
N90-27319

Derivation of Sorting Programs

Joseph Varghese

QTC Horizon Labs

8700 SW Creekside PI., Suite D

Beaverton, OR 97005

Rasiah Loganantharaj

The Center for Advanced Computer Studies

USL, P.O.Box 44330

Lafayette, LA 70504

Abstract

Program synthesis for critical applications has become a viable alternative to program
verification. We use nested resolution and its extension to synthesize a set of sorting pro-
grams from their first order logic specifications. We have successfully synthesized a set of
sorting programs, such as, naive sort, merge sort, and insertion sort, starting from the same
set of specifications.

1 Introduction

The important phases of a software life cycle include requirement acquisition, development of

algorithms, implementation, verification and maintenance. Usually, the execution performance

is an expected requirement in a software development process. Unfortunately, the verification

and the maintenance of programs are the time consuming and the frustrating aspects of software

engineering. The verification can not be wavered for the programs used for critical applications

such as, military, space, and nuclear plants. As a consequence, synthesis of programs from

specifications, an alternative way of developing correct programs, is becoming popular.

There are three basic approaches for program synthesis: theorem proving [5, 6, 8], program

transformation [1, 2] and problem solving [3]. In the theorem proving approach, a target

program is constructed incrementally at each step of the proof whereas in the transformational

approach, inference rules and transformation rules are applied to the specifications and to the

derived sentences until the target program is realized. Synthesis systems based on problem

solving methods are inflexible as compared to the other two methods, tIowever, they tend to

be very effective in the domain in which they operate

In this paper, we do not concern ourselves with the problem acquisition phase of automatic

programming. Specification acquisition and subsequent refinement is a research problem in its

own right. Assuming that the program is specified in first-order predicate logic, we describe

the derivation of logic programs for sorting. In section 2, we provide a brief review of nested

PRECEDING PAGE BLANK NOT FILMED

403

https://ntrs.nasa.gov/search.jsp?R=19900018003 2020-03-19T21:27:53+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42822509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


resolutionandits applicationto programsynthesis.In Section3, wedescribethe specification
and the derivationof sortingprograms,andit is followedby a summaryanddiscussion.

2 A review of nested resolution and its application to program

synthesis

We start with some notations. Let F[P] denote a well-formed formula (wff) containing one or

more occurrences of a sub-wff P. Then, a new wff obtained by replacing all occurrences of P by

Q is denoted by F[P/Q].

We give an informal definition of polarity. For a rigorous definition the reader may refer to

[7, 5]. A sub-wff P has a positive (negative) polarity in FIR] if and only if (iff) P occurs within

an even (odd) number of explicit or implicit negations. The positive polarity and the negative

polarity are written as F[P +] and F[P-], respectively. If P occurs within an equivalence

connective or within the if clause of an if-then-else connective, then P has a positive-negative

polarity and is written as F[P+].

2.1 Inference Rules

We [4] have proposed nested resolution [9] and its extension for logic program synthesis from

first-order specifications. The nested resolution is a variation of nonclausal resolutions. The

reader may refer to [9] for more details. Inference rules are applied to a pair of statements: a

statement to be transformed which we call a transformee, and a statement used for transforma-

tion which we call a transformer. The transformer may be an axiom, a transformation rule or

a lemma. The transformee is initially an axiom from the specification set, and subsequently, it

may be the result of an earlier transformation or a lemma. In every transformation, a sub-wff

of the transformee is replaced by another sub-wff that is determined by the transformer.

F[P+1 F[P-]
G[P'] G[P'I

F[ P+ O/ G O[P' O/ true]] F[ P- O/_GO[ P' O/ f alse]]

Where 0 is the most general unifier (m.g.u.) of P and P'. That is PO = P'O. Here the wffs

F and G are the transformee and the transformer, respectively.

Let us consider an example to explain the inference rule.

P(X, Y) A Q(Y, Z) ---, R(X, Z)

S(X', Y') --, P(X', Y')

-,(S(X, Y) -. false) A Q(Y, Z) ---*R(X, Z)

Where 0 is {X'/X,Y'/Y}. The expression can be simplified to S(X,Y) h Q(Y, Z) ---*R(X, Z)

404



2.1.1 Some special cases

Herewedescribesomespecialcasesof nestedresolution.Theserulesarehandywhenderiving
programsby hand.To usetheserules,polaritiesof thetransformerandthe transformeeshould
be followedstrictly.

F[P +] F[P-] F[P]
pI- p,+ pI _ QI

F[ P+ Ol f alae] F[ P- O/true] F[ PO / Q' O]

where O is the m.g.u, of P and P'.

