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Abstract 

Automation of welding systems is often restricted by the requirements of spatial 

information of the seams to be welded. When this cannot be obtained from the 

design of the welded parts and maintained using accurate fixturing, the use of a 

seam teaching or tracking system becomes necessary. Optical seam teaching and 

tracking systems have many advantages compared to systems implemented with 

other sensor families. Direct vision promises to be a viable strategy for 

implementing optical seam tracking, which has been mainly done with laser 

vision. 

The current work investigated direct vision as a strategy for optical seam teach-

ing and tracking. A robotic vision system has been implemented, consisting of 

an articulated robot, a hand mounted camera and a control computer. A 

description of the calibration methods and the seam and feature detection and 

three-dimensional scene reconstruction is given. 

The results showed that direct vision is a suitable strategy for seam detection and 

learning. A discussion of generalizing the method used as an architecture for 

simultanious system calibration and measurement estimation is provided. 
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Chapter 1 

Introduction 

Welded joints are commonly used to assemble structures owing to their many 

advantages which include relatively high joint efficiency, water and air tightness, 

weight saving, suitability for a wide material thickness range, simple structural 

design and reduction in fabrication time and cost [1]. It is often possible for 

production companies to improve their competitiveness by automating their 

welding processes to improve product quality, increase production output, de-

crease scarp and rework and reduce labour costs [2]. Automating the welding 

process by means of robotic manipulators has the additional advantage of in-

creasing process flexibility over hard automation welding machines. 

Traditionally, automated welding systems made use of accurate fixtures in order 

to achieve the required welding accuracy to ensure adequate quality. The use of 

fixtures, however, increases process cycle time, increases capital cost and 

reduces flexibility of production systems. In addition, the use of fixtures and 

predetermined robot welding paths is not feasible in many situations such as in 

production systems with small batch sizes and in the manufacturing of large 

structures. As a result, seam teaching and tracking systems have been utilized to 

alleviate the need for accurate positioning and rigid clamping of welding 
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Chapter 1 Introduction 

workpieces. 

Seam teaching and tracking systems have been studied in research laboratories 

and employed in manufacturing plants using a variety of sensor families. These 

include contact sensors, electromagnetic sensors, ultrasonic sensors and optical 

sensors. Because of the many advantages of optical seam teaching and tracking 

systems, which include their not being limited by welded plate thickness or joint 

type, they have especially been widely researched and implemented. For decades, 

the most common strategy for performing optical seam teaching and tracking 

has been laser vision. Operation of laser vision seam teaching and tracking 

systems is based on projecting beam of laser light with known geometry (mostly 

a laser stripe) and imaging it with a camera whose axis is tilted with respect to 

that of the lasesr source (figure 1.1). Predominance of this strategy could be 

ascribed to its immunity to interference from welding visible electromagnetic 

radiation, and to its reduction of the visual information required to process. 

However, with the steady increase of practically available processing power and 

the continual advances in sensing technology, direct vision based optical seam 

tracking systems promise to become more attractive. They don’t require the use 

of the relatively expensive and power intensive structured laser light source. In 

addition, the steadily increasing knowledge in the field streaming from 

continuous research and development makes additional tasks accomplishable 

simultaneously with seam teaching or tracking with direct vision, such as quality 

inspection and manipulator calibration through multi-view geometry. A possibly 

more important consequence of these trends is that three-dimensional scene 

reconstruction, which until now has been practical only in applications with pre-

prepared scenes and no real-time requirements, will become feasible in robotic 

automated processes. What this would mean is that seam teaching and tracking 

could be performed on workpieces with complex three-dimensional geometries 

with more controlled degrees of freedom than is currently available with laser 

vision based systems. Systems capable of this would be useful, for 
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Figure 1.1: Seam Tracking by Laser Vision 

instance, in performing welds on seams between intersecting curved surfaces 

that occur in structures such as large pipes, liquid transportation tanks, and 

automotive and aircraft bodies. 

To investigate direct vision based seam detection and multi-view three-

dimensional scene reconstruction for use in seam tracking, the main aim of this 

research was to develop a vision-based seam tracking system for an industrial 

robotic arc welding cell for welding three dimensional seams with complex 

geometries. The following requirements of a direct vision-based optical seam 

tracking system were identified: 

1. Capturing images of the seam area in which the rapid changes in properties 
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such as orientation, reflectivity and texture that occur at the seam are 

enhanced 

2. Detecting such rapid changes to infer the position of the seam in the 

images after filtering out noise that could give rise to erroneous results 

3. Mapping the two dimensional information about the seam position that is 

obtained from the images into three-dimensional information 

4. Using the three-dimensional information about the seam position to gen-

erate the paths that should be followed during the welding process. 

A possible way of approaching the first requirement is by using a vision system 

consisting of a camera with sufficient resolution and a suitable lighting system. It 

is therefore necessary to select and evaluate a camera and a lighting system to be 

used in the investigation. 

Suitable image pre-processing, edge detection and segmentation techniques must 

be used to fulfil the second requirement. The two dimensional information 

obtained by the use of these techniques may be used along with information 

about the camera position and orientation obtained from the robot controller to 

achieve the third requirement. Similarly, the three dimensional information can 

be used to improve the performance of the techniques used to obtain the two-

dimensional information. 

The fourth requirement means developing a set of rules to be used in mapping 

the obtained three-dimensional information of the seam into robot motion 

coordinates. 
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1.1 Objectives 

Several objectives were set that contribute to reaching the goals of this re-

search: 

1. Specifying the required equipment for capturing the images to be used in 

the seam tracking process 

2. Analyzing the geometry of welding seams and vision systems 

3. Synthesising and developing algorithms for seam detection and inference 

of three-dimensional information through stereovision 

4. Integrating, optimizing and testing a vision-based robotic weld seam track-

ing system to achieve the specified accuracy requirements. 

After concluding this chapter with a hypothesis statement, the remaining chap-

ters address these objectives. After a review of related literature in chapter 2, 

chapter 3 gives a review of computer vision and chapter 4 gives an overview of 

applicable mathematical theory, both of which are necessary for meeting the 

second and third objectives. Chapter 5 then describes the experimental setup, 

which addresses the first and fourth objectives and completes the third. Chapters 

6 gives the experimental results, which are discussed in chapter 7. 
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Chapter 1 Introduction 

1.2 Hypothesis 

The hypothesis on which this research is based is that seams between welded 

surfaces exhibit rapid changes in optical characteristics that can be used for 

detection of seam positions in two dimensional images. In addition, this research 

hypothesizes that three dimensional information about the seam can be obtained 

from sets of two dimensional images. It is also assumed that the quality of welds 

can be improved by controlling welding torch following distance, orientation, 

speed and height over the seam. 
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Chapter 2 

Literature Survey 

Seam tracking for robotic welding is a multidisciplinary pursuit that has been 

researched for several decades, and has seen successful commercial implemen-

tations. However like many robotic applications, despite the apparent plateau 

that seam tracking systems literature has reached, seam tracking can potentially 

be vastly improved by applying new research findings and additional computa-

tional resources. In this chapter, a review of previous work on seam tracking 

(section 2.1) and welding (section 2.2) is given. 

2.1 Seam Tracking 

Industrial robotic welding systems have made use of various seam tracking sys-

tems in order to reduce fixturing accuracy requirements, and a large number of 

seam tracking research articles has been published. Several reported research 

works focused on non-optical seam tracking systems, such as the inductive sensor 

based system of Bae and Park [3], the through-the-arc sensing system of Jieyu et 

al. [4] and the ultrasonic sensor system of Mahajan and Figueroa [5]. How- 
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ever, the majority of seam tracking systems in the literature are optical. Laser 

vision has been a commonly used strategy of implementing optical seam track-

ing [6, 7, 8, 9, 10, 11]. It involves projecting a structured laser across the seam 

and viewing its projection with a camera whose access is angled with respect to 

the laser direction. Though a stripe is the most commonly used shape for the 

laser, use of different shapes has been reported. Xu, Tang and Yao [12], for 

instance, used a circular laser sensor to perform three dimensional seam track-

ing more effectively than can be done with a laser stripe. Bae, Lee and Ahn [13] 

performed seam tracking and weld pool control without structured light by 

capturing images at instances when a short circuit occurs in the pulsed GMAW 

process. This way, interference from the intensive arc light was avoided. Aga-

piou, Kasiouras and Serafetinides [14] presented a detailed analysis of the MIG 

spectrum to be used in the design and development of seam tracking sensors 

for GMAW processes. 

2.2 Welding 

Over the years, a large number of research projects on arc welding processes and 

their characterisation and automation have been published. The following 

subsections will survey various aspects of this literature. 

2.2.1 Welding Characterisation 

Many researchers have focused on characterisation of the gas-metal arc (GMA) 

and gas tungsten arc (GTA) welding processes. Their work has produced the-

oretical, numerical and empirical results on the characterisation of these pro- 
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cesses. Murugan and Parmar [15], for instance, developed a mathematical model 

for predicting the effect of GMAW parameters on bead geometry. Randhawa, 

Ghosh and Gupta [16] used a heat balance analysis to derive a qualitative un-

derstanding of the effect of pulse characteristics on bead geometry for pulsed 

current GMAW. Hu and Tsai [17] developed a model for heat and mass transfer 

and weld pool formation dynamics in GMAW. Xu, Hu and Tsai [18] derived a 

three dimensional model for arc plasma and metal transfer in GMAW. Goyal, 

Ghosh and Saini [19] studied the thermal behaviour and weld pool geometry in 

pulsed GMA welding. Modenesi and Reis [20] developed a numerical model for 

temperature distributions and melting rate in GMAW electrode wire. Ka-radeniz, 

Ozsarac and Yildiz [21] focused on the effect of GMAW parameters on weld 

penetration. They verified that weld penetration increases with current and 

voltage. Ghosh, Hubner and Goyal [22] used high speed video imaging to study 

arc characteristics and metal transfer behaviour in pulsed GMA welding. Kumar 

and Sundarrajan [23] empirically studied the effects of welding speed, pulse 

frequency and peak and base current values on ultimate tensile strength, yield 

strength, percent elongation and microhardness of aluminium alloys. 

2.2.2 Weld Quality 

Weld quality is an issue that has been addressed thoroughly in GMA research. 

Weld bead geometry is a criterion that is often studied as an indication of weld 

quality. Moon and Na [24] developed a neuro-fuzzy approach to select GMA 

welding current, voltage and speed for welding bead geometry improvement. 

Several researchers [25, 26, 27] presented mathematical models utilizing neural 

networks and multiple regression analysis methods to predict top bead width for 

improvement of robotic GMAW quality. Lee, Chang, Jang and Lee [28] studied 

the effect of weld geometry on fatigue strength of fillet welded joints. Several pa- 
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pers on weld quality directly addressed mechanical properties. Kolhe and Datta 

[29] studied the effects of number of passes on microstructure and mechanical 

properties in submerged metal arc welding (SMAW). Deng and Murakawa [30] 

presented a finite element analysis model for prediction of distortion and residual 

stresses on GMA welded thin plates. Zhang, Zhang, Cai, Gao and Wu [31] per-

formed a numerical simulation of three-dimensional stress fields of double-side 

double-arc welding processes. Furthermore, several researchers have focused on 

techniques for quality monitoring in GMAW processes. Wang and Liao [32] 

presented a procedure for automatic identification of welding defects using ul-

trasonic imaging. Mirapeix, Garcia-Allende, Cobo, Conde and Lopez-Higuera 

[33] used a neural network for real-time arc defect detection using arc light spec-

tral signals. Zhiyong, Bao, and Jingbin [34] also performed spectral analysis of 

arc light to detect welding quality and disturbance factors in GTAW. 

2.2.3 Welding Automation 

Robotic arc welding systems are common in industry and have also been the focus 

of much research. All the major robotic system suppliers offer arc welding robotic 

solutions [35, 36, 37]. Norberto Pires, Godinho and Ferreira [38] introduced a 

CAD interface for robotic programming of welding operations. Lauridsen, 

Madsen, Holm, Hafsteinsson and Boelskifte [39] presented a model based control 

system for a manipulator used in welding nozzles perpendicular to large diameter 

pipes. Lanzetta, Santochi and Tantussi [40] presented a system for online control 

of robotic GMAW. Their system was based on visual feedback from two charge 

coupled device (CCD) cameras and a laser stripe to monitor and control the weld 

pool and arc and inspect the bead. Smartt, Kenney and Tolle [41] presented an 

architecture for incorporating artificial intelligence techniques in industrial 

robotic welding cells. Their architecture was based on agent-based 
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intelligence. Bauchspiess, Absi Alfaro and Dobrzanski [42] implemented a pre-

dictive model-based control system on a sensor guided robotic welding system 

incorporating manipulator dynamics, sensor feedback and a path generation 

model. Steele, Mnich, Debrunner, Vincent and Liu [43] introduced a concept for 

closed loop control of robotic arc welding processes using a sensor fusion 

approach. Ngo, Duy, Phuong, Kim and Kim [44] developed a digital GMAW 

system using a decentralized control approach. 
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Chapter 3 

Computer Vision Review 

Computer vision is a wide field of knowledge that draws from the disciplines of 

optics, photography, computing, signal processing, cognitive science and ar-

tificial intelligence, to mention a few. The task of a computer vision system is to 

derive structure of a scene and other information about its environment from 

one or several images. This chapter contains an overview of some of the 

important areas of the field with focus on those that are useful in meeting the 

objectives of this project. 

3.1 Geometrical Optics and Image Formation and 

Acquisition 

Cornerstone to extracting useful information from any class of measurement 

data is understanding the underlying physical laws which govern the measured 

physical quantities and the measurement system used. Images, which are light 

intensity data measured with an imaging sensor, are no exception. 

12  
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Light forms a function whose domain is position and orientation in space and 

whose range is intensity distribution over the visible spectrum. Considering a 

point in space, for instance, the intensity of light of a certain wavelength incident 

on that point from a specific direction at a given instance has a specific value. 

This value is affected by a number of variables in the environment around that 

point. These factors include locations and properties of light sources, media 

through which light travels and locations and optical properties of objects in that 

environments. 

To form an image, light must be guided such that light intensity on a small area 

on the surface of an imaging sensor corresponds to light intensity on a 

corresponding small area of the scene. The smaller these areas, the better the 

focus of the resulting image. This principle underlies image formation on 

surfaces which light can only reach through small openings. Operation of the 

first cameras invented, pinhole cameras, is based on this principle. A pinhole 

camera is a light-proof enclosure with a pinhole on one of the walls. The term 

camera originates from the Latin name given to these instruments “camera 

obscura” which translates to “dark chamber”. 

Geometric optics, which is the study of light propagation in terms of rays, is an 

important field for all applications involving images. The laws of reflection and 

refraction are two of the most important results of geometric optics. They 

describe how light behaves when it interacts with interfaces between different 

media. In general, the direction of a light ray changes when it reaches the 

interface between different media. The ray can either be reflected such that it 

returns into the medium from which it originated, or refracted such that it 

crosses the boundary into the other medium. 

The law of reflection can be used to describe reflected light rays. The reflected 

ray is coplanar with the incident ray and the normal vector to the surface at 
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Figure 3.1: Reflection Principle 

the point of reflection. Furthermore, the angle that the incident ray makes with 

the normal vector is equal to that between reflected ray and the normal vector 

(Figure 3.1). 

The law of refraction describes refracted light rays. The refracted light ray is also 

coplanar with the incident ray and the normal to the interface surface at the 

point of incidence. The ratio between the sines of the angles that the incident 

and refracted rays make with the surface normal vector is equal to the ratio 

between the indices of refraction of the two media (Figure 3.2). The index of 

refraction of a medium is the ratio between the speed of light in that medium 
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Figure 3.2: Refraction Principle 

and the speed of light in free space. 

The principles of geometric optics are used to design optical systems such as 

mirrors and lenses to guide light rays in such a way that all rays corresponding to 

a given point in the scene pass through one point. The set of such points to 

which the rays converge is the image surface. Most modern optical systems make 

use of lenses to form images. Lenses can be thought of as means of 

improvement to pinhole image systems. The main limitation of pinhole cameras 

is that increasing the size of the pinhole increases the amount of light on each 

point of the image, but makes the image blurry. On the other hand, reducing the 

size of the pinhole focuses the image but reduces its brightness, and therefore 

increases the required exposure time. Lenses act as pinholes which collect more 

rays of each point in the scene and focusing them on the corresponding point of 

the image. This allows more light from the scene onto the image while 

preventing the image from becoming blurred (Figure 3.3). 
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Figure 3.3: Effect of Lenses on Focus and Exposure 

 

Figure 3.4: Relationship between Focal Length and Lens Magnification 

The distance between the lens and the focused image is called the focal length. 

The focal length of a lens determines the magnification of the lens. From triangle 

similarity in figure 3.4, the magnification is given by: 

x '  

M = x 

Another important parameter used in 

practice to describe lenses is the F–number (Also denoted F/#). It is defined as 

the ratio between the focal length and the 

 

 

= 
f  
z  

(3.1) 
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aperture diameter. 

F/# = f (3.2) 
D 

The F-number is a dimensionless number that describes the light intensity that 

reaches the image plane. As the F-number increases, the amount of light that 

reaches a unit area of the image plane per unit time decreases quadratically. 

