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Learning Graphs to Model Visual Objects
Across Different Depictive Styles

Qi Wu, Hongping Cai, and Peter Hall

Media Technology Research Centre, University of Bath, United Kingdom

Abstract. Visual object classification and detection are major prob-
lems in contemporary computer vision. State-of-art algorithms allow t-
housands of visual objects to be learned and recognized, under a wide
range of variations including lighting changes, occlusion, point of view
and different object instances. Only a small fraction of the literature ad-
dresses the problem of variation in depictive styles (photographs, draw-
ings, paintings etc.). This is a challenging gap but the ability to process
images of all depictive styles and not just photographs has potential val-
ue across many applications. In this paper we model visual classes using
a graph with multiple labels on each node; weights on arcs and nodes
indicate relative importance (salience) to the object description. Visual
class models can be learned from examples from a database that contains
photographs, drawings, paintings etc. Experiments show that our repre-
sentation is able to improve upon Deformable Part Models for detection
and Bag of Words models for classification.

Keywords: Object Recognition, Deformable Models, Multi-labeled Graph,
Graph Matching

1 Introduction

Humans posses a remarkable capacity: they are able to recognize, locate and clas-
sify visual objects in a seemingly unlimited variety of depictions: in photographs,
in line drawings, as cuddly toys, in clouds. Computer vision algorithms, on the
other hand, tend to be restricted to recognizing objects in photographs alone,
albeit subject to wide variations in points of view, lighting, occlusion, etc. There
is very little research in computer vision on the problem of recognizing objects
regardless of depictive style; this paper makes an effort to address that problem.

There are many reasons for wanting visual class objects that generalise across
depictions. One reason is that computer vision should not discriminate between
visual class objects on the basis of their depiction - a face is a face whether
photographed or drawn. A second reason for being interested in extending the
gamut of depictions available to computer vision is that not all visual objects
exist in the real world. Mythological creatures, for example, have never existed
but are recognizable nonetheless. If computer vision is to recognize such visual
objects, it must emulate the human capacity to disregard depictive style with
respect to recognition problems. The final reason will consider here is to note
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Fig. 1. Learning a model to recognize objects. Our proposed multi-labeled graph mod-
elling method shows significant improvement for recognizing objects depicted in variety
styles. The green boxes are estimated by using DPM [10], the red are predicted from
our system. The text above the bounding box displays the predicted class category
over a 50-classes dataset.

that drawings, paintings, etc. are models of objects: they are abstractions. This is
obvious when one considers a child’s drawing of a car in which all four wheels are
shown – the child draws what they know of a car, not what is seen. In addition, a
line drawing, for example, is much more compact in terms of information content
than a photograph – drawings are abstractions in the sense that a lot of data is
discarded, but information germane to the task of recognition is (typically) kept.
This suggests that visual class models used in computer vision should exhibit a
similarly high degree of abstraction.

The main contribution of this paper is to provide a modeling schema (a
framework) for visual class objects that generalises across a broad collection
of depictive styles. The main problem the paper addresses is this: how to cap-
ture the wide variation in visual appearance exhibited by visual objects
across depictive styles. This variation is typically much wider than for light-
ing and viewpoint variations usually considered for photographic images. Indeed,
if we consider different ways to depict an object (or parts of an object) there
is good reason to suppose that the distribution of corresponding features form
distinct clusters. Its effect can be seen in Figure 1 where the currently accepted
state-of-art method for object detection fails when presented with artwork. The
same figure highlights our contribution by showing our proposal is able to locate
(and classify) objects regardless of their depictive style.