2.2 Inference rules in the presence of explicit quantifications

In refutation proof procedures, an existential quantifier is replaced by either a Skolem constant

or a Skolem function. Replacing an existentially quantified variable by a Skolem constant or a

Skolem function is not acceptable in transformational program synthesis methods [4] because

we will lose some valuable information in the course of that replacement. To overcome the

problem, we extend the nested resolution to handle quantified wffs. To avoid inadvertent

problems during unification, all variables in both the transformer and the transformee are

renamed at each step. The following condition that checks for possible scoping violations must

be satisfied when existentially quantified variables are unified.

Condition QS: (Quantified variable Substitution)

• An existentially quantified variable, say X, within the scope of a universally quantified

variable, say Y, cannot be unified to the same universally quantified variable. (That is, X

cannot be unified with Y. This is usually detected by occur check in Skolemized version

of the quantified wffs)

• Two existentially quantified variables cannot be unified.

Example

VX 3Y P(X,Y)
P(X', X') Q(X')

X' is unified to X but we cannot unify X with Y since it violates the QS-condition.

The extension to the nested resolution for quantified wits are given as following:

1. If the transformer is quantifier free and the transformee has an existentially quantified

variable then the nested resolution is applied in the same way as it is applied to the

quantifier free case, provided that the condition QS is not violated during unification.

Consider an example

4O5



3r vx P(X, v) v R(X, r)
P(X',r') Q(X',y')

3Y VX (true _ Q(X,Y))v R(X,Y)

which simplifies to 3Y VX Q(X, Y) V R(X, Y)

2. If the transformee is quantifier free and the transformer has an existentially quantified

variable then the nested resolution is applied in the same way as it is applied to the

quantifier free case, provided that the condition QS is not violated. Consider an example.

P(X, Y, Y) _ Q(X, Y, Y)

vx' vz' p(x',Y,,z') v R(X',Y',Z')

VX 3Y (-_(falseV R(X',Y',Y'))

Q(X', Y', Y'))

which simplifies to VX 3Y R(X, Y, Y) V Q(X, II, Y)

3. When the transformer and the transformee have existential quantified variables, the ex-

tension to the nested resolution becomes complicated. Since, such case is not common in

program synthesis, it is not considered here.

Transformation Rules

Transformation rules are usually second-order wffs which have variable predicates. These

rules are used to simplify derived sentences or specifications. We provide some of the transfor-

mation rules used in this paper.

PuP

P_ v P2 v P3 .- P3

2.3 Organization of Derivations

As indicated earlier, the specification consists of a set of statements in first-order logic. The

synthesis system transforms these statements into a set of Horn clauses that constitute an

executable program. At each step of the derivation, the transformee and the transformer state-

ments interact to produce a result. Initially, the transformee is one of the statements from

the specification set; later the transformee is one of the intermediate results of the derivation.

The transformer can be a statement from the specification set, an intermediate result, a trans-

formation rule or a simplification rule. Simplification rules may have predicate variables, in

which case higher-order unification is assumed. In our derivations all the transformees and

the transformers are shown at the left and the right hand sides respectively. The sub-wff of

406



the transformeeto be transformedis underlinedwhile the sub-wffof the transformerthat is
usedfor transformationis overlined.After the nestedresolutionis appliedto eachtransformee
and transformerpair, the resultingwff is simplifiedandonly the simplifiedwff is shownin the
derivation.

2.4 Controlling the Inference

Logic program synthesis may be viewed as a process that creates executable Horn clauses for

each predicate appearing in the specification. This view forms the basis of our strategy and

provides a mean for detecting missing knowledge in the specification. We arrange the predicates

appearing in the specification in the order in which the executable IIorn procedures are derived.
The derivation starts with the first predicate and continues till the end of the list. Once we have

derived all the executable Horn clauses for all the predicates in the list, the synthesis completes

successfully.

It is well known that all the first order sentences cannot be transformed into Horn Logic.

However, a procedure which is not in Horn Logic can be transformed into an executable Horn

clause form either by introducing recursion or by interpreting negation as failure. This is why

we were able to transform the first order specifications into an executable Horn clauses.

We use the following procedure to control the derivation.

1. For each

(a) For

i.

ii.

Predicate P appearing in the specification do the following.

each, if half of the definition of P, do the following:

If the body has a universal quantifier, select a literal within the scope of the

quantifier such that there exists a transformation that will enable us to apply
induction and hence introduce the recursion. Introduction of recursion will usu-

ally transform a non-Horn clause into a Horn clause. Then establish the base

case for the induction using ground terms of the body.