In addition to light intensity at the image plane, the f-number also affects the 

depth of field. The depth of field is a measure of the distance range away from 

the lens in which objects generate sharp images. A point generates a sharp image 

if all light rays emanating from it fall within a small area on the image plane, 

which is usually specified by specifying the diameter a circle which can cover that 

area. 

3.2 Epipolar Geometry 

Epipolar geometry is a branch of geometry which describes the relationships 

between projections of scene points on two pinhole camera images taken at two 

different positions. Corresponding image points are governed by geometrical 

constraints which can be described by an equation involving a bilinear transfor-

mation with a matrix known as the fundamental matrix [45]. 

If xL represents the image of a point in space x in any image, then x must be on 

the line defined by xL and the centre of projection of that view, OL . The 

projection of x on any other image is then bound to lie on the projection of 
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Figure 3.5: Epipolar Constraint 

that line on this latter image (Figure 3.5). This observation is the premise of epipolar 

geometry. 

The line connecting the focal points of any two views is referred to as the baseline 

for that stereo pair. The epipole is the intersection point of the baseline and an 

image plane. Any plane containing the baseline is called an epipolar plane. 

Epipolar planes intersect with the image planes of the two views along lines 

called epipolar lines. All epipolar lines in an image pass through the epipole. For 

any image point XL, the corresponding point XR on the other image lies on the 

epipolar line on that image which lies on the same plane as the epipolar line 

which contains XL. 

The fundamental matrix is an algebraic description of the constraints described 
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above. For a pair of images I and I', it is derived by expressing the epipolar 

line on I' corresponding to a point x in I as the product of two matrices [e],, 

and H,. The matrix H, maps a point on I to a point on the corresponding 

epipolar line on I'. The matrix [e],, then maps the result to the epipolar line 

which is the line connecting the resulting point to the epipole. The epipolar 

line l' corresponding to a point x on I is therefore given by: 

l' = [e'],,H,x = Fx (3.3) 

Any point x' on I' which lies on this epipolar line satisfies the equation of the 

line, and therefore satisfies: 

x'T l' = 0 (3.4) 

As a result, given the fundamental matrix F of a pair of images, any pair of 

corresponding image point pair satisfies the equation: 

x'T Fx = 0 (3.5) 

The fundamental matrix is rank deficient due to the multiplication by a cross 

product matrix, which is rank deficient, in its calculation. It has rank 2, and 

therefore the rank of its null space is 1. The basis vector of the null space of F is 

the homogeneous representation of the epipole in image I. The fundamental 

matrix has 7 degrees of freedom because it is a singular 3×3 homogeneous 

matrix. If F is the fundamental matrix between the image pair (I, I'), then 

19  



Chapter 3 Computer Vision Review 

its transpose FT is the fundamental matrix for the image pair in reverse order (I', 

I). 

3.3 Image Processing 

Images, which are represented by scalar or vector functions of two independent 

variables, are the subject of image processing. The field is often divided by au-

thors into several areas: these include image preprocessing, image segmentation, 

shape representation and detection, object recognition and three-dimensional 

vision [46, 47, 48, 49, 50]. Image preprocessing takes raw image data as input and 

modifies it in order to eliminate unneeded information and enhance the features 

in the images that are of interest to the application at hand. Preprocessing 

techniques are broadly divided into intensity transformations and position 

transformations. Image segmentation is the process of dividing an image into 

distinct regions which can be used for higher level algorithms such as image 

understanding and object recognition [46, 47, 48, 49, 50]. If information 

reiterated from higher level processing stages is used in segmentation, it is pos-

sible to perform complete segmentation in which each of the resulting regions 

corresponds to a single object in the scene. Sometimes, however, incomplete 

segmentation is sufficient and single objects may be divided into more than one 

region and single regions may have parts of more than one object [48, 49]. 

In some applications, the sensors used to obtain the images are distance sensors 

which results in images that have three-dimensional representation of the scene. 

In the majority of vision systems, however, pixel values correspond to light in-

tensity rather than distance. In some applications, it is necessary to reconstruct 

three-dimensional information from intensity images. This is made difficult by 

several factors [47]. For instance, intensity images are commonly obtained by 
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mapping the three-dimensional world into two-dimensional space by a projective 

transformation in which each point corresponds to a line in space. Another factor 

which complicates obtaining three-dimensional information from intensity images 

is that the relationship between intensity and scene geometry is highly complex, 

with reflectivity, surface orientation, illumination and camera location all playing 

role in determining light intensity at a point [47]. Additional factors such as 

occlusion and noise also need to be addressed in three-dimensional vision 

applications [47]. Techniques that can be used to reconstruct three-dimensional 

geometry from intensity images include taking several images from different cam-

era locations (shape from motion), taking several images with different known 

light source intensities and locations (shape from shading), and taking images of 

objects with known surface texture properties (shape from texture) [47]. 

3.3.1 Geometric Transformations 

Geometric transformations are needed at the starting stages of image processing 

in a variety of situations such as when distortions in the image need to be 

reduced or when images of an object taken from different angles need to be 

compared. A geometric transformation is a vector function T that maps each 

point (x, y) in the image into a new location (x', y'). 

~ ~ 
(x', y') = T (x, y) = TX(x, y), TY(x, y) (3.6) 

This function is often approximated by a mth-degree polynomial of the form: 
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Since this transformation is linear in terms of the coefficients ark
 and

 brk, they can 

easily be determined from locations of several pairs of corresponding points in 

the image before and after transformation if they are available. Important and 

commonly used classes of geometrical image transformations are similarity, 

affine and projective transformations, which will be discussed further in section 

4.7 (page 46). 

Image geometric transformation functions are mostly real valued. The result of 

an image transformation is often required to be described in terms of a discrete 

raster. When that is the case, it is necessary to apply a brightness interpolation to 

determine the values of image points on the raster from values and locations of 

transformed points around them. The simplest such interpolation method is the 

nearest neighbor method, in which each pixel in the raster is given the value of 

the transformed image at the real-valued position nearest to that pixel. This 

method, however, is often avoided because it degrades the resultant image. The 

most commonly used method, which gives a smoother output, is to take a 

weighted average of values of image points with the weight varying with the 

distance from the point of interest. 

3.3.2 Intensity Transformations 

Transformations that depend only on pixel intensity are often applied to images 

as part of pre-processing or in preparation for display to human eyes. The 

transformed brightness of each pixel is a function of its original brightness of the 

form: 

~ ~ 
I~(x, y) = T I(x, y) (3.8) 
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3.3.3 Linear Image Transformations 

Linear transformations are an important class of transformations because of the 

myriad of tools available for their analysis and synthesis. A linear transformation 

T is one under which any pair of functions f (t) and g(t) for any constants a and b 

satisfy: 

(  )  (  )  (  )  
T a f(t) + b g(t) = a T f(t) + b T g(t) (3.9) 

This definition of linearity holds for two dimensional images. In other words, for 

any images I,(x, y) and I2(x, y) and any values a and b, a linear transformation T 

satisfies the equation: 

( ) ( ) ( ) 
T a I,(x, y) + b I2(x, y) = a T I,(x, y) + b T I2(x, y) (3.10) 

Linear transformations are commonly used in signal processing and specifically 

in image processing. The transformed intensity of an image point is calculated as 

a linear function of points in the original image. An important result from linear 

algebra is that any linear transformation which takes as input a vector from an n-

dimensional space and maps it to a vector from an m-dimensional space can be 

represented by multiplication by an m × n matrix [51]. This result applies to 

linear transformations on digitized images, since any digital image could be 

described as a vector with as many components as there are points in the 

discrete raster of the image. 
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3.3.4 Shift Invariant Transformations and Point Spread 

Functions 

A translation invariant transformation, also known as a shift invariant transfor-

mation, is one which is not affected by translation of the image grid. In other 

words, if T is a translation invariant transformation then for any function I in the 

domain of T and any element h in the domain of I, it holds that: 

( ) ( ) 
I
'
(x) = T I(x) ⇔ I

'
(x − h) = T I(x − h) (3.11) 

A linear and translation invariant transformation can completely be described by 

the result of applying it to a point source image. In digital image processing, a 

point source image, often denoted δ(x, y), is one whose value is unity at the 

origin and zero everywhere else. The result of applying a linear translation 

invariant transformation to a point source image is called the point spread 

function of the transformation. 

( ) 
hT (x, y) = T δ(x, y) (3.12) 

Any image can be described as the sum of scaled and shifted instances of a point 

source image. 
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The result of applying a transformation T to the image is then: 

 

Since T is a linear transformation: 

 

And, recognizing the transformation of the point source image as the point 

spread function (Equation 3.12): 

 

The sum in equation 3.16 is known as the convolution of image I with the point 

spread function h, (x, y) of transformation T. When the image being 

transformed has nonzero values only within a certain region, which is usually 

the case, the indices of summation in the convolution formula could be 

changed accordingly. The point spread function of a transformation is also 

known as the impulse response and the kernel. Applying a linear translation 

invariant transformation to an image is also known in practice as filtering. 
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3.3.5 Image Frequency Analysis 

Another useful tool in the analysis of linear transformations is the use of har-

monic functions. A good starting point of developing the tools for image fre-

quency analysis is to consider periodic functions. A function f(x) is periodic 

with period p if it satisfies: 

f(x + p) = f(x) (3.17) 

for every x and (x + p) in its domain. The set of periodic functions with period p 

form an inner product space with the inner product operation defined by: 

 
2 

Pure harmonic functions form a set of orthogonal vectors in this space, that 

is: 

 

Pure harmonics also span the entire inner product space. In other words, with the 

exception of the zero function, no function in the inner product space is 

orthogonal to the entire set of pure harmonics. As a result of these properties, a 

periodic function with period p can be expressed as the sum of weighted pure 

harmonics: 
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f(x) = E00 

n=0 

i 2πn p 
ane 

x 
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This representation is known as the Fourier series representation of the function. 

These properties of pure harmonics also hold for two-dimensional functions 

such as images. The Fourier series representation of a two-dimensional function 

is given by: 

 

f (x, y) = E00 

n=0 

E00 

m=0 

2πi( mx M + ny N ) 

am,ne 
 

 
−  −  

2 2 

Harmonic decomposition of images is a useful tool in image processing. A direct 

result of linearity is that the result of applying a linear image transformation can 

be obtained by adding up the individual results of the linear transformation 

applied to the harmonic components of the image. Consequently, a linear filter 

can be described by its effect on harmonic images within a range of frequency 

values. This description is known as the frequency response of a filter. 

Another useful property of the Fourier transform is that the result of multiplying 

the Fourier transforms of two functions is equal to the Fourier transform of the 

convolution of those functions. 

(  )  (  )  (  )  
F f(t) ∗ 9(t) = F f(t) F 9(t) (3.22) 
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~ ~ 
where F f(t) denotes the Fourier transform of f (t) and f (t) ∗ g(t) is the 
convolution of f (t) and g(t) 

Since applying a linear filter to an image is equivalent to convolution of that 

image with the point spread function of the image (Equation 3.16), multiplying 

Fourier transforms of the original image and the point spread function results in 

the Fourier transform of the filtered image. An inverse Fourier transform can 

then be applied to the later to obtain the filtered image. 

3.3.6 Image Smoothing 

Image smoothing incorporates a number of techniques that are used to reduce 

noise in images. Smoothing techniques operate by assigning to each pixel in the 

output image a weighted average of values of pixels within some neighbourhood 

around that pixel in the original image. This is the same as applying a filter 

whose point spread function is given by the weights assigned to the pixels within 

the neighbourhood window. The most commonly used linear smoothing filters 

are the uniform filter and the Gaussian filter. Figure 3.6 shows an example of the 

use of image smoothing filters. 

3.3.7 Edge Detection 

It is often desired to find areas in an image at which the image function changes 

abruptly. Such edges occur at boundaries of objects or at surface brightness dis-

continuities within the same object caused by shadows cast thereon or changes 

in reflexivity. Various convolution filters could be applied to images to highlight 

points with high rates of change of intensity. Several filters that approximate 
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Figure 3.6: Effect of Image Smoothing 
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(a) Original Image 

(b) Smoothed with Uniform Kernel 

(d) Smoothed with Gaussian Kernel 
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first and second derivatives of brightness were derived and have been used as 

edge detectors [47, 48, 49, 50]. These include the Roberts operator, the Prewitt 

operator and the Sobel operator which approximate the first derivative. Convo-

lution masks which approximate the Laplacian operator which is an indirectional 

representation of the second derivative are also used. Canny [52] argued that 

derivative approximation for finding edges in images is poorly founded. As an 

alternative, he formulated image edge detection as a variational optimization 

problem. He then derived a convolution filter for edge detection that optimizes 

the formulated criteria. Canny’s edge detector uses a derivative of a Gaussian 

function as the convolution filter. Figure 3.7 demonstrates the result of a Canny 

edge detector. 

In practice, convolution with edge detection filters is followed by a refinement 

step which often involves thresholding the image map to classify each pixel to 

either belong to an edge or not [47, 48, 49, 50]. Canny’s edge detection method 

involves using two threshold values on the premise that a pixel near an edge is 

more likely to be an edge pixel than one in the middle of a homogeneous 

brightness region [52]. 

A non-maximal suppression step is often part of the edge detection procedure. 

The aim of this step is to reduce the thickness of edges while maintaining their 

proximity to the actual edge in the scene. This step is performed by scanning 

lines perpendicular to the edge direction and removing all the edge pixels except 

the ones with the highest rate of change within each line [47, 48, 49, 50]. 
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Figure 3.7: Edge Detection with the Canny Edge 

Detector 3.3.8 Image Segmentation 

Image segmentation is the process of dividing an image into distinct regions 

which can be used for higher level algorithms such as image understanding and 

object recognition. The ultimate goal of segmentation is to divide the image into 

segments such that there is exactly one segment for each object in the scene. 

This ideal case is referred to as complete segmentation. Sometimes, however, 

incomplete segmentation is sufficient and single objects may be divided into 

more than one region and single regions may contain parts of more than one 
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object [47, 48, 49, 501. The main image segmentation methods are: 

Thresholding 

Thresholding is one of the simplest methods for image segmentation. It is the 

oldest segmentation method and yet it is still widely used, especially in machine 

vision applications [471. Thresholding segmentation involves classifying pixels to 

belong to image objects or the background depending on whether their 

brightness exceeds a predetermined threshold value. Figure 3.8 demonstrates the 

use of thresholding for image segmentation. 

Edge-Based Segmentation 

Edge-based segmentation is done by finding region boundaries by one of the 

edge detection methods, and then following those boundaries around each 

image segment. 

Region-Based Segmentation 

Region-based segmentation methods include region growing, region splitting or 

their combination. Region growing is performed by starting with several seed 

pixels each of which corresponding to a region in the image. Pixels surrounding 

the seed pixels are then added to the corresponding region until the boundaries 

are reached, which can be detected by a significant change in pixel properties. 

Region splitting is performed by starting with the image as one region and 

repeatedly dividing regions according to their dissimilarity. 
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Figure 3.8: Segmentation by Thresholding 

3.4 Closure 

This concludes the treatment of applicable computer vision theory. An in depth, 

and up to date coverage of the subject is given by Szeliski [53]. 
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Chapter 4 

Mathematical Principles Review 

Robotics, vision, their applications and enabling technologies have all come to 

the level of sophistication at which they are today mainly by describing them by 

mathematical models and applying old as well as relatively new mathematical 

techniques for their analysis and synthesis. This chapter gives an overview of 

some of the mathematical theory that is applicable to the subject of the current 

work. 

4.1 Vector Spaces 

A very powerful and useful concept from linear algebra is that of vector spaces. 

A vector space consists of a set V on which vector addition and scalar multipli-

cation are defined such that the following conditions are satisfied for all elements 

u, v and w of V and all scalars s and t: 

 u + v is in V 
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 u + v = v + u 

 u + (v + w) = (u + v) + w 

 there is an element 0 in V such that v + 0 = v for any v in V 

 for any element v in V there is an element -v in V such that v + 

-v = 0 

 for any scalar s and any v in V, s · v is in V 

 s · (u + v) = s · u + s · v 

 (s + t) · v = s · v + t · v and s · (t · v) = (s t) · v 

 there is a scalar 1 such that 1 · v = v for any v in V 

4.1.1 Inner Product Spaces 

An important class of vector spaces is inner products spaces. The vector space 

described above is also an inner product space if, in addition to the conditions above, 

there is an operation which maps any two vectors u and v into < u, v > such that 

for any elements u and v of V and for any scalars s and t: 

 <u, v> = <v, u> 

 <u, sv + tw> = s <u, v> +t <u, w> 
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 < u, u > > 0 and < u, u > = 0 if and only if u = 0 

If V is an inner product space, the geometrical concepts of angle and length are 

defined using the inner product operation. The length, or norm, of a vector v is 

given by: 

11v11 = \/<v, v> (4.1) 

and the angle between two vectors u and v is given by: 

<u, v> 
cos θ =   _____________________________ (4.2) 

11u1111v11 

This also gives a definition for orthogonality between vectors in inner product 

spaces. Two nonzero vectors u and v are orthogonal if and only if < u, v > = 

0. 

Two more useful definitions are those of an orthogonal set of vectors and an 

orthonormal set of vectors. An orthogonal set of vectors is one in which all pairs 

of distinct vectors are orthogonal. An orthonormal set of vectors is an 

orthogonal set each of whose elements have a norm of 1. 

