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Abstract 

Weld quality features are difficult or impossible to directly measure and control 

during welding, therefore indirect methods are necessary. Penetration is the most 

important geometric feature since in most applications it is the most significant factor 

affecting joint strength. Observation of penetration is only possible from the back face 

of the full penetration weld. In all other cases, since direct measurement of depth of 

penetration is not possible, real time control of penetration in the Gas Metal Arc 

Welding (GMAW) process by sensing conditions at the top surface of the joint is 

necessary. This continues to be a major area of interest for automation of the process. 

The objective of this research has been to develop an on-line intelligent process 

control model for GMAW, which can monitor and control the welding process. The 

model uses measurement of the temperature at a point on the surface of the workpiece 

to predict the depth of penetration being achieved, and to provide feedback for 

corrective adjustment of welding variables. Neural Network and Fuzzy Logic 

technologies have been used to achieve a reliable Neuro-Fuzzy control model for 

GMAW of a typical closed butt joint having 60° Vee edge preparation. 

The neural network model predicts the surface temperature expected for a set of fixed 

and adjustable welding variables when a prescribed level of penetration is achieved. 

This predicted temperature is compared with the actual surface temperature occurring 

during welding, as measured by an infrared sensor. If there is a difference between the 

measured temperature and the temperature predicted by the neural network, a fuzzy 

logic model will recommend changes to the adjustable welding variables necessary to 

achieve the desired weld penetration. 

Large scale experiments to obtain data for modelling and for model validation, and 

various other modelling studies are described. The results are used to establish the 

relationships between the output surface temperature measurement, welding variables 

and the corresponding achieved weld quality criteria. The effectiveness of the 
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modelling methodology in dealing with fixed or variable root gap has also been 

tested. 

The result shows that the Neuro-fuzzy models are capable of providing control of 

penetration to an acceptable degree of accuracy, and a potential control response time, 

using modestly powerful computing hardware, of the order of one hundred 

milliseconds. This is more than adequate for real time control of GMAW. The 

application potential for control using these models is significant since, unlike many 

other top surface monitoring methods, it does not require sensing of the highly 

transient weld pool shape or surface. 
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Chapter 1 

Chapter one Introduction 

1.1 Introduction 

This chapter introduces the background to the development of a Neuro-Fuzzy Control 

Model (NFCM) for the Gas Metal Arc Welding process. It describes the scope and 

objectives of the research, and introduces the main areas of research reported in this 

thesis. 

1.2 The research background 

Welding is the most widely used metal joining technique in the fabrication industry 

today. Fusion welding by the arc welding process is the most important among the 

welding processes, and may be used for joining most types of ferrous and non-ferrous 

metals, including carbon, alloy and stainless steels, aluminium, and magnesium 

alloys, copper, and titanium, in all thicknesses. 

The Gas Metal Arc Welding (GMAW) process has become widely used because of 

the following advantages when compared with other welding processes. As shoýti in 

table 1.1 (1,2). 

" It is very versatile in application 

9 It has potential for increasing productivity and quality. 

" It has good potential for both dedicated and flexible automation. 
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Chapter 1 

Characteristic TIG SMAW GMAW FCAW SAW 

All-position welding Yes Yes Yes Yes No 

Mild, low-alloy Yes Yes Yes Yes Yes 

steel 

Weldability Stainless steel Yes Yes Yes Yes Yes 

Aluminium Yes Yes Yes No No 

Deposition rate, Kg. /hr 4.5 9 11.25 18 45 

Welding speed, mm/min (6mm fillet) 127 508 762 940 1220 

11 Gun control Yes N/A Yes Yes Yes 

Adaptable to Total automation Yes No Yes Yes Yes 

automation 

Robotics Yes No Yes Yes No 

Table 1.1 Comparison of arc welding processes (adapted from (1)) 

Welding procedures and control systems used for manual welding are not easily 

adapted to automatic welding. This is because most manual welding relies heavily 

upon the action of a welder to cope with variability. To achieve good welding quality, 

the welder must make difficult choices among welding variables, which are related to 

each other in non-linear modes. For example, welding current is nonlinearly 

dependent on wire feed rate, electrode size, and stickout. Arc voltage depends 

nonlinearly on welding current, electrode size, wire feed rate, shielding gas, and arc 
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Chapter 1 

length. The empirical nature of these interdependent variables further complicates 

system development for controlling welding variables. In addition to selecting and 

controlling welding parameters, the welder may introduce varying manipulation of 

the heat source in the joint, often learned only through experience in dealing with 

joint and process variability. However, adaptive control of arc welding variables such 

as arc length and voltage, electrode feed rate, travel speed, and arc manipulation is 

increasingly possible through the introduction of computers in arc welding, and the 

development of a wide variety of sensors that can, to some extent, emulate those of 

the human welder. For instance it is possible to measure, in process and in real time, 

the geometry and condition of the unwelded joint or the finished weld bead, and to 

monitor the sound or light emitted from the welding system, or the temperature 

distribution in the joint material during welding. Such sensing is discussed later. The 

development of Artificial Intelligence (AI) enables human knowledge and inferencing 

to be incorporated into control systems, and may provide for situations where 

knowledge is incomplete or where there is uncertainty. 

The most important quality feature in welding is the depth of penetration, which 

largely dictates the mechanical properties of the welded joint. Unlike other weld bead 

features such as width, height, and toe angle which can be measured in process from 

the top face, the depth of penetration, or rather the achievement of full penetration, 

can only be measured directly from the back face. This is often difficult or 

impossible. Nadew (4) monitored visible light through the root gap to measure the 

penetration in an open butt joint, however, this was only applicable to the first 

welding pass. Bentley (5) developed feedback control of penetration by measuring the 

amount of visible and near-infrared light emitted from the backside of the weld. This 

method is only suitable for flat plate welding. Song and Hardt (6) developed a 

mathematical model to estimate the depth of penetration in real time by measuring the 

temperature of the under side of the workpiece. 

Several techniques for estimating depth of penetration by sensing features of the top 

face have been investigated. Hardt and Katz (3) measured the penetration depth by 
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using an ultrasonic sensor, but it was difficult to couple the transducers to the 

workpiece and synchronise their movement with the welding torch. Zhang et al (79) 

used a high shutter speed camera to measure the topside pool width in GMAW 

processes, and then estimated the backside bead width and penetration. In their 

estimation they assumed a semi-circular pool shape, which does not apply to the 

majority of weld joints. Also in the Gas Metal Arc Welding process, spatter and fume 

occurs which can impede the application of cameras for measuring the pool width 

during welding. Matteson et al. (65) used the sound pressure produced by the Gas 

Metal Arc Welding process during welding, and an Artificial Neural Network to 

classify acceptable or unacceptable welds. In the production environment other 

sources of noise can interfere with the arc acoustic signals which may reduce the 

application of the system. Boo and Cho (142) developed a system to control the 

quality of welds in Gas Metal Arc Welding by monitoring the temperature on the top 

surface of the workpiece but only for bead on plate welds. Bead on plate 

experimentation cannot accurately represent the heat flow occurring in GMAW of 

typical Vee groove joints. 

To control the welding process in real time, special Artificial Intelligence ( Al ) 

modelling techniques may be used to identify the condition of a weld from sensed 

features, and provide a corrective procedure. One possible approach to controlling 

welding is to construct an intelligent process control model that learns the relationship 

between top surface temperature, the welding variables, and weld quality, predicts the 

temperature for given welding variables and adjusts the appropriate welding variables 

to achieve welds with acceptable quality. This is the subject of the research reported 
in this thesis. 

1.3 Objective of the research 

Automatic control of Gas Metal Arc Welding is difficult because there are many 

welding variables affecting the quality of welds. It is difficult to model their 
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relationships and effect on weld quality accurately by mathematical modelling, due to 

the complexity of the process. 

The objective of this research has been to develop a practical control methodology, 

and associated models, to alleviate the difficulties and limitation associated with 

alternative methods. The following solution is proposed in this research to overcome 

these difficulties: 

" Perform on-line temperature measurement at a point in the top surface of the 

workpiece during welding; 

" Model the relationship between welding variables and the measured temperature; 

" Model the relationship between the weld penetration and the measured 

temperature; 

" Develop a model to perform on-line correction of controllable welding variables 

depending on surface temperature measurement, in order to achieve welds with 

acceptable penetration. 

An approach integrating Neural Network and Fuzzy Logic artificial intelligence 

techniques will be utilised to achieve these goals. The reason for using this integrated 

approach is to take advantage of the strengths of each technique in order to increase 

the reliability and accuracy of the proposed process control model. The research 

experimentation is based on Gas Metal Arc Welding of a Vee groove joint to properly 

represent industrial application. 

1.4 Structure of thesis 

There are eight remaining chapter in this thesis as follows: 

CHAPTER 2 discusses the principle of Gas Metal Arc Welding, including the 

fixed, and controllable welding variables, and equipment. It also discusses spatter 

5 



Chapter 1 

and fumes in GMAW, in particular the effect on satisfactory sensing. CHAPTER 3 

presents a review of relevant research work in adaptive control of the Gas Metal Arc 

Welding process. Approaches to sensing, mathematical modelling, statistical 

modelling, and Al techniques such as expert system, neural network, and fuzzy logic 

are discussed. The strengths and weaknesses of these approaches are also 

summarised. CHAPTER 4 deals with the theory of heat distribution in a 

weldment. This is extended to theoretical modelling of heat distribution in the 

workpiece. CHAPTER 5 describes the experimental procedure adopted for 

collecting data for the purposes of modelling. This includes the selection of inputs 

and outputs, experimental design, and experimental apparatus. CHAPTER 6 

considers Neural Network modelling. Different types of neural network modelling 

techniques including back propagation, radial basis function, and reinforcement 

networks are discussed, constructed and evaluated. This is followed by discussion of 

the selection of the most appropriate neural network technique, and architecture for 

the prediction of the temperature at a point on the top surface of the weldment, for a 

set of welding variables, and corresponding to achievement of acceptable penetration. 

CHAPTER 7 discusses a Fuzzy Logic control model, and includes the procedure 

for constructing the fuzzy model. Development of the appropriate fuzzy logic rules 
for controlling the welding variables, in order to achieve a weld with acceptable 

quality is discussed. This is extended to the development of a Neuro-Fuzzy Control 

Model (NFCM). This is in turn extended to develop a software to integrate the Neural 

Network model, Fuzzy Logic model, and the output of analog to digital converter of 

the infrared sensor employed. CHAPTER 8 discusses the results of the evaluation 

of the proposed method for controlling penetration in welding. The application scope, 

advantages and limitations of the Neuro-Fuzzy Control Model are discussed. The 

specific and general conclusions that can be drawn from this research are presented. 

Finally CHAPTER 9 presents suggestions for the further work needed to be done 

for the continuation and extension of this research. 
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Chapter two Gas Metal Arc Welding process 

2.1 Introduction 

Today's emphasis on reliability, speed and economy in assembly has led to the 

development of a wide variety of joining processes and techniques. One of the 

most important of these techniques is welding. 

Although there are many welding processes currently applied in industry, arc 

welding and resistance spot welding are the most common techniques and are also 

the most commonly automated. Resistance welding is widely used in sheet metal 

fabrication, such as in automobile body construction. For thicker materials, and 

for welding with metal deposition, arc welding is the most widely used process in 

industry and construction. 

In arc welding the heat is generated by an electric arc that is maintained between 

the electrode and the workpiece. This heat will melt the base metal and in most 

cases a consumable electrode. There are several different welding processes 

categorised as arc welding including: Shielded Metal Arc welding, Submerged 

Are welding, Gas Tungsten Arc welding, Gas Metal Arc welding, Flux Cored Arc 

welding and Plasma Arc welding. Each process has particular application scope 

and advantages, based on technical or economic considerations. 

The demands of industry for reduced welding cost, consistent weld quality and to 

remove personnel from what is an unpleasant and sometimes hazardous 

environment, has led to development in welding automation. This includes 

automated manipulation of the workpiece, or the welding arc, and automated 

control of various welding parameters. Flexible automation is achieved through 

application of reprogrammable robots. Gas metal arc welding is capable of 

producing high-quality welds at high welding speed, and is widely used in 

automatic robotic arc welding. In this research adaptive control of Robotic Gas 

Metal Arc Welding (GMAW) will be investigated. 
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2.2 Gas Metal Are Welding 

Gas metal arc welding (GMAW) is probably the most common method for arc 

welding of steels. The process can be used for welding of most common metals 

and alloys. However, some require special procedures, e. g., copper alloy that 

contains a high percentage of zinc, cast iron, titanium and titanium alloy, and 

refractory metals. Metals that cannot be welded by GMAW includes, lead, tin, and 

zinc which have a low boiling temperature, for example the boiling temperature of 

zinc is 946°C which is far below the arc temperature (7). 

2.2.1 Principle of operation of GMAW 

In the GMAW process electric energy is converted to a useful electric arc 

between a consumable electrode and the workpiece. The electrode is a bare wire 

which is fed into the weld area and arc, melts and is deposited into the weld pool. 

The electrode, arc, weld pool, and the whole welding area of the workpiece are 

protected from the atmosphere by a shielding gas, which flows through the 

welding gun. The small diameter electrode wire melts rapidly and transfers across 

the arc and into the weld pool. Up to about 90% of energy is transferred into the 

workpiece and weld pool, giving highly efficient and productive welding. 

The arc is struck by starting the wire feed, which causes the electrode wire to short 

circuit to the workpiece and initiate the arc. This self-striking mechanism is a 

useful feature for automated welding. The arc is then traversed along the weld 

joint in order to fuse the adjoining edges and form a weld pool. The weld pool 

solidifies behind the arc and completes the welding process (22). The quality of 

weld produced depends to large extent on heat and mass transfer from arc and 

electrode into the weld pool, and the mass of parent material in the joint, which 
has to be fused. For automation of welding, various parameters affecting these 

factors must be monitored and controlled. 
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2.2.1.1 Metal Transfer in GMAW 

In gas metal arc welding there are various modes of metal transfer from electrode 

tip to weld pool, spray transfer, pulse transfer, short circuiting and globular 

transfer are consider the most practical modes of transfer. These transfer modes 

show different arc stability, weld pool penetration, spatter production, and level of 

potential gas entrapment. Lesnwich (7) showed that the modes of metal transfer 

depends on many operational variables such as welding current and voltage, 

electrode extension, electrode diameter, and shielding gas type. With so many 

factors influencing metal transfer, much research has been done to analyse and 

model this phenomenon, e. g., Kim and Eager (8) analysed the droplet size and 

droplet transfer frequency both theoretically and experimentally. 

In the following sections each method of metal transfer and the significance to 

automated robotic welding is discussed. 

2.2.1.1.1 Spray transfer 

In this mode metal is transferred from the end of the electrode wire to the pool in 

an axial stream of fine droplets. Spray transfer occurs at relatively high voltage 

and high current density. The high current used produces strong electromagnetic 

fields and aerod-, -namic drag force due to high arc plasma flow. These cause rapid 

detachment of small droplets. The shielding gas used influences the surface 

tension of the molten electrode material and the magnitude of drag forces, 

therefore it has a significant affect on the value of current at which spray transfer 

occurs. This mode of metal transfer is a high deposition rate technique, it is 

usually recommended for thicker sections requiring heavy single or multi-pass 

welds or for any filler pass application where speed is advantageous. It is usually 

applied in the flat position or for horizontal /vertical fillets (9), in which case it is 

particularly appropriate for robotic welding when used in conjunction with a 

programmable work manipulator. In this mode metal transfer is very stable, 

directional, and essentially spatter free. The absence of spatter makes this mode 

of transfer useful for this research, as spatter could interfere with the operation of 

the sensor employed and impair the accuracy of temperature measurements 

recorded. 
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2.2.1.1.2 Pulsed current transfer 

This mode is a type of spray transfer. The welding current is pulsed in a square 

wave form at a fixed frequency, typically between 50 and 100 HZ, from a high 

value during which spray transfer occurs, and a low value. 

A steady arc is produced with spray transfer at effective mean welding current 

below that required for conventional spray transfer. Due to the lower heat input 

this mode can be used for welding thinner plate than practical with the 

conventional high current spray transfer. This method has the benefit of offering 

all position welding with almost no spatter, and the regulation of droplet transfer 

gives a smooth stable arc and weld pool. A solid state and an inverter power 

supply, with or without a synergic controller, is normally used for this method of 

welding. 

2.2.1.1.3 Globular transfer 

This mode occurs at lower current densities compared with spray transfer mode. It 

is characterised by the formation of a relatively large drop of molten metal at the 

end of the electrode wire. The drop remains attached to the end of the wire until 

the forces of gravity and shielding gas flow overcome the surface tension of the 

molten drop, which then detaches and falls into the weld pool. Globular transfer 

occurs with all types of shielding gas, but it cannot be used for out-of-position 

welding due to it being predominantly dependent on gravity. Globular transfer 

typically produces a large amount of spatter, which comes from splashing of the 

molten pool and violent droplet detachment. This mode of transfer is not well 

suited to robotic manipulation or sensor based process control. 

2.2.1.1.4 Short circuiting transfer 

This mode of transfer, which is also called dip-transfer, occurs with relatively low 

current, a low voltage which produces a short arc, and small diameter electrode 

wire. In this mode the wire feed rate must just exceed the burn-off rate so that 

intermittent short circuits will occur. When the wire touches the pool and short 

circuits the arc there is a momentary rise of current which must be sufficient to 
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melt the wire tip. A neck is then formed, due to magnetic pinch effect, causing 

detachment of the droplet, which is sucked into the molten pool, aided by surface 

tension (10). The wire short circuits to the NAworkpiece an average of 100 times per 

second. In this mode of metal transfer careful control of parameters, particularly 

the rate of rise of current during short circuits, is essential to minimise spattering 

(11). Because of relatively fast weld pool solidification compared with spray 

transfer, this mode of transfer can be used in all positions. It is also suitable for 

automatic welding. Low power short circuiting transfer is essential for welding 

thin sheet. In figure 2.1 different modes of metal transfer and typical 

current/voltage combinations at which they occur in GNL-\W are shown. 

Fig. 2.1 Metal transfer mode in GMA 

2.2.2 Gas metal are welding equipment 

Equipment used in GMAW generally consists of power source, wire feed unit, gas 

supply unit, and welding gun. Additional equipment such as sensors for seam 
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finding, seam tracking, process control, arc on and gas flow detection, etc. can be 

added for automatic robotics application. 

2.2.2.1 Power sources 

In gas metal arc welding alternating current is seldom used (12), direct current 

electrode positive is used for all practical applications giving maximum electrode 

melt-off rate and thermal efficiency of the process. Two types of power supply 

commonly used in GMAW are: 

0 Constant voltage transformer or transformer / rectifier; 

0 Inverter. 

The essential requirement of the power supply is constant, or virtually constant 

voltage with changes in current. This characteristic provides the process with self 

regulating arc length, which simplified the requirement for manipulation and 

control of the arc length in automated welding, as well as reducing skill 

requirement for manual welding. 

In this work an inverter type power source is employed. Mains A. C. is converted 

to H. F. (high frequency) A. C. and transformed, still at H. F., to a voltage suitable 
for welding. It then passes through a reactor, which smoothes the current, and a 
final rectifier gives D. C. for the arc. A final electronic switching arrangement 

enables the welder to select D. C. or A. C. at high frequency and the resulting arc is 

easy to strike, smooth, and stable (13). The wave shape generated in an inverter is 

rectangular and, since the output is no longer synchronised with mains frequency, 

the frequency can be varied between, typically, 50 HZ to 300 HZ. The output volt- 

ampere relationship can be accurately predicted and controlled. Irving(14) 

described that on changing from conventional to an inverter with rectangular 

output wave form, there was an average reduction of fume measurement of 67% 

in GMAW. This is significant to the good performance of optical sensors such as 

the infrared thermography sensor used in this research. 
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2.2.2.2 Wire feed unit 

A wire feed unit consists of a wire feeder and a controller. There are two types of 

wire feeder used in GMAW, pull type and push type feeders. Pull type feeders 

with the drive system integral with the welding torch are used for soft electrode 

wires such as aluminium wires, or for steel wires of very small diameter, where 

buckling of a pushed wire would cause feeding problems. It is also used when the 

wire is to be fed a greater distance. Push type feeders, in which the drive system is 

typically up to five meters from the welding torch, are used for stiff steel wires, 

and that allows for torches of a very small size to be constructed. The wire feeder 

controller maintains a pre-set wire feed rate, and also provides control of shielding 

gas flow, and the cooling water in a water cooled welding gun. The wire feed rate 

is maintained constant in manual welding but can be used as a control variable in 

automated welding. 

2.2.2.3 Welding gun 

The Gas Metal Arc Welding gun, or torch, must withstand the heat generated by 

the welding process, and can be connected to the following supplies: 

" Flexible conduit through which the electrode wire is fed; 

" Shielding gas, and possibly cooling water input and return; 

" Cable carrying the welding current, often water cooled. 

The welding current from the power supply is transferred to the welding electrode 

via the torch contact tip. Any spatter present in GMAW may accumulate around 

the contact tip causing the wire feed to become erratic. Therefore the tip must be 

cleaned or replaced periodically, which is particularly disadvantageous for 

automated welding. Shielding gas passages and nozzle surrounds the wire 

emerging from the contact tip and direct the shielding gas around the arc and 

molten pool. It has been reported by Kirk (15) that the delivery of gas at a 

reasonable flow rate through a tubular shroud is effective in reducing defects, but 
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is extremely susceptible to side draughts. This is aggravated by the relative 

movement of the gas shroud and contact tip over the workpiece creating a trailing 

gas shield. Kirk proposed a new design of gas shroud with two gas flow paths to 

overcome these problems. 

Cooling is required in the welding gun to remove the heat generated within the 

gun as well as the heat radiated from arc and molten pool. In the water-cooled 

type torch the cooling water flows around the cable carrying the welding current, 

therefore this cable can be smaller in cross sectional area. Water-cooled torches 

tend to be larger and heavier and that has implications for access and 

manipulation. However air cooled torches which are constantly rated for currents 

up to 500 Amps are now available. This covers the majority of application in 

GMAW including automated welding with high percentage `arc-on' time or duty 

cycle. 

2.2.3 Welding parameters 

The operation of gas metal arc welding, like most production processes, can be 

defined by a series of qualitative or quantitative parameters. Welding parameters 

affect the characteristics of welding such as penetration and fusion of the weld, 

metal deposition geometry (height, width), and deposition rate. The most 

important parameters that govern weld characteristics, and that have affect on the 

thermal cycle during welding are: 

0 Welding current and voltage; 

0 Welding gun travel speed; 

0 Welding electrode feed rate, size, and extension; 

0 Welding shielding gas; 

" Torch angle; 

0 Weaving frequency, amplitude and pattern. 
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2.2.3.1 Welding current 

The amount of welding current has a great effect on wire melt-off and deposition 

rate, penetration of the weld, and the size and shape of the weld pool and weld 

bead deposit. In turn, penetration in particular will influence the design of the 

weld joint. In the constant voltage case as the wire-feed speed is increased the 

current increases. As the current increases the deposition rate is increased. When 

other welding parameters are held constant, increasing the current will increase 

the depth and width of weld penetration and the size of weld bead. However, 

excessive current will result in excessive spatter, instability, or an unfavourable 

mode of metal transfer. The welding process may also become unstable or 

ineffective at lower currents, due to inadequate heat input or to an unsuitable 

mode of metal transfer. In automated welding, current is used as a controllable 

variable because it is relatively easy to monitor and adjust. In this work current is 

used as one of the welding variables because it has a strong influence on the 

temperature distribution in the welded region. 

2.2.3.2 Welding voltage 

The distance between the tip of the electrode and the weld pool surface, the arc 

length, together with the anode and cathode voltage drops in the arc determines 

the welding voltage or arc voltage. The voltage required for an application 

depends on the electrode material and size, type of shielding gas, position of 

welding, type of joint, etc. If other welding variables are held constant and voltage 

is increased, arc length increases and the weld bead becomes flatter and wider. 

The penetration will increase up to an optimum level, beyond which energy loss 

from the arc column is greater than the increase in arc energy (V x I). Further 

increase in the voltage and arc length results in the arc discharge being non- 

sustained and intermittent arcing occurs. Lower arc voltage produces a narrower 

weld bead and greater convexity, too low an arc voltage at a low current can result 

in electrode stubbing. Arc voltage is one of the variables used in the empirical 

work of this research. 
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2.2.3.3 Welding gun travel speed 

The travel speed of the gun has an effect on the distribution of the filler metal 

transferred from the electrode wire, and the penetration in to the base metal. As 

the travel speed is increased the heat transferred per unit volume of base metal is 

decreased, limiting the penetration. At the same time the bead width is reduced. 

Increasing the travel speed can result in undercutting along the edge of the weld 

bead, if there is not enough filler metal to fill the groove fused by the arc. If travel 

speed is reduced, greater penetration will be achieved but excess filling may 

result. Travel speed has been used as a controllable variable in this work. 

2.2.3.4 Electrode feed rate, size, and extension 

The electrode feed rate in gas metal arc welding has a similar effect to the welding 

gun speed. It effects the deposition of the filler metal and penetration in the 

workpiece. These are also a function of current density, which is related to 

electrode diameter. The choice of electrode wire size and its metal composition is 

dependent on the metal to be welded and its thickness, the metal transfer mode, 

the amount of penetration, the deposition rate, and the bead profile required. 

There are two types of electrode wire used in GMAW, solid wires which are used 

for welding of many high strength low-alloy steels as well as carbon steel, and 

flux-cored wires of which there are two types, gas- shielded and self-shielded. 

These are used for welding low carbon steel, high strength low-alloy steel, and 

stainless steel. Flux-cored wires provide improved arc stability and additional 

alloying elements. They are used for high current, high deposition rate welding. 

Wire size, type and composition cannot of course, be changed in-process, in real 

time. 

The electrode extension should also be controlled in GMAW. Too long an 

extension results in high 12 R heating of the wire extension and excess weld metal 

being deposited with low arc heat. This will cause poor weld bead shape and 

reduced penetration in addition to a less stable arc. 
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2.2.3.5 Shielding gas 

The primary purpose of the shielding gas is to protect the molten weld metal from 

oxidation, and to alleviate gas porosity. 

Originally inert gases such as Argon and Helium were used as shielding gases. 

Now carbon dioxide or a mixture of oxygen or CO2 with an inert gas, is 

extensively used. Mixed gases improve the operation of GMAW, addition of CO2 

gives a broader penetration bead and higher arc energy, oxygen gives good 

wetting and spatter reduction. The shielding gas and flow rate affects arc 

characteristics, mode of metal transfer, penetration, speed of welding, under- 

cutting tendency, bead shape, weld metal mechanical properties, spattering, and 

fume (27). Although monitoring and adjustment of shielding gas parameters is 

possible, it is not usual to use these in automatic control of welding. They are kept 

constant in the work reported here with sufficient flow to give good shielding. 

2.2.3.6 Torch angle 

Torch angle is measured as the angle between the wire and the workpiece surface 

in the direction of welding, and is usually about 10 to 20 ° each side of vertical. It 

has been found (16) that spatter is minimised and penetration increased with an 

angle greater than 90 ° (backhand welding). On the other hand, the bead is flatter 

with a torch angle less than 900 (forehand welding). The selection of torch angle 

depends on joint type, material thickness, and edge preparation. Through 

interfacing with the robot controller, this variable can readily be used to control 

weld penetration in automated robotic welding. In this research torch angle has 

been chosen as a welding variable. 

2.2.3.7 Weaving 

Weaving is a side to side motion of the welding torch, as it moves along the joint. 

It gives better side wall fusion, and helps assure complete filling of the joint. 

Weaving pattern and frequency are important factors in weld bead geometry, heat 

affected zone, and heat distribution in fusion welding. However, to the author's 
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knowledge, few attempts have been made to investigate the effects of weaving. 

Grong and Christensen (17) developed a mathematical model, based on 

Rosenthal's three-dimensional heat distribution equation, for GTA welding to 

quantify the specific effects of weaving on the temperature distribution. They 

concluded that when the peak temperature was fixed there was a difference in the 

width/depth ratio of the weld when weaving was applied. In addition weaving is 

also used in through the arc sensing for seam tracking as discussed in the next 

chapter. Weaving was not required for the joint considered in this research. It 

would add considerable complexity to the modelling and is not included as a 

modelling parameter. 

2.2.4 Spattering and fume 

The subject of this research is to control welding parameters in real time, by 

means of measuring the temperature in the metal adjacent to the weld pool with a 

non-contact temperature sensor. Spatter and fume can interfere with the accurate 

function of the sensor, therefore minimising spatter and fume is a vital 

requirement of this work. Smith (19) described the mechanisms of spattering and 

the means of suppressing it through proper parameter selection. He also described 

developments in power source design to provide control of spattering. To 

overcome the effect of spatter on a sensor lens, Dufour (20) developed a rotating 

window with a protective particle-intercepting blade placed in front of the sensor 

lens. This technique was effective for dip transfer welding. Lockwood 

Corporation reduced spatter by 50% when they switched from CO2 shielding gas 

to argon rich shielding gas(21). 

Welding fume can arise from several sources. It can be caused by over heating of 

the welding wire and fluxes, from the effect of the arc on the shielding gases, or 
from coatings on the workpiece. Deere & Co. (14) consider that the temperature of 

the forming molten droplet in solid wire, GMAW at 5400'C (which is well above 

the vaporisation temperature of steel), was the main source of welding fume. They 

suggested that using an inverter power supply will reduce fume generation by 

50% to 90%. 
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This research uses argon rich gas, inverter power supply and low spatter welding 

parameters, which minimise the effects of fume and spatter. The sensor optics are 

also purged with air, as described in chapter 5, to further alleviate any possible 

adverse effects. 

2.2.5 Joint geometry 

In GMAW in order to achieve the required degree of penetration when welding 

thicker plates, it is usually necessary to locally thin the edges or leave a gap 

between them. Various types of such joint edge preparation are employed to suit 

the requirements of particular applications. In principle it is possible, by using a 

sufficient input power, to fuse through the complete section even in very thick 

plate (23). However, the large weld pool, which is produced, may be difficult to 

control, and will probably require use of a backing to support the weld pool. Also 

the large amount of weld metal and wide heat affected zone (HAZ) may reduce 

the mechanical properties of such a weld. Carefully designed joint preparation is 

particularly required in multi-pass welds, so as to give access to the root and all 

parts of the joint, thereby ensuring that each pass is properly fused to parent metal 

and to the previous passes (24). If the plate is thin (typically less than 2mm). it is 

possible to make a full penetration butt weld with closed joint edges. For metal 

thicker than 2mm a gap has to be left between the edges to be welded to allow the 

heat source to penetrate between and fuse the sheet edges. An open square butt 

joint can be used on plate up to 6mm thickness, depending on the arc welding 

process used, but there is a risk that the restriction on electrode manipulation will 

produce lack of side wall fusion. Therefore common practice for material 

thickness greater than 3 or 4 mm is to bevel the edges of the plate. The bevelled 

joint preparation may also include a root gap between the plate edges. This allows 

reduction in the arc force necessary to penetrate the joint but will increase the 

amount of weld metal needed to fill the joint. To avoid excessive melting of the 

bevelled edge, it is usual to leave a one or two millimetre root face. With 

increasing thickness of the plate the amount of weld metal required to fill the joint 

becomes very large, and it may be economical to bevel both sides or machine a 

more complex J shape. Figure 2.2 shows some common preparation types. 
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Closed butt joint 

Square butt with backing strip 

Open Vee butt 

Vee butt with backing strip 

Square butt joint 

Closed Vee butt 

Double Vee butt 

U butt joint 

Fig. 2.2 Common joint edge preparation. 

The choice of joint preparation has the following effect in welding. 

" Heat distribution and penetration control The main purpose of a joint 

preparation is to make the best use of the heat input to produce the desired weld 

penetration. Much research has been done to recommend the welding input 

required for different joint types and geometry (2 5,26,46). 

" Access. The joint preparation for welding must be wide enough to allow 

manipulation of the welding torch, such that the arc can be directed at the joint 

faces to ensure proper fusion. 

" Multi-pass welding. For thick plate where multi-pass welding is required, joint 

preparation is essential. The single sided or double-sided vee or `J' preparation 

is usually used for multi-pass welding. 

9 Distortion. Joint preparation has a significant effect on distortion. Distortion 

tends to increase as volume of metal deposited is increased. Therefore 
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preparation of the joint which minimises the volume will offer reduced 

distortion and cost. Welding from both sides can also reduce distortion. 

A thorough discussion of the factors affecting joint edge preparation design will 

be found in (18). 

Joint design and manufacture introduces potential dimensional and geometric 

variability to the problem of automatic process control and the achievement of 

acceptable quality welds. This research uses 6mm thick plate, with a single sided 

60° bevel angle joint, no root gap and 2mm root face. However, experiments have 

been included for root gaps, ranging from zero to 1.5 mm, to simulate the affects 

of poor assembly fit-up and in process distortion. These are discussed in chapter 5. 

2.3 Conclusion 

In this chapter the main aspects of Gas Metal Arc Welding that influence this 

research have been reviewed. 

The important welding variables are the voltage and current of the arc, position 

and orientation of welding torch, the filler wire feed rate and the traverse speed of 

the welding torch. The type and size of the filler wire and the shielding gas 

composition might also be varied. The quality criteria that must be satisfied are 

the weld penetration, the subsequent mechanical and metallurgical properties of 

the joint and the shape of the weld bead. In addition a number of defects must be 

avoided such as cracking or tearing in the weld or heat-affected zone, porosity in 

the weld, or lack of fusion. This process is characterised by its fairly high 

deposition rate with a continuously fed consumable electrode, making it attractive 

for automated robotic application- 

In the next chapter the adaptive control of robotic GMAW is discussed, and 

extended to include the use of Artificial Intelligent (AI) incorporating sensors, to 

control the quality of the weld in real time. 
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Chapter three Adaptive control in GMAW 

3.1 Introduction 

In this chapter robotic arc welding and adaptive control of welding are described. 

Different modelling techniques including theoretical, statistical and empirical 

models are described and extended to application of Artificial Intelligence (AI) in 

welding. Three basic approaches to intelligent control including expert systems, 

fuzzy logic and Artificial Neural Networks and their application to welding is 

given in section 3.9. In section 3.11 the application of sensors in adaptive control 

of welding is investigated, with special attention being given to thermal sensors. 

3.2 Robotic arc welding 

An industrial robot is the most flexible of the automated systems used in 

manufacturing operations by virtue of the reprogrammable capability. A robot is 

an electro-mechanical device that can perform a variety of tasks under automatic 

control. A variety of motion configurations are available, two common systems 
being articulated (jointed) and rectilinear. The choice of robot configuration 
depends upon the nature of the work. Rectilinear robots tend to be useful for the 

fabrication industry due to weld joints being predominantly in straight lines which 

requires less manipulation of robot axis. For convoluted shape workpieces 

articulated robots are commonly used. 

For welding applications the welding gun can be mounted on a multi-axis "wrist" 

at the end of the robot arm, this provides the degree of dexterity needed for the 

welding process. 

Welding robots may be regarded as blind and deaf without sense of touch and not 

capable of creativity. However, developments in technology enables robots to be 

used more effectively in manufacturing operations. They may have computer 

intelligence for decision making capability, sophisticated programming languages 
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for readily accepting complex instruction, and electronic sensors to detect events 

and conditions in the working environment. In this work Artificial Intelligence, 

and the application of sensors, are investigated for the adaptive control of 

GMAW. These subjects are discussed further in the following sections 

3.3 Adaptive control of GMAW 

Today many metal fabricators are adapting welding technology towards 

automation, because automation will be a matter of survival not only for large 

shops creating a high volume of pieces but for the small fabricator, to raise 

productivity, flexibility, and quality while reducing costs. As is shown in figure 

1.1 (27) 77% of total manual welding cost is labour, and this labour is generally 

poorly utilised. The flexibility, speed and accuracy of robots give them inherent 

advantages for improving welding operations from both technical and economical 

points of view. 

Shielding gas Wire 
3% 

18% 
Power 

2% 

Labour 

77% 

Fig. 3.1 Total welding cost. 

The procedures, system and process control used for manual arc welding can not 

easily be adapted to automatic welding, because most manual welding relies 

heavily upon the skill and actions of the welder. However adaptive control of 

welding parameters such as arc length and voltage, electrode feed rate, welding 

speed, and other variables are possible with the introduction of micro-processors 

23 



Chapter 3 

in arc welding, and the development of a wide variety of sensors that can to some 

extent emulate those of the human welder. 

Development in Artificial Intelligence (Al) methods also enables human 

knowledge and inferencing to be incorporated into control systems or to deal with 

situations of lack of knowledge or uncertainty. 

3.4 Theoretical modelling 

Theoretical models of the welding process attempt to present independent (input) 

and dependent (output) welding variables in the form of mathematical 

relationships, the relationship being derived purely by theoretical considerations 

such as mass and energy balances, the heat transfer laws, the stress - strain 

relationship etc. These derivations usually include assumptions and simplification. 

An early contribution to the theoretical formulation related to welding was made 

by Rosenthal (28). He determined the temperature distribution around the moving 

heat source and predicted the shape of the weld bead in two and three dimensions. 

This work will be discussed further in chapter 4. 

Jonnson et. al. (29) described a theoretical investigation into arc parameters and 

metal transfer in GMAW, using argon and helium gases. Masao et. al. (30) 

developed a theoretical model for the shape of the weld bead and the temperature 

distribution around a moving heat source in TIG welding. They concluded that the 

experimental data for pool width was close to the theoretical predictions. On the 

other hand, ripple lag length and pool length obtained by experiment were longer 

than those obtained by theory. This was considered to be attributed to convective 

heat transfer in the molten pool, due to fluid dynamical motion of the molten weld 

metal. Doumanidis (31) developed dynamic models, which combine theoretical, 

statistical, and experimental techniques to describe all essential thermal, 

mechanical, electrical, and other phenomenon taking place in a welding process. 

The model integrates separate mathematical descriptions for the solid region, the 

weld pool and the torch efficiency. He concluded that the accuracy of the 

simulated responses of the bead geometry requires either off-line calibration of the 

torch efficiency and distribution parameters at the nominal welding condition, or 
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their in-process identification based on non-contact temperature measurement. He 

also stated that the model may be used as a reference model for design of weld 

geometry control systems. 

Theoretical models are useful in providing an insight into the nature of the 

phenomena involved in welding, and in explaining the various interrelations 

between the welding variables on the basis of theoretical principles. However, 

their value in predicting the welding outputs is limited. Shinoda (32) has reviewed 

the literature and concluded that although theoretical modelling requires less 

empirical experimentation, for validation, it is difficult to ensure all relevant 

factors are considered and that the model adequately describes every welding 

situation. McGlone (33) has also reviewed these approaches, and reported that the 

theoretical approach is not successful in deriving equations capable of reliably 

relating the arc welding variables to the resulting weld bead geometry. The 

difficulties in theoretical models are due to complexities of interaction and 

reaction between the variables, coupled with often vastly over-simplified 

assumptions. In the next chapter the theoretical modelling of heat distribution in 

GMAW will be discussed in more detail. 

3.5 Numerical modelling 

Numerical models employ the same fundamental principles as theoretical models 

but, instead of formulating welding inputs and outputs, they attempt a 

computational simulation of the entire process. They typically apply the finite 

difference or the finite element method and consider discrete time steps. This 

method provides additional flexibility, since most local and transient phenomena 

of the process can be considered more easily. Giedt et. al. (35) studied the weld 

pool surface temperature variation during cooling of stationary GTA welds, using 

an infrared sensor, as well as the fusion zone joint penetration. The measured 

results were compared with prediction for the transient temperature responses of 

the 2D finite difference numerical model. An equivalent conduction factor in the 

pool was identified to match the experimental results. Fitzpatrick and Bak (36) 

used the Finite Element technique to model the thermal gradients and weld 
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geometry, using estimated values of the are efficiency and energy distribution. 

They verified the model responses experimentally using thermocouple 

measurement and infrared thermography images for GTA welding bead on plate 

experiments. The intention was to extend the use of the model to process 

development and to use simpler models for real-time control, since the numerical 

model was too slow for this purpose. Lambrakos (37) also developed a numerical 

model for calculating the temperature and fluid velocity field in a three- 

dimensional workpiece in deep-penetration laser welding. 

In conclusion, the flexibility of the numerical model has helped to overcome many 

of the limitations of theoretical models by reducing the assumptions, and therefore 

extending their application range in practice. However, numerical models usually 

demand computation, which, in terms of memory and time requirements, makes 

them unsuitable for real time modelling of complex processes. Developments in 

computing technology will naturally reduce this limitation. 

3.6 Empirical modelling 

Empirical or statistical models are similar to theoretical models, they express the 

relationship between a limited number of inputs and outputs of the welding 

process by analytical formulas. However, these relationships are not derived from 

theoretical principles, but from analysis of actual experimental data. It is usual to 

attempt to recognise those independent inputs that exert essential influences on 

specific dependent outputs, and then to determine this dependence by applying the 

techniques of statistical analysis to experimental data. The main effort is to 

express the welding output in terms of a small number of essential welding inputs, 

by a relationship having the broadest possible scope of application and the 

smallest possible scatter of data. Shepherd (38) developed empirical models of 

bead geometry and welding variables for a self-shielding flux cored electrode 

welding process. He established a comprehensive data base containing 

information on 1000 actual test weld beads, each test characterised by 76 pieces of 

data, in order to generate eight predictive equations. Thorn et. al. (39) considered 

the theoretical prediction of the weld bead geometry in GMAW, and realised that 
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modifications are required to obtain better agreement with experimental data. 