Check whether the Horn clause is executable. If not, transform the literals of

the body until an executable Horn clause form is obtained.

From the if and only if definition of a predicate P, we can easily obtain the if half of the

definition. That is, from P _ body we can get P ,--- body. If we have disjunctive literals as the

head of the if half, then interpreting negation as failure, we can obtain the if half of P. That is,

from P V Q _-- body we obtain P _ notQ , body.

3 Specification and Derivation of Sorting Programs

In this section we provide specifications for sorting program and derive different sorting pro-

grams starting from the same specifications. Let us define a relation sort(x,y) which holds when

y is a sorted permutation of x. The corresponding specifications are

sort(x,y)_-_perm(x,y),ordered(y)

407



perm(x, y) _ W3z(occurs(_, z, x) _ occurs(u, z, y))

ordered(y) +-+VuVv(precedes(u, v, y) _ u <_ v)

The second statement is interpreted as stating that y is a permutation of x, if for every element

u, x and y contain exactly the same number of occurrences of u. The third statement specifies

the ordered relation, y is ordered if and only if, for every two elements u and v in y, if u

precedes v in the list, then u is less than or equal to v in magnitude.

The following statements specify the occurs relation.

occurs(u, z, nil) _ z = 0

(occur_(_, z, x) _ oecur_(_,Zl,xl), occ_r_(_,z2,x2),z_+ z2 = z)
union(x1, x2, x)

According to the first statement, the empty list contains no occurrences of u and according the

second statement, if x can be split up into two subsets xl and x2, then the total number of

occurrences of u will remain the same. An element u precedes an element v in the list x if it

occurs before v in x. The precedes relation is specified as

-_precedes( u, v, nil)

-_precedes( u, v, x.nil)

(precedes(u, v, x) _ p_ecede_(u,_, Xl)Vprecede_(_, v, x_) V(_e x_, _e x2))
*- append(x1, x2, x)

The first two statements indicate when the precedes relation cannot hold. In the third state-

ment, the list is broken down into two sublists and the relation recursively applied to these
sublists. If u precedes v in z, then it must precede it in either of the sublists if both u and v

are in that sublist. Otherwise, u is in the first sublist and v is in the second sublist.

We have used the relations union and append and have not indicated how these are defined

and how they differ. The relation union is not the same as the union operation on sets. The

result z of a union operation on lists x and y may contain duplicate elements. Thus the relation

union(a.nil, a.nil, a.nil) does not hold whereas union(a.nil, a.nil,a.a.nil) does. The relation

append is the familiar list append relation. The difference between union and append is that

append respects the order of the elements of the appended lists, whereas union(x, y, z)just says

that z is a permutation of the result of appending x and y. We do not explicitly specify these

familiar relations, but instead use their properties which are listed below.

append(nil, y, y)

append(u.x, y, u.z) _ append(x, y, z)

union( x, y, z ) _ append( x, y, z)

_nion(x,y,z) _- _nion(y,x,z)

union(u.x, y, u.z) _ union(x, y, z)

From these properties, we can easily derive the following statements as lemmas.

append(u.nil, y, u.y)

4O8



union( u.nil, y, u.y)

union(nil, y, y)

union(x, v.y, v.z) ,-- union(x, y, z)

We are now ready to tackle program derivations. We begin with programs and lemmas for

perm and ordered.

1. perm(x, y) _ Vu3z(occurs(u, z, x)(q+) _ occurs(u, z, y))

2. perm(nil, y) _ Vu3z(z = 0 _ occurs(u, z, y)(q+))

occurs(u, z, nil) _ z = 0

occurs(u, z, nil) _ z = 0

3. perm(nil, nil)_ Vu3z(z = 0 _ z = O)

4. perm(nil,nil)

This forms a Horn clause for the trivial case when the input list is empty. The following useful

lemma on perm(x, y) is assumed. For the derivation of this lemma see [10].

1. perm(x, y) _ union(x1, x2, x), perm(zl, Yl), perm(x2, Y2), union(y1, Y2, Y)

With appropriate procedures for union, this can be used as a Horn clause procedure for perm.

We now derive a few lemmas.

. perm(x, y) Vu3z(occurs(u, z, x) occurs(u, z, y)(q_))

2. perm(x,x)

"p_p

This lemma comes in handy when we want to eliminate extra terms by unifying them.

following lemma is used when attempting to unify elements within lists.

