre-
sentation combining the benefits of both hand-crafted and deep-learned features.

Uncertainty reasoning: Schindler and Van Gool (42) investigated the uncertainty in activity
recognition with hand-crafted features to show how many frames need to be collected over
time to enable action classification. In another category of work integrating uncertainty in
activity recognition, there are a few methods proposed to recognize activities from partially
observed videos ( (1), (12)).

4.3 Deep pose information

We build our framework upon the recently proposed unary and pairwise terms for human body
part detection conditioned directly on the image (66). This body part detection model named
DeeperCut adapts the extremely deep Residual Network (ResNet). In the adapted ResNet,
the final classification along with the average pooling layer are removed and the convolution
layers are modified by adding holes (67). Deconvolutional layers for up-sampling (68) are also
appended.

DeeperCut estimates poses of all people present in an image by minimizing a joint objective
function. It starts from a set D of body part candidates which are selected by adapted Fast
R-CNN (69), and a set C of body part classes. Each candidate d ∈ D has a unary scoremap
for every part class c ∈ C. The unary terms give the probability of part d at location li to
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belong to class c = j.

U(li, c|I) = p(c = j|I(li)), j ∈ C, (4.1)

where I is the input image, and li is the center of the bounding box of the candidate part d.
C = 1, ...,K denotes the body part classes, e.g. head, shoulder, knee. The number of classes
here is set to 14, i.e. K = 14.

The pairwise probabilities are also computed for every pair of distinct part candidates d, d′ ∈ D
and every two part classes c, c′ ∈ C. The pairwise probability is estimated with regressing
from the location of a joint to the relative positions of all other joints. In each unary scoremap
location k = (xk, yk), the pairwise offset of c to c′ is defined as a tuple:

P (cc′)k = (xc′ − xk, yc′ − yk), (4.2)

where c is the the current joint and c′ is each remaining joint.

We fine-tune the DeeperCut model on the TAP time-slice dataset (44) in order to extract
consistent body part configurations from each frame. Our scoring function for each frame f
is written as the concatenation of the unary and pairwise features:

S(li, cc
′|f) = [U(li, c|f), P (cc′)k] (4.3)

Given a human activity time-slice, we extract the unary and pairwise features fu and fp for
all body joints of people appearing in each frame. In each frame, the dimensions of the unary
array are w×h×14 and the dimensions of the pairwise array are w×h×182×2. w and h are
referred to as the width and height of an image patch, respectively. 14 denotes the number of
the body part classes, 2 corresponds to x and y components of the pairwise offset between the
two body parts, and 182 shows all cross-part pairs (directed, e.g. there are separate predictions
from wrist to elbow and elbow to wrist), therefore it doesn’t contain e.g. wrist-wrist relation.

The scoring functions of frames in a time-slice are aggregated over time to obtain a descriptor
for the whole time-slice. The time-slice descriptors are exploited to train classifiers to catego-
rize the likelihoods of activities. In Section 4.4, we give more details on aggregation strategies.
We also evaluate the contribution of the unary and pairwise terms in our task of uncertainty
interpretation in Section 4.5.

4.4 Learning

Given unary and pairwise features fu and fp for each frame t of the time-slice, we proceed
with the aggregation of fu and fp over all frames to obtain a descriptor per time-slice. We con-
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Figure 4.5: Aggregation framework. In this example, max aggregation, unary probabilities of
right wrist (i = 7), and pairwise probabilities (c =right wrist, c′ =right elbow), i.e., j = 98
are illustrated.

sider three different aggregation schemes to generate time-slice descriptors: simple aggregation
(Ss), max aggregation (Sm), and max−min aggregation (Smm) by computing minimum and
maximum values for each body joint i and cross-part pair j over T frames in each time-slice
(See Figure 4.5)

miu = min
1≤t≤T

f tu(i), i = 1, ..., 14

Miu = max
1≤t≤T

f tu(i), i = 1, ..., 14

mjp = min
1≤t≤T

f tp(j), j = 1, ..., 128

Mjp = max
1≤t≤T

f tp(j), j = 1, ..., 128

(4.4)

Following Eq. 4.3, the time-slice descriptor is defined by concatenating time-aggregated fea-
tures as:

Ss = [f1u , ..., f
T
u , f

1
p , ..., f

T
p ]