4.1.2 Basis Vectors and Dimension of a Vector Space 

A set of vectors {x1, x2, · · ·, x.1 is said to span a vector space V if any vector v in 

V can be represented as: 

v = a1x1 + a2x2 + ··· + a.x. (4.3) 

for some scalars (a1, a2, · · ·, a.). If, in addition to spanning V, the set is linearly 

independent, then the set {x1, x2, · · ·, x.1 is called a basis for the vector space V. 

The number of vectors in the set, n, is the minimum number of vectors 
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required to span V, and is the maximum number of vectors in a linearly inde-

pendent subset of V. This number is called the dimension of V, and V is said to 

be an n-dimensional vector space. 

For some vector spaces, such as the set of all functions defined in (-∞, ∞), no 

finite subset spans the entire space. Such vector spaces are called infinite-

dimensional. 

4.1.3 Cross Product 

A useful operation on R3 is that of the cross product. It takes as input two 3-

dimensional vectors, v1 and v2, and gives as output a 3-dimensional vector v1 

× v2 which is perpendicular to the plane containing v1 and v2 and whose 

length is: 

kv1 × v2k = kv1kkv2k sin θ (4.4) 

where θ is the angle measured from v1 to v2 (Figure 4.1). The cross product of 

two vectors v1 = [v1x, v1y, v1z]
T
 and v2 = [v2x, v2y, v2z]

T
 is given by: 

ˆı ˆ kˆ 

v 1 x  v 1 y  v 1 z  

v 2 x  v 2 y  v 2 z  

where ˆı, ˆ and k
ˆ
 are the unit vectors in the directions of the three Cartesian 

axes in three-space, and |M| represents the determanent of M. Another way of 

obtaining the cross product is by representing it as multiplication by a skew 

symmetric matrix, which is called a cross product operator. The previous cross 

product, for instance, can be written as: 
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v1 × v2 = 

 

v1 × v2 = 

⎡ 

⎢ ⎢ 

⎢ ⎣ 

0  − v 1 z  v 1 y  

v 1 z  0  − v 1 x  

− v 1 y  v 1 x  0  

⎤ ⎡ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 

⎦ ⎣ 

v 2 x  

v 2 y  

v 2 z  

⎤ 

⎦⎥⎥

⎥ 

(4.6) 
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Figure 4.1: Cross Product 

The cross product operator corresponding to a vector v is denoted v×. 

4.2 Linear Transformations 

Linear transformations play an important role in computer vision and robotics. 

They are a vital tool for geometry computations, dynamics and control, and 

image processing (Subsection 3.3.3 on page 20). A general linear transformation 

T is one which satisfies: 

T (u + v) = T (u) + T (v) and T(cv) = cT(v) (4.7) 

for any u and v in its domain and any scalar c. 

A linear transformation which maps vectors from an n-dimensional space to 
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ones in an m-dimensional vector space can be represented by a m x n matrix 

multiplication of the form: 

a11 a12 .. . a1n 

a21 a22 .. . a2n 

. . . 

. .. 

a m 1  

a m 2  . . .  a m n  

or, written in symbols: 

y = Ax (4.9) 

In this transformation, the output y is a weighted sum of the columns of A, the 

weights being simply the components of the input x. The range of the linear 

transformation is the set of the outputs produced by the transformation for all 

possible inputs. Since the outputs are a linear combination of the columns of 

the transformation matrix, the range of the transformation is simply the 

subspace spanned by the vectors whose components are given by the columns 

of the transformation matrix. An immediate result is that the dimension of the 

output space is at most as large as the number of columns. If the column 

vectors are not linearly independent, then the dimension of the output space is 

as large as the largest subset of linearly independent columns. This number is 

unique, and it is also the size of the largest subset of linearly independent rows. 

This number an important property of the matrix, as well as the linear 

transformation, and is called the rank of the matrix, and also the rank of the 

transformation. 

4.3 Quadratic Forms 

A quadratic form is a polynomial all of whose terms with nonzero coefficients 

are of the second degree. A quadratic form of a set of variables x1, x2,... , xn is 
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⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

y1 

y2 

... 

ym 

⎤ 

⎦ ⎥ 

⎥ ⎥ 

⎥ ⎥ 

⎥ 

= 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

 

 

⎤ ⎡ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 

⎦ ⎣ 

x1 

x2 

... 

xn 

⎤ 

⎦⎥

⎥⎥

⎥⎥

⎥ 

(4.8) 
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a polynomial of the form: 

q = a11x
2
1 + a12x1x2 + ... + a1nx1xn + a22x22 + a23x2x3 + .. . + annx2n (4.10) 

This quadratic form can be written as the matrix multiplication:  

 

By defining X as the column vector of the variables x1, x2, ... , xn and A as the matrix 

of coefficients, the quadratic form (4.11) can be written as: 

q = XT AX (4.12) 

The matrix A does not have to be symmetric, but any quadratic form can be 

represented by a symmetric matrix [51]. 

4.3.1 Positive Definiteness 

A useful class of quadratic forms is positive definite quadratic forms. A positive 

definite quadratic form A is one which satisfies: 

XT AX > 0 for all non-zero vectors X (4.13) 

4.4 Matrix Decomposition 

In this section, several techniques for taking a matrix which describes a linear 

transformation or a quadratic form and expressing it as a product of matrices 

4 0  

a11 2a12 . . . 
1 2a1n 

1 

2a12 a22 ... 
1 2a2n 

1 . . . 
. .. 

2a1n1 2a2n . . . ann 

1 

 
⎤ ⎡ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 

⎦ ⎣ 

x1 

x2 

... 

xn 

⎤ 

⎦⎥⎥

⎥⎥⎥

⎥ 

(4.11) 

 

... ... 
q = [x1 x2 ... xn] 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 
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with useful properties [51]. 

4.4.1 QR Decomposition 

An m × n matrix A with columns {a1, a2, • • • , an} can be expressed as the 

product of an m × n matrix Q whose columns {q1, q2, • • • , qn} form an or-

thonormal set and an invertible upper triangular matrix R (Equation 4.14). 

A = QR (4.14) 

4.4.2 Eigenvalues and Eigenvectors 

An Eigenvector of a square matrix A is a nonzero vector v which satisfies the 

equation: 

Av = λv (4.15) 

for some scalar λ, which is said to be an Eigenvalue of A. In words, the trans-

formation described by A does not change the direction of v, but simply scales it 

by λ. 

Given a set of m Eigenvectors of a matrix A, the resulting expressions of the 

form in equation 4.15 can be combined in the matrix form: 

 
AP = PΛ 

 
(4.16) 

where 
   

 
~P = v1 v2  · · ~vm (4.17) 
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and 

Λ= 

λ1 

⎡ 
0 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

... 

0 

0 ... 

λ2 ... 

... . 

0 ... 

0 

⎤ 

0 

⎦⎥⎥⎥⎥⎥⎥ 

. . ... 

λm 

 

If {v1, v2, . . . , vn} are n linearly independent Eigenvectors of a n x n matrix A, 

using them to form a matrix P of the form in equation 4.17 above results in an 

invertible matrix. Post multiplying both sides of equation 4.16 by P−1 results in 

the Eigenvalue decomposition of A: 

A = PΛP
−1

 (4.18) 

Furthermore, if A is a n x n symmetric matrix, then it has real eigenvalues and a 

set of n orthogonal Eigenvectors. In other words, an Eigenvector matrix P can 

be formed such that P
−1

 = P
T
 and the Eigenvalue decomposition of A 

becomes: 

A = PΛP
T
 (4.19) 

4.4.3 Singular Value Decomposition 

An m x n matrix A can always be factorized to the form: 

A = USV 
T
 (4.20) 

with U being an m x m orthonormal matrix, V an n x n orthonormal matrix and 

S a unique m x n diagonal matrix whose diagonal entries are ordered in 

descending order. The entries of S are called the singular values of A. 
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Singular value decomposition can be thought of as a process of decomposing 

the transformation represented by A into three transformations. The first trans-

formation, which is represented by V 
T
 is a rotation of the input vector. The 

second transfomration represented by S is a scaling of the components of the 

input vector along the directions of the columns of V weighted by the diagonal 

entries of S. The third and last transformation, which is represented by U is a 

rotation of the resulting vector in the output space. 

A property of a matrix A which can be easily extracted from its singular value 

decomposition (SVD) is its spectral norm. The spectral norm of a matrix is the 

maximum ratio between the output and input vectors of the transformation 

which it represents. That is: 

11AII = max 
x6=0 

11Ax11 (4.21) 
11x11  

Since neither U nore V change the length of a vector because they both are 

orthonormal, the only change in length happens in the middle transformation of 

scaling the vector by the entries of S. As a result, the spectral norm of the matrix 

is simply its largest singular value. Moreover, the first column of V gives the 

direction of vectors which maximize the ratio in equation 4.21. 

Another useful description of the matrix which can be extracted from its SVD is 

the condition number. It is the ratio of the largest singular value and the lowest 

non-zero singular value of the matrix. The condition number is a measure of 

stability. 

The singular value decomposition of a matrix A can also be used to find its  
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pseudo-inverse A† using the formula: 

A† = V S†UT
 (4.22) 

where the pseudo-inverse of the diagonal matrix S, S†, is obtained by taking 

the reciprocal of each non-zero entry of S and transposing it. The linear 

system, Ax = b, has a least squares solution if it is overdetermined, or a least 

norm solution if it is underdetermined, given by:  

x˜ = A†b (4.23) 

4.5 Least Squares Solutions 

Linear systems of the form Ax = b with A being an m × n matrix and m > n arise 

frequently. In general, there is no exact solutions x which satisfy the equation for 

known A and b. An approximate solution is saught which minimizes the risidual, 

which is defined as the sum of squares of error values: 

r = IIAx − bII (4.24) 

Such a solution, often denoted 
˜x, is the least squares solution. It can be thought of 

as the components of the projection of the m-dimensional vector b onto the n-

dimensional column space of A in terms of the columns of A. In other words, the 

error (A˜x − b) must be orthogonal to all the columns of A. Therefore: 

AT (A˜x − b) = 0 (4.25) 

which can be re-arranged to yield the normal equation: 

x˜
 = (ATA)−1AT b (4.26) 

when the inverse of ATA exists, which is true for a full rank m × n matrix with m > 

n. 

44  



Chapter 4 Mathematical Principles Review 

The least squares solution can also be found using the singular value decompo-

sition as discussed in subsection 4.4.3. 

4.6 Analytic Geometry 

Geometric entities can be treated as algebraic objects by describing them in 

terms of coordinate systems. This approach of studying geometry is known as 

analytic geometry. By defining a cartesian coordinate system, for instance, any 

point can be described by the vector that connects the origin of the coordinate 

system to that point. Motions can then be described as vector transformations, 

and curves and surfaces can be described as sets of vectors. The following 

subsections elaborate on this concept. 

4.6.1 Curves and Surfaces in Space 

Curves and surfaces are collections of points in space. They can be described by 

the collection of vectors to those points in a coordinate system defined in their 

space. 

For instance, a line can be represented as the set of points located at a specific 

direction from some point, xo, on the line. The direction is determined by the 

vector connecting xo to any other point xi on the line. Any point on the line, for 

some t ∈ R, satisfies: 

x = xo + t(xi − xo) (4.27) 

which can be rearranged as: 

x = (1 − t)xo + txi (4.28) 
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The line, then, is the set {x = (1 − t)x0 + tx1 : t E R }. Curves or surfaces are 

often expressed by an equation exclusively satisfied by all the points which they 

contain. Often, the set notation is dropped and the geometrical object is 

described by the equation alone. 

A plane can be described using its normal vector and any point, x0, that it con-

tains. The normal vector, by definition, is orthogonal to any vector connecting x0 

to any point on the plane. As a result, the inner product of the corresponding 

vectors is 0: 

(x−x0 , n) = 0 (4.29) 

If x0 is [ox, oy, oz] and n is [a, b, c], then the equation of the plane becomes: 

a (x−ox) + b (y−oy) + c (z−oz) = 0 (4.30) 

Another way of describing curves and surfaces is giving a parametric repre-

sentation of their coordinates. For instance, points on the line described by 

equation 4.28 have the form: 

 

In general, a curve can be described as a point, x, whose components are given 

by functions of a single parameter, t: 

 

4 6  

 

x = 

⎡ ⎤ x 
⎢ ⎥ 
⎢ ⎥ 
⎢ y ⎥ 

⎣ ⎦ 
z 

= 

⎡ 

⎢ ⎢ ⎢ 

⎣ 

(1 − t) x0 + t x1 

(1 − t) y0 + t y1 

(1 − t) z0 + t z1 

⎤ 

⎦⎥⎥⎥ 

t E R (4.31) 

 

 
⎡ ⎤ x 

⎢ ⎥ 
⎢ ⎥ 

⎢ y ⎥ 

⎣ ⎦ 
z 

= 

⎡ 

⎢ ⎢ ⎢ 

⎣ 

fx ( t )  

fy ( t )  

f z( t )  

⎤ 

⎦⎥⎥⎥ 

t E R (4.32) 
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A surface, similarly, can be represented by points whose components are func-

tions of two independent parameters, s and t: 

 
Directional Differentiation 

Parametric representation makes the use of the tools of differential and integral 

calculus possible for the analysis of curves and surfaces. The slope of a curve or 

a surface at any point and direction can be found, if it exists, using partial 

differentiation. Differentiating the parametric equation of a curve or a surface 

(Equations 4.33 and 4.32) with respect to a certain parameter produces the rates 

of change of each of the coordinates with respect to that parameter. This can be 

used for finding the slope of a curve or a surface in any direction. Carrying out 

the differentiation in terms of one of the coordinates results in the rate of 

change in the direction of the corresponding axis. 

Another problem that can readily be solved by partial differentiation is finding 

the plane tangent to a surface represented by equation (4.33) at any point x0. 

Differentiating the parametric equation in terms of each of the two parameters 

and evaluating the derivatives at x0 produces two independent direction 

vectors on the surface. Any point on the surface can be represented by the 

sum of the vector to x0 and multiples of these direction vectors. Moreover, 

the normal to the surface can be obtained from the cross product of the two 

direction vectors. 
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If a curve in space represented in the form of equation 4.32 is to be traversed at 

a constant speed, the parameter needs to be increased at a rate which is inversely 

proportional to the rate of change of the length along the curve with respect to 

the parameter t. The later is given by: 

 

d j j X j j   

d t  

)2 )2 )2 

 s(dfx (dfy (dfz  
=   +   __ + ________________ (4.34) 
 dt dt dt 

 

Taylor Expansion and Linearization 

The Taylor expansion of an infinitely differentiable function of a single real 

variable is given by: 

 

where f(n
) is the nth derivative of f. This applies directly to parametric curves in 

space. A curve in space given by equation (4.32), for instance, has the Taylor 

expansion: 

 

X(t) = 

⎡ ⎤ *00 f(n) 

x (t0) 
n! (t — t0)

n
 

⎢ n=0 ⎥ ⎢ ⎥ f(n) ⎢ *00 y (t0) ⎥ ⎢ n! (t — t0)
n ⎥ 

n=0 

⎣ ⎦ *00 f(n) 

z (t0) 
n! (t — t0)

n
 

n=0 

= E00 

n=0 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

f (n) 
x (t0) 

n! 
f(n) 
y (t0) 

n! 
f(n) 
z (t0) 

n! 

⎤ 

⎦⎥

⎥⎥

⎥ 

(t — t0)
n
 (4.36) 

 

Linearization of a function means finding the linear function which most closely 

approximates it. That can be done by taking the linear terms of the Taylor 

expansion. Linearization of the same parametric curve above is given by: 

 

The concept of Taylor expansion can be extended to surfaces in space and gen-

eral functions of multiple real parameters by taking partial derivatives in terms 
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of all the possible parameters. Linearization of such multivariable functions 

around a point τ0 = [s0, t0, · · · ]T in the parameter space is given, similarly, by: 

 

4.7 Homogeneous Coordinates and Projective 

Geometry 

The two-dimensional and three-dimensional Euclidian spaces can be extended to 

projective spaces by introducing an additional coordinate to the representation 

of vectors. A vector in a Euclidean plane with the coordinates [x, y]T is 

represented as [x, y, 1]T in the projective space. The representation [x, y, 1]T is 

equivalent to [ax, ay, a]T for any nonzero a. Similarly, a three-dimensional vector 

with coordinates [x, y, z]T in a Euclidean space has a homogeneous representation 

[x, y, z, 1]T which is equivalent to [ax, ay, az, a]T for any nonzero a. Representing 

vectors in homogeneous coordinates enables non-singular linear transformations 

to represent a more general family of transformations than is possible if they act 

on standard Euclidean vectors [45, 2]. This makes homogeneous vectors and 

projective transformations useful in robotics and vision since they represent 

important processes that cannot be represented by Euclidean transformations 

such as translation of coordinates and perspective projection. To clarify, a linear 

transformation in a three-dimensional projective space can 
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be represented by a 4 × 4 matrix with the blocked representation [2, 45]: 

 

The matrix R3x3 is a rotation matrix. In robotics, it is always an orthogonal 

matrix which represents coordinate frame rotation. In vision and computer 

graphics, R3x3 represents both rotation and scaling of axes and is therefore not 

necessarily orthogonal. The vector t3x1 represents translation of the origin of a 

coordinate frame. The vector 773x1 represents perspective scaling. And the scalar 

σ is a scaling factor for the transformation. 

