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ABSTRACT 

Tungsten Inert Gas (TIG) welding is extensively used in aerospace applications, due to 

its unique ability to produce higher quality welds compared to other shielded arc 

welding types. However, most TIG welding is performed manually and has not 

achieved the levels of automation that other welding techniques have. This is mostly 

attributed to the lack of process knowledge and adaptability to complexities, such as 

mismatches due to part fit-up. Recent advances in automation have enabled the use of 

industrial robots for complex tasks that require intelligent decision making, 

predominantly through sensors.  Applications such as TIG welding of aerospace 

components require tight tolerances and need intelligent decision making capability to 

accommodate any unexpected variation and to carry out welding of complex 

geometries. Such decision making procedures must be based on the feedback about the 

weld profile geometry.  

In this thesis, a real-time position based closed loop system was developed with a six 

axis industrial robot (KUKA KR 16) and a laser triangulation based sensor (Micro-

Epsilon Scan control 2900-25). A National Instruments data acquisition system (NI 

DAQ) was used to carry out input output control. A Fronius Magicwave welding 

system was used with a push-pull wire feed system to perform welding. Project 

planning, selection of equipment, purchasing, designing, system integration and setting 

up of the complete robotic TIG welding cell is included under the work carried out for 

the PhD. In this research, a novel algorithm was developed for finding joint profiles and 

path tracking a three dimensional (3D) weld joint. Algorithms were also developed to 

extract joint features in real-time. Empirical models were developed to predict 

important weld quality characteristics and to estimate weld machine settings based on 

the weld joint geometry. The developed robotic TIG welding system, along with the 

intelligent algorithms, was able to carry out welding of a variable gap weld joint with 

satisfactory results; closely related to skilled manual welders in visual appearance, weld 

bead dimensions and mechanical strength.  

Although this work is presented in the context of TIG welding, the concept is applicable 

to any arc welding process and other applications such as robotic sealant application 
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and spray painting. The work presented in this thesis might interest researchers and 

application engineers who are interested in automating complex manufacturing tasks.  
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1 Introduction 

 

1.1 Research background 

Most modern high-value manufacturing systems continue to depend heavily on the skill 

and flexibility of manual work. However, in many cases intelligent automation would 

be a more advantageous alternative to human work by improving operational efficiency 

and by removing the need for people to carry out tasks in unhealthy, difficult and 

dangerous working conditions [1]. Welding is one of the most dynamic and 

complicated manufacturing processes and, therefore, hard to automate. Automation of 

welding in industrial based applications is even more challenging because engineers are 

looking at a particular welding process, material, sizes, thickness and weld geometry.  

These added constraints can make automation more difficult. 

TIG welding is considered to be very difficult to automate since it incorporates more 

process parameters than other welding processes. TIG welding is also difficult to be 

replaced by another welding process because of its superior weld quality. Therefore, 

applications such as welding of aerospace components, which require higher precision 

and quality, continue to use TIG welding. However, as TIG welding robots still do not 

have the capability to meet the higher precision and quality as manual TIG welding, 

skilled manual welders still dominate in the welding of high-end welding of aerospace 

components. As skilled labour is expensive in developed countries, which are 

continuously challenged by low salary regions in the world, this has motivated 

industries to continuously look towards TIG welding automation. 

Robots which are used presently in the industry are called “Blind” welding robots as 

they cannot adapt to changes in geometry [1]. Although sensors have been used 

extensively, sensor feedback has not been used to satisfactory levels in order to achieve 

adaptivity [1]. Factors such as speed, size, cost and computational power have been the 

major limitations for not achieving successful automation. This has also made industrial 

realization of fully automated welding robots a significantly challenging task [2][3]. 

Therefore currently, weld trajectory and welding process parameters are pre-

programmed by the operator. This method has not returned the required quality for 

welding of aerospace components [4]. Because, compared to other applications such as 
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automobiles and white goods, aerospace engine manufacture is a low-volume, high-

variety, high-value operation with a high rate of change. This requires an automated 

solution to demonstrate high capabilities in decision making, intelligence and process 

adaptivity. One example which demonstrates the requirement for adaptive welding is 

the welding of civil aerospace-engine (Figure 1-1) in the casings and other complex 

areas. As can be seen from the figure, welding of such high precision components is a 

complex task, which is only currently achieved by skilled welders. The expected weld 

quality is not yet returned with robotic welding. 

 

Figure 1-1: An image of an aero-engine section showing important parts[5] 

Essential for robotic welding of such complex welding is to have accurate seam 

tracking, intelligent decision making capability and adaptive weld process control 

similar to a skilled manual welder. This can be achieved by using feedback about the 

weld joint geometry and using that to adaptively select the weld process parameters. 

This leads to controllability over the weld pool shape and can significantly aid in 

welding complex (3D, variable gap/thickness) shapes. Adaptive TIG welding is one of 

the most discussed topics presently. Paul Gagues at Moog industrial group refer 

adaptive welding as “Holy Grail” of the welding automation industry [6]. 

Many attempts have been made to achieve adaptive process control and seam tracking 

which are described in Chapter 2. However, those attempts were not completed to a 

satisfactory standard to be implemented in the aerospace industry as they have not been 

able to return the required quality (weld bead shape and welding strength). The work 
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presented in this thesis describes the research undertaken to demonstrate such a 

capability, which would be suitable for future use within this industry sector. 

Additionally, the use of laser scanners in robotic applications has significantly increased 

with time and technological advancements. However, laser scanners have not been 

readily used for aerospace applications due to the shiny surface structure of aerospace 

components. This results in the laser scanner returning inappropriate data, such as 

spurious points and noisy data sets, and leads to inaccurate results. Therefore, there is 

also a research need to investigate methods of reducing the inaccuracies of laser 

scanners when measuring shinier components and the development of algorithms which 

can cope with such inappropriate data. 

Manufacturing capability readiness levels (MCRLs) are used to describe system 

maturity of the development of technologies for products in the aerospace and defence 

industry [7]. In the past, robotic welding solutions were carried out at low MCRL  

(research level) as shown in Figure 1-2 and fully automated solutions have not been 

progressed to a satisfactory level (MCRL 3-4) to bring them towards the pre-production 

stage. This has made it difficult to implement the developments and outcomes of the 

research at a production level. Hence there is a huge necessity for a robotic welding 

system which could be transferred in to MCRL 5 so that application engineers can 

develop the system further with minimum effort and deploy at industrial level.  

 

Figure 1-2: Manufacturing capability readiness levels [7] 

These factors have led to a renewed interest in creating an intelligent 3D seam tracking 

and adaptive weld process, for the control of welding challenging joints.  
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1.2 Research objectives and novelty 

The primary research objective of the work presented within this thesis is the 

development of a fully adaptable and intelligent TIG welding robot (at MCRL 3) which 

can perform challenging welding tasks with similar quality to a skilled manual welder.  

The research work carried out to achieve this research aim has involved literature and 

industrial surveys on the current state of the art and formulation and assessment of 

alternative solutions. The selection of the preferred solution, design and construction of 

a prototype system and the evaluation and refinement of it has also been included under 

the work carried out as part of this PhD. This work has included both hardware and 

software development and complete system integration.  

To enable the development of an automated system, which is capable of performing to 

the same standard as a skilled manual welder, the research within this thesis was 

initially focussed on developing an approach for understanding the human skills 

involved in this highly skilled manual task. A system was developed to carry out 

technical measurements (monitoring process parameter variation) in manual TIG 

welding by different skilled manual welders and different weld joint types.  

Currently data acquisition of information from the shiny components often used in the 

aerospace industry using laser scanners has been difficult. Therefore, another aim of 

this research is to understand the capabilities of an industrial laser scanner to perform 

data acquisition of a shiny component. It is also aimed to find methods to maximize a 

laser scanner’s performance and implement algorithms which are not affected by laser 

scanner data quality. 

To provide a solution which can fulfil the primary research aim, it has also been 

necessary to develop a method of creating adaptivity in a challenging weld of two thin 

walled components that are to be welded together in 3D. This has involved, 

 development of an intelligent algorithm for 3D feature extraction 

 development of algorithms for 3D seam tracking 

 novel strategy for robotic welding for aerospace industry 

 development of software components for real-time robot and weld machine 

control  

 welding process monitoring and optimization for quality control 
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 empirical model development for quantifying the effect of process parameters 

on weld quality characteristics 

 a strategy for adaptive process control: development of an back-propagation 

empirical model for the intelligent selection of weld parameters based on joint 

geometry feedback. 

A-priori knowledge generated from theoretical and empirical models and operator 

experience has been taken advantage of to create an adaptive robotic TIG welding 

system. A photographic view of the developed system can be seen in Figure 1-3 . 

Detailed steps involved in the development are described in detail in the following 

chapters. 

  

Figure 1-3: Intelligent and adaptable robotic TIG welding system developed by the author 
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The industrial and research novelties of the work presented in this thesis are listed in 

Table 1-1. 

Table 1-1: Novelties identified 

Industrial novelties 
Relevant 

chapter 
Research Novelties 

Relevant 

chapter 

Development of real-time 

position based control system 

for the KUKA KR16 robot 
3 

Understanding human 

behaviour in manual TIG 

welding for intelligent 

automation 

4 

Development of PC based 

control for the Fronius 

Magicwave 4000 welding 

machine with capability of 

setting the welding machine 

in simulation mode. 

Feedback control of the 

welding machine. 

3 

Performance evaluation of the 

chosen 3D laser scanner prior to 

use for data collection. 

Investigation of data acquisition 

performance on shiny surfaces. 
5 

Complete system integration 

with centralised control and 

data processing capability 
3 

Novel algorithm for 3D feature 

extraction in real time and 

decision making capability 

based on the joint fit-up 

6 

MCRL 3 TIG welding robot  
3 

3D seam tracking based on joint 

feature extraction  
7 

 

 

Empirical model for weld bead 

dimensions and weld strength 

prediction 

8 

  Intelligent back propagation 

algorithm for selecting machine 

settings based on the joint 

geometry 

9 

 

 High novelty  Medium novelty  Low novelty 

 

1.3 Project plan 

As shown in Figure 1-4, the work was divided in to three stages. Initially, the human 

skills in manual welding was investigated and studied for intelligent automation. In the 

second phase, a process parameter monitoring system and 2D seam tracking along with 

real-time control of KUKA KR16 was developed. In the final phase, a fully adaptable 

robotic welding with 3D seam tracking and adaptive process control was developed. 

This involved the empirical model development for weld bead shape prediction and the 

process parameter selection to adapt for variations in joint fit-up. 
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Figure 1-4: Project plan 

1.4 Thesis overview 

This thesis contains 10 chapters and they are organized as below. 

Chapter 1: The first chapter presents a brief introduction of the topic to be investigated, 

identifying the motivations which have led to this research. The aims of the research 

and its objectives are outlined with a clear identification of the proposed novel content 

of the research. It also contains background information required for the thesis. 

Chapter 2: This chapter provides the context for the research and details aspects of 

existing literature. Focus is placed on the importance of robotic welding, joint feature 

extraction, 3D seam tracking, empirical model development for weld bead prediction 

and adaptable weld process control. An extensive review of the existing methods used 

in achieving those tasks is also presented. 

Chapter 3: Detailed within this chapter is how the system integration was carried out. 

System specifications of all the equipment used is presented. The method used to 

integrate the Fronius TIG welding machine, KUKA KR16 industrial robot, National 

Instruments Data Acquisition System (DAQ), HKS welding sensors, Micro-Epsilon 3D 

Phase-1 

Investigation of state of the art 
technology and purchasing the 

required equipment 

Commissioning and system 
integration 

Capturing human skills in 
welding 

Phase-2 

2D seam tracking 

process parameter monitoring 
system 

Real-time control of KUKA 
KR16 

Phase-3 

3D feature extraction and 
seam tracking 

Development of empirical 
model for weld bead shape 

prediction 

Intelligent algorithm for  
adaptive selection of weld 

process parameters 
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laser scanner and IDS 2D camera. This chapter also presents the software developed 

using LabVIEW to control the equipment from a single graphical user interface. 

Chapter 4: The experiments and results obtained from manual TIG welding is 

summarised in this chapter. The skilled manual welder’s approach to controlling the 

process parameters is identified. The method of feedback used for decision making and 

how the complex task of TIG welding is simplified by the skilled welder is also 

presented. The methodology for adopting the learning from human skill capture in 

intelligent automation is also discussed. 

Chapter 5: In this chapter, the manufacturer specified specifications of a laser scanner 

are compared with experimentally obtained values. A detailed study was performed to 

understand the reasons behind the unexpected behaviour of the laser scanner and 

recommendations where provided to avoid measurement error whilst using it. This is 

considered to be vital for the validation of seam tracking and gap measurement results. 

Chapter 6: A novel algorithm which was developed in Matlab and LabVIEW to extract 

important features of the joint profile is presented in this chapter. Capabilities such as 

real-time functionality and functionality to deal with unexpected data from the laser 

scanner (missing data issue) were achieved by the developed feature extraction 

algorithm. Performance evaluation results of the algorithm under various weld joint 

geometries (U, V and I) and fit-ups are also presented in this chapter. 

Chapter 7: Initially the hand-eye calibration methodology is discussed in this chapter 

which is followed up by 2D seam tracking using a CMOS camera. The method of using 

a feature extraction algorithm to estimate the centre of the joint to perform seam 

tracking is then presented. The seam tracking algorithm was evaluated for performance 

under various joint geometries and fit-up in 3D. Results of initial welding trials are also 

presented. 

Chapter 8: The work carried out on development of an empirical model for prediction 

of the weld bead dimensions and welding strength based on statistical methods is 

discussed in this chapter. Using the empirical model, the effect of each process 

parameter on weld quality characteristics was quantified. Validation experiments were 

carried out and the estimated values are compared with actual values for checking the 

level of validation of the empirical model. 
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Chapter 9: The proposed novel methodology of using joint geometry for the intelligent 

selection of the TIG welding machine settings to control the welding process adaptively 

is presented in this chapter. The identified most significant process parameters are 

prioritized to simplify the control problem. Welding of a variable gap butt-joint was 

investigated as a case study. Four approaches of carrying out welding of a variable gap 

weld joint were studied; constant parameter approach, industrial approach, skilled 

welders’ approach and the proposed novel approach. 

Chapter 10: Conclusions stating what was presented in this thesis and what are the next 

steps involved is identified. 
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2 Literature Review 

 

This chapter provides the context for the research and details aspects of existing 

literature in this area. Focus is placed on the importance of robotic welding, joint 

feature extraction, 3D seam tracking, empirical model development for weld bead 

quality prediction and adaptable weld process control.  

Section 2.1 provides basic introduction to concepts discussed in the thesis and section 

2.2 to 2.7 gives detailed literature review. 

2.1 Background 

2.1.1 Industrial robotics overview 

The main aims of automation in the manufacturing industry are to improve product 

quality, productivity and uniformity while reducing effort, cycle time and labour cost 

[8]. Presently robots are used extensively to do this. “An industrial robot is an 

electromechanical device, which can be defined as an automatically controlled, 

reprogrammable, multipurpose manipulator programmable in three or more axes to 

accomplish a variety of tasks” [9]. Commercially available robots may be powered by 

either hydraulic, electric or pneumatic drives [10]. Modern day applications of robots 

include welding, assembly, painting, packaging, pick and place and inspection. Robots 

are especially used for tasks which are considered to be hazardous if carried out by 

humans such as welding, in space and underwater tasks. Robotics is a field which 

combines mechanical and electrical systems, sensor technology, computers, servo 

systems and software [11].  

A robot can be programmed in many ways [12], such as: 

 Lead-through programming: The human operator physically grabs the end-

effector and shows the robot exactly what motions to make for a task, while the 

computer saves the motions (memorizing the joint positions, lengths and/or 

angles, to be played back during task execution).   

 Teach programming: Move the robot to the required task positions via the teach 

pendant; the computer stores these configurations in memory and plays them 



 

11 

 

back in robot motion sequence.  The teach pendant is a controller box that 

allows the human operator to position the robot by manipulating the buttons on 

the box.  This type of control is adequate for simple, non-intelligent tasks.   

 Off-line programming: Use of computer software, with realistic graphics, to 

plan and program the motions of robot without use of robot hardware. The robot 

memory is connected to the offline system so that the programme can be 

downloaded. 

 Autonomous: Controlled by computer, with sensor feedback, without human 

intervention.  Computer control is required for intelligent robot control. In this 

type of control, the computer may send the robot pre-programmed positions and 

even manipulate the speed and direction of the robot as it moves, based on 

sensor feedback.  The computer can also communicate with other devices to 

help guide the robot through its tasks.   

 Tele-operation: Human-directed motion via a joystick. Special joysticks that 

allow the human operator to feel what the robot feels are called haptic 

interfaces.   

 Tele-robotic: Combination of autonomous and tele-operation methods. 

 

In robotics, the term “end effector” is used to describe the gripper or tool that is 

attached to the wrist of the robot [10]. This can be a welding torch, gripper or any other 

tool required to perform the task. Industrial robots also comprise communication 

interfaces to communicate with external devices such as sensors, PLCs and PCs. Robots 

are capable of receiving signals from external devices and can also be used to control 

another device. However, this has to be programmed in the software interface. 

The robot work volume is the term referring to the space within which the robot can 

manipulate its wrist end. The work volume is determined by the robot’s physical 

configuration, size (body, arm and wrist components) and the limits of the robot’s joint 

movements [10]. It should be noted that when a tool is fixed to the wrist of the robot, 

the work volume will be increased. The work volume of the KUKA KR16 robot is 

shown in Figure 2-1 [13]. 
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Figure 2-1: Robot work volume[14] 

2.1.2 Triangulation-based 3D machine vision techniques 

Triangulation is a geometrical calculation method to find the 3D coordinates of a point 

using one or more cameras. It takes pixel coordinates of a 3D point in the images taken 

at two views and transfers it to the camera frames. From that it is then transformed into 

the world frame. Triangulation based 3D vision techniques can be categorized into two 

groups based on the light used. That is passive vision using ambient lighting and active 

vision using structured light. The most commonly used 3D passive vision technique is 

stereo vision where two images are used to find 3D information as shown in Figure 2-2. 

In the case of structured light systems, a projector is used with a single camera as 

shown in Figure 2-3 [15]. These techniques will be discussed in more detail in Chapter 

2. 
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Figure 2-2: Stereo vision principle[16] 

 

Figure 2-3: Laser scanner principle[17] 

2.1.3 Welding 

Welding is a process used by metal fabricators for joining similar metals. Joining is 

achieved by melting and fusing the base metal and also through the application of a 

filler metal. Welding processes operate at temperature ranges from 800ºC - 1650ºC, 

depending on the material, welding parameters used, shielding gas and welding process 

type. Presently welding is popular in the automobile, aerospace, oil and gas industries 

[18]. 
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 TIG welding process 2.1.3.1

TIG welding is an arc welding technique in which the arc is maintained by a tungsten 

electrode in the welding torch and shielded from the ingress of air mostly by an inert 

gas as shown in Figure 2-4. A filler rod is also used to fill the gap between the sample 

plates. Usually the filler rod is fed to the front end of the melt pool [18]. 

 

Figure 2-4: TIG welding principle[19] 

2.1.4 Stainless steel and its alloys 

Stainless steel covers a wide range of steel types and grades, used for corrosion or 

oxidation resistant applications. Welding is often used for their joining. Stainless steel 

alloys are made by including Chromium, Nickel, Molybdenum, Titanium, Carbon and 

Nitrogen. These additions enhance the material properties such as formability, strength 

and cryogenic toughness [18].  

2.1.5 Shielding gasses 

Contamination to the welded joint is caused mainly by nitrogen, oxygen and water 

vapour present in the atmosphere. This can lead to the mechanical properties of the 

weld being altered in a non-controlled manner. For example, nitrogen in solidified steel 

can reduce the ductility of the weld and can cause cracking or weld porosity (air traps in 

the metal). The reason for the porosity is oxygen reacting with carbon to form carbon 

monoxide (CO). Oxygen also can react with other elements in the steel and form 

compounds that result in inclusions in the weld. If hydrogen is present the vapour reacts 

with iron or aluminium and can result in under-bead weld metal cracks. To prevent 

these defects, the air in the welding zone has to be displaced using shielding gasses. 

Argon, Helium and Carbon dioxide (CO2) are the three main gases used for shielding. 
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Argon and Helium are inert gasses and therefore are used extensively in the welding 

industry [18]. 

2.1.6 TCP/IP communication 

TCP/IP stands for “Transmission Control Protocol / Internet Protocol” [20]. TCP/IP 

was developed by the US department of defence. It is a network protocol that defines 

how data can be sent through network resources such as hubs, switches, adapters and 

routers. After it was developed by the defence department it was placed in the public 

domain so that anyone could use it to develop communication networks between 

different pieces of equipment. Since TCP/IP is the primary protocol used on the 

Internet, it has become the most popular and is supported by most systems and 

hardware.  The TCP/IP is designed in such a way that each peripheral device connected 

will have its own address called the “IP address”. 65535 ports are available to 

communicate over each IP address for sending or receiving data [21]. Currently most 

computers integrated with robots communicate with each other through the TCP/IP 

protocol. This has significantly benefitted industrial automation. 

2.2 Similar work in arc welding automation research in the UK 

Apart from the EPSRC-IACIM at Loughborough University, other communities 

conducting research in the area of arc welding automation in the UK have been 

identified. They are the Department of Mechanical, Materials and Manufacturing 

Engineering: University of Nottingham [22], Advanced Manufacturing Research Centre 

(AMRC): University of Sheffield [23] and Warwick Manufacturing Group (WMG): 

Warwick University [24]. Similarly to the EPSRC–IACIM, one of the missions of these 

groups is to conduct research aimed at the welding of challenging components. The 

work presented in this thesis is novel and notably different to the work being carried out 

elsewhere in the UK, in the following areas: 

• TIG welding automation is considered in this thesis which is harder to automate 

than other arc welding processes. 

• Investigation of the manual skilled welder’s behaviour for automation. 

• Experimentation of the laser scanner’s performance to identify best performance 

and evaluation of the laser scanner specifications within an unstructured 

environment. 
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• Development of the novel feature extraction algorithm whereas other 

researchers used the software provided with the laser scanner.  

• Development of seam tracking algorithms which functions irrespective of the 

joint profile. 

• Development of a 3D seam tracking strategy based on the part fit-up (relative 

geometrical orientation between the samples in 3D space). 

• Use of the actual welding condition (welding of two plates) for experimentation 

into the effect of the process parameters on the weld quality characteristics. 

Previous studies have used bead-on-plate technique rather than the actual 

welding condition.  

• Quantification of the effect of the welding process parameters and development 

of an empirical model for predicting robotic weld quality characteristics (weld 

bead dimensions and welding strength). 

• Development of a back-propagation empirical model to provide adaptation for 

variable gaps through intelligent control of the welding machine settings. 

• Development of a robotic system capable of carrying out scanning and welding 

automatically. Selection welding parameters in continuous-mode rather than in 

JOB/Programme mode (where welding programmes need to be pre-stored in the 

welding machine). No additional programming required at the welding machine. 

• Development of a complete solution where the whole adaptive welding process 

is fully automated (no offline processing needed). 

2.3 Welding Automation 

Many new challenges exist for the metal fabrication industry in the 21
st
 Century. 

Fabricators must fulfil the demand for better quality with an overall lower cost and 

increased yield. Productivity is a major concern with a shortage of skilled workers and 

the added health and safety concerns [1][25]. The number of existing welders is not 

enough to satisfy the increasing demand from the industry, According to American 

Welding Society (AWS) over 500,000 welders are employed in the USA and 

approximately 200,000 welders are still required to meet demand [25][26][27]. 

Profitability and sustainability is under continued pressure from strong worldwide 

competition. As a result welding automation is one of the most discussed topics today.  
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2.3.1 Evolution of welding robots 

Welding became one of the frequently used operations in assembly-line production 

systems when Henry Ford introduced the assembly line [28]. Automating the welding 

process was initiated in the mid-20
th

 century [29]. In the 1970s the first trials on robotic 

welding were carried out with only a small success rate. These traditional robots used 

hydraulic and air type actuators which made movements difficult in certain directions. 

In 1973, electric drives were introduced by ABB robotics (Previously ASEA), and the 

first welding robot was produced in 1975, which is shown in Figure 2-5[30].  

 
Figure 2-5: First welding robot developed by ABB (IRB 6) [19] 

Latterly, methods like numerical control (NC) technology have been incorporated with 

automated welding and with the integration of technology from computers to welding 

robots, the task has become even more precise and simple [31]. During the last 30 years 

robots used for welding have become lighter, more compact, more sophisticated and 

cheaper which creates an ease to accommodate smaller and more complex shapes 

[32][33]. 

Rolls Royce was one of the first aero-engine manufacture companies to introduce 

automation in to their production line in the 1970s [34]. The most recent robotic 

processes introduced into Rolls Royce are for laser maskant cutting, welding and 

plasma spraying [34][35]. Robotic Shaped Metal Deposition (SMD) was completed by 

Rolls Royce in 2004 where the welding process was used as an additive manufacturing 

process to build up a complex shape [36]. Many more successful projects related to 

automation of manufacturing processes using robots have been completed by Rolls-

Royce. This information is not currently in the public domain. 
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SimTech, Singapore has developed a robotic system for repair of aero-engine parts 

using TIG welding [37]. Fraunhofer Institute for Laser Technology (ILT) has also 

developed a laser metal deposition system with a laser scanning system which measures 

the wear of gas turbine components and carries out laser cladding processes for repair 

[38]. Recently GKN Aerospace has also successfully developed a robotic Electron 

Beam Welding (EBW) system to achieve higher production rates [39]. However, 

robotic welding in the aero-engine manufacturing industry has not achieved the 

required level of automation to satisfy the required quality. Therefore this area is still 

being researched by research institutions and universities to achieve the required 

confidence levels [22]. 

Today, robotic welding is performed in many locations from small workshops to 

underwater and in space. Industrial robots have now been used for resistant spot 

welding, gas metal arc welding (GMAW) and Laser Beam Welding (LBW), among 

others, for many years. However, TIG welding has proven to be a difficult welding 

process to automate and therefore automation has not been realised to a satisfactory 

level [40]. The most closely to an automated TIG welding system deployed in the 

industry is by the Advanced Manufacturing Research Centre [23]. Other than this there 

was no evidence was found in previous literature. 

Some of the benefits that industries have experienced recently, when considering 

robotic welding processes, are improved weld quality, increased productivity, reduced 

waste, decreased labour costs and improved accuracy. For example, The Mercedes-

Benz Corporation and CORSA Performance, Inc. experienced a significant rise in 

process productivity and product quality with the implementation of robotic welding in 

the assembly of their auto parts [28]. Jim Bowling, the owner of CORSA, says that the 

decision making process also eased with the adoption of robot welding systems instead 

of manual welding [41]. 

In summary, robotic welding related to the aerospace engine manufacturing industry is 

still at research level and a complete robotic solution with process and part adaptability 

is yet to be introduced. Though some welding processes in the automobile industry are 

being already automated, the TIG welding process has not reached a satisfactory level 

of automation. 
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2.3.2 System issues and new technologies in robotic welding 

Tool centre point repeatability, part fit-up, low speed, poor wire feedability, contact tip 

failure, fumes, spatter, equipment reliability and accessibility are some of the challenges 

faced with the automation of welding [42]. Therefore, achieving controllability during 

welding has been difficult due to the small size of the weld pool, short interaction times, 

extreme brightness of the welding arc and the high temperatures achieved during 

welding. These factors have served to make experimental studies difficult [43]. Among 

them, the brightness of the arc has been one of the major problems as vision sensors get 

saturated due to the extreme amount of photons reaching its sensor. Different 

techniques have been used to overcome this. One such method is to use a band-pass 

filter with a light source at the same wavelength as the arc light so that the whole 

spectrum of light is eliminated [44]. This technique has evolved so the vision sensors 

can be used to observe the weld pool without any disturbance from the arc [45]. Weld 

pool information can be used to make real-time decisions about the welding process 

parameters and robot position. For example, by observing the weld pool position 

relative to the weld joint, small deviations which can occur in weld pool position in 3D 

(due to gravitational force) can be minimized. 

At the start-up of welding, due to the instability of the welding arc, the quality of the 

weld can be affected. This initiation often creates weld failures due to spatter generation 

and a discontinuous weld profile. The manual welder has the required experience and 

capability to react to any disturbance, but, a robot may not have such an instantaneous 

and unpredictable decision making capability and therefore can produce a poor weld 

quality at the start. The reaction of the automated system at the start-up of welding must 

be controlled for a better quality of weld. One such method implemented with MIG 

welding is discussed in [46]. In this, the authors have studied the wire melting and 

transporting in relation to the wire feed rate. Different methods, which are used in the 

power sources during start-up period, were also modelled.  

Advanced power supply technology, improved torches and torch gun consumables, 

feeding systems and the use of a large variety of support robotic peripherals such as 

cleaners, wire cutters, tool centre point calibrators, seam tracking devices and welding 

monitoring systems, have provided more opportunities for automation [31]. Welding 

power supply companies have introduced technology for creating custom pulse 

waveforms in the welding current signal. This has enabled the operators to select the 



 

20 

 

waveform according to the challenge of the welding task [47]. This has increased the 

degree of controllability in automation. 

In a manual system the worker can adapt to product variety, whereas it is much harder 

for a robot. Therefore one of the problems in welding automation is its lower flexibility 

to job variety which makes it difficult to implement in an assembly line (For example in 

the automobile industry). However, the introduction of computers has enabled the 

storage of large numbers of welding programmes and robot programmes. Robotic 

systems can be programmed in JOB/Programme mode where parameters are stored for 

different welding tasks. However, this method is an open-loop configuration and does 

not provide an intelligent feedback control to achieve adaptivity for any sudden 

changes.  Moreover, currently, welding of 3D parts is carried out by separating the 

component into a set of regions where each region will be programmed with its own set 

of process parameters. This method can lead to substandard welding quality because 

any sudden change of process parameters could cause welding defects or weakened 

joints.  

Flexibility of welding cells can be achieved by designing adjustable fixtures which 

could adjust to product variability. Motoman Robotics has created such an adjustable 

fixture called Motomount [48]. Yantai Evergreen Precision Machinery Co., Ltd and 

Puqi Machine Ltd have also produced adaptable chucks with clamps functioning 

independently [49]. Such flexible fixtures can accommodate product variety and 

therefore can reduce the need for altering setting up processes in an assembly line. 

The productivity of welding robots is another area which has been extensively 

investigated. According to previous studies such as in [50], robot use has been shown to 

improve yield compared to humans. However with increasing demand for welding, 

even robots have to be designed to obtain more and more productivity. One such 

method is by using dual wires resulting two independent arcs. This has been successful 

with GMAW and laser welding [33][51][52]. A commercial example of the dual wire 

technology with MIG welding completed for Garden State Chassis by Lincoln Electric 

Company is given in [53].  

Automation of the end effecter using servo controlled systems called Servoguns with 

wire feeders have been tested successfully for spot welding. This is one of the recent 

technologies which has been used successfully in Japan and Europe [32][33]. Smooth 
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operation with less noise, increased control and continuous monitoring over position 

and force, faster response, longer tool life, increased accuracy and complete elimination 

of compressed air and oil are a few of the advantages of Servoguns. A commercialized 

version of Servoguns is presented in [32].  

One inherited problem in automated welding is its extensive use of jigs and fixtures 

compared to manual welding. Therefore some amount of material distortion due to the  

stresses encountered from the fixtures and an effect on cooling rate is always present 

[54]. However, in spite of this, there is very little work which has been found to have 

been carried out on understanding the effect of using jigs and fixtures on deformation 

[54]. However, deformation is minimal in welding performed on aerospace components 

due to the materials used, component size and the use of heavy fixtures [55]. Therefore 

this thesis does not take in to account deformation during welding. 

With the expansion of welding automation in industry, networking has become 

increasingly important. Information sharing in automated welding through local or wide 

area networks (LAN and WAN) has been performed using common protocols such as 

Ethernet, DeviceNet and ProfiNet [33]. This has enabled collaboration between welding 

robots and now assembly lines are fully automated for carrying out welding (such as arc 

welding, spot welding) tasks completely automatically (especially in the automobile 

industry) [56][57]. A method for planning industrial robot networks for automotive 

welding and assembly lines is described in [58]. A robotic welding production line, 

where multiple welding robots communicating together to perform welding tasks in the 

assembly line in an automobile production line, can be seen in Figure 2-6. Recent 

research work on the development of collaborative welding robots is presented in [22] 

on the plasma arc welding process. In this the researchers detail the methodology of 

establishing communication between two robots to perform welding on a complex 

shape. 
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Figure 2-6: Collaborative robotic welding[53] 

 

2.3.3 Welding automation in harsh environments 

Today, technology has advanced to enable automated welding in various harsh 

environments; for example underwater and in space [59][60]. However, most existing 

welding technologies used with atmospheric welding have to be modified to accomplish 

automated welding in these environments. 

Most ship repairing processes are carried out in shallow depth, causing only minor 

difficulties. The major challenging task lies in undertaking work in deep water such as 

repairing underwater pipelines. The usual practice in the past has been to take the pipes 

out from the water and perform repairs which make it costly and time consuming. But 

today, deep-water welding is carried out with The British Admiralty – Dockyard 

carrying out the first ever underwater welding task in 1972 [61]. However, high 

pressure due to the water head, chilling action and risks involved are but a few of the 

concerns associated with underwater welding [61]. Lack of visibility in water, presence 

of sea current, difficulties for after weld inspection, ground swells in shallow water and 

inferior weld qualities are some of the negative results experienced [60]. Automation of 

TIG welding has also been attempted to a certain extent underwater. One such example 

is the THOR – 1 (TIG Hyperbaric Orbital Robot) in which a diver performs only the 

pipefitting and installing the trac and orbital head on the pipe and all the other tasks are 

performed through an automated setup. Advancements in driverless welding systems 

over the past decade have eased difficulties in tasks such as pipe preparation, pipe 
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aligning, automated wire feed and robot operation [61].  A manual welder attempting to 

carry out repairs using underwater welding techniques is shown in Figure 2-7. 