They adapted significant welding inputs in the theoretical relationships and used 

regression analysis to determine corrective factors. 

In this work empirical modelling has been used to determine the correction factor 

for an infrared temperature measurement sensor, and the theoretical temperature 

on the surface of the workpiece along the weld line during welding. 

Empirical models of welding tend to be restricted in application, they usually 

apply for one welding technique and a very limited range of conditions. To 

generate an adequate model, a large amount of experimental data is required 

which is costly and time consuming. However, since they are derived 

experimentally, the correlation between experimental validation data with respect 

to the model predictions, is usually good for the particular case. 

3.7 Artificial intelligence 

Artificial intelligence (Al) is a part of computer science concerned with designing 

intelligent computer systems. Typical applications are mechanical devices coupled 

to sensor technology, to enable the performance of tasks with intelligent 

behaviour emulating that of human beings. 

Examples of Al application include problem solving, natural language processing, 

pattern recognition, expert systems, robotics, neural network, fuzzy logic, and 

computer vision. Among these subjects, expert systems, neural networks, and 
fuzzy logic will be discussed in this chapter. Application of artificial neural 

network and fuzzy logic modelling to the control of robot and welding parameters 

is the subject of this research work. 

3.7.1 Artificial intelligence in arc welding 

Arc welding is a complex manufacturing process, a welder must be trained very 

intensively to decide how to control the quality of the weld in process. He must 

learn not only how to position and move the electrode correctly in relation to the 
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seam and know the parameters for a given task, but his most important task is to 

react appropriately when unexpected variations occur. For example, if the joint 

preparation geometry changes due to manufacturing tolerances, an unstable arc or 

discontinuities may occur in the welding process. The welder must react 

immediately to correct these problems. This ability to maintain permanent 

feedback control, based on his experience, puts the human welder beyond any 

welding machine. Today, by means of Artificial Intelligence(AI), one can reduce 

the gap between a human welder and a machine. Further application of Al to 

robotic arc welding has enabled the robot to be more intelligent, make decisions 

and provide reasoning for their action. Despite the mental capacity of the human 

welder and his ability to adaptively control the process, he has a number of 

limitations. The manual welder is affected by fatigue and loss of concentration 

and possibly limited memory. Given adequate power, computers have none of 

these limitations. On the other hand capturing large volumes of expert knowledge 

or experience data accurately within a computer is a difficult task, but once done 

such a system will perform consistently. 

The approach for intelligent control of arc welding may involve integration of 

off-line inspection of the joint before and after welding, in-process control via the 

use of sensors for both process and product state, and appropriate control 

strategies. These can drive the product state to the desired quality. The tools 

necessary for adaptive control include control strategy, process modelling, sensing 

and artificial intelligence. In the following section expert systems, artificial neural 

network modelling, fuzzy logic, sensors and their application in robotic arc 

welding are discussed further. 

3.8 Expert systems 

An expert system is a computer program that uses knowledge and reasoning 

techniques to solve problems that normally require the service of a human expert. 

The British computer society (40) defines an expert system as " the embodiment 

within a computer of a knowledge-based component from an experts skill, in such 

form that the system can offer intelligent advice or take an intelligent decision 
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about a process function". There are two types of knowledge in expert systems: 

public knowledge and heuristic knowledge. Public knowledge includes 

documented definition, facts and theories. Heuristic knowledge is undocumented 

and based on individual experience or expertise. 

An expert system contains three main components (40): 

"A data base of knowledge including public and heuristic. 

"A set of rules typically of the form "IF" condition, and "THEN" action. 

"A monitor (which is sometimes called an inference engine) that executes or 

fires a set of rules , resolves the conflict if more than one rule can fire, and then 

executes the chosen rule. 

3.8.1 Expert systems in are welding 

Expert systems have been used by many researchers in welding applications, as 

reviewed by Bahashwan (41). They have been applied in welding either before, 

after or during execution of the welding process. 

Thompson (42) developed a hierarchically structured knowledge-based system 

(KBS) for welding automation and control. The KBS was designed to co-ordinate 

a robot and work table movement independently, by examining the initial 

programmed path and determining the feasible table orientation and robot 

trajectories that could improve the weld quality. The system was also capable of 

determining appropriate weld parameters for certain types of seams on the basis of 

the job description. Budgifvars (43) developed an expert system for diagnostic 

application. The system was capable of diagnosing malfunctions occurring in the 

ESAB A21 orbital TIG welding automate when used with the programmable 

PRO-TIG 250 power source. The input information to the system is performed by 

interrogation of the user. Each answer is used to test the different components 

inside the machine and the faults will be ranked in such a way that if a particular 

set of symptoms implies more than a single fault, the most regularly occurring 

fault is investigated first. Kerth(44) investigated the concept of a knowledge based 
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expert system for controlling welding process parameters in real time. The input 

was the seam profile obtained from a laser vision system. It could detect the 

variability in root-gap and root-face and, by using a rule based system, update the 

welding process parameters. Vivek (45) developed an expert system in order to 

help plan and train welders for the shielded metal arc welding (SMAW) operation. 

It accumulated available information on a SMAW process, including edge 

preparation, electrode selection, economic evaluation, analysis of weld defects and 

trouble-shooting. The expert system also included an explanation sub-system, 

which shows the reasoning process to reach a conclusion. Ghasemshahi (46) 

developed a knowledge-based expert system for pre-weld inspection of joint 

geometry and fit-up in order to control welding procedures in an automated 

welding cell. Misra (47) developed an expert system for GMAW of aluminium 

and its alloys, which enabled recommendation of a complete welding procedure 

such as type of power source, welding current and voltage, torch angle, welding 

speed, stand off distance, shielding gas type and flow rate, etc. Reeves et. al. (48) 

used an expert system as a means of providing intelligence for in-process control 

with particular emphasis on small-batch arc welding operations. Two elements 

were used in his investigation: expert system, and sensor fusion. In sensor fusion, 

a combination of sensors is used to gather the information during the welding 

process. By combining the input of two or more sources, sensor fusion derives an 

intelligent picture of events transpiring in the target environment. For example, 

sensor fusion plays a role in making intelligent fill-rate decisions. For materials 

sensitive to heat input, the fill-rate decision requires combined support from both 

vision and temperature sensors. A vision sensor is used to capture the joint 

geometry and torch-to-workpiece location. The information collected is then 

transferred to an expert system module to provide the mechanism for making 

decisions based on the above interpretation. It uses sensor fusion output in 

conjunction with a rule base to pre-set the weld procedure, analyse the condition 

and modify the welding procedure accordingly, i. e. reconcile computing goals, 

such as cost, quality and productivity. Pierr and Levine (49) developed an expert 

system which can be used for automation of the welding process. They concluded 

that a sophisticated expert system should be able to guide the user in the 

preparation and planning phase of the welding process. The system also must be 
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able to plan the welding task in accordance with user specification. Vandeveldt 

(50) developed a welding expert manufacturing cell called WELEXCELL, it 

consisted of two components: weld job planner and weld job controller. The 

system is able to plan the joint design and welding schedule, including details 

such as suitable voltage, electrode choice and heat treatment for the weld. It then 

downloads the planned welding job to the robot controller for robotic welding. 

The system also controls welding by using a voltage sensor. Taylor et. al. (51) 

investigated the application of expert systems in arc welding and they concluded 

that expert systems techniques are not only a suitable approach to the solution of 

combining knowledge from related domains, but they are also a catalyst for the 

rigorous and logical scrutiny of the domain knowledge, its gaps and its 

inconsistencies. Therefore there is as much to be gained from the process of 

building an expert system as there is from the final product. 

3.8.2 Advantages of expert systems 

Expert systems in contrast with algorithmic languages such as Pascal or Fortran, 

have the following advantages: 

0 Within their chosen fields, they can demonstrate expert abilities; 

" They can handle uncertainty through bayesian rules and fuzzy logic: 

0 They can provide the user with an explanation for the advice they offer; 

" They have reasoning capabilities; 

0 They are more reliable and consistent; 

0 They are programmed in a declarative style, usually by means of rules. 

3.8.3 Limitations of expert systems 

A number of problems and limitations exist within expert systems (52) as follows: 
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" Lack of resources: the expertise, knowledge or resources are not always 

available to build an expert system; 

"A useful expert system can take a long time to build; 

" Maintenance of expert system: the system will lose its power once the 

knowledge it holds is outdated which will result in loss of credibility. 

Therefore, the expert system knowledge base should be updated. 

3.9 Artificial neural networks 

Neural networks are an attempt to understand the operation of the human brain 

and nervous system, and to simulate or emulate this as a program in a computer 

system. Neural networks represent an alternative computational paradigm 

compared to the conventional approach, which is based on an explicit set of 

programmed instructions. In neural networks the solution to a problem is learned 

from a set of examples. 

A feed forward neural network can be regarded as a non-linear mathematical 

function, which transforms a set of input variables into a set of output variables. 

The precise form of the transformation is governed by a set of parameters, called 

weights, the value of which can be determined on the basis of a set of examples of 

the required mapping. This process is called training or learning. When the 

weights have been fixed, new data can be processed by the network. Neural 

network architecture and design will be discussed in chapter 6. 

3.9.1 Artificial neural networks in arc welding 

Artificial neural networks provide a range of powerful techniques for solving 

problems in pattern recognition, data analysis, and control. Neural networks are 

ideal for complex pattern recognition problems for, which solution requires 

knowledge which is difficult to specify but which is available in the form of 

examples. Neural networks represent a complex trainable non-linear transfer 

function between inputs and outputs. This allows an effective solution to be found 
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to complex non-linear problems, such as heat distribution in arc welding without 

requiring any knowledge as to the nature of the solution. Artificial neural 

networks, unlike expert systems and statistical modelling (43.46), have the ability 

to extract and discriminate information from a limited number of data. Artificial 

neural networks have been employed by many researchers in order to control arc 

welding. Cook (55) used ANN to control gas tungsten arc welding. He constructed 

a closed-loop process control model which was able to control the welding 

variables (current, travel speed, and arc length) by monitoring the weld bead 

geometry (bead width, and height) in real-time. Middle (56-57) investigated 

applications of neural networks in intelligent post -weld inspection of a flexible 

robotic welding cell. He compared predictions with validation data and concluded 

that the use of ANN is viable for modelling the robotic arc welding process. They 

require only a small amount of experimental data for satisfactory training of the 

network. Stroud et. al. (58) applied an ANN to the diagnosis and control of 

submerged are welding using an ultrasonic sensor. They concluded that neural 

networks are a powerful enabling technology for use in diagnostic and control 

systems. They can be implemented as part of a more complex system where their 

abilities are best suited. Ohshima (59) investigated the application of neural 

networks for seam tracking. He used a neural network model in order to recognise 

the form of the welding line, and the result is used to adjust a fuzzy variable. 

White et. al. (60) developed an artificial neural network to model heat flow in the 

tungsten arc welding process. The input parameters to the network were welding 

process variables including voltage, current and travel speed. The output from the 

network was the predicted thermal profile including the isothermal lines around 

the weld. A finite element model (FEM) of the GTA welding process was 

prepared and used to train the network. The FEM produced a steady state thermal 

map of material surrounding the weld. The model was verified experimentally 

with a series of welds made on 1.9 mm, 2.5 mm, and 2.8mm thick stainless steel 

plates. These welds were examined using metallographic technique to determine 

the fusion zone size, and the data was used to verify and adjust the finite element 

code. The trained neural network runs in a fraction of the time required by the 

FEM. To produce a single steady state thermal map of the GTAW weld the finite 

element code requires approximately 1.5 hours, while the neural network required 
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only a fraction of a second to produce the same result on the same workstation. 

They concluded that neural network have the capability to dynamically model the 

relationships between input and output parameters in welding, which is a complex 

and highly non-linear process. Andesen (61) applied an ANN model in open-loop 

control of gas tungsten arc welding. He used current, voltage, travel speed and 

plate thickness as input, and bead width, and bead penetration as a output for 

training the neural network. A reverse model was developed for closed-loop 

control in which the input was the bead width and bead penetration, and output 

was the current, voltage, travel speed and plate thickness. He stated that 

uncertainty in bead measurements are a significant cause of errors in the models. 

Eiperson et. al. (62) developed an artificial neural network for cooling rate and fill 

control in gas metal arc welding. An ANN was trained using the back propagation 

method to learn the functional relationship between the heat input, reinforcement 

and the electrode and welding speeds. They obtained experimental data by setting 

the welding speeds prior to welding and measuring temperature during welding. 

Then they constructed an inverse model in which the temperature measurement 

was the input and welding variables were the output. Smart(63) states that the 

difficult part of their work was the fact that reinforcement and heat transfer rates 

are both functions of welding speed, and in gas metal arc welding, current is a 

function of voltage and electrode feed rate. This problem was handled by deriving 

models of these relationships, and teaching them to an artificial neural network, 

using a look-up table. Jones (64) developed an artificial neural network for 

modelling the welding parameters in the flux cored arc welding process. Input to 

the model was voltage, current and travel speed, and output was arc stability, bead 

geometry, amount of spatter, bead undercut and ease of slag removal. He 

concluded that artificial neural networks have application in producing highly 

complex non-linear multi-variable models of the welding process, that offer 

accurate prediction of weld properties from control parameter values. Matteson 

et. al. (65) developed an ANN for classifying the acoustic signals of acceptable and 

unacceptable welds from the gas metal arc welding process. Dilthey et. al. (66) 

developed a system for quality monitoring and quality grading in GMAW using 

neural network. The criteria for the quality judgement were seam and root 

reinforcement and undercutting. They concluded that with this model it was 
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possible to predict whether the quality of the weld was adequate or not in more 

than 90% of the welds. 

In this research artificial neural network modelling has been used for the 

prediction of workpiece surface temperature during welding. This is discussed 

further in chapter 6. 

3.9.2 Advantages and limitations of neural networks 

Neural networks offer high processing speed and have the capability of learning a 

general solution to a problem from a set of specific examples. 

Their main disadvantage stems from the need to provide a suitable set of example 

data for network training and for model validation, and the potential problems 

which can arise if a network is required to extrapolate to new regions of the input 

space which are significantly different from those corresponding to the training 

data. 

The advantage and limitation of neural networks are often complementary to those 

of conventional data processing techniques. Bishop (67) states that neural 

networks should be considered as possible candidates to solve problems which 
have some, or all of the following characteristics: 

" There is enough data available for network training; 

" It is difficult to provide a simple first-principle or model-based solution, 

which is adequate; 

" New data must be processed at high speed, either because a large volume 

of data must be analysed or because of real time constraints; 

The data processing method needs to be adequate to show the level of 

noise on the input data. 
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3.10 Fuzzy logic modelling 

The idea of fuzzy logic is that it allows imprecise and qualitative information to be 

expressed in an exact way. Zadeh (68) the founder of fuzzy logic introduced the 

calculus of fuzzy logic, which may be viewed as a parallel representation to 

probability theory rather than as an alternative. In other words the fuzzy set 

contains as a special case two valued logic (true and false) and probability theory. 

In fuzzy logic predicates can be both crisp (non fuzzy) and fuzzy. In the crisp set, 

the parameter value either belongs to the set which it has a membership of u=1, or 

it does not, in which case it has a membership of u=0. As is shown in figure 3.2 a, 

the crisp set is represented by a rectangular step function. Fuzzy set theory extends 

the crisp set concept by defining the partial memberships which can take any 

value between 1 and 0. As is shown in figure 3.2 b, the fuzzy set is represented by 

a step function which ramps up from 0 to 1, and then ramps back down to 0. The 

crisp set is precise in its meaning, having a definite transition from membership to 

non membership. On the other hand, the fuzzy set, allows the qualitativeness of 

the measure to be reflected in a gradual membership transition. 

1- 1 

ý 0 
b 

a 

Fig 3.2. a) Crisp set, b) Fuzzy set 
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3.10.1 The basic architecture of fuzzy logic controller 

In the design of a fuzzy logic controller, the main control parameter should be 

identified and a term set determined which is at the right level of granularity in 

order to describe the value of the linguistic variable. For example a term set 

including linguistic values such as Small, Medium, and Large may not be enough 

for some domains, and may instead require to use a five term set such as Very 

Small, Small, Medium, Large, and Very Large. 

Different types of fuzzy membership function have been used in fuzzy logic 

control. The four common types are monotonic, triangular, trepezoidal and bell 

shape. The selection of the type of fuzzy variable directly affects the type of 

reasoning to be performed by the rules using these variables. 

In figure 3.3 a simple architecture for a fuzzy logic controller is shown. This 

architecture consist of four processes, whose functions are described in the 

following section. 

Control Rule Data Base Process 

Base ----"'- 

Fuzzification 

Fig. 3.3 A simple architecture of a fuzzy logic controller 
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3.10.1.1 Fuzzification (Coding the inputs) 

The fuzzification process initially maps the measured output variables of the 

system under control in to a suitable range that corresponds to the universes of 

discourse used in the control base. If the output of the system contains noise, it 

may be modelled by using the triangular membership function where the vertex of 

the triangle refers to the mean value of the data set of system output, and the base 

refers to a function of the standard deviation. In this case, fuzzification refers to 

finding out the intersection of the label's membership function and the distribution 

for the measured data. 

3.10.1.2 Control data base 

In order to design a control data base first a set of linguistic variables must be 

selected which describe the values of the main control parameter of the process. 

Then a control knowledge base must be developed which uses the linguistic 

variables. In order to develop a control knowledge base, Sugeno (69) suggested 
four methods: 

1- Expert's Experience and knowledge 

2- Modelling the operator's control action 

3- Modelling the process 

4- Self organisation 

3.10.1.3 Decision making (control rule base) 

This operation provides the formulated fuzzy logic controller (FLC), characterised 

by a set of linguistic statements generated by experts. The FLC contains the 

choice of process state variables and control variables, types of FLC rules, FLC 

order, and number of rules to be fired. 
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3.10.1.4 Defuzzification (decoding the outputs): 

This operation provides a non-fuzzy control action that represents the membership 

function of an inferred fuzzy control action. There are four methods of 

defuzzifcation most often used: (70) 

" Tskamoto's defuzzification method;. 

" The centre of area method; 

" The mean of maximum method;. 

" Defuzzification when the output of the rules are function of their inputs. 

3.10.2 Application of fuzzy logic in welding 

Although the application of fuzzy logic control is a relatively new subject, some 

researchers have applied this method in order to control the welding process. 

Messlr, et al. (71) developed a fuzzy logic controller incorporated within a neural 

network for controlling resistance spot welding. He concluded that the fuzzy logic 

controller was capable of applying action to every weld whose actual electrode 

displacement curve deviated from the desired or ideal electrode displacement 

curve that produced a good weld. Cho (73) developed a fuzzy rule-based on-line 

searching method to maintain stable arc conditions. In his proposed control system 

the proportional and derivative (PD) control algorithm was incorporated in 

parallel with a fuzzy linguistic controller. The advantage of this combination was 

that the PD stabilised the system when the fuzzy controller could not act properly. 

Won and Cho (74) developed a fuzzy logic controller for the regulation of weld 

pool size. In the fuzzy algorithm which they designed, the error between the 

desired pool size and the predictive size, as determined from the value of an index 

constructed from multiple surface temperature measurements, was adopted as 

antecedent variables, and a power increment was adopted as a consequent 

variable. Ohshima et. al. (75) applied fuzzy inference in order to obtain optimum 

welding parameters in CO2 short-arc welding. They used a CCD camera to 

observe the width of the weld pool at the time at which the amount of spatter was 

1 9 



Chapter 3 

minimum. They also constructed sets of fuzzy variables and rules expressed in IF- 

THEN form. The fuzzy controller used the width of the weld and cooling time, 

and compared it with a reference value. According to the difference and the fuzzy 

variables the system regulated the power input achieving an acceptable weld. In 

another research Ohshima et. al. (76) used fuzzy logic and a neural network with a 

CCD camera for seam tracking in robotic arc welding. In the fuzzy controller the 

deviation between the welding line and a position ahead of the torch in the 

direction of movement, and the variation of this deviation were adopted as the 

input variables. They also used a neural network to improve the tracking 

performance by recognising the angle of the welding line. Hiroshi et. al. (77) 

developed a fuzzy logic controller for seam tracking by using the arc sensor. Due 

to noise in the data output of the arc sensor they developed the composite method 

of fuzzy filtering by which the arc sensor noise was reduced. They concluded that 

a fuzzy logic controller with the fuzzy filtering performed better. Eiperson et. al 

(62) investigated the application of fuzzy logic and neural networks for cooling 

rate and fill control in GMAW. The control strategy they adopted involved 

monitoring weld joint transverse cross-sectional area ahead of the welding torch, 

and the weld bead centreline cooling rate behind the weld pool, both by use of a 

CCD camera. Estimation of the required input process variables necessary to 

obtain the appropriate heat and mass transfer rate are done by applying a neural 

network model, and controlling the heat transfer rate by means of a fuzzy logic 

controller. The value of heat required for reinforcement and weld bead cooling 

rate, are sent via a fuzzy logic controller to an artificial neural network that maps 

the electrode speed and welding speed for a given input power. The fuzzy logic 

controller adjusts the heat input per unit length as required to obtain the desired 

weld bead cooling rate. 

They concluded that the control strategy based on feedback control of cooling rate 

in combination with feed forward control of reinforcement has potential for 

application to welding fabrication. Zhang, et al (79) developed a fuzzy model to 

control the weld fusion zone geometry in a GTA welding process. They used a 

high shutter speed camera to monitor the top-side pool width. The measured bead 

width together with estimated under side width are selected as a fuzzy logic 
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control model inputs to adjust the welding current, and welding speed to achieve a 

fully penetrated weld. 

In this research fuzzy logic control combined with a neural network model will be 

developed for the control of GMAW. A fuzzy rule base is to be employed to 

control welding parameters, based on the difference between temperature 

measured in the surface of the workpiece and the predicted temperature obtained 

via a neural network model. 

3.11 Sensors in arc welding: 

When manual arc welding is considered, the welder is capable of recognising and 

inspecting components prior to welding, recording any defects in assembly and 

faults requiring special attention during welding. He can orient at the workpiece in 

the best position for welding and can position himself to gain best access to the 

seam. During the welding process, the welder gathers information about the 

process with his visual and auditory senses, and after welding the quality of the 

weld produced will add to the experience and learning of the welder to take 

necessary action for future work. He continually observes the weld pool in order 

to control the penetration, and he also observes the geometry of the joint 

preparation to keep the electrode in the correct position. While watching the arc 

and listening to the sound the arc emits, he is able to control the metal transfer. He 

gathers information during welding and with his knowledge, he draws conclusions 

and performs the necessary actions. 

Development of sensor technology has enabled robots systems to emulate many of 

the human controls, and to be used more effectively in the welding operation to 

control both seam tracking of the weld line and adaptive control of welding 

variables. 

Nomura(80) has classified sensors in two groups, Contact and Non-contact as 

shown in Table 1. 

41 



Chapter 3 

Sensor type j Unit in the sensor configuration 

Contact probe Micro switches, potentiometers and differential 
transformers (DTF) 

Electrode contact Voltage and current for contact detection that 
Contact is applied to the welding wire 

Temperature Thermocouples and thermistors 

Are phenomena Welding current arc voltage, wire feed speed. 

Non-contact 

Optics 

Point sensor (photo transistors and photo 
diodes), 

line sensor (CCD, MOS and PSD) and area 
(image) sensors (CCD, MOS, PSD). 

Temperature Photo thermometers and infrared 
thermometers. 

I Sound I Ultrasonic and sound pressure detect probes. 

Table 1. Classification of sensors 

3.11.1 Contact Sensors 

The importance of contact or tactile sensing (mechanical or electromechanical) in 

the field of arc welding systems has been recognised for many years. Applying 

these sensors is appropriate where relatively linear joints are to be followed. An 

early review of these systems (81) in tungsten inert gas, gas metal arc welding, 

and submerge arc welding seam tracking technology showed that these systems 

are typically mounted to rail mounted tractors (tractor units, gantry, or beam) to 

permit the seam to be accurately followed. Such systems were mainly used 

because of their simplicity and low cost. Further research and development into 

using electromechanical types of tactile sensing enabled robots to be more flexible 
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in their welding operation. Nicolo (82) investigated the feasibility of applying a 

tactile sensing technique to robotic arc welding for seam tracking, by mounting 

the probe on two orthogonal slides driven by stepping motors and sensing the side 

wall of the joint ahead of the weld. More recent tactile sensors use ultrasound for 

seam tracking, contact being made via a coupling fluid. Stroud (83) investigated 

the feasibility of the use of ultrasound for seam tracking and real-time weld 

penetration control, for robotic welding systems. The robot was capable of 

tracking the seam, measuring the weld bead penetration depth and position, 

controlling them simultaneously, and subsequently modifying welding 

parameters. Many robotic systems use the extended welding wire as a tactile 

probe for weld start position and seam finding, in a search routine included at the 

beginning of the taught program. A practical limitation of this sensory method is 

the difficulty of maintaining satisfactory coupling. 

The major drawbacks encountered with tactile sensing when it is applied to 

robotic welding are: 

" Not adaptable to suit a variety of joint geometry; 

" Tendency for probe to lose contact with the joint, particularly at high speed; 

9 Probes cannot easily follow complex contours; 

" Contact sensor may limit the welding speed; 

" Probes are subject to wear and environmental effects such as spatter. 

These types of sensors are not generally viable for most robotic welding 

applications that require adaptive control sensing. 

3.11.2 Through-The-Arc Sensing 

Through-the-arc sensing is the most common form of joint tracking used with 

industrial robots and arc welding. The technique uses electrical signals from the 

welding arc and requires oscillation of the welding torch, and monitoring of the 

variation in welding current or voltage. The weaving motion causes changes in the 
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current sensed at the joint sidewalls. These current changes are directly 

proportional to fluctuation in distance between the surface of the wveldment and 

the tip of the welding electrode. Eichhorn (84) used through-the-arc seam tracking 

for TIG welding, and controlled the lateral position of the torch during the 

welding process. Two seam tracking systems have been developed, seam tracking 

with constant oscillation amplitude, and seam tracking with self-tuning amplitude. 

In the former, the sensor is used to measure average arc voltage at the joint 

sidewall during scanning. The signal difference is then used to correct for an out- 

off-centre position of the welding torch. In the seam tracking with self-tuning 

amplitude, the sensor is used to improve response time and be able to compensate 

for lateral misalignment by self-adjusting the electrode oscillation amplitude using 

the reverse pulse (from the arc voltage). 

Through-the-arc sensing has the following advantages: (85) 

0 Relatively low cost; 

0 Not affected by smoke, spatter, or the arc itself; 

" Compensation correction for heat distortion during welding; 

" Ability to track and weld simultaneously. 

The limitations of this arc sensing include: 

0 Incorrect electrode extension will result in erroneous sensing of the joint 

Start; 

Joint sidewall must be well defined; 

0 All welds must have weaving of about ±3 mm; 

0 Limited ability for non-ferrous material; 

0 They do not provide detailed geometric information and cannot be adapted 

for process control purposes, other than arc length control through arc 

voltage monitoring. 
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3.11.3 Inductive Sensing 

Inductive proximity or eddy current sensors consist of an exciter coil, carrying an 

alternating current with two coaxial pick-up coils connected in opposition. There 

are basically two types of inductive sensors, those detecting the seam itself, which 

use a high frequency oscillation to generate an alternating magnetic field in the 

surface of the component and those predicting the seam position by locating the 

component surface (proximity sensor). 

Goldberg and Karlen (86) developed a seam tracking sensor base on high 

frequency induction. The sensor was mounted ahead of the welding gun and it was 

able to measure the area and height. This type of sensor can be used for all types 

of welding processes, because the tracking system is independent of the welding 

process. Nicolo (82) investigated the application of inductive sensing together 

with a tactile sensor for robotic arc welding systems in order to move the torch 

toward the nominal position. The sensor uses four transducers, which are not 

effected by the arc temperature or joint type, mounted orthogonally to the 

direction of movement of the torch. 

The advantages of these sensors are that they are completely independent from the 

welding process. They are compact and robust and can even operate under water. 

Eddy current sensors have limited application for robotic arc welding due to the 

following restriction (38): 

" They are sensitive to the temperature of workpiece; 

" The sensors are most accurate at a stand off distance less than 10 mm; 

" Their physical size may lead to problems -here joint access is limited; 

" Different sensor configurations are required for fillet and butt welds; 

" They are suitable only for seam tracking. 
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3.11.4 Visual Sensing 

Vision sensors can be used to capture detailed information from the joint seam, 

weld pool or weld bead profile and spatial position by using image processing 

technique. Joint types can be recognised and dimensionally measured. The 

welding gun can be positioned correctly in the seam centreline, and information, 

on the variation in joint geometry and fit-up, can be used in adaptively modifying 

welding procedures in advance of welding. These sensing systems are mainly 

based on the use of "structured light" in the form of a strip or plane of light (88), 

"range finding" in the form of a projected spot of light, or solid-state camera 

principles where direct visual sensing takes place. Visual seam tracking often 

requires sensing of the seam to take place in a hostile welding environment. Such 

an environment can be avoided by using "two-pass" seam tracking (89), where 

vision sensing is first used to determine the true joint position and measure its 

parameters (e. g. root gap, root face thickness, etc. ). Welding is then conducted in 

the second pass. This technique increases process cycle time and does not 

compensate for errors introduced during welding, such as distortion. In "one pass" 

seam tracking, sensing and welding are done simultaneously. Thermal distortion 

during welding process is therefore accounted for by modifying welding 

procedures and torch position. To protect the sensor from the welding 

environment they are usually secured in a housing with inter-changeable filter 

glass. 

Several researchers have applied vision sensors in robotic arc welding. 

Richardson ( 90) developed a vision based sensing and control system in order to 

view the weld pool through the welding torch. The system was able to achieve 

real-time joint tracking and weld pool control in GTAW. Nipoled and Bruemmer 

(91) have used a conventional solid-state camera system together with a special 

exposure technique to view the weld pool in the GMA welding process. The 

camera and image processing technique is used to provide seam tracking and 

measure the three-dimensional profile of the seam. It was also capable of 

controlling welding parameters by analysing the weld pool shape and position of 

the electrode relative to the seam. To overcome the problem of measuring the joint 

near the welding torch in the optically noisy condition caused by strong arc light, 
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particularly in high-current arc welding, Makato (92) developed a new method. A 

laser beam, modulated at high frequency, is projected on to the work and detected 

by a highly responsive photodiode to convert it to an electrical signal, which is 

passed through filters and detective circuits. He found that in this way the sensor 

signal within the arc light is detected with an excellent S/N ratio. 

3.11.5 Thermal Sensing 

Since final mechanical properties of welds such as hardness and toughness are 

greatly affected by the thermal history (peak temperature and cooling rate), 

sensing temperature in the weld zone has long been of interest to researchers. The 

temperature of the base metal near the weld pool is expected to have a relationship 

to the heat balance and hence weld bead geometry. Infrared and thermocouple 

devices represent the two primary means for obtaining surface temperature. They 

can measure the temperature of the front face or back face of the workpiece. 

McCampbell, et. al. (93) used a sliding thermocouple in order to measure the 

surface workpiece temperature in GTAW. They applied a single thermocouple 

wire in sliding contact with the dissimilar workpiece material to form the 

thermocouple junction. The wire was placed within 2.5 cm of the weld pool to 

estimate the surface temperature. This technique is not precise, and cannot be 

adapted for automated welding process control. 

3.11.6 Infrared Sensors 

Energy is emitted by all objects having a temperature above absolute zero. This 

radiant energy increases as the temperature of the object is increased. By 

measuring the radiation energy from the object in the infrared portion of the 

spectrum, applying Planck's law (94) which shows the relationship between 

wavelength and radiation energy, and applying Wien's displacement law which 

shows the temperature of an object as a function of wavelength, the temperature of 

an object is measured. 
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3.11.6.1 Emissivity 

Infrared radiation is emitted from all objects. The quantity of this radiation is a 

function of the surface emissivity-, the temperature, and the geometry of the object 

Emissivity is defined as the ratio of the energy radiated by an object at a given 

temperature to the energy emitted by a perfect radiator, or blackbody, at the same 

temperature. The ideal surface for IR temperature measurement would be a black 

body with an emissivity of 1.0. In practice most objects are either graybodies 

which have an emissivities less than 1.0 but the same emissivity at all wave 

lengths, and non-graybodies which have emissivities that vary with wave length 

and/or temperature. This last type of object can result in serious measurement 

accuracy problems especially when measuring absolute temperature is required. 

Metals, in almost all cases, tend to be more reflective at long wavelengths, hence 

their emissivity improves inversely with wavelength (92). 

In any research involving measurement of IR radiation, it is necessary to know or 

determine the emissivity of the radiating surface. In this research experiments 

comparing IR measurements with thermocouple measurements were carried out as 

discussed in chapter 5. These experiments served to evaluate and calibrate the 

accuracy of the IR sensor, and in turn allow accurate estimation of the emissivity 

of the weld joint surface. This value of emissivity can be assumed constant at a 

given temperature providing the condition of the radiating surface remains 

unchanged. However, in this research relative temperature measurements have 

been used, and virtually identical conditions will have applied to temperature 

measurement for the collection of data for training the models, as for the 

evaluation of the models. 

3.11.6.2 Application of infrared sensing in Arc Welding 

Infrared sensing is the most common form of temperature measurement in arc 

welding. Researchers have used this method for seam tracking and process control 

by front face and back face temperature measurement, and thermography in arc 

welding (96). 
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Groom et. al. (97) investigated using infrared thermography for joint tracking in 

gas tungsten arc welding. An infrared camera was used to record the temperature 

gradients surrounding the welding torch and workpiece and transmit the images to 

a central computer. Using an experimentally derived image processing technique, 

the relationship between distance of the torch from the joint and the resulting 

thermal profile was determined. Given the monitor thermal profile corrective 

action for the torch path was possible. They conclude that reliable and repeatable 

thermal patterns are obtained by infrared measurement of surface temperature 

distribution during the welding process. 

Doumanidis and Hardt (98) developed a model for independently regulating the 

time-temperature relationship of the HAZ and the centreline cooling rate in the 

GMAW process. The on-line thermal measurement included scanning the time- 

dependent temperature field on the top surface of the workpiece, using an infrared 

radiation sensor. As shown in Figure 3.3 they measured: 

9 The weld nugget cross-section area, defined by the solidus isotherm, this was 

adopted as a collective measure of the effect of solidification faults, such as 

porosity, inclusions, incomplete fusion, etc; 

" The heat-affected zone width (HAZ); 

" The centreline cooling rate , 
defined at the location with critical temperature. 

They concluded that the effects of in-process emissivity variation are inevitable, 

as long as radiation measurement are performed at a single wavelength range. 

Chin et. al. (99) investigated the application of infrared thermography for detecting 

perturbations that result in faults during the arc welding process. They stated that 

the infrared camera is capable of monitoring arc position relative to the seam and 

can be used to identify joint geometry faults, such as joint gap and offset. Change 

in the patterns of surface isotherms in front of a moving arc are directly related to 

depth of penetration, and impurities. 
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Chen and Chin (100) used infrared sensing techniques in order to monitor the joint 

penetration. They conducted a series of experiments to relate the depth of joint 

penetration and bead width to measured surface temperature distribution. Bead 

width and depth of penetration, measured after welding using metallographic 

techniques, were compared with magnitude, gradient, area under thermal profile 

and symmetry of the infrared sensed temperature distribution. As shown in Figure 

3.4 there are identifiable changes in surface temperature distribution for each 

percentage of joint penetration. They concluded that a linear relationship exists 
between the width of the temperature profile and the bead width, and an 

exponential relationship exists between the depth of the joint penetration and 
integrated area under the peak temperature profile, obtained during the welding 

process. 

Betly and Marburger (4) also used an infrared sensor in order to develop a feed 

back control system for penetration control, by measuring the amount of visible 

and near-infrared light emitted from the backside of the weld. They state that the 

visible underbead radiation is concentrated in the weld pool and thus for 

controlling full penetration weld underbead width, visible radiation is a better 

feedback parameter than infrared, yet for partial penetration welds, infrared is 
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more significant. Moreover, it remains that back side monitoring is inconvenient 

for most welding applications, in particular robotic application. 

Fig. 3.4 Isothermal plots showing surface temperature distribution for 10%, 30%, 

and 70% penetration. 

One problem with an infrared sensor is that the sensor can pick up reflected and 

transmitted infrared energy from numerous sources, in addition to the emitted 

energy of the primary target (78). One way to prevent these extraneous sources of 

radiation is to focus on a small spot on the surface being measured. The infrared 

sensor, used in this research is able to measure a spot with diameter of 2.3mm. 

3.11.7 Sound sensing 

Sound sensors can be of two types audible sound, which is detected by 

microphone, and ultrasonic noise, which is transmitted and received by a 

transducer. Hardware and software have been developed which can be applied in 

arc welding to detect and analyse the sounds received in real time (95). Weld 

penetration monitoring and control by ultrasonic sensing, along with seam 
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tracking during welding has been implemented by Siores and fenn (72,32). He 

states that weld penetration monitoring and control by ultrasonic sensing has been 

shown to be both realistic and accurate. Shepherd (38) examined the effect of 

sound pressure during welding, by analysing the pressure level detected by a 

microphone. A sharp increase in pressure accompanied the onset of penetration. 

He concluded that "monitoring of the sound pressure level can give information as 

to whether or not the process is achieving full penetration, but no other 

information can be derived". 

3.12 Conclusion 

In this chapter the main concepts of robotic welding and adaptive control for 

automation of welding, related to this research, have been reviewed. 

In order to produce an acceptable weld, monitoring the weld, and possibly the 

joint via sensors and controlling the welding parameters via modelling is 

necessary. Developing mathematical, empirical and statistical models needs 

considerable amounts of experimentation, time and cost, and such models may 

only be applicable to a single combination of plate thickness, joint type, etc. 

Among non-mathematical models, neural network and fuzzy logic can be used to 

control the gas metal arc welding process with a degree of confidence. A neural 

network mimics the computational architecture of the human brain to achieve 
intelligent capabilities such as pattern recognition, while fuzzy logic contributes 

such human traits as the ability to make decisions from a rule-based reasoning. 

Different types of sensors for monitoring and controlling arc welding have been 

developed, which each have their advantages and limitations. Among these 

sensors the infrared temperature sensor is an appropriate device for measurement 

of the temperature distribution on the surface of the workpiece. Infrared sensors 

have distinct advantages over other temperature detecting devices in that it 

requires no physical contact with the workpiece, thus affording a minimum 

amount of interface with the welding process. 
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In this research the use of an infrared sensor has been explored as a means of real- 

time monitoring of heat distribution on the top surface of workpiece. Then by 

applying artificial neural network methods the relationship between temperature 

distribution and input variables is estimated. A fuzzy logic controller will give 

opportunity to modify welding variables to fulfil the requirement for acceptable 

weld penetration. 

The theoretical relationship between heat distribution on the top surface of the 

work and welding variables will be discussed in the next chapter. The architecture 

and design of the proposed neural network will be discussed in chapter 6. 
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Chapter four Heat flow in arc welding 

4.1 Introduction 

In Gas Metal Arc Welding a fusion weld is produced by moving a localised intense 

heat source, an electric arc, along the joint thus melting the metal in the joint to form 

a weld pool. At the same time molten filler metal from the consumable electrode wire 

is deposited into the weld pool. As the heat source is traversed along the joint the 

weld pool flows around and behind the arc, due to capillary action and the force of the 

arc displacing the molten metal. Since in GMAW, the electrode wire is melted off and 

transferred to the weld pool at a very high rate, the majority of arc heat, which flows 

into the electrode, is also transferred to the weld pool. The process is thus highly 

thermally efficient. There are many potential problems in and around a weld joint 

such as generation of distortion or residual stress, inadequate joint strength and 

unacceptable weld bead geometry (101). The primary causes of low joint strength are 

insufficient penetration and lack of fusion with the side walls of the joint. These 

faults are mainly a function of the mass of the joint members, energy input from the 

welding heat source, and heat flow into and through the weld pool and heat affected 

zone. 

Accurate predictions of weld penetration and bead geometry require understanding 

and analysis of the weld thermal cycle and associated heat flow. The purpose of this 

research work is to predict the depth of penetration by measuring the temperature at a 

point in the top surface of the workpiece. Therefore in this chapter, the principles of 

heat flow in GMAW will discussed. This discussion will be extended to the 

theoretical relationships between the surface temperature, welding variables, weld 

penetration and weld bead geometry. 
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4.2 Heat flow in Gas Metal Are Welding 

The thermal cycle in welding is due to a moving heat source acting along the weld 

joint. The thermal cycle at a point in the joint material is characterised by the heating 

stage in which the temperature of the material rises to a maximum, and a cooling 

stage in which the temperature of the material decreases. The temperature pattern and 

kinetics at a point in the joint is dependent on the energy parameters of the welding 

process, including welding speed, and the thermo-physical properties of the joint 

material. The rate of rise in temperature, maximum temperature and the cooling rate 

at any point are also a function of the position and distance of the point from the 

centre of the arc heat source where the energy input is maximum. The maximum 

temperature is above the melting temperature in the fusion zone, with lower 

temperature occurring in the heat affected zone (HAZ). Figure 4.1. shows the 

characteristic shape of the thermal cycle at different distance y perpendicular to joint 

line during G. M. A. W. (102). 

