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Abstract

The field of wireless communication has witnessed tremendous growth

and attracted increasing attention over the past decades. Some of these

successes are due to the possibility of implementing different wireless an-

tenna configurations as well as exploiting signal processing capabilities

and mathematical optimization techniques. Utilizing multiple antenna

configuration techniques such as MIMO offers such advantages includ-

ing increasing channel capacity as well as combating interference and

fading. Furthermore, signal processing and mathematical optimization

techniques offer smart approaches to improve performance, security,

efficiency and robustness in wireless communication systems. This the-

sis aims to combine the advantages of different antenna configurations

with the advantages of signal processing and optimization techniques

to develop new techniques that offer improvements in wireless com-

munication systems. Specifically, this thesis looks at new methods

of achieving reliable data communication in wireless communication

systems using different antenna transmission optimization methods.

In particular, the problems of exploitation of MIMO communication

channel diversity, secure downlink beamforming techniques, adaptive

beamforming techniques, resource allocation methods, simultaneous
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power and information transfer and energy harvesting within the context

of multi-antenna wireless systems are addressed.

Firstly, a new optimization technique for use in coordinated multi-

cell beamforming in the presence of local users and a global user is

proposed. In this approach, the local users are served by only the corre-

sponding base station (BS), while the global user is served by multiple

basestations. The global user is able to, with the aid of multiple anten-

nas, decode multiple data streams transmitted by various transmitters

through singular value decomposition of the channels at the receiver

and using left dominant singular vectors as the receiver beamforming.

The coordinating base stations employ semidefinite programing based

transmitter beamforming and agree to perform optimal data rate split

for the global user in order to minimise the transmission power.

In the second contribution, the problem of maximising the worst

case user signal-to-interference-plus-noise-ratio (SINR) in multi-input

single-output (MISO) system within the context of energy harvesting

is addressed. The interference channel is exploited by users for radio

frequency energy harvesting (RFEH), while satisfying quality of service

(QoS) and power constraints within a framework of beamforming and

resource allocation. A power splitting technique, in which each user

divides the received signal into data information and energy charging

is considered. The minimum SINR of all users in the MISO network

that meets the transmitted power and energy harvesting constraints is

maximised.

In order to achieve simultaneous wireless information and power

transfer (SWIPT) in a wireless powered communication (WPC) system,



xi

a downlink beamforming design with simultaneous energy and secure

information transmission approach is employed. The WPC system

consists of the wireless device (WD) and an information receiver (IR).

The SWIPT system simultaneously serves one IR while transferring

power to a WD. Both systems operate on the same frequency band.

As a result, the WD is able to jointly take advantage of the wireless

energy transfer from the SWIPT BS, interference power from the BS

due to transmission of signals to IRs and the recycled power for energy

harvesting. This approach aim to minimize the total transmitted power

of the SWIPT BS subject to the SINR target at the information receivers.

In order to preserve the secrecy of the information transmitted by BS

to IRs on the BS, we introduce a set of constraints SINR less than the

SINR threshold values.

In the final work, the SWIPT system simultaneously serves one

information receiver (IR1) while transferring power to a WD. In addition,

a second information receiver (IR2) is considered and served by the

WD. The WD is charged by the wireless energy signal power from the

SWIPT BS plus the loop information signal transmitted from the WD,

which received by one antenna energy receiver (ER) located at the WD.

Additionally, it is assumed that IR1 is an eavesdropper for the WD,

and IR2 is an eavesdropper for the BS and both systems operate on the

same frequency band. In this approach, the secrecy rate maximisation

problem is non-convex due to the non-concavity of the secrecy rate

function, thus two alternative algorithms are proposed to reformulate

the optimization to a convex problem, which are the null space based

optimization and Taylor series approximated optimization.
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The aforementioned proposed techniques are evaluated using differ-

ent performance measures in order to demonstrate their performance

and improvements as compared to existing techniques.
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Chapter 1

Introduction

Over the last three decades, the communications industry has wit-

nessed unprecedented growth in it’s history [2–5]. This owes largely to

the advancements in both the architecture and technology of wireless

communications. This in turn has raised a lot of expectations in the

field leading to even further research and development of new ideas.