 
Figure 2-7: Underwater welding[62] 

Space is where most technologies are yet to be experimented with and certainly welding 

is one such area. Repair of orbital debris, fatigue damaged lab modules, radiators, 

pressurized fluid systems and structures, solar collector arrays, surface vehicles, 

descent-ascent vehicles, aero-brakes, power plants, antennas and maintenance of 

various other equipment are some of the tasks which can be assisted by automated 

welding [59].   According to Dr. Eager, in the mid-1980s the National Aeronautics and 

Space Administration’s (NASA) in-space joining techniques were restricted to 

mechanical fastening and adhesive bonding [59]. But compared to those techniques, 

welding has proven to have a higher joint rigidity and strength, lower joint mass, 

simpler joint design and manufacturing, lower cost, higher joint reliability and wider 

repair versatility [63]. Therefore exploration into how welding automation may be 

deployed in space has been researched thoroughly in the past three decades. NASA’s 

tasks such as Space Station Freedom (SSF), the First Lunar Outpost (FLO) and the 

Manned Mission to Mars (MMM) has forced automation researchers to look into tools 

for carrying out automated welding in these difficult conditions [59]. 
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2.3.4 Calibration of the robot-welding system 

Weld tool calibration 

The weld tool calibration is usually performed using a defined point placed in the work 

area. When the tool centre point makes contact with this point, the pose of the robot 

hand is stored. Another way of doing this is by using equipment such as theodolite or a 

laser interferometer [64].  

Camera calibration 

A camera model comprises the 2D points in an image of 3D features outside the 

camera. Any camera model consists of both intrinsic and extrinsic parameters. Focal 

length, principal point and distortion parameters are considered as intrinsic parameters 

whereas camera pose relative to the world coordinate system is considered to be the 

extrinsic parameter [64]. The traditional way of calibrating a camera is by using a 

checker board pattern [65][66]. It can be performed by matching the corner points with 

the image corner points. There are many approaches to do camera calibration such as 

Tsai’s method [67], Heikkila’s method [68] and Zhang’s method [69]. In [70], a method 

called the explicit method has been used to obtain camera intrinsic parameters. This can 

also be done by the camera calibration toolbox provided by Matlab and LabVIEW.  

Robot hand-eye calibration 

The relationship between the robot base and the end effector can be found using the 

Denavit-Hartenberg method as presented in [71].  This method has been used frequently 

in most robotic applications to find the pose of the end effector relative to the base 

coordinate system.  It is vital to find the transformation representing the camera 

mounting position relative to the robot end effector frame. By observing the resulting 

motion of the sensor created by moving the robot, this transformation can be found as 

described in [72]. Over the years, many models have been developed to find the 

relationship by solving homogeneous transform equations of the form AX=XB where, A 

is the transform matrix for the relative motion made by robot, B is the transform matrix 

for the relative motion of the camera and X is the unknown camera pose relative to the 

wrist orientation. A low cost robot hand-eye calibration method is presented in [71] 

with an accuracy of 1mm. It allowed the camera and object frames to be referenced 

directly to the robot base co-ordinate frame.  
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Two ways of solving the homogeneous matrix equation in the form AX=XB is presented 

in [73]. Another example of calibration based on this relationship  is presented in [74] 

for a system with laser vision. In [72] the authors investigate the solution to the above 

equation and have found that it is not unique and has one degree of rotational freedom 

and one degree of translational freedom. In [75] a model for obtaining the camera pose 

related to the base frame is presented. An Ant colony optimization algorithm has been 

used and the results show that the welding trajectory generated has greater accuracy 

compared to conventional PID and fuzzy controllers. In [65] the authors have also used 

the AX=XB model to obtain the relationship between the robot wrist frame and the 

camera frame by using a single camera and double position method. Another low cost 

calibration method is proposed in [66] which allows the object reference frame to be 

directly related to the robot’s base frame without the use of expensive coordinate 

measuring devices. The accuracy achieved was ±1mm.  

Self-calibration 

Self-calibration is a feature in modern robots equipped with vision systems which 

makes the task more simplified for consumers. In such a system no external calibration 

equipment is required and the camera’s intrinsic parameters are determined with a 

series of images taken. It has been also identified that the minimum images required to 

find the camera intrinsic parameters in such a system is three [76]. This increases the 

adaptability of a vision system to be used for real time applications such as robotic 

welding with reduced difficulty in setting up. 

2.4 Human skill capture and its involvement in welding automation 

Human behavior and skill capturing is identified as an important aspect in automation 

of complex manufacturing tasks which are considered difficult to be automated. Also it 

is also important for introducing continuous improvement to existing automation 

systems, for example, to simplify the complexity in a particular task in robotic welding.  

2.4.1 Human skill capture 

Most modern high-value manufacturing systems continue to rely heavily on the 

dexterity and flexibility of the manual worker. However, in many cases intelligent 

automation would be a more advantageous alternative to human work by improving 

operational efficiency and by removing the need for people to carry out tasks in 

unhealthy and/or difficult/dangerous working conditions [40]. Although technological 
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advances are increasing, possibilities to develop intelligent automation solutions to 

replace human work have not been fully implemented. This is because it is not clear 

exactly what to automate, i.e. to understand which elements of manual welding tasks 

are most suitable for transfer to automation. It is relatively straightforward to measure 

physical activity using objective motion capture systems. However, a key obstacle to 

the development of intelligent industrial automation is that welding tasks often involve 

a significant amount of unobservable cognitive activity that cannot be captured as easily 

[77]. Therefore, to successfully develop intelligent automation alternatives, we need to 

be able to capture the complex and concealed human cognitive skills and knowledge 

requirements of manual TIG welding as well as the physical elements of the tasks. It is 

also important to gauge the degree to which these tasks afford human variations [77]. 

A descriptive study has been completed in [78] on identifying the differences between 

skilled and unskilled welders by analysing the positional data obtained with a 

networked 3D motion capturing system with IR cameras. Movements of the human arm 

were captured and compared with different skill levels. In [79] and [50] the authors 

emphasize that the development of adaptive weld process control systems must be 

approached in a similar way to a skilled manual welder. In [80] the authors have 

designed a vision sensing and control system which can emulate a skilled welder’s 

intelligent behaviours such as observing, estimating, decision-making and operating. A 

novel electric welding helmet that uses real-time high dynamic range (HDR) video 

processing with a small battery-powered device is presented in [81]. This was proposed 

to aid the manual welder’s visibility of the welding area. Authors have found that the 

developed helmet aided welders and observed increased quality in the welds. 

Modelling of the human welder was carried out at the University of Kentucky recently 

(2014) by Kim and Zhang [77]. The authors have focused upon quantifying the 

welder’s intelligence. This included sensing the weld pool and modelling the welder’s 

adjustments during welding. As an extension to this work the authors also developed a 

3D vision based weld pool viewing system. In this work, the authors have discussed a 

methodology for transferring the human intelligence model in to a robotic welding 

system. The work also involved extensive surveys on modelling human dynamics and 

neuro-fuzzy techniques
1
. Closed-loop control experiments were also carried out to 

                                                 
1
 neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic. 
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illustrate the robustness of the model-based intelligent controller. The developed human 

model was compared with welders and presented in [82]. It was observed that the 

model was adapting to disturbances occurring in the process. The Authors also 

observed a high robustness in the developed human intelligent model. Although, the 

relevance of the work at Kentucky for robotic welding is presented, the authors have 

not implemented their human intelligent model in an actual robotic welding system. 

In summary, the work carried out on human skill capture has not been implemented on 

a robotic welding system. Research on human skill capture should focus more to be 

carried out to develop a more simplistic control model which can be implemented on 

robotic systems with reduced difficulty. 

2.4.2 Human-robot cooperation in welding automation 

Human Machine Interfaces (HMI / Tele-operation) is another growing trend in robotics 

and automation [83]. This is a method where the operator can virtually present 

themselves at the actual place of operation and carry out the task with the assistance of 

a robot. Technologies such as virtual reality, augmented reality, wearable systems and 

ubiquitous computing are used to create HMIs [83]. An HMI tool is an excellent 

replacement for jobs that are considered to be dangerous, difficult or tedious for human 

operators. An interesting project on networking humans and robots is discussed in [84]. 

The importance of robot-robot and human-robot cooperation in the manufacturing 

industry is highlighted in [85]. A human-robot collaboration work carried out on 

teaching the path of a welding torch by the manual operator is shown in Figure 2-8. 

 
Figure 2-8: human-robot collaboration in welding[57] 



 

28 

 

2.5 Seam tracking in welding automation 

Seam tracking sensors are the most frequently used sensor systems in robotic welding. 

Seam tracking for welding has been performed using various techniques such as 

mechanical, electrical, sonic, magnetic and optical methods [15][86][87]. However, 

optical methods are often preferred as they are more accurate, robust and more 

straightforward to integrate into a system. Moreover, it is a non-contact method [15]. 

Therefore, in this thesis only the optical based method for seam tracking is presented.  

The seam tracker monitors the location of a weld joint and links with the robot control 

system to track the joint. A good seam tracker should not only consider positional 

accuracy but also the velocity and acceleration checks that are important in welding and 

other operations such as spray painting, sealant application and assembly [11][15]. 

2.5.1 Evaluation of seam tracking 

The work carried out on seam tracking in the past can be divided into three generations. 

The first generation, often called the two-pass approach, surveys the seam along a pre-

taught path before performing welding. In the second pass, welding is carried out along 

the path points found during the first phase. The main problem in this method is the 

time taken for pre-surveying. This concern was the reason why the second generation 

was developed, as it delivers real time seam tracking.  

Systems belonging to the second generation had to deal with the presence of arc light 

and spatter. However second generation welding was performed in structured 

environments more often than not and therefore a major concern was on the adaptability 

to sudden changes. Hence the third generation of seam tracking systems were focused 

on achieving adaptable, real time and intelligent control [15]. Ideally in the third 

generation, the robot should be able to adapt itself to changes occurring from distortions 

in the work piece shape due to factors such as temperature and variations occurring due 

to changes in part fit-up and joint preparation. This is achieved by incorporating 

machine vision to robotic welding systems.  

In the aerospace industry, second and third generation solutions are not yet feasible due 

to several reasons  [15]. One such reason for this is that intelligent decisions cannot be 

made in the second or third generation seam tracking systems as prior knowledge of the 

weld joint is not available. Such a decision can only be realised if prior knowledge of 

the joint fit-up is known which can only be obtained in the first generation seam 
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tracking systems. This is vital in the aerospace industry as a attempting to weld a faulty 

set-up without prior knowledge can lead to waste, time and high cost. 

2.5.2 Seam tracking techniques 

Commonly there are two types of seam trackers, namely through-the-arc seam trackers 

and triangulation based scanners which operate based on vision techniques.  

 Through-the-arc sensing 2.5.2.1

The through-the-arc measuring technique is based on the fact that changes in the joint 

geometry will be reflected in corresponding changes in the process parameters such as 

arc voltage and current. This method has the advantage of directly sensing the local 

environment at the torch tip. However, the disadvantages of this method are that it 

cannot provide global information about the area around the joint and also it needs 

additional motion of the torch (weaving motion). Through-the-arc seam tracking is 

useful in Submerged Arc Welding (SAW) since optical methods are less effective 

because the electrode, joint sides, molten pool and the arc are hidden from direct 

viewing [15]. Commercialized versions of through-the-arc seam tracking are developed 

by FANUC robotics [88] and ABB robotics [89]. 

 3D vision sensing  2.5.2.2

Vision sensing has been by far the most studied and discussed topic in seam tracking 

systems. One of the main advantages of this technique is that it is independent of the 

welding process. Secondly vision sensing has the capability of gathering global 

information such as part fit up, height mismatch and root gap. It has been proven to be 

more accurate compared to through-the-arc sensing [15] and the only drawback is the 

high cost of the equipment. 3D vision sensing has been used in many industrial 

applications, including dimensional inspection of white motor body, Printed Circuit 

Board (PCB) and Integrated Circuit (IC) inspection, 3D shape re-construction, surface 

inspection, welding, and drilling [52].  

The 3D position and orientation of an object can be found by monocular vision, stereo 

vision, dense/sparse range sensing or tactile sensing. Monocular vision uses only one 

view with pre-defined object dimension while stereo vision uses two views. A dense 

range sensor scans a region of the world coordinate system with as many scanned points 

as possible and a sparse range sensor scans only a few points which are adequate to 

locate any given position. 3D vision sensing can be classified as stereo vision systems 
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and laser triangulation based systems [15]. Stereo vision systems use two cameras while 

the laser triangulation systems use one camera and a structured light projector instead of 

the second camera.  

Seam tracking using visual techniques can be undertaken using four different 

approaches which are, 

1. Teaching the seam path with prior knowledge of its geometry. (Eg: CAD data) 

2. Teaching an unknown seam trajectory. 

3. Real time tracking of a seam with previous knowledge of its geometry. 

4. Real-time tracking of a completely unknown seam. 

The nominal seam of the first three approaches can be obtained by manual 

programming, previous seam teaching, from a CAD file or any offline programming 

method. However the fourth approach is far more complex and difficult since all the 

parameters and control signals have to be determined in real-time [90]. 

In previous literature, studies using visual servoing for seam tracking have made use of 

two control architectures, namely position based control and image based control. In 

position based control, details are obtained from the camera and used with the 

geometric data available of the seam. In image based control the use of geometric data 

is omitted and servoing is done on the basis of the image data directly. However in [90] 

the investigators state that real-time seam tracking without any prior knowledge is 

considered to be impractical due to safety reasons. Therefore this thesis will consider 

position based control which will be discussed in detail in this section. In [90] the 

authors present an image based system with mathematical models of the seam, real-time 

seam tracking, orientation correction and noise filtering. The experiments have been 

carried out to track a planar line and a curve with accuracies of 0.1mm for a line and 

0.5mm for a curve.  

Stereo vision based sensors 

There are many ways of obtaining 3D information as discussed previously. Among 

them, stereo vision sensors have a distinct advantage over other methods since they can 

achieve 3D image acquisition without moving parts [76]. These systems are available 

with single and multiple cameras. Modern applications of stereo vision range from 

structure modelling and medical imaging to tracking and obstacle avoiding in mobile 
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robots [75][91]. The requirement in stereo imaging is to take images from different 

angles and merge them using a method called stereo matching [91].  

The 3D seam of any work piece can be tracked as follows using stereo vision [75]. 

1. Projection of laser light onto the seam surface (optional). 

2. Capturing two images from the cameras placed at different angles. 

3. Stereo matching. 

The laser stripe is used to ensure the reliability and accuracy of the seam detection and 

it makes the coordinate detection process far easier. However, for stereo vision to be 

effective, it is required that the surface being measured has additional features such as 

edges [15]. 

In [64] a system which takes images of the weld joint from different positions and 

orientations and determines the weld seam trajectory using stereo vision is described. A 

demonstrator was designed as shown in Figure 2-9 with an ABB IRB2400 robot, S4 

control system. The camera is from Allied Vision Technologies (Marlin F-131B) with a 

CMOS 2/3” chip with pixel size of 6.7µm x 6.7µm. The camera was connected to the 

PC using Firewire and the PC connected with the robot system through RS232. A high 

accuracy, low distortion machine vision lens from Kowa with infinite depth of field, a 

minimum working distance of 120mm and a focal length of 8mm was used. With this 

setup the authors have obtained a mean error of ±0.23mm and a maximum error of 

0.7mm which is acceptable for most welding applications. The authors of [64] proposed 

a sensor which can be mounted away from the weld tool which saves space compared 

to a conventional sensor. The proposed solution is to re-measure in between each 

welding sequence with the stereo vision system and to update the weld path 

accordingly. Some of the issues faced by doing this were the pixel resolution of the 

image, difficulty in finding edges in 2D images, poor accuracy of the camera model and 

its calibration [64].  
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Figure 2-9: Stereo vision system correcting for path[64] 

Stereo vision was realised by using a single camera and double poses method in [65]. 

This paper describes the importance of recognition and guidance of the initial welding 

position. A MOTOMAN HP6 robot with a CCD vision sensor integrated with a DH-

CG400 image acquisition card was used. The control computer communicated with the 

vision sensing system through an image acquisition card which communicated with the 

robot via MOTOCOM, provided by Yaskawa. The mean square error (MSE) obtained 

in the x,y directions was less than ±1mm and less than ±1.5mm in the z direction. 

However the experimental setup was bulky and therefore difficult to be used for the 

welding of complex trajectories in limited space. 

The work presented in [66] also described a stereo vision system. Experiments have 

been carried out using a Fanuc M6-I, six axis robot with a pointer tool. The stereo 

vision system consisted of two USB CCD cameras with a resolution of 1280x1024. 

Results obtained have proven that the robot with the vision system produces an 

accuracy of ±1mm which the authors concluded was an acceptable value for most 

robotic MIG welding applications. However, setup was too difficult to be used in the 

welding of complex welding geometries of different shapes due to its large size.  

Stereo vision is discussed as quasi double camera stereovision in [92] which suggest 

that the double camera stereovision can be approximated to a single moving camera. 

The Error occurring from the transfer matrices was ±0.3mm and the image processing 

error achieved was ±0.165mm. In combination, the errors of profile characters for the 

seam between calculation and measurement are less than ±0.5mm. This method 
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supports the use of vision technology in welding since the space required for the 

placement of the camera is less compared to a dual camera stereo vision technology. 

However, in this method the camera needs relative movement to achieve different 

poses.  

A position based visual servo system for robotic seam tracking which has the ability to 

automatically detect the seam coordinates also plan the optimal camera angle before 

welding is presented in [93]. The constructed system consists of the RH6 robot system 

(developed by Shenyang Institute of Automation), a PIII PC which runs the image 

processing algorithm and acts as the user interface and two CCD cameras. Only one 

camera was used to capture the seam image while the other used for post weld quality 

inspection. This system also can be categorized under the single camera double pose 

method where the primary camera has the movement capability. Both straight lines and 

curves were used in experiments for tracking and the overall position accuracy was 

±0.5mm. A similar structured light stereo vision system is presented in [94] which 

produced satisfactory results in the welding of a V-groove.  

In summary, though a number of attempts have been made on using stereo vision for 

seam tracking, researchers have not highlighted the adaptability of their system for 

different kinds of welding processes and various complex weld shapes. Also most work 

has not evaluated the performance at actual welding conditions. The large size of stereo 

vision systems and their low accuracy are the main challenges in their implementation 

in aerospace welding applications. Moreover cameras used in stereo vision systems are 

not suitable to operate over the long term under extreme welding conditions. There was 

also no commercial stereo vision systems designed for the welding application. 

Laser triangulation based sensors 

This technique has been the most widely used method for seam tracking using machine 

vision due to its fast acquisition time, simple optical arrangement, easiness in feature 

extraction, low cost, high resolution and robust nature [52] [91]. The basic principle of 

structured light method is as follows: A narrow band of light is projected on to the 3D 

shape and when that light is viewed from another location it appears distorted. The 

shape of the distorted line is captured by a camera which allows reconstruction of the 

shape using a triangulation method. An industrial laser scanner extracting seam 

information for path correction of a robot is shown in Figure 2-10. 
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Figure 2-10: Laser scanner inspecting prior to welding[83] 

Based on the light pattern used, there are four categories of structured light methods 

[52]. 

1. Dot structured light 

2. Stripe structured light 

3. Multi-stripe structured light 

4. Grid structured light 

The stripe structured light method has been more often used in industrial applications. 

A structured light system consists of a camera and a projector whereas in stereo systems 

it contains multiple cameras or multiple views. Therefore, unlike in stereo vision 

systems, this method does not have the correspondence (Stereo matching) issue [52]. 

A detailed description on the use of a laser stripe to find 3D coordinates is given in [95]. 

A short laser range probe, a 6DOF robot arm with 650mm reach, a 1DOF rotary table 

(to hold the work piece) and a 4-axis CNC milling machine was used. However, the 

equations developed are only valid at ideal conditions and the authors have assumed 

that there is no optical distortion in the camera lens. This is not practical in real 

operating conditions since there is always a distortion as it is not possible to perfectly 

align the camera and the laser sensor to give zero optical distortion. With this method 

the authors have achieved a tracking error of less than 0.1mm. 

An application of a laser scanner on a robotic golf club head welding system is 

presented in [96]. The system consists of a PC, a motion control card, a 2DOF rotary 

table and a five axis robot called “ReapeR”. The accuracy of the vision system is 

0.0169mm and is less 0.1mm in the robotic system. Detailed algorithms for edge 

detection from the point cloud and path generation has been discussed. The overall 

accuracy achieved was 0.48mm, which was mainly because of the errors from manual 

teaching of hand-eye coordination. The frame rate used was 60fps which proved to be 
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slow.  The authors suggest that if a better camera with a frame rate of 200fps was used, 

the processing time could be reduced to less than 2s. However their system was not 

robust enough for different 3D shapes. 

A new vision sensor, based on a circular laser is discussed in [70]. In this paper the 

projection was a circular laser rather than a beam or stripe. The system consisted of a 

CCD image sensor and light system based on a rotary lens that generates a circular laser 

beam. The experiment was carried out using an ABB IRB 2400 welding robot, a CNC 

platform and a Watec-902H type industrial camera. The authors state that online data 

from the vision sensor cannot be fed into the robot trajectory pre-set by the robot 

control because of the characteristics of ABB robots which has not been clearly 

described. However, the results showed that the seam tracking error is less than 0.5mm 

along the height tracking direction. However the authors do not prove the applicability 

of the design to complicated welding challenges.  

Another good example of using a laser vision sensor for seam tracking is presented in 

[97]. The authors were successful in automatic guidance of the robot. Based on the 

information gathered through vision sensing. A CCD camera and a diode laser were 

used in [98] for generating 3D coordinates and the experiment was tried for height 

varying applications. Applications of the same 3D vision seam tracking system is 

described in [99]. Another 3D seam tracking system using a structured light laser is 

presented in [100]. The authors have proposed and implemented a technique which 

visually governs offsets in the robot path and controls the welding process factors on 

the basis of the monitored cross-sectional dimensions with the use of a vision system. A 

3D seam tracking system for sealant application, which is also similar to welding seam 

tracking, is discussed in [101]. A 6D seam tracking robot was developed based on laser 

scanning in [102] with an accuracy of 0.015mm.  

2.5.3 Commercial laser scanner product performance overview 

There are very few suppliers for laser scanner based seam tracking devices for welding 

applications. These devices are integrated with industrial laser scanners with 

customised software. Table 2-1 shows some of the state of the art solutions and their 

limitations.  



 

36 

 

Table 2-1: State of art seam tracker specifications [103][104][105][106][107][108][109] 

 
Name Reference Picture Accuracy Limitations 

1 
WISE Welding by WISE 

Technologies Ltd & SICK 

Ltd 

 

0.5mm 
• Large in size 
• Low accuracy 
• Needs customization 

2 Laser Vision Systems by 

Servo Robot 

 

0.025mm • Needs customization 

3 6D Seam Tracking form 

META-VISION Systems 

 

0.05mm • Large in size 
• Needs customization 

4 Liburdi Seam Tracker 

 

0.5mm • Needs customization 

5 Arc-Eye Vision System 

from Valk Welding 

 

0.025mm • Needs customization 
• Costly 

6 Adaptive Welding from 

FANUC Robotics 

 

0.05mm • Needs customization 
• Costly 

7 Micro-epsilon Scan-

control 

 

0.02mm 

• Compact 
• Low cost 
• Needs minimal 

customization 
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By carrying out an industrial survey, it was found that all these solutions need 

customization for any particular application. It was also found that most of the state of 

the art solutions are large in size and expensive. Among them the Micro-epsilon is 

comparatively compact and low in cost. Compactness can significantly help when 

carrying out seam tracking in narrow spaces such as between turbine blades in an aero-

engine. 

Industrial scanners come with a datasheet describing their operating range and other 

parameters. The information specified in these datasheets has been generated in a 

controlled environment.  Therefore, such datasheets fail to provide a clear overview on 

the performance of the scanner in the wide range of operating conditions that could be 

present in an industrial environment [110].  

The quality of the data obtained from laser scanners depends on the quality of the signal 

reflected back from the object surface to the camera sensor [111]. The quality of the 

reflected signal is influenced by many parameters such as surface reflectivity, stand-off 

distance, steepness angle of the surface, ambient lighting conditions and incidence 

angle [112]. Therefore, it is vital to evaluate the performance of a particular laser 

scanner under actual working conditions prior to its use in any specific application.  

Over the past decade, many attempts have been made to understand laser scanner 

performance under different lighting conditions [111], 3D geometries [110], materials 

[113] and surface reflectivity [111]. Past studies show that white and matt surfaces 

produce better point cloud data compared to black and shiny surfaces [111][113].  

However previous attempts do not provide adequate quantitative data and also fail to 

provide information on the performance of a laser scanner based on the geometry of the 

surface measured. 

In summary, literature suggests that over the years, laser scanners have improved 

significantly compared to other seam tracking methods and stereo vision systems due to 

the technological advancement in optical engineering. Presently they are available at 

low prices (in addition to high accuracy and repeatability) which have made laser 

scanners very popular among system integrators. However, only minimal work has 

been carried out to understand the data quality produced by a laser scanner and methods 

of improving the performance. 
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2.6 Weld process optimization, empirical modelling and adaptive weld process 

control for welding automation 

TIG welding quality characteristics are strongly influenced by the process parameters. 

Moreover, those process parameters determine the mechanical and metallurgical 

parameters of a particular weld [114]. Traditionally, the manual welder selects the 

desired process parameters based on their experience. Welding current, travel speed, 

wire feed rate, arc gap and torch orientation are just some of the parameters that a 

welder can control during the welding process [115]. These parameters are measured 

using welding sensors and process parameter monitoring software. Over the past two 

decades process parameter and weld quality monitoring software for welding has been 

commercially introduced such as ADM IV [116], Arc guard [40],  WeldEye [117], 

Hannover 10.1 [40] and Weldcheck [118]. However, in order to implement new 

algorithms and control strategies such software has to be modified or new software has 

to be developed. 

While skilled welders have mastered the technique of controlling these process 

parameters, an automated welding system does not exhibit such capability. Such 

intelligence or decision making capability can only be programmed into a robotic 

welding system and it can be realised only by receiving feedback about the welding set-

up. For example, material type, size, joint geometry and fit-up  [119][120]. Such an 

intelligent capability is vital for high end welding such as in the aerospace industry. 

Over the years this has been difficult due to lack of technology advances in sensing 

technology, robot control techniques and processing power.  

A study on the effect of weld process parameters on penetration for the gas metal arc 

welding process is investigated in [121]. This study also investigates the effect on the 

micro-structure of the resulting welds. A mathematical model for developing the 

relationship between the input parameters and weld penetration for submerged arc 

welding is presented in [122]. The effect of the wire feed rate on the bead geometry of 

Aluminium sheets with MIG welding is reported in [123]. A detailed sensitivity 

analysis (effect of process parameters on weld quality) is carried out in [124][125] and 

[126]. This is further improved by developing mathematical models to predict the weld 

bead geometry in [127]. Recent advances in automation have introduced pulsing 

technology to welding. A detailed investigation on the effect of pulsing parameters on 

weld quality is presented in [128][129] and [130]. Among these studies, authors find 
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that the most significant process parameter on weld bead shape is the welding current. 

However it should be noted that most researchers have focused only on welding current, 

speed and wire feed rate as process parameters. 

The design of a process parameter monitoring and control unit for the resistance spot 

welding process is presented in [131]. A neural network model is presented in [132] and 

[115] for weld process modelling and control. In [114] the authors present a method of 

detecting the weld line and a process control methodology for welding automation. 

They develop an Artificial Neural Network (ANN) solution but there is no evidence 

that the authors implemented the algorithm in a robotic system. The derived model is 

significantly complicated and involved lot of computations which makes it difficult to 

implement in a robotic welding system. This is one of the significant gaps in research 

related to robotic welding. A simplified mathematical model is essential for real-time 

process control of welding. 

In [130] and [133], the use of the Taguchi’s method to control the welding process 

parameters for obtaining the optimal weld pool geometry is reported. In [134] authors 

report an application feasibility study of the Grey relation analysis in combination with 

Taguchi’s technique for an optimal parametric combination to yield the best bead 

geometry of welded joints. The optimization of different welding processes using 

statistical and numerical approaches is presented in [135]. The authors present a 

reference guide for statistical methods such as the factorial design method, linear 

regression, response surface methodology, ANN and Taguchi’s method. Characteristics 

of each method are discussed and presented clearly. In [136], a detailed comparison of 

statistical models for control of weld bead penetration in the GMAW process is 

discussed. The authors have found that a polynomial model fits best for predicting the 

penetration of welds. Another study on a mathematical model for predicting the 

distortion in welding of thin plates is discussed in [55]. In [137], statistical weld quality 

prediction methods are compared with a neural network approach. Neural network 

modelling has also been used for predicting weld joint strength in [138].  

Over the years very few attempts have been made to achieve adaptive robotic welding. 

This was primarily due to lack of sensor, especially vision sensors which are required to 

understand the weld joint size and shape. Adaptive welding can be realised through 

joint feature extraction [15]. A robust joint feature extraction for a lap joint is discussed 
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in [139] using structured light images. Image processing techniques such as smoothing, 

adaptive thresholding and thinning were used. A vision sensor and a PLC were 

integrated with a touch screen to build up the mechatronic solution for seam tracking. 

However, the feature extraction was only performed on a lap joint and different profiles 

were not attempted. Moreover, the authors have not evaluated the performance of the 

algorithm.  

A laser welding robot developed to achieve adaptive process parameter control is 

discussed in [140]. The system was developed using a Haas 3006D 3 kW Nd:YAG-

laser, a Motoman UP 50 industrial robot and a Servo-robot SMART 20 laser scanner. 

The gap width was measured continuously, and the data are used to control the welding 

speed and the wire feed rate. Butt welds in 2mm thick sheet steel with gaps varying 

from 0.1mm to 0.75mm were welded with this system, by matching the welding and 

wire speed. However, the attempt was on laser welding which is considered to be easy 

to automate compared to TIG welding [136]. This is mainly due to the added 

complexity of wire feeding mechanism in TIG welding. Feeding the wire in to the weld 

pool from a different axis to the weld electrode is identified to be challenging [136]. 

A weld pool imaging and processing system along with a robot and automated welding 

equipment was set up to control the wire feed rate is discussed in [141].  Information 

from the weld pool was used as the feedback for controlling the welding process. 

However, the attempt was only carried out in 2D. The authors have not used empirical 

modelling techniques to achieve adaptivity in the system. Moreover, the only feedback 

used was from a 2D camera about the weld pool which is not adequate to achieve robust 

control over the weld quality characteristics. 

In summary, among the previous attempts, none have been made on developing 

mathematical models for the control of the robotic TIG welding process whereas most 

of previous attempts were on MIG welding. Additionally, these investigations have 

only being carried out to understand the effect of process parameters on the weld 

quality characteristics. They do not reveal enough information on how the findings can 

be used to improve the quality of the welds in robotic welding. Moreover, minimal 

evidence was found on the implementation of any derived mathematical model on a 

robotic welding system to achieve adaptivity for joint fit-up or variability. However, 

previous studies suggest that statistical methods are easy to implement in a control 
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system which this thesis will focus on. Moreover, literature also suggest that Taguchi’s 

method is best suited for obtaining best results with minimum number of experiment 

and therefore this thesis will use Taguchi method for developing the mathematical 

model [130] [133].  

2.7 Summary 

In this chapter, the background of this research was introduced. A detailed investigation 

was carried out to understand the similar research work carried out before. Previous 

industrial and research attempts on human skill capturing, laser scanner evaluation, 3D 

seam tracking, empirical modelling for weld quality prediction and adaptive process 

control were reviewed.  

The review of the literature emphasises the necessity for use of advanced sensor 

technology for welding automation with industrial robots especially in the aerospace 

industry. Literature suggests that there has been very limited work on TIG welding 

automation. It was also found that many industrial applications carry out robotic 

welding using pre-programmed machine settings and robot paths. This does not assure 

the required quality for high end applications such as in the aerospace industry. Weld 

joint feature extraction, tracking and adapting robot path for part fit-up has not been 

researched to satisfactory levels. Whilst various attempts have been made to understand 

the effect of weld process parameters on the weld quality characteristics, there are not 

many attempts that have successfully managed to implement a mathematical model on a 

robotic system to select the optimum process parameters based on the joint geometry. 

Moreover, it appears that no work has been carried out on finishing a complete solution 

to the problem for 3D seam tracking and adaptive welding.  

Research questions and gaps 

The key objectives of the work carried out as part of the thesis was outlined in Chapter 

1. In order to achieve those, the main research questions to be addressed, which are 

identified from the literature survey are; 

• How can one quantify a manual welder’s behaviour in TIG welding for process 

parameter control and how it can be used for intelligent automation? 
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• Can the data from a laser scanner be trusted? What are the reasons for 

inappropriate data from a laser scanner when measuring complex shiny 

surfaces? How could one overcome this? 

• How would one extract joint features for implementing intelligent algorithms? 

• Can any algorithm be developed which will function in any 3D orientation of 

parts? 

• Can the algorithm function correctly irrespective of the joint cross-sectional 

profile? 

• What is the effect of process parameters on the weld bead dimensions and 

welding strength? 

• Can a mathematical model be developed to establish the relationship between 

input and output parameters? What are the most significant process parameters 

and can their effect be quantified? 

• How would one use the joint geometry as a feedback for the intelligent selection 

of machine settings for carrying out variable gap weld joint? 

• What are the differences between the approach of industry, skilled welders and 

any novel method derived in this thesis in welding of a variable gap butt joint? 

These research questions have led to the aim of the PhD being to develop a fully 

automatic robotic TIG welding system which demonstrates the required intelligence and 

adaptivity for welding in the aerospace industry. Therefore the following specifications 

were defined to achieve from the test-rig development.  

 Capability to measure robot position. 

 Centralised control of all equipment. 

 Industrial robot. 

 Welding machine and torch with accessories for welding. 

 Data acquisition system. 

 A personal computer with required processing power to act as the central 

controller. 

 3D laser scanner for scanning the samples. 

 Cameras for monitoring the welding cell for safety purposes. 

 Protective shielding between the welding torch and the vision sensors. 

 Data display and analysis capability with a graphical user interface. 



 

43 

 

 Algorithms for seam tracking and process control. 

 Protection for electromagnetic interference. 

 Extractor unit for fume extraction. 

 Guarding system for human safety. 