Figure 4.1. Thermal cycle in arc welding 

In the first stage of the thermal cycle the maximum temperature at a point in the 

fusion zone may be taken as a measure of grain growth. Therefore the longer this 
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heating up time and the time at the maximum temperature, the coarser is the grain. 

The cooling stage is also important to the structural transformation, and in diffusion. 

The higher the rate of cooling in the zone above the transformation temperature, the 

higher the probability of obtaining a transient structure, such as martensite. On the 

other hand the lower the rate of cooling from temperature below 300°C, the more 

time there is for diffusion, particularly of dissolved hydrogen, and the greater the 

probability of hydrogen entrapment in grain boundaries and of hydrogen induced 

cracking in the joint. 

To achieve complete fusion of the sidewalls of the joint, the maximum temperature in 

the thermal cycle at any point on the joint surface must exceed the melting 

temperature of the metal. Similarly, to achieve full penetration, the maximum 

temperature at points on the back surface of the joint close to the root face must 

exceed the melting temperature. 

4.3 Theoretical modelling of heat distribution in arc welding 

An understanding of the thermal cycle in welding, and ability to model the heat 

distribution occurring, has long been considered important to estimating material 

weldability and the quality of welds in welding processes. Therefore much research 

has been concerned with the theory of heat flow in arc welding. In 1941 Rosenthal 

(28) determined the temperature distribution and predicted the shape of the weld pool 

in two dimensions, figure 4.2. a, and three dimensions, figure 4.2 b, equation I and 2. 
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(a) (b) 

Figure 4.2- a) Three dimensional heat flow, b) two dimensional heat flow. 

Q k0(avr) 
For 2D, Line Source T- T0 = 2rK e- aý 

h 
[1] 

For 3D, point Source T- T0 =Q e- V e- avR 
[2] 

27rK R 

Where: 

9T is the temperature at a point on the (XYZ) co-ordinate system moving with the 

torch (K); 

" To is the initial temperature of the plate (K); 

"Q is the heat input to the plate (J/S); 

"k0 is the Bessel function of second kind and zero order, the value of this function 

can be found for each value of avr in reference(104); 

9k is thermal conductivity of the base metal (W m-1 K-1 ); 
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k 
"a is thermal diffusivity (m2 s') =; 

PCP 

" pCp is volume thermal capacity (Jm 3 K-1 ); 

"h is the plate thickness (m); 

"v is the torch velocity (m s-i); 

"j is used when the x axis lies in the direction of welding (m) =x- vt 

"x is the distance from the torch along the weld centreline (m)(positive backwards); 

"t is the time (sec. ); 

"R is the radial distance from the torch centreline (m); 

"y is the distance from the heat source perpendicular to centreline (m); 

"r is the radius of a circle drawn around the heat source. 

R2 = x2+y2 and 

r=Z+y2 

His assumptions were: 

"A concentrated line (2D) or point (3D) heat source. The solution of quasi- 

stationary state of heat flow has yielded two equations characterising temperature 

gradients for a two-dimensional flow (thin plates) and a three-dimensional heat 

flow(thick plates). 
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" Heat flow is by conduction only. Heat created in electric welding by Joule effect 

can be overlooked in relation to the heat generated by the arc. 

" Heat losses from the surface were neglected. As heating in large welded plate is 

considered, heat losses through the surface to surrounding atmosphere can be 

neglected, in relation to the heat flow in the plate itself. 

" Infinite length and width of the workpiece. In the 3D heat distribution equation 

semi-infinite plate and a single bead deposited on the surface of a very large and 

thick plate was considered. 

" Thermally homogeneous and isotropic material. The physical coefficients of the 

materials are assumed to be constant and temperature independent. 

" Temperature-invariant material properties and neglecting the phase transformation 

(including fusion and solidification) led to steady-state temperature field 

expressions. 

In the above equations, if the physical properties of the plate are assumed constant in 

the weld pool near the heat source, equation [2] would give T= oo for R=0, which is 

not true. This indicates that equation [2] applies only to points outside the fused zone. 

Christensen et. al. (105) converted Rosenthal's equation for a point heat source (3D) 

moving across the surface of semi-infinite body to the dimensionless form 

e-(P+W) 
8=n p [3] 

where the operating parameter n includes the torch speed, the thermal diffusivity 

and the heat input to the workpiece, and 

vR vx P= -. and V=- [4] 
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All heat transfer theories result from the basic equation for the conduction of heat in a 

homogenous isotropic solid which is: 

kV [5] 2T-pcp(V. V)T= 
j 

6T 
In steady state T is constant, therefore &=0 

velocity V in Cartesian coordinate is: 

-3 -3 --3 -4 
V =v, i +v, j+v, k 

where i, j, and k are unit vector in the x, y, and z direction. Thus: 

-4 - -4 -ý -4 --4 3T -ý 6T -4 (V. V)=(v, i +v, j+v3 k). (&x i+ j+ ýk) and 

(V. 
V)=v, - 

+v, 
- 

+v3 

Now, if the direction of V is on the x-axis, then : 

3 -4 -4 -3 -4 
V =v1 i +0 j+Ok =v i or 

bT 
(ti. V)T=vi 

Thus equation [5] can be rewritten as: 

kV2T-pcp v& =o 

or 

60 



Chapter 4 

kV 
T-v-=o 

PP 

aV-T-v- =0 [61 
x 

when there is no relative movement between the workpiece and the heat source the 

equation [6] reduces to: 

aV2T=0 

which is the Laplace Equation. 

The heat may be liberated instantaneously from an instantaneous source, or at a 

steady rate from a continuous source. The fundamental solution for the temperature 

distribution in a body of infinite extent after a quantity of heat Q has been liberated 

instantaneously at a point, assumed to be the origin is given by Lancaster (104) as 

r" 
(4 

(71 T= e 

g pc(, rat) 2 

where r2 = x2 + y2 +Z2 

If the heat source is moving with velocity v in direction x and emits heat at a rate q 

then the integration of equation [7] for a semi-infinite workpiece (2D i. e. one which is 

bounded by the plane z= 0) is given in [8]. 

[_ v(r - x) l 
4nic e 2a [8] 

If the workpiece is assumed to be infinite (3D thick plate) the integration of [71 is 

given in [9]. 
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v(r - x) 
q T_2 
1rxre 

2a 191 

Where xyz are the co-ordinates of the measured spot, T is the temperature (K°), a 

is the thermal diffusivity (m3 s 1), x is a distance from the heat source in x direction, v 

is the torch speed (cm s-1), k is the thermal conductivity, and r is the radius of circle 

around the heat source. 

In the solution of equations [8] and [9] certain conditions are applied. 

" Heat source is considered as a point or line for 3D and 2D case respectively; 

" Latent heat of the solidifying weld metal, and of the structural transformation are 

neglected; 

" The heat radiation from surface is neglected; 

" Material constants are assumed temperature independent; 

" Moving of the heat source (torch) is assumed to be constant speed; 

These conditions are not strictly realistic and consequently the theoretical outcome 

does not fully correlate with experimental results. However equations [8] and [9] have 

been tested with some of the experimental data from this research. The results show 

that these formula give reasonable approximations for heat distribution during arc 

welding. Therefore they will be used in this research to analyse and compare the 

temperature measured with the infrared pyrometer and the calculated temperature. 

This will be illustrated and discussed in chapter 7. 

For carbon steel the following values of constants are used in calculation (106). 

Thermal conductivity (k) 41 WmI K-I 

Thermal diffusivity (a) 9.1x106 m2 S-1 
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Volume thermal capacity (pc p) 4.5 x 106 J m-3 K-1 

Melting point (MT) 1800 K 

4.4 Prediction and control of weld bead geometry 

Weld quality features such as metallurgy and joint strength are not measurable 

directly on-line. Therefore, for control, some indirect method of assessing weld 

quality is essential. Approaches to in-process control of welding include monitoring 

geometric features of the bead, thermal characteristics such as temperature in the heat 

affected zone and cooling rate. The geometry of a weld bead can be represented by 

bead width, bead height, and depth of penetration. However although much research 

has been conducted into measuring the weld pool using computer vision 

techniques(107,108), monitoring these geometrical parameters in real time during 

welding is difficult. Many attempts have been made to predict and understand the 

effect of arc welding variables on the resultant weld bead geometry and include 

theoretical studies based on heat flow theory, as well as empirical methods. 

By applying Rosenthal's heat distribution theory, Roberts and Wells (109) have 

developed equation [10] to estimated the weld width in the case of thin plates. 

W= 
I 
2ýpc T 5S 

[10] 

P 

In the case of thick plate they assume that the plate is infinitely thick, so that heat 

flow is three dimensional and the weld width is given by equation [111. 

W2 +8AW_ 
16Q 

=0 [11] 
5S 51rpcpST 

Where: 

W= estimated weld width ; 
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Q= rate of heat input to the plate (J/sec); 

a= plate thickness; 

S= welding speed; 

T= (melting temperature - ambient temperature); 

A= thermal diffusivity; 

pc,, =volume thermal capacity. 

The depth of penetration is predicted to be half the weld width, i. e. a semicircular 

weld cross section. Apps and Milner (110) compared experimental results with 

Roberts and Wells theory. They concluded that, the actual width was larger than the 

predicted width, whereas actual penetration was generally less than predicted. 

In an attempt to produce more realistic weld pool profiles, Eagar and Tsai (111 

modelled the arc as a Gaussian distributed heat source. The temperature at a point (x, 

y) at the time t was derived as equation [ 121 

IQ XZ + y'" 

[12] q(x, y) - 2n62 exp - 2U2 

where q is temperature at a point, Q is heat input, q is thermal efficiency, and ß is the 

distribution parameter that has dimensions of length and can be considered as half the 

width of the arc. As is shown in Figure 4.3, with the combination of two adjustable 

parameters, efficiency q and distribution 6, this model could predict more realistic 

weld pool shape and size. 
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q(r) 

--k :q 

2Q 

q(r) =qmm' e-fZ/2 c2 

Figure 4.. 3 A Gaussian distributed heat source moving on the surface of a semi- 

infinite plate 

They tested the accuracy of their model and concluded that the predicted and actual 

widths were in good agreement, but the depth prediction had considerable error. The 

error in depth of penetration was considered due to the assumption of a semi- 

infinitely thick plate, whereas the true plate thickness was 12.7mm. Song and Hardt 

(5) continued the Eagar and Tsai work and developed a new model where a dual 

gaussian heat source, top and lateral, was considered instead of single gaussian heat 

source. As is shown in Figure 4.4 the weld pool shape can be considered in two parts 

:a horizontal portion caused primarily by the top Gaussian heat source. and a vertical 

portion caused by the lateral gaussian heat source [ 13]. 
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T (x, y, z, t) - To =f1 
nQ 

° nPCP 

(161rat)-Y (x+vt)2 +z 
ex 

2at+62 4at+2aý 

z 

dt [13] 4at 

Top Gaussian Source 
(nl, a1) 

Lateral Gaussian Source 
(77g' Q2 ) 

Y 

Resulting Weld 
Pool Shape 

Z 

Figure 4.4 Weld pool shape and isotherms in a dual Gaussian heat source model. 

Model predictions were compared with experimental results for GMAW. In these 

experiments they used an infrared sensor to measure the temperature of the back side 

of the plate. They concluded that the depth can be estimated due to varying welding 

parameters. The experimental results showed that the wire feed rate and torch travel 

speed have a significant effect on the depth of penetration when used as a process 

input. 

Thom, et. al. (39) developed an empirical model of the influence of various 

parameters on the pool shape in GMA welds, and compared the result with 
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theoretical models. They also developed a multiple regression model to predict the 

relationship of welding variables and weld pool shape as follows: 

Penetration (mm) = 0.075 + 0.089 WFR + 0.0130E 

Width (mm) = 1.89 + 0.750 E 

Height (mm) = 2.12 + 5.37 VFA 

Where \`'FR is electrode wire feed rate measured in m/min, E is the heat input [E_ 

11 (V x 1)] measured in kJ/cm, rj is thermal efficiency, VFA(Volume of Filler 

Added) is measured in cm 3/CM. 

Kim and Basu (114) also developed a mathematical model for relationship of weld 

pool geometry and welding variables as follow: 

W= (D0 429410.3518 V0.7083 S-0.4590 ) 100.0905 

H= -0.1255 10.6387 V-0.7183 S-0.2395 )100.3339 

P= (D-JD ; 668 11.4005 V°. °130 S-0.364" ) 10-2.3098 

where D is plate thickness (mm), S is welding speed cm/min, I is welding current, and 

V is welding voltage. To assess the accuracy of the model, they conducted a number 

of experiments and calculated the percentage error. They concluded that as shown in 

fig 4.5 . 
79 % of results of weld bead dimensions were accurate within 0-5% error. 

The remaining results were lay predominantly in the 5-10 % and 10-20 % error 

ranges. Therefore the model could be used to control the process input parameters in 

order to achieve desired weld bead geometry outcomes and weld quality. 
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Figure 4.5 Accuracy analysis of mathematical model (114). 

Song and Hardt (113) developed a mathematical model to predict the weld geometry. 

They selected wire feed rate and welding speed as inputs, and bcäd vwridth and depth 

of penetration as a outputs for a control model. A CCD camera was used to measure 

the bead width and an infrared sensor to measure the back side temperature and 

estimate the depth of penetration. This work has limited application due to reliance 

on back side temperature measurement during welding, which is often impractical. 

Banerjee, et. al (103) developed a gradient technique to monitor weld geometry in 

cases involving variation in plate thickness, minor element content and shielding gas 

composition in GTAW and GMAW. The technique was based on the temperature 

gradient at the solid-liquid metal interface. The cause of the sharp change in 

temperature at the interface is the difference in emissivity of the solid and liquid 

metals. Figure 4.6 shows the isothermal map of the temperature distribution in a weld. 
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which consist of several bands with the temperature increasing from the outer edges 

to the centre of the weld pool (98). 

Figure 4.6 Isothermal map of heat distribution in weld. 

They concluded that the bead width and the temperature gradient computed along a 

line transverse to the direction of torch motion showed promise for on-line control of 

bead width and depth of penetration respectively. 

In chapter 7 the effect of temperature distribution on bead geometry is illustrated and 

further discussed. Also experimental results from this research will be compared with 

some of the theoretical and empirical models discussed here. 
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4.5 Discussion 

Arc welding involves melting and resolidification of the %vorkpiece to form the joint. 

The geometry of the weld bead which is represented by the bead width, bead height, 

and depth of penetration is a good indicator of weld quality . 
There are restrictions on 

the direct monitoring of these weld features. An alternative method is to measure the 

heat flow pattern in the workpiece and derive a mathematical relationship between the 

measured temperature and the weld bead geometry. Since the welding process causes 

very complex physical and metallurgical changes in the workpiece, it is practically 

impossible to establish an exact mathematical model. In particular, the temperature- 

dependent characteristics of the physical parameters of the metal make the problem 

very intractable. Various other physical phenomena in the welding process, such as 

phase change and heat convection due to forced flow of the molten pool, further 

increase the difficulty of the mathematical analysis. Researchers have coped with 

these difficulties by simplifying assumptions and the resulting models are not 

sufficiently precise to be suitable for real-time control of welding (112,113). 

Consequently many researchers have proposed welding control based on empirical 

models. This approach, however. also has a limitation for generality of application 

because of the extreme non-linearity of the process. 

This research examines the use of Neural Network and Fuzzy Logic models to 

overcome the limitation of previous control methodologies, and is discussed in 

chapters six and seven. 
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Chapter five Experimental design 

5.1 Introduction 

The objective of the experiments was to obtain training and validation data for 

artificial neural network modelling of the GMA welding process. The data was 

used in a neural network simulation software (115) to establish models of the 

relationship between the input welding variables to the welding process and the 

temperature distribution in the weldment during welding. To achieve the above 

objective two sets of experiments were conducted, one with zero root gap to 

model the temperature distribution in the workpiece assuming the work is 

accurately fitted up and there is no distortion during welding. The second set of 

experiments, with root gap varying between zero and 1.5 mm, was used to model 

the temperature distribution in cases where error in assembly, poor fixturing, 

tacking up or distortion could cause deviation from nominal root gap. 

In this chapter the inputs and outputs of the welding process which have been 

selected for this work are defined. In section 6 the full factorial experimental 

design is given and discussed. This is followed by description of the experimental 

apparatus which is also illustrated in section 7. 

5.2 Selection of welding outputs 

The welding outputs to be derived from the temperature distribution must be 

chosen so that they adequately characterise the quality of the welded joint. 

Moreover, since the motivation for this research is real time process control, the 

measured control output from the thermal sensor must be capable of being 

processed in a short time. Control of welding typically requires a response time of 

less than 500 ms. 

In the following section the welding outputs which were selected for this research 

are discussed. 
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5.2.1 Surface temperature 

The neural network models are based on the assumption that an accurate 

temperature measurement at a specific point on the weldment surface is available 

in approximately real time. In order to meet this requirement, temperature 

measurement is obtained by a total radiation pyrometry technique, in which 

surface temperature is measured by collecting the emitted thermal radiation from 

the workpiece at all wavelengths in the infrared (IR) spectrum. Figure 5.1 

illustrates the workpiece and the temperature measurement point. 

Fig. 5.1- Workpiece and temperature measuring spot 

The infrared sensor was attached to the welding torch 60 mm above the 

workpiece. 

At this distance the diameter of the measured area was minimum ( 2.3 mm (94) ). 

A number of experiments were conducted in order to establish the best distance 

of the measured spot from the centre line of the joint. The temperature was 

measured for maximum and minimum level of welding variables at different 

distances across the seam. The results of these experiments are plotted in fig. 2. A 

distance 14 mm perpendicular to the welding line was selected, being the position 
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at which the change in temperature with change in welding variables was greatest. 

In subsequent experiments to obtain model training and validation data, and in 

order to have time to process data in the models, and to feed back control data to 

the welding system when operating as a process controller the temperature was to 

be recorded at 10mm increments as welding proceeded. 

650 
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Fig. 2. Optimum distance for temperature measurement 

5.2.2 Weld bead geometry 

Gas Metal Arc Welding, involves melting and re-solidification of the joint metal 

and the filler material from consumable electrode which is deposited into the joint. 
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The resulting geometry of the weld bead is a good indicator of weld quality. 

Although it is not the aim of this work to build a weld bead geometry model, on 

the other hand the data for neural network modelling and for fuzzy logic control 

should correspond to welds of acceptable quality. In the first set of experiments to 

obtain training data, with no root gap in the joint, welded test pieces were 

sectioned at 10 places along their length, the location corresponding to the point at 

which temperature was recorded. This was to allow modelling to take account of 

the variability in weld bead geometry and penetration, which occurs due to heat 

build up in the plate as welding proceeds. The sectioned faces were ground and 

polished then etched with a 5% solution of nitric acid in alcohol to reveal weld 

penetration. The bead width, height, and the depth of penetration were measured 

from the image obtained using a CCD camera with X20 lens and monitor. The 

bead geometry as shown in figure 5.3 and 5.4 was measured from the screen to an 

accuracy of 0.5 mm, representing a maximum error of 0.025 mm in the dimension 

recorded. 

In the second experiment, in which root gap was varied between 0-1.5mm the 

resulting weld was inspected visually. Those points along the weld line with 

penetration between 100% -110% of the material thickness, being the criterion for 

acceptable weld quality, were selected, with the corresponding point surface 

temperature, for NN modelling. The results of experiments are included in 

appendix Al. 

w 

Fig 5.3 Weld bead geometry 
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Fig. 5.4 Apparatus for measuring the weld geometry 

5.3 Selection of welding inputs 

Gas Metal Arc Welding variables can be categorised in two distinct groups. First 

those which can be modified during adaptive welding, the important ones being 

welding voltage, welding current, travel speed, torch angles, weave pattern, 

shielding gas flow rate, and electrode extension. The second group of variables 

can be monitored but cannot be modified during welding. These include joint 

geometry, plate thickness, wire diameter, shielding gas, etc. Although the joint 

geometry is normally considered as a fixed variable, in the second set of 

experiment, reported here the root gap was varied between 0-1.5 mm. This was to 
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allow modelling of the situation when the root gap might vary during welding due 

to poor assembly, fixturing or distortion. 

Four controllable welding variables, which significantly affect the heat 

distribution in the workpiece surface, and the weld penetration, were selected for 

experiments in this research. These variables are discussed in the following 

sections. 

5.3.1 Welding voltage 

Arc voltage is the sum of the voltage drops at cathode and anode surfaces, which 

are approximately constant, and the voltage drop across the column of the arc. 

Therefore distance between the tip of the electrode and the weld pool surface, the 

arc length. and the ionisation potential of the arc plasma determines the welding 

arc voltage. The arc voltage required for an application is dependent on the 

electrode size, type of shielding gas, welding position, joint type and workpiece 

thickness. In order to evaluate the accuracy of the infrared sensor via a 

mathematical model the actual welding voltage was required. The voltage across 

the are was measured during welding using a Voltmeter placed between contact 

tip (cathode) and workpiece(anode). These measurements were used for analytical 

calculations where the absolute values of voltage were needed. A regression 

equation was developed in order to determine the relationship between voltage set 

for the power supply and actual arc voltage as follows. 

V, = 15.3- 0.367 V2 

Where V, is the actual value and V2 is the set value. 

For all welding experiments the minimum voltage level was chosen such as to 

prevent electrode stubbing and arc discontinuity during welding. The maximum 

level was chosen such as to achieve high penetration and prevent non-sustained 

and intermittent arcing. The value chosen, with corresponding current, produced a 
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weld with acceptable penetration and avoiding a high amount of spatter and fume 

during welding. Levels chosen are shown in table 5.1. 

5.3.2 Welding current 

The actual welding current during welding was measured through a low 

resistance shunt (0.00010) placed in series with the welding power supply cable. 

Measuring the voltage drop across the shunt and applying Ohm's law gives the 

current flowing through the shunt. A number of experiments were conducted to 

establish the correlation factor between the actual arc current and the current set at 

the welding controller. The results are shown in appendix A2. The regression 

equation is 

C, =7+0.85C2 

Where C1 is the actual value and C2 is the set value. 

For all welding experiments three levels of current have been used as shown in 

table 5.1. The minimum level was set to prevent an unstable welding process, low 

penetration, due to inadequate heat input or an unsuitable mode of metal transfer. 

The maximum value was set in order to prevent excess penetration or burn- 

through, excessive spatter and instability. The third level was chosen as the 

midpoint of maximum and minimum values. 

5.3.3 Travel speed 

As the travel speed is increased, the heat transferred to the joint per unit metal 

volume is reduced. This reduces the melting of the parent metal and, hence, the 

depth of penetration. Sidewall and inter-run fusion will also be affected. In all 

experiments three levels of travel speed were chosen as shown in table 5.1. The 

minimum level was chosen such as to prevent an uncontrollable large weld pool, 

and excessive penetration or burn through. The maximum level was chosen in 

order to prevent low penetration, small bead width and undercutting along the 

edge of the weld bead due to insufficient filler metal deposition, to fill the groove 
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melted by the arc. The midpoint of maximum and minimum values was used as 

the third level. 

In order that temperature measurements were taken at the same positions along the 

joint for all welded samples, regardless of travel speed, the interval of sensor 

sampling was correspondingly changed. 

5.3.4 Torch angle (in direction of travel) 

Changing the torch angle in the direction of travel has an affect on heat 

distribution and depth of penetration. When the torch angle is changed from 90° to 

a push angle (forehand welding), the depth of penetration is decreased and the 

weld bead becomes wider and flatter. When the torch angle changed from 90° to a 

drag angle (backhand welding), the depth of penetration will increase (117). 

In all experiments three levels of torch angle have been selected as shown in table 

5.1 and figure 5.5 The mean level was chosen as 90°. The minimum level was set 

as forehand technique with an angle of 70°. The maximum torch angle was set as 

a backhand welding technique with an angle of 110° from horizontal. This angle 

produces a high level of penetration and lower spatter. At these angles the sensor 

was still capable of accurately measuring average target temperature. 

i 

Backhand 110 ° Perpendicular 90 ° forehand 70° 

Welding direction 

Fig. 5.5 Selection of The Torch angle 
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5.3.5 Joint Root Gap 

Two sets of experiment were conducted one with a zero root gap and 60° "Vee" 

prepared joint, and the other with root gap varying between 0.0 and 1.5 mm in 

both cases root face thickness was 2.0 mm. This was to enable modelling of 

circumstances in which root gap may vary due to distortion, poor assembly or 

fixturing. The values of root gap at positions along the joint where temperature 

was measured are shown in table 5.1. 

Variables Set levels of variables Actual level of 
variables 

low mean High low mean high 

Current (Amps) 300 320 340 275.6 287.8 300 

Voltage (Volts) 37 42 47 27.5 30.2 33 

Travel speed (mm/min) 800 850 900 800 850 900 

Torch angle (degree) 70 90 110 70 90 110 

Root gap (mm) 0.39,0.45,0.56,0.64,0.75,0.86,0.97,1.08,1.12,1.24 

Table 5.1 Selected welding variables. 

5.4 The Fixed variables 

The variables that were fixed in the welding experiments are listed below. They 

can be categorised into those which can not readily be changed in process, those 

which the initial tests have shown to have little influence on weld penetration, and 

those which could reasonably be fixed for the application scope of this research. 
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9 Electrode type: Bostrand LWI (BOC Murex) 

" Electrode diameter: 1.2 mm 

" Plate type: Carbon Steel, 0.15 %C (EN IA) 

" Plate thickness: 6mm 

" Shielding gas type: ArgoShield 5 (93% Ar +5% CO2 + 2% 02) 

" Shielding gas flow rate: 18 litres / min 

" Electrode stickout: 16mm 

" Welding position: Flat. Welding position has a profound influence on the other 

welding inputs and the weld penetration achieved. However experimentation 

and resultant modelling were constrained to the flat position, as is particularly 

appropriate for robotic welding utilising an integrated work manipulator. 

" Weaving: No electrode weaving motion was used. Weaving, and the weave 

pattern and frequency will effect the specific heat input to the joint and 

consequently weld penetration. It is used primarily to assure sidewall fusion 

and complete filling of the joint. However, for the plate thickness and joint 

design in the experiments no weaving was necessary. 

" Transverse torch angle: For flat position butt welding of equal thickness 

material the torch is normally held perpendicular to the surface. 

5.4.1 Joint geometry 

Nominal joint geometry for the experimental welds is shown in figure 5.6 and was 

determined as suitable for full penetration welding according to initial 

experimentation and literature (118). 
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60° 

6mm 
2mm ýL 

----_-- _-- ---- G 50 mm 

Fig. 5.6. Joint geometry of workpieces G=0 and G= 0-1.5mm 

5.5 Experimental design 

The objective of the experiments was to obtain training and validation data for 

neural network modelling. The models are intended to define the relationships 

between input welding variables, temperature distribution in the weldment, and 

the output weld geometry as defined by penetration and bead geometry 

For the experiments reported in this research the four most important adjustable 

variables current, voltage, travel speed, and torch angle were used. In the second 

set of experiments root gap was also varied but was not treated as an input 

variable for modelling. Other variables were maintained constant. Tests were first 

carried out to establish the combination of the variables giving acceptable 

penetration. This was set as the mean level in a four variable, three level, full 

factorial experiment, as shown in table 5.1, settings for high and low levels was 

discussed in the previous section. 

For all welding experiments, mild steel plate, 200mm long, 50mm width with 

thickness of 6mm has been used. After degreasing and machining they were tack 

welded together to produced the workpiece as shown in fig 5.6. The dimensions of 

workpieces have been chosen that satisfied the following criteria. 

" Heat lost from the edges of plate before measuring the temperature is 

minimised. 

" Enough data can be obtained. 
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The first and last parts of the weld are ignored to eliminate the effect of initial 

instability in welding, and the local chill effect of the specimen holding fixture. 

Data was collected at 10mm intervals along the weld giving a total of 810 sets of 

data. 

5.6 Experimental apparatus 

The experimental facilities are schematically shown in figure 5.7. These include 

an infrared thermography sensor, industrial 6-axis robot, robot controller, welding 

machine, analog to digital convertor and computer for ANN modelling. In the 

next sections these elements will be discussed briefly. 

5.6.1 Welding robot 

In this work the Fanuc robot model S-100 has been used. The robot is an 

articulated robot, with six controlled axes. The maximum load capacity at the 

wrist is 10 kg. The robot is controlled by the R-MODEL C controller, which 

consists of the control unit, setting / display panel, and the teach pendant (119). 

The robot is equipped with the KEMPPI model FU20 solid state programmable 

welding machine, which provides welding current up to 500 Amps, voltage up to 

50 Volts, and is allied to a wire feed unit providing a wide range of wire feed 

speed. A water cooled torch continuously rated at 500 Amps was employed. 
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Input variables Output Variables 

Weld Geometry 

Fig. 5.7 Schematic diagram of welding controller modelling 

5.6.2 Infrared sensor 

The Calex model TR 7420 (94) has been used in this work. This pyrometer uses a 

fibreoptic bundle to transmit the infrared radiation emitted by the workpiece to a 

remote sensor. The pyrometer can be used to measure the temperature of a target 

spot with minimum 2.3mm in diameter when the distance between the lens and 

target is 60mm. 

The measuring system as shown in figure 5.8 consists of: 

" An optical head to focus the radiation; 
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9A fibreroptic cable with metal sheath; 

" The detector and amplifier; 

" Signal processing and display unit. 

Input lens 

r----- ----------i 

1 

----------------- 

Target Optical sensor Fiberoptic cable Detector and preamplifier case 

Fig 5.8 Schematic diagram of the sensor. 

Important characteristics of the sensor are (120): 

" Temperature measurement range: 350-1700°C; 

" Measurement distance range: 20 mm to lm; 

" Target diameter: from 2.3 mm; 

" Accuracy ± 0.5% of the measurement; 

" Response time: < 20 ms. 

The selection of emissivity is very important in infrared temperature 

measurement. In order to establish the emissivity for workpieces used in 

84 



Chapter 5 

experiments, the workpiece was heated to a known temperature, as determined by 

a thermocouple, and the temperature of the plate measured with the IR sensor. The 

emissivity compensator was adjusted until the indicator displayed the correct 

temperature. The resultant value of emissivity was 7%, which is used for all of the 

experiments. 

The optical head was attached to the welding torch at 60 mm distance from the 

workpiece surface giving the minimum spot diameter of 2.3 mm. To prevent the 

effect of spatter and smoke interfering with sensing, the optical head was installed 

in a housing purged with compressed air, and protected by a replaceable window. 

5.6.3 Computing hardware and software 

This research has utilised various software for modelling and data acquisition 

purpose. These are: 

0 Neural Works Professional II/plus version 5.2. This software has been 

used for construction, simulation and evaluation of neural network models; 

41 Pico data logger. This software has been used with the Pico analog to 

digital convertor for the selection of data samples, the sampling interval, 

and capture of data. Data is achieved in < 120 msec. ; 

" Matlab Fuzzy Logic tool box. has been used for building and testing of the 

fuzzy logic model; 

" Control model software. Was developed to combine the C++ neural 

network model and pico data logger software for the evaluation of Neuro- 

fuzzy control model. 

All of the software was operated on an IBM compatible PC having a Pentium 75 

MHz processor, 32 Mb RAM, and 1Gb HD. These provide processing of data and 

operation of the models in less than 200 msec. With improved A-D convertor 

hardware and more powerful computing facility processing time could readily be 

reduced to less than 100 msec. 
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5.7 Experiments Results 

Experiments were conducted in order to obtain the training and evaluation data for 

the neural network modelling. For the purpose of the modelling reported in this 

research, data was needed to establish the relationship between controllable 

welding variables and temperature at a point in the surface of a workpiece during 

welding. Temperature was measured at appropriate intervals depending on the 

welding speed, to give measurements at 10 mm increments and recorded along 

with the value of welding variables used to produce the weld. After welding the 

joint geometry was measured at the positions where temperature measurement 

was taken. Data was classified by depth of penetration in five classes: 

100 - 110% depth of penetration; 

90 - 99% depth of penetration; 

80 - 89% depth of penetration; 

70 - 79% depth of penetration; 

less than 70%. 

The data then was randomly divided into training and evaluation sets for each 

class of penetration as shown in table 8.3, to be used in the construction of neural 

network models as described in the next chapter. 

The complete set of experimental results are shown in appendix 1. In appendix 2 

the neural network training and evaluation data for each model are given. 
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Chapter six Neural network modelling 

6.1 Introduction 

An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process 

information. 

ANNs have been applied to an increasing number of real-world problems of 

considerable complexity. Their most important advantage is in solving problems that 

are too complex for conventional technologies, problems that do not have an 

algorithmic solution or for which an algorithmic solution is too complex to be found. 

In general, because of their abstraction from the biological brain, ANNs are well 

suited to problems that people are good at solving, but for which computers, or rather 

conventional computer programs, are not. These problems include pattern recognition 

and forecasting (which require the recognition of trends in data). 

In this chapter, a general overview of the Artificial Neural Network approach and 

methods is given. These methods are applied in this research in the context of 

approximating the temperature attained at a point in the weldment surface, for a set of 

welding variables. Neural Network architectures are discussed and different 

modelling techniques are demonstrated in the following sections. In section 6.8 

modelling of Gas Metal Arc Welding process by various types of neural network 

technique are demonstrated and discussed as a guide to the selection and development 

of suitable models to fulfil the objectives of this research. 

6.2 Historical overview 

The field of neural networks was initiated by the introduction of the model of a 

simple neuron by McCulloch and Pitts in 1943 (121). In their work, they showed that 

even simple types of neural networks could, in principle, compute any arithmetic or 
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logical function. This idea was quite attractive and was quickly taken up by 

Rosenblatt (122). He invented the perceptron in which, as shown in figure 6.1, a 

weighted sum (net) of input x; 's is produced and compared to a threshold (To). The 

output is 1, if the net value is larger than the threshold, otherwise it is zero. Rosenblatt 

also proved that, given linearly separable classes, a perceptron will, in a finite number 

of training trials with no dependence on the initial states, develop a weight vector 

separating the classes. 

XI 

X2 

xi 
v 

Output 

To 
) 

All. --*( 

Fig. 6. l Rosenblatt's model of the perceptron. 

This was the start of development of the first successful neurocomputer, the Mark I 

Perceptron which was demonstrated in 1957 (122). However, no learning methods 

existed at the time for multilayer perceptrons and the field of neural networks became 

dormant. 

The revival came in the early 1980's with the works of John Hopfield (123), and later 

with the works of Rumelhart and McClelland (124), in introducing learning rules for 

multilayer perceptrons (the backpropagation learning rule). A resurgence in the 

development of neural networks occurred and many new paradigms and architectures 

with successful applications are reported, often in areas where conventional 

programming and other Al techniques found considerable difficulties. 
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6.3 Biological neuron model 

Artificial neural networks draw their strength in mimicking biological neuronal 

systems in their basic functional behaviour. Hence, a prerequisite to understanding 

the working of the ANN and adapting it to engineering application is to 

understand the basic workings of the biological neurons. 

The biological information processing system can be broken down into: 

1. Receipt of sensory information (input); 

2. Localised pre-processing (filtering and differentiating); 

3. Transmission and post-processing by the central nervous system 

(interpretation and perception). 

At first the information is received via a complex sensory system (visual, auditory, 

etc. ). This is followed by a local level pre-processing, for example, noise 

reduction, gain control, motion detection or edge enhancement. At this stage, the 

information is broken down into localised parameters, that are passed to the brain 

where they are put back together and a coherent perception of the object is formed 

(analogous to inverse solution). The first two steps have been utilised in designing 

sensors and various signal processing tools. The third aspect is the driving force 

behind artificial neural networks research. Literally the objective is to mimic and 

explain, "how does the brain do what it does". 

According to the limited knowledge at the present time, the anatomy of the neuron 

as shown in figure 6.2 is comprised of a series of dendrites which act as the input 

terminals to the soma (cell body). The cell body processes the information 

received by the dendrites and transmits its response via the axons to the next layer 

of neurons. The connection of this axon and the dendrites of the next layer is via 

synapses. The synapse secretes a neurotransmitter which stimulates the dendrites 

of the connecting neuron. All incoming stimuli are summed at the cell body and if 

a threshold value is passed an action potential is generated passing the signal to 

the next layer for further processing. 
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Fig. 6.2: Comparison of the biological neurones and a perceptrons (125) 

The transmission of the signal is only in the forward direction. In summary, the 

basic operation of the biological neuron includes weighted summation and 

thresholding. The analogous artificial neuron-like structure invented by 

Rosenblatt, the perceptron also shown in figure 6.2, has the same functionality as 

the biological neuron and has a number of inputs and a number of outputs. The 

perceptron receives signals from inputs and performs a weighted sum of the 

inputs. The artificial neuron (Processing Element, P. E. ) performs a mathematical 

transformation to achieve output, which may in turn be the input to a next layer of 

neurons (125) 

6.4 Neural network modelling 

In general, Artificial Neural Networks (ANN), perform an input-output mapping. 

This mapping may be either discrete or in the continuous domain. In mathematical 

modelling, usually there is a need to know about the domain theory in guiding the 
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design of the model. In contrast, ANNs do not make any assumption about the 

governing physical theory, and instead they fit a generic model to the data. 

Therefore ANNs can be thought of as universal data-driven modelling techniques 

capable of learning the underlying mathematical functions governing system 

operation. 

Given a physical system, an ANN can model on the basis of a set of examples 

encoding the input-output behaviour of the system. The modelling performed by 

the ANN can be ascribed to its ability to learn. This learning, which is known as 

training, is a process by which the network internal parameters (weights) are 

adapted and as a consequence the model is formed. If the network is designed and 

trained properly, it can perform generalisation and be relatively immune to system 

variations and noise. 

For a given problem, the best model is possible. However, even the best model 

may not guarantee full accuracy because every model has its limitations. 

Instrumental to the success of every model is an understanding of the problem. 

Therefore, the more is known about the system, the more accurate models can be 

constructed. Two points need to be stressed in any successful application of 

ANNs. First, a good understanding of the ANN architecture is essential especially 

the requirements and limitations. Fortunately, available powerful and high speed 

computers make empirical testing of a wide range of architectures a viable 

research option. Secondly, although they are capable of dealing with arbitrary 

problems, the learning task is often simplified by orders of magnitude if more is 

known about the problem. This could be in the form of data normalisation or 

input parameter expansion (125). Different types of ANN architecture, which 

have been employed in this research, will be discussed in subsequent sections. 

6.4.1 Neural network training 

A Neural Network has to be configured in order to produce the desired outputs 

from a set of inputs. Various methods to set the weights of input connections exist. 

One way is to set the weights explicitly, using a priori knowledge, but such 

knowledge is rarely available. Another method is to train the neural network by 
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patterns and allowing it to change its weights according to some learning rule. The 

training can be categorised as two different types, supervised learning and 

unsupervised learning. 

6.4.1.1 Supervised learning 

In supervised or associative learning the network is trained by providing it with input 

and matching output patterns. These input-output pairs can be provided by an external 

teacher, or by the system which contains the network (self-supervised). In this 

research, because of the availability of empirically determined input-output data, for 

various levels of penetration depth all the models have been trained employing 

supervised learning. 

One problem with all supervised learning is that the network can recognise patterns 

that are similar to those learnt, but finds difficulty in recognising new ones. In order 

to recognise new patterns, the network needs to be retrained with these patterns added 

to produce a larger training set. If only new patterns are provided for retraining, then 

old patterns may be forgotten. In this way, learning is not incremental over time. 

This is a major limitation for supervised learning networks. This problem is dealt 

with by careful problem consideration in choosing the training data to be a true 

representative of the domain, which is being modelled. 

6.4.1.2 Unsupervised learning 

In unsupervised or self-organisation learning, the output PE is trained to respond to 

clusters of patterns within the inputs. In this paradigm the system is supposed to 

discover statistically salient features of the input population. Unlike supervised 

learning, there is no a priori set of categories into which the patterns are to be 

classified, rather the system must develop its own representation of the input PE. 

Unsupervised learning often has less computational complexity and less accuracy. In 

general the task of unsupervised learning is more abstract and less defined (125). The 

learner must focus its attention, observe the regularity in the environment and draw 
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hypotheses which are not suitable for highly-non-linear, multi-variable process 

modelling such as the Gas Metal Arc Welding process. 

6.4.2 Neural Network Evaluation 

Validation is to determine whether the system can perform at an acceptable level in 

terms of accuracy and efficiency. Artificial neural network validation includes both 

validation of system performance and validation of the learning system. For example 

the capability of network for generalisation is evaluated in the learning system. 

6.4.2.1 Learning system evaluation 

The learning system usually learns its knowledge from training data. If only the 

training data is evaluated the performance level will reflect how well the knowledge 

fits the data, but is not necessarily a reliable estimation for unseen data. For this 

reason an independent validation or test data set is required. Frequently, the 

experimental data is randomly partitioned into two subsets, one used for training and 

the remainder for testing. 