Consequently, numerous cutting edge applications have emerged from

theoretical research ideas through to commercialisation. These include,

wireless fidelity (WI-FI), smart grids, the global positioning system

(GPS), wireless sensor networks (WSN) and a host of mobile electronic

devices such as mobile phones, tablets etc. More so, this devices are

expected to offer high speed data communication and transfer with

limited resources such as frequency etc. However, due to the ever

increasing demand of consumers for mobile electronic devices, existing

resources are becoming overloaded and meeting this ever increasing

demand keeps getting more challenging. Therefore, new techniques

and approaches are needed in order to meet current demands as well
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as future wireless communications systems. In addition, the demand

for portable wireless devices is on the increase. More so, these devices

are expected to offer high speed data communication and transfer with

limited resources such as frequency etc. There is the possibility of using

the technology to increase the data rate. Given that these devices

require power to operate, hence, the power demand by these devices

is also on the increase as the number of devices increases. Therefore,

we have a situation where the number of wireless device is on the

increase which means more energy is becoming abundant. Harvesting

this readily available energy to produce power could help mitigate the

power demand by helping power the devices.

In proffering new solutions to meeting these demand challenges,

it is crucial to identify key areas associated with such demands. A

careful study of the wireless communication systems may reveal trans-

mit/receive antenna configuration, energy efficiency, reliability (or the

quality of service (Qos)) and security as the key factors that have played

important roles in the evolution witnessed in the wireless communica-

tions field. Furthermore, it may seem that these requirements can be

satisfied easily by increasing the transmit power and the transmission

bandwidth. However, leveraging frequency reuse becomes a useful ap-

proach to serve an increasing number of users within the availability of

scarce radio spectrum resource. Therefore, increasing transmit power

cannot always be a good solution as this will in turn lead to increase in

the interference power of the co-channel. Furthermore, power saving in

cellular networks can help to reduce emission of the greenhouse gases

in addition to alleviating the financial burden to service providers [6].
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1.1 Motivation

Multi-antenna transmission has been considered an effective method

for capacity improvement of wireless communication systems when it

comes to coping with the wireless access consumers ever increasing

demand of high speed data communication [7–9] and [10].

Multiple-antenna approaches form a key aspect for modern wireless

communications. These techniques provide a trade-off between superior

error performance and higher data rates for increased system complex-

ity and cost. A number of transmission principles that exploit the

multiple-antenna configuration employs such configurations at either

the transmitter, the receiver, or both. A technique known as spatial

modulation (SM) is a new multiple-antenna transmission technique.

This technique, with a very low system complexity, can offer improved

data rates when compared to non-multiple-antenna systems i.e. single-

input single-output (SISO) systems. Additionally, it can offer improved

and robust error performance even in environments with correlated

channels. The SM approach is an entirely new modulation concept

that is able to exploit the uniqueness and randomness properties of

the wireless channels for communication purposes. Simple but effective

coding mechanism that establishes one-to-one mapping between blocks

of information bits that are to be transmitted and the spatial positions

of the transmit-antenna in the antenna-array is employed to achieve

SM [11].

Multiple-antenna usage for wireless communication systems has

received an increased interest by researchers during the last decade [12].

Multiple-antenna in multiple-input multiple-output (MIMO) systems
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configuration can be exploited in different ways to achieve antenna

gains, diversity, or multiplexing. In addition, MIMO techniques have

important advantages, developing new approaches for multiple antenna

transmission in order to mitigate the practical limitations while retaining

the key advantages of a MIMO systems is essential.

In wireless communication systems there has been an increase in

the demand for data traffic and throughput. This has been due to

the fact that mobile devices are usually constrained by their limited

battery life. Additionally, it is often costly to replace or recharge their

batteries. Thus, energy harvesting (EH) has become attractive for

realizing perpetual communications.