 Sensor systems for weld parameter monitoring. 

 Faster response to client-server based commands. 

 Position based control strategy in the software. 
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3 Test rig design and system integration 

 

As explained in Chapter 1 the main objective of this research is to develop an 

automated TIG welding solution that can work with challenging weld geometries. The 

selection of suitable equipment and its integration is essential to achieve this task. This 

chapter presents the detailed description of the selection of the most appropriate 

equipment for TIG welding experimentation and the methodology used for its 

integration. The complete mechatronic system was divided into several sub-systems, 

namely, the welding module, feedback module, motion control module and imaging 

module. These four systems were linked to each other through a personal computer, 

which acts as the central controller.  

An industrial robot was used to provide the required motion for the welding torch. A 

TIG welding machine that can be operated in automatic mode was used as the welding 

source. Automation of TIG welding also requires careful control of all the key process 

variables, so welding sensors were used to monitor the welding process. Vision sensors 

were used for seam tracking and to predict the required size of the gap. A data 

acquisition system was used to send and receive signals from all the equipment. 

Automation interfaces were used to establish communication between the equipment 

and the PC. The developed system was also capable of collecting (and displaying) data 

for further analysis and possible improvement. 

3.1 Introduction 

On the basis of hardware, the experimental setup can be divided in to four main 

modules and is shown in Figure 3-1. All equipment was integrated into a workstation 

(PC) which acts as the main controller. The workstation consists of a HP Intel Xeon 

2GHz 6-core processor and 64GB RAM, which is capable of high speed data 

processing, including real-time image processing and real-time communication with the 

robot, sensors and welding machine.  
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Figure 3-1: Summarized system integration diagram 

A descriptive CAD picture of the complete welding cell is shown in Figure 3-2. 

 

Figure 3-2: CAD design of the welding cell 
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3.2 Welding module 

Initially, various welding equipment from manufacturers, such as Miller, ESAB, 

Migatronic, Fronius, Lincoln Electric and Dinse were investigated. Considering the 

need for features such as automation capability, interfacing with a robot controller and 

the option to control welding parameters, a Fronius TIG/MIG welding machine 

(Magicwave 4000) was selected. A photographic view of the welding machine is shown 

in Figure 3-3 (a). 

The ratings of the welding equipment are as follows (please refer to Appendix 1 for 

more specifications of the welding machine), 

 Rated Current : 400A 

 Voltage Range : 10.1-26V  

The Fronius Magicwave 4000 can be operated in JOB/Programme mode where welding 

programs can be stored in the welding machine. It can also be operated in automation 

mode (TIG mode), where the welding parameters can be completely controlled from an 

external system such as a PC. The welding machine is equipped with state of the art 

technology allowing simultaneous control of multiple parameters including welding 

current, wire feed rate, pulsing parameters (pulse frequency, base current, duty cycle), 

filler wire-torch angles and gas flow rate.  

The wire feeder used in this study can be operated with a wire-spool of up to 30 mm 

diameter. It uses cold wire feed technology, in which the filler wire is fed to the melt 

pool at room temperature. This approach of feeding the wire to the melt pool helps to 

reduce the heat accumulation and subsequently increase the mechanical properties of 

the weld. The wire feeder also includes a push-pull system shown in Figure 3-3 (b). The 

push-pull system functions in a way where the wire is pushed by one motor driver at the 

welding machine and pulled by another motor driver at the welding torch. It maintains 

constant tension over the whole length of the wire and helps to maintain uniform wire 

feed rate all along the robot arm. This assures that the wire feed rate is not affected by 

the movement of the robot arm. 
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Figure 3.3(a) Figure 3.3 (b)  

Figure 3-3: Photographic view of the welding equipment (a) Fronius Magicwave 4000 welding 

machine (b) Wire feeder unit [142] 

Two different welding torches were used in this study and are shown in Figure 3-4 (a) 

and (b). The manual welding torch was selected for the initial stages of the research, 

which was to understand human behaviour in manual TIG welding process. The 

Robocta TTW 4500 robotic torch shown in Figure 3-4(b) was selected for the 

automated welding with the robot. As can be seen from Figure 3.4 (b), the Robocta 

TTW 4500 consists of a motor for pulling the filler wire.   

  

Figure 3.4 (a) Figure 3.4 (b) 

Figure 3-4: Different welding torches used for different phases of the project (a) Manual welding 

torch, (b) Robocta TTW 4500 robotic torch 

3.3 Sensor feedback module  

A National Instruments Data Acquisition System (NI DAQ) was selected as the 

interface to link the PC and other equipment (using Digital and Analogue signals). The 

NI DAQ card can receive and send digital or analogue signals from the PC. A detailed 

specification of the NI DAQ system is given in Table 3-1. Figure 3-5 shows a 
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photographic view of the NI DAQ system. LabVIEW was used as the central software 

tool for programming.  

Table 3-1: Specifications of the data acquisition system 

PXIe card  Specifications 

NI PXIe 6356 8 Analog Inputs, 2 Analog outputs, 24 

Digital IOs, 10V, 1.25MS/s/ch 

NI PXIe 6528 48 channel (24 input, 24 output), 60V 

NI PXIe 6733 8 Analog output channels, 1MS/s/ch 

NI PXIe 6356 798 MB/s, PCI Express 

 

  

Figure 3-5: NI DAQ card and PXIe chassis system [143] 

Appropriate sensors were used for monitoring the welding current and voltage, and 

their specifications are given in Table 3-2. All the sensors were calibrated and tested at 

21˚C and are specifically made for welding applications (refer Appendix 2 for sensor 

calibration certificates).  

Table 3-2: Sensor specifications 

Sensor Range Accuracy Bandwidth 

Current 0-1000A ±1% 25kHz 

Voltage 0-100V ±1% 25kHz 

3.3.1 Basic principle of welding Sensors 

Current Sensor  

The basic principal of a Hall-effect welding current sensor is shown in Figure 3-6(a). 

As can be seen in the figure, the ground lead of the welding machine passes through the 
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current sensor. The high current passing through the ground lead will generate a 

magnetic field around it, which will also travel through the coil wrapped around the 

core of the sensor. The passage of current produces a potential difference between the 

opposite ends of the coil, and induces a current which will travel through the coil. The 

generated potential difference is directly proportional to the welding current. Equation 

3.1 is used to find the actual welding current from the sensor reading [144]. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑤𝑒𝑙𝑑𝑖𝑛𝑔 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 100 × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 (3.1) 

 

 
 

Figure 3.6 (a) Figure 3.6 (b) 
Figure 3-6: Hall effect current sensor (a) Hall effect principle, (b) HKS process sensor [144] 

Voltage Sensor 

In order to measure the welding voltage, the positive and negative terminal of the 

welding voltage sensor is connected to the respective terminals of the welding machine. 

The input voltage (measured actual voltage) is scaled down using the concept shown in 

Figure 3-7 and an analogue output in the range of 0-10V was generated for 

measurement.  Equation 3.2 is used to find the actual welding current from the sensor 

reading [144]. 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑤𝑒𝑙𝑑𝑖𝑛𝑔 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 10 × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 (3.2) 
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Figure 3-7: Principal of welding voltage sensing 

3.3.2 Sensor feedback module integration 

All the sensors and the automation interface of the welding machine were integrated to 

the NI DAQ system through a connector board as shown in Figure 3-8. The DAQ 

system was capable of acquiring data at 1.25 Mega samples per second per channel. 

Each channel of the DAQ cards consists of its own analogue to digital converter which 

assures simultaneous data acquisition. It helps to avoid any time delay between the 

channels, which is essential for real-time selection and control of the welding process 

parameters.  

 

Figure 3-8: Block diagram for NI DAQ system integration with the PC 
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3.3.3 Signal processing  

The welding process data was acquired from all the equipment at a sampling frequency 

of 1kHz. During the data acquisition, noise was expected due to the interference and 

disturbance from the welding machine and the robot controller. The raw output (in 

volts) from the channels of welding current and voltage sensing when the system is at 

dwell state (no welding) is shown in Figure 3-9 (a) and (b). As can be seen from the 

figure, the welding current and voltage channels have a maximum noise amplitude of 

0.075V (at 375 Hz) and 0.04V (at 135Hz) respectively.  

 
Figure 3.9 (a) 

 
Figure 3.9 (b) 

Figure 3-9: Signal channels without noise filtering at dwell state (a) Welding current signal in 

frequency domain, (b) Welding voltage channel in frequency domain 

The actual welding current and voltage at the dwell position (no welding) is shown in 

Figure 3-10. As can be seen from the figure welding current signal and voltage signal 

have maximum noise amplitudes of 3A and 0.4V respectively. The amplitude of the 

welding voltage is not significant (0.4V). However noise amplitude of welding current 

can significantly affect the weld quality when considering thin sections. 
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Figure 3-10: process parameters at dwell state 

The current and voltage signals, during the welding process are shown in Figure 3-11. 

As seen from the figure, the welding current signal has both high and low amplitude 

noise. Comparatively, the welding voltage signal shows uniform reading with low 

noise. 

 

Figure 3-11: process parameters during welding 

As can be seen from Figure 3-11, it is essential to remove the noise from the channels, 

so as to achieve noise-free measurements. In order to do this, the exact frequency of the 

noise must be established to control it by applying filtering methods. Therefore, the 

welding current and voltage signals were monitored in the frequency domain during the 

welding process and the results are shown in Figure 3-12 (a) and (b) respectively. As 

seen from the figure, two noise frequencies are observed in the welding current channel 

at 333Hz and 336Hz. No significant noise was observed in the voltage channel. 

However, low amplitude noise was observed in the voltage channel at dwell condition 

(Figure 3-9 (b)). In order to remove the noise, a low-pass filter (a filter that attenuates 

signals with frequencies higher than the cut-off frequency), with a cut-off frequency of 
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250Hz was used with both current and voltage channels to account for the low 

amplitude noise. This will ensure that signals passing through the filter will have 

frequencies only below 250Hz. The signals after applying filtering (variation in current 

signal is only due to the operation of the foot pedal) is shown in Figure 3-13. 

 
Figure 3.12 (a) 

 
Figure 3.12 (b) 

Figure 3-12: Current and voltage signals in frequency domain (a) welding current during welding, 

(b) welding voltage during welding 

 

Figure 3-13: Acquired signals after applying filtering 
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3.4 Imaging module  

This section presents the information about the cameras and laser scanner used for the 

development of the robotic welding system. 

3.4.1 Weld area viewing 

Currently most automated welding processes are carried out in enclosed areas, without 

any direct line of sight for the operator. Any fault during the automated TIG welding 

process, such as sticking of the filler wire to the work piece or inconsistent movement 

of the robot arm can result in significant damage to the equipment. Therefore, a clear 

view (indirect) of the weld area is essential to take preventive measures and to avoid 

any catastrophe during the welding process. During the TIG welding process, high 

brightness arc, spatter, electro-magnetic radiation and fumes are produced, which 

complicates the viewing process. High brightness of the arc can saturate the pixels of 

cameras [145].  

In this thesis, a CCD camera based imaging system has been developed to view the 

weld area.  A band-pass filter (notch filter) with an illumination source is used with the 

camera. The band-pass filter allows only a small spectrum of light to reach the camera, 

and therefore eliminates the welding arc wavelength. The illumination source used is a 

LED array (16W) and was used at the same wavelength of the band-pass filter. The 

selection method of the wavelength of the filter and illumination source can be 

described as follows: 

Initially, an Oceanoptics spectrometer was used to investigate the spectrum range of the 

welding arc. Figure 3-14 shows the typical spectrum (from 200-1200nm) observed 

during the TIG welding of a stainless steel material with pure shield Ar gas. As can be 

seen from the figure, the welding arc produces a high brightness in the range of 350-

920nm. Therefore, a wavelength above this threshold should be ideal for viewing the 

TIG welding process. Therefore a wavelength of 950nm (±10nm spectral width) was 

selected as the viewing wavelength. The selected band-pass filter and the selected 

camera (Stemmer IDS UI-5240SE-NIR-GL) with a 14mm lens are shown in Figure 

3-15. The photographic view of the imaging system is shown in Figure 3-16. 
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Figure 3-14: Welding spectrum 

 
 

Figure 3.15 (a) Figure 3.15 (b) 
Figure 3-15: (a)Band-pass filter, (b) lens and camera[146] 

 

Figure 3-16: Camera with illumination source for weld area viewing 

3.4.2 Laser scanner for 3D seam tracking 

Gap measurement and seam tracking is an essential part of the proposed automated 

welding system.  Seam tracking helps to account for any variations in the weld seam 

position, caused by part fit-up. As mentioned in Chapter 2, laser based triangulation 

sensors are increasingly used [15] for welding gap measurement and seam tracking. A 
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schematic view of the triangulation principle used in laser scanners is shown in Figure 

3-17. Triangulation refers to the process of determining the location of a point by 

measuring angles from known points [147].  

 

Figure 3-17: The triangulation principle of laser scanners[147] 

Commercial laser scanners are available as open configuration or as confined 

configuration. In open configuration, the camera and the laser source are attached to a 

movable mounting structure that offers flexibility over the resolution of the system (by 

controlling the angle between laser and camera). However, this can also be a 

disadvantage, as there can be positional deviation due to vibrations or environmental 

temperature, which is not ideal for most industrial TIG welding [148] applications. 

Confined configuration systems, confine the camera and the laser source within an 

enclosed housing, which protects the system from external disturbances and makes it 

more suitable for industrial applications. Therefore, a confined system was selected for 

this study. Among the available confined configuration laser scanners Micro-epsilon 

suits best for the research objectives in this thesis as it is compact and low cost. 

Moreover it is easy to integrate with robotic systems. 

The Micro-epsilon laser scanner uses a laser source and a CMOS sensor to capture the 

image as shown in Figure 3-18. The laser scanner comprises a 690nm (class 2M,) 8mW 

laser source, with a band-pass filter. The laser source helps to illuminate the geometry 

providing distinctive contrast from the surroundings. The reflected light from the laser 

line is captured by a receiver and projected onto the CMOS sensor in the camera. The 

laser scanner information can then be transferred to an external system through 
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EtherNet TCP/IP (Transmission Control Protocol/Internet Protocol) or a Firewire 

network. 

 

Figure 3-18: The triangle shape of the scanning beam [149] 

The laser scanner’s firmware (Scan-Control) is equipped with various profile measuring 

functions such as width, depth, height and angles. It also comes with software 

development kit (SDK) interfaces for customised development in C/C++ and the 

LabVIEW environment [149]. The LabVIEW SDK was preferred for this thesis to 

develop customized measurement functions. Specifications of the laser scanner are 

given in Table 3-3. A series of experiments, which were performed to evaluate the laser 

scanner’s capability, are detailed in chapter 5. 

Table 3-3: Performances of the selected Micro-Epsilon Scan-control 2900-25 laser scanner [149] 

Lateral 

measurement 

range 

(resolution) 

Depth meas. 

Range 

(resolution) 

Profile freq. Point 

measuring 

rate 

Min. 

Standoff 

distance 

Dimensions 

/weight 

Up to 143 mm 

/1280 points 

Up to 265 

mm/2 µm 

Up to 4 kHz 

(4,000 

profiles/sec) 

Up to 2.56 

M 

points/sec 

54 mm 96x85x33 

mm/380 g 
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3.5 Motion control module 

Automated welding processes require accurate positioning and controlled movements, 

so as to achieve the required weld quality. Robot-based welding torch movement in 

automation is expected to increase the efficiency of welding processes while increasing 

the weld quality. In this project, the movement of the welding torch and laser scanner is 

realized through a six axis industrial robot (KUKA KR16). A photographic view of the 

KUKA KR16 is shown in Figure 3-19. Specifications of the KUKA KR16 robot are 

given in Table 3-4. 

 
Figure 3-19: KUKA KR16 robot and robot coordinate systems [150] 

Table 3-4: Robot specifications [13] 

Specification Value 

Maximum Payload 16 kg 

Reach 1611 mm in axes 1 to 5 

Repeatability  0.05 mm ISO9283 

Degrees of Freedom 6 

Robot Weight 235 kg 

Controller KRC2, 2005 (KSS v5.7) 
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The robot can be programmed either from the control panel (with the hand 

programming facility (teach pendent)) or from an external PC. The KRC2 controller 

can provide various motions including continuous, linear and point-to-point motion 

[13]. The controller also has options for direct input/output communication, which can 

be used for communication with external systems such as weld power supplies, PLCs or 

PCs. Communication with any external system can be achieved via the EtherNet 

TCP/IP interface or by standard Analogue/digital I/O. The robot has two operating 

systems; Microsoft Windows and VxWorks. External systems can communicate with 

the robot through the robot controller’s PC (windows OS) or directly with the robot’s 

in-built real-time system (VxWorks) in the robot controller. However, it was 

understood that communication with the windows PC is slower compared to VxWorks 

[151]. Therefore in this study, the communication between robot and external systems 

is performed through an external PC-VxWorks link (through EtherNet TCP/IP) as 

shown in Figure 3-20. 

 

Figure 3-20: Network connection diagram 

The KUKA.Ethernet.KRL.XML [151] protocol enables communication and data 

exchange between the real-time operating system of the KUKA robot and an external 

system (PC or sensors) and vice versa. It includes a real-time Ethernet network card 

installed in the robot controller. The client software (KUKA Ethernet.KRL.XML) is 

installed in the VxWorks operating system for real time data transmission. The server 

application software was developed in the PC running on LabVIEW which 

communicates to the client (the robot) via the TCP/IP protocol to transfer data in XML 

format.  

The data transmission sequence is as follows: 

1. The PC evaluates and determines the data to be sent to the robot. 

Windows VxWorks  

Client software 

Robot controller (client) 

192.0.1.2 192.0.1.1 192.168.0.111 

PC (Server) 

192.168.0.112 

EtherNet TCP/IP 
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2. The data to be sent are patched into an XML string. 

3. The packed XML string is transmitted to the robot controller via the EtherNet 

TCP/IP protocol. 

4. The XML parser contained in KUKA.Ethernet KRL XML extracts the data from 

the XML string. 

5. The extracted data are stored in an intermediate buffer. 

6. The robot program written in KRL at the robot controller executes the functions 

to access the data stored in the intermediate buffer. 

The data transmission sequence can be given in following steps. 

1. The robot receives data from the PC. 

2. The data is checked for XML conformity and well formness. 

3. Received data is copied into appropriate buffer and held there for further 

processing. 

4. The value read from the buffers are then copied to KRL variables. 

A sample of the XML files sent and received from the robot is given in Appendix 3. 

The communication within the KRL programme is executed as follows. 

1. Open connection (at the real time network card). 

2. Send a trigger signal to the PC via EtherNet TCP/IP. 

3. Wait for data from the PC. 

4. Read data from the variables. 

3.6 System integration 

3.6.1 Hardware integration 

As mentioned at the start of this chapter, the complete system has four different 

modules that need to be integrated together. TIG welding machine, KUKA KR16 robot, 

laser scanner (3D Scan-control) and welding sensors are to be connected to a PC which 

will act as the central controller running on LabVIEW. The PC will also possess all the 

algorithms required for robotic welding. A summarized system integration diagram of 

the robotic welding system is shown in Figure 3-21.  
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Communication from the PC to the sub-modules is realized as follows. 

 Welding machine : Analogue/Digital IO 

 Robot : Ethernet TCP/IP  

 Laser scanner : Ethernet TCP/IP  

 Weld camera : Ethernet TCP/IP 

 Welding sensors : Analogue/Digital IO 

The control diagram of the system developed is shown in Figure 3-22. Initially the 

robot is provided with its nominal path to follow and the start parameters (welding 

current, pulse frequency, duty cycle, base current and wire feed rate) of the welding 

machine. The robot will first move along the nominal path and collect profile data and 

process it to find the joint centre positions, joint fit-up and cross sectional area variation 

along the joint. In the welding-run this information will be used to adjust welding 

machine settings. 

 

Figure 3-22: Control diagram of the system 

A welding table with a guarding system was designed and fabricated for safe automated 

robotic welding. The guarding panels were selected so as to absorb the arc light or ultra 

violet rays (UV) generated during the welding process. A Kemper extractor was used 

with the system to extract the fumes generated during the welding process. A welding 

fixture was also designed and fabricated which is shown in Figure 3-23. 
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Figure 3-23: Welding fixture 

3.6.2 Software integration 

To achieve successful automation of the TIG welding process, several intelligent 

algorithms were developed in this thesis including a 3D feature extraction algorithm 

(Chapter 6), a seam tracking algorithm (Chapter 7), a process parameter optimization 

algorithm (Chapter 8), and an intelligent parameter selection algorithm (Chapter 9). 

These algorithms are discussed further in the following chapters. 

As part of the work carried out in this thesis a novel software tool was developed for 

TIG welding automation, which is capable of controlling the robot, initiating the laser 

scanner, optimising the welding process parameters by processing the data received 

from the sensors (including the laser scanner), performing seam tracking in 3D (Chapter 

7), predicting weld bead geometry (Chapter 8), intelligent selection of welding machine 

settings (Chapter 9) to obtain desired weld bead shape and 3D robotic welding. The 

system software can be divided into four sub-modules and is shown in Figure 3-24.  
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Figure 3-24: Software integration diagram 

The photographic views of the software sub-modules developed using the LabVIEW 

environment is shown in Figure 3-25 to Figure 3-28. Detailed descriptions of these 

modules are discussed in subsequent chapters. 

 

Figure 3-25: 3D Seam tracking software module 
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Figure 3-26: Sensor feedback software module 

 

Figure 3-27: 3D Feature extraction software module 

 

Figure 3-28: Weld process control software module 
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The methodology for carrying out 3D seam tracking and robotic TIG welding using the 

above mentioned hardware and software modules with intelligent algorithms are 

discussed in detail in later chapters. 

3.7 Summary 

The work presented in this chapter discussed the approach used to select and set-up the 

robotic TIG welding cell. Detailed discussion of the equipment and their technical 

specifications were presented. The Fronius Magicwave 4000 welding machine was 

selected for the automated TIG welding process due to its robust integration 

capabilities. The Micro-Epsilon Scan-control was selected as the laser scanner because 

of its compact size and low cost. It suits well for automated seam tracking. Hardware 

integration and software development were also discussed.  The data processing 

algorithms, which were used to remove noise from the data obtained from the welding 

sensors, were discussed. Visualisation of the TIG welding process using a CCD camera, 

which requires a band-pass filter and an illumination source at a wavelength of 950nm 

(±10nm spectral width), was also discussed.  

A novel software tool was developed to control all the modules of the automated system 

(laser scanner, welding machine, robot, camera, welding sensors and NI DAQ system) 

from a PC which was used as the central controller. The robotic welding system was 

capable of performing automated TIG welding and its intelligent algorithms and system 

performance is discussed in detail in the following chapters.  
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4 Human Knowledge and Skill Capture in TIG Welding 

 

This chapter presents the work carried out to understand how experienced human 

welders approach the difficult and complex task of TIG welding. A novel study on 

quantifying manual TIG welding, which will ultimately help intelligent automation of 

TIG welding is discussed. Through manual TIG welding experimentation, the study 

identifies the key process variables, critical tasks and the strategies adapted by manual 

welders. Controllability of the welding process parameters and human actions in 

challenging welding situations (different weld joint types) were studied both 

qualitatively and quantitatively. Results show that welders with better process 

awareness can successfully adapt to variations in the geometry and the TIG welding 

process. Critical decisions taken to achieve such adaptations are mostly based on visual 

observation of the weld pool. Results also reveal that skilled welders prioritise certain 

process parameters to simplify the complexity of the TIG welding process. 

4.1 Introduction 

Despite the merits of the manual TIG welding process in the manufacture of aerospace 

components in general, a negative aspect with it is the shortage of skilled manual 

welders and more importantly health and safety concerns [27]. Attempts to develop a 

straightforward robotic TIG welding solution for aerospace components in the last 

decade have failed to achieve the desired weld quality. Studies indicate that the lack of 

process knowledge and adaptability are the major weaknesses of robotic TIG welding 

[6]. Most of the existing welding robots (such as spot welding robots) perform pre-

programmed tasks in assembly lines which have less variation within the parts and the 

processes [53][152]. Such operations do not require much intelligence and adaptability 

as the decisions can be pre-programmed. However, applications such as TIG welding of 

aerospace components involves complex 3D shaped components [40] and require 

considerable real-time attention to any minor process variation. This is an issue with the 

existing robotic welding systems, as their capabilities are limited in real-time sensing 

and decision making. Furthermore, for any successful automation, the process 

fundamentals need to be understood in the context of automation.  
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Some of the previous research carried out in this area have attempted to duplicate 

human behaviour in to an automated solution [152]. However, intelligent automation is 

not about producing complete like for like automation solutions to replace a human 

worker. The Best automation solutions can be produced by understanding the 

methodology used by a human worker, and using that information for better 

automation. Prior to any automation, it’s important to understand which tasks should be 

considered for automation and how they should be automated, without which the 

automation solution may not be economically or practically viable. As shown in Figure 

4-1, this research work aims to understand the methodology adopted by a human welder 

to achieve a good weld, and use the best automation technique to incorporate this 

methodology into an automated solution.  

 

Figure 4-1: Output of manual and robotic welding  

4.2 Methodology for human knowledge capturing in TIG welding 

Quantitative data was collected from the manual TIG welding process, and statistical 

techniques were used to analyse the data. Interviews were carried out to collect 

qualitative data and were correlated with the quantitative data.  
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4.2.1 Sampling Method 

To get a better understanding of human behaviour during TIG welding, manual welders 

with various skill levels were chosen (as shown in Table 4-1).  

Table 4-1: Criteria for defining skill levels for testing 

Skill Level Selection Criteria 

Novice No experience in welding. 

Semi-Skilled 
Have experience in other welding types but no 

experience in TIG welding. 

Skilled Years of experience in TIG welding 

The study of TIG welding with novice skill levels will elucidate the types of defects and 

errors that could occur during initial robotic TIG welding (i.e. without any process 

knowledge or adaptive control sensors). Semi-skilled welders were selected to identify 

the extent of knowledge that is required for producing good TIG weld samples. TIG 

welding experts are expected to produce the best quality welds and the methodology 

used by them is expected to provide the key information for automation.  Moreover, 

their behaviour at challenging welding conditions could be used to correlate to the 

errors that an automated system could fail under when facing a similar challenge.  

4.2.2 Participants  

Due to individual differences between operators, more than one operator representing 

each knowledge level was recruited to the study. All the experiments were performed 

according to the ethics guidelines set out in the Code of Ethics and Conduct of the 

British Psychological Society (2009) [153]. Welders were given prior introduction to 

the welding equipment and the risks involved in welding. Selected participant profiles 

are described in Table 4-2. 

 

 

 

 

 



 

70 

 

Table 4-2: Description of manual welders 

Welder Experience 

N1 No experience in welding 

N2 Have very small experience in welding 

N3 No experience in welding 

SS1 Good experience with manual metal arc welding but only one 

instance has done TIG welding. Has experience with welding 

automation with an x-z linear rail. 

SS2 Good experience with all types of welding processes except TIG 

welding. 

SS3 Has some experience in TIG welding.  

S1 Has a background in aircraft maintenance with the Royal Air Force 

and currently teaches a range of welding techniques to undergraduate 

students. 

S2 Has a background in high quality welding and routinely undertakes a 

range of bespoke manual TIG welding projects. 

S3 Over 40 years’ experience in TIG welding. 

 

N : Novice 

SS : Semi-Skilled 

S : Skilled 

 

 

4.2.3 Experimental setup and materials 

A block diagram of the experimental setup is shown in the Figure 4-2(a) and images of 

the setup are shown in Figure 4-2(b). The TIG welding equipment used for the task 

include: Fronius Magicwave 4000 welding set with welding torch, argon inert gas 

supply, earth cable, a steel covered work bench, a stool for the operator, pre-cut base 

metal practice pieces and filler rods.  The experimental samples are of size 200mm x 

50mm x 1.5mm (stainless steel 316l) with 1.6mm filler rods. Standard personal 

protective equipment (PPE) was used during the experiment including, welding masks, 

lab coats and protective boots.  Before each experiment, the work pieces were cleaned 

using a wire brush to assure better weld quality and to avoid defects due to oxides on 

the surface. A file was used for edge preparation of the part. 

S 1 

Skilled Welder 1 
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Figure 4.2(a) 

 

Figure 4.2(b) 

Figure 4-2: System diagram of the experimental setup (a) block diagram, (b) image of the physical 

set-up 

 

Three different types of weld joints ( butt, lap and fillet joint) were selected as shown in 

Figure 4-3. A butt weld is considered to be more difficult according to the experts, 

followed by the fillet and finally the lap joint. More defects are expected to be present 

in a butt joint, due to the gap between the parts. A lap weld joint is expected to be more 

easily weldable than the fillet weld, as the assessment of the weld seam is difficult in a 

fillet weld.  
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Figure 4-3: Three weld joint selected for testing (a) Butt joint, (b) Lap joint, (c) Fillet joint 

4.2.4 Testing method 

All the welders were provided with an introduction to health and safety and also the 

operating procedure of the equipment prior to the experiments. One practice run was 

performed for all the novices to make sure they felt comfortable during the experiments. 

The following four joint configurations were then experimented with for each welder: 

1. Butt weld with a constant, 1mm, gap 

2. Butt weld with a varying gap from 1mm to 3mm 

3. Lap weld with zero gap 

4. Fillet weld with zero gap 

The varying gap joint was selected to study the adaptability of the welders for geometry 

variations and to understand human adaptation for successful automation. Four runs for 

each welder were carried out, which lasted between 1 to 2 hours. Each weld was 

followed by a discussion session to investigate the experience of the welder during the 

laying of the weld. All important points raised during the discussion were noted down 

for further analysis. 

Welding current was measured using a Hall Effect current sensor and the welding 

voltage was measured between the opposite polarities of the welding machine. All the 

data were logged simultaneously into a PC through the National Instruments Data 

Acquisition (NI DAQ) system at a sampling rate of 1 kHz. A low-pass filter was 

designed to filter any noise generated within the data acquisition system.  

The Stemmer IDS UI-5240SE-NIR-GL camera was used to measure the weld angles of 

the torch and filler wire as shown in Figure 4-4. Videos of each weld were recorded and 

weld angles were calculated using the LabVIEW Image processing toolkit (Edge 

detection). Typical torch-wire orientation is shown in Figure 4-5. Angles were only 

 

Figure 4.3(a) Figure 4.3(b) Figure 4.3(c) 



 

73 

 

considered in the x-z plane as the movement of torch and filler wire in the y direction 

(perpendicular to travel direction and normal of work piece plane) is insignificant and 

could not be measured accurately using the single camera system. 

 

Figure 4-4: An image of the camera setup for testing a welder 

 

α : Forward angle 

β : Weld angle 

µ : Back angle 

s : Welding Speed 

f : Filler wire feed frequency 

h : Stand-off distance 

c : Filler wire consumption rate 
 

Figure 4-5: Torch and filler wire position definition 

The lliterature recommendation is to maintain weld angles in the range of α: 60-85°, β: 

80-90°, µ: 15-30° [126]. Stand-off is the distance between the welding torch tip and the 

work piece surface. This is also referred to as the arc length. It is difficult to extract this 

information from the video as the bright light saturates the area around the point of arc. 

But since voltage is directly proportional to the stand-off, the equation presented in 

Appendix 4 will be used to estimate the stand-off distance. Average welding speed was 

calculated from equation 4.1, using the welding time obtained through the offline video. 

µ 

x 

h 

S 

β 

α 

f 

z 



 

74 

 

Welding speed was assumed to be uniform along the weld and varying only among 

different joint configurations. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑒𝑙𝑑𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 =
Length of the weld

𝑊𝑒𝑙𝑑 𝑡𝑖𝑚𝑒
 (4.1) 

The average filler wire consumption rate was calculated using equation 4.2.  

𝐹𝑖𝑙𝑙𝑒𝑟 𝑤𝑖𝑟𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
(𝑙1 − 𝑙2)

𝑊𝑒𝑙𝑑 𝑡𝑖𝑚𝑒
 (4.2) 

where Ɩ1 and Ɩ2 are the length of the filler wire before and after welding respectively. 

Total number of filler wire movements in to the weld pool was counted from offline 

videos and the filler wire feed frequency was calculated using equation 4.3. 

𝐹𝑖𝑙𝑙𝑒𝑟 𝑤𝑖𝑟𝑒 𝑓𝑒𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑙𝑒𝑟 𝑤𝑖𝑟𝑒 𝑑𝑖𝑝𝑝𝑖𝑛𝑔𝑠

𝑊𝑒𝑙𝑑 𝑡𝑖𝑚𝑒
 (4.3) 

A typical welding current and voltage diagram is shown in Figure 4-6. The following 

parameters could be obtained from it.  

 

Figure 4-6: Typical welding diagram 

 Average welding current (Iavg): This is the mean value of current signal between 

where the welder starts and stops moving the welding torch.  

 Standard deviation in current: This describes the average deviation in welding 

current from its mean value.  

 Average welding voltage (Vavg): Average voltage is the mean value of the 

voltage signal and is measured between the start and stop of torch movement. 

Interval used to calculate average values 
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 Standard deviation in voltage: This is the average deviation in voltage from its 

mean value. Standard deviation in voltage is an indirect measurement of the 

amount of control the welder has on torch positioning.  

An INSTRON 8801 tensile testing machine was used for carrying out the tensile tests to 

find the breaking strength of the welds. In addition to these quantitative measures, 

qualitative measures were also recorded. Notes were taken after each weld and 

experience of the welder was noted down. Videos were recorded for further analysis.  

4.3 Results and discussion 

Process parameter variations for different weld joint types were measured. Parameters 

such as voltage, current, speed, wire feed frequency and wire consumption rate used by 

various welders for various joint configurations are presented in this section. All these 

parameters are compared against the different skill levels. Qualitative results from the 

interview sessions are also discussed in this section. 

4.3.1 Effect of skills on weld appearance 

To study the significance of skill level on the weld bead quality, the weld produced by 

various manual welders (constant gap butt weld) were assessed for visual imperfections. 

A weld produced by novice (N1) welder is shown in Figure 4-7.  
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Figure 4.7 (a) 

 

Figure 4.7 (b) 

 

Figure 4.7 (c) 

Figure 4-7: Butt weld completed by a novice welder (a) welding current and voltage variation 

against time, (b) top view of the weld, (c) bottom view of the weld 

As can be seen from the figure, the welding was not of good quality and was stopped at 

the middle (due to contamination of the electrode). During the first half of the weld, the 

novice faced difficulties in establishing the weld pool which resulted in poor quality. 