1. perm(x,y) _ union(xl,x2,x)(_),

per m( x l , yl ) , per m( x 2, Y2) , union(y1, Y2 , Y ) (_ )

2. perm(u.x, v.y) _-- perm(u.nil, v.nil)(_),perm(x, y)

3. perm(u.z,u.y) perm(x,y)

The

union( u.nil, y, u.y)

perm(x,x)

Other results that we use are

(uE x _ uE y) _-- perrn(x, y)

perm(x, y) *---perrn(x, l),perm(l, y)

These statements cannot be derived from our specifications for perm. They can be derived if

we use different specifications, but then the other derivations become more difficult. We prefer

409



to pay the price and assume these statements as axioms rather than derive them as lemmas.

The results of the derivations and the axioms for perm used in the sequel are listed below.

perm(nil, nil)

perm(x, x)

perm(u.x, u.y) _ perm(x, y)

perm(x, y) ,-- union(x1, x2, x),perm(xl, yl),perm(x2, Y2), union(ya, Y2, Y)

(ue x _ _e y) _- perm(x, y)
perm( x, y) *---perm( x, l), perm( l, y)

We now proceed to the derivation of programs and lemmas for ordered.

1. ordered(y) *--- VuVv(precedes(u, v, y)(q+) ---* u <_ v)

2. ordered(nil)

1. ordered(y) *--- VuVv(precedes(u, v, y)(q+) ---* u < v)

-_precedes( u, v, nil)

-_precedes( u, v, x.nil)

2. ordered(x.nil)

These two Horn clauses can be regarded as procedures for the trivial cases.

1. ordered(y) _-- VuVv(precedes(u, v, y)(q+) --+ u <_ v)

(precedes(u, v, x) +-+precedes(u, v, xa) V precedes(u, v, x2)

V (UE Xl,VE X2) )

*-- append(x1, x2, x)

2. ordered(v) _- VuVv((precedes(u,v, Yl)Vprecedes(u, v, Y2)V(uE Yl,ve Y2))

-_ u < v), append(yl, Y2,Y)

3. ordered(y)

VuVv(prededes(u,v, yl) _ 12 ___ V)(_),

YaW(precedes(u, v, y2)_ u ___v)¢_),

VuVv((uE Yl, vE Y2)_ u _< v), append(ya, Y2, Y)

ordered(y) _ YaW(precedes(u, v, y) _ u <_ v)

4. ordered(y).- ordered(yl), ordered(y2),

VuVv((uE Yl, vE Y2) _ u < v), append(yl, Y2, Y)

This statement is used later on, in derivations for sort and also as the starting point in the

following derivation.

1. ordered(y) _ ordered(yl),ordered(y2),

VuVv((uE Yl, vE Y2) _ u <_ v),(_)append(yl, Y2, Y)

formation of procedure lessall

410



2. ordered(y) _-- ordered(y1), ordered(y2), le_sall(ya, Y2), append(y1, y2, y)

a. le  all(x, y) VuVv((ue x, ve y) u < v)

The relation lessall(x, y) holds if all the elements in list x are less than or equal to all elements

in list y. We will derive programs and lemmas for lessall shortly.

1. ordered(y) _ ordered(y;),ordered(y2),

VuVv( uE Yl , uE Y2 _ u <_ v), append(y1, Y2, Y)(_)

2. ordered(x.y2)

VuYv(uE

3. ordered(x.y2)

Vv(vE Y2

ordered( x.nil), ordered(y2),

z.nil, vE Y2 _ u <_ v)

ordered( x.nil), ordered(y2),

append( u.nil, v, u.v )

formation of procedure lessall

4. ordered(x.y_) _- ordered(x.nil)(_), ordered(y2),lessall'(x, Y2)

5. ordered(x.y2) _-- ordered(y2),lessall'(x, y_)

ordered(x.nil)

We will use lessall _ in the derivations for lessall. It is defined as

lessall'(x,y) _ Vv(ve y_ x <_ v)

The useful statements that we have derived about the ordered relation are

ordered(nil)

ordered( x.nil)

ordered(x) _ ordered(z1), ordered(x2),

VuVv(uE xx, vE x2 --_ u < v), append(x1, x2, x)

ordered(z) _-- ordered(z1), ordered(x2), lessall (x l, x2), append( x x, x 2, x)

ordered( x.y) _-- ordered(y), le88all '(x, y)

We still have to derive a few procedures and lemmas for lessall _ and lessall. We begin with
lessall.

1. lessall(z, y) _ VuVv((uE x(q+), vE y) ---*u < v)

-_uE nil

2. lessall(nil, y)

3. lessall(x, y) _- VuVv((uE z, vE y(q+)) ---*u <_ v)

4. lessall(x, nil)

These are the base case procedures for lessall.

