349 research outputs found

    Passive Visual Sensing in Automatic Arc Welding

    Get PDF

    Intelligent 3D seam tracking and adaptable weld process control for robotic TIG welding

    Get PDF
    Tungsten Inert Gas (TIG) welding is extensively used in aerospace applications, due to its unique ability to produce higher quality welds compared to other shielded arc welding types. However, most TIG welding is performed manually and has not achieved the levels of automation that other welding techniques have. This is mostly attributed to the lack of process knowledge and adaptability to complexities, such as mismatches due to part fit-up. Recent advances in automation have enabled the use of industrial robots for complex tasks that require intelligent decision making, predominantly through sensors. Applications such as TIG welding of aerospace components require tight tolerances and need intelligent decision making capability to accommodate any unexpected variation and to carry out welding of complex geometries. Such decision making procedures must be based on the feedback about the weld profile geometry. In this thesis, a real-time position based closed loop system was developed with a six axis industrial robot (KUKA KR 16) and a laser triangulation based sensor (Micro-Epsilon Scan control 2900-25). [Continues.

    Development of a real-time ultrasonic sensing system for automated and robotic welding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The implementation of robotic technology into welding processes is made difficult by the inherent process variables of part location, fit up, orientation and repeatability. Considering these aspects, to ensure weld reproducibility consistency and quality, advanced adaptive control techniques are essential. These involve not only the development of adequate sensors for seam tracking and joint recognition but also developments of overall machines with a level of artificial intelligence sufficient for automated welding. The development of such a prototype system which utilizes a manipulator arm, ultrasonic sensors and a transistorised welding power source is outlined. This system incorporates three essential aspects. It locates and tracks the welding seam ensuring correct positioning of the welding head relatively to the joint preparation. Additionally, it monitors the joint profile of the molten weld pool and modifies the relevant heat input parameters ensuring consistent penetration, joint filling and acceptable weld bead shape. Finally, it makes use of both the above information to reconstruct three-dimensional images of the weld pool silhouettes providing in-process inspection capabilities of the welded joints. Welding process control strategies have been incorporated into the system based on quantitative relationships between input parameters and weld bead shape configuration allowing real-time decisions to be made during the process of welding, without the need for operation intervention.British Technology Group (BTG

    Automatic programming of arc welding robots

    Get PDF
    Automatic programming of arc welding robots requires the geometric description of a part from a solid modeling system, expert weld process knowledge and the kinematic arrangement of the robot and positioner automatically. Current commercial solid modelers are incapable of storing explicitly product and process definitions of weld features. This work presents a paradigm to develop a computer-aided engineering environment that supports complete weld feature information in a solid model and create an automatic programming system for robotic arc welding;In the first part, welding features are treated as properties or attributes of an object, features which are portions of the object surface--the topological boundary. The structure for representing the features and attributes is a graph called the Welding Attribute Graph (WAGRAPH). The method associates appropriate weld features to geometric primitives, adds welding attributes, and checks the validity of welding specifications. A systematic structure is provided to incorporate welding attributes and coordinate system information in a CSG tree. The specific implementation of this structure using an hybrid solid modeler (IDEAS) and an object-oriented programming paradigm is described;The second part provides a comprehensive methodology to acquire and represent weld process knowledge required for the proper selection of welding schedules. A methodology of knowledge acquisition using statistical methods is proposed. It is shown that these procedures did little to capture the private knowledge of experts (heuristics), but helped in determining general dependencies, and trends. A need was established for building the knowledge-based system using handbook knowledge and to allow the experts further to build the system. A methodology to check the consistency and validity for such knowledge addition is proposed. A mapping shell designed to transform the design features to application specific weld process schedules is described;A new approach using fixed path modified continuation methods is proposed in the final section to plan continuously the trajectory of weld seams in an integrated welding robot and positioner environment. The joint displacement, velocity, and acceleration histories all along the path as a function of the path parameter for the best possible welding condition are provided for the robot and the positioner to track various paths normally encountered in arc welding

    Automatic Control of the Weld Bead Geometry

    Get PDF
    Automatic control of the welding process is complex due to its nonlinear and stochastic behavior and the difficulty for measuring the principal magnitudes and closing the control loop. Fusion welds involve melting and subsequent solidification of one or more materials. The geometry of the weld bead is a good indicator of the melting and solidification process, so its control is essential to obtain quality junctions. Different sensing, modeling, estimation, and control techniques are used to overcome this challenge, but most of the studies are using static single-input/single-output models of the process and focusing on the flat welding position. However, theory and practice demonstrate that dynamic models are the best representation to obtain satisfactory control performance, and multivariable techniques reduce the effect of interactions between control loops in the process. Also, many industrial applications need to control orbital welding. In this chapter, the above topics are discussed