Weld ripples noticed in the first half of the weld is predominantly due to melting of the 

filler wire by the arc, rather than melting created by the heat of the weld pool. A decent 

weld pool was established in the second half of the weld which resulted in better quality 

weld than the first half. This result demonstrates the importance of establishing the weld 

pool before the movement of the welding torch, which has to be taken into account in 

welding automation. 
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It can also be seen from figure 4.7(b) that heat affected zone (HAZ: shown in the 

figure) is not consistent. For a good weld it is vital to maintain constant heat input 

throughout the length of the weld. As can also be noted from Figure 4.7(a), the welding 

voltage varies significantly, which indicates the welder’s inexperience in maintaining 

the torch height at a constant level. In addition, it can be seen from Figure 4.7 (b) that a 

good penetration can only be achieved once the weld pool is established. 

A butt weld performed by a semi-skilled welder (SS1) is shown in Figure 4-8.  

 

Figure 4.8(a) 

 

Figure 4.8(b) 

 

Figure 4.8(c) 

Figure 4-8: Butt weld completed by a semi-skilled welder (a) welding current and voltage variation 

against time, (b) top view of the weld, (c) bottom view of the weld 

As expected and as shown in Figure 4.8 (a), the welder has maintained a constant 

voltage (constant stand-off is maintained). However, the welding current has been 
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reduced rapidly at the end of the weld which may affect the mechanical strength of the 

weld at that point (comment from skilled welders). As seen from the figure 4.8 (b), the 

weld ripples were not uniform (weld width varies along the length of the weld), even 

though the HAZ is consistent along the weld. It was also noted from the sample that the 

weld contains excessive reinforcement with inadequate penetration shown in figure 4.8 

(c). 

Data obtained for a skilled welder is shown in Figure 4-9.  

 

Figure 4.9 (a) 

 

Figure 4.9 (b) 

 

Figure 4.9 (c) 

Figure 4-9: Butt weld completed by a skilled welder (a) welding current and voltage variation 

against time, (b) top view of the weld, (c) bottom view of the weld 

As seen from the figure 4.9 (b), it is evident that the welder has maintained a constant 

ripple frequency, bead width, HAZ and acceptable reinforcement. Welding current was 

reduced gradually at the end compared to other two skill levels as shown in figure 4.9 

(a). Voltage is consistent which suggests the welding torch was maintained at a constant 

A
m

p
li

tu
d

e
 

time/s 



 

79 

 

stand-off. As seen in the bottom view in figure 4.9 (c), the welder has achieved 

acceptable penetration as well. 

Images of the welding results of the other welders are presented in Appendix 6. 

4.3.2 Effect of welding skills on process parameter control 

This section presents the results and discusses the effect of the selected skill levels on 

process parameter control. 

4.3.2.1 Welding current 

The average welding current and respective standard deviation maintained by the 

welders is shown in Figure 4-10 and Figure 4-11. As noted, all the welders have used a 

similar range of welding current; however the standard deviation shows significant 

variation between the skill levels. This variation can be explained on the basis of the 

need for simultaneous control of more than one process parameter during the welding 

process, such as control of welding current and wire feed rate. Novice welders have 

used constant current during the welding process (lower standard deviation) and may 

have focused on controlling other parameters (such as torch position). However, the 

skilled welders have controlled most of the parameters (S1-varying current, constant 

gap, optimal torch position) and have demonstrated the need for simultaneous control of 

more than one parameter. This result confirms that the TIG welding is a complex 

process and any automation attempt should consider simultaneous control of multiple 

parameters. 

 

Figure 4-10: Average welding current used by different welders 
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Figure 4-11: Standard deviation in welding current for different welders 

Different techniques used by welders in welding current control are shown in Figure 

4.12. 

 
Figure 4.12(a) 

 
Figure 4.12(b) 

Figure 4-12: Different manual welding techniques (a) pulse created by the manual welder from the 

foot pedal, (b) normal welding technique used by welders 

According to Figure 4-11, S2 show a significantly high standard deviation because S2 

deliberately used a special technique of oscillating the foot pedal to create a pulse in 

welding current signal. Post study interviews suggested that S2 believes he can reduce 
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the heat input to the work piece by using this pulsing method and therefore he can 

achieve less deformation. As seen in Figure 4-12 (a) S2 has managed to achieve a lower 

average current (35A) compared to the other welders (48A) in Figure 4.12 (b). 

Presently this technique is adopted in automation for welding thinner work pieces so 

that the deformation can be minimized. 

A photographic view of the welded sample with pulsed current is shown in Figure 4-13. 

As can be noticed, the pulsing technique shows good penetration, however the weld 

appears to be grey from the bottom side. This is not attributed to pulsing, but the 

ineffectiveness of human welder in simultaneous control of multiple tasks. During the 

oscillation of foot pedal (to generate pulsed welding current), the oscillating effect 

indirectly affects the voltage signal as shown in Figure 4-14. It seems, even a skilled 

human welder faces difficulty to synchronize two motions together (in this case hand 

and foot movement).  

 

 

Figure 4.13 (a) Figure 4.13 (b) 
Figure 4-13: Pictures of bottom side for different weld techniques (a) pulsed current, (b) constant 

current 

 

Figure 4-14: Indirect effect of pulsing on the voltage signal 
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 Welding voltage 4.1.1.1

The average voltage and standard deviation in voltage respectively are shown in Figure 

4-15 and Figure 4-16. As noticed from Figure 4-15, novices have a higher average 

voltage compared to the other two skill levels. This should be attributed to novice’s 

unawareness of the importance of holding the torch at an appropriate stand-off distance. 

At higher stand-off distances the weld pool fails to get the required gas shielding and 

consequently a poor weld quality is seen. This result indicates that it is important in 

automation to control the robot path in a way that the stand-off distance is always 

maintained within an acceptable range. 

 

Figure 4-15: Average voltage measured for different skill levels 

The standard deviation in the voltage provides an indication of the welders’ control 

over the torch positioning. As observed in Figure 4-16, novices have a higher standard 

deviation in voltage compared to the other two skill levels. This could be due to their 

inexperience or lack of knowledge of the importance of maintaining a constant voltage 

throughout the weld. Post-weld interviews indicated that novice welders had difficulty 

in the simultaneous control of both the torch positioning and the foot pedal control 

which may have been the reason for their higher standard deviation in voltage. 

However, post-weld interviews with skilled welders shows that the torch movement 

(vertically) should be kept to minimum, which is reflected from the voltage readings. 

As mentioned earlier, the welder S2 used a unique technique of oscillating the current 

by using the foot pedal, which has affected his performance on maintaining consistent 

stand-off distance. This has resulted in a relatively higher standard deviation in voltage 

for S2 compared to other two skilled welders (S1 and S3). These results also suggest 

that any voltage variation which can occur in robotic welding should be kept at 

minimal.  
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Figure 4-16: Standard deviation in voltage for different skill levels 

4.3.2.2 Welding speed 

The average welding speed maintained by the welders is shown in Figure 4-17.  

 

Figure 4-17: Average welding speed maintained by different welders 

According to the figure, novice welders attempt to move faster than the other welders. 

Post weld interviews suggested that this is because it is difficult for the novice to hold 

the torch for a long period of time.  Novices also came across difficulties in feeding 

filler wire and therefore ran-out of filler wire before completing the weld. As a result, 

novices attempted to complete the weld as quickly as possible. It was observed from the 

captured welds that attempting to move faster can result in losing the weld pool and 

therefore poor quality as shown in Figure 4-18. 
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Figure 4.18(a) Figure 4.18(b) 

Figure 4-18: Effect of welding speed on weld finish (a) Higher speed (b) average speed used by a 

skilled welder 

4.3.2.3 Filler wire frequency and consumption 

The filler wire feed frequency and consumption rate observed for different welders are 

shown in Figure 4-19.  

 
Figure 4.19 (a) 

 
Figure 4.19 (b) 

Figure 4-19: Filler wire feed frequency and consumption rate for different welders (a) filler wire 

feed frequency, (b) filler wire consumption rate 
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As noticed from Figure 4-19(a), novice welders used a lower wire feed frequency 

compared to the semi-skilled or skilled welders, however the novice welders have 

consumed more filler wire than other welders (Figure 4-19(b)). This is contradictory 

since it was expected that the filler wire consumption should increase with higher feed 

frequencies (it was observed from videos that the feed amount does not vary 

significantly).  

Analysis of the offline weld videos showed that the novices feed the filler wire into the 

arc, whereas the skilled welders feed the filler wire into the melt pool. Feeding the filler 

wire to the weld pool is a very important factor in TIG welding because it assures 

continuity and consistency of the weld bead. This is reflected in the weld images in 

Figure 4-20 where the novice has failed to achieve a continuous weld compared to the 

more experienced welder. Feeding of the filler wire into the melt pool results in a more 

uniform weld bead and should be considered as a critical task in TIG welding 

automation. 

 

 

Figure 4.20 (a) Figure 4.20 (b) 
Figure 4-20: (a) Globular droplets from melting the wire from the arc (b) a weld performed by 

feeding the wire in to the melt pool 

4.3.2.4 Stand-off distance 

The Stand-off distance for the different welders is shown in Figure 4-21.  

 

Figure 4-21: Torch stand-off distance for different welders 

0

1

2

3

4

5

6

7

8

9

N1 N2 N3 SS1 SS2 SS3 S1 S2 S3

S
ta

n
d

-o
ff

 (
m

m
) 

Welder 



 

86 

 

As can be seen in the figure, novice welders have higher stand-off distances compared 

to welders of other skill levels. Higher stand-offs will reduce the gas shielding around 

the welding arc and can result in poor weld quality. Also, an increase in stand-off will 

result in an increase of the voltage and subsequently more thermal deformation of the 

part. Therefore it is vital in automation to understand and maintain the stand-off 

distance to achieve the required weld quality. 

4.3.2.5 Torch / Filler-Wire Orientation 

Example photographic views of the welders with different skill levels are shown in 

Figure 4-22(a), (b) and (c).  

  

Figure 4.22(a) Figure 4.22(b) 

 

Figure 4.22(c) 
Figure 4-22: Images taken for different skill levels (a) novice welder, (b) semi-skilled welder, (c) 

skilled welder 

As seen from Figure 4-22(c), the skilled welder is monitoring the process very closely 

(head position much closer to the weld zone) and maintains a comfortable position to 

visualize the weld pool compared to the other welders. Visualisation of the weld pool 

and subsequent adaptive control of the process parameters is significant in TIG welding 

and should be considered in automation. Weld angles are also important in maintaining 
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a the required weld pool shape and better gas shielding around the weld. As mentioned 

in Section 1.5.3, For a good weld, it is recommended to have the weld angles; α: 60°-

85°, β: 80°-90°, µ: 15°-30° [126]. As noted from Figure 4-23, only the skilled welder 

maintains the weld angle within this acceptable range. 

 

Figure 4-23: Torch/filler wire orientation 

4.3.3 Process Parameter Variation for Weld Shapes/complexity 

This section presents the results of the manual welder’s behaviour in process parameter 

selection for the different joint types
2
. 

4.3.3.1 Average welding current 

The average welding current used by the welders for the various joint types is shown in 

Figure 4-24.  

 

Figure 4-24: Average current variation against joint type 
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As can be seen from figure, the average welding current is lower for the butt joint 

compared to the other joints. The reason is that a lap or T-joint doesn’t have any gap 

between the plates (zero gap condition) and therefore requires a higher power to melt 

the plates which is achieved by a higher current. Also noted from the figure is that the 

butt weld with a varying gap would require a lower welding current compared to the 

butt weld with a constant gap. This is due to the fact that, an increase in the gap results 

in the rapid melting of the work pieces, which then requires a lower welding current to 

reduce the heat input. 

4.3.3.2 Average welding voltage 

Average welding maintained for the different joint types by the welders is shown in 

Figure 4-25. As can be seen from the figure, there is no significant variation in the 

average welding voltage for the different weld joints. This implies that the welders do 

not change the stand-off to adapt for joint type. 

 

Figure 4-25: Average voltage against joint type for different welders 

4.3.3.3 Filler wire consumption/feed frequency 

The filler wire consumption rate for the different joint types is shown in Figure 4-26.  
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Figure 4-26: Filler wire consumption rate for different weld joints 

According to the figure, more filler wire was used for the Butt-weld-varying gap joint 

than the other joints. This is related to the high volume of filler required to fill the 

varying gap joint compared to the other joints. The amount of filler wire used in the Lap 

and T-joints are low due to the zero-gap-fit-up. Also noted from the figure is that more 

filler was used with T-joint than Lap joint. This is attributed to the rapid melting of the 

edge of the lap joint compared to the T-joint. The filler wire feed frequency showed a 

similar pattern as the filler wire consumption. 

4.3.3.4 Welding speed 

The average welding speed used for each joint type is shown in Figure 4-27.  

 

Figure 4-27: Welding speeds used for different weld joint types 

According to the figure, most of the welders use lower speeds for Lap and T-joints 

compared to Butt joints. This is due to the zero-gap-fit-up for Lap and T-joints, which 

require a higher heat input and consequently lower speeds. However, novice welders 
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tend to move faster compared to other welders, as they attempt to complete the weld as 

soon as possible (explained in section 4.3.2.2). 

4.3.4 Analysis based on post-weld interviews 

To interpret the data observed during welding, interviews were carried out after each 

welding run. Videos were also observed offline and compared with the experimental 

results. Critical tasks, important decisions and actions were identified from the post-

weld interviews through a questioner to the welders (Refer Appendix 7). Table 4-3 

shows the number of welders who were successful in each critical task, and, as 

expected, the skilled welders were successful in most of the tasks. The novice welders 

were not successful in most of the tasks, due to a lack of process knowledge and 

therefore could not make the right decisions, which is also evident from the 

experimental samples (as seen in Figure 4-7).  

Table 4-3: Results of the post-weld interview – Welder task competency 

  Critical Task 

Novice 

(Out of 

three) 

Semi-

Skilled 

(Out of 

three) 

Skilled 

(Out of 

three) 

1 
Holding torch and filler rod at correct place before 

striking the arc 
2 3 3 

2 
Pressing the foot pedal to the right amount to strike 

the arc 
2 3 3 

3 Establish the weld pool before moving 1 3 3 

4 
Start moving the torch and filler wire gradually with 

the weld pool 
1 3 3 

5 Feeding the filler wire to the weld pool 0 2 3 

6 
Controlling the process parameters in appropriate 

levels 
0 2 3 

7 
Maintaining a constant weld pool size and ripple 

frequency 
0 2 3 

9 Maintain a constant stand-off distance 0 2 3 

10 Maintaining weld angles in the specified range 0 0 3 

11 
Release of the foot pedal gradually at the end of 

welding 
0 1 3 

12 Holding the torch at the end until gas flow finishes 0 0 2 

 Weld quality by visual inspection 0/3 Good 2/3 Good 3/3 Good 

Failure to accomplish the critical tasks (as can be seen from Table 4-3, the Novice fails 

to accomplish 5 of the12 tasks) can significantly affect the weld quality (Figure 4-7). 

These results demonstrate the need for the successful completion of each critical task to 
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achieve a good weld quality. Methodologies should be adopted in the robotic welding 

system to for the successful completion of all the critical tasks.  

The typical feedback methods used by the welders obtained from post welding 

interviews are given in Figure 4-28.  

 
Figure 4-28: Decision making criteria for critical tasks identified in TIG welding 

As can be seen from the figure, most of the welding parameters are predominantly 

controlled based on visual observation of the weld pool. A few welders have also used 

the acoustic feedback from the welding arc to control the voltage and therefore the 

stand-off distance. However, these results confirm the significance of visual feedback in 

TIG welding automation. 

4.3.5 Manual welder’s behaviour at a challenging welding task 

Automation of welding has been attempted numerous times in the past, and the 

solutions are quite successful on simple geometries. However, most automation 

processes fail to produce the required weld quality with complex geometries. In this 

section, a complex geometry (corner of a plate) was welded by manual TIG welding to 

understand the methodology adapted by the human welders control the weld pool at the 

corners. A lap joint configuration (L-shape weld) was used as shown in Figure 4-29 for 

the experimentation.  
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Figure 4-29: Sample weld joint to check human adaptability 

A sample weld completed by a skilled manual welder is shown in Figure 4-30 (a). As 

can be seen the width of the weld bead and HAZ was uniform throughout the weld. 

Figure 4-30 (b), (c) and (d) shows the welding current used for three trials.  
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Figure 4.30(a) 

 
Figure 4.30(b) 

 
Figure 4.30(c) 

 
Figure 4.30(d) 

Figure 4-30: Experimental results of welding corners (a) welded sample, (b) trial-1, (c) trial-2, (d) 
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As can be seen from the figures, the manual welder has reduced the welding current at 

the corner. By reducing the current the total heat transferred to the work piece is 

reduced and therefore the consistency of the weld bead is assured. 

This is a single case study carried out to understand the methodology used by manual 

welders in a challenging weld shape. A similar method could be used for any 

challenging situation and a similar methodology could then be implemented in an 

automated solution for all the measured process parameters. 

4.2 Summary 

The work reported in this chapter was focused on understanding the manual TIG 

welding process, in the context of TIG welding automation. The methodology adopted 

by human welders to control the process parameters for complex geometries with 

challenging welding situations was investigated. TIG welding is complex and human 

welders without process knowledge failed to produce a good weld.  Experienced 

welders achieved good weld quality even for complex geometries. Human welders use 

different techniques during the welding process, and each technique has its own 

advantages and disadvantages. Welding current and wire feed rate are the most 

significant parameters that need to be controlled and prioritised to account for variations 

in geometry and heat input. Results indicate that the adaptive control of parameters is 

vital for successful TIG welding automation. Critical tasks in TIG welding includes, 

establishing the weld pool, feeding filler wire to the weld pool and maintaining constant 

weld pool shape. The human welders control most of these critical tasks using visual 

observation of melt pool. Feedback control on the basis of visual information from the 

weld pool is essential for successful automation of TIG welding. The methodology 

adopted by human welders to control the welding was established and will be used in 

the chapters on automation of TIG welding. 
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5 Performance evaluation of the 3D laser scanner 

 

Work presented in this chapter attempts to establish the performance of the 3D laser 

scanner (Micro-Epsilon:Scan-Control). A novel definition of the best strategy for 

testing prior to its use is proposed. A similar testing approach can be applied to any 

industrial laser scanner prior to its application to minimize any ambiguity in 

measurements. 

5.1 Introduction 

Laser scanning results must meet specifications (for example: accuracy) in order to 

provide the necessary performance standards for an industrial application. On the other 

hand, if instruments and methods yield performance far above the needed standard, it 

will result in unnecessary cost and expenditure. Therefore, any scanning task should 

carry not only the derivation of the relative positions of points and objects but also an 

estimation of the accuracy of the results. Moreover, the specifications given by the laser 

scanner manufacturers are not standardised and hence not comparable. During initial 

experiments it was also found that laser scanners return unexpected results (such as 

noisy data points) at different operating conditions.  

Laser scanners are built in small batches and their accuracy varies depending on the 

calibration and handling of each individual instrument. Environmental conditions, 

surface reflectivity, angle of viewing, surface roughness and stand-off distance are 

some factors which could also affect the measurement performance. Therefore, it was 

very important to evaluate and establish the performance specifications of the laser 

scanner, as this specifies the accuracy of any measurements taken during its application.  

This chapter presents a set of experiments to evaluate a compact red-light laser scanner 

to understand its performance in challenging conditions such as variable illumination, 

viewing angle, stand-off height and surface reflectivity. The best working range was 

established and regions where the laser scanner produces noisy and missing data was 

identified and quantified. Reasons for any inadequate results were identified and 

discussed. Finally, recommendations are made for minimizing the error in the data 

acquired from any laser scanner. A similar approach could be taken on any industrial 
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laser scanner to check its performance before use in an actual application so that the 

users understand the limitations and take any necessary actions to overcome them. 

It should be noted here that parameters such as the electrical interference was not 

considered in the work presented in this thesis as it was out of scope of the thesis. Also 

the sensor performance is not affected while it is welding since this thesis considers 

two-pass approach (First scanning and then welding).  

5.2 Experimental setup 

In Figure 5-1, the photographic view of the experimental set-up is shown with the 

Micro-Epsilon Scan-control 2900-25 laser scanner mounted on the end effector of the 

KUKA KR16 robot. The KUKA robot provides relative motion which allows 3D data 

to be obtained.  

 

Figure 5-1: Photographic view of the experimental set-up 

The laser scanner comes with software, called Scancontrol, which could be used to 

measure surface features such as gap width, depth and height. Figure 5-2 shows a 

screenshot of the software display used to measure the width of a feeler gauge. Similar 

methods were used for all the measurements carried out for the tests presented in this 

chapter. 
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Figure 5-2: Photographic view of the Scan-control software 

The manufacturer specified technical parameters of Scancontrol 2900-25 used in this 

study are given in Table 5-1. 

Table 5-1: Manufacturer specified data of the Micro-epsilon Scancontrol 2900-25 laser 

scanner[149] 

Measuring range Z-axis extended 26mm (53-79mm) 

Spatial resolution 20µm 

Depth resolution 20µm 

Laser line width 23.2-29.3mm 

 

5.3 Methodology, results and discussion 

As shown in Figure 5-3, a set of metric feeler gauges (0.05-1mm: 20 Blatt) and a set of 

slip gauges (M&W 700 Series) were used as the calibration samples for the 

experiments. All the experiments were carried out at room temperature between 16-

19˚C. Each measurement was repeated three times to assure repeatability. 

  

Figure 5.3 (a) Figure 5.3 (b) 

Figure 5-3: Calibration samples (a) feeler gauge set, (b) slip gauge set 
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Section 5.3.1 compares the manufacturer specified specifications with the actual data 

obtained during testing. Performance evaluation tests were designed to find the optimal 

operating range for the 3D laser scanner, including; 

 working span  

 vertical and horizontal resolution  

 repeatability 

 measurement accuracy at different exposure levels 

 illumination conditions  

Factors affecting the data acquisition performance of the laser scanner are presented in 

Section 5.3.2. These are; 

 stand-off height 

 steepness angle 

 angle of incidence 

 surface reflectivity 

 exposure time 

 threshold value 

While measuring the effect of one parameter, the other parameters were maintained at a 

constant value. Within each of the following sections, the methodology for the tests is 

described before the test results are presented and a relevant discussion is carried out.  

5.3.1 Laser scanner performance check 

 Evaluation of the working span 5.3.1.1

The working span of a laser scanner gives information on the working range within the 

laser line projection. It is vital to know the actual working range prior to its use so the 

user has prior knowledge about how the robot should be moved in order to collect the 

most complete set of data. The working range is the combination of vertical and 

horizontal ranges.  In order to estimate the horizontal and vertical range, the laser line 

was projected perpendicularly on to a flat surface. The resulting laser line length was 

measured and the relevant stand-off height was also recorded. This was repeated for 

increments of 0.2mm in the stand-off distances from 45-85mm.  
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In Figure 5-4(a), the schematic laser span for a typical line laser is shown and in Figure 

5-4(b) the measured results can be seen. As noted from the figure and the results shown 

in Table 5-2, there is a significant (2-16%) difference between the specified and actual 

values in the horizontal (b1 and b2) and the vertical (h) ranges of the scanner. The 

deviation could be due to the changes in the ambient lighting conditions (discussed in 

section 5.3.1.5) because the manufacturer specified values are obtained in a controlled 

environment.  

  
Figure 5.4(a) Figure 5.4(b) 

Figure 5-4: Specified and measured working ranges of the laser scanner (a) specified laser scanner 

span, (b) actual span 

Table 5-2: Specified and actual values of the range 

Parameter Specified Value (mm) 
Actual Value 

(mm) 

Percentage difference (%) 

b1 23.2 20.71 10.7 

b2 29.3 28.81 1.7 

h 26 30.21 16.2 

 Finding vertical and horizontal resolution 5.3.1.2

As specified by the manufacturer, the laser scanner’s vertical and horizontal resolution 

is ±20µm. However the measurement accuracy of the scanner may not be uniform over 

the whole vertical (53-79 mm) and horizontal range (25mm). Therefore it is important 

to assess the measurement accuracy of the scanner along its vertical and horizontal 

range. A 20mm slip gauge was used as the test piece, and its width was measured at 

various heights (52-83mm) from the laser scanner as shown in Figure 5-5.  
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Figure 5-5: Setup for vertical resolution measurement 

The sample was placed at the middle of the laser scanner line to minimize any effect 

which may occur due to the horizontal point of measurement in the laser line. In Figure 

5-6, the percentage error (calculated using equation 5.1) in measurements for various 

stand-off distances is shown. As can be noted from the results, the accuracy of the 

scanner varies along its z-axis. The best performance was noticed around a stand-off 

height of 65mm, which is at the middle of the laser scanner’s vertical range. This is 

because the sensitivity of the camera sensor is at its maximum at the middle of the 

sensor. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  
(𝑆𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

𝑆𝑒𝑡 𝑣𝑎𝑙𝑢𝑒
× 100% (5.1) 

 

 

Figure 5-6: Percentage error in measurements along z-axis 
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To evaluate the horizontal accuracy of the laser scanner, the width of a metric feeler 

gauge (1mm) was measured at various positions along the laser line as shown in Figure 

5-7. The stand-off distance was kept constant at 65mm.  

 

Figure 5-7: Setup measuring a metric feeler gauge and percentage error in measurements 

In Figure 5-8, the measured values and percentage error (calculated using equation 5.1) 

of the measurements along the laser line are shown.  

 
Figure 5-8: Percentage error along the x-axis of the laser scanner  

These results show that the laser scanner produces accurate measurements at the middle 

of its working span. To avoid any uncertainty in measurements, it is therefore advisable 

to orient the laser scanner so that the area being measured is close to the centre of the 

laser span. 
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 Laser scanner performance evaluation at different exposure levels 5.3.1.3

In order to find the accuracy of measurements against exposure time, a 20mm slip 

gauge was measured at different exposure times ranging from 0.01 to 40ms. The results 

obtained are shown in Figure 5-9.  

 

Figure 5-9: Percentage error against exposure time 

As can be seen from the figure, the measured value varied depending upon the exposure 

time setting. The error is at a minimum around 1ms exposure time. 

 Repeatability test for gap measurements 5.3.1.4

The repeatability of the scanner was evaluated by measuring a 1mm gap between two 

stainless steel samples. The laser scanner was set at 68mm (middle of its working 

range) stand-off distance from the work piece. 1ms exposure time was used for the 

experiment. Twenty six measurements were taken at an interval of five seconds and all 

measurements were obtained close to the centre of the laser working span. Figure 5-10 

shows the percentage error (percentage deviation from 1mm) for each of the twenty six 

scans. As noted from the figure, the maximum percentage error is 3.6% (36µm) and the 

mean error is ±28µm. The laser scanners reported accuracy is ±20µm. The results mean 

the scanner performance in not consistent with the specification. However, it is close to 

the specification and adequate for the task of seam tracking. 
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Figure 5-10: Percentage error in measurements for checking repeatability 

 Laser Scanner Performance at Different Illumination Conditions 5.3.1.5

External lighting is expected to significantly affect any vision sensor. Therefore, 

experiments were conducted to assess the performance of the laser scanner at three 

different lighting conditions as given below; 

 Ambient lighting 

 Partially controlled – some ambient light can reach the sensor 

 Fully controlled – no ambient light reaches the sensor (achieved by covering the 

area surrounding the laser scanner). No sun light can reach the sensor 

The tabulated data in Table 5-3 gives the laser scanner’s performance in measuring 

different sizes of feeler gauges at three different lighting conditions. As noted from the 

table there are fluctuations (fluctuations were monitored for 5s before recording the 

range of values) in the reading when measuring smaller widths. Also the fluctuation 

occurs when the sun is present (which changes the illumination level). However, no 

fluctuations were detected in readings when measuring widths higher than 0.4mm even 

when the sun was present (ambient). This result reveals that the laser scanners do not 

return the same readings when the lighting condition varies. 
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Table 5-3: Measured values of feeler gauge  
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1.00 0.992 × √ 0.996 × √ 1.003 × √ 

0.95 0.942 × × 0.942 × × 0.944 × √ 

0.90 0.88 × √ 0.891 × √ 0.898 × √ 

0.85 0.816 × √ 0.836 × √ 0.852 × √ 

0.80 0.785 × × 0.791 × √ 0.794 × √ 

0.75 0.711 × × 0.72 × × 0.742 × × 

0.70 0.692 × √ 0.698 × × 0.698 × √ 

0.65 0.641 × √ 0.652 × √ 0.653 × × 

0.60 0.594 × × 0.594 × × 0.611 × × 

0.55 0.542 × × 0.542 × × 0.52 × √ 

0.50 0.497 × × 0.498 × √ 0.497 × √ 

0.45 
0.464-

0.541 
√ √ 0.439 × √ 0.506 × √ 

0.40 0.397 × × 0.397 × × 0.396 × √ 

0.35 
0.377-

0.420 
√ √ 

0.358-

0.376 
√ √ 0.359 × √ 

0.30 
0.299-

0.317 
√ √ 0.337 × × 0.337 × × 

0.25 
0.23-

0.245 
√ × 0.231 × √ 0.253 × × 

0.20 
0.254-

0.274 
√ √ 0.215 × × 0.214 × × 

0.15 
0.201-

0.233 
√ √ 0.193 × × 0.181 √ × 

0.10 
0.117-

0.150 
√ √ 

0.89-

0.134 
√ √ 

0.68-

0.113 
√ √ 

0.05 
0.046-

0.126 
√ √ 

0.067-

0.087 
√ √ 

0.067-

0.088 
√ √ 

The error (calculated using equation 5.1) in measurements against the gauge size under 

different illumination conditions is shown in Figure 5-11. As noted from the Figure the 

error is higher when measuring small widths irrespective of the illumination condition. 

However it is also evident that the percentage error in measurements is higher at 

ambient lighting conditions. This indicates that the laser scanners should be used at 

controlled lighting conditions for best performance.  
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Figure 5-11: Measurement error at different illumination conditions 

5.3.2 Understanding reasons for faulty data issue of laser scanners 

Noisy data are the data points present in unexpected positions and missing data are the 

points where the expected data are not present. 

During the initial experiments, noisy and missing data were observed at some positions 

(see Figure 5-12 showing inappropriate data while scanning a flat surface). Literature 

also suggests that the noisy data and missing data points can be associated with many 

parameters including the viewing angle, stand-off distance and surface reflectivity 

[111]. In Figure 5-12, a typical example of raw data observed on a flat surface can be 

seen. The expected result is a horizontal line since the surface being measured is flat. 

However, as can be seen from the figure, a number of noisy and missing data points 

were observed in the resulting data. This section identifies the reasons for this 

behaviour of laser scanners. 

 

Figure 5-12: Inappropriate data from a laser scanner 
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To investigate this, experiments were carried out to understand the effects of the 

following parameters on the data quality: 

1. Stand-off distance 

2. Steepness angle of the surface being measured 

3. Angle of incidence that the laser scanner makes with the surface being measured 

4. Surface reflectivity (albedo) 

5. Exposure time 

6. Threshold value 

7. Laser power 

 Effect of Stand-off Distance on Data Quality 5.3.2.1

As described in section 5.3.1.2, there is a particular stand-off distance that the laser 

scanner produces its best accuracy. In addition to accuracy related issues, laser scanners 

also produce missing data points based on the stand-off distance. In order to examine 

this, measurements were performed on a 20mm slip gauge to assess the number of 

missing data points at various stand-off distances (53-83mm). The number of data 

points acquired against stand-off distance was calculated at each stand-off height. 

According to the manufacturer, the laser scanner produces 1280 laser points along its 

laser line. However, the amount of laser points falling on the 20mm block is less than 

1280 and also varies based on the stand-off distance as given in equation 5.2 where h is 

the stand-off distance. Therefore the missing number of data points can be found using 

equation 5.3.  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 =
1280

0.38 𝑥 ℎ
𝑥 20 (5.2) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
= 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠
− 𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 

(5.3) 

 

The number of missing data points against the stand-off distance is shown in Figure 

5-13. From the figure, it can be seen that the laser scanner produces the minimum 

number of missing data points at a stand-off distance of 68mm which is the middle of 

the vertical range. It is important to take this in to account to maintain the optimum 

stand-off distance whilst taking measurements. 
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Figure 5-13: Number of missing data points against stand-off distance 

 Effect of surface steepness on data acquisition  5.3.2.2

The angle of interaction between the laser scanner and the surface being measured can 

affect the quality of the data acquisition process. A 50mm x 200mm size stainless steel 

work piece was measured at different steepness angles (α) as shown in Figure 5-14. 

  

Figure 5-14: Arrangement for measurements at different steepness angles 

It should be noted that during the experiments it was always ensured that the laser line 

fell completely on the surface being measured, which assured that for each 

measurement the full 1280 points was expected to be recorded. The number of data 

points acquired from the laser line was calculated for each steepness angle (from 0˚-

85˚). As seen from Figure 5-15, there is a threshold at 37˚, above which the 

performance of the laser scanner starts to deteriorate. At higher steepness angles, the 

number of laser points falling on to the sample per unit length reduces, which affects 

the data acquisition performance. To minimize this, users should orient the scanner in a 
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way to maintain the steepness angle below the threshold of 37˚. It should be noted that, 

stand-off height was maintained at 68mm (selected based on interviews with skilled 

welder and also initial bench testing of the laser scanner) was not changed during the 

experiment. 

 

Figure 5-15: Results of number of missing data points measured against steepness angle 

The data obtained for the different steepness angles is shown in Figure 5-16. The 

scanner failed to return any data above 82˚ which could be defined as the critical 

steepness angle for the selected laser scanner. This suggests that any object which has 

surface features above the critical incidence angle cannot be visualized from the laser 

scanner. Therefore, alternative methods, such as moving the robot in such a way that 

the steepness angle of a surface at any given position is less than the critical steepness 

angle, is required for visualisation. 
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Figure 5-16: Data at various steepness angles 

 Effect of angle of incidence on data quality 5.3.2.3

To study the effect of the angle of incidence (angle between the horizontal and the 

surface being measured) on the data acquisition performance, an experiment was 

carried out by setting known incidence angles from 0˚ to 85˚. A 50mm by 200mm 

stainless steel work piece was used for this test as shown in Figure 5-17.  