Several techniques are available for evaluation of learning system performance. These 

techniques include cross-validation, consistency analysis and sensitivity analysis. 

Among these techniques cross-validation is more appropriate for supervised learning 

(126). 

The performance measure for a network is directly dependent on the performance of 

the learning system. The performance of the learning system in a classification task is 

measured by the rate of correct classifications over the entire set of test patterns. In 

pattern recognition and function approximation, the performance is measured by the 

percent error or mean squared error (MSE) over the test set. In this work, the 

reported results have been tested by cross validation and performance measures are 

reported accordingly. 
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6.4.2.2 Validation of system performance 

A system performance evaluation must be done to determine if the system can meet 

the predefined objective. The system performance evaluation for the neural network 

and fuzzy logic model is discussed in the next chapter. 

6.4.3 Optimisation of neural network 

There are several techniques for network optimisation divided into two general 

heuristic methods, building up and pruning methods. In the building up techniques, 

such as cascade-correlation (127) and dynamic node creation (128), the starting 

network is small and units are added and trained to minimise the error. Other 

methods start from a large network and remove weights and nodes. Alternatively, a 

combined method can be used to add and remove hidden units dynamically. 

Examples of such methods are given in (129,130). All of these approaches have 

been used to reach generalised networks. 

Generally, in a fully connected network, there is a large amount of redundant 

information encoded in the weights. Thus, it is possible to remove some weights 

without effecting the network performance. This process is known as pruning. 

Reduction in the number of weights leads to better generalisation and makes learning 

faster (131). For models reported in this work the pruning method has been used to 

reduce the number of hidden layers. 

6.4.4 Multi-layer perceptron (MLP) network 

A multi-layer perceptron (MLP) or multi-layer feed-forward network is constructed 
from the successive connection of individual perceptron layers as shown in figure 

6.3. 
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Figure 6.3 The structure of multi-layer perceptrons. 

The inputs are indicated by (xi's) and the outputs as (yd's). Commonly there is full 

connectivity between consecutive layers, i. e. each perceptron is connected to all of 

those in the next layer as indicated by lines. Each connection has a weight 

associated with it. Furthermore, each processing element (PE) has a common 

non-linear differentiable transformation function, which is a requirement of the 

gradient descent learning algorithm. The main characteristics of MLP include the 

following: 

" The ability to learn from example. Whilst the theoretical understanding and 

modelling of a welding process is difficult, sensor technology enables the rapid 

collection of data which can be exploited by the neural approach; 

" The ability to cope with complex non-linear problems such as the relationship 

between welding variables and temperature distribution which displays a high 

degree of non-linearity; 
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" The ability to abstract essential information from noisy data. On-line sensor 

measurement has to deal with a variety of noise inherent in the measurement (i. e. 

background 
, electronic, etc. ). Neural networks have the ability not only to extract 

the signals from the noise but also to build up an understanding of the sensor 

characteristic in such situations (filter application); 

" The ability to generalise from examples. Neural networks can interpolate and 

extrapolate from the experience generated from a limited set of examples; 

" The ability to construct effective solutions quickly. Being trained rather than 

programmed, neural networks are less reliant on expert domain experience; 

" The ability to work in real time, a trained network is computationally efficient and 

its massively parallel architecture is ideally suited to modem processing 

technology, such as automated robotic welding. 

Therefore, when there is ample data available from a process that is difficult to 

characterise analytically, ANNs can be used to extract and learn the underlying 

relationships. An implication of this ability has a direct consequence on theoretical 

development in the sense that if the ANN is able to model a process within reasonable 

accuracy, then there is a mathematical model which can define the process. 

Due to their flexible nature, MLPs are used for a variety of tasks such as function 

approximation, and classification. In classification tasks, often the network is 

assigned an output node for each class with the appropriate number of features as 

inputs. In function approximation the network has usually a single output node with a 

non-linear or linear activation function and a number of appropriate input variables. 

Generally it is accepted that the performance of a well designed MLP neural network 
is comparable with, but not better than, that achieved by good classical statistical 

technique. On the other hand the MLP uses less time than statistical techniques (132). 
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6.4.5 Back-propagation network 

As described earlier the MLP learns in a supervisory mode by, fine tuning the 

parameters and minimising the network "mistakes'". Amongst these procedures, 

back-propagation (BP) is the most popular and well known learning algorithm for 

training of the MLP networks (129). 

Back-propagation is a general purpose network paradigm that can be used for system 

modelling, prediction, classification, function approximation and many other general 

types of problem. Back-propagation learns by calculating an error between desired 

and actual output and propagating this error information back to each node in the 

network. Back-propagated error is used to drive the learning at each node. In BP 

learning, the weights are initially set at small random values and the learning is 

achieved in two stages: 

" Feed forward phase, in which each training pattern (xp) is presented to the MLP 

and the network response (oj) is evaluated by a forward pass and compared with 

the target output (tj), as equation 6.1; 

Ep =I 
Z(tj 

- 0j 

j 
[6.1] 

" Error back propagation phase, in which the weights are adapted by applying the 

chain rule to the successive layers of PE in estimating the direction of the gradient 

of error surface. 

9E 
p OW=-rJ 

OýV 
[6.2] 

In the above equation, r7 is the learning rate or learning coefficient, which controls the 

convergence speed and the learning precision. This process is repeated for all 

training patterns. A formulation of the BP algorithm and relevant equations are found 

in general neural network textbooks (129). 
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A standard back-propagation network can learn either in cumulative (batch) mode or 

in standard delta-rule mode. With the cumulative mode, weight changes are 

accumulated over an "epoch" before they are applied to the network, where the epoch 

size is a number less than or equal to the number of training data. Standard Delta- 

Rule mode corresponds to an epoch of 1, in this case weight changes are applied as 

soon as they are calculated. 

6.4.6 Radial basis function (RBF) network 

Radial basis function is a statistical transformation based on a gaussian distribution 

function. In principle, they could be employed in different types of models (linear or 

non-linear) and different types of network (single-layer or multi-layer). Radial basis 

function networks can be used for applications such as function approximation, 

pattern discrimination and classification, pattern recognition, prediction and 

forecasting, and process modelling. RBF networks have traditionally been associated 

with radial functions in a single-hidden layer network (133), which is shown in the 

figure 6.4. 

output output layer 

f(X) 

WI Wm 
Wj 

hI(X) hj(X) hm(X hidden iayc 

X1 Xi Xn input layer 

Fig. 6.4: The radial basis function network. 
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Each of n components of the input vector feeds forward to m basis functions, whose 

outputs are linearly combined with weights into the network output. 

In the hidden layer of an RBF network, each PE takes as its input all the outputs of 

the input layer. The hidden PE contains a basis function, which has the parameters of 

centre and distance. Centre is a vector in the input space, which is typically stored in 

the weight vector from the input layer to hidden PEs. A radial distance, d, is used to 

determine how far an input vector is from the centre of the basis function. Typically 

this is standard Euclidean distance. The basis function is a curve (normally Gaussian 

function) which has a peak at zero distance and which falls to smaller values as the 

distance from the centre increases. Therefore the PE gives an output of 1 when the 

input is centred but which reduces as the input becomes further from the centre. 

6.4.6.1 Comparison with Back-propagation 

The radial basis function network is typically used in situations in which using a 

back-propagation network may also be considered. Comparisons of RBF networks 

with BP networks are summarised as follows: 

" RBF trains faster than a BP network; 

" RBF leads to better decision boundaries than BP, especially when used for 

classification and decision problems; 

" The internal representation of hidden layers in RBF has more natural interpretation 

than the hidden layer of a BP network (134); 

" The initial learning phase of an RBF network (135) is an unsupervised clustering 

phase. Therefore important discriminatory information can be lost in this phase; 

"A BP network can give a more compact distributed representation compared with a 

RBF network. 
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6.4.7 Reinforcement network 

Reinforcement learning refers to learning schemes, which proceed by iterating the 

following steps until performance no longer improves. 

"A set of weights is selected in some methodical or semi-random way, 

depending on previously selected and saved weights; 

" The performance of the network is assessed by running the training data 

through the network and evaluating an objective function by a control layer 

(figure 6.5); 

" If the weights show an improved performance, they are saved, replacing the 

previously saved weights; 

Fig. 6.5 The schematic diagram of reinforcement network 
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Reinforcement Networks have the following advantages over paradigms such as 

back-propagation: 

" They can be used when gradient information is not available to drive the learning. 

This means that, unlike BP, reinforcement learning does not have to compute 

derivatives. This feature makes it suitable in a complex system where derivatives 

are difficult to obtain. For example, the performance of a classification network is 

more appropriately evaluated by classification rate rather than by RMS error; 

" They can be used with non-orthodox architectures. For example, cascaded 

connections can be used; 

" They are able to learn their way out of local minima since they can take large steps 

in weight space; 

The main disadvantages are: 

" They are very time consuming; 

" If the initial population is not diverse enough, large regions of the weight space 

may not be searched. 

6.5 Neural network welding modelling 

The main objective of this research is to model the relationship between temperature 

distribution in the weldment and the welding variables. The models should fulfil the 

control requirement of assuring acceptable quality welds (penetration, fusion, bead 

shape). The temperature at a point in the weldment surface can be correlated to the 

joint geometry, welding process variables, and resultant weld quality. In practice 

temperature measurement of a point on the weldment surface during welding is to be 

measured using an infrared sensor. When there is a variation in this point temperature 

compared to that predicted by the model for full penetration, the model must be able 
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fulfil this requirement three approaches to ANN modelling have been taken. These 

are one-to-many modelling, inverse mapping and many-to one modelling which 

are discussed in the following sections. 

6.5.1 One-To-Many (Temperature-To-Welding variables) modelling 

To find the relationship between the temperature measurement and the welding 

variables directly, back-propagation feed-forward neural network models have 

been constructed. After training the models with experimental data, they should 

be able to predict the welding variables for a given workpiece surface temperature 

as measured during welding. The neural network model is to map the input 

(temperature) and output(current, voltage, torch angle, and welding speed), 

therefore the network should have one PE in the input layer, some PEs in a 

hidden layer, and four PEs in the output layer fig 6.6. 

Fig. 6.6 One to four feed forward model. 
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A number of different neural network architectures have been constructed and 

trained. Each of these architectures have then been evaluated with unseen testing 

data. Training and evaluation data sets were as shown in table 8.3 and appendix 2. 

Table 6.1 summarises the minimum error instances or 'best' results from the 

trained networks. 

data type 

(Penetration) 

No. of 

Hidden PE 

Angle 

Error % 

Current 

Error % 

Voltage 

Error % 

Speed 

Error % 

Average 

Error % 

70%-79% 6 12.15 1.65 6.7 3.67 6.04 

80%-89% 8 11.82 1.8 8.15 3.76 6.38 

90%-99% 5 15.55 2.11 6.95 4.1 7.17 

100%-110% 6 9.49 1.33 5.31 3.27 4.85 

Fable 6.1. Result of one-to-four back- propagation models. 

In table 6.2 the range of error when models were tested with validation data are 

shown. 

Data type 

(Penetration) 

Angle Error 

degree 

Current Error 

Amps. 

Voltage Error 

Volt. 

Speed Error 

mm/min 

70%-79% ±6.5 ±6.5 ±3.4 ±31 

80%-89% ±7.3 ±7.3 ±3.1 ±32 

90%-99% ±8.2 ±8.2 ±3.2 ±35 

100%-110% ±5.4 ±5.4 ±2.1 ±28 

Table 6.2. Welding variables error via one-to-lour back-propagation models 

It is clear from the magnitude of the errors that the networks failed to learn the 

functionality required. This is expected because the mapping is ill-defined and 
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there exists an infinite set of possible solutions. It is seen in table 6.3 that 

improved learning is possible, when reinforcement learning incorporating Genetic 

Algorithms (GA) is used. However, this is only a small improvement and does not 

render a reliable functional mapping. One way to achieve a better functional 

mapping may be to increase the number of input parameters to the network 

providing, additional degrees of freedom. The inputs would be provided from 

additional sensors monitoring the process during welding, such as sound pressure, 

weld pool (image), etc. Other input could be joint geometry ( root gap, plate 

thickness, root face, etc. ) which can be monitored prior to welding. Although it is 

conceivable that a network would be able to learn this function with the additional 

input parameters, in reality the incorporation of the additional sensors would 

increase the system complexity, and will reduce the flexibility of the robot 

welding system. 

Another way is to indirectly predict the welding variables corresponding to point 

temperature, such as inverse mapping, or incorporating other intelligent systems 

such as an expert system or fuzzy logic. 

Table 6.3. GRL one - to- four modelling with corresponding depth of penetration. 

No. Type of data % of % of % of % of % of 

(penetration) 
angle current voltage speed average 

Error Error Error Error Error 

1 70%-79% 11.8 1.79 7.56 3.33 6.12 

2 80% - 89% 11.4 1.88 6.6 3.1 5.74 

3 90% - 99% 12.12 2.13 5.3 3.5 5.76 

4 100% - 110% 8.0 1.4 4.6 3.2 4.3 
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In the following sections neural networks with additional input (joint root gap) and 

reverse modelling are illustrated. In the next chapter the addition of a fuzzy logic 

system for control modelling is discussed. 

6.5.2 Two (temperature and root gap) to four (welding variables) 

modelling 

For this modelling purpose data for training and evaluation of the neural network 

models was extracted from the welding experiments in which joint root gap varied 

between 0-1.5 mm. During welding the surface temperature on the plate was 

measured and data was sorted according to root gap and depth of penetration. Welds 

with 100-110 % penetration and the corresponding root gap were selected for training 

and evaluation of the networks, which are shown, in appendix 2. 

Several models with different modelling techniques and architectures have been 

constructed, trained, and evaluated. The summary of evaluation results of the models 

is shown in table 6.4. 

Network 

Type 

Angle 

Error % 

Current 

Error % 

Voltage 

Error % 

Speed 

Error % 

Average 

Error % 

BP 10.8 1.6 5.1 3.1 5.15 

RBF 6.5 1.4 3.8 3.2 3.75 

GRL 7.4 1.5 5.17 3.4 4.3 

Table 6.4. Result of two-to-four mapping models for 100-110% penetration .,. ith 0- 

1.5 mm root gap. 
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The results show that using a two-to-four network incorporating RBF gives a small 

improvement but not sufficient to make it a viable model. With GRL the network 

performance virtually unchanged, and the BP network had inferior performance. 

6.5.3 Reverse neural network modelling 

Reverse modelling is a process that a network undergoes to simplify and facilitate 

pattern recognition by allowing the output level to be stimulated first, and progress 

backward through the network. The system will then show what should be expected 

as an input solution by stimulating the pattern backward (136). 

As discussed in the section 6.5.1, mapping one to many with a neural network model 

is difficult. The association of an input with selection of an output, in a one-to-many 

mapping relationship may required an indirect method based on the inverse mapping 

of a many-to-one trained neural network model. On the other hand, the objective of 

inverse mapping is to generate an input vector corresponding to the desired output 

vector. First the network is trained to learn non-linear many (current, voltage, speed, 

and torch angle)-to-one(point temperature) mapping relationships. This network has 

an input layer with four PEs, some PEs in the hidden layer and one PE in output layer. 

After training the network, the model is modified to be able to map an inverse path. 

This means that the input of the model will be the temperature and the outputs are the 

welding variables for the control of the process. In the following section the 

procedure for the construction of reverse mapping will be discussed further. 

6.5.3.1 Reverse mapping of welding variables and temperature modelling. 

In order to construct the inverse mapping of the many-to-one network the following 

steps were taken. More detail of the method can be found in references (137-138) 

9A back-propagation feed-forward model with the following configuration was 

constructed Fig 6.7 : 
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Four PE in input layer, which receives the welding variables (current, voltage, torch 

angle, and travel speed) as an input; 

Out put 
layer 

Hidden 
layer 

Input 
Layer 

Fig 6.7 Four-to-one feed-forward welding variables-temperature model 

- One hidden layer with six PE;. 

This number was extracted from following equation (115), and by trial and error 

method. 

T 
h= where 5x(m + n) 

h= number of PE in hidden layer 

T, = number of training case 

m= number of input 

n= number of output 

- One PE in output layer, which outputs the temperature of the plate during 

welding; 
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" The Delta-rule for learning rule was selected. 

This rule is based on reducing the error between the actual output of PE and its 

desired output by modifying incoming connection weights. 

" Sigmoid transfer function was selected. 

This is the transfer (activation) function for PE where the output value changes 

continuously from 0 to I over a range of values. PEs with Sigmoid transfer 

function generated graded response. Thus, selection of this function creates more 

"states" for the neural network. 

" The network was trained for 20,000 training iterations, in which the RMS error 

became constant, and the network did not converge any more. 

9 After training the network, all of the weights were fixed. 

"A new input layer with one PE was added to the network below the old input layer 

Fig. 6.8 

Fig 6.8 Inverse model diagram. 
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" the delta learning rule was applied to the old input layer therefore this layer 

became a hidden layer for the modified model. 

"A new training file was made. This file which was a single piece of data, in the 

form of 1, X where X is the measured temperature that we want to find the 

corresponding input variable for. 

" The new network was trained with the single piece of data until the minimum 

output error was obtained 

" When the network converged the weights from the new PE to the old input PEs 

were recorded. These were the values for the new model which give the 

predetermined output for the original model. 

The result of this modelling is shown in table 6.5. 

Evaluation of this model has shown that this method provides improved mapping of 

temperature to welding variables compared with the 1-4 BP, and 2-4 RBF networks. 

The disadvantage of this technique is that it cannot be used for real time control of 

dynamic systems, because for each new temperature the network must retrain to 

calculate the relevant welding variables. 
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No. type of data No. of No. of No. of No. of No. of % of 

(penetration original 
original original original inverse average 

depth) Hidden 
input output training model Error 

PE 
PE PE iteration iteration 

1 70 %-79% 4 6 1 20,000 500 4.9 

80%-89% 4 6 1 20,000 500 5.17 

90%-99% 4 6 1 20,000 500 3.9 

4 100%-110% 4 6 1 20,000 500 3.2 

Table 6.5. Result of reverse modelling. 

6.5.4 Four-to-one (Welding variables-Temperature) neural 

network modelling 

Since 1-4 ( temperature to variables) modelling has not been found to be sufficiently 

accurate, and since reverse neural network control models discussed in the previous 

section are not suitable for real time control in GMAW, an alternative indirect 

approach has been taken. In this approach a four-to-one(welding variables- 

temperature) model is used as a reference model to predict the surface temperature for 

a set of welding variables. A fuzzy logic model is then to be used to compensate the 

welding variables corresponding to the actual temperature measured during welding. 

For this purpose various types of neural network model with different configurations 

have been constructed and evaluated. The modelling techniques used were: 

Backpropagation (BP) network, Reinforcement network with Genetic Algorithm 

(, GA), Radial Base Function (RBF). These modelling techniques, which are 

appropriate for modelling complex and non-linear systems such as welding, have 

been investigated in the following sections. 
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6.5.5 Back propagation welding variables-temperature modelling 

Back propagation models have been constructed trained and evaluated for different 

sets of data. As described in chapter five, data in one set of experiments was 

categorised by percentage of penetration depth, with corresponding welding variables 

and measured temperature for each depth of penetration. The classifications were less 

than 70%, 70%-79%, 80% - 89%, 90% - 99% and 100% - 110%. For each class of 

penetration depth a different model with different configuration has been constructed 

and evaluated. The most appropriate modelling architectures are shown in table 6.6. 

The other back-propagation model properties were kept constant for all of the models 

and are as follows; 

" Learning rule : delta Rule 

" Transfer function: Sigmoid 

" Number of epoch: 16 

9 Data pre-processing: normalising 

" Learning Iteration : 20,000 

" Test Iteration: One pass all of the test data. 

Results for the BP network are shown in table 6.6. 
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No type of data 

(penetration) 

No. of 

input 

PE 

No. of 

hidden I 

PE 

No. of 

hidden 2 

PE 

No. of 

output 

PE 

Temperature 

Error 

% of 

Average 

Error 

1 70 %-79% 4 6 3 1 ± 29-34°C 4.40 

2 80% - 89% 4 6 - 1 ± 31-43°C 4.46 

3 90%-99% 4 6 3 1 ± 36-48°C 5.63 

4 100%-110% 4 6 - 1 ± 25-34°C 3.77 

Table 6.6. Result of Back-propagation modelling 

6.5.6 Genetic reinforcement Learning modelling 

To create a Reinforcement Network the following steps were taken: 

" Select the number of PE for the input layer as 4 (current, voltage, torch angle, and 

welding speed); 

" Select the number of PE for output layer as 1 (temperature); 

" Select the number of PE for the hidden layer, according to equation in section 

6.5.3.1, and by trial and error method; 

" Select a Learning Rule: Genetic Reinforcement Learning (GRL) has been used for 

all the reinforcement modelling. Unlike back propagation learning, GRL does not 

have to compute derivatives. This feature makes it suitable in a complex system 

such as arc welding modelling; 
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Select the Number of Individuals: This should be large enough (50 to 100) to 

provide good starting points to explore most of the weight space (140), Various 

numbers of individuals were tested and the model was found to perform best with 

a value of 60; 

" Select the Transfer function: The choices for selecting the transfer function are: 

Linear, Hyperbolic Tangent, Sigmoid, Exponential Function. Due to non-linear 

relationship, between welding parameters and temperature distribution, the 

Sigmoid transfer function has been selected; 

" Select a training set and a test set from experimental data for training and 

evaluation of the network. 

Results of the GRL models are shown in table6.8. 

Type of data 

(penetration) 

No. of 

Input 

PE 

NO. of 

Hidden 

PE 

No. of 

Output 

PE 

No. of 

Individual 

PE 

Temperature 

Error 

Average 

% Error 

70 %-79% 4 6 1 60 ±32-47 °C 4.89 

80%-89% 4 6 1 60 ±30-40 °C 4.23 

90%-99% 4 6 1 60 ±26-35 °C 4.1 

100%-110% 4 6 1 60 ± 25-36°C 4.09 

Table 6.8. Result of GRL modelling with corresponding depth of penetration. 
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The results show that the welding variables-temperature models developed by 

Genetic Reinforcement Learning technique are able to predict the output (surface 

temperature) for specified welding variables inputs( welding current, welding voltage, 

torch angle, welding speed) with a reasonable degree of accuracy. A problem with 

this modelling technique is that they are very slow in training. 

6.5.7 Radial Base Function (RBF) modelling 

The Radial Basis Function network is usually used for modelling of highly non-linear 

problems (139), such as modelling of welding variables and surface temperature of a 

work piece. The Radial Base Function used in this research is based on the technique 

proposed by Moodey and Darken proposed technique (136). It consists of three 

layers, an input layer, a prototype (hidden) layer and an output layer 

For construction of the feed forward RBF network the following steps have been 

taken: 

" Selection of the number of input PEs as 4 (torch angle, current. voltage, and 

welding speed); 

" Selection of the number of output PE as one (temperature); 

" Selection of the number of prototype PEs, this number cannot be determined in 

advance. The suitable number is found by trial and error method. The network was 

first constructed, trained and evaluated with a small number for prototype PEs, 

then with other network variables kept constant, the number of PEs are increased 

by 10 each time. This was continued until the minimum error was obtained, as is 

shown in figure 6.8, where the number of prototype PEs is 70 and the error is 

minimised as 1.88 % for the case of 100 - 110 % penetration; 
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Fig 6.8 Result of trail and error prototype selection for 100%-110% depth of 

penetration mode. 

" Selection of learning coefficient (0.500). Learning coefficient or learning rate 

can be selected between 0-1. With a large learning rate, a network may 

experience large oscillation during training. In fact, if the rate is too large the 

network may never converge. Smaller rates tend to be more stable, but with 

rates too small, the training of the network takes a very long time; 

9 Selection of the Learning rule as Delta-rule, and transfer function as Sigmoid 

which are appropriate for non-linear mapping; 

" Selection of the training and test data for each model. 

After construction and training the models were evaluated by calculating the 

percentage of error between the network output predicted temperature and the 

actual temperature of the evaluation data set. 

Several models with different configurations for each data set, classified by depth 

of penetration have been constructed, trained for 30,000 iterations(which the RMS 
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error was constant) and evaluated. The result of the most appropriate models are 

shown in table 6.7. 

No. type of data 

(penetration) 

No. of 

input 

PE 

No. of 

prototype 

PE 

No. of 

output 

PE 

Temperature 

Error 

Average 

% 

Error 

1 70 %-79% 4 70 1 ± 19-27°C 2.82 

2 80%-89% 4 70 1 ± 24-33°C 3.5 

3 90%-99% 4 70 1 ± 17-23 °C 2.69 

4 100%-110% 4 70 1 ± 11-16°C 1.88 

Table 6.7. Result of RBF modelling with corresponding depth of penetration. 

Results of evaluation of the models shows that the RBF network can predict the 

surface temperature for a set of welding variables with a good degree of accuracy and 

better than the GRL networks. Also the training time was shorter in comparison with 

other network techniques. Among the above results, the performance of the RBF 

models for 100% - 110% of penetration was considered adequate, and this was 

selected as the final ANN model for the welding control model. This is discussed 

further in the next chapter. 

6.6 Discussion 

In this chapter the effectiveness of using neural networks for process modelling of 

welding variables and temperature distribution was demonstrated. 
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In the preliminary modelling experiment reported by the author, and not included in 

this theses (136), the data used was mixed in terms of depth of penetration. Although 

the result of evaluation of the network was acceptable( the average error for surface 

temperature measurement was ± 28°C), on re-evaluation of the experimental results it 

was found that some of the output temperatures were identical to those from entirely 

different sets of inputs as shown in table 6.9. After sectioning of those joints and 

measuring the depth of penetration it was discovered that when the depth of 

penetration increased due to increasing current or voltage or decreasing the welding 

speed, the temperature on surface decreases probably due to heat loss from the 

backside of the plate. These identical outputs for different inputs make the network 

confused in attempting to find the accurate relationship between input and output. 

Therefore for this research the data was classified according to the depth of 

penetration. This classification makes the models more accurate, and effective, in 

terms of application, because weld depth of penetration may be varied for different 

joint applications. 

Different networks with various mapping techniques have been constructed and 

evaluated. Direct one(temperature) to four (welding variables) models, were not 

satisfactory, probably due to the high non-linearity of welding phenomenon. The 

inverse mapping model has the limitation that the network must re-train every time 

for each new set of inputs. These networks are also not consistent. This is because an 
inverse model will use the trained weights to find a proper set of outputs for the input. 

Therefore it is possible that it will generate different output (welding variables) for 

the same input (temperature). 
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Torch 

Angle ° 

Current Voltage speed temperature 

°C 

Depth of 

Penetration % 

70 380 37 80 733 93 

70 390 47 90 733 77 

90 380 37 85 733 102 

110 400 37 80 733 110 

70 380 37 85 687 65 

70 390 37 80 687 103 

70 400 42 80 687 107 

70 400 47 90 687 78 

110 390 37 85 781 102 

110 400 37 90 781 85 

Table 6.9. Some identical temperature measurements with different welding input 

(from136) 

The non-direct approach for predicting the appropriate sets of welding variables 

for specific surface temperature measured during welding was found to be more 

suitable for achieving the objective of this research. This approach is to use a four 

to one neural network model to predict the temperature for corresponding welding 

variables, in conjunction with a fuzzy logic system, to compensate the welding 

variable due to variation of the temperature during welding. In order to select the 

most suitable network technique and architecture, different types of network with 

various configurations have been constructed and evaluated. 
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The result of evaluation of the networks shows that the Radial Basis Function 

(RBF) network achieves the minimum error. The average error of temperature 

prediction via the network is ±13°C (1.88%) which is considered acceptable for 

controlling the welding variables via fuzzy logic rule base system discussed in the 

next chapter. 
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Chapter Seven Neuro-Fuzzy Control Model 

7.1 Introduction 

This chapter describes the application of a control model using neural network and 

fuzzy logic modelling to control a Gas Metal Arc Welding process. These control 

models may be used to improve weld quality, by adjusting the controllable welding 

variables in response to changes in workpiece surface temperature measured at a 

point adjacent to the weld line during welding. Neural network modelling, described 

in the previous chapter, was employed to develop a reference model of temperature in 

relation to welding variables. The fuzzy logic model is used for compensating 

welding variables when the temperature in the surface is varies from that predicted by 

the reference model. 

Design of the Fuzzy Logic model is described in section 7.3. Development of the 

Neuro-Fuzzy control model is then discussed in section 7.4. In section 7.5 the control 

model is evaluated and the performance of the models discussed. Fuzzy modelling 

has been confined to achievement of 100-110 % penetration. 

7.2 Welding control model 

The most important quality feature in butt welding is the depth of penetration. Unlike 

bead width, height, and toe angle which can be measured in process from the top face 

of the joint, the penetration can only be measured directly from the back face, this is 

often difficult or impossible. Therefore non-direct methods as discussed in chapters 

three and four have been researched and developed. 

The quality characteristics of a fusion welded joint are strongly dependent on the 

amount of heat transferred to the base metal. The temperature distribution in the top 

surface of the joint is a function of the heat input. ANN models of the relationships 
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between the temperature at a point in the surface of the workpiece, satisfactory depth 

of penetration, and the welding variables that achieve them have been developed. The 

application potential for control using these models is significant since, unlike many 

other top surface monitoring methods, it does not require sensing of the highly 

transient weld pool shape or surface. As is discussed in the previous chapter it has 

proved difficult for neural network models to directly map the surface temperature 

and the four controllable welding variables. For this reason the control model 

developed in this research consist of two parts; 

"A Neural Network model which is used as a reference model and predicts the 

point temperature on the surface of the workpiece corresponding to a set of 

welding variables. 

9A Fuzzy Logic control model which regulates the welding variables, depending 

on the difference between the neural network's temperature estimation and the 

actual point temperature measured by an infrared sensor. 

The integrated Neuro-Fuzzy control model compensates the welding variables to 

achieve the desired weld quality as indicated by the depth of penetration. The design 

of the Fuzzy Logic rule base control model is discussed in the next section. 

7.3 Fuzzy logic control model 

Using the top surface temperature measured, via an infrared sensor, to control the 

welding variables with a dynamic mathematical model or a neural network model, as 

discussed in chapters four and six does, not guarantee sufficiently accurate control 

performance. This is mainly due to the highly non-linear nature and complexity of 

GMA welding. One approach to this problem is to apply fuzzy modelling which is 

appropriate for controlling a complex and non-linear process such as GMA welding 

(141). Fuzzy rule-based control can realise heuristic rules obtained from human 

experiences which cannot be expressed in mathematical form. and does not require a 

large amount of computation time as would traditional adaptive algorithms (142). 
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The fuzzy logic model will compensate the welding variables to provide acceptable 

control performance at different welding conditions. The block diagram of the fuzzy 

logic control model is shown in figure 7.1 The system consists of fuzzification, 

inference engine, control rules and defuzzification. The inputs to the model are the 

temperature difference (OT) between measured temperature and that predicted by the 

neural network reference model described in chapter 6, and the initial welding 

variables which are discussed in the following sections. 

TIM easured) 

TI F redicted) Comparison 

T 

Initial welding Fuzzification 

variables 
t tit 

Inference Control 

rules 

[Deflizzification] 

11 1 VISA 

Fig 7.1 Block diagram of fuzzy controller 

7.3.1 Comparison of temperature 

The variation between the surface point temperature Tp predicted for the set of 

welding variables by the neural network model, and temperature measured T,,, via the 

infrared sensor is calculated. If this is outside the predefined allowable range an error 

message is passed to the fuzzy model. At the same time an error message may inform 
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the operator of the condition to prompt him to check for possible causes of error such 

as sensor position, wrong welding position, or inaccurate setting of initial welding 

variables. 

7.3.2 Fuzzy model input variables 

In the proposed model five input variables (antecedent): difference in temperature 

(AT= T. - Tn), initial welding current (I1), initial welding voltage (VI),, initial torch 

angle (A, ),, and initial welding speed (SI), have been selected. Four output variables 

(consequent) have been chosen which are: welding voltage (V), welding current (I), 

travel speed (S) and torch angle (A), which are predicted corresponding to the 

difference in temperature AT and the initial welding input variables. 

7.3.3 Fuzzification 

The process of fuzzification converts an input value into linguistic terms and 

determines the corresponding grade of membership for that value. For example, an 

input welding speed can be fuzzified into a fuzzy set with members LOW for 800 

mm/Min, MEDIUM for 850mm/min, and HIGH for 900 mm/min. Fuzzifying 

requires specifying membership functions, one for each fuzzy set member. 

Fuzzification of difference in temperature sets are defined as follow: 

BN : big negative 

N: negative 

NC : no change 

P: positive 

BP: big positive 
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For other input variables to the model, current, voltage, welding speed and torch 

angle only 3 fuzzy subsets are defined as follows: 

L: low 

M: medium 

H: high 

The numerical values of these levels are the same as for the actual welding variables 

used for the welding experiments reported in this research. 

To achieve a good control performance via a fuzzy model, close partitioning of fuzzy 

sets are advantageous. On the other hand when partitioning is increased, especially in 

multi-input variables, the number of rules increases. 

As described in chapter 3, different types of membership function have been used in 

fuzzy logic control models. The Triangular membership function, spaced equally, 

(fig. 7.2), which is popular with fuzzy logic practitioners (143), has been used for this 

research due to its simplicity. 

Low Medium High 

----- - i i K- 

---------- i 

380 385 390 395 

Fig 7.2 Current as Input (antecedent) variable. 
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For output (consequent) variables ( current, voltage, welding speed, and torch angle) 

five levels with triangular membership function (fig. 7.3) have been defined as 

follows: 

VL : very low 

L: low 

NC : no change 

H: high 

VH : very high 

1 
1 
1 
1 

NC H VH 

--T------T------71 III 

380 385 390 395 

Fig. 7.3 Current as an output(consequent variables). 

7.3.4 Fuzzy operator 

400 

In fuzzy logic where computation of imprecise knowledge is concerned, the linguistic 

operations, such as AND, OR and NOT, use different mathematical operators. The 

basic operations in fuzzy sets include: 
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" Intersection of Sets :a new set is generated from the intersection of two given 

sets A and B, if the new set contains exactly those elements that are contained in 

AAND in B. 

" Unification of Sets :a new set is generated from unification of two given sets A 

and B, or B and A, if the new set contains all elements that are contained in A OR 

in B or in both. 

" Negation of Sets: a new set containing all elements which are in the universe of 

discourse but NOT in the set A, the negation of A. 

Zadeh (144) suggested the minimum operator for the intersection and the maximum 

operator for the union of two fuzzy sets. It is easy to notice that these operators 

coincide with the crisp unification and intersection if membership degrees consider 

only 0 and 1. 

7.35 Rule base 

The rule base consist of a set of rules which is used to formulate and represent expert 

knowledge in the form of : 

IF (condition or antecedents) 

THEN (conclusion or consequence). 

Each rule has two essential parts, the condition or antecedents and the action or 

consequences. The rule can be a single or multi condition. The number of rules 

depends on the number of input variables, and corresponding number of membership 

functions. In the fuzzy logic welding control model the rules are in the form of. IF a 

set of input variables, (AT, I; , V;, Si 
, A; ) THEN output one modified variable, (Ip or, 

V, or, S, or, Ar). Rules have been extracted from the experimental welding data using 

the author's experience. In each rule fired, the set of 5 inputs causes one of the 
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variables to be output. A total of 327 rules have been developed and are included as 

appendix 3 

7.3.6 Inference system 

A fuzzy inference system is the actual process of mapping from a given input to an 

output. The process applies membership functions, fuzzy logic operators and if-then 

rules. As shown in fig 7.4 the system stores separate fuzzy rules and fires in parallel 

the set of 4 rules that give the 4 output variables, that apply for the given set of inputs. 

I 

Rule 1 
O, 

02 
Rule 2W 

Defuzzifier 

" Oi 
L 

Rule i 

LLý LL LLI 

Fig. 7.4 Fuzzy system architecture. 
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In the figure 7.4 T, I. V, S, and A are the fuzzy system inputs. Each rule which is 

fired transforms only one variable and outputs its new linguistic value O; 
.W 

is a set 

of predicted welding variables (current, voltage, travel speed and torch angle) in 

linguistic form. This process is known as Mamdani's fuzzy inference method and is 

the most commonly applied fuzzy methodology for control systems. In this method 

the fuzzy sets from the consequent of each rule are combined through the aggregation 

operator, and the resulting fuzzy set is defuzzified to yield the output of the system 

(145). 

7.3.7 Defuzzification of fuzzy set 

Def izzification is the calculation of a crisp numerical value as the output based on the 

linguistic result. The input for the defuzzification process, as shown in fig 7.4, is the 

fuzzy output which resulted from aggregation of the rules output. Output of the 

process is a crisp number. The process of defuzzification in fuzzy logic control 

systems is not standardised (146). There are several methods in use such as: 

" average of maximum (maxav); 

" centre of the area; 

" largest of maximum; 

" smallest of maximum. 

Alternatively, rules may be written to implement almost any desired defuzzification 

scheme. 

Perhaps the most popular defuzzification method is the centre of area method (145), 

which calculates the centre of gravity of the distribution for the control action. In the 

modelling discussed in this research the centre of area method is employed for 

defuzzification. 
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7.3.8 Evaluation of fuzzy model operation 

Evaluation of the operation of fuzzy model for controlling the welding variables has 

been conducted based on an examination of the model performance for sets of 

constant input welding variables (initial welding current, initial welding voltage, 

initial welding speed, initial torch angle), and difference in temperature. The model 

prediction of welding variables should be the same values as the initial input 

welding variables to the fuzzy model when the temperature difference is within ± 13 

°C, the allowed sensor / ANN error. The inputs of the model are listed as follows: 

Temperature difference: - 100°C - +100°C 

current: 385 Amp. 

voltage: 40 Volt. 

welding speed: 850 nun/min 

torch angle: 90° 

For evaluation purposes the torch angle was kept constant. This is due to the 

limitation of the available MATLAB fuzzy logic software, which has a restricted 

range for number of outputs and number of rules. Therefore the less important 

welding variables were selected to be constant for evaluation purposes. This problem 

can be overcome by rewriting the fuzzy logic software or purchasing professional 

fuzzy logic software. Results of evaluations are shown in table 7.1. 

As shown in table 7.1, the predicted welding variables are close to the initial welding 

variables when the temperature difference is in the range of ±13°C. The model should 

propose modified welding variables except when the temperature difference is within 

±13°C. Also it can be seen that when AT is greater than ±13°C the output variables 

from the model are in the correct order. That is, when penetration is low as indicated 

by negative AT ( Tm< Tp) the set of output variables causes an increase in heat energy 
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per unit volume of weld metal. The converse applies for positive AT. Therefore, the 

operation of the fuzzy logic model was considered to be satisfactory. Section 7.6 

describes evaluation of the accuracy of output variables. 

Temp. 

Difference 

°C 

Initial 

Current 

Amp. 

Initial 

Voltage 

Volt 

Initial 

Speed 

mm/min 

Initial 

Angle 

degree 

Predicted 

Current 

Amp. 

Predicted 

Voltage 

Volt 

Predicted 

Speed 

mm/min 

Predicted 

torch 

angle ° 

-100 385 40 850 90 399 47 800 90 

-80 385 40 850 90 397 46 810 90 

-60 385 40 850 90 396 46 805 90 

-40 385 40 850 90 395 42 800 90 

-20 385 40 850 90 393 41 820 90 

-10 385 40 850 90 388 41 830 90 

0 385 40 850 90 385 40 850 90 

10 385 40 850 90 385 40 860 90 

20 385 40 850 90 385 40 860 90 

40 385 40 850 90 384 39 870 90 

60 385 40 850 90 383 39 900 90 

100 385 40 850 90 380 37 900 90 

Table 7.1 Evaluation of fuzzy logic model. 
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7.4 Neuro-fuzzy control model 

The Neuro-fuzzy welding control model consists of the following programmes: 

" Neural Network Model to predict the surface temperature expected for a set of 

initially set welding variables: 

" Analog to Digital conversion to convert the analog infrared sensor output to 

digital input to the control mode; 

a Fuzzy logic model to compensate the welding variables according to the 

difference in temperature between that predicted by the neural network model and 

the surface temperature measured via the infrared sensor. 

The flowchart of Neuro-fuzzy Control Model is shown in figure 7.5. In order to 

integrate the above programmes into the welding process, software has been written 
in C++. This is described in the next section. 
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Fig. 7.5 Neuro-Fuzzy control model flowchart. 

7.4.1 Control model software 

The software was written for the evaluation of the Neuro-Fuzzy Control Model. For 

evaluation of the model, the software operates as follows: 

The user enters the required depth of penetration into the software. Although 

most welded parts require 100 percent depth of penetration, some low or non- 

load bearing structures may not require 100 percent penetration. A family of 4 
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neural network models covering the range of weld penetration 70-110% is 

available in the control model. 

2. The nominal values of the initial welding variables (current, voltage, welding 

speed, and torch angle) are entered. These values should be within the range 

of the experimental welding variables as described in chapter 5. 

3. The software then executes the neural network model, and prints out the 

predicted surface temperature. The temperature is also communicated to the 

comparator. 

4. Welding is then initiated, the infrared sensor measures and displays the point 

surface temperature on screen and communicates this to the comparator. The 

sensor records temperature measurement along the welding line at 10 mm 

intervals. For the purposes of the research the software was programmed to 

ignore the first five and last two records in which instability of welding may 

be present, and average the remaining measurements. 