1. lessall(x, y) _-- VuVv((uE x(q+), vE y) ---*u _< v)

-_uE nil

411



3. lessall(z.x I,y) _--

VuVv(u = z, ve y _ u <_ v),

VuVv(uE x t, vE y --+ u < v)

4. lessall(z.x I,y) _

Vv(vE y _ z < v),(_)

VuVv(uE x', vE y --* u < v)

. lessall(z.x', y) _ lessall '(z, y),

VuYv(uE x _, vE y _ u <_ v)(_)

6. lessall(z.x', y) _-- lessall'(z, y), lessall(x', y)

uE v.y _-+ u = v V u6 y

lessall '(u, x) _ Vv(ve x ---, u < v)

lessall(z, y) +-- VuVv(uE x, vE y --* u < v)

This statement can be used as a procedure for Iessall. We now proceed with the derivation of

lemmas.

1. lessall(x,y)_ VuVv((ue x,vEy(q+))--+ u <_ v)

(uE z +-+uE zl V uE z2) ,--- union(z1, z2, z)

2. lessall(z,y) _ VuVv(ue x,(vE Yl V vE Y2) _ u <_ v),union(yl,y2, y)

3. lessall(x, y)

VuVv(ttE x, vE Yl _ u <_ v)_(_)

VuVv(uE x, vE Y2 _ u <_ v)(_), union(y1, Y2, Y)

lessall(x,y) _ VuVv((uE x,vE y) -+ u < v)

4. te_an( _, y) +-Ze_U( _, y,), te_an( x, Y2),_io_(y,, y:, y)(_)

union( v.nil, u, v.u )

5. lessall(x, u.y2) _ lessall(x, u.nil),lessall(x, y2)

Next, we derive a lemma that states that the lessall relation is not changed by permuting :r or

y.

1. lessall(x, y) _ VuVv((ue x, v___q+)) ---* u <_ v)

(_-g x _-+ uE y) *---perm(y, x)

2. le_an(x, y) _ WVv(O,e x(_+),ve z) _ _ < _),pe_m(z, y)
(uE x _ ue y) ,--- perm(y,x)

3. lessaIl(z, y) +- VuVv((ue w, ve z) --+ u < v)(_),perm(z, y),perm(w,x)

lessall(x,y) _ VuVv((uE x, vE y) _ u < v)

4. lessall(x, y) *-- lessall(w, z), perrn(z, y), perm(w, x)

412



Anotherlemmathat canbederivedfor lessall lets us exploit the transitivity property of lessall.

lessaU(x, y) _- tessau(x, z), lessaU(z, y)

We now begin on the derivations of programs and lemmas for lessall'.

l. lessall'(x, y) _-- Vv(vE_____yy(q+}---* z < v)

_uE nil

2. lessall'(x,nit)

This forms the base case procedure for lessall t

1. lessall'(x, y) +- Vv(ve y_(q+) --+ x <_ v)

uE v.y_ u= vV uE y

2. lessall'(x, u.y') _-- Vv(v = u V vE y' _ x < v)

3. lessall'(x,u.y') _ Vv(v = u _ x <_ v),Vv(ve y'-+ z <_ v)

4. lessall'(x,u.y')+--x <_ u,Vv(vEy'_ x <_ v)(_)

lessall'(x, y) *-- Vv(vE y _ x <_ v)

5. lessall'(x,u.y'),- x < u, lessall'(x,y')

This clause along with the base case derived earlier can be used as procedures for lessall'. We

proceed with the derivation of lemmas for lessall'.

l. lessall'(x,y) _ Vv(vE y _ x <_ v(q_))

u <_ v _ u < w,w <_v

lessall '(x, y) _ Yv(ve y --* x < v)

2. lessall'(x,y)_ Vv(vE y _ w <_ v)(_),x <_ w

3. lessall'(x, y) _ lessall'(w, y),x < w

We now derive a lemma that links lessall' with ordered.

4. ordered(y) _ VuVv(precedes(u, v, y)(q+) _ u < v)

(precedes(u, v, x) _-_ precedes(u, v, xl) V precedes(u, v, x2)

v (u_ _, ve x_))
_-- append(x1, x2, x)

5. (ordered(y) *-* VuVv((precedes(u, v, yl) V precedes(u, v, y2) V (ue Yl, ve Y2))

---* u < v)) _ append(ya, Y2, Y)

6. (ordered(y)--_

V_W((pre_ede_(u,v, V,) v p_eeede4u, v, y_) V(ue y,, _ y_))(__)

---* u < v)) *--- append(yx, Y2, Y)

( P, V P2 V P3)_- P3

413



7. (ordered(y)---> VuVv((_tE yl,ve Y2)_ u <[ v)) _ appezld(yl,Y2, y)(_)

append( u.nil, v, u.v )

8. ordered(x.y') ---*VuVv((uC x.nil, vE y') _ u < v)

9. ordered(x.y') _ Vv((vE y') ---, z < v)(+)

lessall '(x, y) _ Vv(ve y --_ x < v)

10. ordered(x.y') --* lessall'(x, y')

which can be rewritten as

lessall '(x, y') _-- ordered(x.y')

We use the previous two lemmas in the proof of the next lemma.