The remainder of this paper first outlines the relevant background (Sec. 2),
showing that our problem is hardly studied, but that relevant prior art exists for
us to build upon. Sec. 3 describes our modeling schema, and in particular intro-
duces the way in which we account for the wide variation in feature distributions,
specifically - the use of multi-labels to represent visual words that exists
in possibly discontinuous regions of a feature space. A visual class model
(VCM ) is now a graph with multi-labeled nodes and learned weights. Such novel
visual class models can be learned from examples via an efficient algorithm we
have designed (Sec. 4), and experimentally (Sec. 5) are shown to outperform
state-of-art deformable part models at detection tasks, and state-of-art BoW
methods for classification. The paper concludes, in Sec. 6, and points to future
developments and applications.
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2 Related Work

Modeling visual object classes is an interesting open question of relevance to
many important computer vision tasks such as object detection and classifica-
tion. Of the many approaches to visual object classification, the bag-of-words
(BoW) family [7, 19, 23, 22] is arguably the most popular and successful. It mod-
els visual object classes via histograms of “visual words”, i.e. words being clus-
ters in feature space. Although the BoW methods address many difficult issues,
they tend to generalise poorly across depictive styles. The explanation for this is
the formation of visual codewords in which clustering assumes low variation in
feature appearance. To overcome this drawback, researchers use alternative low-
level features that do not depend on photometric appearance, e.g., edgelets [26,
12] and region shapes [15, 17]. However, even these methods do not generalise
well. We argue that no single “monolithic” feature will cover all possible ap-
pearances of an object (or part), when depictive styles are considered. Rather,
we expand the variation of a local feature appearance from different depiction
sources by multi-labelling model graph nodes.

Deformable models of various types are widely used to model the object
for detection tasks, including several kinds of deformable template models [4, 5]
and a variety of part-based models [1, 6, 9–11, 13, 20]. In the constellation models
from [11], parts are constrained to be in a sparse set of locations, and their geo-
metric arrangement is captured by a Gaussian distribution. In contrast, pictorial
structure models [9, 10, 13] define a matching problem where parts have an indi-
vidual match cost in a dense set of locations, and their geometric arrangement
is captured by a set of ‘springs’ connecting pairs of parts. In those methods,
the Deformable Part-based Model (DPM) [10] is the most successful one. It de-
scribes an object detection system based on mixtures of multi-scale deformable
part models plus a root model. By modeling objects from different views with
distinct models, it is able to detect large variations in pose. However, when the
variance comes from local parts, e.g. the same object depicted in different styles,
it does not generalize well; this is exactly the problem we address.

Cross-depiction problems are comparably less well-explored. Edge-based HoG
was explored in [16] to retrieve photographs with a hand sketch query. Li et al [21]
present a method for the representation and matching of sketches by exploiting
not only local features but also global structures, through a star graph. Matching
visually similar images has been addressed using self-similarity descriptors [25],
and learning the most discriminant regions with exemplar SVM is also capable of
cross-depiction matching [27]. These methods worked well for matching visually
similar images, but neither are capable of modeling object categories with high
diversity. The work most similar to own in motivation and method is a graph
based approach proposed in [32]. They use a hierarchical graph model to obtain
a coarse-to-fine arrangement of parts, whereas we use a single layer. They use
qualitative shape as node label; we use multiple labels, each a HOG features.

In summary, the problem of cross-depiction classification is little studied. We
learn a graph with multi-labeled nodes and employ a learned weight vector to
encode the importance of nodes and edges similarities. Such a model is unique as
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Fig. 2. Our multi-labeled graph model with learned discriminative weights, and de-
tections for both photos and artworks. The model graph nodes are multi-labeled by
attributes learned from different depiction styles (feature patches behind the nodes in
the figure). The learned weight vector encodes the importance of the nodes and edges.
In the figure, bigger circles represent stronger nodes, and darker lines denote stronger
edges. And the same color of the nodes indicates the matched parts.

far as we know. We now describe the class model in greater detail: the formulation
of the model, how to learn it, and its value to the problem of cross-depiction
detection and classification.