Sm = [M1u, ...,M14u,M1p, ...,M128p]

Smm = [m1u, ...,m14u,m1p, ...,m128p, Sm]

(4.5)

max aggregation can be interpreted as the highest probability of presenting each body joint
and the maximum relative distance of body joint pairs throughout the time-slice while min
aggregation shows the lowest possibility of configuring body joints in certain ways. In Section
4.5 we evaluate the effect of different aggregation schemes. The three sets of descriptors are fed
into SVM with an RBF kernel and KNN classifiers to cluster the uncertainty associated with
dyadic human activities to 5 categorical likelihood L = 1, ..., 5 i.e., the activity is definitely
not occurring (L = 1), unlikely to occur (L = 2), neither likely nor unlikely to occur (L = 3),
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likely to occur (L = 4), and definitely occurring (L = 5). Dyadic activities are: handshake,
high-five, hug, kick, kiss, punch, and push.

In a preliminary experiment, we applied a baseline uncertainty measurement on the interpre-
tation of SVM scores on classifying 7 activity classes. We observed that the baseline method
computes the general uncertainty by fitting a logistic regression model to the classifier’s scores
while explicit uncertainty classifiers show more detail by analysing uncertainty in every time-
slice. This observation confirms the importance of applying explicit uncertainty classifiers
instead of simply taking the SVM scores of activity classifiers into account.

4.5 Experimental results

In this section, we present the dataset used to evaluate the proposed method along with
quantitative and qualitative results.

4.5.1 Dataset and evaluation criteria

In our experiments we use the TAP (Time-slice Activity Prediction) dataset (44) to evaluate
the performance of our proposed method. TAP is the only dataset suitable for this task since
it contains the annotations corresponding to categorical likelihoods of activities. The TAP
dataset contains time-slices of 7 dyadic human activities. Each time-slice is a 10-frame video
clip trimmed from a longer video with consecutive frames without overlap (i.e. T = 10 in Eq.
4.4 and 4.5). In (44), it was shown that 10-frame time-slices are more effective compared to 5-
and 15-frame time-slices and that 5-option categorical likelihood best describes the occurrence
of activities compared to 3- and 7-option categorical likelihoods. TAP has two subsets, i.e.,
constrained and unconstrained subsets. The constrained set includes 1129 time-slices
extracted from staged scenarios of the UT-Interaction dataset (27), while the unconstrained
set contains 990 time-slices extracted from a subsample of real-world scenarios of HMDB (28),
TV Interaction (29), and Hollywood (30) datasets. This subsample is selected based on the
camera angle ranging from -45 to +45 degrees. Each time-slice was annotated by 3 different
annotators (using the Crowdflower platform (31)) on how likely each of the 7 dyadic activities
are occurring. The annotators were requested to pick one of 5 categorical likelihoods from 1
(definitely not occurring) to 5 (definitely occurring). We set the medians of the 3 annotated
values as the ground-truth class labels.

Since the original image data contains limited training images, we ran data augmentation
algorithms to boost the performance of training. For this, we used horizontal flipping, trans-
lation, and fancy PCA (51). Therefore, we fine-tune the CNN model on 1129x3x10 (10 frames
per time-slice) and 900x3x10 frames in constrained and unconstrained subsets, respectively.
Performance on the dataset is measured in terms of mean average precision (mAp) across
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Table 4.1: Effects of different versions of the proposed pipeline in uncertainty analysis on
constrained and unconstrained sets

Setting L=1 L=2 L=3 L=4 L=5 mAp

C
on

st
. unary+SVM (S1) 0.811 0.554 0.451 0.639 0.712 0.633

pairwise+SVM (S2) 0.852 0.573 0.472 0.654 0.736 0.657
unary+pairwise+SVM (S3) 0.921 0.631 0.511 0.794 0.801 0.732

U
nc
on

st
. unary+SVM (S1) 0.798 0.580 0.412 0.661 0.683 0.627

pairwise+SVM (S2) 0.852 0.615 0.458 0.692 0.723 0.667
unary+pairwise+SVM (S3) 0.913 0.652 0.522 0.756 0.802 0.729

the 7 classes of activities. This computes the number of true labeled categorical likelihoods
compared to ground-truth labels.