5. The comparator subtracts the average temperature measurement from the 

neiural network predicted temperature and displays the result on a screen as a 

"temperature difference". 

6. In this stage if the temperature difference is less than ± 13°C (the neural 

network error, chapter 6) welding will continue without adjustment in welding 

variables. In this case, the depth of penetration should be the same as initially 

selected. If the temperature difference is more than ±13°C, then the Fuzzy 

Logic model is applied to adjust the welding variables. 

To control the weld penetration in real time in a production situation the sampling of 

surface temperature would be modified as following: 
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" The model will activate when the arc is struck and after a short delay, say 5 

seconds, to allow arc and thermal condition to stabilise, surface temperature 

would then be measured every 10 mm. 

" The Neuro-Fuzzy control model would perform on the data received at these 

intervals. 

7.5 Fuzzy logic control model 

As described in the previous section the Fuzzy Logic model is applied if the 

temperature measurement was 13°C more or less than the temperature predicted via 

neural network. The Matlab Fuzzy Logic Toolbox has been used to construct the 

fuzzy system model as described earlier in this chapter. At this time, due to 

limitations in the Matlab compiler software, the fuzzy model can not be integrated 

into the control model software, therefore the operator has to enter the inputs to the 

fuzzy model through the keyboard in the following steps. 

From the Matlab command window the model will be loaded from disk using 

the "readfis" command. This command reads a fuzzy inference system from a 

*. fis file on the disk and brings the resulting file into the workspace. The 

syntax for this command is: 

a= readfis(`filename') 

2. The command "evalfis" will be used for evaluation of fuzzy inference. This 

function computes the output vector of the fuzzy inference system. The syntax 

for this command is: 

Output = evalfis([temperature difference; current; voltage; speed; torch angle], a) 

Where "a " is the fuzzy model, which has been loaded, and the welding variables are 

as described in previous sections. 
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After the operator enters the input to the 'evalfis' function the model calculates the 

output which is the set of new welding variables to achieve welds with 100 % depth 

of penetration. 

7.6 Evaluation of neuro-fuzzy control model 

A number of experiments have been conducted for the evaluation of the model for 

100-110% penetration. These experiments include the evaluation of models for 

workpieces with zero root gap, 1mm root gap, and variable 1.5mm -0 root gap,. The 

remaining joint geometry of workpieces was kept constant as described in chapter 5. 

The general procedure for evaluation of models was the sequence of steps as follows; 

1. Select welding variables randomly from the experimental welding data that 

did not produce welds with 100-110% depth of penetration. 

2. Follow steps 1 to 6 as described in section 7.4.1 inputting 100% at step 1. 

3. The weld was examined for depth of penetration. If depth of penetration was 

between 100% - 110% and temperature difference was within ±13°C, then 

evaluation was stopped and the result recorded. Otherwise the evaluation was 

continued. 

4. The average temperature difference, along with the welding variables, were 

entered into the fuzzy logic model (evalfis function in Matlab command 

window) to predict the new welding variables to achieve 100 -110% depth of 

penetration. 

5. The procedure of 7.4.1 was followed using the fuzzy logic model predicted 

welding variables. 
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6. If the depth of penetration was less than 100% then the original weld and the 

new weld were sectioned, polished, and etched to enable measurement of the 

depth of penetration. 

The evaluation of models and their result are described in the following sections. 

7.6.1 Evaluation of models for joint with zero root gap. 

For this evaluation the fixed welding variables, including joint geometry, plate 

thickness, and type of material, were the same as those used in the welding 

experiments carried out to provide training data for the neural network modelling as 

described in chapter 5. The evaluation experiments were conducted in two series 

following the procedure described in the previous section. In the first series the 

welding process was carried out with selected initial welding variables. In table 7.2 

the initial welding condition, along with the resultant depth of penetration, are shown. 
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Exp. 

NO. 

Torch 

angle 

Current 

Amp. 

Voltage 

Volt. 

Speed 

mm/min 

N. N. 

Temp. °C 

Measured 

Temp. °C 

AT 

°C 

Penetration 

% 

1 90 385 40 900 736 777 41 67% 

2 90 383 37 860 730 682 - 48 83.5 % 

3 90 380 37 900 732 733 1 88.5 % 

4 90 390 37 850 728 664 -64 95% 

5 90 390 40 900 745 746 1 98.6% 

6 90 380 42 900 735 828 93 75 % 

7 70 385 40 900 716 694 - 22 86.5% 

8 70 390 37 850 712 689 -23 92% 

9 70 400 42 900 714 738 24 84.5% 

10 110 385 40 900 751 807 56 67% 

11 110 390 37 850 776 740 -36 73% 

Table 7.2 Initial welding data 

For the second series of experiments the temperature difference (AT) along with the 

initial welding variables were entered as an input to the fuzzy logic model. The 

welding variables which the fuzzy logic model predicted were then used for the 

second series of the welding experiments. The welding variables predicted by the 

fuzzy logic model along with resultant depth of penetration are shown in table 7.3. 
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Exp. 

NO. 

Torch 

angle 

Current 

Amp. 

Voltage 

Volt. 

Speed 

mm/min 

N. N. 

Temp. °C 

Measured 

Temp. °C 

AT 

°C 

Penetration 

% 

1 90 387 41 850 769 772 3 102% 

2 90 395 39 810 755 743 -12 105% 

3 90 * * * * * * 88.8% 

4 90 395 38 820 733 730 3 108% 

5 90 * * * * * * 98.6% 

6 90 383 37 870 730 714 -16 100% 

7 70 395 39 820 704 701 -3 110% 

8 70 393 39 820 704 702 -2 109% 

9 70 390 38 830 710 704 -11 104% 

10 110 389 38 870 768 780 12 98% 

11 110 395 37 820 753 747 -6 100% 

*: Workpiece for which the welding variables were not modified due to the value of 

temperature difference being within ±13°C. 

Table 7.3 Modified welding variables with resultant depth of penetration. 

In figure 7.6 the cross section of the weld in experiments 1,6, and 10 with initial and 

optimised welding variables are shown. 
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Experiment 10 final 

Fig. 7.6 the cross section of the weld in experiments 1,6, and 10 
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For experiments 3,5, and 10. it was necessary to section, polish, and etch the joint to 

reveal the depth of penetration. In experiments 3.5, the average temperature 

difference was within the acceptable range of ±13°C and was repeated with the same 

welding conditions. Closely similar penetration was achieved. According to the 

neural network model 100-110% penetration should have been achieved according to 

value of AT but experiments 3 and 5 did not do so. Experiment 5 may be considered 

to be within the margin of experimental error. However experiment 3 which showed 

only 88.5% penetration needs explanation. It is first noted that the conditions of 

experiment 3 were the extreme condition of the test at which the penetration would be 

expected to be minimum. Also there was no similar set of input variables in the neural 

network training data set for 100-110% penetration. The remaining experiments 

produced results in which temperature difference was greater than ±13°C and hence 

the fuzzy model was invoked. All results showed an improvement in penetration to 

the desired level except experiment 10 where, however, the penetration achieved is 

considered to be within the margin of experimental error. 

The temperature differences between neural network prediction and sensor 

measurement, and the measured depth of penetration for initial and final welding 

experiments are shown in figures 7.7 and 7.8 respectively. These graphs indicate that 

the Neural Network model prediction and fuzzy logic welding variable modification 

model can control the quality of welding with reasonable accuracy. 

140 



Chapter 7 

120 

ä 100 
91 

P 
80 

ö 
-f-initial "Temp. difference 

60 final temp. difference 
ý 40 
a 
E 20 

0 
1234567891011121314 

Experiment 

Fig 7.7 Temperature differences in Initial and final welding experiments 
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Fig 7.8 Depth of penetration in initial and final welding experiments 

7.6.2 Evaluation of models for joint with root gap. 

The Neuro-fuzzy Control Model was designed for joints with 60° Vee preparation 

and zero root gap. However due to misfit of the joints during assembly or distortion 

during welding a root gap may appear in the joint. To evaluate the models capability 
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of dealing with such a problem two sets of experiments were conducted. In the first 

set of experiments a constant 1 mm root gap was included in the test pieces, and in the 

second set of experiments the root gap was varied between 0-1.5mm. These 

experiments are described in the following sections. 

7.6.2.1 Evaluation of models with 1mm root gap 

The plates for these experiments were tacked together with 1 mm root gap. The other 

joint geometry remained as described in chapter 5. A number of experiments were 

conducted with initial welding variables, chosen from those previously used for 

closed butt joint experiments and which had achieved less than 100 % depth 

penetration (75-85%). This was to assure that burn through of an open joint was 

unlikely to occur. As described in the previous section, final welding variables were 

determined through application of the neural network model, to predict surface 

temperature, and the fuzzy logic model. For these open root gap experiments the 

membership functions of the fuzzy logic model required modification in order to 

provide accurate prediction of welding variables. The modifications included changes 

to the range and number of linguistic terms in the model outputs, as follows: 

Output variables Zero root gap l mm root gap 

Voltage range 37 - 47 volt. 

Voltage linguistic terms 3 (L, M, H) 

Current range 

Welding speed range 

380 - 400 Amp. 

800 - 900 mm/min 

30 - 40 volt 

5 (VL, L, M, H, VH) 

350 - 400 Amp. 

500 - 900 mm/min 
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In table 7.4 the values of the initial welding variables with resulting depth of 

penetration are shown, and photographs of joint cross sections are shown in figure 

7.9. It is clear that these conditions produce excessive penetration. 

Initial values of welding variables 

Exp. 

NO. 

Torch 

Angle 

Current 

Amp. 

Voltage 

Volt. 

Speed 

mm/min 

Measured 

Temp. °C 

N. N. 

Temp. °C 

Prediction 

Ave. 

AT 

. °C 

Penetradon 

% 

1 90 380 37 900 677 732 -55 135% 

2 90 380 47 900 848 745 103 153 % 

3 90 380 40 850 820 736 84 142 % 

4 90 395 37 800 640 720 -80 168% 

Table 7.4 Results of experiments on workpieces with 1 mm root gap using initial 

welding variables 

For the second set of experiments workpieces with the same joint geometry were 

used. The modified welding variables predicted by the fuzzy logic model were used 
for welding. The final welding variables with the resulting depth of penetration for 

each experiment are shown in table 7.5. Photographs of the initial and final joints 

from the experiments I and 4 are shown in figure 7.9 

As can be seen, the weld produced, using the values of variables predicted by the 

neuro-fuzzy model exhibit, satisfactory penetration. Figure 7.10 shows the 
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comparison of penetration achieved using uncontrolled and fuzzy controlled 

variables. 

Experiment 1 initial condition 

Experiment 4 initial condition 

Experiment 1 final condition 

Experiment 4 final condition 

Fig. 7.9 cross-sections of joints welded with initial and fuzzy model output welding 

variables in experiments 1 and 4. 
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Fuzzy model prediction variables 

Exp. 

NO. 

Torch 

angle 

Current 

Amp. 

Voltage 

Volt. 

Speed 

mm/min 

Penetration 

% 

1 90 360 31 570 105% 

2 90 362 30 830 108% 

3 90 362 31 830 102% 

4 90 362 31 590 110% 

Table 7.5 Results of experiments on workpieces with 1 mm root gap using output 

variables from Fuzzy Logic model. 

As indicated in table 7.5, the depth of penetration was improved to the required level 

using new predicted welding variables through fuzzy logic models. In figure 7.10 the 

resultant depth of penetration in the initial and final experiments are shown. 

180 

160 

= 140 

120 

100 -4 - initial penetration % 

M 80 -Ffmal penetration % 

= 60 
ä 40 
Ca 20 

0 

12145 

Experiments 

Fig. 7.10 Depth of penetration in initial and final experiments on workpieces with 

I mm root gap. 
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7.6.2.2 Evaluation of model for joint with a0-1.5mm root gap 

An experiment was carried out to test the ability of the neural network model when 

changes occur in the workpiece gap during welding. 

For this purpose workpieces were tack welded together to have a varying root gap 

between zero and 1.5mm. A number of tests were conducted with randomly selected 

welding variables. The welding variables and the resultant depth of penetration for 

one set of experiments is shown in table 7.6. The cross section of the weld is shown in 

figure 7.11. Figure 7.11 a is the longitudinal cross section of the weld. Figure 7.11 b is 

drawn from measurements taken from micro examination as described in section 

5.2.2. 

No. Gap 

mm 

Torch 

Angle 

Current 

Amp. 

Voltage 

Volt. 

Speed 

mm/min 

N. N. 

Predicted 

Temp. °C 

Measured 

Temp. °C 

AT 

°C 

Penet. 

% 

1 1.35 90 400 42 850 835 730 -105 156 

2 1.27 90 400 42 850 835 754 -81 150 

3 1.12 90 400 42 850 835 762 -73 138 

4 1.05 90 400 42 850 835 785 -50 130 

5 0.97 90 400 42 850 835 784 -51 112 

6 0.82 90 400 42 850 835 782 -53 112 

7 0.75 90 400 42 850 835 819 -16 106 

8 0.67 90 400 42 850 835 828 -7 106 

9 0.52 90 400 42 850 835 840 5 100 

10 0.45 90 400 42 850 835 767 -68 90 

11 0.37 90 400 42 850 835 754 -81 80 

Table 7.6 Welding variables with results for a workpiece with 0-1.5mm-root gap 
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Fig. 7.11 cross section of weld with 0-1.5mm root gap. 
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Fig. 7.12 Relationship between temperature difference and depth of penetration 

when the root gap varies between 0-1.5 mm. Welding variables are as in table 7.6. 
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Fig. 7.13 Relationship between temperature difference and depth of penetration 

when root gap varies between 0-1.5mm. 
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Fig. 7.14 Relationship between temperature difference and depth of penetration 

when root gap varies between 0-1.5mm. 
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The results of these experiments show that the difference in neural Network 

temperature prediction, and measured surface temperature during welding is still a 

good indication for depth of penetration when the root gap varies substantially. It 

can be seen from table 7.6 and figure 7.11 to 7.14 that AT at first increases as the 

gap reduces but as the gap approaches zero AT then reduces. This is accompanied 

by progressive change in penetration from large excess penetration to less than 

complete penetration. At one extreme, with, large excess penetration, heat flow is 

approximately 2D and, also, energy efficiency is reduced due to increased 

radiation losses thus reducing the temperature at the joint surface. At the other 

extreme energy is insufficient to cause penetration and heat flow is approximately 

3D which increases conduction of heat into the work material away from the 

surface. 

7.7 Discussion 

In this chapter the construction and testing of the fuzzy logic model is described. 

The fuzzy logic model has five inputs (temperature difference between neural 

network prediction and measured temperature, and initial welding variables of 

current, voltage, travel speed and torch angle). The model has four outputs: 

current, voltage, welding speed and torch angle. These outputs are the models 

prediction of welding variables to produced a weld with 100-110 % depth of 

penetration. 

Initially only temperature difference was selected as the model input. This model 
failed in the case when the initial values of the welding variables gave heat input 

in excess of that needed to produce a weld with 100% penetration. Therefore the 

arc burned through the plate, decreasing the temperature on the surface of the 

plate. The measured temperature was then less than the temperature predicted by 

the neural network model. On the other hand if the values of welding variables 

were selected lower than needed to produce a weld with 100 % penetration, the 

measured temperature is also lower than the predicted temperature. In the first 

case the welding variables (current, voltage) should be reduced, while the latter 

case the welding variables (current, voltage) should be increased. The model could 
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not differentiate these cases by the temperature difference alone. Therefore, the 

initial welding variables together with temperature difference were selected as 
inputs to the models. 

The neuro-fuzzy control model (NFCM) was developed for controlling the weld 

depth of penetration by measuring a point surface temperature on the weldment 

during welding. For this purpose a software was written to integrate the sensor 

measurements and neural network models. However, at this time, the fuzzy logic 

model could not be integrated with the software due to problems in the Matlab C 

compiler, which was not able to convert the fuzzy logic command into C++ 

language. Therefore the fuzzy logic model was run in a separate window. 

The neuro-fuzzy control models were evaluated by welding experiments. These 

experiments were conducted to cover different possibilities, which may have 

occurred during welding. 

The depth of penetration in the workpiece was compared with initial welding 

variables and modified welding variables, as predicted by the fuzzy logic model. 

Results of the experiments show that the models are able to use surface 

temperature to monitor penetration being achieved to an acceptable level of 

accuracy. If acceptable penetration is being achieved the neural network model 

alone will detect this state. If penetration is outside the acceptable limits, in this 

research 100-110%, then the fuzzy logic model is invoked to output modified 

welding variables which will achieve the acceptable penetration. 

Experiments were carried out on workpieces with different root gaps. These 

experiments show that that the neural network model for zero root gap is capable 

of indicating the state of penetration in the presence of substantially varying gap. 
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Chapter Eight Discussion and associated results 

8.1 Introduction 

In this chapter the characteristics of the welding control models will be discussed, and 

compared with theoretical models. In addition, this chapter will discuss and compare 
the merits and limitations of infrared temperature measurement and theoretical and 

neural network modelling prediction of surface temperature, to support the selected 

methodology in this research. In section 8.3 the empirical relationship between 

surface temperature and weld bead geometry will be discussed and the results 

compared with theoretical predictions of weld bead geometry. This chapter will 

conclude with an overall evaluation of the neuro-fuzzy control model. 

8.2 Theoretical surface temperature prediction 

As described in chapter four, much research has been undertaken in attempts to 
develop a mathematical model to predict the heat distribution during GMA welding. 
In order to understand the capability of a neural network model for prediction of top 

surface temperature of a workpiece during welding, the following section compares 
the results of theoretical temperature calculations with actual temperature 

measurement obtained via an infrared sensor, and with the neural network 
temperature prediction. 

8.2.1 Surface temperature calculation 

In order to calculate the temperature T at a spot in the top surface of a joint during 

welding the following steps were taken. 
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" The actual arc current and voltage was calculated using the equation 

determined by calibration of the robot controller and welding power supply as 

described in section 5.5. 

V1 = 15.3+ 0.367 V2 [1] 

and I1=7+0.85I2 [2] 

Where VI and II are the actual voltage and arc current value and V2 and I2 

are the voltage, and current value set in the robot controller. 

" For full penetration welding the equation for 2D heat distribution is applied 

(see section 4.3). 

v(r - x) 

T-q e[ 2a 
4ý 

ý3ý 

" for welds with partial penetration the equation for 3D-heat distribution is 

applied, (see section 4.3). 

v(r - x) 
q T= e 2a [4ý 

2mix 

Where xy are the co-ordinates of the measured spot from the centre of the heat source 

(m) as shown in figure 8.1, T is the spot temperature (°K), a is the thermal diffusivity 

(m3 s"1), v is the welding speed in the y direction (m s"i), k is the thermal 

conductivity, q is the heat input to the welding which is: 

q=, (vxl) [51 
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Where i is the efficiency (section 4.4), V is voltage, and I is arc current, and r is the 

radius of the circle around the heat source (m) (fig 8.1). 

v 
Welding 

x 
Heat source 

rU 

Measuring 

spot 

Fig. 8.1 Position of temperature measurement. 

In figure 8.2 the relationship between heat input and calculated 3D surface 

temperature is shown and compared with the temperature measured with a calibrated 

infrared sensor. As shown in table 8.1 welding current and voltage only were varied, 

other welding variables remained constant. As would be expected spot temperature 

increases with increasing heat input. As can be seen the measured temperatures do not 

correlate with calculated values nor do they show a linear relationship with heat input. 

This is due to simplification in the calculations and the dependence on estimation of 

arc efficiency (q). 
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Figure 8.2 Relationship between heat input and surface temperature for the welding 

condition shown in table 8.1. 

No. Torch angle Current 

(A) 

Voltage 

(V) 

Welding 

Speed mm/min 

1 90 400 37 800 

2 90 390 37 800 

3 90 380 37 800 

4 90 400 42 800 

5 90 390 42 800 

6 90 380 42 800 

7 90 400 47 800 

8 90 390 47 800 

9 90 380 47 800 

Table 8.1 Welding variables for comparison between calculated and measured 

temperature. 
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In figure 8.3 the relationship between welding speed and calculated and measured 

surface temperatures are demonstrated. Other welding parameters (current 380, 

voltage 37 and angle 90°) were maintained constant. 
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Figure 8.3 Effect of welding speed on surface temperature. 

As would be expected figure 8.3 shows that the surface spot temperature decreases as 

welding speed is increased. Again the measured temperatures are less than the 

calculated values, for the reason previously explained. 
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8.3 Comparison of neural network prediction with measured 

Temperature 

The temperatures predicted by the neural network model for full penetration welding 

and the measured temperatures for the same welding conditions are shown in fig. 8.4. 

For this comparison the neural network validation data have been used (appendix 2). 
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Figure 8.4 Comparison between measured and Neural Network predicted 

temperature. 

It can be seen that the predictions of surface temperatures by the neural network 

model are close to the measured temperatures. An ideal model should predict the 

surface temperature without any error. However, for a non-linear complex system 

such as welding this is virtually impossible. In the neural network modelling the goal 

has been to minimise the error through experimenting with different modelling 

techniques, and model architectures. 
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Experiments have been conducted to compare the predictions of the trained neural 

network with measured spot temperature when 100-110% depth of penetration was 

achieved. The result of these experiments, which used combinations of welding 

variables not included in the training or validation data of the model, are shown in 

figure 8.5. 
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Fig. 8.5 Comparison of measured and predicted temperature for 100-110% 

penetration. 

The model has predicted temperature to within 0.4 - 1.9 % of the actual measured 

values. this demonstrates the ability of the model to be used in a real time control 

system for controlling penetration by measurement of temperature at the surface of 

the welded plate. 
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8.4 Comparison between the one - to - four neural network and 

the neuro-fuzzy control model. 

The One-to-four neural network model was evaluated as a control model. The neural 

network which was described in chapter 6 has one input (measured temperature), and 

four welding variables (current, voltage, welding speed, and torch angle) as outputs. 

In the evaluation tests, sets of nominal initial welding variables were selected and the 

weidment spot surface temperature during welding, and the resultant weld 

penetration were recorded. These are shown in table 8.2. 

Exp. 

NO. 

Torch 

angle 

Current 

Amp. 

Voltage 

Volt, 

Speed 

mm/min 

Measured 

Temp.. °C 

Penetration 

% 

1 90 385 40 900 777 67% 

2 90 383 37 860 682 83.5 % 

3 90 390 37 850 664 95 % 

4 90 390 40 900 746 98.6% 

Table 8.2 Initial welding variables. 

The measured temperature from these trials was then used as an input to the neural 

network model which then predicted modified welding variables, which were 

expected to achieve full penetration. Welding was carried out using the modified 

variables on workpieces with zero root gap as described in chapter five. The 

modified welding variables and resultant depth of penetration are shown in table 8.3. 
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Exp. 

No. 

Torch 

angle 

Current 

Amp. 

Voltage 

Volt. 

Speed 

mm/min 

Penetration 

% 

1 90 390 42 890 95% 

2 90 400 47 810 87% 

3 70 390 38 870 98% 

4 90 390 44 800 100% 

Table 8.3 Modified welding variables with resultant penetration. 

As can be seen output variables from the neural network model have achieved 

improvement in penetration, but not 100% as required (except experiment No. 4) 

The above results from neural network modelling alone were compared with results 

of welding when variables were modified by the neuro-fuzzy control model. Figure 

8.6 compares the weld penetration achieved using the initial parameters, parameters 

adjusted by neural network model, and those resulting from application of the neuro- 

fuzzy Control model. It will be observed that the welds produced using parameters 

modified by the neuro-fuzzy model have more consistence penetration and within the 

required limits of 100 to 110%. 
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Figure 8.6 Comparison between neural network and neuro-fuzzy control model. 

8.5 Comparison of neural network model with statistical regression 

model 

The predictions from the developed neural network model were further compared 

with result from a statistical regression model of temperature relative to welding 

variables. The regression model equation [6] was developed using Minitab software. 

Temperature = 308 + 2.75 angle - 1.31 current + 11.9 voltage + 2.95 speed [6] 

The data, which was used for training the RBF Neural network (Appendix 2), was 

also used to develop the regression equation. Similarly the data used for evaluation of 

the neural network was also used for evaluation of the regression equation. The 

temperature predicted by the neural network, statistical regression, and the actual 

temperature measured by the infrared sensor, together with the associated welding 

variables, are shown in table 8.5. 
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Torch 
angle 

Current Volt 
V. 

Speed TM A. N. N. 
Prediction 

Statistical 
regression 

A% 
Error 

Mm/min °C °C % 
error 

°C % 
error 

70 390 37 800 689 678 1.60 666 3.34 1.74 

70 400 37 850 634 657 3.63 668 5.36 1.74 

70 400 37 850 663 657 0.90 668 0.75 -0.15 

70 400 37 800 726 730 0.55 653 10.06 9.50 

70 400 37 900 665 654 1.65 682 2.56 0.90 

70 400 42 850 704 706 0.28 727 3.27 2.98 

70 400 47 800 709 716 0.99 772 8.89 7.90 

90 380 37 850 724 731 0.97 749 3.45 2.49 

90 390 37 800 721 724 0.42 721 0.00 -0.42 

90 390 47 800 806 853 5.83 840 4.22 -1.61 

90 400 37 850 723 726 0.41 723 0.00 -0.41 

90 400 37 800 728 714 1.92 708 2.75 0.82 

90 400 37 800 726 714 1.65 708 2.48 0.83 

90 400 37 900 726 722 0.55 737 1.52 0.96 

90 400 37 900 711 722 1.55 737 3.66 2.11 

90 400 42 800 878 786 10.48 767 12.64 2.16 

90 400 42 800 788 786 0.25 767 2.66 2.41 

90 400 47 800 885 877 0.90 827 6.55 5.65 

110 380 37 850 815 767 5.89 804 1.35 -4.54 

Table 8.4 Comparison of predicted surface temperature with measured values. 
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Torch 
angle 

Current Volt 
V. 

Speed TM A. N. N. 
Prediction 

Statistical 
regression 

A% 
Error 

Mm/min °C °C % 
error 

°C % 

error 
110 390 37 800 796 762 4.27 776 2.51 -1.76 

110 390 37 800 757 762 0.66 776 2.51 1.85 

110 400 37 800 759 730 3.82 763 0.53 -3.29 

110 400 37 800 728 730 0.27 763 4.81 4.53 

90 390 37 650 693 697 0.58 677 2.31 1.73 

90 390 42 800 846 808 4.49 780 7.80 3.31 

90 390 42 800 846 808 4.49 780 7.80 3.31 

90 390 47 700 754 755 0.13 810 7.43 7.29 

90 400 37 800 699 714 2.15 708 1.29 -0.86 

90 400 37 750 687 693 0.87 693 0.87 0.00 

90 400 37 700 675 672 0.44 678 0.44 0.00 

90 400 42 750 790 763 3.42 753 4.68 1.27 

90 400 47 700 775 772 0.39 797 2.84 2.45 

90 410 37 800 642 642 0.00 695 8.26 8.26 

90 380 42 750 733 738 0.68 779 6.28 5.59 

70 390 37 700 625 616 1.44 636 1.76 0.32 

70 390 47 800 707 711 0.57 785 11.03 10.47 

70 400 42 800 697 702 0.72 712 2.15 1.43 

Table 8.4 Continued 

In table 8.4 TM is the measured temperature, and A% error is (statistical regression 

error - N. N. prediction error). 
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Although in a few cases the statistical regression predictions were better than neural 

network predictions, The average error for statistical regression was 4.08% compared 

with that of the neural network which was 1.88%. this shows the neural network 

model is more accurate than the statistical regression equation for prediction of 

surface temperature. In fig. 8.8 the predictions, and measured temperature are 

compared. 
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Fig. 8.7 Comparison between NN, Statistical, and measured surface temperature. 

Neural network modelling has a number of advantages and limitations when 

compared with other modelling techniques, as described in chapter 3. One of these 

advantages is the relative accuracy and generality. If training data for the model are 

sufficiently general, spanning the entire range of welding variables, the resulting 

model will capture the complexities of the process, including non-linearity and cross- 

coupling of variables, over the same range. Also the neural network can be refined 

with the addition of further training data at any time. This capability will allow the 

user to change the range of welding variables covered by the model to those required 

by the application. 
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The results of evaluation of the control model shows (table 7.2 and 7.3) that the 

neural network model has predicted the surface temperature with a good degree of 

accuracy. 

8.6 Discussion of results 

In the following sections the result of experiments and modelling are discussed 

further. 

8.6.1 Discussion of experimental results 

All modelling techniques need data. Data can be gathered from theoretical 

calculations, expertise, or experimental work. For the purpose of the modelling 

reported in this work, data was needed to establish the relationship between 

controllable welding variables, depth of penetration, and temperature at a point in the 

surface of a workpiece during welding. As described in chapter five experiments were 

conducted in order to obtain the training and evaluation data for the neural network 

modelling. The controllable welding variables were welding current, welding voltage, 

welding speeds and torch angle. These variables have the greatest effect on depth of 

penetration, a major indicator of weld quality. Therefore in this research fixed 

welding variables such as plate thickness (6mm), joint type (V-groove butt joint), and 

geometry of the joint (60° included angle, 2mm-root face), which are commonly 
found in fabrication practice have been used. Most research, in which heat 

distribution in a workpiece has been studied, has collected data from bead on plate 

welding experiments (142,73,149,87). While this may be appropriate for 

autogenous closed butt joints, it does not properly represent the heat distribution in 

the most commonly encountered welding procedure, i. e., welding in a Vee grove. 

The nominal levels of welding variables used were determined experimentally as 
being appropriate to avoid either burn through or very low depth of penetration, that 
is, the extremes of poor welding performance. 
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The experimental results were also used for the creation of the rule base for the fuzzy 

logic model. These results gave the opportunity to produce an accurate rule base for 

the compensation of welding variables based on the difference between neural 

network predicted surface temperature for full penetration and the temperature 

measured during welding. 

8.6.2 Discussion of modelling results 

In this work two different approaches of Artificial Intelligence techniques were 

adopted for constructing the neuro-fuzzy control model for Gas Metal Arc welding. 

An Artificial Neural Network model is used to predict the temperature expected at a 

point on the surface of the workpiece corresponding to the welding variables being 

used for welding. The FL (fuzzy logic) model is used to compensate the controllable 

welding variables by reference to the temperature difference between predicted and 

measured temperatures. In the following sections the results of each model are 

discussed further. 

8.6.2.1 Discussion of neural network models 

Artificial Neural Networks have been used in a wide variety of applications, ranging 

from classification and pattern recognition, to optimisation and control of the welding 

process (107,136,147,148). 

Initially in this research, neural network modelling alone was to be used to predict 

directly the welding variables required to achieve the desired weld depth of 

penetration from an input of temperature measured on the surface of the workpiece. 

Different network modelling techniques, various network architectures, such as 

inverse modelling (chapter 6.3.10.4), and the addition of another input (root gap) to 

the models (chapter 6.3.10.2) were tested. Results of validation experiments showed 

the difference between predicted penetration and that actually achieved (table 8.2). 

This was not considered to be satisfactory. An alternative approach was then 
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considered in which the neural network would be used to predict the surface 

temperature expected for a set of welding variables, the difference between predicted 

and actual measured temperature would then be employed as a control signal in a 

further model for adjustment of welding variables. 

As described in chapter 6, different types of network were built and evaluated, the 

results show that for the arc welding process the Radial Base Function (RBF) network 

was the most suitable technique. A number of RBF network models with different 

number of layers, physical elements (PE) and different learning coefficients were 

constructed and evaluated. The final RBF network model consisted of four PEs in the 

input layer, these are the controllable welding variables, 70 Gaussian radial basis 

function as an hidden layer, and one PE in the output layer, which is the spot 

temperature on the surface of the workpiece. This network predicted the surface 

temperature for a given set of welding variables when full penetration would be 

achieved. The training of the models was carried out until the RMS( Root Mean 

Square) error reached the minimum value, which for 100-110% depth of penetration 

was 0.03. In table 8.4 the value of RMS error for other models and the number of data 

used for training and evaluation of the models are summarised. Once the network had 

been trained with the training data, its performance was evaluated with validation 

data. The neural network model for 100-110% penetration was able to predict the 

surface temperature with average error of 1.88%. In other words the temperature was 

predicted to an accuracy of ±13°C. The results of the neuro-fuzzy modelling (chapter 

7.3) shows this accuracy to be acceptable for welds with 100-110% depth of 

penetration. The evaluation results for other models are given in chapter 6.3.10.7. 

From the test results it was concluded that the trained neural network models were 

effective for the prediction of temperature on the surface of the weldment during 

welding. 
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Depth of penetration 

% 

Number of 

training data 

Number of 

validation data 

Network 

RMS error 

100-110 254 37 0.03 

90 - 99 107 11 0.07 

80 - 89 207 20 0.03 

70 - 79 278 27 0.04 

I abbe &. D Number of training and validation data for neural network models. 

8.6.2.2 Discussion of fuzzy logic model result 

A fuzzy logic model has been used to compensate welding variables relative to the 
difference between actual and neural network predicted surface temperature. 

The fuzzy logic model modifies the welding variables depending on the difference 

between the surface temperature predicted, by the neural network for a set of welding 

variables, and the temperature measured at a point on the surface of workpiece during 

welding. The fuzzy logic rule-based control model was constructed as described in 

chapter seven. The necessity of having the initial welding variables in addition to the 

temperature difference as an antecedent to the model was discussed. The model then 

predicted the welding variables to achieve the desired weld depth of penetration, i. e. 
full penetration. A number of experiments were conducted to evaluate the accuracy of 
the model. The results of the experiments show that the fuzzy logic model 

performance is accurate and consistent. The model can be applied for different fixed 

welding variables such as plate thickness or joint geometry, and/or different 

controllable welding variables such as welding current, and welding voltage, by 

modifying the membership function and/or rule base of the fuzzy logic model. 
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8.6.2.3 Discussion of control model result 

The control model developed from this research was achieved by combining the 

neural network model, fuzzy logic model and data acquisition software. It may be 

used to monitor and control the quality of welding by regulating the controllable 

welding variables in real time. The key input to the control model is the temperature 

measured at a spot on the surface of the workpiece during welding, and the outputs 

are welding current, welding voltage, welding speed and torch angle. Due to 

unavailability of some software and hardware as discussed in section 8.4.3 it was not 

possible to evaluate the control model in a real time closed loop system. However the 

result of the evaluation of the control model in a manual closed loop shows that the 

model is capable of controlling weld penetration. Requirement for practical 

implementation of the model is discussed in chapter 9. 

8.7 Practicability of the neuro-fuzzy control model 

This research is intended to demonstrate how infrared sensing of surface temperature 

in the top face of a welded joint, coupled with a neuro-fuzzy control model, can be 

used to achieve control of penetration in Gas Metal Arc Welding. In the next sections 

the practicability of the proposed method, which includes methodology, equipment, 

and accuracy, will be discussed. 

8.7.1 Practicability of methodology 

The depth of penetration in fusion welding is the primary indicator of weld quality 

features such as weld strength or sidewall fusion which are not measurable during 

welding. However there is no direct method of measuring this quality indicator, other 

than from the back face of the weld, which is often impractical. 

In the Gas Metal Arc Welding process, heat due to the electric arc fuses the 

workpiece so that the weld pool is generated and the remaining heat is conducted to 

168 



Chapter 8 

In the Gas Metal Arc Welding process, heat due to the electric arc fuses the 

workpiece so that the weld pool is generated and the remaining heat is conducted to 

the workpiece and dissipated to the environment by radiation and convection. Heat is 

applied to the joint until the melting point isotherm spreads by conduction through the 

thickness of the joint, or its root, to achieve full penetration. Other isotherms have 

similar shape to that of the melting point isotherm. (see figure 4.2). 

Therefore, the heat flow pattern or temperature profile in the weldment may be an 
indicator of the performance of the welding process and can be used to monitor weld 

penetration. In this research it has been shown that the measured temperature on the 

surface of the workpiece during Gas Metal Arc Welding is a reliable source for 

estimation and control of weld penetration. The reasons for selecting surface 

temperature for modelling the relationship between depth of penetration and 

controllable welding variables include: 

0 The temperature in surface can be related to controllable welding variables 

such as voltage, current, welding speed and torch angle; 

41 There is a theoretical relationship between the depth of penetration and the 

heat distribution on the surface of the workpieces; 

" The infrared sensor (fibre optic pyrometer) for measuring temperature is 

robust and of relatively low cost and, when attached to the welding torch, 

allows relatively easy access to the top surface of the joint during welding; 

" Processing of data from the sensor is done rapidly; 

" The neuro-fuzzy model when implemented, for example on a powerful P. C., 

can provide feedback response, less than 100 msec, quite adequate for welding 

process control. 
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8.7.2 Validity and Practicability of modelling technique 

Gas Metal Are Welding is a complex and non-linear process, which is difficult to 

control because of inadequate knowledge of the inter relationships of the variables in 

the process (152). This lack of knowledge limits the use of conventional analytical 

modelling. Artificial Intelligence techniques are widely applied to such problems and 
have been used to improve the control of the arc welding process. These techniques 

include Artificial Neural Networks, Fuzzy Logic and Expert Systems. The Artificial 

Neural Network (ANN) and Fuzzy Logic (FL) models, which have been developed 

and applied in this research, have been reviewed in previous chapters. 

The neural network model was trained to model the relationship between a set of 

welding variables and the spot temperature measured at a position on the weldment 

surface, and the depth of penetration achieved. The networks have been trained using 

experimental data, extracted from more than 1000 weld samples. The model is able to 

predict the workpiece surface temperature which should occur for specified welding 

variables when 100-110% penetration is achieved. As with other modelling 

techniques neural networks have advantages and limitations. They are suitable for 

non-linear mapping, they learn from example, and require less development skill than 

mathematical or statistical modelling. However unlike expert systems they are not 

able to offer explanation of the final result. It has been found through evaluation of 

models that neural network modelling produces the best results when the application 

input data to the network is in the same range as that with which the network had 

been trained. Neural networks do not extrapolate particularly well for extensions 
beyond the learned input regions. To overcome this problem the network must be 

trained with a wide range of data, requiring more experimental empirical data. 

The fuzzy logic model has been used to predict the required control adjustments to 

welding variables. The model predicts the modified welding variables as a function of 

the difference between the temperature measured during welding and the output 

temperature of the neural network model. Initially only the temperature difference 
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was used as input to the fuzzy logic model. However due to inaccuracies in the 

prediction of output modified welding variables, the initial nominal welding variables 

were also used as an input to the FL model. It was found that the fuzzy logic model 

has its best performance when the inputs are in the same range as the predefined 

membership function for each input and output. 

For practical application of the control model it would be necessary to integrate the 

fuzzy logic model, the neural network model, the input from the analog to digital 

converter of the infrared sensor and the initial welding variables. Unfortunately there 

was no proper tool available to convert the developed fuzzy logic model by 

MATLAB to C++ language for this integration. Therefore the fuzzy Logic model was 

operated separately. 

8.7.3 Practicability of equipment 

In this research the major equipment used included, an infrared temperature sensor, a 

thyristor controlled GMAW power supply and a6 axis general purpose robot with 

standard welding application software. 

The Fanuc welding robot used was capable of communication to external computer 

facilities. However access to the robot control software language was not available, 

therefore it was not possible to integrate the developed control models with the robot 

and welding power supply controls on-line. 

8.7.3.1 Practicability of temperature measurement sensor 

In this research a fibreoptic pyrometer was used for measuring temperature. This 

sensor uses a fibre optic cable to transmit the infrared radiation from the surface of 

the weldment to a remote infrared sensor. They are typically used when access to a 

target is difficult, or where the temperature at the location of the sensing head is high 

(up to 200 °C), such as in arc welding, thus preventing thermal damage to the sensor. 

Due to the small size of the head, in this research it could be attached to the welding 
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torch. Other advantages of infrared temperature sensors were discussed in chapter 3. 

In the next section the effect of spatter and fume on the accuracy of the sensor is 

discussed further. 

8.7.3.1.1 Effect of spatter and smoke on sensor accuracy. 

In order to fulfil the objective of this research, an accurate temperature measurement 

from a spot on the surface of the workpiece should be available in real time during 

welding. Also the accuracy of the neuro-fuzzy control models depended on the 

accuracy of the temperature data used in the modelling process. In Gas Metal Arc 

Welding spatter and fume will occur. In this research, to avoid damage and hence 

inaccuracy in the temperature measured, the fibre optic head was assembled in a 

housing, purged with compressed air, and fitted with a glass window to prevent the 

spatter damaging the sensor lens. Spatter and fume deposited on the glass window, 

would affect the temperature measurement. Therefore it was necessary to periodically 

clean or replace the window. 

An experiment was conducted to evaluate the effect of spatter and fume on 

temperature measurement, based on the amount of welding completed. In this 

experiment a constant heat source (the radiating filament of a tungsten light bulb) was 

used, and the sensor used to measure the temperature through glass windows, which 

had been used for specific amounts of welding. The results are summarised in figure 

8.7. 
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Fig. 8.8 The effect of spatter and smoke on temperature measurement 

As shown in the 8.7 figure the sensor is still accurate after 600mm of welding, this 

will permit ±5° error in the measurement. In experiments to obtain modelling data the 

glass windows was replaced every 200mm of welding. 