3 Models

Our model of a visual object class is based around a graph of nodes and edges.
Like Felzenszwalb et al [10], we label nodes with descriptions of object parts,
but we differ in two ways. Unlike them, we label parts with multiple attributes,
to allow for cross-depiction variation. Second, we differ in using a graph that
defines the spatial relationship between node pairs using edge labels, rather
than a star-like structure in which nodes are attached to a root. Furthermore,
we place weights on the graph which are automatically learned using a method
due to [3]. These weights can be interpreted as encoding relative salience. Thus a
weighted, multi-labeled graph describes objects as seen from a single viewpoint.
To account for variation in points of view we follow [10, 14, 8] who advocate using
distinct models for each pose. They refer to each such model as a component, a
term we borrow in this paper and which should not be confused with the part
of an object.

We solve the problem of inter-depictive variation by using multi-labeled nodes
to describe objects parts. These multiple attributes are learned from different
depictive styles of images, which are more effective than attempting to charac-
terize all attributes in a monolithic model, since the variation of local feature is
much wider than the changes usually considered for photographic images, such
as lighting changes etc. Moreover, it does not make sense that the parts of an
object should be weighted equally during the matching for a part-based model.
For example, for a person model, the head part should be weighted more than
other parts like limbs and torso, because it is more discriminative than other
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parts in the matching - a person’s arms are easily confused with a quadruped’s
forelimbs, but the head part’s features are distinctive. Beside the discrimina-
tion of node appearance, the relative location, edges, should be also weighted
according to its rigidity. For instance, the edges between the head and shoulder
should be more rigid than the edges between two deformable arms. Hence, in our
model, a weight vector β is learned automatically to encode the importance of
node and edge similarity. We refer to it as the discriminative weight formulation
for a part based model. This advantage will be demonstrated with evidence in
the experimental section.

3.1 A Multi-labeled Graph Model

A multi-labeled graph is defined as G∗ = (V ∗, E∗, A∗, B∗), where V ∗ represents
a set of nodes, E∗ a set of edges, A∗ a set of multi-labeled attributes of the
nodes and B∗ a set of attributes of edges. Specifically, V ∗ = {v∗1 , v∗2 , ..., v∗n},
n is the number of nodes. E∗ = {e∗12, ..., e∗ij , ..., en(n−1)∗} is the set of edges.
A∗ = {A∗1, A∗2, ..., A∗n} with each A∗i = {a∗i1, a∗i2, ..., a∗ici} consists of ci attributes.
It is easy to see that a standard graph G is a special case of our defined multi-
labeled graph, which restricts ci = 1.

A visual object class model M =< G∗, β > for an object with n parts is
formally defined by a multi-labeled model graph G∗ with n nodes and n×(n−1)

directed edges. And the weight vector β ∈ Rn2×1 encodes the importance of
nodes and edges of the G∗. Both the model graph G∗ and the weights vector β
are learned from a set of labeled example graphs. Figure 2 shows two example
models with their detections from different depictive style. The learning process
depends on scoring and matching, so a description is deferred to Section 4.

We define a score function between a visual class model, G∗, and a putative
object represented as a standard graph G, following [3]. The definition is such
that the absence of the VCM in an image yields a very low score. Let Y be a
binary assignment matrix Y ∈ {0, 1}n×n′ which indicates the nodes correspon-
dence between two graphs, where n and n′ denote the number of nodes in G∗

and G, respectively. If v∗i ∈ V ∗ matches va ∈ V , then Yi,a = 1, and Yi,a = 0
otherwise. The scoring function is defined as the sum of nodes similarities (which
indicate the local appearance) and the edges similarities (which indicate the s-
patial structure of the objects) between the visual object class and the putative
object.