1. lessall'(x,y)*-- lessall'(w,y)(_),x < w

2. lessall'(x, y) _-- ordered(w.y), z < w

lessall '(x, y') _- ordered(x.y')

We have only a couple more lemmas to go before starting with actual sorting programs.

1. lessall'(x, y) _-- Vv(vE y(q+) ---* x < v)

(_ x _ _e y) - perm(y, x)

2. lessall'(x, y) _-- Vv(vE z ---* x < v)(_), perm(z, y)

le_alt'(x, _) _ Vv(ve y -_ x <__v)

3. tes_alt'(x, y) _- les_alt'(_, z),pe_m(_, y)

And the last lemma is just as simple.

1. lessall'(x, y) _ Vv(ve y(q+) _ x < v)

(V--_ _ (rE Yl V ve Y2)) _-- union(yl,y2, y)

2. lessall'(x, y) _-- Vv(vE YI --* x < v)(_),

Yv(vE Y2 _ x < v)(_), union(yl, y:, y)

le._.ll'(_,y) _ Vv(vCy ---.x < v)

3. lessall '(x, y) _ lessall '(x, yl), lessall'(x, Y2), union(y1, y2, Y)

The complete set of programs and lemmas for le3sall and le.s_all' are

lessall(nil, x)

lessall(x, nil)

lessall( x, u.y) _ lessall( x, u.nil), lessalI( x, y)

414



tes_aU(x, y) _ lessatl(w, z), perm(w, x),p_rm(z, y)

les_all(x, y) _ lessall(x, z), lessall(z, y)

lessall '(x, nil)

lessall '(x, u.y) *- x << u, lessall'(x, y)

lessall'(x,

lessall'(x,

lessall'(x,

lessall'(x,

lessall'(x,

y) _- t_U'(w, y), x < w

y) _-- ordered(x.y)

y) _ ordered(w.y), x <_ w

y) _ lessall '(x, z),perm(z, y)

y) *--- lessall ' ( x, Yl), lessall ( x, Y2), union(y1, Y2, Y)

3.1 Naive Sort

We now have enough material to start the derivation of sorting programs.

enough to actually build a naive sort program which is given by

sort(x,y)_perm(x,y),ordered(y)

In fact, we have

perm(nil, nil)

perm(x, y) _-- union(xl, x2, x), perm(xl, Yl ), perrn(x2, Y2), union(yl, Y2, Y)

ordered(nil)

ordered(u.nil)

ordered(x) _-- append(x1, x2, x), lessall(xl, x2),

ordered(x1), ordered(x2)

together with the procedures already derived for lessall and procedures for union and append.

In the following section, we will derive' a program for merge sort, which can be further

transformed into a program for insertion sort. Following that we derive a program for quicksort

which is further transformed into a program for selection sort. A lemma which can be quite

easily proved from the specifications for the sort relation is

(sort(x, y) _-* perrn(x, y)) _-- ordered(y)

We can also easily derive the following base cases for sort from its specifications and from the

lemmas already derived.

sort(nil, nil)

sort( u.nil, u.nil)

415



3.2 Merge Sort

The merge sort derivation starts off with the usual definition of sort.

1. sort(x, y) *-- perm(x, y)(_), ordered(y)

perm(x, y) _ perm(x, z), perm(z, y)

2. sort(x, y) _ perm(x, z)(_), perm(z, y), ordered(y)

perm(z, y) _- union(x1, x2, x),perm(xl, Yl),

perm( x 2, Y2 ), union(y1, Y2, Y)

3. sort(x, y) ,-- union(x1, _2,_),perm(xl, zl)(_),

perm(x2, z2)(_), union(z1, z2, z), perm(z, y), ordered(y)

perm(_, y) _ sort(x, y)
4. sort(x, y) +- union(x,, x2, x), 80rt(xl, z1) , 80rt(x2, z2) ,

union( zl, z2, z), perm( z, y ), ordered(y)

formation of procedure merge

5. sort(x,y)_-- union(xl,x2,x),sort(xl,zl),sort(x2, z2),merge(zl,z2, y)

6. merge(z1, z2, y) _ 3z(union(zl, z2, z), perm(z, y), ordered(y))

The derivation of the merge procedure is a little harder since we have to consider more cases.