 
 

Figure 5-17: Arrangement for measurements at different incidences angles 

The raw images obtained from the laser scanner at different incidence angles can be 

seen in Figure 5-18 (Please note that these angles were set using slip gauges on one side 

of the stainless steel piece). As seen from the figures the laser scanner returns images 

containing areas of noise between 14˚-25˚.  
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In order to examine this further, the raw data obtained from the laser scanner between 

these angles was studied in more detail as shown in Figure 5-19. As can be seen from 

the figure, the noisy data is mostly deviations from the expected linear output. Upon 

further investigation, this is because the reflected laser signal coincides with the camera 

axis of the laser scanner. In this range, the camera sensor gets saturated because of the 

number of photons reaching the camera sensor. 

    
1˚ 5˚ 10˚ 14˚ 

    
15˚ 17˚ 19˚ 21˚ 

    
23˚ 25˚ 30˚ 36˚ 

    
42˚ 48˚ 56˚ 66˚ 

Figure 5-18: Raw images obtained from the laser scanner at different incidence angles 
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14˚ 15˚ 

  
17˚ 19˚ 

  

21˚ 23˚ 

  

25˚ 30˚ 
Figure 5-19: Effect of incidence angle on data acquisition 

In Figure 5-20(a), the number of noisy data against the incidence angle is shown and the 

respective noise percentage (calculated using equation 5.4) is shown Figure 5-20(b). As 

noted from the figure, the laser scanner has a higher percentage of noisy data between 

15˚ and 25˚ and the maximum noise was noticed at 19˚. This is an unexpected 

behaviour of the scanner and not stated by the manufacturer in their datasheet. These 

factors should be examined before using any laser scanner for measurements to avoid 

critical incidence angle range by controlling the robot pose. 

𝑁𝑜𝑖𝑠𝑦 𝑑𝑎𝑡𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
(𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 − 𝑛𝑜𝑖𝑠𝑦 𝑝𝑜𝑖𝑛𝑡𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
× 100% (5.4) 
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Figure 5.20(a) 

 

Figure 5.20(b) 

Figure 5-20: Effect of incidence angle on data acquisition (a) number of noisy data points (b)noisy 

data percentage 

 Effect of surface reflectivity/finish on data quality 5.3.2.4

To understand the effect of surface reflectivity on data quality, three samples (normal, 

shiny, matt) with different surface reflectivities were selected, which are shown in 

Figure 5-21. All three samples were then tested with the laser scanner by keeping them 

at the peak critical incidence angle of 19˚. In Figure 5-22, the raw image results 

obtained are shown. As can be noted from the figure, the matt-finished surface did not 

saturate the camera at the critical incidence angle whereas the other two surface finishes 

produced a high percentage of noisy data. This suggests that the surface reflectivity 

affects the data acquisition performance of a laser scanner and users should consider the 

surface quality of the object being measured when selecting a laser scanner. 
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(a) Normal (b) Matt (c) Shiny 

Figure 5-21: Different surface finished samples 

   

   

(a) Normal (b) Matt (c) Shiny 
Figure 5-22: Results obtained for different surface finish 

 Effect of exposure time on data quality 5.3.2.5

In order to examine this, the shiny sample was used and the exposure time was varied 

from 0.01ms to 40ms and the number of noisy points was calculated from the resulting 

data. The raw images obtained from the camera at different exposure times are given in 

Figure 5-23. As noted from the images, they become saturated at higher exposure times 

due to the number of photons reaching the sensor being beyond its maximum.  
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0.01s 0.02s 0.05s 0.1s 

    
0.2s 0.35s 0.5s 0.75s 

    
1s 2s 5s 10s 

  

  

20s 40s   
Figure 5-23: Raw images captured at different exposure levels 

In order to quantify the effect of exposure time on data quality, the percentage of noisy 

data points was calculated using equation 5.4 for each exposure time which is graphed 

in Figure 5-24(b). Its respective absolute number of noisy data points is shown in 

Figure 5-24(a). 
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Figure 5.24(a) 

 

Figure 5.24(b) 

Figure 5-24: Effect of exposure time on data acquisition (a) number of noisy data points (b) noisy 

data percentage 

It was understood from the results that a high exposure time leads to more noisy data 

points and a low exposure time leads to missing data points. Therefore it is important to 

find out an optimum exposure time for a “shiny” surface such as the stainless steel 

samples used for welding in the later chapters of this thesis. In order to investigate the 

optimum exposure time a shiny U-groove was created (see Figure 5-25) from stainless 

steel. This shape was chosen because it has both high and low steepness angles along its 

cross-section.  
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Figure 5-25: U-groove for finding optimum exposure time 

The noisy and missing data percentage at different exposure times is given in Figure 

5-26. As noted from the figure, data with the lowest noise and missing data percentage 

could be acquired between 1ms and 2ms of exposure time. 

 

Figure 5-26: Missing and noisy data percentage against exposure time 

 Effect of Laser Power on Data Quality 5.3.2.6

The Micro-epsilon laser scanner contains four different laser power options, these are 

standard, standard-pulsed, reduced and reduced-pulsed (the actual power ratings are not 

specified by the manufacturer). In order to find the effect of the laser power on data 

acquisition, the “shiny” stainless steel sample was oriented in such a way that it makes 

19˚ incidence angle with the laser scanner. Data were then acquired at different laser 

power levels and the results are tabulated in Table 5-4. Ideally the laser scanner should 

return a straight line in the resulting data. From the images it can be seen that the lower 

laser power assures more linearity in the results obtained. However the number of data 

points acquired did not vary significantly for the different laser power levels, which 

suggests that laser power is not a factor causing missing data but noisy data. Therefore 

it can be recommended to use a lower laser power for 3D shiny objects especially in the 

aerospace welding industry which involves complex shiny parts. 
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Table 5-4: Data acquired at different laser power levels 

Configuration Raw image 
Number of data 

points acquired 

Noise 

percentage (%) 

Standard 

 

1277 23 

Standard-

pulsed 

 

1275 20 

Reduced 

 

1278 7 

Reduced -

pulsed 

 

1277 6 

 Effect of threshold level on data quality 5.3.2.7

Every laser scanner operates to find the laser line from raw images and separates it from 

the background. The separation is accomplished by defining a threshold value so that 

any point beyond the specified threshold can be acquired as a data point and the rest is 

filtered out. This directly affects the obtained data quality because inappropriate 

threshold values can lead either to inappropriate (noisy) or missing data points.  

In order to investigate this, the shiny sample was placed at an incidence angle of 19˚ 

and the in-built threshold value was varied from 1 to 800. Figure 5-27(a) shows the 

number of noisy data points against the threshold value and Figure 5-27(b) shows its 

respective percentage values. As can be seen from the figure, there is a reduction in the 

percentage of noisy points at higher threshold values. This result also reveals that the 

selection of the optimum threshold level can enhance data quality and therefore will 

help provide better performance in measurements. 
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Figure 5.27(a) 

 

Figure 5.27(b) 

Figure 5-27: Data acquisition performance against specified threshold value (a) number of noisy 

data points (b) noisy data percentage 

5.4 Summary 

The work reported in this chapter was focused on understanding the performance of a 

3D laser scanner and establishing the optimum set of parameters for enhancing data 

acquisition performance.  

The work-span of the laser scanner was found and the results obtained show the actual 

values are different from the specified values in the manufacturer’s datasheet.  It was 

also found that the vertical and horizontal resolution of the laser scanner varies along its 

z and x axes respectively. Measurement accuracy reaches its maximum at the middle of 

the laser line span (67mm stand-off). The relationship between the sensor resolution 

against the stand-off distance was also established. The accuracy of measurements at 

different exposure levels was also measured and, according to the results obtained, the 
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variation from the expected linear output is minimal around 1-2ms exposure time. The 

repeatability of the sensor was measured and the mean-error was found to be ±28um 

whereas the standard deviation in readings was ±36um. The laser scanner performance 

at different illumination conditions was investigated. Results show that ambient lighting 

affects the measurements where the laser scanner fails to settle at a particular reading. 

This effect was significant when measuring smaller dimensions. Controlled lighting 

conditions result in better performance. The error in the readings obtained is higher 

when measuring small objects. 

Stand-off distance, steepness angle, angle of incidence, surface reflectivity, exposure 

time, threshold value and laser power are the attributes which affect the data acquisition 

performance of a laser scanner. The number of missing points is minimal around 67mm 

stand-off distance. High steepness angles above a threshold steepness angle of 40˚ 

resulted in more missing data points. It was found that there is a critical incidence angle 

range (15˚-25˚) in which the laser scanner gets saturated due to the number of photons 

reaching the sensor. This effect was significant on shinier surfaces. Surfaces with a 

matt-finish resulted in good point cloud data at any angle. Results also revealed that the 

percentage of noisy data increases with exposure time. However it was also shown that 

more data points could be acquired if the exposure time is high. Exposure times 

between 1s and 2s resulted in the minimum number of missing and noisy points. The 

effect of laser power on data acquisition was also investigated. Results showed that for 

a shiny object the number of noisy data points increases with laser power. However it 

should be noted that laser power did not affect the percentage of missing data points. 

The effect of threshold value was also studied which resulted in more noisy data points 

at lower threshold values for a shiny surface. From the results it was understood that for 

best results, 

 Stand-off height to needs be maintained at 67-68mm 

 Exposure time at 1-2ms 

 Angle of incidence should not be between 15˚ and 25˚ 

 Angle of steepness is not above 40˚ 

 Laser scanner uses optimum power and threshold value. 

These settings have been be used for the data collection which is presented in the 

following chapters to perform 3D seam tracking and 3D feature extraction. Enhanced 
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data quality is expected to return better performance in the developed algorithms for 

point cloud processing. A similar experimental procedure is proposed for evaluating the 

performance of any laser scanner prior to its use so that the errors in measurements can 

be minimized. 
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6 3D Feature Extraction and Quantification of Joint Fit-up 

 

In Chapter 5 the most suitable laser scanner settings for the best performance of the 

laser scanner was identified for this type of application and these settings have been 

used for data collection in this Chapter and the following Chapters. 

Recent advances in automation and sensor technology have enabled the use of industrial 

robots for complex tasks that require intelligent decision making.  Vision sensors have 

been the most successfully used sensor in many high value industrial applications. Over 

recent years, weld seam tracking has been a topic of interest, as most of the existing 

robotic welding systems operate on the basis of pre-programmed instructions. Such 

automated systems are incapable of adapting to unexpected variations in the seam 

trajectory or part fit-up. Applications such as TIG welding of aerospace components 

require tight tolerances and need intelligent decision making. Such a decision making 

procedure has to be based on the weld groove geometry at any instance. In this chapter 

a novel algorithm along with an automated system is described for estimating the joint 

profile of three 3D weld grooves. A real-time position based closed-loop system was 

developed with a six axis industrial robot and a laser triangulation based sensor. The 

system was capable of finding the 3D weld joint profile and making intelligent 

decisions accordingly. Raw data from a vision sensor was processed through the novel 

algorithm to obtain important features of the weld groove at an accuracy of ±8.3µm and 

±43µm in the x and z co-ordinates respectively. A detailed description of the novel 

algorithm developed and the results of performance tests carried out are presented in 

this chapter.  

6.1 Introduction 

A successful TIG welding automation system should be capable of adapting to any 

variations in the weld seam position, caused by part fit-up or distortions. Over the past 

few decades, extensive research has been carried out on the use of weld seam tracking 

[154][155][156]. However, not enough work has been carried out on finding the 

geometry of a weld groove. Conventional seam tracking has only been used to estimate 

the weld seam coordinates for path correction of the robots. This process alone could be 

adequate for a simple geometry, but some advanced applications (e.g. aerospace, 
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welding of vanes to a hub in an aero-engine) require in-process control of the weld 

parameters [121] to accommodate for complex geometries and part fit-up. Such a 

requirement can only be realized by the identification of geometrical features which 

will enable intelligent decision making and therefore control of the welding process 

(path and process parameters) [132].  

Requirement for joint fit-up quantification and seam tracking under this thesis are listed 

as below. 

 Finding joint centre position with an accuracy of ±0.5mm. 

 Determination of a coordinate in x,y or z axis with an accuracy of ±100µm. 

 Tracking path to be determined correctly irrespective of the joint fit-up 

orientation and joint profile type. 

 The feature extraction or seam tracking algorithm should function irrespective 

of the joint profile type. 

 The feature extraction and seam tracking algorithm should function irrespective 

of the point cloud quality. 

 The algorithms should be capable of eliminating any spurious outliers detected. 

6.2 Experimental setup and methodology 

The experimental setup (Figure 6-1) used for the feature extraction consists of the 

KUKA KR16 six axis industrial robot, Micro-epsilon laser scanner, workstation and the 

external digital pulse generated from the NI DAQ system used for triggering the laser 

scanner. The arrangement of laser scanner at the end effector of the robot can be seen in 

Figure 6-2.  

 

Figure 6-1: Experimental setup used for joint feature extraction 
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Figure 6-2: Photographic view of the experimental setup 

A position based control system (with a sequence of operations as shown in Figure 6-3) 

software was developed using LabVIEW to control the overall process. Initially, the 

robot requests positional data from the computer, which is also used as a command to 

trigger the laser with a 5V digital pulse. Once triggered, the laser scanner acquires a 

single profile (2D data) and sends it to the computer through an Ethernet connection 

within 20ms.  
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Figure 6-3: Sequence of operations for robotic scanning and feature extraction 

The obtained 2D data is processed to find the important features such as the edges of 

the weld joint (welding joints used for the study are shown in Figure 6.4(a)-(c)). Please 

refer to Figure 6.5 for more information. Once the features are extracted, the computer 

sends a command to the robot, to move to the next position (in this study the robot step 

is 1mm along the scan direction). After moving to the next position, the robot sends its 

3D coordinates back to the computer which is used again as a command to trigger the 
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laser scanner. The cycle is repeated until the scan is completed. The extracted feature 

points are then plotted in 3D for visualization and further analysis.  

  
Figure 6.4 (a) 

 

 
Figure 6.4(b) 

 

 
Figure 6.4(c) 

Figure 6-4: Sample weld groove types used for feature extraction (a) I groove, (b) V groove, (c) U 

groove 

The weld geometry measurements were carried out on samples with standard I, V and 

U-groove profiles. These joints were selected as they are the most common type of 

joints found in the welding industry [40][157]. 
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6.3 Real-time feature detection of 2D profile 

Feature detection and extraction was performed on I, U and V grooves. The steps 

involved in detecting the feature points of a V groove are described within this section 

in detail. A similar method has been applied for both the  I and U grooves and the 

results are presented at the end of this section. 

The important points to be extracted from the weld joint are shown in Figure 6-5. These 

features are point A, B, C and D respectively. A two stage extraction process is 

undertaken for each sample. The first stage is the application of filtering techniques, 

such as a low pass filter, which has been applied in LabVIEW to eliminate any outliers 

and the second stage is an edge detection method, generally the gradient method, which 

is implemented to find the features. Data processing is carried out in real-time via the 

Ethernet connection with the PC and the extracted points are stored for further analysis 

and improvement after combining the data set into 3D space (described later in this 

chapter). 

 

Figure 6-5: Features to be extracted from a weld joint 

6.3.1 Feature extraction of a V-groove 

The raw data obtained from the laser scanner has noise and missing data due, 

predominantly, to specular reflection. This noise needs to be removed prior to data 

processing.  As shown in Figure 6-6(a), which is a representative dataset collected 

during the experimental process, most of the noise was observed at the ends of the laser 

line. This is attributed to the reduced sensitivity of the scanner at these points. To 

remove these outliers, the raw data was cropped by five percent from both ends, which 

results in the dataset displayed in Figure 6-6(b).  
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Figure 6.6(a) 

 

Figure 6.6(b) 

Figure 6-6: Data cropping process for outlier removal (a) data cropping process (b) resulting data 

An edge is defined as a point where there is a sharp change in gradient [91]. Hence the 

gradient method was used for edge detection. By calculating the gradient (Gi) between 

each successive laser point (using equation 6.1), point A and D were recognized. The 

obtained gradient values can be seen in Figure 6-7, the start of the positive peak is 

related to point A and the fall of the negative peak is related to point D.  

𝐺𝑖 =
𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1
 (6.1) 

where, xi and xi-1 are the x coordinates of two adjacent laser points. 

𝑑𝑥𝑖 =  𝑥𝑖 − 𝑥𝑖−1 (6.2) 

where, dx is the offset (along the x axis) between two consecutive laser points. 
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Figure 6-7: Gradient values along the 2D point cloud (dy/dx) 

According to the manufacturer the lateral resolution of the laser scanner is 20µm [149]. 

Therefore, it was ensured that the gap between point B and C was always more than the 

sensor resolution (>20 µm). Points B and C were established on the basis of the 

maximum horizontal offset between two successive laser points. Equation 6.2 was then 

used between all the adjacent laser points in a single 2D cross sectional profile to find 

when the maximum value occurred, which resulted in the data displayed in Figure 6-8. 

Points B and C are present where the spike is detected.  

 

Figure 6-8: horizontal offsets between two consecutive laser points (dx) 

Figure 6-9 shows the extracted points plotted on the raw data.  
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Figure 6-9: Extracted feature points (.) 

The points identified using this method was then used to calculate the coordinates of the 

middle point of the seam using equation 6.3 and 6.4. The values of 𝑥𝑚𝑖𝑑𝑑𝑙𝑒  and 𝑧𝑚𝑖𝑑𝑑𝑙𝑒 

were then used for guiding the welding torch during the welding process (as detailed in 

Chapter 7).  

𝑥𝑚𝑖𝑑𝑑𝑙𝑒 =
𝑥𝐴 + 𝑥𝐷

2
 (6.3) 

𝑧𝑚𝑖𝑑𝑑𝑙𝑒 =
𝑧𝐴 + 𝑧𝐷

2
 (6.4) 

The root gap (b) and the gap between the top edges (w) (shown in Figure 6-4) were 

calculated using equations 6.5 and 6.6. The outcomes of these calculations were used to 

inform decisions being made on the joint geometry. For example, if the root gap were 

above a certain tolerance value (1mm), a decision could then be made about whether it 

is possible to weld the joint. 

𝑏 =  √(𝑥𝐵 − 𝑥𝐶)2 + (𝑧𝐵 − 𝑧𝐶)2 (6.5) 

𝑤 =  √(𝑥𝐴 − 𝑥𝐷)2 + (𝑧𝐴 − 𝑧𝐷)2 (6.6) 

The method of using the derived centre points for seam tracking is discussed in detail in 

Chapter 7 and the method of using the extracted points for joint volume calculation (for 

adaptive weld process control) is discussed in Chapter 9 

6.3.2 U-Groove 

The steps used to extract the features in the V-groove are also used for the U-groove and 

the results are shown in Figure 6-10.  



 

130 

 

 
Figure 6.10 (a) 

 
Figure 6.10 (b) 

 
Figure 6.10 (c) 

 
Figure 6.10(d) 
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Figure 6.10 (e) 

Figure 6-10: Feature extraction steps for the U-groove (a) raw data, (b) cropped data, (c) gradient 

(dy/dx), (d) Offset between consecutive laser points (dx), (e) extracted feature points (.) 

As can be seen from Figure 6-10(a) there are a large number of missing data points, 

approximately 200 points, due to the high steepness angle in a U-groove at the start of 

the U shape. It can be seen in Figure 6-10(d), that point D has slightly deviated from the 

actual edge. However this error is measured to be 30um which does not affect the 

performance significantly. Therefore it can be concluded that the algorithm overcomes 

the effect from the missing data regions and extracts the feature points to a satisfactory 

level. 

6.3.3 I-Groove 

The data processing sequence for an I-groove is shown in Figure 6-11. 
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Figure 6.11 (a) 

 
Figure 6.11 (b) 

 
Figure 6.11 (c) 

Figure 6-11: Feature extraction of a I-butt joint (a)raw data, (b) dx, (c) Detected points (*) 

The raw data obtained from an I-groove can be seen in Figure 6-11 (a). The horizontal 

offset which was measured between two consecutive laser points is shown in Figure 

6-11 (b). The gap is present where the maximum offset between two consecutive laser 

points is detected. Therefore, Point B and C can be located where the peak is detected in 

the Figure 6-11 (b). It should be noted that in an I-groove, Point A coincides with Point 

B and Point D coincides with point C.  

It can be seen from Figure 6-11 (c) that the extracted points are 0.3mm below the actual 

points. This is a constant error which exists along the I-groove. Therefore this constant, 

systematic, error was always added to the z co-ordinate of the extracted points. It should 

be noted that this effect was only in the case of the I-groove. Gaps of 1mm, 1.5mm, 
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2mm and 5mm were examined and the algorithm always returned a 0.3mm offset in 

point detection. This led the author to conclude that the error is a constant value due to 

the sample shape and does not vary based on the sample thickness. 

6.4 Post-processing algorithm for filtering 

As observed in Chapter 5, the surface characteristic (reflectivity) of the weld sample 

influences the quality and repeatability of the data. It was also found that laser scanners 

tend to return noisy data if the surface is highly reflective or if there was any change in 

angle between the scanner and the surface. Any spurious points detected due to the 

inaccuracy of the laser scanner or the extraction algorithm used can lead to unexpected 

behavior (such as faulty detection of a feature point) in the welding run. This can affect 

the welding position between the samples and consequently the mechanical properties 

of the weld. Hence a suitable filtering method was applied to eliminate the outliers in 

the extracted points. 

 

Figure 6-12: Continuous weld groove edge and detected noisy data point 

A noisy data point in the x-y plane has been illustrated in Figure 6-12. The maximum 

distance between two consecutive laser points in the x direction (∆X) should be close to 

the laser scanner’s lateral resolution as a well machined weld groove does not have 

sudden changes in the x-direction. Therefore, if any point has a significantly larger 

horizontal offset than the previous point it could be an outlier. A threshold value was 

defined to filter any point which had an offset more than the specified threshold value 

of 0.1mm (this is the accuracy of the gap detection). This filtering method was used to 

remove high amplitude outliers in both the x and z directions separately. Equations 6.7 

and 6.8 define the horizontal and vertical offsets between two consecutive points 

respectively. 

∆Xn = Xn - Xn-1 (6.7) 
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∆Zn = Zn - Zn-1 (6.8) 

The “Smooth” function in Matlab was then used to filter outliers within less than 

0.1mm. The “Smooth” function assigns lower weight to outliers in the regression. 

Using this method a zero weight was assigned to data outside six mean absolute 

deviations. The filtering sequence described above has been shown graphically in 

Figure 6-13.  

(a) x-y raw data

(b) x-y data after filtering

(c)  x-y data after fitting (f) y-z data after fitting

(e) y-z data after outlier removal  

(d) y-z raw dataFigure 6.13(a) Figure 6.13(d)

Figure 6.13(b)

Figure 6.13(c)

Figure 6.13(e)

Figure 6.13(f)  

Figure 6-13: Filtering applied in both x and z axis separately (a) x-y raw data, (b) x-y data after 

filtering, (c) x-y data after fitting, (d) y-z raw data, (e) y-z data after outlier removal, (f) y-z data 

after fitting 

The features detected from the raw data in the x-y and y-z planes respectively are shown 

in Figure 6-13 (a) and (d). As can be seen from the figures raw data contains spurious 

points. After applying equations 6.7 and 6.8, the results can be seen in Figure 6-13 (b) 

and (e). The resulting data is then filtered again using the “Smooth” function in Matlab 
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which results in the data displayed in Figure 6-13 (c) and (f). As can be seen from the 

figure, the fully processed and filtered data contains a low number of noisy data points. 

Figure 6-14(a) shows the extracted  raw points (A, B, C and D) plotted in 3D and Figure 

6-14(b) shows the fitted points. As can be seen from the figure the processed data is 

more error-free compared to the raw data. This re-assures that the filtering method 

implemented is functioning to reliably perform gap sensing and seam tracking.  

  

Figure 6.14(a) Figure 6.14(b) 

Figure 6-14: Extracted feature points (a) raw data, (b) fitted data 

6.5 Joint fit-up quantification 

In an industrial automated welding system, setting up the part is still carried out by the 

manual operator. However, manual operators do not have the high repeatability that an 

automated system does and, therefore, setting up the parts can have fit-up errors. Some 

of the possible joint configurations, due to part fit-up for a simple butt-joint can be seen 

in Figure 6-15 (These configurations were selected based on the experience of manual 

operator).  

 

Figure 6-15: Possible joint configurations 

Based on the part fit-up, any automation system should either adapt to the variation 

caused by the operator or make an intelligent decision whether the weld joint should be 
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re-adjusted. Quantification of joint fit-up will enable the system to correctly position the 

welding torch so that the desired weld quality can still be achieved. This will reduce the 

cost and time associated with set-up and therefore improves productivity of robotic 

welding. 

In the work presented in this thesis, the horizontal offset configuration is not 

investigated as it is assumed that the effect of the horizontal offset is minimal in an 

industrial weld setting. In this section, joint fit-up has been quantified for the three 

different joint types (I, U and V) under consideration. The following sections only 

describe how the joint fit-up was measured for a V-groove. The same method was 

implemented for the both I and U grooves. 

6.5.1 Quantification of roll angle 

The method of measuring the roll angle (α) between the parts is shown in Figure 

6-16(a) and geometry is shown in Figure 6-16(b). The angle between the horizontal 

edges defines the role angle per single cross sectional profile. In order to quantify the 

roll angle, two lines are to be fitted to the horizontal edges of the samples.    

  

Figure 6.16(a) Figure 6.16(b) 

Figure 6-16: Roll angle measurement (a) physical set-up, (b) roll angle 

The method of identifying Point A and B has been described in Section 6.3.1. However, 

in order to fit lines to the horizontal edges of the samples, Point E and F should also be 

identified, namely the outside points of the scanned laser line. This was accomplished 

by finding the coordinates of the points which have the maximum and minimum x-

coordinates of a particular cross sectional profile. The angle between the lines EA and 

BF therefore defines the roll angle and it has been calculated using equation 6.9. 

αi 
  

 

α = roll angle 
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𝛼 =  tan−1 |
𝑚𝐸𝐴 − 𝑚𝐵𝐹

1 + 𝑚𝐸𝐴. 𝑚𝐵𝐹
| (6.9) 

where, mEA and mBF are the gradients of the lines EA and BF respectively. Also it 

should be noted that 0 ≤ α ≤ π/2. 

The average roll angle has been calculated by extracting the division between the 

summation of the roll angles for the complete scan and the number of profiles as shown 

in Figure 6-17. The set value for the graph shown was 3⁰ and the measured average 

value is 2.85⁰. 

 

Figure 6-17: Roll angle measurement along the weld joint 

6.5.2 Quantification of pitch angle 

The pitch angle (β) between the two samples is shown in Figure 6-18(a) and the 

geometry is shown in Figure 6-18(b). The angle was created by keeping a slip gauge 

underneath one sample as shown in the figure. The pitch angle was then measured in 

the y-z plane of the point cloud data. This angle was measured between the lines fitted 

along the top edges of the groove (i.e. along Point A and Point D). Equation 6.9 was 

then used again to quantify the angle. The extracted points (A and D) in y-z plane and 

the lines fitted to the raw data are shown together in Figure 6-19. 
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Figure 6.18(a) Figure 6.18(b) 

Figure 6-18: Pitch angle measurement (a) physical set-up, (b)pitch angle 

 

Figure 6-19: Line fitting for pitch angle measurement 

6.5.3 Quantification of yaw angle 

The yaw angle (µ) between two samples can be seen in Figure 6-20 (a) and the 

geometry is shown in Figure 6-20(b). Yaw angle is measured in the x-y plane of the 

point cloud data. This angle was measured between the lines fitted along the top edges 

of the groove (i.e. along Point B and Point C). Equation 6.9 was used again to quantify 

the angle. The extracted points (B and C) in x-y plane and the lines fitted to the raw data 

can be seen in Figure 6-24. As can be seen from the figure the line fitting process fits 

the best line along the raw data and attempts to overcome the errors caused by outliers. 
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β = pitch angle 
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Figure 6.20(a) Figure 6.20(b) 

Figure 6-20: Yaw angle measurement (a) physical set-up, (b) yaw angle 

 

Figure 6-21: Line fitting for yaw angle measurement 

6.5.4 Quantification of vertical offset 

The vertical offset (v) between the two samples is shown in Figure 6-22(a) and the 

geometry is shown in Figure 6-22(b). This was measured between the fitted lines along 

the top edges of the groove (i.e. along Point B and Point C).  

A profile by profile vertical offset calculation along the weld joint is shown in Figure 

6-23. The average vertical offset was quantified by taking the division between the 

summation of vertical heights of the entire cross sectional profiles and the total number 

of profiles acquired. The set value for the graph shown was 1.5mm and the measured 

average value is 1.61mm. 

µ  
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Figure 6.22(a) Figure 6.22(b) 

Figure 6-22: Vertical offset measurement (a) physical set-up, (b) vertical offset 

 

Figure 6-23: Vertical offset measurement along the weld joint 

6.6 Results and validation 

This section describes the results obtained using the feature detection and joint fit-up 

identification algorithms. Experiments were carried out to investigate the performance 

of the feature detection algorithm and gap sensing. Each experiment was repeated three 

times to assure repeatability. 

6.6.1 Extracted features for different joint types 

According to the methods described in Sections 6.3 and 6.4, feature points of three 

different joint configurations were extracted. The extracted points, displayed in blue, 

have been overlaid onto the raw 3D point cloud data in Figure 6-24. As can be seen 

from the figure, the data extraction algorithm functions as it was designed to, 

irrespective of the joint configuration. The algorithm is also robust enough to overcome 

v 

v 

v = Vertical offset 
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issues such as missing data points and noisy data points. The settings identified for the 

‘best’ performance of the laser scanner identified in Chapter 5 assisted in the reduction 

of spurious data being output from the laser scanner. Reducing these spurious data 

helped in improving the accuracy of the algorithm. 

 
Figure 6.24(a) 

 
Figure 6.24(b) 

 
Figure 6.24(c) 

Figure 6-24: Extracted features of selected weld joint type (a) I-groove, (b) V-groove, (c) U-groove 
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6.6.2 Validation of feature detection algorithm 

In order to validate the accuracy of the algorithm, randomly selected points (out of 150 

points) from the final result (for three different joint configurations) were compared 

against the corresponding raw data points. The results are listed in Table 6-1.  

Table 6-1: Accuracy measurement of feature detection algorithm 

 

Point 

x coordinate z coordinate 

Raw data 

(mm) 

Final result 

(mm) 

Error 

(µm) 

Raw data 

(mm) 

Final result 

(mm) 

Error 

(µm) 

I-

groove 

1 -1.711 -1.698 -13 59.21 59.28 -70 

2 -1.524 -1.511 -13 54.52 54.55 -30 

3 2.351 2.331 20 60.28 60.21 70 

4 3.524 3.541 -17 58.88 58.92 -40 

5 3.574 3.562 12 56.87 56.79 80 

6 0.875 0.888 -13 57.96 57.87 90 

V-

groove 

1 -3.553 -3.512 -41 63.05 62.98 70 

2 1.74 1.739 1 59.71 59.72 -10 

3 -0.499 -0.4984 -0.6 60.18 60.21 -30 

4 3.893 3.896 -3 63.04 63.05 -10 

5 5.674 5.672 2 62.08 62.14 -60 

6 0.779 0.777 2 59.48 59.56 -80 

U-

groove 

1 -3.715 -3.748 33 63.21 63.33 -120 

2 2.545 2.515 30 60.21 60.28 -70 

3 0.552 0.578 -26 58.95 58.71 240 

4 -2.664 -2.598 -66 60.25 60.38 -130 

5 -1.287 -1.278 -9 59.22 59.34 -120 

6 -4.314 -4.375 61 61.35 61.43 -80 

 

The mean square error (MSE) calculated for each groove type in the respective x and z 

coordinates of the detected point is shown in Figure 6-25. As can be seen from the 

figure, the MSE is higher in the z-coordinate of an extracted point. It can also be noted 
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that the V-groove returns comparatively lower errors for these randomly selected data 

points whereas the U-groove produces larger errors in the point extraction. This can be 

attributed to the reduced data acquisition performance of the laser scanner when 

scanning vertical surfaces (Both U and I grooves have vertical surfaces where the 

steepness angle is high, which leads to a poorer performance of the laser scanner (Refer 

section 5.3.2.2) and consequently reduces the performance of the feature extraction 

algorithm). Comparatively the V-grooves do not have surfaces with high steepness 

angles and therefore return the lowest MSE values in both x and z co-ordinates. 

 

Figure 6-25: Mean square error in detected points for different groove types 

6.6.3 Gap measurements and validation 

The physical arrangement used to measure gaps is shown in Figure 6-26(a). Metric 

feeler gauge was in between the samples (in the gap) to set known gap. Then gap 

measurements was carried out using the developed algorithm which is graphed in 

Figure 6-26 (b) and (c). Due to the errors in processing the gap between the edges are 

detected with error in some points. However, as can be seen from the figure, points with 

errors were eliminated by fitting a line to the raw data. 

To estimate the accuracy of the gap measurements, 14 known root gaps were set 

between the samples (between point B and C) using a metric feeler gauge in the range 

from 0.05mm to 1mm. The respective set root gap was then measured using the 

developed robotic scanning system (real-time gap measurement). The results can be 

seen in Figure 6-27. The gap measured between the top two edges (w) follows the same 

variation as the bottom gap. The actual horizontal distance between Point A and B (i.e. 

(w-b)/2) is 2.5mm. According to the results the average respective distance obtained 
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from the algorithm is 2.53mm which is again reassuring that a reliable detection of 

point A and D and the top-gap (w) measurements is being made.  The average error in 

weld gap measurement is ±28µm. This result is acceptable because the laser scanner’s 

lateral resolution is limited to ±20µm according to the manufacturer. 