S(G∗, G, Y ) =
∑

Yi,a = 1

SV (A∗i , aa) +
∑

Yi,a = 1

Yj,b = 1

SE(b∗ij , bab), (1)

where, because we use multi-labels on nodes we define

SV (A∗i , aa) = max
p ∈ {1, 2, ..., ci}

SA(a∗ip, aa), (2)

with a∗ip, the pth attribute in A∗i = {a∗i1, a∗i2, ..., a∗ip, ...a∗ici}, and SA is the simi-
larity measure between attributes.
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Fig. 3. Detection and matching process. A graph G will be firstly extracted from the
target image based on input model < G∗, β >, then the matching process is formu-
lated as a graph matching problem. The matched subgraph from G indicates the final
detection results. φ(H, o) in the figure denotes the attributes obtained at position o.

To introduce the weight vector β into scoring, like [3], we parameterize Eq. 1
as follows. Let π(i) = a denote an assignment of node v∗i in G∗ to node va in G,
i.e. Yi,a = 1. A joint feature map Φ(G∗, G, Y ) is defined by aligning the relevant
similarity values of Eq. 1 into a vectorial form as:

Φ(G∗, G, Y ) = [· · · ;SV (A∗i , aπ(i)); · · · ;SE(b∗ij , bπ(i)π(j)); · · · ]. (3)

Then, by introducing weights on all elements of this feature map, we obtain a
discriminative score function:

S(G∗, G, Y ;β) = β · Φ(G∗, G, Y ), (4)

which is the score of a graph (extracted from the target image) with our proposed
model < G∗, β >, under the assignment matrix Y .

3.2 Detection and Matching

To detect an instance of a visual class model (VCM ) in an image we must find
the standard graph in an image that best matches the given VCM. More exactly,
we seek a subgraph of the graph G, constructed over a complete image, and is
identified by the assignment matrix Y +. We use an efficient approach to solve
the problem of detection, which is stated as solving

Y + = arg max
Y

S(G∗, G, Y ;β), (5a)

s.t.

n∑
i=1

Yi,a ≤ 1,

n′∑
a=1

Yi,a ≤ 1 (5b)
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where Eq.(5b) includes the matching constrains - only one node can match with
at most one node in the other graph. To solve the NP-hard programming in
Eq.5 efficiently, Torresani et al. [29] propose a decomposition approach for graph
matching. The idea is to decompose the original problem into several simpler
subproblems, for which a global maxima is efficiently computed. Combining the
maxima from individual subproblems will then provide a maximum for the o-
riginal problem. We make use of their general idea in an algorithm of our own
design that efficiently locates graphs in images.

The graph G in Eq.(5a) is extracted from the target image as follows. First a
dense multi-scale feature pyramid, H, is computed. Next a coarse-to-fine match-
ing strategy is employed to locate each node of the VCM at k most possible
locations in the image, based on the nodes similarity function SV of Eq.(2).
These possible locations are used to create a graph of the image. The ‘image
graph’ is fully connected; corresponding features from H label the nodes; spatial
attributes label the edges. This creates graph G.

Having found G the next step is to find the optimal subgraph by solving
Eq. 5. During this step, we constrain the node v∗i of the model graph G∗ to
be assigned (via Y ) only to one of the k nodes it was associated with. In our
experiments, to balance the matching accuracy and computational efficiency, we
set k = 10. The optimal assignment matrix Y + between the model < G∗, β >
and the graph G, computed through Eq. (5), returns a detected subgraph of G
that indicates the parts of the detected object. A detection and matching process
is illustrated in Fig 3.

3.3 Mixture Models at Model Level

Our model also can be mixed using components as defined above and used in
[10, 14, 8], so that different point of view (front/side) or poses (standing /sitting
people) can be taken into account. A mixture model with m components is
defined by a m-tuple, M = M1, ...,Mm, where Mc =< G∗c , βc > is the multi-
labeled VCM for the c-th component. To detect objects using a mixture model we
use the matching algorithm described above to find the best matched subgraph
that yields higher scoring hypothesis independently for each component.

4 Learning Models

Given images labeled with n interest points corresponding to n parts of the
object, we consider learning a multi-labeled graph model G∗ and weights β that
together represent a visual class model. Because structure does not depend on
fine-level details, we do not (nor should we) train an ssvm using depiction-specific
features. The model learning framework is shown in Figure 4.