4.5.2 Evaluation of unary and pairwise probabilities

In this section, we evaluate the effects of unary and pairwise probabilities in uncertainty cat-
egorization of human activities. We extract deep pose information from each time-slice using
unary only, pairwise only, and both unary-pairwise features. For simplicity, the features are ag-
gregated using max-aggregation method over time-slice to generate a descriptor for the whole
time-slice (for further evaluation on different aggregation approaches, refer to 4.5.3). The
evaluation is performed by using the standard leave-one-out method, all time-slices trimmed
from the same video are out each time, and by fitting the uncertainty interpretation in the
context of multi-class classification with 5 categorical likelihoods for each class of activities.
Classification is carried out with KNN and SVM for comparison.

Using KNN with unary probabilities (KNN+unary) decreases the performance by 2% com-
pared to SVM+unary in constrained set. The performance also drops by 2% and 5% in
KNN+pairwise and unary+pairwise+KNN compared to using SVM classifiers. Since KNN
consistently performs worse than SVM, we exclude it from the reported results. In Table
4.1 we present the performance of settings S1 (unary+ SVM), S2 (pairwise+SVM), and S3
(unary+pairwise+SVM) in terms of mean average precision (mAp) on constrained and uncon-
strained sets. The results are obtained based on the number of correctly classified categorical
likelihoods in time-slices compared to the human annotation. We also performed a prelimi-
nary experiment to evaluate 14 joint- and 12 joint- configurations for unary probabilities. In
12 joint configuration, we remove the information about the locations of head and neck joints
since they vary slightly with the change of activities or uncertainty states. The results showed
that the 12 joint option was more effective and it was used in all of our experiments.

The unary S1 setting achieves 63.3% and 62.7% mAp while using the pairwise S2 setting
significantly improves performance achieving 65.7% and 66.7% mAp on constrained and un-
constrained sets. This clearly shows the advantages of using pairwise to find the relation
between body joints for multiple individuals and distinguish pose configurations in different
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Table 4.2: Comparison of different aggregation schemes: simple, max, and max−min aggre-
gations on constrained and unconstrained sets

Setting Constrained set (mAp) Unconstrained set (mAp)
simple-aggr. 0.740 0.732
max-aggr. 0.732 0.729
max−min-aggr. 0.746 0.740

activities and uncertainty likelihoods. Using both unary and pairwise further boosts the per-
formance (73.2% and 72.9% mAp), which can be attributed to better quality pose information
since the probability of presenting body joints and dual relations between them are taken into
consideration.

4.5.3 Aggregating pose information

Using the best setting from unary and pairwise evaluation experiment, i.e. S3, we compare
different aggregation schemes explained in Section 4.4. We have evaluated all settings with
different aggregations but we only report results with the best setting here.

Unary and pairwise features are first extracted for each frame and are concatenated over time-
slice with three different aggregation methods to generate a descriptor for the whole time-slice.
The three aggregation methods are: simple, max, and max−min schemes.

Results of max aggregation for constrained and unconstrained sets are reported in Table 4.1
and compared with other aggregation schemes in Table 4.2. Table 4.2 shows the impact of
combining min and max aggregations which leads to a 1.4% improvement over max only
aggregation on constrained and 1.1% on unconstrained sets. The max − min aggregation
slightly improves the performance over simple aggregation (0.06% and 0.08%); however, it
results into a 4-5x run-time 2 reduction since the dimension of feature vectors is dramatically
reduced by 5 orders of magnitude. Overall, we observe performance improvement and dramatic
reduction in run-time by applying ma−min aggregation approach.

4.5.4 Time-slice uncertainty interpretation

In the remaining evaluation, we report results with the best version of our method, i.e.,
unary+pairwise+SVM+max−min-aggr.

Across all the experiments, we notice that the best results for classified categorical likelihoods
belongs to L = 1 and L = 5. This is due to the fact that time-slices in these two categories
contain more discriminative information in pose configuration to distinguish action classes.
For instance, the “two people are shaking each other’s hands” time-slice is easy to categorize
as “push is definitely not occurring” (L = 1) and “handshake is definitely occurring” (L = 5).

2Run-time is measured on a single core Intel 2.60GHz
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Figure 4.6: Successes (two top rows) and failures (bottom row) on both sets. Each time-slice
sample is represented by its last frame. Notations G and U show ground-truth and our method
uncertainty interpretation, respectively.