1. merge(z1, z2, y) _- 3z(union(zl, z2, z), perm(z, y), ordered(y))

deletion of existential quantifier

2. merge(zl,z2,y)_ union(zl,z2,z)(_),perm(z,y),ordered(y)

3. merge(nil, y, y) _-- perm(y, y!(_), ordered(y)

4. merge(nil, y, y) _ ordered(y)

union(nil, y, y)

perm(x,x)

Similarly, we can derive the tIorn clause

merge(x, nil, x) _ ordered(x)

We now proceed with the derivation of a procedure for merge, assuming that the first pair of

terms of merge are already sorted, and taking into account the fact that the lists to be merged

are not empty

1. merge(u.zl, v.z2, y) _ 3z(uTtion(u.zl, v.z2, z), perm(z, y), ordered(y))

deletion of existential quantifier

2. merge(u.zl, v.z2, y) _-- union(u.zl, v.z2, z)(_), perm(z, y), ordered(y)

union( u.x, y, u.z ) _- union(x, y, z)

416



3. merge( u.zl, v.z2, y) _ union(z1, v.z2, z'), perm( u.z', y)(_), ordered(y)

perm( u.x, u.y) ,- perm( x, y)

4. merge(u.zl, v.z2, u.y') _ union(zl, v.z2, z'),perm(z', y'), ordered(u.y')(_)

ordered( u.x ) _ ordered(x), lessall ' ( u, y)

5. merge( u.z; , v.z2, u.y') _ union(z1, v.z2, z'), perm( z', y'), ordered( y'), lessall ' ( u, y') (_)

lessall '(u, x) ,--- le$sall '(u, z),perm(z, x)

6. merge(u.zl, v.z2, u.y') _ union(z1, v.z2, z'), perm( z', y'), ordered(y'),

le_aU'(u, _),perm( _, y')

perm( x, y) _-- perm( x, y ), perm( x', y)

7. merge(u.zl, v.z2, u.y') _ union(za, v.z2, z'),perm(z', y'), ordered(y'), lessall'(u, z')(_)

lessall '(x, y) *-- lessall ' ( x, Yl ), lessall' ( x, Y2), union( yl, Y2, y)

8. merge( u.zl , v.z2, u.y') _ union(z1, v.z2, z'), perm( z', y'), ordered( y'),

lessall ' ( u, Yl ), les_sall ' ( u, y2), union(y1, Y2, z')

union(x1, x2, y) _ union(x1, x2, y), union(yl, Y2, Y)

9. merge(u.zl, v.z2, u.y') ,--- union(z1, v.z2, z'),perm(z', y'), ordered(y'),

l essall ' ( u, zl ), lessall ' ( u, v.z2)(_)

10.

lessall'(x, u.y) ,- x < u

merge( u.zl, v.z_, u.y') ,-- union( zl , v._,_,z'),
perm( z', y'), or dered( y'), lessall ' ( u, zl ), u < v

Introduction of existential quantifier

11. merge(u.zl, v.z2, u.y') ,--

3z'( union( zl , v.z2, z'),

perm(z', y'), ordered(y'))(_), lessall '(u, zl), u < v

merge(z1, z2, y) _ 3z(union(zl, z2, z)),

perm( z, y), ordered(y))

12. merge(u.zl, v.,_, u.y') _ merge(z1, v.z2, y'), le_aU'(u, z_), u < v

lessall '(u, Zl)

13. merge(u.zl, v.z2, u.y') _ merge(z1, v.z2, y'), u < v

The other Horn clause for merge can be similarly derived and has the same form.

merge(u.zl, v.z2, v.y') _ merge(u.zl, z2, y'), lessall '(v, z2), v <_ u

The complete sort program for merge sort is

sort(nil, nil)

sort(u.nil, u.nil)

sort(x,y) _-- union(xl,x2, x),sort(xl,zl),sort(x2, z2),merge(zl, z2,y)

417



merge(nil, y, y)

merge(x, nil, x)

mer g e( u.z l , v.z_, u. y ) _-- u <_ v, l essal l ' ( u, zl ) , merge(z1, v.z2, y)

merge( u.zl, v.z2, v.y) _-- v << u, lessall ' ( v, z_), merge( u.zl, z2, y)

3.3 Insertion Sort

The above program for merge sort can be modified a little in order to make it an insertion sort

program. In an insertion sort, the first element of the list is removed, the rest of the list is

sorted and then the first element is reinserted into the list in the right place without upsetting

the ordering.