    NON-CONTACT SPATIALLY CONSTRAINED OPTICAL SCANNING METHODS APPLIED FOR DEPTH, WIDTH AND GAP MEASUREMENTS

    Get PDF
    The thesis presents the non-contact laser projection based systems utilized for quantifying the feature dimensions like width, depth and air gaps. Laser diode, Charge coupled device (CCD) and post-processing software using image processing tools are the major components of the non-contact measurement systems. The study involves two methods where the first method comprises of active laser-based triangulation and morphological edge detection for depth and width measurement applications. The second method uses edge detection technique and Dynamic Field of View (DFOV) for gap detection and tracking. Using the developed techniques, the case studies are conducted with smooth plastic fenders with induced artificial deviations, MIG welding seam and different air gap deco finishes. Experimental validations are carried out by comparing the results with commercial systems like 3D scanner and commercial sensor. Also, the Gauge Repeatability and Reproducibility (GR&R) studies are produced to identify the gap measurement tool capabilities interms of accuracy and repeatability

    Vision-guided tracking of complex tree-dimensional seams for robotic gas metal arc welding

    Get PDF
    Automation of welding systems is often restricted by the requirements of spatial information of the seams to be welded. When this cannot be obtained from the design of the welded parts and maintained using accurate xturing, the use of a seam teaching or tracking system becomes necessary. Optical seam teaching and tracking systems have many advantages compared to systems implemented with other sensor families. Direct vision promises to be a viable strategy for implementing optical seam tracking, which has been mainly done with laser vision. The current work investigated direct vision as a strategy for optical seam teaching and tracking. A robotic vision system has been implemented, consisting of an articulated robot, a hand mounted camera and a control computer. A description of the calibration methods and the seam and feature detection and three-dimensional scene reconstruction is given. The results showed that direct vision is a suitable strategy for seam detection and learning. A discussion of generalizing the method used as an architecture for simultanious system calibration and measurement estimation is provided

    Neuro-fuzzy control modelling for gas metal arc welding process

    Get PDF
    Weld quality features are difficult or impossible to directly measure and control during welding, therefore indirect methods are necessary. Penetration is the most important geometric feature since in most applications it is the most significant factor affecting joint strength. Observation of penetration is only possible from the back face of the full penetration weld. In all other cases, since direct measurement of depth of penetration is not possible, real time control of penetration in the Gas Metal Arc Welding (GMAW) process by sensing conditions at the top surface of the joint is necessary. This continues to be a major area of interest for automation of the process. The objective of this research has been to develop an on-line intelligent process control model for GMAW, which can monitor and control the welding process. The model uses measurement of the temperature at a point on the surface of the workpiece to predict the depth of penetration being achieved, and to provide feedback for corrective adjustment of welding variables. Neural Network and Fuzzy Logic technologies have been used to achieve a reliable Neuro-Fuzzy control model for GMAW of a typical closed butt joint having 60° Vee edge preparation. The neural network model predicts the surface temperature expected for a set of fixed and adjustable welding variables when a prescribed level of penetration is achieved. This predicted temperature is compared with the actual surface temperature occurring during welding, as measured by an infrared sensor. If there is a difference between the measured temperature and the temperature predicted by the neural network, a fuzzy logic model will recommend changes to the adjustable welding variables necessary to achieve the desired weld penetration. Large scale experiments to obtain data for modelling and for model validation, and various other modelling studies are described. The results are used to establish the relationships between the output surface temperature measurement, welding variables and the corresponding achieved weld quality criteria. The effectiveness of the modelling methodology in dealing with fixed or variable root gap has also been tested. The result shows that the Neuro-fuzzy models are capable of providing control of penetration to an acceptable degree of accuracy, and a potential control response time, using modestly powerful computing hardware, of the order of one hundred milliseconds. This is more than adequate for real time control of GMAW. The application potential for control using these models is significant since, unlike many other top surface monitoring methods, it does not require sensing of the highly transient weld pool shape or surface

    ESTABLISHING THE FOUNDATION TO ROBOTIZE COMPLEX WELDING PROCESSES THROUGH LEARNING FROM HUMAN WELDERS BASED ON DEEP LEARNING TECHNIQUES

    Get PDF
    As the demand for customized, efficient, and high-quality production increases, traditional manufacturing processes are transforming into smart manufacturing with the aid of advancements in information technology, such as cyber-physical systems (CPS), the Internet of Things (IoT), big data, and artificial intelligence (AI). The key requirement for integration with these advanced information technologies is to digitize manufacturing processes to enable analysis, control, and interaction with other digitized components. The integration of deep learning algorithm and massive industrial data will be critical components in realizing this process, leading to enhanced manufacturing in the Future of Work at the Human-Technology Frontier (FW-HTF). This work takes welding manufacturing as the case study to accelerate its transition to intelligent welding by robotize a complex welding process. By integrate process sensing, data visualization, deep learning-based modeling and optimization, a complex welding system is established, with the systematic solution to generalize domain-specific knowledge from experienced human welder. Such system can automatically perform complex welding processes that can only be handled by human in the past. To enhance the system\u27s tracking capabilities, we trained an image segmentation network to offer precise position information. We incorporated a recurrent neural network structure to analyze dynamic variations during welding. Addressing the challenge of human heterogeneity in data collection, we conducted experiments illustrating that even inaccurate datasets can effectively train deep learning models with zero mean error. Fine-tuning the model with a small portion of accurate data further elevates its performance
    • …
    corecore