 
Figure 6.26(a) 

 
Figure 6.26(b) 

 
Figure 6.26(c) 

Figure 6-26: Gap measurements (a) physical setup (b) gap measured between top edges, (c) gap 

measured between bottom edges (b) 
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Figure 6-27: Gap measurements using feature detection algorithms 

6.6.4 Validation of joint fit-up measurements 

In order to assure the robustness of the algorithm, feature extraction has to be successful 

in all possible joint orientations. Therefore, known parameters for each orientation were 

set and the feature extraction algorithm was tested. Finally the results were compared 

against the set values to quantify the robustness. The following sections describe the 

results in detail. 

Roll 

The roll angle setup is shown in Figure 6-16. The scanning was carried out with the 

robot where the 3D point cloud data is collected. After that, the feature extraction 

algorithm was used to extract the points. The point cloud data acquired for the roll 

orientation is shown in Figure 6-28. As can be seen from the figure, the features are 

extracted as expected. In order to quantify the accuracy of roll angle detection, known 

roll angles were set using different sizes of slip gauges and were measured using the 

algorithm. The absolute error in the roll angle measurements against different set roll 

angles is shown in Figure 6-29(a) and the respective percentage error is given in Figure 

6-29(b). As noted from the figure the error increases when measuring larger roll angles. 

This is attributed to the fact that the feature detection algorithm does not function as 

expected at higher roll angles. However it is always expected that the machine operator 

can set up the samples with rolls angle below 3º which assures that the system measures 

the roll angle with 2% error which is acceptable for the welding process. 
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Figure 6-28: extracted points at roll orientation 

 

Figure 6.29(a) 

 

Figure 6.29(b) 

Figure 6-29: Average roll angle measurement accuracy (a) absolute error, (b) percentage error 

Pitch 

The roll angle setup is shown in Figure 6-18. The point cloud data acquired for the pitch 

orientation is shown in Figure 6-30. As can be seen from the figure, the features are 

extracted as expected except for some deviation when detecting point D. The absolute 

error in the pitch angle measurements against different set roll angles is shown in Figure 

6-31(a) and the respective percentage error is given in Figure 6-31(b). As noted from 

the figure the error increases when measuring larger pitch angles. This is attributed to 
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the fact that the feature detection algorithm does not function as expected at higher 

pitch angles. However it is always expected that the machine operator can set up the 

samples with pitch angles below 0.5º which assures that the system measures the pitch 

angle with a 3% error, which is acceptable for the welding process. 

 

Figure 6-30: extracted points at pitch orientation 

 

Figure 6.31(a) 

 

Figure 6.31(b) 

Figure 6-31: Pitch angle measurement accuracy (a) absolute error, (b) percentage error 
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Yaw 

The yaw angle setup is shown in Figure 6-20. The point cloud data acquired for the yaw 

orientation is shown in Figure 6-32. As can be seen from the figure, the features are 

extracted as expected except for some deviation in detecting point D. The absolute error 

in the pitch angle measurements against different set roll angles is shown in Figure 

6-33(a) and the respective percentage error is given in Figure 6-33(b). As noted from 

the figure the error is lower when measuring lower yaw angles. This has been attributed 

to the fact that the feature detection algorithm does not function as expected when the 

parts are too close to each other (zero gap condition). However it is expected that a zero 

gap condition does not exist within an industrial weld setting, when considering this 

type of joint fit-up. 

 

Figure 6-32: extracted points at yaw orientation 
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Figure 6.33(a) 

 

Figure 6.33(b) 

Figure 6-33: yaw angle measurement accuracy (a) absolute error, (b) percentage error 

Vertical Offset 

The vertical offset setup is shown in Figure 6-22 and the resulting point cloud data is 

shown in Figure 6-34. As can be seen from the figure, the features are extracted as 

expected except some deviation in detecting point D. The absolute error in vertical 

offset measurements against the different set values is shown in Figure 6-35(a) and the 

respective percentage value is shown in Figure 6-35(b). As noted from the figure, the 

error is lower when measuring lower offsets. This suggests that the feature detection 

algorithm does not function as expected when the parts are too far from each other 

vertically. However it is expected that an offset not more than 1-2mm  can exist in an 

industrial weld setting where the percentage error in detection is less than 1.5%. 
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Figure 6-34: extracted points at vertical offset orientation 

 

Figure 6.35(a) 

 

Figure 6.35(b) 

Figure 6-35: vertical offset measurement accuracy (a) absolute error, (b) percentage error 

In order to satisfy the robustness of the algorithm, the previously described orientations 

were tested for I and U joints, with the results obtained shown in Figure 6-36. As can be 

noted from the figures, the feature extraction algorithm functions as expected in the 

point detection for all possible orientations of the I and U grooves. However, it is also 

noted that the detection of points A and D in the U-groove case has some deviation. 
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Therefore, it is more robust to use the coordinates of Point B and C for calculating the 

middle point which is used for seam tracking (as discussed in Chapter 7). 

 I-groove U-groove 

Roll 

  

Pitch 

  

Yaw 

  

Vertical 

offset 

  

Figure 6-36: Feature extraction in I and U grooves at various joint fit-ups 

In the results it is clear that the feature detection algorithm does not work for larger 

angles. This is because when the larger angles are measured, the points to be extracted 

moves closer to the outer borders of the laser scanner span. This creates inaccuracies in 



 

152 

 

feature detection. However, this due to the small laser span and if a laser scanner with 

larger span is used this can be overcome. 

6.7 Summary 

This chapter presents a novel algorithm for feature detection of a weld groove with a 

maximum MSE of 38µm and 127µm in the x and z coordinates respectively. The feature 

detection algorithm was successfully implemented on the most commonly used weld 

joint types (I, V and U). The real-time gap measurement algorithm was also able to 

measure gaps with an accuracy of ±28µm.  

Approximation methods were used to remove outliers from noisy data present in the 

obtained point clouds. Weld joint fit-up in 3D was quantified and the algorithm 

developed was robust enough to extract features accurately at all possible joint set ups 

for all selected joint types. 

The algorithm can be effectively used for adaptive weld process control, accurate seam 

tracking and intelligent decision making for process control which is discussed in the 

next three chapters.  
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7 Seam tracking and Robotic Welding 

 

The positioning accuracy of the welding arc with respect to the joint mainly depends on 

the robot path accuracy and the work piece geometry. In Chapter 5 it was proven that 

the feature extraction algorithm was successfully able to recognise the most frequently 

used joint types at all possible fit-up configurations. This chapter presents the work 

carried out in establishing accurate robot path planning for 3D seam tracking. This 

chapter also presents a detailed description of the algorithms and methodology used for 

3D seam tracking.  

Work presented in this chapter also includes the initial work carried out in 2D path 

tracking using a compact CMOS camera. The methodology used for the hand-eye 

calibration is also discussed. Results obtained during seam tracking and robotic welding 

is also discussed in this chapter. Despite the complexity of the path being recognised, 

both the overall accuracy and success rate of the system are close to 95%. The 

developed system was successfully used for three dimensional seam tracking, and 

demonstrates an accuracy of ±0.5mm at a tracking a speed of 2mm/s. It proved to be 

simple, reliable and resulted in a satisfactory accuracy being obtained and allows for 

automatic tracking of 3D paths. 

7.1 Introduction 

Seam tracking using vision sensors has been a widely discussed topic over recent years. 

Welding, spray painting and sealant application have been the leading applications of 

seam tracking technologies. Basically the seam tracker governs the location of the weld 

joint and interconnects with the robot control system to track the joint. A good seam 

tracker should not only consider positional accuracy, but should also be able to orient 

the welding torch in such a way that the welding quality is maximized. In addition, the 

seam tracker should be compact so that it can perform seam tracking on complex weld 

shapes in narrow spaces. It should also be rigid enough to withstand extreme conditions 

during welding. 

Over the years 2D and 3D methods have been used with industrial robots to achieve 

path tracking. 3D vision sensors are mostly used to track 3D complex paths whereas 2D 
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vision sensors are used to follow simple 2D paths. 3D methods easily improve upon the 

capability of 2D methods due to the increased capabilities such as the ability to measure 

3D shapes, increased accuracy, robustness, compact size, rugged build, easiness for 

system integration and reliability. Although it has been found that 3D laser scanners are 

the most suitable sensor for this research, initial work was carried out to understand the 

performance of a 2D camera for a simple path tracking application.  

As presented in Chapter 2, the work carried out in seam tracking can be categorized in 

to three generations. It is understood that for an assembly line or a continuous 

production system the third generation solution (real-time seam tracking and welding) 

is most feasible [15]. However, in aerospace applications most welding is carried out as 

a job shop production system. Part variety and variability is comparatively higher than 

in a standard assembly line. Additionally, the required welding quality is also 

significantly higher. If welding was performed on an erroneously set up joint by the 

manual operator, the whole part could end up being wasted. This includes a significant 

amount of cost (due to expensive material, skilled labour, energy, time). Therefore 

intelligent decision making is essential prior to performing any robotic welding in 

aerospace applications. In this research the two-pass approach was selected, where the 

robot surveys the seam along a pre-taught path and makes the decisions before 

performing welding. In the second pass, welding is performed along the path points 

generated during the first pass. The main issue in the two pass method is the time taken 

for pre-surveying. Another drawback is the incapability of the system adapting to the 

thermal distortions created during welding. However, in this work the main interest is to 

carry out welding with proper fixtures which involve only a small amount of distortion 

(the majority of distortion occurs after welding due to thermal stress build up and 

fixtures). Good quality fixtures used in the aerospace industry help to assure a low 

amount of distortion during welding. It should be noted that the designed system also 

could perform surveying and welding in real-time (single pass). However, the core 

work in this thesis is based on the two pass approach as discussed before. 

Section 7.3 presents a hand-eye calibration methodology used for the seam tracking 

task. The work carried out as part of establishing the seam tracking control 

methodology between the PC and the robot are also presented within this section. It 

involves real-time tracking using a 2D camera (Single pass approach). Section 7.4 

presents the two-pass approach carried out for 3D seam tracking and welding.  
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7.2 Coordinate system transformation 

Normally the transformation matrix (4×4) between two co-ordinate systems can be 

represented by a rotational component and a translational component. For example, 

consider point A and B as two points in 3D space. The relationship between then in 3D 

can be represented as given in equation 7.1 and 7.2. 

(

𝑥𝐴

𝑥𝐴

𝑥𝐴

1

) = 𝐻𝐵
𝐴 . (

𝑥𝐵

𝑥𝐵

𝑥𝐵

1

) (7.1) 

𝐻𝐵
𝐴 = [𝑅𝐵

𝐴 𝑇𝐵
𝐴

0 1
] (7.2) 

 

In this expression, R is the rotational component matrix with a size of 3×3 and T is the 

translational component matrix with the size of 3×3. This has been used for all the 

transformations between coordinate frames identified in the work presented in this 

chapter. Figure 7-1 shows the important coordinate systems identified in the robotic 

welding system. 

 

Figure 7-1: Coordinate systems in the robotic welding system 
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In order to move the robot to perform 3D seam tracking, it is important to transform the 

coordinates of a point (for example the middle point of the weld groove) from the laser 

scanner data in to the robot base co-ordinate frame. This can be represented by equation 

7.3 where PB and PC are the origins of the base co-ordinate frame and laser scanner 

coordinate frame respectively. 

𝑃𝐵 = 𝐻𝐵
𝐸  . 𝐻𝐸

𝐶  . 𝑃𝐶 (7.3) 

 

𝐻𝐵
𝐸  : 

Homogenous 4 × 4 transformation matrix from the wrist frame 

(E) with respect to the robot frame.  

𝐻𝐸
𝐶  : 

Homogenous 4 × 4 transformation matrix from the laser scanner 

frame with respect to the wrist frame.  

 

The 3D hand-eye calibration was carried out by measuring the offsets (between each 

axis) between each coordinate frames and finding out the rotations (between coordinate 

frames). All rotation elements were established by using the “right hand rule” and the 

results are tabulated in Table 7-1. 

Table 7-1: Coordinate system transformation values 

Transformation Tx Ty Tz Rx Ry Rz 

𝐻𝐵
𝐸 Obtained from the robot (variable 

throughout the process): x, y, z 
-90 0 -90 

𝐻𝐸
𝐶 ∆X ∆Y ∆Z -90 0 0 

 

∆X, ∆Y and ∆Z are physically measured distances from the wrist centre to the laser 

scanner coordinate frame. x, y, and z are robot positions, directly read from the robot.  

According to the values in Table 7-1, the following two matrices were obtained. 

𝐻𝐸
𝐶 =  [

1 0 0 ∆𝑋
0 0 1 ∆𝑌
0 −1 0 ∆𝑍
0 0 0 1

] 

𝐻𝐵
𝐸 =  [

1 1 0 𝑥
0 0 1 𝑦
0 −1 0 𝑧
0 0 0 1

] 
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Multiplication of these two matrices (according to equation 7.3) returns the total 

transformation (H) from the laser scanner to the robot base frame. This result can be 

used to determine any point found (using feature extraction algorithm) from the laser 

scanner data with reference to the robot frame. 

𝐻 =  [

1 1 0 𝑥 + ∆𝑋
0 −1 0 𝑦 + ∆𝑍
0 0 −1 𝑧 − ∆𝑌
0 0 0 1

] 

7.3 2D seam tracking 

The experimental setup for the 2D tracking work, which includes a 2D industrial 

camera and the KUKA KR16 robot, is shown in Figure 7-2. It illustrates the main 

coordinate frames associated with the robot, work piece and the camera. The camera 

and the robot were connected to the PC according to the method described in Chapter 3. 

Software development was carried out using LabVIEW and its vision acquisition 

software package. 

 

Figure 7-2: 2D seam tracking setup 

The sequence of operations performed for 2D robotic seam tracking is presented in 

Figure 7-3. Initially, the robot is moved to its home position where the path tracking is 

started. At the home position, the camera is triggered and an image is captured. Image 

processing is carried out (50ms cycle time) to find the position of the centre of the gap 

which is then issued as the next position (advancement in the x-coordinate of the robot) 
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of the robot. The step advancement in y-coordinate is the look-ahead distance of the 

camera which is measured to be 46mm. This sequence is repeated so that the robot is 

continuously tracking the path until it reaches a pre-determined stop position specified 

by the user. 

 

Figure 7-3: 2D seam tracking sequence 

The seam edge detection methodology within the image processing algorithm is shown 

in Figure 7-4 (a). Initially, the raw image was converted to greyscale which was then 

followed by thresholding to distinctively separate background from the foreground 

features. Particle filtering was then carried out which removes all the noise in the image 
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Capture image 
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and finally edge detection was carried out which results in Figure 7-4 (b). The middle 

point calculated between point 1 and 2 was used as the x-coordinate of the next point. 

 
 

Figure 7.4(a) Figure 7.4(b) 
Figure 7-4: 2D image processing for seam tracking (a) image processing sequence, (b) detected 

edges 

Experimentation 

Experiments were then carried out to verify the performance of the system which is 

described in this section.  

7.3.1 Seam tracking accuracy 

Figure 7-5 shows the seam tracking results of the sample shown in Figure 7-2.  

 

Figure 7-5: 2D seam tracking results 

As can be seen from the figure the path has been tracked as expected. The accuracy of 

the positioning was checked by comparing 10 known points (coordinates) of the 
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arrangement with the respective coordinates of the tracked points. The results obtained 

are graphed in Figure 7-6 which shows that the accuracy of the tracking process is not 

as expected for a path tracking application. As can be seen that the error is more than 

1mm which not acceptable for a seam tracking application. 

 

Figure 7-6: Mean square error in x-y coordinates in 2D seam tracking 

7.3.2 Gap sensing accuracy 

In order to find the gap sensing accuracy, a test sample was created as shown in Figure 

7-7 with various known gaps.  

 

Figure 7-7: Setup for checking gap sensing performance 

The software was then used with the robot to determine the gap in real-time. The results 

obtained for absolute measurement error shown in Figure 7-8(a) and its respective 

0

0.5

1

1.5

2

2.5

robot x-axis robot y-axis

M
ea

n
 s

q
u

a
re

 e
r
ro

r 
(m

m
) 

Robot axis 



 

161 

 

percentage values are shown in Figure 7-8(b). As seen from the figure, the error in 

measurements is higher when sensing smaller gaps, and as the gap increases the 

percentage error is reduced. 

 
Figure 7.8(a) 

 
Figure 7.8(b) 

Figure 7-8: Results of 2D gap sensing 

These results show that 2D seam tracking and gap sensing does not provide adequate 

accuracy for path tracking applications. It was also observed that the edge detection 

process is affected by ambient lighting conditions and that 2D methods are incapable of 

obtaining the third dimension of an object (which is the height information: along the z-

axis). However, 2D methods can be useful for tracking simple 2D paths in applications 

where the accuracy required is not significantly high.  
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7.4 3D seam tracking 

In the seam tracking process, the path planning has to be performed in 3D where the 

Cartesian coordinates of a particular path is to be determined and provided to the robot. 

Therefore, any point extracted from the laser scanner point cloud data should be 

transformed to the robot base coordinate frame using the transformation presented in 

section 7.2. The detailed description of the seam tracking methodology and equations 

used are presented in this section. 

As explained in section 7.1, seam tracking for welding is realized through the two-pass 

approach. As can be seen in Figure 7-9, initially the robot moved along a nominal path 

which is denoted as the scan pass (It should be noted that this path can be determined 

by the user or can be extracted from a CAD file). For each step movement (robot scan 

step) the algorithm finds the offset in x and z, which are denoted by ∆x
j
 and ∆z

j
. During 

the welding-pass, the algorithm is used to calculate the new points by using the offsets 

calculated during the scanning-pass. The methodology of calculating offsets in the x-y 

plane is shown in Figure 7-9. Similarly, offsets in the y-z plane are also calculated.  

 

Figure 7-9: Seam tracking methodology in x-axis 

Figure 7-10 shows the method of measuring the offsets in the x and z axes respectively. 

Let point P(xj,yj,zj) be the point to be tracked in the welding run. The coordinates of P 

can then be calculated using equations 7.4-7.6. 
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𝑥𝑗 = 𝑥𝑗−1 + ∆𝑥𝑗  (7.4) 

𝑦𝑗 = 𝑦𝑗−1 + ∆𝑦 (7.5) 

𝑧𝑗 = 𝑧𝑗−1 + ∆𝑧𝑗 (7.6) 

where xj and zj are the x and z coordinates of the middle point found of the j
th

 cross 

sectional profile of the joint. ∆𝑦 is the robot scan step which is 1mm. ∆𝑥 𝑎𝑛𝑑 ∆𝑧 are 

respective offsets in x and z axis between point Pj and Pj-1. 

 

Figure 7-10: Diagram showing the point used for seam tracking 

The software sequence of seam tracking is shown in Figure 7-11. During the scanning 

pass, the robot is advanced by the robot scan step size (for the work presented here, it is 

1mm). For each 1mm step, the laser scanner extracts features (from the algorithm 

presented in Chapter 6) and stores the points in array variables. This array of 

coordinates is then used to guide the welding torch in the second-pass (tracking/welding 

pass). 
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Figure 7-11: Software operating sequence for 3D seam tracking 

It should be noted that the look-ahead distance (the length between the laser line and the 

welding torch TCP) of the laser scanner is added to the y-coordinates during the 

welding pass. The look-ahead distance of the laser scanner is shown in Figure 7-12 and 

measured to be 70mm. 



 

165 

 

 

Figure 7-12: Look-ahead distance 

It was mentioned in Chapter 6 that the middle point (x
mid

,z
mid

) found using the feature 

extraction algorithm is used as a reference to guide the welding torch. However, in 

order for the weld to be established completely in to the weld groove, the torch has to 

be held in such a way that it is slightly higher than the middle point (x
mid

,z
mid

). From the 

manual welding experiments carried out in Chapter 4 it was understood that the torch 

stand-off distance should be maintained around 3-5mm for better quality. Therefore, it 

was ensured that the torch tip was maintained at 3mm above the work piece as shown in 

Figure 7-13. This method assures that welding arc is striking all parts of the joint.  

 

Figure 7-13: Torch placement during seam tracking for robotic welding 

In Chapter 6, it was also discussed that part fit-up plays a significant part in the weld 

quality. It was found, however, that it has only a minor effect on the feature extraction 
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algorithm. Although the robustness of the feature extraction algorithm is proven, the 

seam tracking performance under all joint types and fit-up configurations has to be 

established. Also seam tracking performance in 3D has to be established to realize the 

validity of the system. Therefore a series of experiments were carried out which are 

explained in the following sections. 

7.4.1 Seam tracking of various joint profiles 

The identified points for seam tracking (in dark blue) are graphed on the raw point 

cloud data for the three different joint types and are shown in Figure 7-14. As can be 

seen from the figure, the robotic seam tracking system has performed successfully in 

guiding the welding torch along the joint.  In addition, the algorithm has effectively 

carried out seam tracking irrespective of the weld joint type. In Figure 7-14 (c), it can 

be seen that there are missing data points within the U-groove. However, it can be 

understood from the results that the seam tracking algorithm was not affected by those 

missing data points. This shows that seam tracking can be performed successfully even 

on shiny components, similar to the expected to be found in industry (especially in the 

aerospace and automobile industries) which could produce more missing data points. 
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Figure 7.14(a) 

 

Figure 7.14(b) 

 

Figure 7.14(c) 

Figure 7-14: Points used for guiding the welding torch (a) I-groove, (b) V-groove, (c) U-groove 

7.4.2 Seam tracking under various joint fit-ups 

As discussed before, seam tracking performance was also tested at all possible joint fit-

up configurations that could be present in a welding set-up. The results of the tracked 

path (in dark blue) are shown on the raw point cloud data in Figure 7-15.  
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Figure 7.15(a) 

 
Figure 7.15(b) 

 
Figure 7.15(c) 

 
Figure 7.15(d) 

 

Figure 7.15(e) 

Figure 7-15: Seam tracking performed at various joint fit-ups (a) roll, (b) pitch, (c) yaw, (d) vertical 

offset, (e) horizontal offset 
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As can be seen from Figure 7-15(a)-(e), the seam tracking has been performed 

successfully for all possible 3D joint fit-up configurations. This shows that the 

developed seam tracking algorithm could carry out 3D seam tracking irrespective of the 

joint fit-up.  

To investigate this further, seam tracking was carried out on each joint configuration by 

setting up known values for each joint fit-up configuration. For example, known pitch 

angles were set using slip gauges. Similarly all the other fit-ups were tested for seam 

tracking performance by setting known values. 

The seam tracking performance obtained when one of the samples was moved 

horizontally and\or vertically by a known distance is shown in Figure 7-16 (a) and (b). 

The blue line in the figures is the nominal path that the robot was moved.  

  
Figure 7.16(a) Figure 7.16(b) 

  
Figure 7.16(c) Figure 7.16(d) 

 
Figure 7.16(e) 

Figure 7-16: Seam tracking performance check for possible joint fit-ups (a) horizontal offset, (b) 

vertical offset, (c) roll, (d) pitch, (e) yaw 
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It should be noted that if the sample is moved by 1mm the actual seam tracking 

coordinates will be moved only by 0.5mm for both horizontal and vertical offset 

configurations because the centre point will be moved by 0.5mm vertically. 

Seam tracking performance for the various known angles set for roll, pitch and yaw fit-

up orientations is shown in Figure 7-16 (c) (d) and (e) respectively. As can be seen from 

these figures, the results reveal that the system is sensitive even for small angle 

deviations around 0.15˚ (Figure 7-16 (e)). This could be useful in an industrial setting 

because small deviations in fit-up can be addressed with alterations in welding 

programmes. This can help to improve the final weld quality and strength of the welds. 

The results obtained in this section shows that the developed seam tracking algorithm 

can be successfully used to carry out 3D seam tracking at all possible joint fit-up 

configurations. 

7.4.3 Seam tracking of selected 3D paths 

Previously it was shown that the developed algorithm can successfully carry out seam 

tracking irrespective of the joint type, joint fit-up or whether there is missing data in the 

point cloud. This section presents the results of seam tracking performed on some 

selected 3D paths (Figure 7-17). These tests were carried out in order show the 

capability in tracking 3D paths. As can be seen from the figure, the robotic system 

successfully managed to guide the welding torch along the 3D paths. The standard 

deviation of the tracked path was calculated to be ±54um which is acceptable for the 

welding process. 
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Figure 7.17(a) 

 

Figure 7.17(b) 

 

Figure 7.17(c) 

Figure 7-17: Seam tracking performed on some complex paths (a) complex 2D, (b) 3D curve, (c) 

sinusoidal 

It should be noted that these paths were selected on the basis that the path was within 

the laser scanner range (25mm x 25mm) during the nominal path (in this case a straight 

line in the robot y-axis). However, this system can be used to track more complex 
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shapes if the nominal path is provided as an array of 3D points. This can ideally be 

derived from a CAD model. Similar to the method discussed before, offsets in the 3D 

path can be calculated from the laser scanner data by comparing it with the CAD data to 

correct the robot path in the tracking pass. 

7.5 Robotic welding 

The steps involved in carrying out robotic TIG welding are shown in Figure 7-18.  

 

Figure 7-18: Robotic welding procedure 
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Initially, the robotic welding system carries out the tracking pass as explained in section 

7.4. When the robot completes the tracking it returns back to its original start position. 

At this point the welding machine is reset which is then followed by setting the user 

specified welding current and wire feed rate values (these are selected based on the 

experience of human skill knowledge: Chapter 4). After that the welding arc is struck at 

the starting point. The robot will stay at the start position (while the arc is at its ON 

state) for a short period to establish the weld pool. The time required for the weld pool 

establishment is chosen based on the results from human skills capture.  Once the weld 

pool is established, the system carries out the tracking pass according to the method 

explained in section 7.4. 

The robotic welding system set up to perform welding is shown in Figure 7-19. 

 

Figure 7-19: Robotic welding system with fixture 

In order to examine the seam tracking and welding performance in 3D all possible joint 

fit-ups were tested. 50mm x 200mm x 1.5mm stainless steel (316l) plates were set at 

known joint fit-ups using feeler gauges and slip gauges. Welding was then performed 

during the tracking pass. 

The results of the welding performed with constant parameters of, 

 welding current: 80A 

 background current: 45A 

 pulse frequency: 1kHz 
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 duty cycle: 60% 

 wire feed rate: 0.9mm/s 

on all the possible 3D joint configurations is shown in Figure 7-20. The Figure also 

shows the numerical set value for each fit-up configuration.  

   
Figure 7.20(a) Figure 6.20(b) Figure 6.20(c) 

  

 

Figure 6.20(d) Figure 6.20(e)  
Figure 7-20: Robotic welding results for all possible joint fit-ups (a) roll angle of 0.5˚, (b) pitch 

angle of 0.5˚, (c) yaw angle of 0.5˚, (d) vertical offset of 0.5mm, (e) horizontal offset of 0.5mm 

According to the results obtained it can be seen that the system seam tracking 

performance is acceptable since the welding torch has moved successfully along the 

weld joint centre. However, as can be seen from the photographic views, the visual 

weld quality is not as desired (especially in yaw and vertical offset set-ups). This is 

because, the set parameters for the welding current and wire feed rate are not feasible 

for a weld with a varying geometry (dimensions) along the weld groove. For example, 

at the “Yaw” configuration, a variable volume is created which must be welded along 
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the weld groove. There is therefore a need for varying the weld machine settings, via 

adaptable process control, to achieve the required weld quality (discussed in Chapter 9). 

The results shown in Figure 7-20, also highlights the need for a method of controlling 

the weld bead shape (weld pool shape) intelligently. This will help to ensure that the 

robotic system can intelligently respond to any variability in the joint fit-up. This will 

be discussed in detail in Chapter 8. 

7.6 Summary 

The work presented in this chapter has included the results of 3D seam tracking. A two-

pass approach was selected based on the requirement for a decision making process 

required for the aerospace industry. The developed feature extraction algorithm was 

successfully used to find the middle point of the weld joint which was then used for the 

seam tracking process. Seam tracking was successfully carried out on all common weld 

joint types and all possible joint orientations in 3D space.  

The developed system can be used to track 3D complex paths and make intelligent 

decisions whether the joint fit-up is within the suitable tolerances. Such decisions could 

support improving the welding quality, save cost, time and labour. Robotic welding was 

performed (with constant parameters) on all the possible joint fit-ups and the resulting 

welds are not as expected, due to the quality of the weld obtained. Although this might 

suit a certain scenario (for example a constant gap butt joint), it will not suit a more 

challenging geometry (such as a variable gap condition: yaw). Therefore it is essential 

that the parameter selection is carried out automatically. Intelligent algorithms are 

required to set the welding machine settings based on the joint geometry feedback 

obtained from the laser scanner data. This will be addressed in detail in Chapter 9. 
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8 Development of an empirical model for weld quality 

characteristic prediction  

 

In Chapter 5, 6 and 7, the feature extraction and seam tracking algorithms were 

presented and the methodology for the two-pass welding approach was established. 

Experiments were carried out to evaluate and demonstrate the performance of the 

feature extraction and seam tracking algorithms.  

The initial trials on robotic TIG welding with the parameters obtained from chapter-4 

were inconclusive with multiple welding defects (low penetration; high HAZ, etc.). 

Intelligent robotic TIG welding needs a robust experimental database. This chapter 

(chapter 8) discusses the development of an empirical model to predict the best welding 

parameters that will give an acceptable weld quality. Welding current, wire feed rate 

and pulsing parameters (base current, pulsing frequency and duty cycle) were selected 

as the key process parameters (on the basis of the results obtained from chapter-4) for 

the work presented in this chapter. Parameters such as welding speed, arc gap, shielding 

gas flow rate, electrode diameter and torch orientation were kept constant. Statistical 

approaches such as Taguchi and ANOVA methods were used to find the relationship 

between the process parameters and their effect on the weld quality characteristics of 

reinforcement height, penetration, bead width and tensile strength.  

Experiments were carried out to derive and validate the proposed methodology. 

Individual and interaction effects of the input parameters were established. The results 

obtained show that the developed mathematical model can predict the weld quality 

characteristics based on the input parameters. The results show that the weld bead width 

and penetration increased as welding current, background current, duty cycle and wire 

feed rate increases. An increase in the wire feed rate resulted in an increase of the weld 

bead height, whereas increases in the welding current, resulted in a decrease of the weld 

bead height. The effect of pulse frequency on weld bead dimensions was found 

negligible. Equations were also derived to establish the relationship between selected 

welding process parameters and the weld quality characteristics. Application of the 

derived mathematical model for achieving intelligent and adaptive robotic TIG welding 

process control is discussed in detail in Chapter 10. 
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8.1 Introduction 

In general, the quality of a weld joint is significantly affected by the weld process 

parameters. To get the desired quality welds, it is essential to have complete control 

over the relevant process parameters. Typical welding process parameters includes 

welding current, welding speed, wire feed rate, arc gap, wire diameter, torch 

orientation, material composition, material thickness and shielding gas type. The typical 

input and output parameters that can be considered for control are shown in Figure 8-1. 

 

Figure 8-1: Weld input out parameters 

In TIG welding, the weld quality characteristics are normally established on basis of 

weld bead height, width, depth of penetration (Figure 8-2) and strength of the weld.  

 

Figure 8-2: Weld bead parameters 

It should be noted that in this study it is considered that the depth of penetration is the 

penetrated amount of weld from the bottom side of the sample. 
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Compared to other welding processes (such as laser; spot; MIG), the TIG welding 

process has achieved very low levels of automation, predominantly attributed to the 

complexities associated with the process (mainly due to wire feeding method).  

Previous work carried out on finding the relationships between the process parameters 

and the bead geometries in arc welding processes can be grouped in to two distinct 

categories. One method is to use empirical methods based on experimentation [119] and 

the other is using theoretical studies based on heat flow concepts [125][55]. The Former 

is identified to be more practical for implementation as the latter involves a significant 

amount of computation which could be difficult to implement in an automated system. 

Over the years, many empirical modelling methods such as statistical methods, 

Artificial Neural Networks (ANN) and Fuzzy logic was attempted [119]. However, due 

to the easiness of implementation at industrial settings, statistical methods are often 

preferred by engineers [137]. 

Sensitivity analysis is a method to quantify the effect of the process parameters on the 

weld quality characteristics in a manufacturing process [124]. It can be used to rank the 

process parameters in the order of significance. This study provides the understanding 

of which input parameter should be prioritized in developing the control solution.  

Most of the previous work undertaken on the development of mathematical models to 

control TIG welding (robotic), are based on bead-on-plate technique, which is not an 

accurate representation of the actual TIG welding scenario. Bead-on-plate welding is 

performed with a single plate (no seam present) without considering the joints. This 

might establish a similar pattern but does not necessarily represent the actual conditions 

because in an industrial setting a gap always exists between the samples. Existence of a 

gap affects the weld bead shape. Therefore the bead-on-plate technique could not be the 

ideal technique for implementing intelligent control on a practical solution for an 

industrial welding robot.  

Use of a pulsed current (see Figure 8-3) for TIG welding is a relatively new technology 

used in industries especially for the welding of thin sections. Past literature has 

established the significance of a pulsed current on weld bead shape [128]. However, not 

much work has been carried out to quantify the affect the weld bead shape or the weld 

quality characteristics.  
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Figure 8-3: Pulsing parameters 

Equation 8.1 and 8.2 are used to calculate the pulse frequency and duty cycle 

respectively for pulsed operation. The Pulse frequency determines the number of pulses 

per second and it does not affect the heat input (for constant duty cycle, Ip and Ib).  Duty 

cycle determines the amount of time that the welding current signal stays at its high 

value and therefore has a direct impact on the heat input. High background current 

increases the mean current and therefore increases the heat input. Therefore pulsing 

parameters can be used to control the heat input to the weld joint which could be vital 

when considering welding thin sections. 

𝑃𝑢𝑙𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
1

𝑇
 (8.1) 

𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =  
𝑇𝑝

𝑇
× 100 (8.2) 

8.2 Methodology 

As mentioned in the introduction, the TIG welding process is complex and many input 

parameters influence the weld quality. Studying the effect of all the input parameters is 

beyond the scope of this study, however, the key process variables that significantly 

affect the weld bead shape need to be established.  The following parameters were 

considered less significant and were kept constant through the experimentation. 
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 Gas flow rate  : 0.8 l/min 

 Arc gap  : 0.5 mm 

 Weld angle  : 90˚ 

 Welding speed  : 2 mm/s 

 Electrode diameter : 2.4 mm 

 Filler wire diameter : 0.8 mm 

The Identified key process parameters for this study are welding current, wire feed rate, 

pulse frequency, duty cycle and background current. The following sections in this 

chapter focus on identifying the effect of these parameters on the weld quality 

characteristics and development of the empirical model to be used with the robotic 

welding system.  