1. sort(x, y) ,--- union(x1, x2, x)(_), sort(xl, z1) , sort(x2, z2), merge(z1, z2, y)

union( v.nil, y, v.y )

2. sort(v.x, y) _- sort(v.nil, zl)(_), sort(x, z_),merge(z1, _, y)

3. sort(v.x,y)_ sort(x,z_),merge(v.nil, z2,y)(_)

4. sort(v.x,y)_ sort(x, z2),insert(v, z2, y)

5. insert(v, z, y) _ merge(_.nil, z, y)

We now derive procedures for insert.

1. insert(v, z, y) _ merge(v.nil, z, y)(+)

2. insert(v, nil, v.nil)

This forms the base case procedure for insert.

1.

.

sort(u.nil, u.nil)

Formation of new procedure insert

merge(x, nil, x)

insert(v, z, y) _ merge( v.nil, z, y)(_)

merge(u.zl, v.z2, u.y) _ u < v, merge(z1, v.z2, y)

insert(v, x.z', v.y') _ v < x, merge(nil, x.z', y')(_)

merge(nil, y, y)

3. insert(v, x.z', v.x.z') ,--- v <__x

Similarly, we can derive the other Horn clause for insert.

insert(v, x.z, x.z') (-- x <_ v, insert(v, z, z')

The complete insertion sort program is

sort(nil, nil)

418



sort(u.nil, u.nil)

 ort(v.x, y) sort(x, z), in,err(v, z, y)

insert(v, nil, v.nil)

insert(v, x.z, v.x.z ) _ v <_x

insert(v, x.z, x.z') ,-- x <_ v, insert(v, z, z')

Other sorting programs such as, quicksort and selection sort had been synthesized by Vargh-

ese. Interested readers may refer to [10].

4 Summary and Discussion

Even after a decade of research on software engineering the productivity still remains a bot-

tleneck. Formal method is one of many approaches proposed to solve the problem. When a

program is synthesized with a formal method, the tedious tasks of verification and maintenance

become some what trivial. This makes the formal synthesis very attractive.

We have provided a formal framework for deriving logic programs from its specification.
The derivationM method takes the best aspects of both the transformational and the deductive

approaches. The derivation uses the nested resolution which is shown to be sound for the first

order logic. Therefore, the derived program is sound, that is, the program is implied by the

specifications. On the other hand, since the derived program not always imply the specification,

the derivation system is some what weak. Our framework, however, has the advantage that

a partial program can always be derived even from a partial specification. Note here that

a complete specification is required to derive programs constructively using theorem proving

approaches.

In this paper we have derived several sorting programs from the same specification set.

Different sorting programs were derived by carefully selecting transformers and transformation

rules. As it has been described, automating the derivation is not very practical because of

possible combinatorial explosion. This is also true with many automating programming using

theorem proving approaches. In our recent Work, we have proposed a semi automated approach

for deriving logic programs [11].

References

[1] C. C. Green. A summary of the psi program synthesis system. In Proceedings of IJCAI-5,

1977.

[2] C. C. Green and D.R. Barstow. On program synthesis knowledge. Artificial Intelligence,

10(3), 1978.

[3] R. Loganantharaj and S. Keretho. Lopss: A logic program synthesis system. In Technical

Report, The center for Advanced Computer Studies, USL, Lafayette, July 1988.

419



[4]

[51

[6]

[7]

[sl

[9]

[10]

[11]

R. Loganantharaj and J. Varghese. Logic program synthesis. In AAAI workshop on

Automating Software Design: Current Directions, August 1988.

Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM TOPLAS,

2(1), 1980.

Z. Manna and R. Waldinger. The origin of the binary search paradigm. Science of Com-

puter Programming, 9, 1987.

N. Murray. Completely non-clausal theorem proving. Artificial Intelligence, (18), 1982.

J. Traugott. Deductive synthesis of sorting programs. In Proceedings of the 8th Conference

on Automated Deduction. Springer-Verlag, 1986.

J. Traugott. Nested resolution. In Proceedings of the 8th Conference on Automated De-

duction. Springer-Verlag, 1986.

J. Varghese. A non clausal method for program derivation. PhD thesis, Colorado State

University, March 1986.

J. Varghese R. Loganantharaj. Logic program synthesis. In R. W. Wilkerson, editor,

Advances in Logic Programming and Automated Reasoning. Ablex, 1990.

420


