274 research outputs found

    Achievable Secrecy Rates of an Energy Harvesting Device with a Finite Battery

    Get PDF
    In this paper, we investigate the achievable secrecy rates in an Energy Harvesting communication system composed of one transmitter and multiple receivers. In particular, because of the energy constraints and the channel conditions, it is important to understand when a device should transmit or not and how much power should be used. We introduce the Optimal Secrecy Policy in several scenarios. We show that, if the receivers demand high secrecy rates, then it is not always possible to satisfy all their requests. Thus, we introduce a scheme that chooses which receivers should be discarded. Also, we study how the system is influenced by the Channel State Information and, in particular, how the knowledge of the eavesdropper's channel changes the achievable rates

    Achievable Secrecy Rates of an Energy Harvesting Device

    Get PDF
    The secrecy rate represents the amount of information per unit time that can be securely sent on a communication link. In this work, we investigate the achievable secrecy rates in an energy harvesting communication system composed of a transmitter, a receiver and a malicious eavesdropper. In particular, because of the energy constraints and the channel conditions, it is important to understand when a device should transmit and to optimize how much power should be used in order to improve security. Both full knowledge and partial knowledge of the channel are considered under a Nakagami fading scenario. We show that high secrecy rates can be obtained only with power and coding rate adaptation. Moreover, we highlight the importance of optimally dividing the transmission power in the frequency domain, and note that the optimal scheme provides high gains in secrecy rate over the uniform power splitting case. Analytically, we explain how to find the optimal policy and prove some of its properties. In our numerical evaluation, we discuss how the maximum achievable secrecy rate changes according to the various system parameters. Furthermore, we discuss the effects of a finite battery on the system performance and note that, in order to achieve high secrecy rates, it is not necessary to use very large batteries.Comment: Accepted for publication in IEEE Journal on Selected Areas in Communications (Mar. 2016

    Secure Communication with a Wireless-Powered Friendly Jammer

    Get PDF
    In this paper, we propose to use a wireless-powered friendly jammer to enable secure communication between a source node and destination node, in the presence of an eavesdropper. We consider a two-phase communication protocol with fixed-rate transmission. In the first phase, wireless power transfer is conducted from the source to the jammer. In the second phase, the source transmits the information-bearing signal under the protection of a jamming signal sent by the jammer using the harvested energy in the first phase. We analytically characterize the long-time behavior of the proposed protocol and derive a closed-form expression for the throughput. We further optimize the rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. Our analytical results show that the throughput performance differs significantly between the single-antenna jammer case and the multi-antenna jammer case. For instance, as the source transmit power increases, the throughput quickly reaches an upper bound with single-antenna jammer, while the throughput grows unbounded with multi-antenna jammer. Our numerical results also validate the derived analytical results.Comment: accepted for publication in IEEE Transactions on Wireless Communication

    Stochastic Optimization of Energy Harvesting Wireless Communication Networks

    Get PDF
    Energy harvesting from environmental energy sources (e.g., sunlight) or from man-made sources (e.g., RF energy) has been a game-changing paradigm, which enabled the possibility of making the devices in the Internet of Things or wireless sensor networks operate autonomously and with high performance for years or even decades without human intervention. However, an energy harvesting system must be correctly designed to achieve such a goal and therefore the energy management problem has arisen and become a critical aspect to consider in modern wireless networks. In particular, in addition to the hardware (e.g., in terms of circuitry design) and application point of views (e.g., sensor deployment), also the communication protocol perspective must be explicitly taken into account; indeed, the use of the wireless communication interface may play a dominant role in the energy consumption of the devices, and thus must be correctly designed and optimized. This analysis represents the focus of this thesis. Energy harvesting for wireless system has been a very active research topic in the past decade. However, there are still many aspects that have been neglected or not completely analyzed in the literature so far. Our goal is to address and solve some of these new problems using a common stochastic optimization setup based on dynamic programming. In particular, we formulate both the centralized and decentralized optimization problems in an energy harvesting network with multiple devices, and discuss the interrelations between these two schemes; we study the combination of environmental energy harvesting and wireless energy transfer to improve the transmission rate of the network and achieve a balanced situation; we investigate the long-term optimization problem in wireless powered communication networks, in which the receiver supplies wireless energy to the terminal nodes; we deal with the energy storage inefficiencies of the energy harvesting devices, and show that traditional policies may be strongly suboptimal in this context; finally, we investigate how it is possible to increase secrecy in a wireless link where a third malicious party eavesdrops the information transmitted by an energy harvesting node

    Regularized Channel Inversion for Simultaneous Confidential Broadcasting and Power Transfer: A Large System Analysis

    Get PDF
    We propose for the first time new transmission schemes based on linear precoding to enable simultaneous confidential broadcasting and power transfer (SCBPT) in a multiuser multi-input single-output (MISO) network, where a BS with N antennas simultaneously transmits power and confidential messages to K single-antenna users. We first design two transmission schemes based on the rules of regularized channel inversion (RCI) for both power splitting (PS) and time switching (TS) receiver architectures, namely, RCI-PS and RCI-TS schemes. For each scheme, we derive channel-independent expressions to approximate the secrecy sum rate and the harvested power in the large-system regime where K, N → ∞ with a fixed ratio β = K/N. Based on the large-system results, we jointly optimize the regularization parameter of the RCI and the PS ratio or the TS ratio such that the secrecy sum rate is maximized subject to an energy-harvesting constraint. We then present the tradeoff between the secrecy sum rate and the harvested power achieved by each scheme, and find that neither scheme always outperforms the other one. Motivated by this fact, we design an RCI-hybrid scheme based on the RCI and a newly proposed hybrid receiver architecture. The hybrid receiver architecture takes advantages of both the PS and TS receiver architectures. We show that the RCI-hybrid scheme outperforms both the RCI-PS and RCI-TS schemes.ARC Discovery Projects Grant DP15010390

    Optimization techniques for reliable data communication in multi-antenna wireless systems

    Get PDF
    This thesis looks at new methods of achieving reliable data communication in wireless communication systems using different antenna transmission optimization methods. In particular, the problems of exploitation of MIMO communication channel diversity, secure downlink beamforming techniques, adaptive beamforming techniques, resource allocation methods, simultaneous power and information transfer and energy harvesting within the context of multi-antenna wireless systems are addressed

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Physical layer security jamming : Theoretical limits and practical designs in wireless networks

    Get PDF
    Physical layer security has been recently recognized as a promising new design paradigm to provide security in wireless networks. In addition to the existing conventional cryptographic methods, physical layer security exploits the dynamics of fading channels to enhance secured wireless links. In this approach, jamming plays a key role by generating noise signals to confuse the potential eavesdroppers, and significantly improves quality and reliability of secure communications between legitimate terminals. This article presents theoretical limits and practical designs of jamming approaches for physical layer security. In particular, the theoretical limits explore the achievable secrecy rates of user cooperation based jamming whilst the centralized, and game theoretic based precoding techniques are reviewed for practical implementations. In addition, the emerging wireless energy harvesting techniques are exploited to harvest the required energy to transmit jamming signals. Future directions of these approaches, and the associated research challenges are also briefly outlined
    • …
    corecore