4.1 Learning the Model Graph G∗

For the convenience of description, consider a class-specific reference graph G4

(note that a reference graph is not created but is a mathematical convenience
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Fig. 4. Learning a class model, from left to right.(a): An input collection (different
depictions) used for training. (b): Extract training graphs. (c): Learning models in two
steps, one for G∗, one for β. (d): Combination as final class model

only, see [3] for details) and a labeled training graph set T = (< G1, y1 >
, ..., < Gl, yl >) obtained from the labeled images. In each < Gi, yi >∈ T , we
have n nodes, n × (n − 1) edges and their corresponding attributes, defined as
Gi = (Vi, Ei, Ai, Bi), and yi is an assignment matrix that denotes the matching
between the training graph and the reference graph G4. Then, a sequence of
nodes which match the same reference node v4j ∈ G4 are collected over all the

graphs in T . We define these nodes as V Tj = {vTj,1, vTj,2, ..., vTj,l} in which vj,i
means the j-th node in training graph Gi. Then, the corresponding attributes
set ATj can be extracted from the corresponding Gi to be used to learn the model
graph G∗ via the following process.

To learn a node V ∗j in the model graph G∗, there are l positive training nodes

V Tj with their attributes ATj . All the attributes in ATj are labeled according to
depictive styles. Instead of manually labelling the style for each image, we use K-
means clustering based on chi-square distance to build cj clusters automatically,
Cji denotes the i-th cluster for ATj , and attributes in the same cluster indicate
the similar depictive styles. Accordingly, the attributes A∗j for the node V ∗j ∈ G∗
actually include cj elements, A∗j = {a∗j1, a∗j2, ..., a∗jcj}. For each a∗ji, it is learned
by minimizing the following objective function:

E(a∗ji) =
λ

2
‖a∗ji‖2 +

1

N

N∑
s=1

max{0, 1− f(as) < a∗ji, as >} (6)

from N example pairs (as, f(as)), s = 1, ..., N , where

f(as) =

{
1 if as ∈ Cji
−1 if as ∈ Nj

(7)

where Nj is the negative sample sets for the node V ∗j and as is a node attributes
from the training set. In our experiments, we use all the attributes that are in T
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but do not belong to ATj , and the background patch attributes to build the neg-
ative samples set. Hence, this learning process transfers to an SVM optimization
problem, which is solved by using stochastic gradient descent [28]. Edges E∗ and
corresponding attributes B∗ also can be learned in a similar way. We account
for different depictive styles by constructing a distinct SVM for each one; so in
effect the multi-labeled nodes in G∗ are in fact multiple SVMs.

4.2 Learning the Weights β

The aim of this step is to learn a weight vector β to produce best matches of the
reference graph G4 with the training examples T = (< G1, y1 >, ..., < Gl, yl >)
of the class. Let ŷ denote the optimal matching between the reference graph G4

and a training graph Gi ∈ T given by

ŷ(Gi;G
4, β) = arg max

y∈Y (Gi)

S(G4, Gi, y;β), (8)

where Y (Gi) ∈ {0, 1}n×n
′

defines the set of possible assignment matrix for the
input training graph Gi. Inspired by the max-margin framework [30] and follow-
ing [3], we learn the parameter β by minimizing the following objective function:

LT (G4, β) = r(G4, β) +
C

l

l∑
i=1

∆(yi, ŷ(Gi;G
4), β). (9)

In this objective function r is a regularization function, ∆(y, ŷ) a loss function,
drives the learning process by measuring the quality of a predicted matching ŷi
against its ground truth yi. The parameter C controls the relative importance
of the loss term.

Cho et al. [3] propose an effective framework to transform the learning ob-
jective function in Eq. (9) into a standard formulation of the structured support
vector machine (SSVM) by assuming the node and edge similarity functions are
dot products of two attributes vectors. It is solved by using the efficient cutting
plane method proposed by Joachims et al. [18], giving us the weight vector β to
encode the importance of nodes and edges.