However, the “two people are approaching” time-slice in which push and handshaking are
neither likely/nor unlikely to occur (L = 3) is hard to categorize. Therefore, L = 3 is the most
uncertain category because of the lack of informative pose features to distinguish activities
through the time-slice.

We show some qualitative results of the success and failure cases of our best framework in
Figure 4.6. Four matched categorical likelihoods between the result of our framework and
the ground-truth is the threshold to determine success or failure. Remarkably, the proposed
approach correctly handles a case where the human annotator misclassified hug as punch
which is shown in the example with the green bounding box. We also illustrate and analyse
the failure cases of our proposed method at the bottom of Figure 4.6. The included examples
further illustrate the difficulty of the task of uncertainty interpretation in time-slices. First
and second examples show cases where the posture is not informative enough to distinguish
activities. Another prominent error shown in the remaining examples corresponds to the
cases where the activity is performed in a highly different way than other examples in the
same category.

4.5.5 Comparison to the state of the art

We compare our proposed uncertainty interpretation method with the state of the art (55)
on constrained and unconstrained sets. In the best-performing setting, (55) extracted hand-
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Table 4.3: Performance comparison on constrained and unconstrained sets. The annotation
(Best) and (Avg.) indicates the highest and the average performance that the particular
method can achieve.

Setting L=1 L=2 L=3 L=4 L=5 mAp
C
on

st
. Ziaeefard and Bergevin (55) (Avg.) 0.781 0.418 0.361 0.502 0.635 0.539

Ziaeefard and Bergevin (55) (Best) 0.881 0.502 0.484 0.683 0.737 0.657
Our method (Avg.) 0.861 0.586 0.478 0.695 0.749 0.674
Our method (Best) 0.921 0.631 0.511 0.794 0.801 0.732

U
no

ns
t. Ziaeefard and Bergevin (55) (Avg.) 0.826 0.473 0.395 0.555 0.680 0.585

Ziaeefard and Bergevin (55) (Best) 0.891 0.533 0.486 0.651 0.752 0.662
Our method (Avg.) 0.854 0.615 0.464 0.703 0.736 0.674
Our method (Best) 0.913 0.652 0.522 0.756 0.802 0.729

crafted space-time interest points called Predict-STIP for each time-slice and encoded them
using Fisher Vectors (FV) method.

Table 4.3 shows that our best version of unary and pairwise features outperform state-
of-the-art Predict-STIP+FV descriptors by a large margin (7.5% and 6.7% in constrained
and unconstrained sets, respectively). To highlight improvements achieved by our proposed
method, we refer to the best results for categorical likelihoods L = {2, 4} of our method
over Predict-STIP+FV. It shows the significant improvements {12.9%, 11.1%} in constrained
and {11.9%, 10.5%} in unconstrained sets. In particular, the L = 2 and L = 4 classes in-
volve more uncertainty associated with human activities meaning smaller localized motion.
This lack of discriminative motion information makes classification difficult for space-time
Predict-STIP+FV features while our method benefits from the semantic pose information,
the existence probabilities of body parts, and the relation between them throughout the time-
slice.

The constrained set looks visually simpler. Therefore, extracted unary and pairwise probabil-
ities are more accurate. On the other hand, this set is more uncertain since the constrained
set contains staged scenarios and actors perform activities at a slow pace. Thus, 10-frame
time-slices do not include enough information all the time. Activities in the unconstrained set
are executed at a faster pace and result in more informative time-slices but more challenging
for unary and pairwise features. It makes both sets challenging with comparable levels of
difficulty and results in almost the same performance range in Table 4.3.

4.6 Conclusions

In this paper, we proposed a method using CNNs to extract unary and pairwise probabilities of
human body pose to analyse the uncertainty associated with human activities. Our approach
extracts semantic information about pose configuration, including the probability of presence
of body joints, and it reasons about relations of a joint with other joints in each frame.
These semantic features are aggregated over frames of a time-slice to generate one single
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descriptor per time-slice. We feed the descriptors to SVM and KNN classifiers to categorize
the likelihoods of activities occurring in time-slices. Our results show significant improvements
over the current state of the art for uncertainty analysis in human activities.
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Conclusion

The primary objective in this thesis was to present novel and efficient frameworks to anal-
yse human activities from short temporal observations in videos. The problem of analysing
human activities in videos has received growing interest in the computer vision community.
Conventional methods analyse activities from fully observed videos. An interesting challenge
is to explore activities throughout the video and analyse the uncertainty occurring at a small
temporal observation windows, referred to as “time-slices”. In this thesis, we improved our
understanding of the inherent uncertainty occurring with time-slice observations and built
computational algorithms to properly model them.