Another useful consequence of representing vectors with their homogeneous co-

ordinates is that it gives rise to a more general representation of intersection of 

lines and planes. In plane geometry, a line can be represented by an equation: 

ax + by + c = 0 (4.40) 

A line given by equation 4.40 can be represented by the vector [a, b, c]
T
 . A 

point [x0, y0] is on the line if and only if it satisfies equation 4.40 and we can 

say: 

ax0 + by0 + c = 0 (4.41) 

By multiplying both sides of the equation by a non-zero scalar σ, it can be seen 
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that:  

a(σx0) + b(σy0) + c(σ) = 0 (4.42) 

In words, a point with homogeneous coordinates [x0, y0, 1]
T
 is on a line rep-

resented by a vector [a, b, c] if and only if the two vector representations are 

orthogonal. As a result, two lines intersect at a point if and only if the vector 

with the homogeneous coordinates of that point is orthogonal to both the 

vectors given by the coordinate representations of the two lines. Similarly, a line 

connects two points if and only if the vector given by its coordinate rep-

resentation is orthogonal to both the vectors given by the sets of homogeneous 

coordinates of the two points. Because of this fact and since the cross product 

of two vectors is orthogonal to both, the cross product becomes a useful tool in 

finding intersection points of lines and lines connecting points on a plane. 

A similar reasoning can be followed by using the vector [a, b, c, d] to represent a 

plane in a three-dimensional projective space given by the equation: 

ax + by + cz + d = 0 (4.43) 

A point with homogeneous coordinates [x0, y0, z0, 1]
T
 is on this plane if and only 

if the inner product of the two vectors representing the point and the plane 

evaluates to zero. This observation can used to show that a point where three 

planes intersect or the plane defined by three points is defined by any vector in 

the null space of the matrix whose rows are formed by the homogeneous 

representations of the planes or the points respectively. 
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4.8 Closure 

This concludes the review of the applicable mathematical principles. The principles 

discussed are utilized at various subsystems in the experimental setup, which is 

discussed in the following chapter. 
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Experimental System 

The main component of the experimental system was a charge coupled device 

(CCD) camera mounted on a bracket attached to the flange of a 6-axis industrial 

robotic manipulator. Images taken by the camera were transferred to a control 

computer through an IEEE 1394a (FireWire) link. The task of the control 

computer was to process the images it received through the software developed 

in this project. The control computer was connected to the controller of the 

industrial robot through an Ethernet link which conveyed position feedback and 

motion commands between the robot and the computer. The experimental setup 

also comprised a section of a cylindrical stainless steel tank onto which circular 

flanges were welded. Figure 5.1 shows a schematic representation of the system 

organization, and figure 5.2 shows a photograph of the system. 

Figure 5.3 gives a schematic representation of the software architecture. As shown 

in the figure, images captured by the camera are first pre-processed by smoothing 

and enhancement as described in chapter 3. The resulting images are then 

processed for seam and feature detection (section 5.4). The detected and matched 

features are then used for scene three-dimensional geometry reconstruction 

through bundle adjustment (section 5.5), which gives the three-dimensional 
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Figure 5.1: System Architecture 

seam geometry required for tracking. Before seam and feature detection and 

bundle adjustment are described, however, some aspects of the robot used are 

addressed in section 5.1, and a detailed description of the process followed for 

calibrating the camera is given in section 5.3 

5.1 Robot Arm and Controller 

The robot manipulator used in this study was a 6-axis KUKA KR30/2 manipu-

lator. It is rated for a 30 kg payload and a ±0.15 mm repeatability. To integrate 

the seam tracking system with the robot, three issues needed to be addressed: 

mounting the camera on the robot (mechanical interfacing: subsection 5.1.1), 

processing position feedback into usable coordinate transformations (geomet-

rical interfacing: subsection 5.1.2) and retrieving this position feedback and 
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Figure 5.2: Experimental System 

 

Figure 5.3: System Software Architecture 
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communicating motion commands with the robot (network interfacing: subsection 

5.1.3). 

5.1.1 End Effector (Mechanical Interface) 

During the seam tracking tests, the robot was required to move the camera, the 

welding torch and possibly a structured light source. A bracket was designed to 

be mounted on the flange of the robot to act as a mechanical interface for these 

objects. 

Two concepts were considered in the initial stage of the design. The first concept 

was a modular design which allowed addition of mounting interfaces by adding 

links with pre-defined interconnection geometry. This concept is shown in figure 

5.4. The second concept design featured two plates bolted on a flange as shown in 

figure 5.5. The second concept was chosen for this project because it was easier to 

manufacture and it promised higher rigidity, which was considered critical for the 

purposes of this investigation. Figure 5.6 shows a photograph of the manufactured 

and assembled bracket. 

5.1.2 Coordinate Transformation from Position Feedback 

The KRC2 robot controller provides feedback about the position of the end 

effector by means of providing 6 values corresponding to the position and ori -

entation of the three axes of the tool coordinate frame. These parameters cor -

respond to the three components of the translation vector from the origin of a 

programmable base frame and the roll, pitch and yaw angles with respect to 

that frame. In order to transform points between the tool coordinate frame  
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(a) Exploded View 

 

(b) Assembled View 

Figure 5.4: Modular Mechanical Interface Concept 
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(a) Exploded View 

 

(b) Assembled View 

Figure 5.5: Plate-Based Interface Concept 
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Figure 5.6: Manufactured Bracket with the Camera Mounted Thereon 
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and the camera and world coordinate frames, these parameters must be used to 

obtain the appropriate transformation matrices. A commonly used notation in 

robotics texts is to abbreviate the symbols for the trigonometric functions of an 

angle 0 as: 

sin 0 = s0 

cos 0 = c0 

Using this notation, the transformation from a base coordinate frame to the tool 

coordinate frame is given by [2]: 

 

tTb = 

⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

cAcB sAcB —sB 0 

cAsBsC — sAcC sAsBsC + cAcC cBsC 0 

cAsBcC + sAsC sAsBcC — cAsC cBcC 0 

0 0 0 1 

⎤ ⎡ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 

⎦ ⎣ 

1  0  0  — X  

0  1  0  — Y  

0  0  1  — Z  

0  0  0  1  

⎤ 

⎦⎥⎥

⎥⎥⎥

⎥ 

(5.1) 

5.1.3 Ethernet Communication with Control Computer 

Communication of position feedback and motion commands with the robot was 

attained by means of a KUKA service application which makes interaction with 

external systems possible through an Ethernet interface [54]. The service consists 

of a message framework and an application programming interface (API) that 

enables programs running on the robot controller (written in KRL programming 

language) to act as clients and connect to remote server applications. 
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Two types of Ethernet connections are allowed: TCP and UDP. Both use the 

same message structure. Each message is 332 bytes long and is divided into six 

sections: 

 a section that encodes the version of the service application installed (1 

byte long) 

 a section of seven one-byte character values that is reserved for future use 

(7 bytes long) 

 a section of twenty eight 32-bit integers (112 bytes long) 

 a section of thirty two 32-bit floating point numbers (128 bytes long) 

 a section of eighty one one-byte character values (81 bytes long) 

 a padding section of three unused bytes 

The API through which KRL programs interact with Ethernet-KRL consists of 

five function calls: 

 INT ETH OPEN(IPADDRESS[]: OUT, PORTID: IN, TYPE: IN, CON-

NECTIONID: OUT ), which establishes a connection with the host 

 INT ETH CLOSE( CONNECTIONID: IN), which closes an established 

connection 

 INT ETH WRITE(CONNECTIONID: IN, IPARMS[]: OUT, 

RPARMS[]: OUT, CPARMS[]: OUT), which sends a request to the host 
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 INT ETH READ(CONNECTIONID: IN, IPARMS[]: OUT, RPARMS[]: 

OUT, CPARMS[]: OUT, TIMEOUT: IN), which reads a response received 

from the host 

 INT ETH RESET(), which closes all unattended connections 

In addition to the message structures, an application level protocol is required to 

achieve meaningful communication between the robot controller and the main 

control computer. An example server application supplied with the Ethernet-

KRL software defines a protocol to meet this requirement [54]. To comply with 

this protocol, the first element of the array of integers in the message structure 

contains a control code. There are several possible control codes, the most 

important of which correspond to the commands CONNECT, DISCONNECT, 

START, STOP and GO HOME. Robot programs periodically transmit to the 

server TCP requests that warrant responses containing any pending motion 

commands. The control computer responds by sending such motion commands in 

messages with the START control code. Each motion command message also 

contains a repetition number and a length value which are mapped, respectively, 

to an integer element and a floating point element in the corresponding arrays in 

the message structure. These commands are subsequently carried out by the 

robot, which then sends an acknowledgement message. The robot controller also 

periodically transmits UDP messages containing position feedback as well as 

robot status information such as active tool and base. For the purpose of the seam 

tracking application, the server application response structure was adjusted to 

allow general motions in 6-degrees of freedom by adding an array of six floating 

point values instead of the single length parameter to the operation control 

message. A structure of type FRAME, which consists of three length values in 

mm corresponding to translations along the three Cartesian axes and three 

rotation angles in degrees, was added to the OP CONTROL message structure 
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at the client-side KRL program. The code changes to the KRL client program 

and the C++ server application are shown in appendix A section A.3. 

5.2 Vision System 

The vision system consisted of a Basler Scout scA1000-30fm monochrome CCD 

camera, fitted with a Myutron FV-7583 lens. The control computer was 

equipped with a FireWire PCI card to which the camera was connected. 

Interfacing of the camera to the control computer was attained by means of 

Pylon driver, which comprises an application programming interface (API) and a 

viewer software which facilitated manual configuration and image acquisition. 

Figure 5.6 on page 56 shows a photograph of the camera and lens mounted to 

the mechanical interface bracket. 

5.3 Camera Calibration 

Calibration of the camera by obtaining the parameters of the transformation 

that describes its mapping of points from the scene into images is necessary for 

the inverse process of mapping points from images into ones in the robot 

environment. This section describes the calibration process that was followed in 

this project. 
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5.3.1 Determination of Focal Length, Pixel Dimension and 

Focal Point Distance 

Camera calibration is a problem of many degrees of freedom. By constraining 

the scene geometry to a single plane that is parallel to the camera’s principal 

plane, a smaller part of the calibration problem may be isolated and approached 

separately. This part is determination of the focal length and pixel dimension 

combination and the distance of the focal point from the camera’s principal 

plane. This may be illustrated by considering an imaging scenario in a two-

dimensional world (figure 5.7). As it can be seen in figure 5.7, the imaged line 

length, x, is given in pixels by: 

x/Kc 

f 

X 
=  (5.2) 

z − z0 

where Kc is the number of pixels per unit length. This expression may be made 

linear in the distance from the camera z by rearranging it as: 

 

From this, the parameters Kcf and z0 can be determined by taking several images 

of a known dimension on a plane parallel to the camera’s principal plane. The 

points can then be plotted on a graph whose ordinate is the reciprocal of the 

imaged length and whose abscissa is the distance along the camera’s axis to a 

fixed point (z in equation 5.3). The slope and intercept of the line can then be 

equated to the expressions in equation 5.3 above and solved for Kcf and z0. 

Circle Diameter and Centre 

In performing the procedure described above for partial calibration of the cam-

era, errors in determining the actual length and the imaged length contribute to 
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Figure 5.7: Schematic of Test for Determination of Focal Length and Pixel 

Dimension 

errors in the resulting calibration parameters. It is therefore necessary to use a 

robust dimension in performing the procedure. One possible robust dimension 

is the diameter of a circle determined from the coordinates of several points in 

its perimeter. An additional advantage of this measure is that the eccentricity of 

the imaged circle can be used to indicate the error in parallelism of the scene 

plane and the camera’s principal plane. 

By specifying the coordinates of three points in general position, it is possible to 

determine the equation of a unique circle that passes through them. However, 

the resulting circle equation and consequently the diameter and centre coor-

dinates obtained therefrom will not be robust, and any errors in the supplied 
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perimeter-point coordinates will cause errors in the obtained circle parameters. 

An alternative method is to use the coordinates of more points on the perime-

ter than is required to determine the circle. Errors in the supplied coordinates 

will mean that it is not possible to find a circle that passes exactly through all 

the points. However, it is always possible to find a circle that fits the points in a 

least-squares sense. This circle, and consequently its diameter and centre 

coordinates, is robust to errors in the coordinates of the points that were used 

to obtain it. 

The same argument can be used to justify using more than five points, which is 

the minimum number required, to specify the elliptical image of a circle in the 

scene. It is appropriate to note here that if the requirement of the scene plane 

being exactly parallel to the camera’s principal plane is met, the image of a circle 

in the scene will be a circle. However, exact parallelism between the two planes 

cannot be achieved because of errors in the camera position feedback values and 

the measurement of the scene plane. It is therefore reasonable to fit a general 

ellipse in the image rather than a circle. 

To explain the procedure for determining an ellipse (or a circle) that passes 

through a number of points, a good starting point would be examining the 

algebraic description of an ellipse. A possible formulation of such description is 

to state that an ellipse is a collection of points with coordinates (x,y) that satisfy 

the equation: 

(x cos(0) + y sin(0) − x0)
2
 (x sin(0) − y cos(0) − y0)

2
 

+ ____________________ − R2 = 0 (5.4) 
a2 b2 

The left-hand side of the equation above can be written as a quadratic form of 

the homogeneous representation of the point [x, y]' given by [x, y, 1]'. The 
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equation can then be written as: 

xT Cx = 0 (5.5) 

C here is a 3 × 3 quadratic form constructed from the parameters x0, y0, a, b, θ 

and R from equation 5.4 above and x is the homogeneous representation of a 

point in the ellipse. This last equation is quadratic in the coordinates of x, but it 

is linear in the elements of C. It is therefore possible to find a least-squares 

solution for the elements of C that satisfies equation 5.4 for a set of points xi. 

Each point from the set gives a linear equation in the coordinates of C. To 

illustrate, if C is given by: 

c11  c12  c13  

c12  c22  c23  

c13  c23  c33  

Then a 

point xi = [ xi y i 1 ]T on the ellipse gives the equation: 

c11x2
i + c22y2i + c33 + 2c12xiyi + 2c13xi + 2c23yi = 0 (5.7) 
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⎡ 

⎢ ⎢ 

⎢ ⎣ 

C = 

 
⎤ 

⎦⎥⎥⎥ 

(5.6) 
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n points on an ellipse then result in the matrix equation: 

x2
1 y2

1 1 2x1y1 2x1 2y1 

x2
2 y2

2 1 2x2y2 2x2 2y2 

... ... ... ... ... ... 

x2
n y2

n 1 2xnyn 2xn 2yn  

The singular value 

decomposition of the n × 6 matrix above always exists, and the right singular 

vector corresponding to the smallest singular value is the best solution for the 

ellipse parameters cii. It was necessary to avoid numerical errors by shifting and 

scaling the points such that they become centred at the origin with a standard 

deviation of √2 as recommended by Hartley and Zisserman [45]. 

Once the quadratic form C representing the imaged circle was found, it was 

transformed to a conic centred at the origin to extract the properties of the 

ellipse it represents. The transformation which maps C to a an ellipse centred 

at the origin is a translation: 

⎡ 

H = ⎣  

An ellipse centred at the origin has 

the form: 

6 8  

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

 

⎡ 

⎤ ⎢⎢⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 
⎥ ⎢ 

⎦ ⎢ ⎢ 

⎢ ⎣ 

c11 

c 2 2  

c 3 3  

c12 

c13 

c23 

⎤ 

⎦ ⎥ 

⎥ ⎥ 

⎥ ⎥ 

⎥ ⎥ 

⎥ ⎥ 

⎥ ⎥ 

⎥ 

= 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

0 

0 

... 

0 

⎤ 

⎦⎥

⎥⎥

⎥⎥

⎥ 

(5.8) 

 

I 2  t2×1 

1 0 T  
2 × 1  

⎤ 

⎦ 
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⎡ 

C0 = ⎣ _  

The translated ellipse is then of the 

form: 

⎡C = H
T
 C0H = ⎣  

tT2x1A2x2 t
T
At − r2 

Therefore, by comparing this partitioned expression of C to the expression in 

equation 5.6 we have: 

 

⎡ 

A = ⎣ 

c1 1  c1 2  

c2 1  c2 2  

⎤ 

⎦ 
(5.9) 

 

 

~ 
 r = t

T
At − c33 (5.11) 

The major and minor diameters of the ellipse can then be obtained from r and the 

Eigenvalues of A, which are real valued since A is symmetric. If λ1 and λ2 are 

respectively the larger and smaller Eigenvalues of A, then the major and minor 

diameters of the ellipse are: 

 dmaj = 2 r √λ2 dmin = 2  r 

; √λ1 (5.12) 
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⎤ 

⎦ 

A2x2 02x1 

−r2
 

⎤ 

⎦ 0 T  
2 x 1  

A2x2 A2x2t2x1 

 
⎡ 

t = A-1 ⎣ 

c 1 3  

c 2 3  

⎤ 

⎦ 
(5.10) 
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5.3.2 External Parameters and Principal Image Point 

Coordinates 

Approximation of the model for the transformation between scene and image 

points is completed by determining the camera’s focal length and pixel dimen-

sion described in section 5.3.1. This is because the design of the bracket and the 

dimensions of the camera are known and can be used to compute the transfor-

mation between the camera coordinate frame and the robot flange coordinate 

frame. This transformation can be post multiplied by the matrix that transforms 

world coordinate frame points to the flange coordinate frame to relate points in 

the scene to the camera’s coordinate frame. Finally, the focal length can be used 

to compute the transformation that maps points in the camera coordinate frame 

to image points if the camera axis is assumed to pass through the centre of the 

image. 