4.3 Features

Node Attributes. In our proposed model, we used a 31-d Histogram of Oriented
Gradients (HOG) descriptor, following [10], which computes both directed and
undirected gradients as well as a four dimensional texture-energy feature.

Edge Attributes. Considering an edge eij from node vi to node vj with polar
coordinates (ρij , θij). We convert these distances and orientations to histogram
features so that it can be used within dot products as in [3]. Two histograms
(one for the length Lij , and one for the angle Pij) are built and concatenated
to quantize the edge vectors, bi,j = [Lij ;Pij ]. For length, we use uniform bins of
size nL in the log space with respect to the position of vi, making the histogram
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Fig. 5. Our photo-art dataset, containing 50 object categories. Each category is dis-
played with one art image and one photo image.

more sensitive to the position of nearby points. The log-distance histogram Lij
is constructed on the bins by a discrete Gaussian histogram centred on the bins
for ρij . For angle, we use uniform bins of size 2π/nP . The polar histogram Pij
is constructed on it in a similar way, except that a circular Gaussian histogram
centered on the bin for θi,j is used. In this work, we used nL = 9, nP = 18.

5 Experimental Evaluation

Our class model has the potential to be used in many applications, here we
demonstrate it in the task of cross-depiction detection and classification. Al-
though there are several challenging object detection and classification datasets
such as PASCAL VOC, ETHZ-shape classes and Caltech-256, most of the classes
in these datasets do not contain objects that are depicted in different styles, such
as painting, drawing and cartoons. Therefore, we augment photo images of 50
object categories, which frequently appear in commonly used datasets, to cover
the large variety of art works. Each class contains around 100 images with dif-
ferent instances and approximately half of the images in each class are artworks
and cover a wide gamut of style. Examples of each class are shown in figure 5.

5.1 Detection

In the detection task, we split the image set for each object class into two random
partitions, 30 images for training (15 photos and 15 art) and the rest are used
for testing. The dataset contains the groundtruth for each image in the form
of bounding boxes around the objects. During the test, the goal is to predict
the bounding boxes for a given object class in a target image (if any). The red
bounding boxes in Fig. 1 are predicted in such way. In practice the detector
outputs a set of bounding boxes with corresponding scores, and a precision-
recall curve across all the test sets is obtained. We score a detector by the
average precision (AP), which is defined as the area under the precision-recall
curve across a test set, mAP(mean of the AP) is the average AP over all objects.
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Person

Car

Horse

Bike

Bottle

Giraffe

Fig. 6. Examples of high-scoring detections on our cross-depictive style dataset, select-
ed from the top 20 highest scoring detections in each class. The framed images (last
one in each row) illustrate false positives for each category. In each detected window,
the object is matched with the learned model graph. In the matched graph, each node
indicates a part of the object, and larger circles represent greater importance of a node,
and darker lines denote stronger relationships.

Since our learning process (in Sec. 4) needs pre-labeled training graphs, n
distinctive key-points have to be identified in the target images. In our exper-
iment, we set n = 8. In order to ease the labelling process, rather than using
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Fig. 7. Precision/Recall curves for models trained on the horse, person and giraffe
categories of our cross-domain dataset. We show results for DPM, a single labeled
graph model with learned β, our proposed multi-labeled model graph with and without
learned β. In parenthesis we show the average precision score for each model.

the manually labeling process, we instead use a pre-trained DPM model to lo-
cate the object parts across the training set, as only an approximate location
of the labeled parts is enough to build our initial model. This idea is borrowed
from [34], which uses a pictorial structure [24] to estimate 15 key-points for the
further learning of a 2.5D human action graph for matching. Also notice that
DPM is only used to ease the training data labelling process, it is not used in our
proposed learning and matching process. During the test process, we match each
learned object class model with the hypothesis graph extracted from an input
test image, as detailed illustrated in Sec 3.2. The detection score is computed via
Eq. (5) and the predicted bounding box is obtained by covering all the matched
nodes.