As described in chapter two, the amount of spatter is different for each metal transfer 

mode. It has been found that if welding is by spray transfer mode, due to a lower rate 

of spatter, two times the amount of welding can be completed before the temperature 

measured was significantly effected. The problem was most serious with dip transfer 

welding due to the deposition of very fine spatter on the glass window. 

In practise this problem will require periodic replacement of the sensor window, a 

limiting factor, or as has been used by other researchers (153) an indexible window 

could be used to extend the life of the window between replacements. It is also 

possible that development of gas or air flow for purging the sensor head could 

eliminate the problem, but care would be needed to assure the welding gas shield was 

not disrupted. 
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8.8 Advantages of the control model 

The proposed control model has a number of advantages over other control 

techniques for assuring the penetration in the automated Gas Metal Arc Welding 

process. These are listed as follows: 

0 It has been shown that the heat distribution in the workpiece and the 

temperature at a point in the top surface of the joint have a direct relationship 

with the weld penetration, and therefore the quality of the weld. 

0 Measuring the top surface temperature of workpiece during welding by 

infrared sensor is a relatively easy and cost effective method compared with 

other sensing method such as ultrasonic, vision, and sound pressure sensors, 

which were described in chapter three. 

0 In the control model the neural network was used to predict the expected top 

surface temperature from nominal welding variables. This method has been 

shown to be more efficient compared to mathematical modelling as described 

in chapter three, in which a number of simplifying assumptions have to be 

made, or statistical modelling which needs a large amount of empirical data. 

" The result of the evaluation of the control model presented in chapter seven 

shows the neuro-fuzzy control model was capable of predicting the welding 

variables required in order to achieve welds with the desired depth of 

penetration. 

" The fuzzy control model is easy to design by constructing a proper rule base 

suitable for the control of welding variables. Fuzzy logic control models have 

a number of advantages over other control modelling techniques, as discussed 

in chapters three and seven. 

" Most of the research on modelling of welding processes, including modelling 

of heat distribution in a workpiece (73,142,148,116), is based on bead on 

174 



Chapter 8 

plate welding. This is not representative of many industrial welding 

applications. The control model developed in this research is based on 

experimental data collected from welding in a Vee groove joint in 6-mm plate 

thickness, which is a common real welding application in the fabrication 

industry. 

8.9 Limitations of the control model 

The control model has number of limitations, which are listed as follows: 

" The scope of the model is limited in that the welding variables must be within 

the range used for training the neural network model. If different values of 

welding variables are to be used, the neural network model must be retrained 

with new data. 

" The input of the fuzzy logic model should be within the range of the 

membership functions for the input variables. If different input values are used 

the membership function or the rules must be modified. 

0 The sensor head needed to collect input temperature data is placed in the 

vicinity of the welding zone and must be protected from the effect of fume 

and spatter or else error in temperature measurement will occur. 
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Chapter nine Conclusions and future work 

9.1 Introduction 

This chapter presents the conclusions drawn from this research and suggestions for 

further research and development on the neuro-fuzzy control model in order to 

improve the utility of the proposed system. 

9.2 Conclusions 

The research work reported has shown the feasibility of developing Artificial 

Intelligence modelling techniques, including Artificial Neural Network and Fuzzy 

Logic, for controlling the penetration of welds in a Robotic Gas Metal Are Welding 

process. The research investigated a single sided V groove joint welded in the flat 

position. The following conclusions have been reached: 

A comprehensive database has been established containing information on 

actual weld beads, workpiece surface temperature at a defined point, and weld 

bead geometry including weld penetration. This data was used to generate the 

models in this research and may be useful to other researchers working in this 

area (Chapter 5). The data base listing is included as appendix 1. 

2. It has been demonstrated that a fibre optic pyrometer is suitable for 

measurement, with good accuracy, of the workpiece surface temperature at a 

specific position relative to the welding line during welding. 

3. It has been shown that Artificial Neural Network modelling is an appropriate 

tool for developing the relationship between welding variables; welding 

current, welding voltage, welding speed, torch angle and spot temperature on 

surface of workpiece. It has been demonstrated that the neural network model 

developed can be used as a reference model to predict the temperature on the 
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surface of the workpiece at a specific point along the weld line during 

welding. 

4. Different types of neural network modelling technique were applied and 

evaluated. Evaluation of those tested shows that the Radial Base Function 

(RBF) feed forward network model is the most appropriate technique for 

prediction of surface temperature. 

5. It has been demonstrated that a neural network model alone cannot be used for 

adjusting the welding variables corresponding to measured temperature on the 

surface of the workpiece. The evaluation results shows that welding variables 

prediction was not accurate enough for controlling the process. 

6. The neural network model was compared with an analytical model, and with 

statistical regression. It has been shown that neural network prediction of 

welding variables was more accurate than these other two methods. 

7. It has been demonstrated that a fuzzy logic control model is capable of 

compensating the welding variables depending on the difference between 

measured temperature and the temperature predicted by the neural network 

model. The rule base for the fuzzy model was developed in order to assure 

production of a weld with 100%-110% depth of penetration. 

8. The quality of welds is strongly dependent on the weld bead geometry 

especially the depth of penetration. Weld bead geometry has a relationship 

with heat distribution in the workpiece, and furthermore the heat distribution 

in the workpiece has a relationship with controllable welding variables 

(current, voltage, and speed, torch angle). Therefore monitoring the 

temperature on the surface and adjusting the controllable welding variables is 

a reliable technique for controlling the quality of welding. 

9. The results of the evaluation of the neuro-fuzzy control model show that the 

model is capable of detecting conditions at which the welding process is not 
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achieving full penetration welds. The model can then suggest appropriate 

modification to the welding variables. 

10. It has been shown that the difference in temperature between the infrared 

sensor measured value and that predicted by the RBF neural network is a good 

indicator of achievement of satisfactory penetration, even in the presence of 

substantially varying root gap. 

11. The developed Neuro Fuzzy Control model is capable of implementation in a 

real time adaptive control for robotic Gas Metal Arc welding, and this is 

discussed in chapter 9. 

9.3 Future work 

The study reported here has shown that by using suitable Artificial Intelligence 

techniques the quality of weld can be controlled in real time. The neuro-fuzzy control 

model is capable of controlling the weld penetration by monitoring the temperature 

measured at a point on the surface of the workpiece. This research can be extended in 

a number of ways: 

1. The neuro-fuzzy control model (NFCM) should be implemented as an automatic 

closed loop system, in which the controllable welding variables can be adjusted in 

real time. For this purpose it is necessary to have access to robot controller 

language and to develop appropriate software interfaces between the models and 

the robot controller. 

2. In order to make the model more general in dealing with variable root gap, in 

particular when gap is of such size as to possibly lead to burn through, a neural 

network model can be constructed to have the joint geometry as additional input. 

For this purpose a striped laser sensor (46) could be used to measure the joint 

geometry such as, root face thickness and root gap prior to the welding. 
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3. Other controllable welding variables such as weaving, and stand-off distance 

could be introduced to the control modelling, as these two variables have an 

strong influence on the penetration and quality of weld and the stability of arc (17, 

117). 

4. Different neural network and fuzzy logic models could be constructed for 

different plate thicknesses. 

5. The area of the joint can be calculated prior to the welding, then the neural 

network trained with the area of the joint and welding variables. This could 

improve the generality of the NFCM by controlling the welds with a wide range 

of plate thickness, and joint geometry. 

6. In order to reduce the effect of spatter and smoke on the infrared sensor 

temperature measurement, the sensor assembly on the torch, and the design of 

housing could be reconsidered. Also it may be possible to design a device which 

automatically changes or cleans the glass windows periodically. 

7. The basic principle of the fuzzy logic model applied in this research is that the 

relationship governing the model inputs and the outputs are assumed to be 

represented by a fuzzy system in terms of IF - THEN rules, which is extracted 
from domain experts. This approach relies on the availability of domain experts. 

Another approach called self - organising controller (SOC) (141,54 ), is to 

construct the rule-base by directly operating the welding process. In this method 

the fuzzy logic model is able to develop the rule-base, and fine tune membership 

functions for controlling the welding process in real time. 

8. Develop fuzzy logic models to take account of constant or variable root gap. 
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Appendix 1 

1.1 experimental data and results for welding achieving 100%- 
110 % depth of penetration 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

ýI( 

1. 70 380 37 80 776 8.6 1.5 6.2 103 

2. 70 390 37 80 677 9.0 1.5 6.9 115 

3. 70 390 37 80 684 9.0 1.5 6.4 107 

4. 70 390 37 80 687 9.2 1.9 6.2 103 

5. 70 390 37 80 682 8.4 1.7 6.9 115 

6. 70 390 37 80 687 8.4 1.9 6.2 103 

7. 70 390 37 80 689 9.0 2.4 6.4 107 

8. 70 390 37 80 677 9.4 2.1 6.2 103 

9. 70 390 37 80 675 8.4 2.1 6.1 102 

10. 70 390 37 80 667 9.0 2.1 6.1 102 

11. 70 390 37 80 672 9.0 1.1 6.1 102 

12. 70 390 42 85 704 8.6 1.1 7.2 120 

13. 70 400 37 85 634 8.2 2.3 6.2 103 

14. 70 400 37 85 648 7.5 1.9 6.2 103 

15. 70 400 37 85 646 7.7 2.1 6.2 103 

16. 70 400 37 85 651 7.9 2.4 6.1 102 

17. 70 400 37 85 660 7.7 2.3 6.1 102 

18. 70 400 37 85 665 7.7 2.3 6.1 102 

19. 70 400 37 85 663 8.2 2.4 6.0 100 

20. 70 400 37 85 646 8.2 2.6 6.0 100 

21. 70 400 37 80 752 9.0 2.0 6.2 103 

22. 70 400 37 80 747 9.4 2.1 6.1 102 

23. 70 400 37 80 740 9.7 2.0 6.0 100 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt, 

speed 

cm/min 

temp 

TI 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

% 

24. 70 400 37 80 730 9.4 1.7 6.6 110 

25. 70 400 37 80 726 8.6 1.7 6.4 107 

26. 70 400 37 80 723 8.2 0.9 6.9 115 

27. 70 400 37 90 655 7.9 1.7 6.9 115 

28. 70 400 37 90 655 7.9 1.7 6.9 115 

29. 70 400 37 90 648 8.2 1.7 6.4 107 

30. 70 400 37 90 660 8.4 1.7 6.9 115 

31. 70 400 37 90 665 8.2 1.5 6.6 110 

32. 70 400 37 90 658 8.8 1.7 6.0 100 

33. 70 400 37 90 663 9.0 1.7 6.2 103 

34. 70 400 37 90 655 8.4 1.7 6.4 107 

35. 70 400 37 90 660 7.9 0.6 6.0 100 

36. 70 400 42 85 711 9.2 2.0 6.0 100 

37. 70 400 42 85 704 9.0 1.1 6.2 103 

38. 70 400 42 80 687 8.4 1.7 6.4 107 

39. 70 400 42 80 694 9.0 1.8 6.4 107 

40. 70 400 42 80 704 9.7 1.9 6.1 102 

41. 70 400 42 80 714 9.2 1.9 6.2 103 

42. 70 400 42 80 716 9.7 1.9 6.1 102 

43. 70 400 47 80 709 8.6 2.3 6.1 102 

44. 90 380 37 85 726 6.0 1.2 6.2 103 

45. 90 380 37 85 733 6.0 1.5 6.1 102 

46. 90 380 37 85 724 6.4 1.5 6.0 100 

47. 90 380 37 85 716 6.4 1.6 6.0 100 

48. 90 380 37 85 724 6.9 1.5 6.0 100 

49. 90 380 37 85 724 6.0 1.4 6.3 105 

50. 90 380 37 85 735 6.2 1.5 6.4 107 

51. 90 380 37 85 716 6.2 0.4 6.3 105 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

emlmin 

temp 

TI 11 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

7c 

5 2. 90 390 37 80 721 6.9 2.1 6.4 107 

5. 90 390 37 80 723 5.6 1.9 6.6 110 

54. 90 390 37 80 726 6.4 2.3 6.2 103 

55. 90 390 37 80 721 6.9 2.3 6.0 100 

56. 90 390 37 80 726 7.3 2.1 6.2 103 

57. 90 390 37 90 718 6.4 1.7 6.4 107 

58. 90 390 42 80 960 7.7 2.0 6.3 105 

59. 90 390 47 80 856 8.4 2.2 6.1 102 

60. 90 390 47 80 815 7.9 2.1 6.0 100 

61. 90 390 47 80 806 7.9 1.1 6.1 102 

62. 90 400 37 85 733 6.2 2.1 6.3 105 

63. 90 400 37 85 736 5.8 2.1 6.4 107 

64. 90 400 37 85 731 6.7 -1.7 6.2 103 

65. 90 400 37 85 726 6.2 2.4 6.2 103 

66. 90 400 37 85 726 6.4 2.4 6.2 103 

67. 90 400 37 85 723 6.7 2.4 6.1 102 

68. 90 400 37 85 723 6.4 2.4 6.0 100 

69. 90 400 37 85 730 6.7 2.6 6.0 100 

70. 90 400 37 85 723 6.4 2.6 6.1 102 

71. 90 400 37 85 721 7.1 1.3 6.3 105 

72. 90 400 37 80 740 7.1 2.3 7.8 130 

73. 90 400 37 80 728 5.6 1.5 7.9 132 

74. 90 400 37 80 730 5.8 1.7 7.7 128 

75. 90 400 37 80 730 5.4 1.8 7.4 123 

76. 90 400 37 80 730 6.2 1.9 7.3 122 

77. 90 400 37 80 733 6.0 1.9 7.5 125 

78. 90 400 37 80 728 5.6 1.7 7.5 125 

79. 90 400 37 80 726 5.4 1.7 7.6 127 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI !2 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

ýc 

80. 90 400 37 80 716 6.0 1.6 7.9 132 

81. 90 400 37 80 713 5.6 0.3 8.1 135 

82. 90 400 37 90 721 5.4 1.7 6.3 105 

83. 90 400 37 90 723 5.8 1.8 6.3 105 

84. 90 400 37 90 726 6.0 2.1 6.2 103 

85. 90 400 37 90 726 5.8 2.0 6.2 103 

86. 90 400 37 90 726 6.0 2.0 6.2 103 

87. 90 400 37 90 723 6.4 2.1 6.2 103 

88. 90 400 37 90 726 6.0 2.1 6.2 103 

89. 90 400 37 90 718 6.0 2.1 6.2 103 

90. 90 400 37 90 716 6.0 1.9 6.3 105 

91. 90 400 37 90 711 6.4 1.0 6.1 102 

92. 90 400 42 85 936 8.2 1.9 6.1 102 

93. 90 400 42 85 910 7.9 2.1 6.0 100 

94. 90 400 42 80 895 7.7 1.6 7.5 125 

95. 90 400 42 80 909 7.7 1.7 6.6 110 

96. 90 400 42 80 919 8.2 1.9 6.6 110 

97. 90 400 42 80 878 7.9 1.9 6.7 112 

98. 90 400 42 80 837 7.5 1.8 7.0 117 

99. 90 400 42 80 810 7.7 2.0 6.2 103 

100. 90 400 42 80 793 8.2 2.1 6.0 100 

101. 90 400 42 80 779 8.2 2.0 6.1 102 

102. 90 400 42 80 791 7.7 1.9 6.2 103 

103. 90 400 42 80 788 8.2 1.3 6.2 103 

104. 90 400 47 85 873 7.5 2.0 6.0 100 

105. 90 400 47 80 871 7.5 1.7 6.4 107 

106. 90 400 47 80 878 7.9 1.9 6.4 107 

107. 90 400 47 80 924 8.2 1.9 6.7 112 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI' 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

108. 90 400 47 80 912 7.7 1.9 6.6 110 

109. 90 400 47 80 885 8.2 2.0 7.1 118 

110. 90 400 47 80 861 7.5 2.1 6.4 107 

111. 90 400 47 80 849 8.2 1.8 6.6 110 

112. 90 400 47 80 854 7.7 1.9 6.6 110 

113. 90 400 47 80 871 7.7 2.0 6.2 103 

114. 90 400 47 80 871 7.9 1.1 6.4 107 

115. 110 380 37 85 815 6.0 1.7 6.0 100 

116. 110 380 37 85 815 6.0 1.9 6.0 100 

117. 110 380 37 85 805 6.2 1.8 6.0 100 

118. 110 390 37 85 779 5.6 2.5 6.0 100 

119. 110 390 37 85 769 4.9 2.2 6.0 100 

120. 110 390 37 85 781 4.9 0.6 6.1 102 

121. 110 390 37 80 796 5.2 1.6 6.6 110 

122. 110 390 37 80 777 6.0 1.6 6.9 115 

123. 110 390 37 80 770 5.6 2.2 6.6 110 

124. 110 390 37 80 774 6.0 2.3 6.0 100 

125. 110 390 37 80 772 6.0 2.0 6.4 107 

126. 110 390 37 80 767 6.2 2.2 6.4 107 

127. 110 390 37 80 757 6.4 2.4 6.2 103 

128. 110 390 37 80 747 6.2 2.4 6.3 105 

129. 110 390 37 80 750 6.0 2.5 6.6 110 

130. 110 390 37 80 747 5.8 1.9 6.6 110 

131. 110 400 37 85 796 4.5 1.9 6.4 107 

132. 110 400 37 85 767 5.2 2.3 6.0 100 

133. 110 400 37 80 759 5.2 1.6 7.5 125 

134. 110 400 37 80 745 5.2 1.7 7.3 122 

135. 110 400 37 80 733 5.6 2.2 6.6 110 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

em/min 

temp 

Ti 

C 

bead 

width 

mm 

bead 

high 

nom 

bead bead 

penetration penetration 

mm % 

136. 110 400 37 80 730 6.0 2.4 6.9 115 

137. 110 400 37 80 730 5.6 2.1 7.3 122 

138. 110 400 37 80 728 5.8 2.1 6.9 115 

139. 110 400 37 80 728 5.8 2.3 7.3 122 

140. 110 400 37 80 728 5.4 2.2 6.7 112 

141. 110 400 37 80 723 5.6 2.1 7.4 123 

142. 110 400 37 80 684 4.9 1.6 7.2 120 
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1.2 experimental data and results for welding achieving 90%- 
99% depth of penetration 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T1 2 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

Yc 

1. 70 380 37 80 776 8.6 1.5 5.4 90 

2. 70 380 37 80 781 9.4 1.7 5.4 90 

3. 70 380 37 80 781 9.4 1.7 5.4 90 

4. 70 380 37 80 774 9.0 1.7 5.4 90 

5. 70 380 37 80 767 9.4 1.9 5.4 90 

6. 70 380 37 80 730 9.0 1.5 5.6 93 

7. 70 380 37 80 733 9.4 1.7 5.6 93 

8. 70 380 37 80 733 9.0 1.1 5.4 90 

9. 70 380 37 90 709 7.3 1.3 5.4 90 

10. 70 390 37 85 643 7.7 1.9 5.4 90 

11. 70 390 37 85 643 7.7 1.9 5.4 90 

12. 70 390 42 80 723 8.6 1.8 5.4 90 

13. 70 400 37 85 660 8.2 2.4 5.9 98 

14. 70 400 37 85 643 8.2 1.5 5.8 97 

15. 70 400 37 80 711 9.2 2.1 5.6 93 

16. 70 400 37 80 730 9.0 2.2 5.8 97 

17. 70 400 37 80 730 9.0 2.0 5.8 97 

18. 70 400 37 90 663 9.0 1.8 5.9 98 

19. 70 400 42 85 694 7.9 2.3 5.4 90 

20. 70 400 42 85 701 7.9 2.1 5.4 90 

21. 70 400 42 85 711 9.4 2.1 5.8 97 

22. 70 400 42 85 706 9.2 2.3 5.4 90 

23. 70 400 42 85 709 9.2 2.1 5.8 97 

24. 70 400 42 85 711 9.9 2.1 5.6 93 

25. 70 400 42 80 719 9.9 2.2 5.4 90 

26. 70 400 42 90 701 8.2 1.9 5.8 97 

. 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI2 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

C7c 

2 Y. 70 400 42 90 704 8.6 1.9 5.6 93 

28. 70 400 47 85 701 7.3 1.8 5.8 97 

29. 70 400 47 85 697 7.9 1.9 5.6 93 

30. 70 400 47 85 689 8.2 2.0 5.8 97 

1. 70 400 47 85 687 8.2 1.9 5.4 90 

32. 70 400 47 85 699 8.6 1.9 5.4 90 

33. 70 400 47 85 699 9.0 1.9 5.4 90 

34. 70 400 47 85 682 8.6 1.9 5.4 90 

35. 70 400 47 80 723 8.6 1.9 5.4 90 

16. 70 400 47 80 733 9.0 2.4 5.4 90 

37. 70 400 47 85 682 8.6 1.9 5.4 90 

38. 70 400 47 80 723 8.6 1.9 5.4 90 

19. 70 400 47 80 733 9.0 2.4 5.4 90 

40. 70 400 47 80 728 8.2 2.1 5.6 93 

41. 70 400 47 80 738 8.8 2.1 5.4 90 

42. 90 380 37 85 731 6.0 1.7 5.9 98 

43. 90 380 37 85 738 6.2 1.7 5.4 90 

44. 90 380 37 80 750 6.9 2.4 5.6 93 

45. 90 380 42 85 929 8.2 1.3 5.6 93 

46. 90 380 42 85 963 7.3 1.4 5.4 90 

47. 90 380 42 85 900 7.9 1.3 5.4 90 

48. 90 390 37 85 713 6.4 1.9 5.8 97 

49. 90 390 37 85 718 6.9 2.1 5.4 90 

50. 90 390 37 85 718 6.9 2.2 5.4 90 

51. 90 390 37 80 723 6.4 0.9 5.6 93 

`2. 90 390 37 80 726 6.9 2.3 5.6 93 

53. 90 390 37 80 726 6.9 2.3 5.5 92 

54. 90 390 37 80 726 6.2 2.4 5.6 93 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

17c 

55. 90 390 37 80 721 6.2 2.1 5.7 95 

56. 90 390 37 90 718 4.9 1.6 5.6 93 

57. 90 390 37 90 713 5.6 1.7 5.6 93 

58. 90 390 37 90 706 6.0 2.1 5.8 97 

59. 90 390 37 90 704 6.0 1.9 5.6 93 

60. 90 390 37 90 706 5.6 2.0 5.4 90 

61. 90 390 37 90 701 5.6 1.7 5.8 97 

62. 90 390 37 90 701 6.0 2.0 5.8 97 

63. 90 390 37 90 699 5.6 1.8 5.6 93 

64. 90 390 37 90 699 6.2 0.7 5.4 90 

65. 90 390 42 80 968 8.2 1.9 5.8 97 

66. 90 390 42 80 924 8.2 2.1 5.7 95 

67. 90 390 42 80 871 7.7 2.1 5.6 93 

68. 90 390 42 80 866 7.9 2.1 5.6 93 

69. 90 390 42 80 839 7.9 2.1 5.4 90 

70. 90 390 42 80 827 7.7 2.2 5.4 90 

71. 90 390 47 85 885 7.9 1.9 5.4 90 

72. 90 390 47 80 963 9.0 1.9 5.4 90 

73. 90 390 47 80 907 8.2 1.9 5.8 97 

74. 90 390 47 80 793 7.7 2.2 5.6 93 

75. 90 390 47 80 799 7.7 2.1 5.4 90 

76. 90 390 47 80 808 7.7 1.8 5.8 97 

77. 90 400 42 85 893 8.8 2.1 5.8 97 

78. 90 400 42 85 876 7.9 2.1 5.6 93 

79. 90 400 42 85 818 7.7 2.1 5.4 90 

80. 90 400 42 85 822 8.2 2.2 5.5 92 

81. 90 400 42 85 823 8.2 1.6 5.5 92 

82. 90 400 42 90 849 7.7 2.0 5.6 93 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

nlm 

bead 

penetration 

CC 

83. 90 400 47 85 905 8.4 2.0 5.6 93 

84. 90 400 47 85 931 7.7 2.1 5.5 92 

85. 90 400 47 85 919 7.3 2.4 5. S 9-1 

86. 90 400 47 85 888 7.7 2.0 5.8 97 

87. 90 400 47 85 856 7.5 2.1 5.4 90 

88. 90 400 47 85 842 7.7 2.4 5.4 90 

89. 90 400 47 85 856 7.5 2.1 5.4 90 

90. 90 400 47 85 876 7.9 1.6 5.5 92 

91. 90 400 47 90 914 7.3 1.8 5.4 90 

92. 90 400 47 90 931 7.3 1.7 5.4 90 

93. 110 380 37 85 868 5.4 1.7 5.6 93 

94. 110 380 37 85 801 5.6 1.3 5.6 93 

95. 110 380 37 80 830 6.0 2.4 5.4 90 

96. 110 390 37 85 786 5.6 1.9 5.4 90 

97. 110 390 37 85 786 5.4 2.2 5.6 93 

98. 110 390 37 85 781 5.2 1.9 5.8 97 

99. 110 390 37 85 774 5.2 2.3 5.5 92 

100. 110 390 37 90 805 5.2 1.8 5.4 90 

101. 110 390 37 90 757 4.9 2.1 5.4 90 

102. 110 390 37 90 752 5.4 2.0 5.4 90 

103. 110 390 37 90 740 5.2 1.9 5.7 95 

104. 110 390 37 90 745 5.4 2.1 5.7 95 

105. 110 390 37 90 742 5.6 1.4 5.4 90 

106. 110 400 37 85 793 5.8 2.2 5.4 90 

107. 110 400 37 85 759 5.4 2.5 5.8 97 

108. 110 400 37 85 759 5.4 2.3 5.6 93 

109. 110 400 37 85 759 5.6 2.4 5.4 90 

110. 110 400 37 90 798 4.9 2.1 5.9 98 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T14 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

% 

111. 110 400 37 90 767 5.4 2.7 5.5 92 

112. 110 400 37 90 747 5.2 2.5 5.4 90 

113. 110 400 37 90 742 5.6 2.4 5.6 93 

114. 110 400 37 90 733 5.6 1.5 5.4 90 

115. 110 400 37 90 747 5.2 2.5 5.4 90 

116. 110 400 37 90 742 5.6 2.4 5.6 93 

117. 110 400 37 90 733 5.6 1.5 5.4 90 

118. 110 400 42 90 847 7.1 1.7 5.4 90 
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1.3 experimental data and results for welding achieving 80%- 
89% depth of penetration 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI = 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

C 

1. 70 380 37 85 697 8.2 1.5 4.9 82 

2. 70 380 37 85 701 7.7 1.5 4.9 82 

3. 70 380 37 85 665 7.7 1.9 4.9 82 

4. 70 380 37 80 740 9.7 1.3 5.1 85 

5. 70 380 37 90 728 7.3 2.1 5.1 85 

6. 70 380 37 90 735 7.9 1.5 5.1 85 

7. 70 380 37 90 733 7.3 1.3 4,9 82 

8. 70 380 37 90 730 7.9 1.5 5.1 85 

9. 70 380 37 90 747 7.7 1.7 4.9 82 

10. 70 380 37 90 730 7.7 1.7 4.9 82 

11. 70 380 42 80 750 8.6 - 
13.7 

5.1 85 

12. 70 380 42 80 776 9.4 1.7 4.9 82 

13. 70 380 47 80 902 8.6 1.7 4.9 82 

14. 70 390 37 85 612 7.3 1.9 5.1 85 

15. 70 390 37 85 634 7.9 1.9 5.3 88 

16. 70 390 37 85 638 7.9 2.1 5.1 85 

17. 70 390 37 85 636 8.4 2.1 5.1 85 

18. 70 390 37 85 643 7.7 2.1 4.9 82 

19. 70 390 37 85 643 8.2 2.0 4.9 82 

20. 70 390 37 85 634 7.7 2.1 5.1 85 

21. 70 390 37 85 619 7.7 1.3 4.9 82 

22. 70 390 37 90 658 7.7 1.9 5.1 85 

23. 70 390 37 90 648 7.7 2.0 5.1 85 

24. 70 390 37 90 646 7.9 2.0 5.1 85 

25. 70 390 37 90 648 7.9 2.4 5.1 85 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T1 ° 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

CIC 

26. 70 390 37 90 651 8.8 1.9 5.1 85 

27. 70 390 37 90 634 8.4 1.9 5.1 85 

28. 70 390 37 90 629 9.0 1.9 5.1 85 

29. 70 390 37 90 626 8.4 1.9 5.1 85 

30. 70 390 37 90 634 8.2 1.5 4.9 82 

31. 70 390 42 80 721 8.6 2.0 5.1 85 

32. 70 390 42 80 728 8.8 1.9 4.9 82 

33. 70 390 42 80 730 9.0 1.9 4.9 82 

34. 70 390 42 80 728 9.2 1.9 4.9 82 

35. 70 390 42 80 723 9.4 2.0 4.8 80 

36. 70 390 42 80 728 9.4 1.9 4.8 80 

37. 70 390 42 90 709 7.5 1.6 4.9 82 

38. 70 390 47 80 740 8.2 2.0 4.8 80 

39. 70 390 47 80 772 8.2 2.1 4.9 82 

40. 70 390 47 80 774 8.4 2.1 4.9 82 

41. 70 400 37 80 682 10.9 24.1 5.1 85 

42. 70 400 42 85 723 8.6 6.7 5.1 85 

43. 70 400 42 85 711 9.0 2.1 5.1 85 
44. 70 400 42 80 719 10.1 2.2 5.1 85 

45. 70 400 42 80 716 10.7 2.4 5.1 85 

46. 70 400 42 80 714 9.7 2.6 5.1 85 

47. 70 400 42 90 694 8.6 1.7 5.1 85 

48. 70 400 42 90 706 8.6 1.9 5.1 85 

49. 70 400 42 90 706 8.6 2.0 5.1 85 

50. 70 400 42 90 706 8.2 1.9 5.1 85 

51. 70 400 42 90 704 8.6 1.9 5.1 85 

52. 70 400 42 90 706 8.6 1.8 5.1 85 

53. 70 400 42 90 706 8.6 2.0 5.1 85 

54. 70 400 42 90 701 7.7 1.3 5.1 85 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 2 

C 

bead 

v idth 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

17c 

55. 70 400 47 85 699 9.0 2.3 5.1 85 

56. 70 400 47 85 689 9.4 2.1 5.1 85 

57. 70 400 47 85 687 9.0 2.0 5.1 1 85 

58. 70 400 47 80 728 9.0 2.4 5.1 85 

59. 70 400 47 80 733 8.6 2.4 5.1 85 

60. 70 400 47 80 733 8.8 2.1 4.9 82 

61. 70 400 47 80 730 8.8 2.4 4.9 82 

62. 70 400 47 80 733 9.0 1.1 4.9 82 

63. 70 400 47 90 713 8.2 2.1 5.1 85 

64. 70 400 47 90 728 7.7 1.9 4.9 82 

65. 70 400 47 90 733 7.9 2.1 5.1 85 

66. 70 400 47 90 723 7.7 1.9 5.1 85 

67. 70 400 47 90 721 8.2 1.9 4.9 82 

68. 70 400 47 90 699 8.2 1.9 4.9 82 

69. 70 400 47 90 704 1.9 2.0 4.9 82 

70. 90 380 37 80 742 6.4 2.1 5.1 85 

71. 90 380 37 80 750 ,. 3 2.1 4.9 82 

72. 90 380 37 80 747 6. -1 1.9 4.9 82 

73. 90 380 37 80 724 7.3 2.1 4.9 82 

74. 90 380 37 80 724 6.4 2.1 4.9 82 

75. 90 380 37 80 723 7.5 2.1 4.9 82 

76. 90 380 37 80 716 7.7 1.3 5.1 85 

77. 90 380 37 90 718 5.6 1.9 4.8 80 

78. 90 380 37 90 711 5.4 1.8 4.8 80 

79. 90 380 37 90 716 5.6 2.1 4.8 80 

80. 90 380 37 90 721 6.0 2.0 4.9 82 

81. 90 380 37 90 711 6.2 1.9 4.8 80 

82. 90 380 37 90 700 6.0 2.1 4.8 80 
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ADnendix 1 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 

C 

bead bead 

width high 

mm mm 

bead 

penetration 

mm 

bead 

penetration 

qC 

83. 90 380 37 90 701 6.0 2.1 4.9 82 

84. 90 380 37 90 690 5.8 1.8 4.9 82 

85. 90 380 37 90 690 5.6 1.0 4.9 82 

86. 90 380 42 85 941 7.7 1.5 5.2 87 

87. 90 380 42 85 924 7.5 1.5 5.2 87 

88. 90 380 42 85 893 7.9 1.4 5.1 85 

89. 90 380 42 85 873 7.7 1.5 4.9 82 

90. 90 380 42 85 885 7.5 1.5 5.1 85 

91. 90 380 42 85 880 7.5 1.5 4.9 82 

92. 90 380 42 85 888 7.5 1.3 5.1 85 

93. 90 380 42 80 960 7.7 1.9 4.8 80 

94. 90 380 42 80 978 8.2 2.0 5.1 85 

95. 90 380 42 80 960 7.9 1.9 4.9 82 

96. 90 380 42 80 978 8.2 1.7 5.1 85 

97. 90 380 42 80 966 8.2 1.7 4.9 82 

98. 90 380 42 80 958 8.2 1.8 5.0 83 

99. 90 380 42 80 939 8.6 1.9 4.9 82 

100. 90 380 42 80 900 8.4 1.8 4.9 82 

101. 90 380 47 85 905 8.2 1.6 4.9 82 

102. 90 380 47 85 939 8.8 1.7 4.9 82 

103. 90 380 47 85 793 7.7 1.5 4.9 82 

104. 90 380 47 80 984 8.6 1.8 5.1 85 

105. 90 380 47 80 960 8.8 1.8 5.1 85 

106. 90 380 47 80 955 8.4 1.7 4.9 82 

107. 90 380 47 80 939 8.4 44.8 4.9 82 

108. 90 380 47 80 900 7.7 1.9 4.9 82 

109. 90 380 47 80 842 7.9 1.7 5.1 85 

110. 90 380 47 80 856 8.2 2.1 4.9 82 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cmlmin 

temp 

TI s 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

9C 

Ill. 90 380 47 80 834 8.6 1.7 4.9 82 

112. 90 390 37 85 721 8.6 2.8 5.2 87 

113. 90 390 37 85 721 6.9 2.0 5.2 87 

114. 90 390 37 85 716 6.7 2.0 5.1 85 

115. 90 390 37 85 716 6.9 2.0 5.2 87 

116. 90 390 37 85 713 7.1 2.2 5.1 85 

117. 90 390 37 85 709 6.4 2.1 5.1 85 

118. 90 390 37 85 709 6.4 2.1 5.1 85 

119. 90 390 42 85 790 8.2 2.1 4.8 80 

120. 90 390 42 85 801 7.7 2.0 5.0 83 

121. 90 390 42 85 805 7.9 1.3 4.9 82 

122. 90 390 42 80 902 8.8 1.9 5.2 87 

123. 90 390 42 80 830 7.9 2.0 5.1 85 

124. 90 390 42 80 827 7.7 1.3 5.2 87 

125. 90 390 42 90 833 7.5 1.3 4.9 82 

126. 90 390 42 90 836 7.7 1.8 5.1 85 

127. 90 390 42 90 835 8.2 1.9 4.9 82 

128. 90 390 42 90 805 7.7 1.8 4.9 82 

129. 90 390 42 90 805 7.9 1.8 5.1 85 

130. 90 390 42 90 790 7.7 1.7 5.1 85 

131. 90 390 42 90 791 8.2 1.8 4.9 82 

132. 90 390 42 90 790 7.7 1.9 4.9 82 

133. 90 390 42 90 790 7.5 1.9 4.9 82 

134. 90 390 42 90 785 8.2 1.2 4.9 82 

135. 90 390 47 85 863 7.9 1.9 5.1 85 

136. 90 1 390 47 85 866 8.2 2.0 4.9 82 

137. 90 390 47 85 849 8.2 2.1 4.9 82 

138. 90 390 47 85 834 8.2 1.3 5.1 85 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI Q 

C 

bead 

width 

mm 

bead 

high 

nun 

bead 

penetration 

mm 

bead 

penetration 

139. 90 390 47 85 837 7.7 2.1 4.8 80 

140. 90 390 47 85 842 7.7 1.9 5.1 85 

141. 90 390 47 85 834 7.5 2.1 4.8 80 

142. 90 390 47 85 861 7.3 2.0 4.8 80 

143. 90 390 47 80 936 7.5 2.0 4.8 80 

144. 90 390 47 80 799 7.5 2.1 5.1 85 

145. 90 390 47 90 820 7.7 1.7 4.8 80 

146. 90 390 47 90 786 6.9 1.7 4.9 82 

147. 90 390 47 90 791 8.2 1.9 4.9 82 

148. 90 390 47 90 813 7.7 1.5 4.9 82 

149. 90 390 47 90 815 7.7 1.7 5.1 85 

150. 90 390 47 90 856 7.7 1.7 4.9 82 

151. 90 390 47 90 832 7.3 1.6 4.9 82 

152. 90 390 47 90 827 7.7 1.7 4.8 80 

153. 90 390 47 90 837 7.9 1.9 4.8 80 

154. 90 390 47 90 805 8.2 2.0 4.9 82 

155. 90 400 42 85 844 7.7 2.1 5.1 85 

156. 90 400 42 85 830 8.2 2.1 5.1 85 

157. 90 400 42 85 820 7.9 2.2 5.3 88 

158. 90 400 42 90 856 7.7 1.9 5.1 85 

159. 90 400 42 90 854 7.5 1.9 5.1 85 

160. 90 400 42 90 888 7.7 2.0 5.1 85 

161. 90 400 42 90 910 7.7 1.9 5.1 85 

162. 90 400 42 90 898 7.3 2.0 4.9 82 

163. 90 400 42 90 860 7.7 1.9 4.8 80 

164. 90 400 42 90 847 7.7 2.0 4.9 82 

165. 90 400 42 90 822 7.7 1.6 4.9 82 

166. 90 400 47 85 847 7.7 2.4 5.2 87 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

em/min 

temp 

T14 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

qc 

167. 90 400 47 90 893 7.7 1.9 5.1 85 

168. 90 400 47 90 866 7.3 1.8 5.1 85 

169. 90 400 47 90 919 7.3 1.8 5.1 85 

170.1 90 400 47 90 939 7.7 2.0 4.9 82 

171. 90 400 47 90 919 7.5 1.9 5.1 85 

172. 90 400 47 90 885 7.9 1.9 5.0 83 

173. 90 400 47 90 863 7.7 1.5 5.1 85 

174. 110 380 37 85 769 4.7 1.5 4.8 80 

175. 110 380 37 85 854 5.6 1.8 5.1 85 

176. 110 380 37 85 844 5.8 1.8 5.1 85 

177. 110 380 37 85 827 5.8 1.6 5.2 87 

178. 110 380 37 85 803 5.6 1.6 5.1 85 

179. 110 380 37 80 711 5.2 2.2 4.9 82 

180. 110 380 37 80 948 6.0 1.9 5.2 87 

181. 110 380 37 80 902 6.2 2.2 4.9 82 

182. 110 380 37 80 863 6.7 2.4 5.0 83 

183. 110 380 37 80 847 6.4 2.3 5.0 83 

184. 110 380 37 80 834 6.0 2.3 5.1 85 

185. 110 380 37 80 813 5.8 2.4 5.1 85 

186. 110 380 37 90 856 5.8 1.8 4.9 82 

187. 110 380 37 90 854 6.0 2.0 4.8 80 

188. 110 380 37 90 832 6.2 1.8 4.8 80 

189. 110 380 37 90 825 5.8 2.1 4.8 80 

190. 110 380 37 90 825 5.8 2.1 4.8 80 

191. 110 380 37 90 813 5.8 2.1 4.8 80 

192. 110 380 37 90 805 5.2 1.8 4.9 82 

193. 110 380 37 90 798 5.4 1.2 5.0 83 

194. 110 390 37 85 808 5.2 1.9 5.3 88 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI11 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

ryC 

195. 110 390 37 85 805 5.2 2.3 5.0 83 

196. 110 390 37 85 791 5.4 2.4 5.1 85 

197. 110 390 37 90 791 4.7 2.1 5.2 87 

198. 110 390 37 90 772 5.2 2.2 5.1 85 

199. 110 390 37 90 769 5.4 2.0 5.2 87 

200. 110 390 37 90 759 5.2 1.9 5.3 88 

201. 110 390 42 80 888 7.7 2.1 4.8 80 

202. 110 390 42 80 883 7.3 2.0 4.8 80 

203. 110 400 37 85 793 5.2 2.5 4.9 82 

204. 110 400 37 85 793 5.2 2.3 5.3 88 

205. 110 400 37 85 774 6.2 2.4 4.8 80 

206. 110 400 37 85 738 6.0 1.8 4.9 82 

207. 110 400 37 90 803 4.9 2.2 5.2 87 

208. 110 400 37 90 781 5.4 2.6 5.1 85 

209. 110 400 37 90 764 5.2 2.5 5.3 88 

210. 110 400 37 90 762 4.9 2.4 5.2 87 

211. 110 400 37 90 747 5.2 2.6 5.1 85 

212. 110 400 42 85 844 7.5 1.8 4.8 80 

213. 110 400 42 80 941 7.3 1.9 4.8 80 

214. 110 400 42 90 859 7.1 1.8 4.9 82 

215. 110 400 42 90 842 7.1 1.7 4.8 80 

216. 110 400 42 90 839 7.5 1.9 4.8 80 

217. 110 400 47 80 893 7.3 1.7 4.9 82 
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1.4 experimental data and results for welding achieving 70 ý, 'c - 
79% depth of penetration 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T1 = 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

1. 70 380 37 85 687 7.7 1.7 4.5 75 

2. 70 380 37 85 670 7.9 2.4 4.5 75 

3. 70 380 37 85 672 8.2 
_'. 