We introduced the new problem of time-slice activity analysis and proposed our first framework
which fits in the standard activity recognition research topic. We then move forward toward
a new level of generality in the second and third algorithms and explored the uncertainty
associated with human activities in time-slices.

The activities of interest in this this thesis are dyadic human activities. Dyadic activities
explored include handshake, high-five, hug, kick, kiss, punch, and push. Time-slice dyadic
activity analysis has practical applications other than the basic research question of better
understanding human-computer perception of dyadic actions. It can be beneficial when the
whole video stream is not available and activities are not recorded from start to end. It can
also be useful in content-based video search, indexing, retrieval, and summarization where the
goal is to explore the content of the video and return time-slices where an activity of interest
is occurring or not.

In Chapter 1, we reviewed the literature on recent action recognition frameworks based on
semantic information. Recent action recognition methods rely on low-level and mid-level fea-
tures such as spatio-temporal interest points and trajectories. Although these methods provide
reasonable results, adding some semantic information will improve the performance. In this
chapter, we introduced a semantic space which mainly includes pose, poselet, object/scene
context, and attributes. Semantic descriptions capture meaningful information and are robust
to visual variations. Afterward, we compared the performance of semantic and non-semantic
methods. Experiments showed that semantic methods outperform non-semantic based meth-
ods in most cases except when different activities share similar poses/attributes. In such cases,
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combining several features improves the performance.

In Chapter 2, we introduced a predictive representation for the new problem of time-slice activ-
ity recognition. We predicted the occurrence of an activity using a portion of the whole activity
in time-slice activity recognition. We represented each video based on novel spatio-temporal
descriptors extracted from discriminative video segments. Furthermore, we introduced a new
dataset (TAP dataset) for time-slice activity recognition to evaluate the performance of our
method and compare it to the state-of-the-art. The TAP dataset is publicly available to
encourage researchers to explore human activities at a smaller temporal granularity.

In Chapter 3, we introduced the problem of analysing the uncertainty associated with human
activities. In this chapter, a novel approach for uncertainty integration in the analysis of hu-
man activities is proposed. We classified time-slices into one of 5 categorical likelihoods from
“Definitely Not Occurring” to “Definitely Occurring” which shows how likely each activity is
occurring in the time-slice. We proposed a learning framework for this classification and evalu-
ated the performance of this framework using combinations of state-of-the-art representations
(Predict-STIP, SSTIP, FV, SIFT, and BoW). In our experimental results, we observed that
across all of these representations, the combination of Predict-STIP and FV outperforms other
settings. We also proposed a novel technique for evaluating the performance of early activity
recognition. Besides, we explained how uncertainty analysis helps to improve training data.
The most certain a partially observed video is, the more it helps to recognize the true activity
which makes it a better candidate for training data.

In Chapter 4, following the success of deep learning frameworks in other computer vision
applications, we introduced a CNNs-based model to categorize the uncertainty associated
with human activities. We extracted unary and pairwise probabilities of human body pose
to capture the local appearance of body parts as well as the contextual relations between the
parts. Our method first extracts semantic information about pose configuration including the
probability of presence of body joints and then reasons about relations of a joint with other
joints in each frame. We concatenated unary and pairwise features and aggregated them over
frames of a time-slice to generate one single descriptor per time-slice. The time-slice descriptors
are fed to classifiers to categorize the likelihoods of activities occurring in time-slices.

Several possible real-world applications could exploit the material presented in this thesis. The
presented methodology of time-slice activity analysis and integrating uncertainty in activity
prediction can be optimized for surveillance systems. It can be helpful when the whole video
stream is not available and activities are not recorded from start to end. It can also be
beneficial for video retrieval to return video fragments where an activity of interest is (not)
occurring with a specific degree of uncertainty.

We hope that this thesis will inspire other researchers to devote more attention to time-slice
activity analysis under uncertainty.
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The only thing that makes life
possible is permanent, intolerable
uncertainty; not knowing what
comes next.

Ursula K. Le Guin
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