We trained a two component model, where the ‘component ’ is decided by
the ground truth bounding box ratio as in DPM [10]. Each node in the model
is multi-labeled by two labels (split automatically by K-means as illustrated in
Sec. 4.1), that correspond to the attributes of the photo and art domains. Figure
6 shows some detections we obtain using our learned models. These results show
that the proposed model can detect objects correctly across different depictive
styles, including photos, oil paintings, children’s drawings, stick-figures and car-
toons. Moreover, the detected object parts are labeled by the graph nodes, and
larger circles represent more important nodes, which are weighted more during
the matching process, via β.

We evaluated different aspects of our system and compared them with a state-
of-art method, DPM [10], which is a star-structured part-based model defined
by a ‘root’ filter plus a set of parts filters. A two component DPM model is
trained for each class following the setting of [10]. To evaluate the contribution
of the mixture model and the importance of the weight β, we also implemented
other two methods, multi-labeled graph without weight (Graph+M-label) and
single-labeled graph with weight (Graph+β). The weight β can not be used on
the DPM model, because it encodes no direct relation between nodes under the
root.



Learning Graphs to Model Visual Objects Across Different Depictive Styles 13

u
s-
fl
a
g

b
a
t

b
ee
r-
m
u
g

b
o
o
m
-b
ox

b
u
tt
er
fl
y

ca
m
el

w
a
g
o
n

cr
a
b

g
lo
b
e

ei
ff
el
-t
ow

er
el
ep

h
a
n
t

fr
ie
d
-e
g
g

fr
y
in
g
-p
a
n

g
ir
a
ff
e

g
o
ld
fi
sh

h
a
m
b
u
rg
er

h
ea
d
-p
h
o
n
es

DPM[10] .871 .338 .956 .859 .718 .797 .897 .640 .961 .952 .853 .618 .757 .803 .901 .809 .808

G+β .743 .343 .729 .683 .375 .420 .662 .633 .846 .798 .538 .627 .733 .716 .556 .650 .669

G+ml .913 .423 .947 .913 .757 .816 .914 .723 .932 .971 .875 .778 .812 .831 .913 .883 .853

G+ml+β .917 .456 .954 .929 .839 .881 .942 .741 .993 .981 .887 .851 .838 .907 .962 .908 .879

h
o
rs
e

b
a
ll
o
o
n

h
o
u
rg
la
ss

sk
el
et
o
n

ic
e-
cr
ea
m

k
et
ch

la
p
to
p

li
g
h
tb
u
lb

m
a
n
d
o
li
n

m
en

o
ra
h

b
ik
e

p
a
lm

-t
re
e

p
en

g
u
in

p
er
so
n

p
y
ra
m
id

re
fr
ig
er
a
to
r

ro
ta
ry
-p
h
o
n
e

DPM[10] .764 .955 .925 .985 .816 .905 .926 .751 .385 .882 .975 .899 .735 .554 .840 .731 .900

G+β .733 .755 .881 .926 .930 .718 .780 .705 .487 .879 .933 .794 .599 .555 .719 .561 .713

G+ml .799 .899 .953 .956 .894 .929 .954 .725 .415 .901 .996 .921 .742 .587 .760 .788 .916

G+ml+β .860 .930 .956 .968 .911 .976 .964 .807 .491 .933 .997 .936 .825 .616 .808 .820 .928

st
a
rf
is
h

su
n
fl
ow

er
su
p
er
m
a
n

sw
a
n

te
a
p
o
t

te
d
d
y

te
ep

ee

to
w
er
-p
is
a

u
m
b
re
ll
a

w
a
sh
-m

a
ch

in
e

w
a
tc
h

w
in
d
m
il
l

b
o
tt
le

ze
b
ra

ca
r

fa
ce

m
A
P
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G+ml+β .965 .923 .791 .915 .993 .991 .944 .991 .898 .985 .794 .965 .956 .973 .974 .899 .891

Table 1. Detection results on our cross-depictive style dataset (50 classes in total):
average precision scores for each class of different methods, DPM, a single labeled
graph model with learned β, our proposed multi-labeled model graph with and without
learned β. The mAP (mean of average precision) is shown in the last column.