1 4.5 75 

4. 70 380 37 85 665 7.7 1.9 4.7 78 

5. 70 380 37 90 740 8.2 1.7 4.7 78 

6. 70 380 37 90 716 7.3 1.7 4.7 78 

7. 70 380 37 90 718 6.9 0.4 4.7 78 

8. 70 380 42 85 767 7.9 1.7 4.7 78 

9. 70 380 42 85 798 9.4 1.7 4.7 78 

10. 70 380 42 85 820 9.4 1.7 4.7 78 

11. 70 380 42 85 818 9.4 1.7 4.5 75 

12. 70 380 42 85 805 9.4 1.7 4.3 72 

13. 70 380 42 85 801 9.0 1.7 4.3 72 

14. 70 380 42 85 793 9.4 1.7 4.7 78 

15. 70 380 42 85 774 9.9 1.7 4.7 78 

16. 70 380 42 85 769 9.0 1.7 4.7 78 

17. 70 380 42 85 776 9.2 1.3 4.5 75 

18. 70 380 42 80 793 9.4 1.7 4.7 78 

19. 70 380 42 80 793 9.4 1.7 4.7 78 

20. 70 380 42 80 793 9.9 1.9 4.5 75 

21. 70 380 42 80 791 9.7 1.9 4.3 72 

22. 70 380 42 80 788 9.9 1.9 4.3 72 

23. 70 380 42 80 767 9.0 1.9 4.5 75 

24. 70 380 42 80 769 9.0 1.9 4.5 75 

25. 70 380 42 80 769 9.9 1.1 4.5 75 
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No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T1 s 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

9C 

26. 70 380 42 90 774 8.2 1.7 4.7 78 

27. 70 380 42 90 788 8.2 1.7 4.5 75 

28. 70 380 42 90 798 8.4 1.7 4.3 72 

29. 70 380 42 90 803 8.6 1.7 4.7 78 

30. 70 380 42 90 801 9.0 1.7 4.5 75 

31. 70 380 42 90 791 9.0 1.5 4.5 75 

32. 70 380 42 90 781 8.2 1.9 4.3 72 

33. 70 380 42 90 796 8.6 1.5 4.5 75 

34. 70 380 42 90 796 8.2 1.7 4.5 75 

35. 70 380 42 90 781 9.0 1.3 4.3 72 

36. 70 380 47 85 837 8.6 1.7 4.5 75 

37. 70 380 47 85 854 8.6 1.5 4.7 78 

38. 70 380 47 85 863 9.0 1.7 4.3 72 

39. 70 380 47 85 866 9.7 1.7 4.3 72 

40. 70 380 47 85 856 9.0 1.7 4.3 72 

41. 70 380 47 85 842 8.8 1.7 4.3 72 
42. 70 380 47 85 851 8.8 1.9 4.3 72 

43. 70 380 47 80 842 9.2 1.7 4.7 78 

44. 70 380 47 80 895 8.6 1.9 4.7 78 

45. 70 380 47 80 907 9.2 1.9 4.5 75 

46. 70 380 47 80 890 8.8 1.9 4.3 72 

47. 70 380 47 80 900 9.9 1.9 4.7 78 

48. 70 380 47 80 885 9.7 2.1 4.3 72 

49. 70 380 47 80 851 9.7 2.1 4.5 75 

50. 70 380 47 80 851 9.7 1.9 4.5 75 

51. 70 380 47 80 844 9.9 1.7 4.3 72 

52. 70 380 47 90 847 9.0 1.5 4.5 75 

53. 70 380 47 90 878 8.6 1.9 4.5 75 
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No. Torch 

angle 

deg. 

current 

Amp. 

%oltage 

Volt. 

speed 

cm/min 

temp 

TI s 

C 

bead 

width 

mm 

bead 

high 

Man 

bead 

penetration 

nom 

bead 

penetration 

17C 

54. 70 380 ,7 90 878 8.8 1.9 4.3 72 

55. 70 380 47 90 847 8.2 1.9 4.5 75 

56. 70 380 47 90 827 8.6 1. - 4.5 75 

57. 70 380 47 90 822 8.8 1.7 4.3 72 

58. 70 380 -17 90 813 7.5 1.6 4.3 72 

59. 70 380 47 90 759 8.6 1.7 4.3 72 

60. 70 380 47 90 750 8.4 1.7 4.3 72 

61. 70 380 47 90 747 8.4 1.5 4.3 72 

62. 70 390 37 90 658 9.4 2.6 4.5 75 

63. 70 390 42 85 713 7.9 1.9 4.5 75 

64. 70 390 12 85 718 8.6 6.3 4.5 75 

65. 70 390 42 85 718 9.0 2.0 4.5 75 

66. 70 390 42 85 716 9.0 2.0 4.5 75 

67. 70 390 42 85 723 9.2 1.9 4.7 78 

68. 70 390 42 85 711 9.2 1.8 4.5 75 

69. 70 390 412 85 704 8.8 1.9 4.7 78 

70. 70 390 -'. 2 85 701 9.7 1.9 4.5 75 

71. 70 390 42 80 721 9.9 1.9 4.5 75 

72. 70 390 42 80 713 9.9 2.1 4.7 78 

73. 70 390 42 80 706 9.7 1.7 4.7 78 

74. 70 390 42 90 711 7.7 1.7 4.7 78 

75. 70 390 42 90 711 8.2 1.9 4.7 78 

76. 70 390 42 90 712 8.2 1.9 4.7 78 

77. 70 390 42 90 710 8.2 1.9 4.6 77 

78. 70 390 42 90 711 8.6 2.0 4.7 78 

79. 70 390 -42 90 713 8.6 1.8 4.6 77 

80. 70 390 42 90 713 8.6 1.9 4.6 77 

81. 70 390 42 90 709 8.2 1.9 4.7 78 
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Appendix I 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cmlmin 

temp 

T1 = 

C 

bead 

width 

mm 

bead 

high 

min 

bead 

penetration 

nom 

bead 

penetration 

9c 

82. 70 390 42 90 704 8.6 1.5 4.5 75 

83. 70 390 47 85 716 8.6 1.6 4.7 78 

84. 70 390 47 85 728 8.6 1.8 4.5 75 

85. 70 390 47 85 735 9.0 1.7 4.7 78 

86. 70 390 47 85 7 33 9.0 1.9 4.5 75 

87. 70 390 47 85 721 9.0 2.1 4.4 73 

88. 70 390 47 85 716 9.0 1.9 4.3 72 

89. 70 390 47 85 721 8.6 1.9 4.5 75 

90. 70 390 47 85 718 9.0 1.7 4.5 75 

91. 70 390 47 85 718 8.6 1.9 4.5 75 

92. 70 390 47 85 709 9.2 0.9 4.5 75 

93. 70 390 47 80 759 8.6 2.3 4.7 78 

94. 70 390 47 80 750 8.2 2.1 4.7 78 

95. 70 390 47 80 745 8.6 2.4 4.5 75 

96. 70 390 47 80 745 8.6 2.4 4.5 75 

97. 70 390 47 80 745 8.2 2.1 4.5 75 

98. 70 390 47 80 74- 8.2 2.1 4.5 75 

99. 70 390 47 80 740 7.9 1.3 4.7 78 

100. 70 390 47 90 731 8.2 1.7 4.7 78 

101. 70 390 47 90 723 8.2 1.7 4.7 78 

102. 70 390 47 90 733 8.6 6.2 4.6 77 

103. 70 390 47 90 747 8.6 2.0 4.6 77 

104. 70 390 47 90 755 8.8 2.0 4.5 75 

105. 70 390 47 90 74- 8.8 2.0 4.5 75 

106. 70 390 47 90 742 9.0 2.3 4.3 72 

107. 70 390 47 90 726 8.2 1.3 4.4 73 

108. 70 400 42 80 716 10.3 0.9 4.7 78 

109. 90 380 37 80 755 6. Q 2.2 4.7 78 
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ndix 1 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T1 y 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

CIC 

110. 90 380 37, 80 738 7.5 2.1 4.7 78 

Ill. 90 380 37 90 716 6.0 2.1 4.5 75 

112. 90 380 42 80 960 8.6 1.8 4.7 78 

113. 90 380 42 80 861 8.4 1.5 4.7 78 

114. 90 380 42 90 905 7.7 1.4 4.6 77 

115. 90 380 42 90 888 7.7 1.3 4.7 78 

116. 90 380 42 90 914 7.5 1.7 4.5 75 

117. 90 380 42 90 929 7.9 1.5 4.7 78 

118. 90 380 42 90 917 7.7 1.5 4.7 78 

119. 90 380 42 90 905 7.7 1.7 4.4 73 

120. 90 380 42 90 905 7.7 1.5 4.5 75 

121. 90 380 42 90 883 7.9 1.6 4.5 75 

122. 90 380 42 90 873 7.7 1.5 4.7 78 

123. 90 380 42 90 873 7.9 1.8 4.5 75 

124. 90 380 47 85 890 8.6 1.8 4.7 78 

125. 90 380 47 85 965 8.8 6.2 4.7 78 

126. 90 380 47 85 941 8.8 1.7 4.6 77 

127. 90 380 47 85 856 9.0 1.8 4.5 75 

128. 90 380 47 85 796 8.8 2.0 4.7 78 

129. 90 380 47 85 798 7.7 1.7 4.6 77 

130. 90 380 47 85 793 8.4 1.9 4.7 78 

131. 90 380 47 80 929 8.4 1.9 4.7 78 

132. 90 380 47 80 968 8.2 1.7 4.7 78 

133. 90 380 4 90 881 7.7 1.5 4.5 75 

134. 90 380 47 90 878 7.5 1.6 4.5 75 

135. 90 380 47 90 905 8.2 1.6 4.7 78 

136. 90 380 47 90 931 7.9 1.7 4.5 75 

137. 90 380 47 90 929 8.2 1.7 4.7 78 
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Appendix I 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 11 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

17c 

138. 90 380 47 90 912 8.2 1.7 4.5 75 

139. 90 380 47 90 900 7.9 1.7 4.5 75 

140. 90 380 47 90 866 8.4 1.7 4.4 73 

141. 90 380 47 90 844 8.2 1.7 4.5 75 

142. 90 380 47 90 830 8.2 1.3 4.7 78 

143. 90 390 42 85 878 8.4 1.9 4.7 78 

144. 90 390 42 85 893 7.9 1.9 4.7 78 

145. 90 390 42 85 842 7.7 2.1 4.7 78 

146. 90 390 42 85 815 7.9 2.1 4.7 78 

147. 90 390 42 85 805 8.2 2.0 4.7 78 

148. 90 390 42 85 805 8.2 2.0 4.7 78 

149. 90 390 42 85 793 8.6 2.1 4.5 75 

150. 90 390 47 85 853 7.3 2.1 4.7 78 

151. 90 400 42 90 830 7.7 1.9 4.7 78 

152. 90 400 47 90 878 7.7 1.7 4.7 78 

153. 110 380 37 80 815 6.0 2.4 4.7 78 

154. 110 380 37 80 793 6.0 1.7 4.7 78 

155. 110 380 37 90 842 6.2 2.3 4.7 78 

156. 110 380 37 90 839 6.4 2.0 4.6 77 

157. 110 380 42 85 917 6.9 2.1 4.3 72 

158. 110 380 42 85 893 6.9 2.0 4.3 72 

159. 110 380 42 85 893 6.9 2.1 4.3 72 

160. 110 380 42 85 926 6.7 2.0 4.2 70 

161. 110 380 42 85 946 7.1 1.9 4.2 70 

162. 110 380 42 85 972 7.1 1.7 4.2 70 

163. 110 380 42 85 968 6.4 1.9 4.3 72 

164. 110 380 42 85 984 7.3 1.9 4.5 75 

165. 110 380 42 85 965 7.7 2.1 4.6 77 
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Appendix 1 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

1Ic 

166. 110 380 42 85 972 7.7 1.8 4.6 77 

167. 110 380 42 80 997 7.3 2.0 4.3 72 

168. 110 380 42 80 989 7.3 2.0 4.3 72 

169. 110 380 42 80 1009 7.3 2.1 4.3 72 

170. 110 380 42 80 1014 7.7 2.1 4.4 73 

171. 110 380 42 80 1014 7.5 2.1 4.4 73 

172. 110 380 42 80 1014 7.9 2.1 4.5 75 

173. 110 380 42 80 1021 7.5 2.1 4.4 73 

174. 110 380 42 80 1014 7.7 2.1 4.5 75 

175. 110 380 42 80 1023 7.7 2.1 4.5 75 

176. 110 380 42 80 989 7.9 1.8 4.4 73 

177. 110 380 42 90 970 7.1 1.8 4.2 70 

178. 110 380 42 90 941 7.1 1.8 4.2 70 

179. 110 380 42 90 924 6.7 1.9 4.3 72 

180. 110 380 42 90 926 7.5 1.7 4.2 70 

181. 110 380 42 90 946 7.1 2.2 4.2 70 

182. 110 380 42 90 953 6.7 1.8 4.4 73 

183. 110 380 42 90 953 7.1 2.1 4.4 73 

184. 110 380 42 90 943 7.3 1.6 4.4 73 

185. 110 380 47 85 851 6.4 1.6 4.2 70 

186. 110 380 47 85 837 6.7 1.7 4.5 75 

187. 110 380 47 85 839 6.9 1.7 4.3 72 

188. 110 380 47 85 859 7.1 1.8 4.5 75 

189. 110 380 47 85 861 7.5 2.0 4.4 73 

190. 110 380 47 85 861 7.1 2.0 4.2 70 

191. 110 380 47 85 866 7.1 1.9 4.3 72 

192. 110 380 47 85 849 7.3 2.0 4.5 75 

193. 110 380 47 85 847 7.7 2.3 4.5 75 
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Armendix I 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI s 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

nmm 

bead 

penetration 

c 

194. 110 380 47 85 813 6.9 1.6 4.3 72 

195. 110 380 47 80 861 6.9 2.4 4.3 72 

196. 110 380 47 80 849 6.9 1.9 4.5 75 

197. 110 380 47 80 849 7.1 2.1 4.5 75 

198. 110 380 47 80 839 7.5 2.3 4.2 70 

199. 110 380 47 80 832 7.7 2.1 4.2 70 

200. 110 380 47 80 832 7.5 2.1 4.3 72 

201. 110 380 47 80 830 7.5 2.2 4.3 72 

202. 110 380 47 80 842 7.5 2.1 4.5 75 

203. 110 380 47 80 825 7.1 1.9 4.3 72 

204. 110 380 47 90 861 6.7 1.6 4.3 72 

205. 110 380 47 90 844 6.4 1.7 4.2 70 

206. 110 380 47 90 849 6.4 1.8 4.3 72 

207. 110 380 47 90 830 6.7 2.0 4.5 75 

208. 110 380 47 90 818 6.7 2.1 4.5 75 

209. 110 380 47 90 813 6.4 2.0 4.4 73 

210. 110 380 47 90 805 6.9 1.8 4.5 75 

211. 110 380 47 90 798 6.9 1.3 4.4 73 

212. 110 380 47 90 791 7.5 2.1 4.5 75 

213. 110 380 47 90 784 6.7 1.8 4.3 72 

214. 110 390 42 85 890 7.1 2.1 4.5 75 

215. 110 390 42 85 871 7.1 2.0 4.6 77 

216. 110 390 42 85 868 7.1 1.9 4.5 75 

217. 110 390 42 85 871 6.9 2.1 4.3 72 

218. 110 390 42 85 859 7.3 2.1 4.3 72 

219. 110 390 42 85 847 7.3 2.1 4.5 75 

220. 110 390 42 85 842 7.3 2.4 4.5 75 

221. 110 390 42 85 830 7.3 2.1 4.4 73 
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ndix 1 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI s 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

17C 

222. 110 390 42 85 842 7.5 2.1 4.5 75 

223. 110 390 42 85 830 7.3 1.5 4.5 75 

224. 110 390 42 80 895 7.5 2.2 4.5 75 

225. 110 390 42 80 876 7.5 2.1 4.5 75 

226. 110 390 42 80 888 7.5 1.9 4.7 78 

227. 110 390 42 80 900 7.5 2.1 4.7 78 

228. 110 390 42 80 900 7.5 2.1 4.7 78 

229. 110 390 42 80 876 7.7 1.9 4.5 75 

230. 110 390 42 80 871 7.7 2.2 4.7 78 

231. 110 390 42 80 863 7.5 1.4 4.6 77 

232. 110 390 42 90 851 6.9 1.8 4.4 73 

233. 110 390 42 90 827 6.9 1.9 4.3 72 

234. 110 390 42 90 827 7.3 1.9 4.3 72 

235. 110 390 42 90 827 7.3 1.8 4.3 72 

236. 110 390 42 90 815 7.5 1.8 4.5 75 

237. 110 390 42 90 815 7.5 1.8 4.6 77 

238. 110 390 42 90 818 7.3 1.8 4.6 77 

239. 110 390 42 90 834 7.1 1.3 4.2 70 

240. 110 390 47 85 868 6.7 1.7 4.3 72 

241. 110 390 47 90 859 6.9 1.5 4.5 75 

242. 110 390 47 90 856 6.4 1.6 4.4 73 

243. 110 390 47, 90 859 7.1 1.6 4.2 70 

244. 110 390 47 90 844 7.1 1.5 4.3 72 

245. 110 390 47 90 839 7.3 1.7 4.2 70 

246. 110 390 47 90 830 7.1 1.5 4.5 75 

247. 110 390 47 90 825 7.1 1.8 4.2 70 

248. 110 390 47 90 820 7.1 1.5 4.5 75 

249. 110 400 42 85 866 7.3 1.7 4.4 73 
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Appendix I 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI Q 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

ýIc 

250. 110 400 42 85 856 7.5 1.8 4.3 72 

251. 110 400 42 85 856 7.5 1.7 4.5 75 

252. 110 400 42 85 856 7.5 1.7 4.7 78 

253. 110 400 42 85 830 7.1 1.7 4.5 75 

254. 110 400 42 85 827 7.5 1.8 4.5 75 

255. 110 400 42 85 825 7.5 1.8 4.4 73 

256. 110 400 42 85 822 7.5 1.3 4.2 70 

257. 110 400 42 80 953 7.3 2.2 4.5 75 

258. 110 400 42 80 943 7.5 2.0 4.6 77 

259. 110 400 42 80 948 7.3 2.1 4.5 75 

260. 110 400 42 80 948 7.5 2.0 4.6 77 

261. 110 400 42 80 939 7.5 1.9 4.3 72 

262. 110 400 42 80 939 7.3 2.1 4.2 70 

263. 110 400 42 80 934 7.7 1.8 4.2 70 

264. 110 400 42 90 883 6.9 1.8 4.7 78 

265. 110 400 42 90 861 6.4 1.6 4.7 78 

266. 110 400 42 90 849 7.1 2.2 4.5 75 

267. 110 400 42 90 847 7.3 1.8 4.7 78 

268. 110 400 42 90 839 7.3 1.7 4.7 78 

269. 110 400 42 90 837 7.1 1.5 4.5 75 

270. 110 400 47 85 907 7.1 1.9 4.5 75 

271. 110 400 47 85 907 7.1 2.1 4.3 72 

272. 110 400 47 85 892 7.3 1.9 4.2 70 

273. 110 400 47 85 892 7.3 2.0 4.2 70 

274. 110 400 47 85 885 7.5 2.0 4.4 73 

275. 110 400 47 85 870 7.3 1.7 4.3 72 

276. 110 400 47 85 865 7.3 2.0 4.3 72 

277. 110 400 47 85 860 7.1 1.4 4.3 72 
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Appendix 1 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI Q 

C 

bead 

width 

mm 

bead 

high 

mnl 

bead 

penetration 

mm 

bead 

penetration 

% 

278. 110 400 47 80 929 7.5 1.8 4.7 78 

279. 110 400 47 80 912 7.3 1.9 4.5 75 

280. 110 400 47 80 914 6.9 1.9 4.3 72 

281. 110 400 47 80 914 7.5 1.8 4.7 78 

282. 110 400 47 80 902 7.7 1.8 4.3 72 

283. 110 400 47 80 902 7.5 1.7 4.3 72 

284. 110 400 47 80 905 7.3 1.8 4.5 75 

285. 110 400 47 80 895 7.5 1.7 4.5 75 

286. 110 400 47 90 919 6.7 1.7 4.6 77 

287. 110 400 47 90 902 6.7 1.5 4.5 75 

288. 110 400 47 90 897 7.1 1.5 4.6 77 

289. 110 400 47 90 893 6.7 1.5 4.4 73 

290. 110 400 47 90 895 6.9 1.4 4.3 72 

291. 110 400 47 90 883 6.9 1.5 4.2 70 

292. 110 400 47 90 871 6.9 1.7 4.2 70 
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Appendix 1 

1.5experimental data and results for welding achieving 60%-69% 
depth of penetration 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

TI Q 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

C-C 

1. 70 380 37 85 687 7.7 1.7 3.9 65 

2. 70 380 37 85 692 7.9 1.7 3.9 65 

3. 70 380 37 85 692 7.9 1.9 3.9 65 

4. 70 380 47 85 834 9.0 1.7 4.1 68 

5. 70 380 47 85 847 9.2 1.9 4.1 68 

6. 70 390 47 90 747 8.2 1.9 3.9 65 

7. 110 380 42 90 939 7.1 1.9 4.0 67 

8. 110 380 42 90 926 7.3 2.0 4.1 68 

9. 110 380 47 80 844 7.1 2.3 4.0 67 

10. 110 390 42 90 837 7.3 1.3 3.9 65 

11. 110 390 42 90 834 6.9 0.9 3.9 65 

12. 110 390 47 85 876 7.1 1.8 4.1 68 

13. 110 390 47 85 871 6.9 1.7 3.9 65 

14. 110 390 47 85 873 6.9 1.8 3.7 62 

15. 110 390 47 85 863 7.3 1.9 3.7 62 

16. 110 390 47 85 849 7.3 1.8 3.9 65 

17. 110 390 47 85 839 7.7 1.8 4.1 68 

18. 110 390 47 85 837 7.3 2.0 3.9 65 

19. 110 390 47 85 837 7.3 1.8 3.9 65 

20. 110 390 47 85 832 7.5 1.5 4.1 68 

21. 110 390 47 80 902 6.7 1.9 3.8 63 

22. 110 390 47 80 888 6.9 1.7 4.1 68 

23. 110 390 47 80 897 6.9 1.9 3.9 65 

24. 110 390 47 80 895 6.9 1.9 3.9 65 

25. 110 390 47 80 883 6.7 1.8 3.6 60 

26. 110 390 47 80 861 6.9 1.7 3.9 65 
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Appendix 1 

No. Torch 

angle 

deg. 

current 

Amp. 

voltage 

Volt. 

speed 

cm/min 

temp 

T19 

C 

bead 

width 

mm 

bead 

high 

mm 

bead 

penetration 

mm 

bead 

penetration 

rq 

27. 110 390 47 80 849 6.7 1.7 3.8 63 

28. 110 390 47 80 856 6.9 1.8 3.9 65 

29. 110 390 47 80 861 6.9 1.8 4.1 68 

30. 110 390 47 80 859 7.7 1.3 4.0 67 

31. 110 390 47 90 856 6.4 2.0 3.9 65 

32. 110 390 47 90 866 6.4 1.6 4.1 68 

33. 110 400 42 85 834 7.3 1.8 4.1 68 

34. 110 400 42 80 946 7.5 1.9 3.8 63 

35. 110 400 42 80 934 7.3 1.8 4.1 68 

36. 110 400 47 85 924 6.9 1.9 4.1 68 

37. 110 400 47 85 909 7.1 1.9 4.1 68 

38. 110 400 47 80 888 6.7 0.9 4.1 68 

39. 110 400 47 90 868 6.9 1.6 4.1 68 

40. 110 400 47 90 859 6.9 1.7 4.1 68 

41. 110 400 47 90 854 6.4 1.3 4.1 68 
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Appendix 1 

1.6 experimental data and results for welding achieving 100%- 
110% depth of penetration with 0-1.5mm root gap 

No. T. A Current Voltage Speed 

cm/min 

Temp 

°C 

Root gap 

mm 

1 70 380 37 85 697 0.45 

2 70 380 37 85 713 0.37 

3 70 380 37 85 718 0.37 

4 70 380 37 80 714 0.45 

5 70 380 37 80 714 0.37 

6 70 380 37 80 726 0.52 

7 70 380 37 90 730 0.67 

8 70 380 37 90 728 0.52 

9 70 380 37 90 728 0.45 

10 70 380 37 90 733 0.52 

11 70 380 42 85 798 0.52 

12 70 380 42 80 801 0.75 

13 70 380 42 80 793 0.67 

14 70 380 42 80 801 0.52 

15 70 380 42 90 796 0.67 

16 70 380 47 85 781 0.75 

17 70 380 47 85 793 0.67 

18 70 380 47 85 788 0.52 

19 70 380 47 80 803 0.67 

20 70 380 47 80 808 0.52 

21 70 380 47 80 808 0.45 

22 70 380 47 90 818 0.97 

23 70 380 47 90 808 0.82 

24 70 380 47 90 801 0.75 

25 70 390 37 85 745 0.45 

26 70 390 37 85 752 0.37 

27 70 390 37 85 747 0.52 
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ndix 1 

No. T. A Current Voltage Speed 

cm/min 

Temp 

°C 

Root gap 

mm 

28 70 390 37 80 733 0.37 

29 70 390 37 80 735 0.52 

30 70 390 37 90 745 0.67 

31 70 390 37 90 742 0.52 

32 70 390 37 90 735 0.45 

33 70 390 42 85 803 0.67 

34 70 390 42 85 798 0.52 

35 70 390 42 85 793 0.45 

36 70 390 42 80 803 0.67 

37 70 390 42 90 839 0.67 

38 70 390 47 85 844 0.52 

39 70 390 47 80 849 0.52 

40 70 390 47 80 856 0.45 

41 70 390 47 80 863 0.37 

42 70 390 47 90 730 0.75 

43 70 390 47 90 723 0.67 

44 70 390 47 90 723 0.52 

45 70 400 37 85 631 0.37 

46 70 400 37 85 641 0.45 

47 70 400 37 80 651 0.37 

48 70 400 37 80 651 0.45 

49 70 400 37 90 643 0.45 

50 70 400 37 90 636 0.37 

51 70 400 37 90 634 0.52 

52 70 400 42 85 706 0.52 

53 70 400 42 85 704 0.45 

54 70 400 42 90 711 0.67 

55 70 400 42 90 704 0.52 

56 70 400 47 85 863 0.75 
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Aogendix I 

No. T. A Current Voltage Speed 

cm/min 

Temp 

°C 

Root gap 

mm 

57 70 400 47 90 856 0.67 

58 70 400 47 90 861 0.52 

59 70 400 47 90 859 0.45 

60 90 380 37 85 607 0.67 

61 90 380 37 85 607 0.52 

62 90 380 37 85 592 0.45 

63 90 380 37 90 592 0.82 

64 90 380 37 90 600 0.75 

65 90 380 42 85 742 0.67 

66 90 380 42 85 769 0.52 

67 90 380 42 80 716 0.75 

68 90 380 42 80 697 0.67 

69 90 380 42 80 689 0.52 

70 90 380 42 80 689 0.45 

71 90 380 42 80 689 0.37 

72 90 380 42 90 682 1.12 

73 90 380 42 90 697 1.05 

74 90 380 42 90 745 0.97 

75 90 380 42 90 747 0.82 

76 90 380 47 85 716 0.75 

77 90 380 47 85 733 0.67 

78 90 380 47 85 701 0.52 

79 90 380 47 85 699 0.45 

80 90 380 47 80 711 0.75 

81 90 380 47 80 714 0.67 

82 90 380 47 90 721 0.75 

83 90 380 47 90 709 0.67 

84 90 380 47 90 699 0.52 

85 90 390 37 85 592 0.67 
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ndix 1 

No. T. A Current Voltage Speed 

cm/min 

Temp 

°C 

Root gap 

mm 

86 90 390 37 85 588 0.52 

87 90 390 37 85 595 0.45 

88 90 390 37 80 578 0.37 

89 90 390 37 90 568 0.45 

90 90 390 37 90 563 0.37 

91 90 390 37 90 568 0.37 

92 90 390 42 85 713 0.52 

93 90 390 42 80 723 0.45 

94 90 390 42 90 713 0.75 

95 90 390 42 90 726 0.67 

96 90 390 42 90 726 0.52 

97 90 390 42 90 711 0.45 

98 90 390 47 85 762 0.75 

99 90 390 47 85 750 0.67 

100 90 390 47 85 740 0.52 

101 90 390 47 85 735 0.45 

102 90 390 47 80 706 0.45 

103 90 390 47 90 764 0.67 

104 90 390 47 90 731 0.52 

105 90 390 47 90 709 0.45 

108 90 400 37 90 646 0.37 

109 90 400 37 90 651 0.37 

110 90 400 42 85 755 0.37 

112 90 400 42 90 774 0.52 

113 90 400 42 90 764 0.45 

114 90 400 42 90 755 0.37 

116 90 400 47 90 774 0.45 

117 90 400 47 90 767 0.37 

118 90 400 47 90 759 0.37 
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ndix 1 

No. T. A Current Voltage Speed 

cm/min 

Temp 

°C 

Root gap 

mm 

119 110 380 37 85 735 0.75 

120 110 380 37 85 779 0.67 

121 110 380 37 80 769 0.67 

122 110 380 37 80 820 0.52 

123 110 380 37 90 711 0.82 

124 110 380 37 90 713 0.75 

125 110 380 37 90 757 0.67 

126 110 380 42 85 856 0.97 

127 110 380 42 85 871 0.82 

128 110 380 42 85 883 0.75 

129 110 380 42 80 866 0.75 

130 110 380 42 80 876 0.67 

131 110 380 42 80 895 0.52 

132 110 380 42 90 832 0.67 

133 110 380 42 90 859 0.97 
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Appendix 2 

2.1. a Neural network training data for 100-110% penetration 

No. Torch 
angle 

current voltage speed temperature 

1. 70 380 37 80 776 
?, 70 390 37 80 677 

3. 70 390 37 80 684 

4. 70 390 37 80 687 

5. 70 390 37 80 682 

6. 70 390 37 80 687 

7. 70 390 37 80 677 

8. 70 390 37 80 675 
9. 70 390 37 80 667 

10. 70 390 37 80 672 

11. 70 390 42 85 704 

12. 70 400 37 85 648 

13. 70 400 37 85 646 

14. 70 400 37 85 651 

15. 70 400 37 85 660 

16. 70 400 37 85 665 

17. 70 400 37 85 646 

18. 70 400 37 80 752 

19. 70 400 37 80 747 
20. 70 400 37 80 740 

21. 70 400 37 80 730 
22. 70 400 37 80 723 
23. 70 400 37 90 655 

24. 70 400 37 90 655 

25. 70 400 37 90 648 

26. 70 400 37 90 660 

27. 70 400 37 90 658 

28. 70 400 37 90 663 

29. 70 400 37 90 655 

30. 70 400 37 90 660 

31. 70 400 42 85 711 

32. 70 400 42 80 687 
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No. Torch 
angle 

current voltage speed temperature 

33. 70 400 42 80 694 

34. 70 400 42 80 704 

35. 70 400 42 80 714 

36. 70 400 42 80 716 

37. 90 380 37 85 726 

38. 90 380 37 85 733 

39. 90 380 37 85 724 

40. 90 380 37 85 716 

41. 90 380 37 85 724 

42. 90 380 37 85 735 

43. 90 380 37 85 716 

44. 90 390 37 80 723 

45. 90 390 37 80 726 

46. 90 390 37 80 721 

47. 90 390 37 80 726 

48. 90 390 37 90 718 

49. 90 390 42 80 960 

50. 90 390 47 80 856 

51. 90 390 47 80 815 

52. 90 400 37 85 733 

53. 90 400 37 85 736 

54. 90 400 37 85 731 

55. 90 400 37 85 726 

56. 90 400 37 85 726 

57. 90 400 37 85 723 

58. 90 400 37 85 730 

59. 90 400 37 85 723 

60. 90 400 37 85 721 

61. 90 400 37 80 740 

62. 90 400 37 80 730 

63. 90 400 37 80 730 

64. 90 400 37 80 730 

65. 90 400 37 80 733 

66. 90 400 37 80 728 

67. 90 400 37 80 716 

68. 90 400 37 80 713 

69. 90 400 37 90 721 

70. 90 400 37 90 723 

71. 90 400 37 90 726 

72. 90 400 37 90 726 
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No. Torch 
angle 

current ý-_ltage speed temperature 

73. 90 400 37 j 90 726 

74. 90 400 37 90 723 

75. 90 400 37 90 726 

76. 90 400 37 90 718 

77. 90 400 37 90 716 

78. 90 400 42 85 936 

79. 90 400 42 85 910 

80. 90 400 42 80 895 

81. 90 400 42 80 909 

82. 90 400 42 80 919 

83. 90 400 42 80 837 

84. 90 400 42 80 810 

85. 90 400 42 80 793 

86. 90 400 42 80 779 

87. 90 400 42 80 791 

88. 90 400 47 85 873 

89. 90 400 47 80 871 

90. 90 400 47 80 878 

91. 90 400 47 80 924 

92. 90 400 47 80 912 

93. 90 400 47 80 861 

94. 90 400 47 80 849 

95. 90 400 47 80 854 

96. 90 400 47 80 871 

97. 90 400 47 80 871 

98. 110 380 37 85 805 

99. 110 390 37 85 779 

100. 110 390 37 85 769 

101. 110 390 37 85 781 

102. 110 390 37 80 777 

103. 110 390 37 80 770 

104. 110 390 37 80 774 

105. 110 390 37 80 772 

106. 110 390 37 80 767 

107. 110 390 37 80 747 

108. 110 390 37 80 750 

109. 110 390 37 80 747 

110. 110 400 37 1 85 796 

111. 110 400 37 85 767 

112. 110 400 37 80 745 
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No. Torch current voltage 
angle 

speed temperature 

113. 110 400 37 80 733 

114. 110 400 37 80,730 

115. 110 400 37 80 730 

116. 110 400 37 80 728 

117. 110 400 37 80 723 

118. 110 400 37 80 684 

119. 90 380 37 70 732 

120. 90 380 37 70 726 

121. 90 380 37 70 736 

122. 90 390 37 65 672 

123. 90 390 37 65 696 

124. 90 390 37 65 708 

125. 90 390 37 65 I 713 

126. 90 390 37 65 708 

127. 90 390 37 65 700 

128. 90 390 37 65 694 

129. 90 390 37 65 690 

130. 90 390 37 65 698 

131. 90 390 42 80 719 

132. 90 390 42 8C 732 

133. 90 390 42 80 728 

134. 90 390 42 80 725 

135. 90 390 42 80 722 

136. 90 390 42 80 848 

137. 90 390 42 80 840 

138. 90 390 42 80 848 

139. 90 390 42 80 826 

140. 90 390 42 80 1 830 

141. 90 390 42 80 818 

142. 90 390 42 80 814 

143. 90 390 42 80 822 

144. 90 390 42 80 824 

145. 90 390 42 80 830 

146. 90 390 47 75 850 

147. 90 390 47 75 843 

148. 90 390 42 80 846 

149. 90 390 47 75 844 

150. 90 390 47 75 819 
151. 90 390 47 75 813 

152. 90 390 47 7- 850 
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No. Torch 
anale 

current vo'_ age speed temperature 

153. 90 390 4 75 856 

154. 90 390 75 858 

155. 90 390 70 759 

156. 90 390 70 763 

157. 90 390 70 757 

158. 90 390 47 70 739 

159. 90 390 47 70 745 

160. 90 390 47 70 743 

161. 90 390 47 70 765 

162. 90 400 37 80 696 

163. 90 400 80 702 

164. 90 400 37 80 717 

165. 90 400 3. 80 708 

166. 90 400 37 80 697 

167. 90 400 3% 80 706 

168. 90 400 3' 80 687 

169. 90 400 37 80 694 

170. 90 400 37 80 710 

171. 90 400 37 75 702 

172. 90 400 37 75 686 

173. 90 400 37 75 690 

174. 90 400 37 75 700 

175. 90 400 37 75 708 

176. 90 400 37 75 692 

177. 90 400 37 75 697 

, moo on Ann 37 70 692 

179. 90 400 37 70 684 

180. 90 400 37 70 678 

181. 90 400 37 70 667 

182. 90 400 37 70 674 

183. 90 400 37 70 682 

184. 90 400 37 70 663 

185. 90 400 37 70 654 

186. 90 400 37 70 657 

187. 90 400 37 70 670 

188. 90 400 42 80 754 

189. 90 400 42 80 763 

190. 90 400 42 80 752 

191. 90 400 42 80 749 

192. 90 400 42 80 742 
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No. Torch 
angle 

current voltage speed temperature 

193. 90 400 42 80 736 

194. 90 400 42 80 730 

195. 90 400 42 80 744 

196. 90 400 42 80 750 

197. 90 400 42 75 795 

198. 90 400 42 75 777 

199. 90 400 42 75 754 

200. 90 400 42 75 749 

201. 90 400 42 75 758 

202. 90 400 42 75 768 

203. 90 400 42 75 757 

204. 90 400 42 75 763 

205. 90 400 42 75 768 

206. 90 400 47 70 769 

207. 90 400 47 70 763 

208. 90 400 47 70 782 

209. 90 400 47 70 792 

210. 90 400 47 70 775 

211. 90 400 47 70 768 

212. 90 400 47 70 771 

213. 90 400 47 70 762 

214. 90 400 47 70 780 

215. 90 410 37 80 636 

216. 90 410 37 80 634 

217. 90 410 37 80 635 

218. 90 410 37 80 646 

219. 90 410 37 80 653 

220. 90 410 37 80 648 

221. 90 410 37 80 644 

222. 90 410 37 80 650 

223. 90 410 42 85 710 

224. 90 410 42 85 718 

225. 90 410 42 85 710 

226. 90 410 42 85 713 

227. 90 410 42 85 702 

228. 90 380 42 75 741 

229. 90 380 42 75 736 

230. 90 380 42 75 742 

231. 90 380 42 75 739 

232. 90 380 42 75 738 
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No. Torch 
angle 

current voltage speed temperature 

233. 90 380 42 75 743 

234. 90 380 42 75 736 

235. 70 390 37 7C 619 

236. 70 390 37 70 623 

237. 70 390 37 70 628 

238. 70 390 37 70 612 

239. 70 390 37 70 605 

240. 70 390 37 70 618 

241. 70 390 37 70 607 

242. 70 390 37 70 614 

243. 70 390 42 75 647 

244. 70 390 42 75 663 

245. 70 390 42 75 686 

246. 70 390 42 75 674 

247. 70 390 47 80 696 

248. 70 390 47 80 719 

249. 70 390 47 80 725 

250. 70 390 47 80 720 

251. 70 390 47 80 714 

252. 70 400 42 80 685 

253. 70 400 42 80 711 

254. 70 400 42 80 712 
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2.1. b Neural network evaluation data for 100-110% 

penetration models 

No. Torch 
angle 

Current Voltage Speed Temperature °C 

1 70 390 37 800 689 
2 70 400 37 850 634 
3 70 400 37 850 663 
4 70 400 37 800 726 
5 70 400 37 900 665 
6 70 400 42 850 704 
7 70 400 47 800 709 
8 90 380 37 850 724 
9 90 390 37 800 721 
10 90 390 47 800 806 
11 90 400 37 850 723 
12 90 400 37 800 728 
13 90 400 37 800 726 
14 90 400 37 900 726 
15 90 400 37 900 711 
16 90 400 42 800 878 
17 90 400 42 800 788 
18 90 400 47 800 885 
19 110 380 37 850 815 
20 110 390 37 800 796 
21 110 390 37 800 757 
22 110 400 37 800 759 
23 110 400 37 800 728 
24 90 390 37 650 693 
25 90 390 42 800 846 
26 90 390 42 800 846 
27 90 390 47 700 754 
28 90 400 37 800 699 
29 90 400 37 750 687 
30 90 400 37 700 675 
31 90 400 42 750 790 
32 90 400 47 700 775 
33 90 410 37 800 642 
34 90 380 42 750 733 
35 70 390 37 700 625 
36 70 390 47 800 707 
37 70 400 42 800 697 
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2.2. a Neural network training data for 90-99% penetration 

models. 

