3,748 research outputs found

    ACL2(ml):machine-learning for ACL2

    Get PDF
    ACL2(ml) is an extension for the Emacs interface of ACL2. This tool uses machine-learning to help the ACL2 user during the proof-development. Namely, ACL2(ml) gives hints to the user in the form of families of similar theorems, and generates auxiliary lemmas automatically. In this paper, we present the two most recent extensions for ACL2(ml). First, ACL2(ml) can suggest now families of similar function definitions, in addition to the families of similar theorems. Second, the lemma generation tool implemented in ACL2(ml) has been improved with a method to generate preconditions using the guard mechanism of ACL2. The user of ACL2(ml) can also invoke directly the latter extension to obtain preconditions for his own conjectures.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Building and Refining Abstract Planning Cases by Change of Representation Language

    Full text link
    ion is one of the most promising approaches to improve the performance of problem solvers. In several domains abstraction by dropping sentences of a domain description -- as used in most hierarchical planners -- has proven useful. In this paper we present examples which illustrate significant drawbacks of abstraction by dropping sentences. To overcome these drawbacks, we propose a more general view of abstraction involving the change of representation language. We have developed a new abstraction methodology and a related sound and complete learning algorithm that allows the complete change of representation language of planning cases from concrete to abstract. However, to achieve a powerful change of the representation language, the abstract language itself as well as rules which describe admissible ways of abstracting states must be provided in the domain model. This new abstraction approach is the core of Paris (Plan Abstraction and Refinement in an Integrated System), a system in which abstract planning cases are automatically learned from given concrete cases. An empirical study in the domain of process planning in mechanical engineering shows significant advantages of the proposed reasoning from abstract cases over classical hierarchical planning.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)

    Full text link
    With the increased use of ontologies in semantically-enabled applications, the issue of debugging defects in ontologies has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Debugging consists of the phases of detection and repairing. In this paper we focus on the repairing phase of a particular kind of defects, i.e. the missing relations in the is-a hierarchy. Previous work has dealt with the case of taxonomies. In this work we extend the scope to deal with ALC ontologies that can be represented using acyclic terminologies. We present algorithms and discuss a system

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    Derivation of sorting programs

    Get PDF
    Program synthesis for critical applications has become a viable alternative to program verification. Nested resolution and its extension are used to synthesize a set of sorting programs from their first order logic specifications. A set of sorting programs, such as, naive sort, merge sort, and insertion sort, were successfully synthesized starting from the same set of specifications

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale
    • …
    corecore