However, it is unlikely that there will be no errors in any of these transformations 

and parameters. The calibration process must therefore be refined by estimating 

the following parameters of the camera: 

 the focal length f in mm and pixel side length reciprocal Kc in pixel/mm 

(square pixels were assumed) 

 the six parameters which determined the transformation from the robot 

end effector coordinate frame to the camera coordinate frame (three for 

translation and three for rotation) 

 the horizontal and vertical offsets between the centre of the camera coor-

dinate system and the pixel with coordinates (0, 0) in the image xP0 and 

yP0 

7 0  
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The principles of projective geometry show that only nine of the previous ten 

parameters are independent. This is because the transformation from a scene 

point to a camera point is represented by a 3 × 4 projective matrix with 11 inde-

pendent entries up to scale, and two of the entries are eliminated by assuming 

square pixels. 

Calibration is essentially an optimization problem. The parameters being esti-

mated must be assigned values which minimize an error function, which is an 

observed deviation from the assumed model. A description of selected error 

functions and used optimization methods will follow. 

Calculation of Error 

Multiple images were taken of a static scene, and coordinates of several image 

points were determined on the images on which they appear. The positions and 

orientations of the robot end effector were recorded when the images were 

taken. To calculate the error for a given set of parameter estimates, those 

estimates were used to calculate the parameters of the lines along which the rays 

travel in space. Each image point can be mapped to a ray in space through the 

scene point and the position of the camera centre at the time when that image 

was taken. For each pair of images, two such rays corresponding to the same 

scene point will intersect at the scene point in the absence of errors. In reality, 

however, the ray pair will not intersect due to errors in the camera parameter 

estimates. The sum of absolute distance values between pairs of image point rays 

was used as the estimation error to be minimized in the calibration process. The 

following methods were used for minimizing the objective function, and thereby 

estimating the parameters. 
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To derive a formula for calculating the error corresponding to a set of param-

eter estimates, a scenario was considered where two images are taken of some 

point in space. Let 
1
T2 be the matrix for transforming points to the coordinate 

frame of the first image I1 from the coordinate frame of the second image I2. 

Furthermore, let the parameters for the transformation from the robot coordi -

nate frame to the camera coordinate frame be the yaw, pitch, and roll angles A, 

B and C and the translation in the three coordinate axes, X , Y and Z. 

Additional parameters are the focal length f, the pixel side length Kc and the 

coordinates of the pixel corresponding to the origin of the camera coordinate 

frame xp0
 and

 yp0. The coordinates of scene point in the two images are [xi1, yi1] 

and [xi2, yi2]. 

The direction of the ray forming the point image on I1 given by the vector: 

 
 ⎡ 

⎢ 

⎢ 

⎢ 

⎣ 

0 

0  

f  

⎤ 

⎦⎥

⎥⎥ 

 

⎡ 

⎢ 

⎢ 

⎢ 

⎣ 

xi1 − xp0 

yi1 − yp0 

0 

⎤ 

⎦⎥

⎥⎥ 

 

⎡ 

⎢ 

⎢ 

⎢ 

⎣ 

xi1−xp0 ⎤ 

⎦⎥

⎥⎥ 

 r1 = 
1  

K c  
= 

K . 

yi1−yp0 

K . 

f 

(5.13) 

 

Similarly, the direction of the ray forming the point image on I2 on the coordinate 

frame of I1 is: 

 

If the two rays intersect in space, the point of intersection is the point in the scene 

corresponding to the two images. In reality, however, the rays often don’t 
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⎡ 

⎢ 

⎢ 

⎢ 

⎣ 

 

⎤ 

⎦

⎥

⎥

⎥ 

 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

xi2−xp0 ⎤ 

⎦⎥

⎥⎥

⎥⎥

⎥ 

 
r2 = 

1 0 0 0 

0 1 0 0 

0 0 1 0 

rT −1 1T2 rTc c 

K . 

yi2−yp0 

K . 

f 

1 

(5.14) 
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intersect as a result of noise and, more importantly, errors in the parameter 

estimates. In this case, the shortest vector connecting the two rays can be 

thought of as a calibration error vector. This vector can be obtained by taking a 

vector connecting any point in one ray to any point on the other and calculating 

its projection on a unit vector which is orthogonal to both the rays. The unit 

vector orthogonal to both the rays can be obtained by taking the cross product 

of vectors in the directions of the two rays and normalizing it. 

 

nˆ = 
Ilr1 × r211 

r1 × r2 (5.15)  

The vector connecting the two rays can be chosen as the vector that connects 

the focal points of the camera in the two positions. The error calculated in this 

way is therefore: 

 

These geometric relationships are described in figure 5.8. 

Nonlinear Least Squares Problem Formulation 

Nonlinear least squares adjustment was the methods used to address the calibra-

tion problem. By taking combinations of point matches from different images, a 

set of error values could be calculated for each set of parameter estimates. The 

7 3  

 

e = n̂  n̂T
 

0 

0  

f  

rT−1 
1T2 

rTc 
c 

(5.16) 

⎤ 

⎦ ⎥

⎥ ⎥  

⎤ 

⎦⎥

⎥⎥ 

0  

0  

f  

1  

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

⎛ 

⎡⎜ 

⎜ ⎜ 

⎢ 

⎜
 ⎢  
⎜
 ⎢  

⎜  

⎣  

⎝ 

⎛ 

⎜ 

⎜ 

⎜ 

⎜ 

⎜ 

⎜ 

− 

⎡ 

⎢ ⎢ 

⎢ ⎣ 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

 

⎤  ⎞  

⎞  

⎥ ⎟ ⎟ 
⎥ ⎟ ⎟ 
⎥ ⎟ ⎟ 
⎥ ⎟ ⎟ 
⎥ ⎟ ⎟ 
⎥ ⎟ ⎟ 

⎦  ⎠  

⎠  
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function that maps a set of parameter estimates to a set of corresponding errors 

given by: 

 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ẽ1 

ẽ2 

... 

ẽ3 

⎤ 

⎦⎥

⎥⎥

⎥⎥

⎥ 

= ψ 

⎛ ⎡ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 
⎜
 ⎢ 

⎝ ⎣ 

f  

K c  

X 

Y 

Z 

A 

B 

C 

x P 0  

y P 0  

⎤ ⎞ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦ ⎠ 

(5.17) 

 

is a nonlinear function, and it must be linearized before the least squares ap-

proximation can be performed. Linearization is performed by taking the first 

two terms of the Taylor series representation of the function. This is given by: 
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∂ e l  

∂ f  

∂ e 2  

∂ f  

... 

∂e,,, 

∂ f  

∂e l   

∂xPo  

∂ e 2  

∂ C  

... 

∂e,,, 

∂C 

∂el  

∂yPo 

∂e2  

∂xPo  

... 

∂e , , ,   

∂xPo  

 

(5.18) 

The matrix of partial derivatives in the equation above is known as the Jacobian 

matrix. In this problem, it is populated by differentiating the expression for the 

error in equation 5.16 (page 69). Let t be any of the transformation parameters 

to be estimated. Differentiating equation 5.16 in terms of t gives: 

h  ∂nˆ ˆnT  i iT jf   ___  = I3x3 03x1 

f — 
∂t ∂t 

∂ˆn
T

  h  — ˆnT h + nˆ  ____  f — I3x3 03x1 i iTjf I3x3 
∂t 

(5.19) 

where: 

(r1 x r2) 11r1 x r211 — (r1 x r2)∂t∂ 11r1 x r211 (5.20) 
11r1 x r211

2
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∂ e l  

∂ Y  
∂ e l   

∂ K e  

∂ e 2  

∂ A  
∂ e 2   

∂ K e  

... 

∂ e l  

∂ X  

∂ e 2   

∂ X  

∂ e l  

∂ Z  

∂ e 2  

∂ Y  

∂ e l  

∂ A  

∂ e 2  

∂ Z  

∂el 

∂B 
∂ e l  

∂ C  

∂ e 2  

∂ B  

... ... ... ... ... 

∂e , , ,  

∂ A  
∂e,,, 

∂ B 
∂e,,, 

∂Z 
∂e,,, 

∂ Y 
∂e , , ,  

∂ X  
∂ e , , ,   

∂ K e  

 

⎡ 

⎢⎢⎢⎢⎢⎣ 

e1 

e2 

... 

e3 

⎤ 

⎦⎥⎥⎥⎥⎥ 

= ψ 

⎛⎡ 
⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜ ⎢ ⎜
 ⎢ 

⎝⎣ 

f0 

Kc0 

X0 

Y0 

Z0 

A0 

B0 

C0 

xPo0 

yPo0 

⎤⎞ 
⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ ⎥ ⎟ 

⎦⎠ 

+ 

⎡ 

⎢⎢⎢⎢⎢⎣ 

 

 

∂ e 2   

∂ y P o  

... 

∂ e , , ,   

∂ y P o  

⎤ 

⎦⎥⎥⎥⎥⎥ 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

Δ f  

ΔK c  

ΔX 

ΔY 

ΔZ 

ΔA 

ΔB 

ΔC  

Δ x P o  

Δ y P o  

 

∂e 

 
i ∂ iT j  

03x1 ∂t f 

∂nˆ 
∂t = 

∂  
∂ t  
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( a ) ( ~ aat (r1 × r2) = at r1× r2 r1 × a 
+ atr2 (5.21) 

an d  

`(r1 × r2), ∂∂t(r1 × r2)) 
ata 11r1 × r211 =  (5.22) 

11r1 × r211 

where ( · ,· ) denotes the inner product. To obtain the derivatives for the specific 

parameters, the terms in the formulae above are evaluated and substituted. These are 

given by: 

a f  a  ⎜  ⎢  

⎛  

⎡  
⎜ ⎢ 
⎜ ⎢ 

⎝  ⎣  

x i 1 — x p 0  

K .  

y i 1 — y p 0  
− 

K .  

f 

 

   

⎛ ⎡ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

 
xi1—xp0 ⎤⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦⎠ 

 
⎡ 

⎢ ⎢ 

⎢ ⎣ 

1 ⎤ 

⎦⎥

⎥⎥ 

 
ar1 

= 
a  K .  

y i1— yp0  

K. 

f 

= 

K. 

0 

0 

(5.24) 
axp0 axp0 

− 

 

   ⎛ ⎡ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

 
xi1—xp0 ⎤⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦⎠ 

 
⎡ 

⎢ ⎢ 

⎢ ⎣ 

0 

1 

⎤ 

⎦⎥

⎥⎥ 

 
ar1 

= 
a  K .  

y i1— yp0  

K. 

f 

= (5.25) 
ayp0 ayp0 

− K. 

0 
 

   ⎛ ⎡ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

 
xi1—xp0 ⎤⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦⎠ 

⎡ 

⎢ ⎢ 

⎢ ⎣ 

xi1—xp0 

K.
2 ______  

yi1—yp0  

K.
2 

0 

⎤ 

⎦⎥

⎥⎥ 

 
ar1 

= 
a  K .  

y i1— yp0  

K. 

f 

(5.26) 
aK, aK, 

− 
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⎤⎞ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦⎠ 

= 

⎡ 

⎢ ⎢ 

⎢ ⎣ 

0 

0 

1 

⎤ 

⎦⎥

⎥⎥ 

 

ar1  
= 

a f  
(5.23) 
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r1 is not affected by the camera position parameters, therefore: 

ar1  ar1  ar1  ar1  ar1  ar1  

⎡ 

⎢ ⎢ 

⎢ ⎣ 

0 

0 

0 

⎤ 

⎦⎥⎥⎥ 

(5.27) aX = aY = aZ = aA = aB = aC = 

 

 
Similarly,   

⎛ ⎡ 

⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

xi2—xp0 ⎤⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦⎠ 

 

⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

0  

0  

1  

0  

⎤ 

⎦ ⎥ ⎥ 

⎥ ⎥ ⎥ 

⎥ 

 

 

ar2 
a 

= 
iTj 

af 

K .  

y i 2 — y p 0  

K .  

f 

0 

= 
iTj (5.28) 

 af 

 

 

  ⎛ ⎡ 

⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

xi2—xp0 ⎤ ⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦ ⎠ 

 
⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

xi2—xp0 ⎤ 

⎦⎥⎥⎥

⎥⎥⎥ 

 

ar2 
a 

= 
iTj aKc 

K .  

y i 2 — y p 0  

K .  

f 

0 

= 
iTj 

K.
2
 

y i 2 — y p 0  

K .
2

 

0 

0 

(5.31) 
aKc 
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⎛ ⎡ 

⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

xi2—xp0 ⎤⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦⎠ 

 
⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

1 ⎤ 

⎦⎥⎥⎥

⎥⎥⎥ 

 

ar2 a 
= 

iTj_____________  

axp0 axp0 

K .  

y i 2 — y p 0  

K .  

f 

0 

= 
iTj 

K. 

0 

0 

0 

(5.29) 

 

  ⎛ ⎡ 

⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 
⎜ ⎢ 

⎝ ⎣ 

xi2—xp0 ⎤ ⎞ 

⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 
⎥ ⎟ 

⎦ ⎠ 

 
⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

0 

1  
K .  

⎤ 

⎦⎥⎥⎥

⎥⎥⎥ 

 

ar2 a 
= 

iTj _______  

ayp0 

K .  

y i 2 — y p 0  

K .  

f 

0 

= 
iTj (5.30) 

ayp0 0 

0 

 



 

Chapter 5 Experimental System 

(5.32) 

(5.33) 

(5.34) 

art  art  art  

⎡ 

⎢ ⎢ 

⎢ ⎣ 

0 

0 

0 

⎤ 

⎦⎥⎥

⎥ 

(5.35) aA = aB = aC = 

 

iTj = cTr
 riTrj

cT-1
 (5.36) 
r 

so, since the derivative of an inverse matrix is given by: 

aT-1
 = T-1 

aT T-1 (5.37) 
at at  

the derivative of the camera pose transformation matrix is: 
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x i 2 - x p 0  

K .  y i 2 -

y p 0  K .  

f 

0 

x i 2 - x p 0  

K .  

y i 2 - y p 0  

K .  

f 

0 

x i 2 - x p 0  

K .  

y i 2 - y p 0  

K .  

f 

0 

art 
= 

a 
iTj 

⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

aX aX 

 

art 
= 

a 
iTj 

⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

aY aY 

 

art 
= 

a 
iTj 

⎡ 

⎢ ⎢ ⎢ 

⎢ ⎢ ⎢ 

⎣ 

aZ aZ 

 

⎤ 

⎦⎥

⎥⎥

⎥⎥
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riTrj  ∂cT−1 riTrj
cT−1

 
r + cTr r  
∂t 

r ) ∂cT−1
 

riTrj
cT−1

 
r + cTrriTrj cT−1  r  cT−1 (5.38) 
 r r 

∂t 

The transformation matrix from the robot end effector coordinate frame to the 

camera coordinate frame has the same form as that between the base and tool 

coordinate frames (equation 5.1). If we denote the translation part of the 

transformation by Ttrans, the derivatives of the transformation matrix are given by: 

 

∂T 

∂A 
= 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

—sAcB cAcB 0 0 

—sAsBsC — cAcC cAsBsC — sAcC 0 0 —

sAsBcC + cAsC cAsBcC + sAsC 0 0 

0 0 0 0 

⎤ 

⎦⎥

⎥⎥

⎥⎥

⎥ 

Ttrans (5.39) 
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∂B 
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⎡ 

⎢ ⎢ 
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⎢ ⎢ 

⎣ 

—cAsB —sAsB —cB 0 

cAcBsC sAcBsC —sBsC 0 

cAcBcC sAcBcC —sBcC 0 

0 0 0 0 

⎤ 

⎦⎥

⎥⎥

⎥⎥

⎥ 

Ttrans (5.40) 

 

 

∂iTj  ∂cTr 
= 

∂t ∂t 
∂cTr 

= 
∂ t  



∂T 

∂C 
= 

⎡ 

⎢ ⎢ 

⎢ ⎢ 

⎢ ⎢ 

⎣ 

0 0 0 0 

cAsBcC + sAsC sAsBcC —  cAsC cBcC 0 —
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0 0 0 0 
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∂T 

∂X 
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⎢ ⎢ 
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0 0 0 —cAsBsC + sAcC 
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0 0 0 0 
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0 0 0 —sAcB 
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0 0 0 —sAsBcC + cAsC 

0 0 0 0 

⎤ 

⎦⎥

⎥⎥

⎥⎥
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(5.43) 

 

 

This completes the formulae required to populate the Jacobian matrix for ap-

plying nonlinear least squares to the camera calibration problem. The Matlab 

code for evaluating the derivatives above at the required points and formulating 

the Jacobian matrix is in appendix A section A.1 (page 109). 