NO. Torch 
angle 

current voltage speed temperature 

1. 70 380 37 80 781 

2. 70 380 37 80 781 

3. 70 380 37 80 774 

4. 70 380 37 80 767 

5. 70 380 37 80 730 

6. 70 380 37 80 733 

7. 70 380 37 80 733 

8. 70 380 37 90 709 

9. 70 390 37 85 643 

10. 70 390 42 80 723 

11. 70 400 37 85 660 

12. 70 400 37 85 643 

13. 70 400 37 80 711 

14. 70 400 37 80 730 

15. 70 400 37 90 663 

16. 70 400 42 85 694 

17. 70 400 42 85 701 

18. 70 400 42 85 711 

19. 70 400 42 85 706 

20. 70 400 42 85 709 

21. 70 400 42 85 711 

22. 70 400 42 80 719 

23. 70 400 42 90 704 

24. 70 400 47 85 701 

25. 70 400 47 85 697 

26. 70 400 47 85 689 

27. 70 400 47 85 687 

28. 70 400 47 85 699 

29. 70 400 47 85 699 

30. 70 400 47 85 682 

31. 70 400 47 80 723 

32. 70 400 47 80 733 

33. 70 400 47 85 682 

34. 70 400 47 80 723 

35. 70 400 47 80 733 

36. 70 400 47 80 738 
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NO. Torch 
angle 

current voltage speed temperature 

37. 90 380 37 85 731 

38. 90 380 37 85 738 

39. 90 380 42 85 929 

40. 90 380 42 85 963 

41. 90 380 42 85 900 

42. 90 390 37 85 713 

43. 90 390 37 85 718 

44. 90 390 37 85 718 

45. 90 390 37 80 723 

46. 90 390 37 80 726 

47. 90 390 37 80 726 

48. 90 390 37 80 726 

49. 90 390 37 80 721 

50. 90 390 37 90 718 

51. 90 390 37 90 713 

52. 90 390 37 90 706 

53. 90 390 37 90 704 

54. 90 390 37 90 706 

55. 90 390 37 90 701 

56. 90 390 37 90 699 

57. 90 390 37 90 699 

58. 90 390 42 80 968 

59. 90 390 42 80 924 

60. 90 390 42 80 871 

61. 90 390 42 80 866 

62. 90 390 42 80 839 

63. 90 390 42 80 827 

64. 90 390 47 85 885 
65. 90 390 47 80 963 
66. 90 390 47 80 907 
67. 90 390 47 80 793 

68. 90 390 47 80 799 

69. 90 390 47 80 808 

70. 90 400 42 85 893 

71. 90 400 42 85 818 

72. 90 400 42 85 822 

73. 90 400 42 85 823 

74. 90 400 42 90 849 

75. 90 400 47 85 905 

76. 90 400 47 85 931 
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NO. Torch current 
angle 

voltage speed emperature 

77. 90 400 47 85 919 

78. 90 400 47 85 888 

79. 90 400 47 85 856 

80. 90 400 47 85 842 

81. 90 400 47 85 856 

82. 90 400 47 85 876 

83. 90 400 47 90 914 

84. 90 400 47 90 931 

85. 110 380 37 85 868 

86. 110 380 37 80 830 

87. 110 390 37 85 786 

88. 110 390 37 85 786 

89. 110 390 37 85 781 

90. 110 390 37 85 774 

91. 110 390 37 90 805 

92. 110 390 37 90 757 

93. 110 390 37 90 { 752 

94. 110 390 37 90 740 

95. 110 390 37 90 745 

96. 110 390 37 90 742 

97. 110 400 37 85 759 

98. 110 400 37 85 759 

99. 110 400 37 85 759 

100. 110 400 37 90 798 

101. 110 400 37 90 767 

102. 110 400 37 90 747 

103. 110 400 37 90 742 

104. 110 400 37 90 733 

105. 110 400 37 90 747 

106. 110 { 400 37 90 742 

107. 110 400 37 90 733 
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2.2. b Neural network validation data for 90-99 % penetration 

models. 

NO. Torch 
angle 

current voltage speed temperature 

1. 70 380 37 80 776 
2. 70 390 37 85 643 
3. 70 400 37 80 730 
4. 70 400 42 90 701 
5. 70 400 47 80 728 
6. 90 380 37 80 750 
7. 90 390 37 90 701 
8. 90 400 42 85 876 
9. 110 380 37 85 801 
10. 110 400 37 85 793 
11. 110 400 42 90 847 
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2.3. a Neural network training data for 80-89% penetration 

models 

NO. Torch 
angle 

current voltage speed temperature 

1. 70 380 37 85 697 

2. 70 380 37 85 701 

3. 70 380 37 85 665 

4. 70 380 37 80 740 

5. 70 380 37 90 728 

6. 70 380 37 90 735 

7. 70 380 37 90 733 

8. 70 380 37 90 730 

9. 70 380 37 90 747 

10. 70 380 37 90 730 

11. 70 380 42 80 750 

12. 70 380 42 80 776 

13. 70 380 47 80 902 

14. 70 390 37 85 612 

15. 70 390 37 85 634 
16. 70 390 37 85 638 

17. 70 390 37 85 636 

18. 70 390 37 85 643 

19. 70 390 37 85 643 
20. 70 390 37 85 634 

21. 70 390 37 85 619 
22. 70 390 37 90 658 
23. 70 390 37 90 648 
24. 70 390 37 90 646 
25. 70 390 37 90 648 
26. 70 390 37 90 651 
27. 70 390 37 90 634 
28. 70 390 37 90 629 
29. 70 390 37 90 626 
30. 70 390 37 90 634 
31. 70 390 42 80 721 
32. 70 390 42 80 728 
33. 70 390 42 80 730 
34. 70 390 42 80 728 
35. 70 390 42 80 723 
36. 70 390 42 80 728 
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NO. Torch 
angle 

current voltage speed temperature 

37. 70 390 42 90 709 

38. 70 390 47 80 740 

39. 70 390 47 80 772 

40. 70 400 42 85 711 

41. 70 400 42 80 719 

42. 70 400 42 80 716 

43. 70 400 42 80 714 

44. 70 400 42 90 694 

45. 70 400 42 90 706 

46. 70 400 42 90 706 

47. 70 400 42 90 704 

48. 70 400 42 90 706 

49. 70 400 42 90 706 

50. 70 400 42 90 701 

51. 70 400 47 85 699 

52. 70 400 47 85 689 

53. 70 400 47 85 687 

54. 70 400 47 80 728 

55. 70 400 47 80 733 

56. 70 400 47 80 733 

57. 70 400 47 80 730 

58. 70 400 47 80 733 

59. 70 400 47 90 713 

60. 70 400 47 90 728 

61. 70 400 47 90 723 

62. 70 400 47 90 721 

63. 70 400 47 90 699 

64. 70 400 47 90 704 

65. 90 380 37 80 742 

66. 90 380 37 80 750 

67. 90 380 37 80 747 

68. 90 380 37 80 724 

69. 90 380 37 80 724 

70. 90 380 37 80 723 

71. 90 380 37 90 718 

72. 90 380 37 90 711 

73. 90 380 37 90 716 

74. 90 380 37 90 721 

75. 90 380 37 90 711 

76. 90 380 37 90 700 
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NO. Torch 
angle 

current voltage speed temperature 

77. 90 380 37 90 701- 
78. 90 380 37 90 69-- 
79. 90 380 37 90 69-- 
80. 90 380 42 85 893 
81. 90 380 42 85 873 
82. 90 380 42 85 885 
83. 90 380 42 85 880 
84. 90 380 42 85 888 
85. 90 380 42 80 96: 
86. 90 380 42 80 978 
87. 90 380 42 80 96-- 
88. 90 380 42 80 978 
89. 90 380 42 80 1 966 
90. 90 380 42 80 958 
91. 90 380 42 80 939 
92. 90 380 42 80 90-- 
93. 90 380 47 85 905 
94. 90 380 47 85 939 
95. 90 380 47 85 793-- 
96. 90 380 47 80 98 
97. 90 380 47 80 960 
98. 90 380 47 80 939 
99. 90 380 47 80 90: 
100. 90 380 47 80 842- 
101. 90 380 47 80 856 
102. 90 380 47 80 834 
103. 90 390 37 85 72 
104. 90 390 37 85 716 
105. 90 390 37 85 7166 
106. 90 390 37 85 713 
107. 90 390 37 85 709 
108. 90 390 37 85 709 
109. 90 390 42 85 79-- 
110. 90 390 42 85 80: 
111. 90 390 42 85 805 
112. 90 390 42 80 83 
113. 90 390 42 80 8277 
114. 90 390 42 90 83-3- 
115. 90 390 42 90 83 6 
116. 90 390 42 90 835 
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NO. Torch 
angle 

current voltage speed temperature 

117. 90 390 42 90 805 
118. 90 390 42 90 805 

119. 90 390 42 90 790 

120. 90 390 42 90 791 

121. 90 390 42 90 790 

122. 90 390 42 90 790 

123. 90 390 42 90 785 

124. 90 390 47 85 863 

125. 90 390 47 85 866 

126. 90 390 47 85 834 

127. 90 390 47 85 837 

128. 90 390 47 85 842 

129. 90 390 47 85 834 

130. 90 390 47 85 861 

131. 90 390 47 80 936 

132. 90 390 47 80 799 

133. 90 390 47 90 820 

134. 90 390 47 90 786 

135. 90 390 47 90 791 

136. 90 390 47 90 813 

1 137. 90 390 47 90 815 

138. 90 390 47 90 856 

139. 90 390 47 90 832 

140. 90 390 47 90 827 

141. 90 390 47 90 837 

142. 90 390 47 90 805 

143. 90 400 42 85 844 

144. 90 400 42 85 830 

145. 90 400 42 85 820 
146. 90 400 42 90 856 

147. 90 400 42 90 854 
148. 90 400 42 90 888 

149. 90 400 42 90 898 

150. 90 400 42 90 860 

151. 90 400 42 90 847 

152. 90 400 42 90 822 

153. 90 400 47 85 847 

154. 90 400 47 90 893 

155. 90 400 47 90 866 

156. 90 400 47 90 919 
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NO. Torch 
angle 

current voltage speed ! temperature 

157. 90 400 47 90 939 

158. 90 400 47 90 919 

159. 90 400 47 90 J 885 

160. 90 400 47 90 863 

161. 110 380 37 85 1 854 

162. 110 380 37 85 1 844 

163. 110 380 37 85 827 

164. 110 380 37 85 803 

165. 110 380 37 80 711 

166. 110 380 37 80 948 

167. 110 380 37 80 902 

168. 110 380 37 80 863 

169. 110 380 37 80 847 

170. 110 380 37 80 834 

171. 110 380 37 80 813 
172. 110 380 37 90 856 

173. 110 380 37 90 854 

174. 110 380 37 90 832 

175. 110 380 37 90 825 

176. 110 380 37 90 825 
177. 110 380 37 90 813 
178. 110 380 37 90 805 
179. 110 390 37 85 791 

180. 110 390 37 90 791 
181. 110 390 37 90 772 
182. 110 390 37 90 769 
183. 110 390 37 90 759 
184. 110 390 42 80 888 
185. 110 390 42 80 883 
186. 110 400 37 85 793 
187. 110 400 37 85 793 
188. 110 400 37 85 774 
189. 110 400 37 85 738 
190. 110 400 37 90 803 
191. 110 400 37 90 781 
192. 110 400 37 90 764 
193. 110 400 37 90 762 
194. 110 400 42 85 844 
195. 110 400 42 80 941 
196. 110 400 42 90 859 
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NO. Torch 
ange 

current voltage speed temperature 

197. 11: 400 42 90 842 

198. 11 400 42 90 839 
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2.3. b Neural network validation data for 80-89% penetration 

models. 

NO. Torch 
angle 

current voltage speed temperature 

1. 70 400 42 85 -23 

2. 70 400 42 90 706 

3. 70 390 47 80 774 

4. 70 400 37 80 682 

5. 70 400 47 90 733 
6. 90 380 37 80 716 
7. 90 380 42 85 924 
8. 90 380 47 80 955 
9. 90 390 37 85 721 

10. 90 380 42 85 941 

11. 90 390 42 80 902 

12. 90 390 47 85 849 

13. 90 400 42 90 910 

14. 110 380 37 90 798 

15. 110 390 37 85 805 

16. 110 380 37 85 769 

17. 110 390 37 85 808 

18. 110 400 37 90 747 

19. 110 400 47 80 893 
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2.4. a Neural network training data for 70-79% penetration 

models. 

NO. Torch 
angle 

current voltage speed temperature 

1. 70 380 37 85 687 
70 380 37 85 672 

3. 70 380 37 85 665 

4. 70 380 37 90 740 

5. 70 380 37 90 716 

6. 70 380 37 90 718 

7. 70 380 42 85 767 

8. 70 380 42 85 798 

9. 70 380 42 85 820 

10. 70 380 42 85 805 

11. 70 380 42 85 801 

12. 70 380 42 85 793 

13. 70 380 42 85 774 

14. 70 380 42 85 769 

15. 70 380 42 85 776 

16. 70 380 42 80 793 

17. 70 380 42 80 793 

18. 70 380 42 80 793 

19. 70 380 42 80 791 

20. 70 380 42 80 788 

21. 70 380 42 80 767 

22. 70 380 42 80 769 

23. 70 380 42 80 769 

24. 70 380 42 90 774 

25. 70 380 42 90 788 

26. 70 380 42 90 798 

27. 70 380 42 90 803 

28. 70 380 42 90 801 

29. 70 380 42 90 791 

30. 70 380 42 90 781 

31. 70 380 42 90 796 

32. 70 380 42 90 796 

33, 70 380 42 90 781 
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NO. Torch 
angle 

current voltage speed temperature) 

34. 70 380 47 85 837 

35. 70 380 47 85 854 
36. 70 380 47 85 863 

37. 70 380 47 85 866 

38. 70 380 47 85 856 

39. 70 380 47 85 842 

40. 70 380 47 85 851 

41. 70 380 47 80 842 

42. 70 380 47 80 895 

43. 70 380 47 80 907 

44. 70 380 47 80 890 

45. 70 380 47 80 900 

46. 70 380 47 80 885 

47. 70 380 47 80 851 

48. 70 380 47 80 851 

49. 70 380 47 80 844 

50. 70 380 47 90 847 

51. 70 380 47 90 878 

52. 70 380 47 90 878 

53. 70 380 47 90 847 

54. 70 380 47 90 822 

55. 70 380 47 90 759 

56. 70 380 47 90 750 

57. 70 380 47 90 747 

58. 70 390 37 90 658 

59. 70 390 42 85 713 

60. 70 390 42 85 718 

61. 70 390 42 85 718 

62. 70 390 42 85 716 
63. 70 390 42 85 723 

64. 70 390 42 85 701 
65. 70 390 42 80 721 

66. 70 390 42 80 713 

67. 70 390 42 80 706 

68. 70 390 42 90 711 

69. 70 390 42 90 711 

70. 70 390 42 90 712 

71. 70 390 42 90 710 

72. 70 390 42 90 711 

73. 70 390 42 90 713 
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NO. Torch 
angle 

current voltage speed temperature 

74. 70 390 42 90 709 

75. 70 390 42 90 704 

76. 70 390 47 85 716 

77. 70 390 47 85 728 

78. 70 390 47 85 735 

79. 70 390 47 85 733 

80. 70 390 47 85 721 

81. 70 390 47 85 716 

82. 70 390 47 85 718 

83. 70 390 47 85 718 

84. 70 390 47 85 709 

85. 70 390 47 80 759 

86_ 70 390 47 80 750 

87. 70 390 47 80 745 

88. 70 390 47 80 745 

89. 70 390 47 80 745 

90. 70 390 47 80 747 

91. 70 390 47 90 731 

92. 70 390 47 90 723 

93. 70 390 47 90 733 

94. 70 390 47 90 747 

95. 70 390 47 90 755 

96. 70 390 47 90 747 

97. 70 390 47 90 726 

98_ 70 400 42 80 716 

99. 90 380 37 80 755 

100. 90 380 37 90 716 

101. 90 380 42 80 960 

102. 90 380 42 80 861 

103. 90 380 42 90 905 

104. 90 380 42 90 888 

105. 90 380 42 90 914 

106. 90 380 42 90 929 

107. 90 380 42 90 917 

108. 90 380 42 90 905 

109. 90 380 42 90 883 

110. 90 380 42 90 873 

111. 90 380 42 90 873 

112. 90 380 47 85 890 

113. 90 380 47 85 965 
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a NO. Torch 
angle 

current voltage speed temperature 

114. 90 38; 47 85 941 
115. 90 380 47 85 856 
116. 90 380 47 85 796 
117. 90 380 47 85 798 
118. 90 380 47 80 929 
119. 90 380 47 90 881 
120. 90 380 47 90 878 
121. 90 380 47 90 905 

122. 90 380 47 90 931 

123. 90 380 47 90 929 

124. 90 380 47 90 912 
125. 90 380 47 90 900 

126. 90 380 47 90 866 
127. 90 380 47 90 830 

128. 90 390 42 85 878 
129. 90 390 42 85 842 
130. 90 390 42 85 815 

131. 90 390 42 85 805 
132. 90 390 42 85 805 

133. 90 390 42 85 793 
134. 90 390 47 85 853 
135. 90 400 42 90 830 
136. 110 380 37 80 815 
137. 110 380 37 80 793 
138. 110 380 37 90 839 
139. 110 380 42 85 917 
140. 110 380 42 85 893 
141. 110 380 42 85 893 
142. 110 380 42 85 926 
143. 110 380 42 85 946 
144. 110 380 42 85 972 
145. 110 380 42 85 968 
146. 110 380 42 85 984 
147. 110 380 42 85 972 
148. 110 380 42 80 997 
149. 110 380 42 80 989 
150. 110 380 42 80 1009 
151. 110 380 42 80 1014 
152. 110 380 42 80 1014 
153. 110 380 42 80 1014 
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NO. Torch : urrent 
angle 

voltage speed ; temperature 

154. 110 380 42 80 1221 
155. 110 380 42 80 1014 
156. 110 380 42 80 1023 
157. 110 380 42 80 989 
158. 110 380 42 90 970 
159. 110 380 42 90 924 
160. 110 380 42 90 926 
161. 110 380 42 90 946 
162. 110 380 42 90 953 
163. 110 380 42 90 953 
164. 110 380 42 90 943 
165. 110 380 47 85 851 
166. 110 380 47 85 837 
167. 110 380 47 85 839 
168. 110 380 47 85 859 
169. 110 380 47 85 861 

170. 110 380 47 85 861 

171. 110 380 47 85 866 
172. 110 380 47 85 849 
173. 110 380 47 85 847 
174. 110 380 47 85 813 
175. 110 380 47 80 861 
176. 110 380 47 80 849 
177. 110 380 47 80 849 
178. 110 380 47 80 839 
179. 110 380 47 80 832 

180. 110 380 47 80 832 

181. 110 380 47 80 830 
182. 110 380 47 80 842 
183. 110 380 47 80 825 
184. 110 380 47 90 861 
185. 110 380 47 90 844 
186. 110 380 47 90 849 
187. 110 380 47 90 830 
188. 110 380 47 90 818 
189. 110 380 47 90 813 
190. 110 380 47 90 805 
191. 110 380 47 I 90 798 
192. 110 380 47 90 791 
193. 110 380 47 90 784 
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NO. Torch 
angle 

current voltage speed temperature 

194. 110 390 42 85 

195. 110 390 42 85 8-1 

196. 110 390 42 85 858 

197. 110 390 42 85 8_1 

198. 110 390 42 85 859 

199. 110 390 42 85 847 

200. 110 390 42 85 842 

201. 110 390 42 85 83 0 

202. 110 390 42 85 812 

203. 110 390 42 85 830 

204. 110 390 42 80 895 

205. 110 390 42 80 876 

206. 110 390 42 80 888 

207. 110 390 42 80 900 

208. 110 390 42 80 876 

209. 110 390 42 80 871 

210. 110 390 42 80 863 

211. 110 390 42 90 851 

212. 110 390 42 90 827 

213. 110 390 42 90 827 

214. 110 390 42 90 827 

215. 110 390 42 90 815 

216. 110 390 42 90 818 

217. 110 390 42 90 834 

218. 110 390 47 85 868 

219. 110 390 47 90 859 

220. 110 390 47 90 856 

221. 110 390 47 90 859 

222. 110 390 47 90 844 

223. 110 390 47 90 839 

224. 110 390 47 90 830 

225. 110 390 47 90 825 

226. 110 390 47 90 820 

227. 110 400 42 85 866 

228. 110 400 42 85 856 

229. 110 400 42 85 856 

230. 110 400 42 85 830 

231. 110 400 42 85 827 

232. 110 400 42 85 825 

233. 110 400 42 85 822 

A2-25 



Appendix 2 

NO. Torch 
angle 

current': voltage speed temperature 

234. 110 40 42 80 953 

235. 110 4.0 42 80 943 
236. 110 40 42 80 948 

237. 110 420 42 80 948 
238. 110 420 42 80 939 
239. 110 420 42 80 934 

240. 110 4-0 42 90 883 

241. 110 420 42 90 861 

242. 110 410 42 90 849 

243. 110 430 42 90 847 

244. 110 430 42 90 839 

245. 110 430 42 90 837 

246. 110 430 47 85 907 

247. 110 400 47 85 892 

248. 110 430 47 85 892 

249. 110 400 47 85 885 

250. 110 430 47 85 870 

251. 110 430 47 85 865 

252. 110 400 47 85 860 

253. 110 400 47 80 912 

254. 110 430 47 80 914 

255. 110 400 47 80 914 

256. 110 430 47 80 902 

257. 110 430 47 80 905 
258. 110 400 47 80 895 

259. 110 430 47 90 919 
260. 110 430 47 90 902 
261. 110 400 47 90 897 
262. 110 400 47 90 893 
263. 110 400 47 90 895 
264. 110 400 47 90 883 

A2-26 



Appendix 2 

2.4. b. Neural network validation data for 70-79% penetration 

models. 

NO. Torch 
angle 

current voltage s_oed temperature 
i 

1. 70 380 37 :5 670 
2. 70 380 42 55 818 
3. 70 380 47 0 827 
4. 70 390 42 55 711 
5. 70 390 47 50 740 
6. 70 390 47 85 721 
7. 70 390 42 { 90 713 
8. 70 390 37 80 704 
9. 70 390 47 g0 742 
10. 90 380 47 60 968 
11. 90 400 47 f °0 878 
12. 90 380 47 90 844 
13. 90 380 42 90 905 
14. 90 380 37 80 738 
15. 90 390 42 85 893 
16. 110 380 37 ,0 842 
17. 110 380 42 35 965 
18. 110 380 42 ! 90 941 
19. 110 390 42 -0 900 
20. 110 390 42 Z; 0 815 
21. 110 400 42 55 856 
22. 110 400 47 90 871 
23. 110 400 47 ö0 902 
24. 110 400 47 85 907 
25. 110 400 42 80 939 
26. 110 400 47 80 929 
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Appendix 3. 

3.1 Fuzzy logic rule base applied in fuzzy logic modelling. 

1. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is M) 
then (cur is VH) (1) 

2. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is M) 
then (vol is VH) (1) 

3. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is M) 
then (sp is L) (1) 

4. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is L) 
then (cur is VH) (1) 

5. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is L) 
then (vol is VH) (1) 

6. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is L) 
then (sp is L) (1) 

7. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is H) 
then (cur is VH) (1) 

8. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is H) 
then (vol is VH) (1) 

9. If (Temperature is bn) and (Current is L) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

10. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is M) 
then (cur is VH) (1) 

11. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is M) 
then (vol is VH) (1) 

12. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is M) 
then (sp is L) (1) 

13. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is L) 
then (cur is VH) (1) 

14. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is L) 
then (vol is VH) (1) 

15. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

16. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is H) 
then (cur is VH) (1) 
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17. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is H) 
then (vol is VH) (1) 

18. If (Temperature is bn) and (Current is L) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

19. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is M) 
then (cur is VH) (1) 

20. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is M) 
then (vol is VH) (1) 

21. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is M) 
then (sp is L) (1) 

22. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is L) 
then (cur is VH) (1) 

23. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is L) 
then (vol is VH) (1) 

24. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is L) 
then (sp is L) (1) 

25. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is H) 
then (cur is VH) (1) 

26. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is H) 
then (vol is VH) (1) 

27. If (Temperature is bn) and (Current is L) and (Voltage is H) and (Speed is H) 
then (sp is L) (1) 

28. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is 
M) then (cur is VH) (1) 

29. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is 
M) then (vol is VH) (1) 

30. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is 
M) then (sp is L) (1) 

31. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is L) 
then (cur is VH) (1) 

32. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is L) 
then (vol is VH) (1) 

33. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is L) 

then (sp is L) (1) 
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34. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is H) 
then (cur is VH) (1) 

35. If (Temperature is bn) and (Current is M) and (Voltage is M) and (Speed is H) 
then (vol is VH) (1) 

36. If (Temperature is bn) and (Current is N1) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

37. If (Temperature is bn) and (Current is N 1) and (Voltage is L) and (Speed is M) 
then (cur is VH) (1) 

38. If (Temperature is bn) and (Current is Ni) and (Voltage is L) and (Speed is M) 
then (vol is VH) (1) 

39. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is M) 
then (sp is L) (1) 

40. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is L) 
then (cur is VH) (1) 

41. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is L) 
then (vol is VH) (1) 

42. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

43. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is H) 
then (cur is VH) (1) 

44. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is H) 
then (vol is VH) (1) 

45. If (Temperature is bn) and (Current is M) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

46. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is M) 
then (cur is VH) (1) 

47. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is M) 
then (vol is VH) (1) 

48. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is M) 
then (sp is L) (1) 

49. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is L) 
then (cur is VH) (1) 

50. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is L) 
then (vol is VH) (1) 
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51. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is L) 
then (sp is L) (1) 

52. If (Temperature is bn) and (Current is M) and (Voltage is Hý and (Speed is H) 
then (cur is VH) (1) 

53. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is H) 

then (vol is VH) (1) 

54. If (Temperature is bn) and (Current is M) and (Voltage is H) and (Speed is H) 
then (sp is L) (1) 

55. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is M) 
then (cur is VH) (1) 

56. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is M) 
then (vol is VH) (1) 

57. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is M) 
then (sp is L) (1) 

58. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is L) 
then (cur is nc) (1) 

59. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is L) 
then (vol is VH) (1) 

60. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is L) 
then (sp is L) (1) 

61. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is H) 
then (cur is nc) (1) 

62. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is H) 
then (vol is VH) (1) 

63. If (Temperature is bn) and (Current is H) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

64. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is M) 
then (cur is nc) (1) 

65. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is M) 
then (vol is VH) (1) 

66. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is M) 

then (sp is L) (1) 

67. If (Temperature is bn) and (Current is H) and (Voltage is Li and (Speed is L) 

then (cur is nc) (1) 
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68. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is L) 
then (vol is VH) (1) 

69. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

70. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is H) 
then (cur is nc) (1) 

71. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is H) 

then (vol is VH) (1) 

72. If (Temperature is bn) and (Current is H) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

73. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is M) 
then (cur is nc) (1) 

74. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is M) 
then (cur is nc) (1) 

75. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is M) 
then (sp is L) (1) 

76. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is L) 
then (cur is nc) (1) 

77. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is L) 
then (cur is nc) (1) 

78. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is L) 
then (sp is L) (1) 

79. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is H) 
then (cur is nc) (1) 

80. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is H) 
then (cur is nc) (1) 

81. If (Temperature is bn) and (Current is H) and (Voltage is H) and (Speed is H) 
then (sp is L) (1) 

82. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is M) 
then (cur is H) (1) 

83. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is M) 
then (vol is VH) (1) 

84. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is M) 
then (sp is L) (1) 
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85. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is L) 
then (cur is H) (1) 

86. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is L) 
then (vol is VH) (1) 

87. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is L) 
then (sp is L) (1) 

88. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is H) 
then (cur is H) (1) 

89. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is H) 
then (vol is VH) (1) 

90. If (Temperature is n) and (Current is L) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

91. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is M) 
then (cur is H) (1) 

92. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is M) 
then (vol is VH) (1) 

93. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is M) 
then (sp is L) (1) 

94. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is L) 
then (cur is H) (1) 

95. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is L) 
then (vol is VH) (1) 

96. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

97. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is H) 
then (cur is H) (1) 

98. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is H) 
then (vol is VH) (1) 

99. If (Temperature is n) and (Current is L) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

100. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is M) 
then (cur is H) (1) 

101. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is M) 
then (vol is VH) (1) 
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102. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is M) 

then (sp is L) (1) 

103. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is L) 
then (cur is H) (1) 

104. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is L) 

then (vol is VH) (1) 

105. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is L) 
then (sp is L) (1) 

106. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is H) 
then (cur is H) (1) 

107. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is H) 
then (vol is VH) (1) 

108. If (Temperature is n) and (Current is L) and (Voltage is H) and (Speed is H) 
then (sp is L) (1) 

109. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is 
M) then (cur is H) (1) 

110. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is 
M) then (vol is VH) (1) 

111. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is 
M) then (sp is L) (1) 

112. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is L) 
then (cur is H) (1) 

113. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is L) 
then (vol is VH) (1) 

114. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is L) 
then (sp is L) (1) 

115. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is H) 
then (cur is H) (1) 

116. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is H) 
then (vol is VH) (1) 

117. If (Temperature is n) and (Current is M) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

118. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is M) 
then (cur is H) (1) 
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119. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is M) 
then (vol is VH) (1) 

120. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is M) 
then (sp is L) (1) 

121. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is L) 
then (cur is H) (1) 

122. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is L) 
then (vol is V H) (1) 

123. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

124. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is H) 
then (cur is H) (1) 

125. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is H) 
then (vol is VH) (1) 

126. If (Temperature is n) and (Current is M) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

127. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is M) 
then (cur is H) (1) 

128. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is M) 
then (vol is H) (1) 

129. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is M) 
then (sp is L) (1) 

130. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is L) 
then (cur is H) (1) 

131. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is L) 
then (vol is H) (1) 

132. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is L) 
then (sp is L) (1) 

133. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is H) 
then (cur is H) (1) 

134. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is H) 
then (vol is H) (1) 

135. If (Temperature is n) and (Current is M) and (Voltage is H) and (Speed is H) 

then (sp is L) (1) 
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136. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is M) 
then (cur is H) (1) 

137. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is M) 
then (vol is H) (1) 

138. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is M) 
then (sp is L) (1) 

139. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is L) 
then (cur is nc) (1) 

140. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is L) 
then (vol is VH) (1) 

141. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is L) 
then (sp is L) (1) 

142. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is H) 
then (cur is nc) (1) 

143. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is H) 
then (vol is H) (1) 

144. If (Temperature is n) and (Current is H) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

145. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is M) 
then (cur is nc) (1) 

146. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is M) 
then (vol is H) (1) 

147. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is M) 
then (sp is L) (1) 

148. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is L) 
then (cur is nc) (1) 

149. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is L) 
then (vol is VH) (1) 

150. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

151. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is H) 
then (cur is nc) (1) 

152. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is H) 
then (vol is H) (1) 
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153. If (Temperature is n) and (Current is H) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

154. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is M) 
then (cur is nc) (1) 

155. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is M) 
then (cur is nc) (1) 

156. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is M) 
then (sp is H) (1) 

157. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is L) 
then (cur is nc) (1) 

158. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is L) 
then (vol is nc) (1) 

159. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is L) 
then (sp is L) (1) 

160. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is H) 
then (cur is L) (1) 

161. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is H) 
then (vol is nc) (1) 

162. If (Temperature is n) and (Current is H) and (Voltage is H) and (Speed is H) 
then (sp is H) (1) 

163. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is M) 
then (cur is L) (1) 

164. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is M) 
then (vol is L) (1) 

165. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is M) 
then (sp is nc) (1) 

166. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is L) 
then (cur is L) (1) 

167. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is L) 
then (vol is L) (1) 

168. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is L) 
then (sp is L) (1) 

169. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is H) 
then (cur is L) (1) 
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170. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is H) 
then (vol is nc) (1) 

171. If (Temperature is p) and (Current is L) and (Voltage is M) and (Speed is H) 
then (sp is L) (1) 

172. If (Temperature is p) and ( Current is L) and (Voltage is L) and (Speed is M) 
then (cur is L) (1) 

173. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is M) 
then (vol is L) (1) 

174. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is M) 
then (sp is L) (1) 

175. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is L) 
then (cur is L) (1) 

176. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is L) 
then (vol is L) (1) 

177. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is L) 
then (sp is L) (1) 

178. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is H) 
then (cur is L) (1) 

179. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is H) 
then (vol is L) (1) 

180. If (Temperature is p) and (Current is L) and (Voltage is L) and (Speed is H) 
then (sp is L) (1) 

181. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is M) 
then (cur is L) (1) 

182. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is M) 
then (vol is ne) (1) 

183. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is M) 
then (sp is H) (1) 

184. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is L) 
then (cur is L) (1) 

185. If (Temperature is p) and (Current is L) and (Voltage is H) and S Speed is L) 
then (vol is H) (1) 

186. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is L) 
then (sp is H) (1) 
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187. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is H) 

then (cur is L) (1) 

188. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is H) 
then (vol is H) (1) 

189. If (Temperature is p) and (Current is L) and (Voltage is H) and (Speed is H) 
then (sp is H) (1) 

190. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is 
M) then (cur is L) (1) 

191. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is 
M) then (vol is L) (1) 

192. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is 
M) then (sp is H) (1) 

193. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is L) 
then (cur is L) (1) 

194. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is L) 
then (vol is nc) (1) 

195. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is L) 
then (sp is H) (1) 

196. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is H) 
then (cur is nc) (1) 

197. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is H) 
then (vol is L) (1) 

198. If (Temperature is p) and (Current is M) and (Voltage is M) and (Speed is H) 
then (sp is H) (1) 

199. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is M) 
then (cur is L) (1) 

200. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is M) 
then (vol is L) (1) 

201. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is M) 
then (sp is nc) (1) 

202. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is L) 
then (cur is nc) (1) 

203. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is L) 
then (vol is L) (1) 
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204. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is L) 
then (sp is H) (1) 

205. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is H) 
then (cur is L) (1) 

206. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is H) 
then (vol is L) (1) 

207. If (Temperature is p) and (Current is M) and (Voltage is L) and (Speed is H) 
then (sp is H) (1) 

208. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is M) 
then (cur is nc) (1) 

209. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is M) 
then (vol is L) (1) 

210. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is M) 

then (sp is H) (1) 

211. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is L) 
then (cur is nc) (1) 

212. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is L) 
then (vol is nc) (1) 

213. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is L) 
then (sp is nc) (1) 

214. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is H) 
then (cur is L) (1) 

215. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is H) 
then (vol is nc) (1) 

216. If (Temperature is p) and (Current is M) and (Voltage is H) and (Speed is H) 
then (sp is nc) (1) 

217. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is M) 
then (cur is L) (1) 

218. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is M) 
then (vol is H) (1) 

219. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is M) 

then (sp is H) (1) 

220. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is L) 
then (cur is nc) (1) 
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221. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is L) 
then (vol is L) (1) 

222. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is L) 
then (sp is nc) (1) 

223. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is H) 
then (cur is L) (1) 

224. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is H) 
then (vol is nc) (1) 

225. If (Temperature is p) and (Current is H) and (Voltage is M) and (Speed is H) 
then (sp is H) (1) 

226. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is M) 
then (cur is nc) (1) 

227. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is M) 
then (vol is L) (1) 

228. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is M) 
then (sp is H) (1) 

229. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is L) 
then (cur is nc) (1) 

230. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is L) 
then (vol is L) (1) 

231. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is L) 
then (sp is H) (1) 

232. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is H) 
then (cur is VL) (1) 

233. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is H) 
then (vol is L) (1) 

234. If (Temperature is p) and (Current is H) and (Voltage is L) and (Speed is H) 
then (sp is H) (1) 

235. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is M) 
then (cur is L) (1) 

236. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is M) 
then (vol is L) (1) 

237. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is M) 
then (sp is H) (1) 
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238. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is L) 
then (cur is L) (1) 

239. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is L) 
then (vol is L) (1) 

240. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is L) 
then (sp is nc) (1) 

241. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is H) 
then (cur is L) (1) 

242. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is H) 
then (vol is L) (1) 

243. If (Temperature is p) and (Current is H) and (Voltage is H) and (Speed is H) 
then (sp is H) (1) 

244. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
M) then (cur is VL) (1) 

245. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
M) then (vol is VL) (1) 

246. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
M) then (sp is H) (1) 

247. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
L) then (cur is VL) (1) 

248. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
L) then (vol is VL) (1) 

249. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
L) then (sp is H) (1) 

250. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
H) then (cur is VL) (1) 

251. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
H) then (vol is VL) (1) 

252. If (Temperature is bp) and (Current is L) and (Voltage is M) and (Speed is 
H) then (sp is H) (1) 

253. If (Temperature is bp) and (Current is L) and (Voltage is L) and (Speed is 
M) then (cur is VL) (1) 

254. If (Temperature is bp) and (Current is L) and (Voltage is L) and (Speed is 
M) then (vol is VL) (1) 
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255. If (Temperature is bp) and (Current is L) and (Voltage is L) and (Speed is 
M) then (sp is H) (1) 

256. If (Temperature is bp) and (Current is L) and (Voltage is Li and (Speed is L) 
then (cur is VL) (1) 

257. If (Temperature is bp) and (Current is L) and (Voltage is Ly and (Speed is L) 
then (vol is VL) (1) 

258. If (Temperature is bp) and (Current is L) and (Voltage is L and (Speed is L) 
then (sp is H) (1) 

259. If (Temperature is bp) and (Current is L) and (Voltage is L) and (Speed is H) 
then (cur is VL) (1) 

260. If (Temperature is bp) and (Current is L) and (Voltage is L) and (Speed is H) 
then (vol is VL) (1) 

261. If (Temperature is bp) and (Current is L) and (Voltage is L) and (Speed is H) 
then (sp is H) (1) 

262. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is 
M) then (cur is L) (1) 

263. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is 
M) then (vol is L) (1) 

264. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is 
M) then (sp is H) (1) 

265. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is L) 
then (cur is L) (1) 

266. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is L) 
then (vol is L) (1) 

267. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is L) 
then (sp is H) (1) 

268. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is 
H) then (cur is L) (1) 

269. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is 
H) then (vol is VL) (1) 

270. If (Temperature is bp) and (Current is L) and (Voltage is H) and (Speed is 
H) then (sp is H) (1) 

271. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
M) then (cur is L) (1) 
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272. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
M) then (vol is L) (1) 

273. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
M) then (sp is H) (1) 

274. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
L) then (cur is L) (1) 

275. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
L) then (vol is L) (1) 

276. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
L) then (sp is H) (1) 

277. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
H) then (cur is L) (1) 

278. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
H) then (vol is L) (1) 

279. If (Temperature is bp) and (Current is M) and (Voltage is M) and (Speed is 
H) then (sp is H) (1) 

280. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
M) then (cur is L) (1) 

281. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
M) then (vol is VL) (1) 

282. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
M) then (sp is H) (1) 

283. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
L) then (cur is VL) (1) 

284. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
L) then (vol is VL) (1) 

285. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
L) then (sp is H) (1) 

286. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
H) then (cur is VL) (1) 

287. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
H) then (vol is VL) (1) 

288. If (Temperature is bp) and (Current is M) and (Voltage is L) and (Speed is 
H) then (sp is H) (1) 
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289. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
M) then (cur is L) (1) 

290. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
M) then (vol is L) (11 

291. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
M) then (sp is H) (1) 

292. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
L) then (cur is L) (1) 

293. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
L) then (vol is L) (1) 

294. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
L) then (sp is ne) (1) 

295. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
H) then (cur is VL) (1 i 

296. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
H) then (vol is VL) (1, 

297. If (Temperature is bp) and (Current is M) and (Voltage is H) and (Speed is 
H) then (sp is H) (1) 

298. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
M) then (cur is L) (1) 

299. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
M) then (vol is L) (1) 

300. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
M) then (sp is H) (1) 

301. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
L) then (cur is L) (1) 

302. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
L) then (vol is L) (1) 

303. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
L) then (sp is H) (1) 

304. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
H) then (cur is L) (1) 

305. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
H) then (vol is nc) (1) 
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306. If (Temperature is bp) and (Current is H) and (Voltage is M) and (Speed is 
H) then (sp is H) (1) 

307. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is 
M) then (cur is VL) (1) 

308. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is 
M) then (vol is L) (1) 

309. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is 
M) then (sp is H) (1) 

310. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is L) 
then (cur is L) (1) 

311. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is L) 
then (vol is L) (1) 

312. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is L) 
then (sp is H) (1) 

313. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is 
H) then (cur is VL) (1) 

314. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is 
H) then (vol is L) (1) 

315. If (Temperature is bp) and (Current is H) and (Voltage is L) and (Speed is 
H) then (sp is H) (1) 

316. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
M) then (cur is L) (1) 

317. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
M) then (vol is L) (1) 

318. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
M) then (sp is H) (1) 

319. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
L) then (cur is L) (1) 

320. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
L) then (vol is L) (1) 

321. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
L) then (sp is H) (1) 

322. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
H) then (cur is L) (1) 
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Appendix 3 

323. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
H) then (vol is L) (1) 

324. If (Temperature is bp) and (Current is H) and (Voltage is H) and (Speed is 
H) then (sp is H) (1) 

325. If (angle is 1) then (an is N) (1) 

326. If (angle is m) then (an is nc) (1) 

327. If (angle is h) then (an is P) (1) 
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