The experimental materials were 200 x 50 x 1.5 mm stainless steel (316 l), 5% thoriated 

electrode (2.4mm) with a stainless steel filler of diameter 0.8mm. It should be noted 

that the selection of the welding electrode and filler wire size was based principally 

upon matching the mechanical properties and physical characteristics of the work 

material, weld size and recommendations from the skilled welders.  Prior to carrying 

out any experimentation, the edges of both samples were prepared using a file and the 

surfaces of the samples were cleaned to eliminate any dirt or oxides. 

The weld bead dimensions (bead width, reinforcement height and penetration) were 

measured using the Micro-epsilon laser scanner as shown in Figure 8-4 (a).  

 
 

Figure 8.4(a) Figure 8.4(b) 
Figure 8-4: Method of measuring weld bead parameters (a) measurement of bead parameters from 

Scan-control software, (b) method of obtaining average value 
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Three positions of the weld were tested for each weld bead parameter and the average 

was recorded to minimize the error. The three positions were selected by random 

sampling. Figure 8-4 (b) shows how three positions were measured to obtain the 

average bead width. Similarly the average values for bead height and penetration was 

also obtained. 

In addition to the weld bead shape it is also important to investigate the strength of the 

weld to get the full understanding of the effect of the process parameters on the weld 

quality. An INSTRON 8081 tensile testing machine (shown in Figure 8-5) was used to 

measure the tensile strength of the weld and to establish the fracture zone.  In order for 

the work pieces to be used with the tensile testing machine, the samples were prepared 

then (laser cut) into ISO standard (ISO 6892) size which is shown in Figure 8-6. To 

avoid any machine errors, the sample was held straight and in the middle of the jaws of 

the tensile testing machine.  

 

Figure 8-5: Tensile testing machine 

 

Figure 8-6: Specimen preparation for tensile testing 
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During the tensile testing process, the load was increased from zero in 100N steps until 

the specimen is broken. A load-extension graph was obtained for each sample. From the 

graph, the load at the maximum tensile extension, the maximum load and the load at the 

break point was recorded which are shown in Figure 8-7.  

 

Figure 8-7: Load-extension graph and important parameters extracted 

8.3 Identification of important influencing parameters 

To study the effect of each parameter on the weld quality characteristics, experiments 

were carried out by changing one parameter at a time whilst keeping all the other 

parameters constant. This enabled a better understanding of the effect as well as the 

boundaries of a particular process parameter to achieve a good weld. 

The constant values selected (based on the results from the manual welders’ 

knowledge) are as follows,  

 Welding current : 90 A 

 Background current : 45 A 

 Pulse frequency : 1 kHz 

 Duty cycle  : 60 % 

 Wire feed rate  : 1 mm/s 

The effect of welding current on weld bead dimensions is shown in Figure 8-8. As 

noted from the figure, the bead width and penetration increase with an increase in 

welding current whereas the bead height decreases with an increase in welding current. 

This is attributed to the increase in heat input with an increase in the welding currents. 

Load at maximum 

tensile extension  

Maximum load  

Load at break 
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Figure 8-8: Weld bead measurements against welding current 

The average weld bead dimensions with changing background current are shown in 

Figure 8-9.  

 

Figure 8-9: Weld bead measurements against background current 

As can be seen from the figure, it shows similar variation as the welding current. 

However the influence of background current on weld bead shape is lower compared to 

the welding current, which implies that the background current has a comparatively 

lower effect on the weld bead parameters than the welding current. 

The effect of the weld bead shape dimensions with a change in the pulse frequency is 

shown in Figure 8-10. As noted from the figure, the pulse frequency does not have a 

significant effect on the weld bead shape. Even though it does not have an effect on the 

bead size, it might have an effect on the strength of the weld which will be discussed 

later. 
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Figure 8-10: Weld bead measurements against pulse frequency 

The effect of weld bead dimensions with varying duty cycle is shown in Figure 8-11.  

 

Figure 8-11: Weld bead measurements against duty cycle 

As noted from Figure 8-11, the duty cycle has a significant effect on the weld bead 

width compared to other parameters. The effect of duty cycle on the weld bead height 

and penetration has a similar variation as the effect of welding current. 

The variation of bead parameters against the wire feed rate is shown in Figure 8-12. As 

can be seen from the figure, the bead width increases with the wire feed rate, but not as 

much as is observed with the welding current or duty cycle. It also can be noted from 

the figure that there is a marginal increase in the bead height with an increased wire 

feed rate. However, the wire feed rate has no significant effect on penetration. 
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Figure 8-12: Weld bead measurements against wire feed rate 

The effect of each selected process parameter on the weld bead geometry and tensile 

strength is quantified in section 8.4.3. 

8.4 Empirical modelling 

This section presents the methodology for mapping the relationship between the 

welding process parameters (input) and the welding performance (output). As explained 

before, some of the process parameters were kept constant during the experiments as 

they are less significant. 

The response function representing any weld quality characteristic can be represented 

by equation 8.3.  

𝑌 = 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5) (8.3) 

where, 

Y is the response (bead width, bead height, penetration, welding strength) 

X1 is the welding current 

X2 is the background current 

X3 is the pulse frequency 

X4 is the duty cycle 

X5 is the wire feed rate 

The steps involved in the empirical model development are shown in detail in Figure 

8-13.  
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Figure 8-13: Mathematical model development procedure 

Initial experiments were used to find the boundaries of the process parameters that will 

produce an acceptable weld quality. These experiments were carried out by varying the 

process parameters and the resulting output parameters were measured. Specific 

methods (Taguchi method and results from ANOVA) were used to reduce the number 

of experiments. Different statistical algorithms were then tested for developing the 

empirical model for predicting the output characteristics. The developed empirical 

models were compared and the best model for prediction was selected. Additional 

validation experiments were carried out to validate the developed empirical model. The 

following sections will discuss these steps in detail. 

8.4.1 Delimitation of variable boundaries 

In the present study, five levels of process parameters are considered. The value of each 

process parameter at the different levels is listed in Table 8-1. 
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Table 8-1: Process parameter levels 

Process parameter Units Level 1 Level 2 Level 3 Level 4 Level5 

Welding current (X1) A 80 85 90 95 100 

Background current (X2) A 35 40 45 50 55 

Pulse frequency (X3) kHz 0.25 0.75 1 1.5 2 

Duty cycle (X4) % 40 50 60 70 80 

Wire feed rate (X5) mm/s 0.50 0.75 1.00 1.25 1.50 

8.4.2 Design of the experiments  

As noted from Table 8-1 there are five process parameters and five levels. A full 

factorial study therefore would require 5
5
 (3125) experiments, which is a costly and 

time consuming task. The Taguchi method was used to reduce the number of 

experiments. The Taguchi method uses a special design of orthogonal arrays and is used 

extensively in engineering fields (such in machining) for the optimization of process 

parameters maintaining the required quality with minimal cost or time. The main 

advantage of the Taguchi method is that it can be used to study the whole process 

parameter range with significantly smaller numbers of experiments. With the 

implementation of Taguchi’s method, the total number of experiments can be reduced 

to 25 in this work. 

In the Taguchi method, the deviance between the experimental value and the 

anticipated value is calculated by defining a loss function. The value of the loss 

function is further converted in to signal to noise ratio (S/N). Three categories exist in 

the quality characteristic optimization in the analysis of the S/N ratio which are: 

 lower the better 

 higher the better 

 nominal is the better 

In all of these categories, a better quality characteristic is achieved when the S/N ratio is 

larger. Therefore in the Taguchi method, the best level of a particular process parameter 

is the level with the highest S/N ratio.  

The signal-to-noise ratio for the case, "Nominal target is best" is given in equation 8.4. 

It should be noted that for this study, the middle value of the range of a particular weld 

bead dimension was selected as the nominal value.  
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𝑆

𝑁𝑖
= 10 log10[

1

𝑛

(∑ 𝑦𝑖𝑗
𝑗=𝑛
𝑗=1 )2

𝑛 − 𝜎𝑖
2

𝜎𝑖
2 ] 

(8.4) 

where,  

i is the experiment number; 

j is the repeated trail number for experiment i; 

yij is the value of each repeated trial for experiment i; 

  𝑦𝑖𝑗̅̅ ̅ =
1

𝑛
∑ 𝑦𝑖𝑗

𝑗=𝑛
𝑗=1  denotes the mean value of j trials for experiment i, where n is the 

number of repeated trails; 

𝑆𝑚𝑖 =
(∑ 𝑦𝑖𝑗

𝑗=𝑛
𝑗=1 )2

𝑛
= 𝑛(𝑦𝑖𝑗̅̅ ̅)2 denotes the sum of the squares of the mean; 

𝑦𝑖𝑗̅̅ ̅2 is the mean square; 

𝜎𝑖 = √𝜎𝑖
2 is the standard deviation, showing the ability of the welding system to 

provide closely similar indications for repeated evaluation of the same measurement 

under the same conditions of measurement; 

𝜎𝑖
2 =

(∑ 𝑦𝑖𝑗
2 −𝑆𝑚𝑖

𝑗=𝑛
𝑗=1 )

𝑛−1
=

1

𝑛−1
[∑ 𝑦𝑖𝑗

2𝑗=𝑛
𝑗=1 −

(∑ 𝑦𝑖𝑗
𝑗=𝑛
𝑗=1 )2

𝑛
] denotes the experimental variance. 

8.4.3 Analysis of variance (ANOVA)  

Statistical analysis of variance (ANOVA) is a method performed to quantify the process 

parameters’ effect on a particular quality characteristic (such as weld bead dimensions 

or weld strength). This is achieved using the F-test introduced by Fisher [124]. 

According to his findings the F value is larger if the process parameter has a larger 

effect on the quality characteristic. The ANOVA method also can be used to find 

whether there are any interaction effects among the welding process parameters.  

 Enumerating the effect of process parameters on weld bead dimensions 8.4.3.1

In section 8.3, the effect of each process parameter on the weld bead dimensions was 

presented. However the amount of effect has to be quantified and ranked. In order to 

rank the order of the process parameters and its effect on any weld bead dimension, 

initially a two factor design was carried out. The maximum and minimum possible 
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levels of each process parameter were selected as the levels for the design (from section 

8.3). Table 8-2 shows the experimental data and their relevant resulting weld bead 

shape dimensions (these are the average value of three trials for each experiment). 

Table 8-2: Experimental data and results for ANOVA method 

Experiment 

number 

Inputs Outputs 

Welding 

current 

(A) : X1 

Background 

current (A) : 

X2 

Pulse 

frequency 

(kHz) : X3 

Duty 

cycle 

(%) : 

X4 

Wire 

feed 

rate 

(mm/s) 

: X5 

Bead 

width 

(mm) 

: Y1 

Bead 

height 

(mm) : Y2 

Penetration 

(mm) : Y3 

1 75 35 0.75 40 0.50 2.45 0.05 1.02 

2 75 35 0.75 70 1.50 3.52 0.60 0.78 

3 75 58 1.5 40 0.50 2.82 0.05 0.92 

4 75 58 1.5 70 1.50 3.81 0.44 0.92 

5 100 35 1.5 40 1.50 3.60 0.12 1.21 

6 100 35 1.5 70 0.50 6.64 2.10 0.10 

7 100 58 0.75 40 1.50 2.90 0.05 1.45 

8 100 58 0.75 70 0.50 7.74 1.78 0.05 

 

The collected data was entered into Matlab and the ANOVA was carried out for each 

output weld bead dimension. The results from Matlab are given in Figure 8-14. 
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Figure 8.14(a) 

 

Figure 8.14(b) 

 

Figure 8.14(c) 

Figure 8-14: Results from ANOVA test for two L8 table for weld bead dimensions (a) Bead width : 

Y1, (b) Penetration : Y2, (c) Bead height : Y3 

As discussed previously, the larger the F-value the better the effect on the quality 

characteristic. The F-values are graphed against the relevant weld bead parameters in 

Figure 8-15. As noted from the figure, the weld bead width and penetration are mostly 

affected by welding current, duty cycle and wire feed rate whereas the bead height is 

mostly affected by the duty cycle and wire feed rate. All three weld bead parameters 

were not affected by either background current or pulse frequency. This implies that 

these two control parameters (pulse frequency and background current) do not play an 

important role in controlling the weld bead dimensions. Table 8-3 lists the ranking of 

input parameters in controlling each weld bead parameter. These results also 

substantiate the results obtained in section 8.3. 
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Figure 8-15: F-value obtained from L8 Table 

Table 8-3: Ranking of process parameters on bead dimensions obtained using L8 table 

Rank Bead width Penetration Bead height 

1 Duty cycle Duty cycle Wire feed rate 

2 Welding current Welding current Duty cycle 

3 Wire feed rate Wire feed rate Welding current 

4 Background current Pulse frequency Pulse frequency 

5 Pulse frequency Background current Background current 

 

For the experiments carried out using the two factor method, the maximum and 

minimum values of each process parameter was used. Since the L8 orthogonal array 

considers only two levels, an optimum set of input parameters may not be robust 

enough. Therefore, the work presented in this thesis also included and investigation of 

an L25 orthogonal array to obtain a more statistically confident dataset for analysis. 

According to the findings from the L8 orthogonal array, only three parameters 

significantly affect the weld bead dimensions. This implies that in further analysis, 

more levels can be selected for these most significant parameters and less levels can be 

selected for the least significant parameters, which will save time and cost. Therefore, 

for the L25 orthogonal array analysis, five levels for the most significant parameters 

(X1,X4,X5) and three levels for least significant parameters (X2,X3) were chosen. The 

values of each process parameter and the resulting bead dimensions (averaged over 

three trials) at the different levels are listed in Table 8-4. 
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Table 8-4: Welding process parameters and resulting weld bead parameters 

Trial 

Input parameters Output parameters 

Welding 

current 

(A) : X1 

Background 

current (A) : 

X2 

Pulse 

frequency 

(kHz) : 

X3 

Duty 

cycle 

(%) : 

X4 

Wire 

feed rate 

(mm/s) : 

X5 

Bead 

width 

(mm) : 

Y1 

Bead 

height 

(mm) : 

Y2 

Penetration 

(mm) : Y3 

1 81 36 0.5 40 0.55 2.86 0.49 0.18 

2 81 45 1 50 0.77 2.83 0.64 0.36 

3 81 59 1.5 60 0.99 4.07 0.72 0.53 

4 81 36 0.5 70 1.21 4.34 0.75 0.77 

5 81 45 1 80 1.43 4.91 0.74 0.53 

6 86 36 1 60 1.21 3.25 1.26 0.32 

7 86 45 1.5 70 1.43 4.46 0.69 0.87 

8 86 59 1.5 80 0.55 6.35 0.07 0.54 

9 86 59 0.5 40 0.77 2.91 0.67 0.27 

10 86 36 0.5 50 0.99 3.18 1.07 0.22 

11 90 36 1.5 80 0.77 6.61 0.22 2.11 

12 90 45 1 40 0.99 2.66 1.21 0.04 

13 90 59 1.5 50 1.21 3.22 1.15 0.14 

14 90 45 0.5 60 1.43 3.78 1.42 0.52 

15 90 59 1 70 0.55 5.95 0.15 1.10 

16 95 36 0.5 50 1.43 2.93 1.58 0.16 

17 95 45 1 60 0.55 5.34 0.24 0.91 

18 95 59 0.5 70 0.77 6.08 0.13 1.29 

19 95 36 1 80 0.99 6.48 0.10 1.52 

20 95 45 1.5 40 1.21 2.58 1.55 0.07 

21 99 36 1.5 70 0.99 5.72 0.24 0.67 

22 99 45 0.5 80 1.21 6.11 0.11 1.06 

23 99 59 1 40 1.43 2.69 1.69 0.10 

24 99 59 1.5 50 0.55 4.86 0.31 0.91 

25 99 45 1 60 0.77 5.27 0.08 1.08 

 

The data listed in Table 8-4 was entered again into Matlab and the ANOVA was 

performed. The results from Matlab are given in Figure 8-16.  
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Figure 8.16(a) 

 

Figure 8.16(b) 

 

Figure 8.16(c) 

Figure 8-16: Results from ANOVA for L25 table for weld bead dimensions (a) bead width : Y1, (b) 

penetration : Y2, (c) bead height : Y3 

The F-values are then graphed against the relevant weld bead dimension, which is 

shown in Figure 8-17. As noted from the figure, the weld bead width is mostly affected 

by duty cycle, welding current and wire feed rate whereas the bead height and 

penetration are mostly affected by the duty cycle and wire feed rate, although the 

welding current also has a small effect on them. All three weld bead parameters were 

not affected by the background current and the pulse frequency which was the same 

result as in the case for the L8 experiments. Ranking of process parameters obtained 

using the L25 table is listed in Table 8-5. According to these results, the duty cycle is 

the main parameter which affects the weld bead shape whereas and the wire feed rate 

and welding current are the next two most significant parameters. Results obtained 

using the L8 orthogonal array was therefore fully substantiated from the results of the 

L25 orthogonal array. 
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.  

Figure 8-17: F-values obtained from L25 table 

Table 8-5: Ranking of process parameters on bead dimensions obtained using L25 table 

Rank Bead width Penetration Bead height 

1 Duty cycle Wire feed rate Duty cycle 

2 Wire feed rate Duty cycle Wire feed rate 

3 Welding current Welding current Welding current 

4 Pulse frequency Background current Background current 

5 Background current Pulse frequency Pulse frequency 

 

According to the results in Table 8-5 the most significant parameters on the weld bead 

dimensions are the duty cycle, wire feed rate and welding current. The reason for this 

can be explained as follows: Welding current and duty cycle have a direct effect on the 

heat input into the system and therefore this increases the size of the molten pool 

dimensions. A high wire feed rate also increases the weld bead dimensions as more 

molten material is fed in to the weld pool. 

 Effect of process parameters on weld strength 8.4.3.2

In the previous section, the important parameters which affect the weld bead 

dimensions were identified and their effect was quantified. However, it is recognised 

that, although the least significant parameters identified were pulse frequency and 

background current with regards to the weld bead dimensions, these could be 

significant when considering the mechanical strength of the weld. In order to 

investigate this hypothesis, tensile testing was carried out for each sample according to 

the method presented in section 8.2. 
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The load at maximum tensile extension, the maximum load and the load at break were 

recorded and tabulated in Table 8-6 (these results are averaged over three trials). The 

data was entered into Matlab, and the ANOVA was carried out to find the significance 

of each process parameter on the strength of the weld. The signal-to-noise ratio for this 

case is the "Maximum target is best" which is given in equation 8.5. This was selected 

because high strength assures better quality in the weld. 

𝑛𝑖 =
𝑆

𝑁𝑖
= −10 log10(

∑
1

𝑦𝑖𝑗
2

𝑛
) 

(8.5) 

Table 8-6: Welding process parameters and resulting tensile strengths of welds  

Trial 

Input parameters Weld strength (N) 

Welding 

current 

(A) : X1 

Background 

current (A) 

: X2 

Pulse 

frequency 

(kHz) : 

X3 

Duty 

cycle 

(%) : 

X4 

Wire 

feed rate 

(mm/s) : 

X5 

Load at 

maximum 

tensile 

extension  

: Y4 

Maximum 

load : Y5 

Load 

at 

break

: Y6 

1 81 36 0.5 40 0.55 703 1738 750 

2 81 45 1 50 0.77 3760 6411 4960 

3 81 59 1.5 60 0.99 3314 5503 3368 

4 81 36 0.5 70 1.21 3535 5914 3544 

5 81 45 1 80 1.43 3600 6353 5675 

6 86 36 1 60 1.21 3777 6404 4035 

7 86 45 1.5 70 1.43 3660 6363 4785 

8 86 59 1.5 80 0.55 3448 6106 5366 

9 86 59 0.5 40 0.77 2032 3398 2050 

10 86 36 0.5 50 0.99 2572 4302 2739 

11 90 36 1.5 80 0.77 3610 6351 4826 

12 90 45 1 40 0.99 1350 2253 1356 

13 90 59 1.5 50 1.21 2384 4102 3082 

14 90 45 0.5 60 1.43 3700 6295 4973 

15 90 59 1 70 0.55 3559 6251 4818 

16 95 36 0.5 50 1.43 2262 3850 2314 

17 95 45 1 60 0.55 2269 3755 2344 

18 95 59 0.5 70 0.77 3532 6250 4661 

19 95 36 1 80 0.99 2987 5208 3436 

20 95 45 1.5 40 1.21 2450 4087 3242 

21 99 36 1.5 70 0.99 3445 6254 5549 

22 99 45 0.5 80 1.21 3309 5583 4272 

23 99 59 1 40 1.43 1797 2998 1817 

24 99 59 1.5 50 0.55 3527 6250 5537 

25 99 45 1 60 0.77 3385 6910 5056 
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The results from Matlab are given in Figure 8-18. The F-values are graphed against the 

relevant tensile strength parameter as shown in Figure 8-19. As can be from the figure, 

the weld strength is mostly affected by duty cycle.  It is also noted that all other process 

parameters have a lower effect on the strength of the weld. Comparatively the pulse 

frequency and background current has higher effect on welding strength than it has on 

weld bead dimensions. The ranking of the process parameters’ effect on weld strength 

is listed in Table 8-7.  

 

Figure 8.18(a) 

 

Figure 8.18(b) 

 

Figure 8.18(c) 

Figure 8-18: Results from ANOVA for weld strength (a) load at maximum tensile extension: Y4, (b) 

maximum load:Y5, (c) load at break:Y6 
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Figure 8-19: F-values obtained for tensile strength 

Table 8-7: Ranking of process parameters on weld strength 

Rank 
Load at maximum 

tensile extension 
Maximum load Load at break 

1 Duty cycle Duty cycle Duty cycle 

2 Wire feed rate Wire feed rate Pulse frequency 

3 Pulse frequency Pulse frequency Background current 

4 Background current Welding current Welding current 

5 Welding current Background current Wire feed rate 

8.4.4 Development of the empirical model  

In the previous section the relationship between the input and output parameters was 

studied and quantified. In this section, the development of an empirical model to predict 

the weld bead shape and tensile strength as a function of the identified key process 

parameters (welding current, background current, pulse frequency, base current and 

wire feed rate) in the robotic TIG welding system is presented.  

Empirical modelling can be carried out using various methods. However, they can be 

categorized into two main groups: 

1. Statistical methods: polynomial (including linear, interaction, pure quadratic), 

curvilinear, logarithmic, exponential, logistic and power. 

2. Other methods: Artificial Neural Network (ANN), Fuzzy logic. 

This study used statistical methods for the development of the empirical model, due to 

its advantageous of low computational time and easiness in implementing in a robotic 

welding system. By conserving the relationship between the input and output 

parameters this study has chosen polynomial fitting for the implementation of the 
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empirical model. The selection of polynomial fitting over other methods is also 

attributed to fact that other statistical methods may cause an over-fit to occur. 

The linear empirical model can be expressed by equation 8.6, where 𝑥0 = 1, n is the 

quality characteristic number (n=1…4) and i is the process parameter number (i=1….5). 

𝑦𝑛 =  ∑ 𝑎𝑖𝑥𝑖

5

𝑖=0

 (8.6) 

The quadratic modelling can be represented by equation 8.7 where 𝑥0 = 1, 

𝑦𝑛 =  ∑ 𝑎𝑖𝑥𝑗

5

𝑖,𝑗=0

+ ∑ 𝑎𝑖𝑥𝑗
2

𝑖=11
𝑗=5

𝑖=6
𝑗=1

 (8.7) 

 

The interaction modelling can be represented by equation 8.8, where 𝑥0 = 1. It should 

be noted that interaction modelling is different from the interaction effects resulting 

from the ANOVA method discussed in section XX. 

𝑦𝑛 =  ∑ (𝑎𝑖𝑥𝑗

5

𝑖,𝑗=0

) + 𝑎6𝑥1𝑥2 + 𝑎7𝑥1𝑥3 + 𝑎8𝑥1𝑥4 + 𝑎9𝑥1𝑥5 + 𝑎10𝑥2𝑥3 … 

+ 𝑎11𝑥2𝑥4 + 𝑎12𝑥2𝑥5 + 𝑎13𝑥3𝑥4 + 𝑎14𝑥3𝑥5 + 𝑎15𝑥4𝑥5 

(8.8) 

 

The “Interactive response surface modelling tool” (rstool), available in Matlab, was 

used to obtain the coefficients of each of the three empirical models presented in the 

above three equations. Tables 8.8-8.10 lists the coefficients obtained for each quality 

characteristic using the linear, interaction and quadratic models respectively. 

Table 8-8: Estimated coefficients of quality characteristics based on linear model  

Coefficient 
Value of co-efficient 

Bead width (y1) Bead height (y2) Penetration (y3) Weld strength (y4) 

𝑎0 -5.4045 1.7081 -1.9962 -3.4562 

𝑎1 2.8582 -0.4139 0.9643 3.1123 

𝑎2 0.3568 -0.0327 -0.2575 0.6554 

𝑎3 -0.0004 0.0186 -0.0018 0.0012 

𝑎4 0.8682 -0.2342 0.2573 0.7656 

𝑎5 -1.6774 1.2856 -0.6119 -2.1222 
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Table 8-9: Estimated coefficients of quality characteristics based on quadratic model  

Coefficient 
Value of co-efficient 

Bead width (y1) Bead height (y2) Penetration (y3) Weld strength (y4) 

𝑎0 -6.3212 -19.2439 -11.9641 -14.5664 

𝑎1 5.5201 22.8186 10.4981 9.6538 

𝑎2 -0.5055 -4.5866 -0.2158 -2.1134 

𝑎3 -0.2481 0.2114 -0.0444 -0.2245 

𝑎4 0.6395 -0.1595 0.3218 0.4397 

𝑎5 -1.9234 0.0544 0.2654 0.5642 

𝑎6 -0.6583 -5.8031 -2.3831 -3.4532 

𝑎7 0.3945 2.1234 -0.0032 0.1228 

𝑎8 0.0248 -0.0190 0.0040 0.0231 

𝑎9 0.0190 -0.0064 -0.0053 0.0024 

𝑎10 0.1334 0.7086 -0.4858 0.4532 

 

Table 8-10: Estimated coefficients of quality characteristics based on pure interaction model 

Coefficient 
Value of co-efficient 

Bead width (
y
1) Bead height (

y
2) Penetration (

y
3) Weld strength (

y
4) 

𝑎0 -10.0444 2.0056 -3.2167 -4.5643 

𝑎1 6.4829 -1.7296 -0.5174 1.2368 

𝑎2 2.3373 -3.0437 -5.9175 4.6745 

𝑎3 -0.8322 0.2782 1.4412 0.7744 

𝑎4 1.2567 -0.1698 0.3143 0.9885 

𝑎5 -0.4743 6.5824 5.3630 -1.2312 

𝑎6 -1.5082 1.1900 4.8813 -1.4325 

𝑎7 0.1781 0.0434 -0.7053 0.8789 

𝑎8 -0.1984 0.0498 0.3213 0.0643 

𝑎9 -1.6260 -1.0536 -2.6888 -1.8765 

𝑎10 0.1170 -0.1281 -0.1294 0.2116 

𝑎11 -0.0943 0.1695 -0.6271 -0.4532 

𝑎12 1.3483 0.1645 0.0095 1.0065 

𝑎13 0.0297 -0.0045 0.0111 0.0231 

𝑎14 0.1461 -0.2113 0.0410 0.4213 

𝑎15 -0.0157 -0.3797 -0.1734 -0.0324 

 

The coefficient values listed in Table 8-6, Table 8-7 and Table 8-8 can be used with 

equations 8.6, 8.7 and 8.8 to obtain the empirical model for each quality characteristic. 

For example, the empirical models for the weld bead width can be represented in 

equation 8.9 (for the linear model), equation 8.10 (for the interaction model) and 8.11 

(for the pure quadratic model).  Similarly, the equations for the other quality 
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characteristics (bead height, penetration and weld strength) can be obtained in a similar 

manner, using their respective coefficients. 

𝑦1 = 5.4045 + 2.8582𝑥1 + 0.3568𝑥2 − 0.0004𝑥3 + 0.8682𝑥4 − 1.6774𝑥5 (8.9) 

𝑦1 = −10.0444 + 6.4829𝑥1 + 2.3373𝑥2 − 0.8322𝑥3 + 1.2567𝑥4

− 0.4743𝑥5 − 1.5082𝑥1𝑥2 + 0.1781𝑥1𝑥3 − 0.1984𝑥1𝑥4

− 1.6260𝑥1𝑥5 + 0.1170𝑥2𝑥3 − 0.0943𝑥2𝑥4 + 1.3483𝑥2𝑥5

+ 0.0297𝑥3𝑥4 + 0.1461𝑥3𝑥5 + −0.0157𝑥4𝑥5 

(8.10) 

𝑦1 = −6.3212 + 5.5201𝑥1 − 0.5055𝑥2 − 0.2481𝑥3 + 0.6395𝑥4

− 1.9234𝑥5 − 0.6583𝑥1
2 + 0.3945𝑥2

2 + 0.0248𝑥3
2

+ 0.0190𝑥4
2 + 0.1334𝑥5

2 

(8.11) 

 

The adequacy of the mathematical models and the significance of coefficients can be 

tested by finding the coefficient of determination (R
2
) using equation 8.12.  The model 

which results in an R
2
 value closest to 1 is the best fitting model for the data. In order to 

find the most suiting model R
2
 values for the three models under investigation (linear, 

interaction and pure quadratic), the R
2
 was calculated for each of the quality 

characteristics, the outcomes of which are listed in Table 8-11. 

𝑅2 = 1 −
∑ [(𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖

− 𝑦𝑚𝑜𝑑𝑒𝑙𝑖
)]

2
25
𝑖=1

∑ [𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖
−

∑ 𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑖
25
𝑖=1

𝑛 ]

2

25
𝑖=1

 
(8.12) 

 

Table 8-11: R
2
 values calculated for empirical models 

 Bead width (
y
1) Bead height (

y
2) Penetration (

y
3) Weld strength (

y
4) 

𝑅𝑙𝑖𝑛𝑒𝑎𝑟
2  0.9847 0.8767 0.7185 0.8231 

𝑅𝑝𝑢𝑟𝑒 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐
2  0.9867 0.9303 0.7295 0.8114 

𝑅𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
2  0.9914 0.9743 0.8809 0.8342 

 

According to the results listed in Table 8-11, the interaction model is best for predicting 

all four quality characteristics. Figure 8-20 shows the actual and predicted results 

obtained using the interaction model. As can be seen from the figure, the empirical 

model returns quite satisfactory results (actual and predicted values lies very close to 

each other) in predicting the weld bead dimensions. 
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Figure 8.20(a) 

 
Figure 8.20(b) 

 
Figure 8.20(c) 

Figure 8-20: Actual and predicted results of weld bead dimensions using interaction model (a) 

Actual (*) and predicted (*) results of weld bead width, (b)  Actual (*) and predicted (*) results of 

weld bead height, (c) Actual (*) and predicted (*) results of weld penetration 
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Figure 8-21 shows the actual and predicted results obtained using the interaction model 

for tensile strength (the load at the maximum tensile extension). As can be seen from 

the figure, the empirical model returns quite satisfactory results. 

 

Figure 8-21: Actual (*) and predicted (*) results of tensile strength using interaction model  

8.4.5 Model validation  

The developed mathematical model and equations must be validated in order to confirm 

the accuracy of the empirical model. Therefore an additional set of 16 experiments were 

performed to verify the empirical model. The values of the process parameter sets used 

for the validation experiments were different from those used for the development of 

the empirical model. For each validation experiment, the output characteristics were 

also measured using the same procedure outlined in Section 8.2. Even though the 

interaction model was selected as the best fit model, in this section the prediction results 

from the linear and quadratic models are also presented for completeness. 

The experimental data and the results for weld bead width are listed in Table 8-12 and 

graphed in Figure 8-22. 
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Table 8-12: Measured and predicted results from the validation experiments 

Input parameters 

Measured 

bead width 

(mm) 

Predicted bead width (mm) 

Welding 

current 

(A) : X1 

Background 

current (A) : 

X2 

Pulse 

frequency 

(kHz) : X3 

Duty 

cycle 

(%) : 

X4 

Wire 

feed 

rate 

(mm/s) : 

X5 

Linear Quadratic Interaction 

77 45 1.7 60 1.16 3.67 3.26 3.10 3.23 

86 59 1.4 60 1.27 4.50 3.77 3.67 3.84 

81 45 0.7 50 1.21 3.13 2.59 2.49 2.67 

104 36 1.7 40 1.27 3.85 3.00 2.97 3.04 

104 45 1.7 50 1.27 4.90 3.94 3.90 4.01 

104 45 1.9 60 1.16 5.53 4.97 5.03 5.12 

72 45 1.4 70 1.05 4.17 4.01 3.79 4.04 

72 54 1.4 80 1.16 5.14 4.78 4.63 4.90 

90 32 1.1 50 1.05 3.94 3.31 3.30 3.29 

90 27 1.4 70 1.16 5.03 4.84 4.84 4.81 

95 32 0.7 50 1.27 3.76 3.26 3.32 3.16 

99 32 0.7 50 1.21 4.12 3.63 3.60 3.54 

90 41 1.9 70 1.10 5.49 5.03 5.17 5.04 

108 36 1.4 30 1.21 3.00 2.50 2.50 2.47 

108 32 1.7 50 1.27 4.52 4.11 4.09 4.28 

86 45 1.4 50 0.99 4.02 3.21 3.11 3.21 

 

 

Figure 8-22: Results of bead width prediction from validation experiments 

Validation experiments were carried out for the other three quality characteristics and 

the results are shown in Figure 8-23 (for bead height), Figure 8-24 (for weld 

penetration) and Figure 8-25 (for tensile strength) respectively. Compared to the bead 

width, bead height and tensile strength there is more deviation in the prediction results 

observed for the penetration case (Figure 8-24). This is attributed to a higher 
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measurement error in penetration due to the smaller values being measured. However, 

as can be seen from the figures, the interaction model performs satisfactorily in the 

weld quality characteristic prediction. 

 

Figure 8-23: Results of bead height prediction from the validation experiments 

 

Figure 8-24: Results of penetration prediction from the validation experiments 

 

Figure 8-25: Results of tensile strength prediction from the validation experiments 
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In order to quantify the level of validation, the average percentage error in prediction 

was calculated using equation 8.13 for all the models considered.  

𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 =  
(𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 − 𝑦𝑚𝑜𝑑𝑒𝑙)

𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
× 100% (8.13) 

 

Table 8-13 shows the quality characteristic and the percentage error in prediction 

observed for each model. The interaction model can be used in predicting the bead 

width, bead height and welding strength with a high level of accuracy, compared to the 

other two models. However, it appears from the results that the developed empirical 

models are less accurate in predicting the weld penetration. This is because of the high 

percentage measurement error observed for this variable. 

However, the interaction model involves significant computation time compared to a 

linear model. Therefore for the prediction of the weld bead width and tensile strength, it 

will be ideal to use the linear model as its level of validation is within an acceptable 

limit in engineering (<10%). The reduced computation time is also advantageous in 

implementing the developed empirical model in the robotic welding system. 

Table 8-13: Level of validation values 

Output 

characteristic 
Linear (%) Interaction (%) 

Pure 

quadratic (%) 

Selected model for 

prediction 

Bead width 5.73 5.15 6.93 
Linear (Due to less 

computational time) 

Bead height 13.74 8.44 16.25 
Interaction (Due to 

level of validity) 

Penetration 17.47 12.49 16.86 
Interaction (Due to 

level of validity) 

Weld strength 6.12 3.87 5.93 
Linear (Due to less 

computational time) 

In Chapter 4, it was found that manual welders prioritise the process parameters that 

can be controlled. They identify the most significant parameters which affect each weld 

quality characteristic and accordingly adjust them to obtain the optimum weld quality. 

It was also found that welding current and wire feed rate were the most significant 
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parameters they used in order to control the welding process while parameters such as 

welding speed and torch position was not varied significantly by the manual welders.  

Similar to the manual welders, the analysis presented in this chapter also returns 

prioritization of process parameters. It was identified that duty cycle, welding current 

and wire feed rate are the main parameters that should be controlled whereas base 

current and pulse frequency do not affect weld quality significantly.  

Both these results show the importance of simplifying the control problem by reducing 

the number of variables.  

8.5 Summary 

This chapter presented the work carried out on understanding the relationship between 

the input and output parameters of the developed TIG welding robot. It was highlighted 

that, although a high number of process parameters affect the quality characteristics of 

the weld, only certain parameters are significant. These are; welding current, wire feed 

rate and duty cycle. The work presented in this chapter has considered a real welding 

scenario where two samples are joined together with the use of seam tracking. This is 

identified to be novel in robotic welding compared to previous work which has used the 

bead-on-plate technique.   

The effect of each process parameter on the weld quality characteristic was quantified 

using the ANOVA method. The duty cycle of the welding current signal was the most 

important parameter affecting weld bead dimensions and weld strength. The welding 

current and wire feed rate also have a significant effect whereas the effect of pulse 

frequency and background current is comparatively low.  

The design of the experiments conducted was via the Taguchi method to develop an 

empirical model to predict the output characteristics of the weld (weld bead dimensions 

and welding strength), using polynomial formulations (linear, interaction and pure 

quadratic). Equations which map the output parameters with the input parameters were 

then derived. The results revealed that all three models produced a satisfactory 

prediction, although the interaction model is comparatively more accurate than the 

linear or pure quadratic models. However, since the linear model also results in a 

satisfactory accuracy in prediction is it suggested that using the linear model is better 

due to the reduced amount of computations. 
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Quantification of the effect on weld quality is vital for attaining the controllability of 

the TIG welding process when welding complex shapes, especially in the aerospace 

industry. This could aid engineers to address challenging welding tasks such as welding 

of variable welding gaps, volumes, thicknesses etc. Chapter 9 will use the developed 

model under a challenging welding scenario (variable gap) as a case study to achieve 

adaptable robotic TIG welding.  
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9 Intelligent and Adaptable Robotic Seam tracking and TIG 

Welding 

 

This chapter combines all the knowledge gained throughout this study to demonstrate 

adaptive robotic TIG welding. As discussed in chapter 4, skilled welders simplify the 

TIG welding process by prioritizing certain process parameters whilst keeping other 

parameters constant. In Chapter 8 it was found that three parameters (duty cycle, 

welding current and wire feed rate) significantly affect the weld bead dimension and 

hence should control the quality of robotic TIG welding. The first part of this chapter 

discusses the development of a back-propagation empirical model, which will help to 

choose the most appropriate welding parameters for the automated TIG welding 

process. In the second part of this chapter, a comparison was performed between 

various TIG welding approaches including; a constant parameter approach, a segmented 

parameter approach, the skilled welder’s approach and the proposed adaptive welding 

approach. 

9.1 Empirical modelling for adaptive welding of a variable gap butt joint 

This section presents the adaptive control strategy developed using the empirical 

models, which are discussed in Chapter 8. A back propagation empirical model was 

implemented to adaptively select the welding machine settings to cater for the variable 

gap (0.25-2.5mm). Figure 9-1 shows the variable gap scenario used during the TIG 

welding process. 

 

Figure 9-1: Robotic welding system setup to carry out welding on a variable butt gap joint 
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The key quality characteristic which is to be controlled to carry out welding of a 

variable gap joint is the weld bead width. Figure 9-2 shows the effect of the process 

parameters on the weld bead width as derived from the ANOVA method. As can be 

seen from the figure, duty cycle, welding current and wire feed rate are the most 

significant process parameters which affect the weld bead width (with the highest F 

values). Therefore, a constant background current and pulse frequency (less significant 

process parameters) of 45A and 1kHz respectively were used for all the experiments 

carried out in this section. 

 

Figure 9-2: Effect of process parameters on bead width 

 Using joint geometry feedback for adaptive control 9.1.1.1

In this work, the dimensions of the joint geometry was used (from the laser scanner) to 

control the input welding parameters. Figure 9-3 shows a cross sectional view of a weld 

joint (It should be noted that the methodology presented in this section is valid for any 

irregular cross sectional profile). As can be noticed from the figure, two parallel lines of 

the trapezoidal element represent the respective depth values of the two consecutive 

laser points. Those two points form a trapezoidal elemental area (dA) on the weld joint 

profile which can be calculated using equation 9.1. 

𝑑𝐴𝑖 =
1

2
(𝑧𝑖 + 𝑧𝑖+1) 𝑑𝑥 (9.1) 
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Figure 9-3: Cross-sectional profile of an irregular profile weld joint 

By summing all the trapezoidal elements (from A to D), the total area under a single 

cross-sectional profile can be calculated (using equation 9.2).  

𝐴𝑟𝑒𝑎𝑖 =  ∑ 𝑑𝐴𝑖

𝑛

𝑖=1

 (9.2) 

where n is the number of laser points fall within the weld joint (between A and D) 

It should be noted that equation 9.4 and 9.5 can be used in the case of a U or V or any 

other irregular shape profile. However, in the case of an I-groove equation 9.3 was used 

to estimate the cross sectional profile. 

𝐴𝑟𝑒𝑎𝑖 = 𝐺𝑎𝑝𝑖 × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 (9.3) 

 

If dy is the distance between two consecutive cross sectional profiles (shown in Figure 

9-4), the volume to be welded per robot step movement can be calculated using 

equation 9.4. 

𝑑𝑉𝑖 =
1

2
 𝑑𝑦. (𝑑𝐴𝑖 + 𝑑𝐴𝑖+1) (9.4) 
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Figure 9-4: Adjacent cross sectional profiles showing respective cross sectional area 

 Methodology for selection of welding parameters 9.1.1.2

An I-groove weld configuration with a plate thickness of 1.5mm was used for all the 

experiments presented in this section. For an I-groove, equation 9.4 can be simplified as 

𝑑𝐴𝑖 = 1.5 × 𝐺𝑎𝑝𝑖. The robot scan step used for the experiments is 1mm. Therefore 

equation 9.3 can be simplified as follows (equation 9.5): 

𝑑𝑉𝑖 =
3

2
  . 𝐺𝑎𝑝𝑎𝑣𝑔𝑖

 (9.5) 

where 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
= (𝐺𝑎𝑝𝑖 + 𝐺𝑎𝑝𝑖+1)/2 is the average gap calculated between two 

consecutive profiles and 𝑑𝑉𝑖 is the volume of the weld at the i
th

 robot step.  

 

The input value used to control the weld machine is a function of this elemental volume 

(𝑑𝑉𝑖). However, from equation 9.6 it is understood that 𝑑𝑉𝑖 is proportional to 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
. 

Therefore, the final representation for selecting the weld input value can be represented 

as in equation 9.6. 

𝑊𝑒𝑙𝑑 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 = 𝑓(𝐺𝑎𝑝𝑎𝑣𝑔𝑖
) (9.6) 

Figure 9-5 shows a schematic of the weld pool and its respective features including the 

gap between the samples (𝐺𝑎𝑝𝑎𝑣𝑔𝑖
) and the expected bead width (y1). The bead width 

can be represented as a function of the measured 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
 using equation 9.7. 

𝑦1 = 𝑘. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
 (9.7) 
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Figure 9-5: Important parameters in the weld pool used for control 

Equation 9.8 represents the linear empirical model developed to predict the weld bead 

width (y1) (as discussed in Chapter 8). As per the equation, an increase in welding 

current and duty cycle (x1,x4) results in an increased bead width, whereas an increase in 

the wire feed rate results in a decreased bead width (x5). 

𝑦1 = 5.4045 + 2.8582𝑥1 + 0.3568𝑥2 − 0.0004𝑥3 + 0.8682𝑥4 − 1.6774𝑥5 (9.8) 

However, it should be noted that for a larger gap, more filler wire has to be used since 

there is more volume to be filled as the gap increases. Therefore, it is assumed that the 

wire feed rate has to be increased both for adapting to a variable gap and also to cater 

for the negative effect on the weld bead width obtained from the linear model. 

Using equations 9.6 and 9.7, the following relationships can be obtained. 

𝑥1 = 𝑘1. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
+ 𝑐1 (9.9) 

𝑥4 = 𝑘4. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
+ 𝑐4 (9.10) 

𝑥5 = 𝑘5. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
+ 𝑐5 (9.11) 

where 𝑘1, 𝑘4, 𝑘5, 𝑐1, 𝑐4 𝑎𝑛𝑑 𝑐5 are constants. 

 Intelligent and adaptable weld process control 9.1.1.3

A set of experiments was carried out with known gaps between the samples and the best 

combination of the weld input values were selected for each gap. This was used to 

develop the back propagation model used within this research, so as to select the best 

weld input values for any gap using interpolation methods. The methodology used for 

implementation of the adaptive welding process is shown in Figure 9-6. 



 

213 

 

 

Figure 9-6: Methodology for adaptive welding 

As shown in Figure 9-6, the scan pass is carried out using the methodology developed 

in Chapter 6. The scan-pass gathers the points to be tracked. Then the welding arc is 

struck with a pre-determined set of process parameters (which are kept constant and are 

selected based on experience) to establish the weld pool. After that the robot starts 

moving (the tracking pass) and simultaneously, the adaptive process parameter control 

algorithm is executed. 
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To estimate the constant values in equations 9.9, 9.10 and 9.11, a set of experiments 

were performed using known gaps from 0.5 to 2mm. The experiments were repeated 

three times to assure repeatability. The gap was set using an industrial grade slip gauge 

(metric). The best process parameter set for each gap value was established and is given 

in Table 9-1. 

Table 9-1: Results of best combinations of process parameters for known set gaps 

Gap 

(mm) 

x1 (A) x4 (%) x5 (m/min) 

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

0.25 78 76 72 74 80 82 0.69 0.74 0.73 

0.5 84 81 78 71 74 78 0.71 0.73 0.82 

0.75 83 86 85 63 73 80 0.76 0.83 0.84 

1 87 92 81 67 55 74 0.80 0.87 0.92 

1.25 92 98 88 59 70 64 0.91 0.96 0.96 

1.5 95 97 92 61 67 68 0.96 1.06 1.12 

1.75 91 96 96 58 64 66 1.01 1.16 1.24 

2 103 99 104 52 57 65 1.06 1.14 1.22 

 

The variation of the process parameters with the set gap is shown in Figure 9-7. As 

noted from equations 9.12, 9.13 and 9.14, the welding process parameter has a linear 

relationship with the welding gap.  

 

Figure 9-7: Best process parameters obtained against set gap 

Therefore, a linear trend was fitted to the data and is shown in Figure 9-7. Coefficients 

for each equation were obtained from the equation of the relevant trend line. Equations 
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9.9, 9.10 and 9.11, which provided the relationship between the gap and input 

parameters were then modified as per the trend-lines, and the final derived expressions 

are given in equation 9.12 (for welding current), 9.13 (for duty cycle) and 9.14 (for wire 

feed rate). 

𝑥1 = 13.76. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
+ 73.43 (9.12) 

𝑥4 = −10.67. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
+ 79.58 (9.13) 

𝑥5 = 0.268. 𝐺𝑎𝑝𝑎𝑣𝑔𝑖
+ 0.625 (9.14) 

The above empirical model was used in the robotic system and welding was performed 

on a variable gap butt joint. The parameters used by the adaptive system for the welding 

of the varying gap samples are shown in Figure 9-8. The initial constant parameter of 

the figure corresponds to the establishment of the weld pool (shown in Figure 9-8 (a)) 

and the varying curve corresponds to the values used during welding.  

  

Figure 9.8(a) Figure 9.8(b) 

 

Figure 9.8(c) 

Figure 9-8: Adaptive weld process parameter control (a) welding current, (b) duty cycle, (c) wire 

feed rate 
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9.2 Performance evaluation of different approaches in welding a variable gap 

butt joint (Case study) 

This section considers the welding of the variable gap butt joint (0.25-2.5mm) as a case 

study for proving the concept of adaptive welding. The methodologies of four different 

approaches, which can be used to carry out this task, are as follows: 

1. Constant weld parameter approach 

2. Segmented parameter approach (Used by many industries) 

3. Skilled welder’s approach 

4. Varying parameter approach (Adaptive welding: presented in section 9.1) 

 Constant process parameter approach 9.2.1.1

The use of constant weld parameters is the most fundamental method that can be 

adopted with robotic welding. In this case, constant weld parameters are used from the 

start to the end of the joint. For the purpose of this research, the selected values were, 

welding current: 90A, Duty cycle: 60%, Pulse frequency: 1kHz, Background current: 

45A, Wire feed rate: 0.9mm/s. These values were selected based on the skilled 

operator’s experience. 

 Segmented parameter approach (industrial approach) 9.2.1.2

The segmented approach for welding of a variable gap joint is achieved by having 

different welding programmes along the sample. To demonstrate this, the weld joint 

was divided into four regions as shown in Figure 9-9. For each region a different set of 

process parameters were selected as listed in Table 9-2. 

 

Figure 9-9: Selection of regions for robotic welding  



 

217 

 

Table 9-2: Different welding programmes selected for welding regions 

 Region 1 Region 2 Region 3 Region 4 

Welding current (A) 80 84 88 92 

Wire feed rate (mm/s) 0.75 0.90 1.05 1.20 

Welding speed (mm/s) 1 1.2 1.6 2 

 

 Skilled welder’s approach 9.2.1.3

The skilled welder uses his/her experience to adapt to the change in either the process 

or the geometry of the weld. The factors used to calculate the process parameters used 

by the skilled welder is shown in Figure 9-10. 

Welding current was recorded from the welding current sensor. The data obtained from 

the current sensor is with respect to time rather than sample length. However, since the 

length of the weld is known (L=150 mm), the time span can be scaled to fit along the 

length of the weld so that welding current is obtained against the length of the sample. 

A video of the experiment was recorded which was used to find the welding speed and 

wire feed frequency. The average welding speed (Speedi) at positioni can be found 

using equation 9.15 where Δd is selected as 10mm and ∆𝑡𝑖 is measured from the videos. 

𝑆𝑝𝑒𝑒𝑑𝑖 =  
∆𝑑

∆𝑡𝑖
 (9.15) 

 

 
Figure 9-10: Methodology of finding weld process parameters 
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The number of wire feeds (𝑚𝑖) between 𝑡 = 𝑡𝑖 and 𝑡 = 𝑡𝑖+1 was counted from the 

videos. Hence, the wire feed rate at positioni can be calculated using equation 9.16. 

𝑊𝑖𝑟𝑒 𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒𝑖 =  
𝑚𝑖

∆𝑡𝑖
 (9.16) 

 

Gapi at positioni was calculated according to trigonometric rules using equation 9.17. 

𝐺𝑎𝑝𝑖 =  
𝐺𝑎𝑝𝑛

𝐿
× ∆𝑙𝑖 (9.17) 

where 𝐺𝑎𝑝𝑛 = 2.5𝑚𝑚 

The effect of the process parameters (welding current, wire feed rate, arc gap and 

welding speed) on a varying gap between the samples is shown in Figures 9.11 to 9.13. 

As can be seen from Figure 9-11, the skilled welder has gradually decreased the 

welding current with an increase in gap. This is to reduce the heat input with the 

increase in gap. 

 

Figure 9-11: Welding current variation along variable gap 

As can be seen from Figure 9-12, the skilled welder has gradually increased the wire 

feed rate with an increase in the weld gap. The increase in wire feed rate helps to 

address the increase in volume of the weld joint to be filled.  
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Figure 9-12: Wire feed rate variation along variable gap 

As noted from Figure 9-13, the skilled welder has not significantly varied the welding 

speed (compared to other parameters). This again shows that the skilled welder has 

prioritized welding current and wire feed rate over welding speed to cater for the 

geometry variation. 

 

Figure 9-13: Welding speed variation along variable gap 

9.3 Comparison of various approaches used for welding of the variable gap joint 

The top view of the TIG welded samples obtained from various approaches described in 

section 9.1 and 9.2 and are shown in Figure 9-14. It should be noted that these images 

are from the first trial. Images of other two trials are presented in Appendix 8. 

As seen from Figure 9-14 (a), the constant parameter approach fails to achieve a 

continuous weld along the joint. The industrial approach resulted in a better weld than 

the constant parameter approach but shows a significant heat input at places where two 

regions meet (during the change of parameters) as seen from Figure 9-14 (b). This may 

result in varying mechanical properties, such as mechanical strength, along the weld. 
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Figure 9-14 (c) and (d) show the respective welds completed by the skilled welder and 

through the proposed adaptive control approach.  As seen from the images, both 

methods produce a satisfactory visual weld quality. However, the adaptive control 

approach shows a more consistent weld bead width compared to the skilled welder. It 

can also be seen that the adaptive control approach shows a consistent heat affected 

zone in the weld whereas the other three approaches failed to achieve this. 

  
Figure 9.14(a) Figure 9.14(b) 

  

Figure 9.14(c) Figure 9.14(d) 

Figure 9-14: Photographic views of the representative welds carried out using different approaches 

(a) Constant process parameter approach, (b) Segmented parameter (industrial) approach, (c) 

Skilled welder’s approach, (d) Adaptive control approach 
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The load-extension graphs for the welds carried out using the four different approaches 

are shown in Figure 9-15. The error bar represents the other two samples from each 

approach. As can be seen from the figure, the load-extension characteristics of the weld 

obtained using the adaptive control approach follows a similar trend to that of the weld 

produced by the skilled welder. It also can be seen from the figure that the maximum 

extension (at break point) of the samples welded by the skilled welder’s approach and 

novel approach is higher (~20mm) than the segmental and constant parameter 

approaches. It also can be seen from the figure that skilled welder and the novel 

approach returns comparatively low (~400N) variation in its respective strength values 

for the all three trials completed which assures repeatability. 

These results demonstrate that the developed adaptive robotic TIG welding system is 

capable of producing a high quality weld similar to that of a skilled welder. 

 

Figure 9-15: Load-extension graphs obtained for welds carried out with industrial approach and 

continuous welding 

9.4 Summary and conclusions 

Robotic TIG welding needs an intelligent and adaptable welding approach that is 

capable of predicting the joint geometry and controlling the process parameters 

accordingly. This chapter presented the methodology for the development and 

implementation of adaptable process control in robotic TIG welding of a variable gap 
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butt joint. A back propagation empirical model was successfully developed and adopted 

in the robotic TIG welding system.  

Various approaches, the constant process parameter approach, the segmented parameter 

(industrial) approach, the skilled welder’s approach and the adaptive control approach, 

used for the joining two plates into a butt weld were evaluated and reported. The 

constant parameter approach and segmented approach resulted in poor weld quality. 

The proposed adaptive control approach returned similar results as the skilled welder. A 

similar strategy should be used to obtain adaptable robotic welding of complex shapes, 

especially in the aerospace industry.  
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10 Conclusions and Future Work 

10.1 Conclusions 

A novel TIG welding robot (Figure 10-1) with intelligent seam tracking and adaptive 

weld process control has been created in this thesis.  

 

Figure 10-1: Developed robotic TIG welding system as part of the work carried out for the PhD 

With reference to the aims and objectives identified in Chapter 1 (section 1.2), the key 

conclusions based on this research are as follows: 

MCRL 3 system integration for robotic welding 

It was identified in section 1.1, that an MCRL 3 robotic welding solution was required 

for the industrialists to transfer research findings to MCRL 4-7. Therefore, work was 

carried out to complete the system integration of a KUKA KR16 robot, a Fronius 

Magicwave 4000 welding machine, HKS welding sensors, a National Instruments DAQ 

system, a Micro Epsilon laser scanner and an IDS camera with a PC. Software was 
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developed in LabVIEW as part of the work to achieve complete automatic control of 

the equipment. The software capabilities are as follows: 

 Gather information about the welding process using the HKS welding sensors. 

 Collect information about the joint geometry, process this information then 

implement a feature detection algorithm to find the important joint features in 

real-time (irrespective of the joint profile type, orientation in 3D or presence of 

missing data points). 

 Point cloud processing algorithm to find joint fit-up and orientation in 3D. 

 Decision making capability based on the joint fit-up. 

 Empirical model to predict the Weld quality characteristic. 

 Back propagation algorithm for the intelligent selection of the machine settings 

based on joint geometry. 

The developed system is novel and was able to carry out robotic welding with similar 

weld quality as the skilled manual welder. 

Human behaviour analysis for intelligent automation 

The work carried out on human skill capturing was focused on understanding the 

manual TIG welding process, in the context of TIG welding automation. The 

simultaneous control of key parameters is essential in manual TIG welding to achieve a 

good weld quality. Welding current and wire feed rate are the most significant 

parameters that need to be controlled and prioritised to account for variations in joint 

geometry. By prioritizing the process parameters in a similar manner to the skilled 

manual welder, it was possible to simplify the control problem in automation. The 

results collected have indicated that adaptive control of these parameters is vital for 

successful TIG welding automation. In addition to the prioritisation of the process 

parameters, the Critical tasks in manual TIG welding were found to be; establishing the 

weld pool, feeding the filler wire to the weld pool and maintaining a constant weld pool 

shape. These tasks are mostly controlled by visual observation. It was found that 

feedback control on the basis of visual information from the weld pool is essential for 

successful automation of TIG welding. 

 



 

225 

 

Evaluation of performance of a laser scanner 

A methodology to evaluate the performance capability of a 3D laser scanner before its 

use has been introduced. It was found that, 

 Stand-off distance, steepness angle, angle of incidence and surface reflectivity 

were the main variables that affect the data quality obtained from the micro-

epsilon scanner.  

 The actual work-span of the laser scanner was found to be different from the 

manufacturer specified values.  

 The measurement accuracy of the scanner reached its maximum at the middle of 

the laser span.  

 It was found that ambient lighting affects measurement performance.  

 Laser scanners have a critical incidence angle range and a critical steepness 

angle in which the data acquisition is affected.  

A similar experimental procedure can be used for evaluating the performance of any 

laser scanner prior to its industrial use so that the errors in measurements can be 

minimized. 

3D feature extraction  

This thesis also presented a novel algorithm for feature detection of a weld groove with 

a maximum mean square error (MSE) of 38µm and 127µm in the x and z coordinates 

respectively. The feature detection algorithm was successfully implemented on three of 

the most commonly used weld joint types. Further, the real-time gap measurement 

algorithm was able to measure gaps with an accuracy of ±28µm. Approximation 

methods were used to remove outliers from noisy data present in the point clouds. Weld 

joint fit-up in 3D was quantified and the algorithm was robust enough to extract 

features accurately at all possible joint set ups for all the selected joint types.  

Seam tracking 

The feature extraction algorithm was successfully used to find the middle point of the 

weld joint which was used for the seam tracking process. Seam tracking was 
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successfully carried out on the three common weld joint types and all possible joint 

orientations in 3D space. The developed system can be used successfully to track 3D 

complex paths and make "intelligent" decisions about whether the joint fit-up is within 

suitable tolerances.  

Mathematical model development for weld quality prediction 

This thesis has been focused on real welding scenarios where two samples are joined 

together. This is novel compared to previous work which has used a bead-on-plate 

technique. From the results obtained as part of this work, the relationship between the 

input and output parameters of the developed TIG welding robotic system was 

established. It was identified that the duty cycle of the welding current signal is the 

most important parameter affecting the weld bead dimensions and weld strength. 

Welding current and wire feed rate also have a significant effect whereas the pulse 

frequency and background current effects are low. The effect of each process parameter 

on the weld quality characteristics was quantified separately using ANOVA and 

equations which map the output parameters with the input parameters were derived. 

Results have indicated that the interaction model is comparatively more accurate than 

linear or pure quadratic models.  

Adaptable weld process control 

It was found from the literature that a limited amount of previous work has successfully 

implemented an empirical model on a robotic welding system to select the required 

machine settings intelligently. Therefore, a back propagation algorithm was developed 

as part of this research and implemented in the software to select the required weld 

machine settings based on joint geometry feedback. A variable gap weld joint was 

welded according to four distinct approaches, namely; the constant process parameter 

approach, the industrial approach, the skilled welder’s approach and the novel proposed 

approach. It was found that the proposed novel algorithm was successful in achieving 

similar (welding strength and weld bead shape) weld quality as the skilled welder.  

In summary, the work presented in this thesis has shown that it is possible to 

automatically weld butt joints with varying gap. The primary research aims and 

objectives have also been met through the demonstration of the potential of the 

developed system (at MCRL 3) and the methodology for intelligent and adaptive 
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robotic TIG welding to satisfy the industrial needs which have been discussed in 

sections 1.1,1.2, 2.2 and 2.3. 

10.2 Recommendations and future work 

The work presented in this thesis has successfully demonstrated the capability of 

adaptive process control for the improvement of robotic TIG welding. Such an 

approach can be applied in the welding of aerospace components. Although the work 

included within this thesis demonstrated adaptive welding according to the feedback 

from the joint geometry, it can be further developed to be sensitive to other material 

characteristics such as material type and thickness. Also the work within this thesis has 

been successfully demonstrated within the constraints of consumables and the 

hardware/software capabilities. Exploring different equipment (such as different 

welding machines and robotic equipment) with a similar approach and comparing this 

with the results presented within this thesis is essential. Gaining access to more 

complex weld shapes directly from industry could demonstrate the full capability of the 

developed welding robot. 

On-line monitoring of the weld pool and adjusting the robot path or part orientation 

accordingly to maintain the weld pool at the centre of the seam has a high potential for 

future research. More investigation on the science of welding needs to be carried out. A 

detailed study on the factors affecting weld quality is essential to improve the 

algorithms developed as part of this work. Implementation of heat flow theory and 

Artificial Intelligence methods to optimize the weld process parameters to further 

increase the weld quality is another important research area to be prioritised as further 

work. Selecting the best strategies to reduce deformation in welding of aerospace 

components could also be derived from applying heat flow theory and finite element 

methods (FEM). 

A mathematical model of the skilled welder has been proposed for development and 

implemented in the LabVIEW software. This is expected to be used as an error 

correction model for the welding robot when welding more challenging shapes. In order 

to achieve this, further in depth study of the manual skilled welder must be undertaken. 

A smaller torch and laser scanner is preferred for welding in the aerospace industry. 

Therefore future work also should be carried out on developing welding end effectors 

and laser scanners which are more compact in size. Optical systems should be 
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developed so that the data acquisition performance of the laser scanner is not affected 

by ambient lighting and shiny components (though the feature extraction algorithm 

developed in this thesis functions with "inappropriate" data of this type). Moreover, a 

velocity based control system is proposed for more real-time control instead of the 

present position based control system.  
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Appendix 1: Fronius MagicWave 4000 specifications 

Mains voltage 3 x 400 V 

Mains voltage tolerance ± 15% 

Mains frequency 50/60 Hz 

Primary continuous power 15.5 kVA 

Welding current range 3-400A 

Welding current range at the electrode 10-400A 

Open circuit voltage 90 V 

Working voltage range 10.1-26.0 V 

Working voltage range at the electrode 20.4-36.0 V 

Striking voltage  9.5kV 

Degree of protection IP23 

Type of cooling AF 

Insulation class F 

EMC emission class A 

Dimensions 625/290/705mm 

Weight 58.2 kg 

Mark of conformity S, CE 
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Appendix 2: Calibration certificates of welding sensors 
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Appendix 3: Sample XML file 
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Appendix 4: Experiments for real-time video capturing of welding area 

As discussed in Chapter 3 there are few techniques that are recommended to use to 

view the weld pool. Some of those methods were experimented and the results are 

discussed in this section. 

Normal Camera and a Neutral Density Filter 

Few researchers have tried using neutral density (ND) filters for weld pool observation. 

This is the same filter which is being used in manual welding helmets. Therefore it was 

decided to experiment weld pool capturing using a ND filter with a normal camera. The 

filter glass was placed in front of the lens and the camera was placed at a stand-off of 

30cm.  

 

Figure a: Weld area capturing with neutral density filter 

The result is shown in Figure a, which does not show satisfactory information. 

However, this method is not a better solution for viewing weld area since the ND filter 

naturally filters all frequencies to the same extent and therefore important information 

such as joint geometry can be lost.  

Using High Dynamic Range (HDR) Camera 

A HDR camera (120dB) from Stemmer Imaging Technologies was used to directly 

capture welding area without using any filters or illumination source. Result is shown in 

Figure b. Welding torch and filler rod is clearly observable. However information of the 

weld area is missing which can be due to two reasons. First reason can be that since 

Aluminium was used for the experiment it may have caused more brightness since the 

surface of the work piece is shiny. Other reason might be the angle of viewing. If 

viewed from the top it may have caused lesser saturation than viewing at an angle. 

However this experiment shows the requirement of a filter. 
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Figure b: Weld area capturing with a HDR camera 

High Speed (HS) Camera with a Band Pass Filter and Illumination  

After the learning from previous experiments and from literature it was learned that a 

band pass filter should be used with the camera. However the problem with using band-

pass filters is that it filters out most frequencies of the spectrum and therefore some 

important information also can be lost such as information surrounding the weld point. 

Therefore additional illumination has to be used at the filtering frequency to aid 

visualizing for the camera. This technique was experimented with an Olympus HS 

camera (iSpeed3) and a laser illumination source as shown in Figure c.   

 

Figure c: HS camera with laser illumination for weld area viewing 
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Figure d: Weld area capturing using HS camera, band-pass filter and laser illumination 

As shown in Figure d, the image was clear and the camera did not get saturated at all. 

This proves that combination of camera light source and filter is the most appropriate 

solution for weld area viewing. But, even though the concept is proven still the high 

speed camera cannot be used in automation due to its bulky size, higher cost and also 

health and safety issues due to high power laser. In addition there is no flexibility in 

software modification which limits capability of online processing. Therefore it was 

decided apply the same concept on a compact, low-cost CMOS camera with a band 

pass filter and LED illumination array as shown in figure e (a). 
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(a) 

 
(b) 

Figure e: (a) Camera set up weld area viewing (b) results with band pass filter and illumination 

source 

As seen in Figure e (b) there is a clear improvement with this method but still the most 

important area is saturated with arc light. But the surroundings a much clearer 

compared to previous experiments. The reason for saturation is that the filtering wave 

length is lower and for better results it is understood this has to be a higher value. 

Experiments are planned to use a high power illumination source with a filter at near 

infrared (NIR) wavelength. 
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Appendix 5: Relationship between welding voltage and stand-off distance 

Stand-off distance between the torch and work piece is vital to maintain the consistency 

throughout the weld. However as presented in Chapter 4 the method for measuring 

stand-off distance is by measuring the welding voltage. An experiment was set up as 

shown in Figure f. Welding torch was held on a retort stand at a known distance from 

the metal piece. Distance was measured by inserting filler gauges. A stationary weld 

was carried out for 8 seconds for each stand-off distance and voltage was measured in 

LabVIEW interface from the welding sensor. 

 

Figure f: test set-up 

 Figure g shows the voltage measured for different stand-off distances. 

 

Figure g: Voltage measured for different stand-off distances 
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As can be seen from the figure, the variation is linear. All three trials were averaged and 

the trend is observed and the following equation is derived where x is torch stand-off 

and y is arc voltage. 

y = 0.6322 x + 8.5322 

Using this equation torch stand-off can be estimated by monitoring arc voltage at a 

given time.  
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Appendix 6: Images of the welds completed by manual welder (other than 

presented in section 4.3.1) 

Welder Image of the weld 

N2 

 

N3 

 

SS1 

 

SS2 

 

S1 

 

S2 
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Appendix 7: Questioner provided to manual welders 

1. How experienced you are in welding? 

2. What are welding process types you are familiar with? 

3. What welding joint type you find more complex out of butt, lap and T-joint? 

4. What are weld process parameters which you think will affect the weld quality? 

5. What welding parameters will you use for each joint type? 

6. What variations did you observe during the welding process? 

7. How did you adapt to variations and what parameters did you try to control? 

8. What are the main things you look for during welding? 

9. How do you assess weld quality while welding? 

10. What are the critical tasks in welding? And what is the most important out of 

that? 

11. Did you get any other feedback method than visual feedback? 

12. Please comment your experience with a small paragraph. 

13. Please suggest any new method that we can use to improve the testing. 
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Appendix 8: Images of the welds completed by four approaches selected (other 

than presented in section 9.3) 

Approach Welder Image of the weld 

Constant 

parameter 

Trial 2 

 

Trial 3 

 

Industrial 

approach 

Trial 2 
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Skilled 

welder 

Trial 2 

 

Trial 3 

 

Adaptive 

robotic 

welding 

Trial 2 
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