Table 1 compares the detection results of using different models on our
dataset. Our system achieves the best AP scores in 42 out of the 50 categories.
DPM wins 7 times. Furthermore, our final mAP (.891) outperforms DPM (.835)
by more than 5%. Figure 7 summarizes the results of different models applied
on the person, horse and giraffe categories, chosen because these object class-
es appear commonly in many well-known detection datasets. The PR-curve of
other classes can be found in the supplementary material. We see that the use
of our multi-labeled graph model can significantly improve the detect accuracy.
Further improvements are obtained by using discriminative weights β.

Our system is implemented by matlab, running on a Core i7 CPU@2.67GHz×8
machine. The average training time for a single class is 4 to 5 minutes (parts
labelling process is not included). The average testing time of a single image is
4.5 to 5 minutes, since the graph matching takes long time.

5.2 Classification

Our proposed model can also be adapted for classification. Training requires of
learning a class model, exactly the same procedure as in the previous section.
The testing process determines the class by choosing the class which has the
best matching score with the query image.

Using our dataset we conduct experiments designed to test how well our pro-
posed class model generalised across depictive styles. Like the detection experi-
ments, we randomly split the image set for each object class into two partitions,
30 images for training (15 photos and 15 artworks) and the rest are used for test-



14 Qi Wu, Hongping Cai, Peter Hall

Methods Art Photos

BoW[31] 69.47 ± 1.1 80.38 ± 1.1
DPM[10] 80.29 ± 0.9 85.22 ± 0.6

Our 89.06± 1.2 90.29± 1.3
Table 2. Comparison of classification results for different test cases and methods.

ing. Unlike from the detection task, we test on photos and artworks separately
to compare the performance on these two domains. The classification accuracy
is determined as the average over 5 random splits.

For comparison with alternative visual class models we compare with two
other methods: BoW and DPM. BoW classifier is chosen because it performs
well and will help us assess the performance of such a popular approach to the
problem of cross-depiction classification. We follow Vedaldi et al [31] using dense-
sift features [2] and K-means (K = 1000) for visual word dictionary construction.
Finally, it uses a SVM for classification. The second is the DPM [10], adapted
to classification.

Classification accuracy of different methods in various testing cases, are
shown in table 2. It shows that our method outperforms the BoW and DPM
method in all cases, especially when the test set are artworks only. Our multi-
labeled modelling method effectively train nodes of the graph in separately de-
pictive styles and then combine them in a mixture model to global optimization.
Experimental results clearly indicate that our mixture model outperforms state
of the art methods which attempt to characterize all depiction styles in a mono-
lithic model. We also made tests on some of the cross-domain literature we cited
such as [25, 32] and a method that is not depend on photometric appearance,
using the edgelets [12]. A mixture-of-parts method [33] is also tested. But none
of them work well on such a high-variety depiction dataset. We report DPM and
BoW only because they consistently out-perform those methods.

6 Conclusion

There is a deep appeal in not discriminating between depictive styles, but in-
stead considering images in any style, not just because it echoes an impressive
human ability but also because it opens new applications. Our paper provides
evidence that multi-label nodes are useful representations in coping with features
that exhibit very wide, possibly discontinuous distributions. There is no reason
to believe that such distributions are confined to the problem of local feature
representation in art and photographs; it could be an issue in many cross-domain
cases. For the future work, we want to more fully investigate the way in which
the distribution of the description of a single object part is represented.
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