The process of nonlinear least squares adjustment involves iteratively adjusting 

the parameter estimates by subtracting the product of the pseudo-inverse of the 

Jacobian by the errors vector. Two methods were used for obtaining the pseudo-

inverse of the Jacobian. The first was by means of using the standard pseudo-

inverse function of Matlab, and the other was using singular value 

decompositoin and setting the singularity threshold to a larger value than the 

standard limit. Matlab code written for the nonlinear adjustment procedure is 

contained in appendix A subsection A.1.1 (page 115). 
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5.4 Seam and Feature Detection 

In order to track the seam in multiple images, it is necessary to:  

 identify the pixels corresponding to the seam in each of the images, and 

 identify the position of the seam in space as a function of a sampling 

parameter, t 

Two methods were tested for detecting the seam in individual images. The first 

method was using linear filtering of the image and applying a Canny edge 

detection algorithm with non-maximal supression. The second method was an 

adaptation of Harris corner detector introduced by Harris [56]. It is based on 

using the Eigenvalues of the Jacobian of the image function. Since the images 

supplied by the camera are discrete, the Jacobian J was approximated with a 

finite difference operator convolved with a gaussian kernel. Points where the 

larger of the two Eigenvalues are highest correspond to curves in the image 

across which the rate of change is the highest. This is often true of the seam 

pixels. 

The smaller of the two Eigenvalues of the Jacobian at a point is a measure of the 

smallest rate of change at that pixel along any direction. Points where the smaller 

Eigenvalues are highest, therefore, are often used as keypoints in the images. 

Such feature points can be matched across different images and triangulated to 

obtain positions of the corresponding points in the scene. After linear filtering 

the image with the finite difference and Gaussian kernels, a threshold is applied 

to find the possible feature points. For each of the detected points, a local search 

is performed and only a single pixel point in a neighbourhood is selected as the 

feature. The code for the feature detection program is in 
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Figure 5.9: Neighbourhood Descriptor for Feature 

Tracking Appendix A section A.4. 

Feature point on the seam are especially useful, as they are likely to correspond 

to three dimensional points on the seam. After general feature points are found, 

the seam features are detected using the same method as general feature points 

with the exception that the search is restricted to seam points. 

To track the detected features, a neighbourhood of 7 × 7 pixels around the de-

tected keypoint position in the first image was sampled. The 49 values were then 

scaled and normalized such that they had a zero-mean and a standard deviation 

of one. This neighbourhood descriptor was then compared to similar ones on 

the following images, with varying center position. The center position 

corresponding to the smallest sum of square error in the neighbourhood inten-

sities was chosen. This process is described by Szeliski [53]. In this project, the 

search was constrained to a five-pixel strip around the calculated epipolar line. 

Figure 5.9 shows a sample neighbourhood descriptor. 
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5.5 Bundle Adjustment 

In calculating positions of scene points from multiple images by triangulation, 

errors in robot feedback positions are propagated directly to the calculated scene 

geometry. To address this problem, bundle adjustment was used to obtain 

accurate scene point coordinates as well as corrections to the robot position and 

pose. An detailed review of bundle adjustment techniques was given by Triggs et 

al. [55]. 

Each image feature point was used to formulate a set of equations that relate the 

coordinates of the image point to those which would be obtained given the 

current estimates of camera internal and external calibration parameters and the 

scene point coordinates. This process of calculating approximate feature image 

coordinates by applying the estimated camera model to estimated scene 

geometry is called reprojection. After formulating reprojection error equations 

for several images, they were iteratively minimized from the starting estimates to 

obtain the final values for scene geometry as well as corrected camera poses. 

An alternative, though equivalent, formulation for geometric image formation 

was used for reprojection [45]. The coordinate system of the camera is placed at 

its projection centre with the z-axis along the camera axis. This way, only the 

first three homogeneous coordinates of a scene point are required to determine 

its corresponding image point position, and scale is insignificant. The x- and y-

axes are placed along those of the image. The image x of a point 
{C}X in this 

coordinate frame is given by: 
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The upper triangular matrix K in this expression encodes the internal parameters 

of the camera. 

Because, in general, scene points are not expressed in terms of this camera 

coordinate frame beforehand, they must be transformed such that they are. This 

is obtained by applying a Euclidian transformation, which comprises a rotation 

R and a translation t: 

 

These rotation matrix and translation vector encode the external parameters of 

the camera, and the point X, trivially, encodes the position of the scene point. 

The complete reprojection of the point X then becomes: 

hx = K R 
i t X (5.47) 

 

Reprojection error is the difference between the actual image point and this 

reprojected point. In this project, the error was taken to be the difference be-

tween the image point coordinates and the non-homogeneous reprojected point 
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coordinates. 

 

A column vector of reprojection errors of several points from several views is 

constructed. Each point contributes to the vector two entries corresponding to 

the x- and y-coordinate reprojection errors. The sum of squares of the entries of 

the reprojection error vector is iteratively minimized. To do this, a Jacobian 

matrix is formed with respect to the estimated scene point coordinates and 

camera internal and external calibration parameters. For each parameter u, the 

corresponding two entries of the Jacobian matrix corresponding to a specific 

scene point and a specific view are given by: 

 

hwhere x = K R it X, and 
 

 

The code for computing reprojection error, populating the reprojection error 

Jacobian matrix, and carrying out iterative bundle adjustment is shown in ap-

pendix A, section A.5 (page 123). 
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5.6 Closure 

This concludes the description of the experimental system and methods used 

in this project, summarized in figures 5.1 and 5.3 in the beginning of this 

chapter. 
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Chapter 6 

Results 

This chapter presents the results of the system calibration and qualification 

tests. Results of the calibration procedures are included in section 6.1. Sections 

6.2 and 6.3 respectively present results of the seam and feature detection 

programs and the bundle adjustment implementation. The integrated seam 

tracking results are given in section 6.4. 

6.1 Calibration Results 

6.1.1 Focal Length 

The first step in the calibration process was determination of the focal length of 

the lens, which was kept constant throughout the tests. The method followed was 

described in section 5.3.1 on page 60. Appendix B contains the images taken in 

this process in figure B.1 (page 134), and the robot feedback distances and the 

calculated major diameter values of the corresponding images in table B.1 
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(page 132). Figure 6.1 shows a plot of the feedback distance versus the reciprocal 

of the major radius, as well as a line fitted through the data. The equation of the 

line is: 

= 1.098 · 10
−5

 z − 0.008363 (6.1) 

It was fitted by applying the method of least 

squares as described in section 4.5 on page 42 on the overdetermined linear 

system: 

 

The actual diameter of the scene circle was measured using a Vernier calliper to 

be 9.14 mm, and the height of its centre was measured by probing it using the 

robot and was found to be 761.66mm. From this, the focal length was calculated 

to be 69.9 mm by taking the pixel dimension to be 285 pixel/mm. The offset of 

the focal point from the camera’s coordinate frame was calculated to be −87.36 

mm. 

6.1.2 External Parameters Calibration 

This section contains the results of calibration of the remaining camera param-

eters through nonlinear least squares minimization of ray intersection errors as 

described in section 5.3.2 on page 66. Figure 6.2 shows the images used in the 

process, and table 6.1 shows the positions from which they were taken. As it 
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Figure 6.1: Focal Length Determination Test Results 

can be seen in the images, the scene consisted of a set of ten points printed at 

random positions on a sheet of paper. 

The ray intersection error is plotted against iterations in figure 6.3. The calibrated 

parameter values appear in table 6.2, and their time trends are plotted 

~~n 
in figure 6.4 after being normalized such that i=0 x2

i = n with xi denoting 

the parameter value at iteration i. 
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(a) 1 (b) 2 

(c) 3 (d) 4 

 

( e )  5  

Figure 6.2: Images Used for Nonlinear Least Squares Calibration 
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1: Robot Positions For NLS Calibration Table 6. Images 

image X [mm] Y [mm] Z [mm] A [deg] B [deg] C [deg] 

1 1179.53100 -79.757970 1473.60100 146.46720 -81.53249 -120.61680 

2 1185.83100 -79.758100 1473.60400 146.46210 -81.53271 -120.61230 

3 1173.89300 -68.818590 1473.61000 144.94890 -81.53227 -120.61390 

4 1179.44100 -143.53410 1487.20000 176.48370 -82.55122 -147.02840 

5 1235.52400 -198.42430 1493.45800 -173.7025 -83.82195 -142.24280 

 

Figure 6.3: Nonlinear Least Squares using SVD: Calibration Results 
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Figure 6.4: Nonlinear Least Squares using SVD Calibration: Normalized Pa-

rameter Values 

Table 6.2: Nonlinear Least Squares using SVD: Parameter Values 
 

Parameter Initial Value Convergence Value 

  
 

f [mm] 

X[mm] 

Y[mm] 

Z[mm] 

A[rad]  

B[rad]  

C[rad] 

px0[pixel] 

py0[pixel]  

69.9 63.858 

0.0 0.579 

0.0 0.595 

-87.36 -87.943 

0.0 0.00782 

0.0 0.00748 

0.0 0.00244 

517 517.00 

389 389.00 
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(a) Raw Camera Image (b) Seam Detection Result 

 

(c) Feature Detection Result 

Figure 6.5: Seam and Feature Detection 

6.2 Seam and Feature Detection 

Figure 6.5(a) shows an image of the edge of the flange on the tank. The results of 

processing it with the two seam detection programs is shown in figure 6.5(b), and 

the result of processing it with the feature detection program is shown in figure 

6.5(c). 
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(a) 1 (b) 2 (c) 3 

(d) 4 (e) 5 (f) 6 

(g) 7 

Figure 6.6: Images Used for Testing Bundle Adjustment Implementation 

6.3 Bundle Adjustment 

The bundle adjustment implementation was tested with the images shown in 

figure 6.6. The images were taken by the camera mounted on the robot from 

different poses, which are given by the robot end effector frame parameters 

shown on table 6.3. As it is clear in the images, the scene contained ten points 

printed at random positions on a sheet of white paper. The actual placement of 

the points on the page are shown on figure 6.7. 
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Table 6.3: Robot Positions For Bundle Adjustment Testing 
 

image X [mm] Y [mm] Z [mm] A [deg] B [deg] C [deg] 

1 1472.2780 13.632430 1462.86200 179.220200 0.658427 -179.9413 

2 1465.3150 4.7168490 1462.79000 179.220800 0.658153 -179.9411 

3 1479.4930 14.891750 1462.94200 179.220800 0.658246 -179.9411 

4 1474.0340 117.43210 1462.76200 179.222300 0.658014 -169.9894 

5 1405.6950 114.85150 1442.06800 -179.69110 6.796363 -169.9193 

6 1276.1050 -82.28652 1420.59100 -177.16890 20.21972 172.09360 

7 1338.9800 -209.0233 1408.34300 122.499000 -10.8165 157.97300 

 
Figure 6.7: Bundle Adjustment Test Image 

Initialization values for the camera internal and external parameters were ob-

tained from the outputs of the calibration programs. Scene geometry was initial-

ized by triangulation of the points using a randomly selected pair of images. 

Figure 6.8 shows a plot of reprojection error values during bundle adjustment. 

As shown in the figure, reprojection error was reduced by two orders of mag-

nitude in a single bundle adjustment iteration. The process converged to a 

precision of 0.001 pixel in six iterations. Figure 6.9 shows the scene geometry 

with the optimal reprojection error, together with the initialization geometry 

used. At convergence, the average reprojection error was 1.68 pixel. 

In addition to the scene geometry, bundle adjustment also produced corrections 

to the position of the camera centre and orientation of the camera at the 
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Figure 6.8: Reprojection Error during Bundle Adjustment 
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Figure 6.9: Scene Geometry: Initialization and Bundle Adjustment Result 
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Table 6.4: Bundle Adjustment Camera External Parameter Correction 

image * X [mm] Y [mm] Z [mm] A [rad] B [rad] C [rad] 
 

1 i -1479.1460 4.9529 -1543.6577 3.1458 0.0049 3.1432 

 
f -1479.1405 4.9534 -1543.6535 3.1508 0.0050 3.1344 

2 i -1472.1380 -3.9534 -1543.6127 3.1458 0.0049 3.1432 

 f -1472.1331 -3.9532 -1543.6090 3.1509 0.0049 3.1343 

3 i -1486.3619 6.1612 -1543.7089 3.1458 0.0049 3.1432 

 f -1486.3560 6.1618 -1543.7043 3.1514 0.0050 3.1333 

4 i -1476.8279 -143.1977 -1545.3324 3.1444 0.0019 3.3169 

 
f -1476.8232 -143.1928 -1545.3286 3.1523 0.0022 3.3063 

5 i -1556.0737 -144.4279 -1362.9630 3.1635 0.1090 3.3199 

 f -1556.0759 -144.4235 -1362.9641 3.1719 0.1123 3.3067 

6 i -1676.2068 -51.3402 -1004.4455 3.2108 0.3488 3.0109 

 f -1676.2764 -51.3450 -1004.4588 3.2054 0.3633 3.0237 

7 i -635.2981 1512.8747 -1149.6245 2.1573 -0.1881 2.7540 

 f -635.3178 1512.9040 -1149.6347 2.1508 -0.1824 2.7492 

* i :  ini t ia l  value ;  f :  f inal  value.  

instances when the images were taken. Table 6.4 shows the values that were 

calculated from the robot feedback using the fixed coordinate transformation 

obtained from the calibration programs, along with the values to which the 

bundle adjustment algorithm converged. 

6.4 Seam Tracking 

After calibrating the system and testing its individual software components as 

described in the previous sections, performance of the integrated system on 
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Figure 6.11 shows the output of the first stage in the seam tracking software: 

seam and feature detection using Hessian Eigenvalues. 

Detected features were then filtered such that the ones far from the seam were 

excluded as shown in figure 6.12. 

As shown in figure 6.13, a feature tracking step followed. It involved searching 

along the epipolar line of the images for features that minimize the region 

intensity difference as described in section 5.4 (page 77). 
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tracking the circular flange seam was tested. Figure 6.10 shows three raw images 

from the image steam taken in the process. 

(a) 1 (b) 2 

(c) 3 

Figure 6.10: Flange Seam Learning Images 
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(a) 1 (b) 2 

 

(c) 3 

Figure 6.11: Seam and Feature Detection 

 

Figure 6.12: Detected Features after Excluding Non-Seam Keypoints 
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Figure 6.13: Tracking Features by Searching Along Epipolar Lines 

Finally, triangulation and bundle adjustment processes followed to obtain the 

world positions of the seam feature points and, consequently, the three-dimensional 

geometry of the seam. The result is shown in figure 6.14. 

 

Figure 6.14: Reconstructed 3D Seam Feature Point 

Locations This concludes the experimental results chapter. 
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Chapter 7 

Discussion 

The main aim of this work was to develop a direct vision-based seam tracking 

system. The requirements that the system needed to meet in order to perform 

vision-based seam tracking were identified to be acquiring images of the seam 

area, detecting the seam, mapping the seam in the two-dimensional images into 

the three-dimensional seam, and generating the necessary robot paths. The 

system that has been developed and tested has met these requirements through 

preprocessing, seam and feature detection and reconstruction by bundle adjust-

ment. 

The first part of the hypothesis on which the research was based is that seams 

exhibit rapid changes in optical characteristics that can be used for detecting their 

positions in 2D images. This has been confirmed, and the seam could be detected 

by various methods. Of these, the Hessian Eigenvalue method of detecting the 

seam was adopted in the current work because initial tests proved it more robust 

than filtering with difference kernels and using Canny’s edge detector. Additional 

improvements can be saught in the future by investigating combining this 

method with more heuristics and implementing a contour following program. 

Also, a model-based approach can be followed in the final stages of 
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Figure 7.1: Generalized Architecture Underlying Reprojection Error 

Minimization 

seam learning in welding applications where design of the workpieces is known 

beforehand but their placement for welding is not accurately controlled. 

The second part of the hypothesis which involves obtaining three-dimensional 

information from two-dimensional images was also confirmed. After calibrating 

the camera, triangulation followed by bundle adjustment successfully and 

accurately determined the position of the detected image features. 

Overall, the results described in the previous chapter confirm direct vision as a 

suitable strategy for optical seam teaching and tracking. The method followed for 

calibration and reconstruction of scene points serves as an extensible framework 

that is useful in many applications in addition to robotic vision. Its underlying 

architecture, which is described in figure 7.1, offers accurate estimation of 

measured values as well as model parameters. In the current application, the 

measured values were three-dimensional scene point positions and the model 
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parameters were the camera internal and external parameters for the multiple 

images. As an inverse model in this architecture, nonlinear least squares which 

was used in the current system is effective and easily adaptable to a large variety 

of applications. 

In addition to meeting the seam reconstruction requirement, the bundle adjust-

ment process tested in the current project gave rise to highly accurate corrections 

to robot position feedback. This makes robot calibration a problem that can be 

addressed in future projects using the current system. The estimation architecture 

described above could serve as a starting point for modifying the system for 

robot calibration. Robot joint position feedback values could be added to the 

values to be estimated. Additional sensed values, such as joint motor currents to 

indicate acceleration, could also be included. Further work is needed, however, to 

incorporate dynamics to the system model and solve for its inverse. 

7.1 Future Research 

For long welds, seam teaching alone is not sufficient, and online seam tracking is 

required to cope with deformations due to the welding heat input and with robot 

tracking errors. Further work is needed to test the possibility of accelerating the 

techniques investigated here for online seam tracking. Feature tracking, which 

required several minutes of processing per image in the reported system, readily 

lends itself to acceleration with a graphical processing unit (GPU) as well as 

implementation with a more efficient data structure. Furthermore, expanding the 

models used with including system dynamics could both reduce processing time 

as well as increase accuracy, since initial values of searches and iterative 

optimization modules will be nearer to their solutions. 
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Despite the potential of using direct vision as a strategy for optical seam track-

ing, many issues need to be addressed before a system can be implemented in a 

production plant. Specular reflections and mirror finish surfaces remain a 

challenge for such vision systems. Also, optical interference from the weld torch 

needs to be overcome. A possible method for that is capturing images at 

instances with low torch light intensity during the weld cycle, as demonstrated by 

Bae, Lee and Ahn [13]. It is also possible to use optical filters according to the 

welding light frequency spectrum. For MIG welding, the spectrum charac-

terization reported by Agapiou, Kasiouras and Serafetinides [14] can be used. 

The estimation architecture described in figure 7.1 enables simultaniously using 

multiple sensors. Using a similar architecture, it is possible to investigate the use 

of multiple sensor families together for seam teaching and tracking to improve 

performance. 
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Appendix A 

Code 

A.1 Ray Intersection Jacobian and Error Vector 

Calculation 

function [dsdf dsdKc dsdx dsdy dsdz dsda dsdb dsdc dsdx0 dsdy0 s] = ... 

Derivatives(parameters, c1Tc2, pim1, pim2) 

%This procedure accepts the image point values for a set of two images and 

%a set of initial parameters for the camera and robot callibration and 

%returns a vector whose components are the derivative of the distance 

%between the planes containing the image rays with respect to the 

%derivative parameters. 

f = parameters(1); 

Kc = parameters(2); 

X = parameters(3); Y = parameters(4); Z = parameters(5); 

A = parameters(6); B = parameters(7); C = parameters(8); 

px0 = parameters(9); py0 = parameters(10); 
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xi1 = pim1(1); yi1 = pim1(2); 

xi2 = pim2(1); yi2 = pim2(2); 

%variables for sines and cosines 

ca = cos(A); sa = sin(A); 

cb = cos(B); sb = sin(B); 

cc = cos(C); sc = sin(C); 

%Inverse of an orthonormal matrix is the transpose(RPY transformation) 
 

T = [ cb*ca 

sc*sb*ca-cc*sa 

cc*sb*ca+sc*sa 

 cb*sa 

sc*sb*sa+cc*ca 

cc*sb*sa-sc*ca 

-sb 

sc*cb 

cc*cb 

 0;... 

0;... 

0;... 

 0  0 0  1]... 

 *[1 0 0 -X; 0 1 0 -Y; 0 0 1 -Z; 0 0 0 1];  

%Derivatives of the position correction matrix 

  

dTda = [ -cb*sa 

-sc*sb*sa-cc*ca 

 cb*ca 

sc*sb*ca-cc*sa 

0 

0 

 0;... 

0;... 

 -cc*sb*sa+sc*ca  cc*sb*ca+sc*sa 0  0;... 

 0  0 0  0]... 

 *[1 0 0 -X; 0 1 0 -Y; 0 0 1 -Z; 0 0 0 1];  

dTdb = [ -sb*ca 

 

-sb*sa -cb 

 

0;... 

 sc*cb*ca  sc*cb*sa -sc*sb  0;... 

 cc*cb*ca  cc*cb*sa -cc*sb  0;... 

 0  0 0  0]... 

 *[1 0 0 -X; 0 1 0 -Y; 0 0 1 -Z; 0 0 0 1];  
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dTdc = [ 0 

cc*sb*ca+sc*sa 

-sc*sb*ca+cc*sa 

0 

cc*sb*sa-sc*ca 

-sc*sb*sa-cc*ca 

 

0 

cc*cb 

-sc*cb 

 

0;... 

0;... 

0;... 

  0    0   0   0]... 

  *[1 0 0 -X; 0 1 0 -Y; 0 0 1 -Z; 0 0 0 1]; 

dTdx = [ 0 

   

0 

   

0 

 

-cb*ca ;... 

  0    0    0  -sc*sb*ca+cc*sa ;... 

  0    0    0  -cc*sb*ca-sc*sa ;... 

  0    0    0  0 ]; 

dTdy = [ 0 

   

0 

   

0 

 

-cb*sa ;... 

  0    0    0  -sc*sb*sa-cc*ca ;... 

  0    0    0  -cc*sb*sa+sc*ca ;... 

  0    0    0  0 ]; 

dTdz = [ 0 

   

0 

   

0 

 

sb ;... 

  0    0    0  -sc*cb ;... 

  0    0    0  -cc*cb ;... 

  0    0    0  0 ]; 
 

T1_2 = T*c1Tc2*inv(T); 

d1T2da = dTda*c1Tc2*inv(T)-T*c1Tc2*inv(T)*dTda*inv(T); 

d1T2db = dTdb*c1Tc2*inv(T)-T*c1Tc2*inv(T)*dTdb*inv(T); 

d1T2dc = dTdc*c1Tc2*inv(T)-T*c1Tc2*inv(T)*dTdc*inv(T); 
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d1T2dx = dTdx*c1Tc2*inv(T)-T*c1Tc2*inv(T)*dTdx*inv(T); 

d1T2dy = dTdy*c1Tc2*inv(T)-T*c1Tc2*inv(T)*dTdy*inv(T); 

d1T2dz = dTdz*c1Tc2*inv(T)-T*c1Tc2*inv(T)*dTdz*inv(T); 

%the vectors connecting the focal points to the scene image points 

r1 = [0 0 f 1]’ - [1/Kc*(xi1-px0) 1/Kc*(yi1-py0) 0 1]’; 

r2 = T1_2 * ([0 0 f 1]’ - [1/Kc*(xi2-px0) 1/Kc*(yi2-py0) 0 1]’); 

r1(4) = []; r2(4) = []; 

%Cross product requires vectors with 3 components 

%derivatives of the ray line vectors with respect to the applicable 

%parameters 

dr1df = [0 0 1 0]’; 

dr1dx0 = [1/Kc 0 0 0]’; 

dr1dy0 = [0 1/Kc 0 0]’; 

dr1dKc = (1/Kc)"2*[xi1-px0 yi1-py0 0 0]’; 

dr2df = T1_2*[0 0 1 0]’; 

dr2dx0 = T1_2*[1/Kc 0 0 0]’; 

dr2dy0 = T1_2*[0 1/Kc 0 0]’; 

dr2dKc = T1_2*((1/Kc)"2*[xi2-px0 yi2-py0 0 0]’); 

dr2da = d1T2da * ([0 0 f 1]’ - [1/Kc*(xi2-px0) 1/Kc*(yi2-py0) 0 1]’); 

dr2db = d1T2db * ([0 0 f 1]’ - [1/Kc*(xi2-px0) 1/Kc*(yi2-py0) 0 1]’); 

dr2dc = d1T2dc * ([0 0 f 1]’ - [1/Kc*(xi2-px0) 1/Kc*(yi2-py0) 0 1]’); 
 

%Derivatives of r1 r2 

dr1cr2df = cross(dr1df(1:3),r2(1:3))+cross(r1(1:3),dr2df(1:3)); 

dr1cr2dKc = cross(dr1dKc(1:3),r2(1:3))+cross(r1(1:3),dr2dKc(1:3)); 

dr1cr2da = cross(r1(1:3),dr2da(1:3)); 
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dr1cr2db = cross(r1(1:3),dr2db(1:3)); 

dr1cr2dc = cross(r1(1:3),dr2dc(1:3)); 

dr1cr2dx0 = cross(dr1dx0(1:3),r2)+cross(r1(1:3),dr2dx0(1:3)); 

dr1cr2dy0 = cross(dr1dy0(1:3),r2)+cross(r1(1:3),dr2dy0(1:3)); 

%Derivatives of ||r1 r2|| 

dLr1cr2df = dot(cross(r1,r2),dr1cr2df)/norm(cross(r1,r2)); 

dLr1cr2dKc = dot(cross(r1,r2),dr1cr2dKc)/norm(cross(r1,r2)); 

dLr1cr2da = dot(cross(r1,r2),dr1cr2da)/norm(cross(r1,r2)); 

dLr1cr2db = dot(cross(r1,r2),dr1cr2db)/norm(cross(r1,r2)); 

dLr1cr2dc = dot(cross(r1,r2),dr1cr2dc)/norm(cross(r1,r2)); 

dLr1cr2dx0 = dot(cross(r1,r2),dr1cr2dx0)/norm(cross(r1,r2)); 

dLr1cr2dy0 = dot(cross(r1,r2),dr1cr2dy0)/norm(cross(r1,r2)); 

%the vector normal to both the ray vectors and its derivative 

nh = cross(r1,r2); nh = nh/norm(nh); 

dnhdf = (dr1cr2df*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2df)... 

/(norm(cross(r1,r2)))"2; 

dnhdKc = (dr1cr2dKc*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2dKc)... 

/(norm(cross(r1,r2)))"2; 

dnhda = (dr1cr2da*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2da)... 

/(norm(cross(r1,r2)))"2; 

dnhdb = (dr1cr2db*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2db)... 

/(norm(cross(r1,r2)))"2; 

dnhdc = (dr1cr2dc*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2dc)... 

/(norm(cross(r1,r2)))"2; 

dnhdx0 = (dr1cr2dx0*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2dx0)... 

/(norm(cross(r1,r2)))"2; 

dnhdy0 = (dr1cr2dy0*norm(cross(r1,r2))-cross(r1,r2)*dLr1cr2dy0)... 
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/(norm(cross(r1,r2)))^2; 

%The vector connecting the two rays which is perpendicular to both 

s = nh*dot( [nh; 0] , ( [0 0 f  1 ] ’ -T1-2*[0 0 f  1 ] ’ ) ) ;  

Ls =  abs(dot ( [nh; 0] , ( [0 0 f  1 ] ’ -T1-2*[0 0 f  1 ] ’ ) ) ) ;  

dsdf = dnhdf*(dot([nh; 0] , ( [0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) )+nh*...  

(dot( [dnhdf; 0] , [0 0 f  1] ’ -T1-2*[0 0 f  1] ’ )+dot( [nh; 0] , . . .  

[0 0 1 0] ’-T1-2*[0 0 1 0] ’ ) ) ;  

dsdKc = dnhdKc*(dot([nh; 0],([0 0 f 1]’-T1-2*[0 0 f 1]’)))+nh*... 

(dot([dnhdKc; 0],[0 0 f 1]’-T1-2*[0 0 f 1]’)); 

dsda = dnhda*(dot([nh; 0],( [0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) )+nh*...  

(dot([dnhda; 0],[0 0 f 1] ’ -T1-2*[0 0 f 1] ’ )-dot([nh; 0],. ..  

d1T2da*[0 0 f 1] ’ ) ) ;  

dsdb = dnhdb*(dot([nh; 0],( [0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) )+nh*...  

(dot([dnhdb; 0],[0 0 f 1] ’ -T1-2*[0 0 f 1] ’)-dot([nh; 0],... 

d1T2db*[0 0 f 1] ’) ) ;  

dsdc = dnhdc*(dot([nh; 0], ( [0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) )+nh*...  

(dot([dnhdc; 0],[0 0 f 1] ’ -T1-2*[0 0 f 1] ’ )-dot([nh; 0],...  

d1T2dc*[0 0 f 1] ’ ) ) ;  

d s d x  =  n h * ( - d o t ( [ n h ;  0 ] , d 1 T 2 d x * [ 0  0  f  1 ] ’ ) ) ;  d s d y  =  

n h * ( - d o t ( [ n h ;  0 ] , d 1 T 2 d y * [ 0  0  f  1 ] ’ ) ) ;  d s d z  =  n h * ( -

d o t ( [ n h ;  0 ] , d 1 T 2 d z * [ 0  0  f  1 ] ’ ) ) ;  d s d x 0  =  

d n h d x 0 * ( d o t ( [ n h ;  0 ] , ( [ 0  0  f  1 ] ’ - T 1 - 2 * [ 0  0  f  1 ] ’ ) ) ) + . . .  

nh*(dot([dnhdx0; 0] ,[0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) ;  

dsdy0 = dnhdy0*(dot([nh; 0] ,( [0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) )+.. .  

nh*(dot( [dnhdy0; 0] , [0 0 f 1] ’ -T1-2*[0 0 f 1] ’ ) ) ;  

dLsdf = dot(s,dsdf)/norm(s); 
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dLsdKc = dot(s,dsdKc)/norm(s); 

dLsda = dot(s,dsda)/norm(s); 

dLsdb = dot(s,dsdb)/norm(s); 

dLsdc = dot(s,dsdc)/norm(s); 

dLsdx = dot(s,dsdx)/norm(s); 

dLsdy = dot(s,dsdy)/norm(s); 

dLsdz = dot(s,dsdz)/norm(s); 

dLsdx0 = dot(s,dsdx0)/norm(s); 

dLsdy0 = dot(s,dsdy0)/norm(s); 

A.1.1 Ray Intersection Error: Single Iteration 

% File: RayErrorAdjustmentIteration.m 

% Performs one gradient descent iteration 

% Takes the Jacobian matrix and error vector and generates 

% the corresponding adjustment vector (xh) 

A = []; 

S = []; 

camTgripper = eye(4); 

for pt = 1:size(correspondence,1) % for each point 

for im1 = 1:(size(correspondence,2)-1) % for each image 

for im2 = im1+1:size(correspondence,2) % for each other image 

[dLsdf dLsdKc dLsdx dLsdy dLsdz dLsda... 

dLsdb dLsdc dLsdx0 dLsdy0 Ls]... 

= Derivatives(InitialValues, camTgripper... 
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*camTworld(positions(im1,2:end))... 

*inv(camTworld(positions(im2,2:end)))... 

*inv(camTgripper)... 

, reshape(correspondence(pt,im1,[2 3]),1,2)... 

, reshape(correspondence(pt,im2,[2 3]),1,2)); 

A = [A; dLsdf... dLsdKc 

dLsdx dLsdy dLsdz dLsda dLsdb dLsdc dLsdx0 dLsdy0]; 

S = [S; Ls]; 

end 

sse = sum(S.^2) 

[u s v] = svd(A); 

sd = diag(s); 

sd(sd < 1e-4*sd(1)*ones(size(sd))) = []; 

xh = v(:,1:length(sd))*diag(1./sd)*u(:,1:length(sd))’*S; 

A.1.2 Ray Intersection Error Adjustment Main Loop 

% Initialize arrays 

SSE = []; 

IV = []; 

% Initial values 

f = 69.9; Kc = 285; 

X = 0; Y = 0; Z = -87.36; 

A = 0; B = 0; C = 0; 

end 

end 
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px0 = 517; py0 = 389; 

InitialValues = [f Kc X Y Z A B C px0 py0]’ 

positions = csvread(’C:\MEng\Calibration\Nov22Dots\positions.txt’); 

points = csvread(’C:\MEng\Calibration\Nov22Dots\points.csv’); 

correspondence = zeros(max(points(:,2)),max(points(:,1)),3); 

for i = 1:size(points,1) 

% show that there’s a point there 

correspondence(points(i,2),points(i,1),1) = 1; 

correspondence(points(i,2),points(i,1), [2 3]) = points(i, 

[3 4]); end 

% Gradient descent 

RayErrorAdjustmentIteration; 

sseOld = inf; 

while(sseOld - sse > 1e-4) 

SSE = [SSE; sse]; 

IV = [IV; InitialValues’]; 

InitialValues = InitialValues - [xh(1); 0; xh(2:end)]; 

sseOld = sse; 

RayErrorAdjustmentIteration; 

end 

BestCandidate = IV(end,:)’ 
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A.2 Camera Transformation 

function camTworld = camTworld(coordinates) 

%accepts a coordinates matrix [X Y Z A B C] in [mm, deg] and returns 

a %homogeneous transformation matrix that converts vectors from world 

%coordinate frame to camera coordinate frame 

X = coordinates(1); Y = coordinates(2); Z = coordinates(3); 

A = deg2rad(coordinates(4)); 

B = deg2rad(coordinates(5)); 

C = deg2rad(coordinates(6)); 

%variables for sines and cosines 

ca = cos(A); sa = sin(A); 

cb = cos(B); sb = sin(B); 

cc = cos(C); sc = sin(C); 

%Inverse of an orthonormal matrix is the transpose(RPY transformation) 

camTworld = [cb*ca cb*sa -sb 0; sc*sb*ca-cc*sa sc*sb*sa+cc*ca sc*cb 0; 

cc*sb*ca+sc*sa cc*sb*sa-sc*ca cc*cb 0; 0 0 0 1]... 

*[1 0 0 -X; 0 1 0 -Y; 0 0 1 -Z; 0 0 0 1]; 

A.3 EthernetKRL Client Program 

. 

. 

. 
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typedef struct dw_OperationData 

{ 

/* Determines the control code. */ 

long sl_CntrlCode; 

/* operation code for the operation. */ 

long sl_OpCode; 

/* Number of repetetions of the operation */ 

long sl_Repetetion; 

/* Operation specific data/ parameter */ 

float sf_Length; 

/* Operation specific position/ parameters */ 

float af_Position[6]; 

/* Description of operation */ 

char ac_Desc[81]; 

/* Refreshed data flag */ 

BOOL sb_IsNewData; 

}SW_OPDATA; 

. 

. 

. 

void CEthKrlServDlg::mfv_UpdateOpGui() 
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{ 

WaitForSingleObject(xxhx_OpDataMutex,INFINITE); 

if(xxsw_RcvdOpData.sb_IsNewData) 

{ 

. 

. 

. 

memcpy(&sw_LocalOpData, &xxsw_RcvdOpData, sizeof(SW_OPDATA)); 

. 

. 

. 

} 

} 

A.4 Seam and Feature Detection 

M = im2double(M); 

if(ndims(M) == 3) 

M = (M(:,:,1) + M(:,:,2) + M(:,:,3))/3; 

end 

ssq = 1; 

GaussianDieOff = 0.005; 

pw = 1:30; %possible widths 

width = find(exp(-(pw.*pw)/(2*ssq))>GaussianDieOff,1,’last’); 

t = (-width:width); 

gau = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % the gaussian 1D filter 

[x,y]=meshgrid(-width:width,-width:width); dgau2D=-x.*exp(-

(x.*x+y.*y)/(2*ssq))/(pi*ssq); 
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gau2D=exp(-(x.*x+y.*y)/(2*ssq))/(pi*ssq); 

gau2D=gau2D/sum(gau2D(:)); 

%aSmooth = M; 

aSmooth=imfilter(M,gau,’conv’,’replicate’);% run the filter accross rows 

aSmooth=imfilter(M,gau’,’conv’,’replicate’); % run the filter accross rows 

ax = imfilter(aSmooth, dgau2D, ’conv’,’replicate’); 

ay = imfilter(aSmooth, dgau2D’, ’conv’,’replicate’); 

mag = sqrt((ax.*ax) + (ay.*ay)); 

magmax = max(mag(:)); 

mag = mag/magmax; 

% Finding the features 

a x x  =  a x . * a x ;  a y y  =  a y . * a y ;  a x y  

=  a x . * a y ;  i m A  =  r e s h a p e ( [ a x x ,  

a y y ,  a x y ] , [ s i z e ( a x x , 1 )  

s i z e ( a x x , 2 )  3 ] ) ;  

[x2 y2] = meshgrid(-2*width:2*width,-2*width:2*width); 

gau2D = exp(-(x2.*x2 + y2.*y2)/(8*ssq))/(4*pi*ssq); 

imAf = imfilter(imA,gau2D,’conv’,’replicate’); 

% Smaller eigenvalue 

Lmin = 1/2*((imAf(:,:,1)+imAf(:,:,2))-((imAf(:,:,1)+imAf(:,:,2))."2 ... 

-4*(imAf(:,:,1).*imAf(:,:,2)-imAf(:,:,3)."2))."0.5); 

Lmax = 1/2*((imAf(:,:,1)+imAf(:,:,2))+((imAf(:,:,1)+imAf(:,:,2))."2 ... 

-4*(imAf(:,:,1).*imAf(:,:,2)-imAf(:,:,3)."2))."0.5); 

detAf = imAf(:,:,1).*imAf(:,:,2) - imAf(:,:,3)."2; 

trAf = imAf(:,:,1)+imAf(:,:,2); 

%q = detAf - 0.06*trAf."2; 
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q = Lmin; 

figure, subplot(2,2,1), imshow(M), title(’Original Image’) 

subplot(2,2,2), imshow(q/max(q(:))), title(’Trackable Features’) 

subplot(2,2,3), imshow(Lmax/max(Lmax(:))), title(’Highest Eigenvalue’) 

Moverlay = reshape([q/max(q(:)) zeros(size(q)) 0.25*M],size(q,1),[],3); 

subplot(2,2,4), imshow(Moverlay), title(’Overlay’) 

% finding local maxima 

[xi yi] = meshgrid(1:size(q,2),1:size(q,1)); % grid values of the image 

iLM = []; % indeces of the local maxima 

Features = []; % Features 

rN = 10; % radius of the neighbourhood 

figure 

LM = zeros(size(M)); 

ImageCentre = find(xi == floor(size(xi,2)/2) & yi == floor(size(yi,1)/2)); 

NormalNeighbourhoodSize = sum(sum(((xi(:)-... 

xi(ImageCentre)*ones(length(xi(:)),1))."2+(yi(:)... 

-yi(ImageCentre)*ones(length(yi(:)),1))."2)."0.5... 

< rN*ones(length(xi(:)),1))) 

for i = 1:200 

[qs I] = sort(q(:),’descend’); 

mN = ((xi(:)-xi(I(1))*ones(length(xi(:)),1))."2+(yi(:)... 

-yi(I(1))*ones(length(yi(:)),1))."2)."0.5... 

< rN*ones(length(xi(:)),1); % Neighbourhood membership function 

% remove the other neighbourhood corners 

q(mN) = 0; 

% exclude features that are too close to the boundaries 

if sum(mN(:)) < NormalNeighbourhoodSize 

continue; 
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end 

Features = [Features M(mN)]; 

LM(I(1)) = 1; 

iLM = [iLM; I(1)]; 

end 

Moverlay = reshape([M/6+LM M/6 M/6],size(M,1),[],3); 

imshow(Moverlay) 

A.5 Bundle Adjustment 

A.5.1 Reprojection Errors and Jacobian 

function [dedx dedy dedz dedX dedY dedZ ... 

deda dedb dedc dedf dedKc dedpx0 dedpy0 e] = ... 

BundleDerivatives(parameters, pim, Psc) 

%This procedure accepts the image point values for an image and a set of 

%initial parameters for the camera and robot callibration and scene point 

%and returns a vector whose components are the derivatives of the error 

%between the actual and reprojected image points 

% Camera external and internal parameters 

f = parameters(1); 

Kc = parameters(2); 

X = parameters(3); Y = parameters(4); Z = parameters(5); 

A = parameters(6); B = parameters(7); C = parameters(8); 

px0 = parameters(9); py0 = parameters(10); 
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%variables for sines and cosines 

ca = cos(A); sa = sin(A); 

cb = cos(B); sb = sin(B); 

cc = cos(C); sc = sin(C); 

%scene points (if not already homogenious, homogenize) 

P = Psc; 

if(size(P,1)~=4) 

P = [P; ones(1,size(P,2))]; 

end 

%Inverse of an orthonormal matrix is the transpose(RPY transformation) 

R = [ cb*ca cb*sa -sb ;... 

sc*sb*ca-cc*sa sc*sb*sa+cc*ca sc*cb ;... 

cc*sb*ca+sc*sa cc*sb*sa-sc*ca cc*cb ]; 

%Derivatives of the position correction matrix 

dRda = [ -cb*sa cb*ca 0 ;... 

-sc*sb*sa-cc*ca sc*sb*ca-cc*sa 0 ;... 

-cc*sb*sa+sc*ca cc*sb*ca+sc*sa 0 ]; 

dRdb = [ -sb*ca -sb*sa -cb ;... 

sc*cb*ca sc*cb*sa -sc*sb ;... 

cc*cb*ca cc*cb*sa -cc*sb ]; 

dRdc = [ 0 0 0 ;... 

cc*sb*ca+sc*sa cc*sb*sa-sc*ca cc*cb ;... 
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-sc*sb*ca+cc*sa -sc*sb*sa-cc*ca -sc*cb ]; 

% translation vector 

t = [-X; -Y; -Z]; 
 

dtdX = [-1; 0; 0]; 

dtdY = [0; -1; 0]; 

dtdZ = [0; 0; -1]; 
 

% scene point 
 

dPdx = [1; 0; 0; 0]*ones(1,size(P,2)); 

dPdy = [0; 1; 0; 0]*ones(1,size(P,2)); 

dPdz = [0; 0; 1; 0]*ones(1,size(P,2)); 
 

% camera matrix 

K = [-Kc*f 0 px0; 0 -Kc*f py0; 0 0 1]; 

dKdKc = [-f 0 0; 0 -f 0; 0 0 0]; 

dKdf = [-Kc 0 0; 0 -Kc 0; 0 0 0]; 
 

dKdpx0 = [0 0 1; 0 0 0; 0 0 0]; 

dKdpy0 = [0 0 0; 0 0 1; 0 0 0]; 
 

% reprojected projective point 

xp = K*[R t]*P; 

dxpda = K*[dRda [0;0;0]]*P; 

dxpdb = K*[dRdb [0;0;0]]*P; 

dxpdc = K*[dRdc [0;0;0]]*P; 

dxpdX = K*[zeros(3,3) dtdX]*P; 

dxpdY = K*[zeros(3,3) dtdY]*P; 

dxpdZ = K*[zeros(3,3) dtdZ]*P; 

dxpdx = K*[R t]*dPdx; 

dxpdy = K*[R t]*dPdy; 
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dxpdz = K*[R t]*dPdz; 

dxpdKc = dKdKc*[R t]*P; 

dxpdf = dKdf*[R t]*P; 

dxpdpx0 = dKdpx0*[R t]*P; 

dxpdpy0 = dKdpy0*[R t]*P; 

% reprojection error 

e = pim - xp(1:2,:)./([1;1]*xp(3,:)); 

deda = -(dxpda(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpda(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedb = -(dxpdb(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdb(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedc = -(dxpdc(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdc(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedX = -(dxpdX(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdX(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedY = -(dxpdY(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdY(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedZ = -(dxpdZ(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdZ(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedx = -(dxpdx(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdx(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedy = -(dxpdy(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdy(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedz = -(dxpdz(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdz(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedKc = -(dxpdKc(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdKc(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedf = -(dxpdf(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdf(3,:)))... 

./([1;1]*xp(3,:)."2); 
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dedpx0 = ... 

-(dxpdpx0(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdpx0(3,:)))... 

./([1;1]*xp(3,:)."2); 

dedpy0 = ... 

-(dxpdpy0(1:2,:).*([1;1]*xp(3,:))-xp(1:2,:).*([1;1]*dxpdpy0(3,:)))... 

./([1;1]*xp(3,:)."2); 

A.5.2 Bundle Adjustment Iteration 

% Bundle Adjustment 

% T is the camera correction matrix 

% p is the position of points (3xN) 

% positions is the positions of the robot end effector for the images 

% correspondence is an array of the point correspondences 

% (nPoints x nImages x 3), the first nPxnI array is a weight array 

% the second is the x-components and the 

% third is the y-components of the image points 

% f, Kc, px0 and py0 are the parameters of the camera matrix 

% 

% One way to achieve these requirements is to run RayErrorAdjustment 

% followed by MultiImagePoints 

%p = reshape(p3D(1:3,:),3,[]); 

errors = []; 

dedP = []; % derivatives in terms of scene point 

dedT = []; % derivatives in terms of camera position and pose 

dedK = []; % derivatives in terms of camera internal parameters 
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for imageIndex = 1:size(correspondence,2) 

parameters = [CameraInt(1:2); CameraExt(:,imageIndex); CameraInt(3:4)]; 

imgPoints = reshape(correspondence(:,imageIndex,[2 3]),[],2)’; 

[dedx dedy dedz dedX dedY dedZ deda dedb... 

dedc dedf dedKc dedpx0 dedpy0 e]... 

= BundleDerivatives(parameters, imgPoints, p); 

errors = [errors; e]; 

dedP = [dedP; dedx; dedy; dedz]; 

dedT = [dedT; dedX; dedY; dedZ; deda; dedb; dedc]; 

dedK = [dedK; dedf; dedKc; dedpx0; dedpy0]; 

end 

% re-organization 

e = reshape([reshape(errors(1:2:end,:)’,[],1)’;... 

reshape(errors(2:2:end,:)’,[],1)’],[],1); % errors into one column 

JdedK = [reshape([reshape(dedK(1:8:end,:)’,[],1)’;... 

... % Jacobian of internal parameters 

reshape(dedK(2:8:end,:)’,[],1)’],[],1),... 

reshape([reshape(dedK(3:8:end,:)’,[],1)’;... 

reshape(dedK(4:8:end,:)’,[],1)’],[],1),... 

reshape([reshape(dedK(5:8:end,:)’,[],1)’;... 

reshape(dedK(6:8:end,:)’,[],1)’],[],1),... 

reshape([reshape(dedK(7:8:end,:)’,[],1)’;... 

reshape(dedK(8:8:end,:)’,[],1)’],[],1)]; 

% Jacobian of scene points 

JdedP = zeros(size(e,1),3*size(correspondence,1)); 

% Jacobian of external parameters 

JdedT = zeros(size(e,1),6*size(correspondence,2)); 

132 



Appendix A Code 

% populating the external parameters and scene points Jacobians 

for i = 1:size(correspondence,2) % for each image 

blockStart = 2*size(correspondence,1)*(i-1); 

for pIndex = 1:size(correspondence,1) % for each point 

JdedP(blockStart+2*(pIndex-1)+1:blockStart+2*pIndex,... 

3*(pIndex-1)+1:3*pIndex) = ... 

reshape(dedP(6*(i-1)+1:6*i,pIndex),2,3); 

end 

dedT2row = reshape(dedT(12*(i-1)+1:12*i,:),2,[]); 

JdedT(2*size(correspondence,1)*(i-1)+1:2*size(correspondence,1)*i... 

, 6*(i-1)+1:6*i)... 

= reshape([dedT2row(:,1:6:end) dedT2row(:,2:6:end)... 

dedT2row(:,3:6:end) dedT2row(:,4:6:end) dedT2row(:,5:6:end)... 

dedT2row(:,6:6:end)],[],6); 

end 

sse = sum(e.^2); 

Jacobian = [JdedT JdedP JdedK]; 

[u s v] = svd(Jacobian); 

sd = diag(s); 

sd(sd < 1e-4*sd(1)*ones(size(sd))) = []; 

xh = v(:,1:length(sd))*diag(1./sd)*u(:,1:length(sd))’*e; 

A.6 FeatureMatching 

% takes feature points and performs tracking (by finding indices of 
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% matching features) 

% features must have been found and stored with indices in iLM 

% prepare the grid 

[x y] = meshgrid(1:size(M,2),1:size(M,1)); 

matches = []; 

% loop over the found features 

for feature = 1:15 

%form the feature area 

featureIndex = iLM(feature); 

parentGrid = [x(featureIndex)-3:1:x(featureIndex)+3; ... 

y(featureIndex)-3:1:y(featureIndex)+3]; 

area = ParentImage(parentGrid(2,:),parentGrid(2,:)); 

%center and normalize the feature area 

area = (area-mean(area(:)))/std(area(:)); 

%scanning start 

featureGrid = parentGrid + [-15; -74]*ones(1,size(parentGrid,2)); 

matchError = inf; 

%scan for the new area 

for xOffset = -3:3 

for yOffset = -7:7 

%for theta = deg2rad(-0.1:0.025:0.1) 

theta = 0; 

currentScanGrid = [cos(theta) sin(theta) xOffset; ... 

-sin(theta) cos(theta) yOffset; 0 0 1] ... 

*[featureGrid; ones(1,size(featureGrid,2))]; 
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[xCurrent yCurrent] ... 

= meshgrid(currentScanGrid(1,:),currentScanGrid(2,:)); 

currentArea ... 

= TrackedImage(currentScanGrid(2,:), currentScanGrid(1,:)); 

currentArea ... 

= (currentArea-mean(currentArea(:)))/std(currentArea(:)); 

currentError = sum((currentArea(:)-area(:)).^2); 

if(currentError < matchError) 

matchError = currentError; 

matchIndex = currentScanGrid(:,4); 

matchAngle = theta; 

end 

%figure, mesh(1:size(currentArea,2),1:size(currentArea,1),cur 

%title(’current area’) 

%figure, mesh(1:size(area,2),1:size(area,1),area); 

%title(’area’) 

end 

matches = [matches [matchIndex([1 2]);theta;matchError]]; 
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Focal Length Calibration Data 

Table B.1: Distance and Reciprocal of Imaged Dimension 
 

Distance [mm] Major Radius [pixels] Reciprocal of Major Radius [1/pixels] 

1482.418 126.2992719 0.007917702015 

1482.05 126.4498742 0.007908272001 

1481.539 126.5517664 0.007901904715 

1481.2 126.6107923 0.007898220856 

1480.826 126.6514275 0.007895686765 

1480.381 126.7207016 0.007891370453 

1479.915 126.8366236 0.007884158151 

1479.553 126.8604399 0.007882678008 

1479.217 126.941765 0.00787762798 

1478.828 127.0073603 0.007873559436 

1478.474 127.0263459 0.007872382637 

1478.062 127.136799 0.007865543319 

1477.55 127.2445967 0.007858879871 

1477.045 127.3228153 0.007854051905 

1476.514 127.4122318 0.007848540016 

1475.926 127.5456728 0.007840328705  
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Table B.1: Continued 
 

Distance [mm] Major Radius [pixels] Reciprocal of Major Radius [1/pixels] 

1475.327 127.5967633 0.007837189396 

1474.811 127.7037796 0.007830621796 

1474.15 127.8471143 0.007821842559 

1473.602 127.9116891 0.007817893788 

1473 128.0259336 0.007810917459 

1472.472 128.1121641 0.007805660038 

1471.828 128.2173193 0.007799258364 

1471.12 128.3463743 0.007791416042 

1470.351 128.4908022 0.007782658236 

1469.697 128.611724 0.00777534092 

1469.146 128.7105509 0.007769370834 

1468.536 128.8412839 0.007761487386 

1467.713 128.956854 0.007754531603 

1466.917 129.1295454 0.00774416108 

1466.378 129.2405647 0.007737508749 

1465.42 129.4350335 0.007725883582 

1464.583 129.6090338 0.00771551157 

1463.931 129.732432 0.007708172774  
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Figure B.1: Focal Length Determination Images 
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