As a possible application context, EH is employed in fifth-generation

(5G) wireless communication networks as a way of bypassing the energy

limitation issues in mobile devices. This is also a way to improve

the energy efficiency of the 5G networks by extracting energy from

the external natural environment (e.g., wind energy, solar power, etc.)

[13, 14].

Energy is and has been harvested directly from external sources

without exploiting the resources of the communication network itself.

However, the natural environment may not be able to provide stable

energy. When this is the case, wireless mobile receivers may have

to find alternative energy sources in the communication network for

example information-carrying radio-frequency (RF) signal radiated by

fixed transmitters (hot spots, base stations, etc.) [15–17]. In such a

situation, the transmitter not only act as a sender of signals to the

mobile receivers, but will also need to transfer power that can be used
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to charge these receivers’ batteries. As a result, the idea of simultaneous

wireless information and power transfer (SWIPT) becomes a promising

concept to provide power for communication devices as a way to mitigate

the energy scarcity and extend the lifetime of wireless networks [17, 15].

As mentioned earlier, security is a key criteria in wireless networks

and consequently plays a significant role in wireless communications.

This is because it ensures that important messages are confidential

enough so as to prevent eavesdropping from unauthorized users.

There are some crucial reasons which lead to security issues including

vulnerability of wireless channels is to channel jamming making it

easy for an eavesdropper to jam and prevent legitimate users from

accessing the network. Another reason is when an active attacker

obtains illegal access to network resources thereby bypassing secure

infrastructures without the authentication mechanisms. Another might

be eavesdropping without advanced technological devices due to the

open nature of wireless channels [18].

Considering security in SWIPT, a number of researches have been

carried out in this regard. Particularly, secure communication in SWIPT

has been investigated in [19–26]. The authors in [19] considered a MISO

secure SWIPT system with two optimization problems: i) energy har-

vesting maximization with a secrecy rate constraint for the IR, and

ii) secrecy rate maximization of IR with individual harvested energy

constraints of energy receivers (ERs), have been developed to guarantee

a reliable information transmission to the IR and the target harvested

energy simultaneously transferred to the ERs are satisfied by optimally

designing the beamformer vectors and the power allocation at the legit-
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imate transmitter. The authors in [20] addressed the problem of secure

communication system with SWIPT when two types of eavesdroppers

(potential eavesdroppers and passive eavesdroppers) coexist. A total

transmit power minimization problem was formulated to jointly op-

timize the transmit beamforming, and energy beamforming, thereby

achieving secure communications with a target amount of harvested

power by incorporating channel uncertainties of the potential eaves-

droppers. In [23], the authors considered a multiuser MISO SWIPT

system with multi-antenna energy harvesting potential eavesdroppers

only, where an energy harvesting maximization problem is proposed to

guarantee secure communications. The authors also show the existence

of a rank-one optimal transmit covariance solution and proposed one

efficient algorithm to construct an equivalent rank-one optimal solution

[19, 23]. In [19, 23] however, the authors considered the case where

the CSI is assumed to be available, i.e. only the CSI of the potential

eavesdropper is unavailable at the transmitter [20, 21], for which there

are practical difficulties to obtain the CSI of the link between the trans-

mitter and the users. Robust secure transmission for a MISO SWIPT

system has been proposed without Artificial Noise (AN) in [22] and

with AN [24], by incorporating the channel uncertainties of all channels.

Semi-definite programming (SDP) relaxation was used in [22, 24, 26] to

solve the secrecy rate maximization problem. However, the suboptimal

solution has been proposed to guarantee the solution of the relaxed

problem is rank-one [22], whereas in [24, 26], the authors have shown

the optimal solution of the relaxed problem is rank-two, which is not

exact to the optimal condition for the SDP relaxation. The authors in
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[25] used a two-step algorithm with conic reformulation proposed to

circumvent the rank-one solution in the MISO secure SWIPT system,

while a new SDP relaxation is investigated to guarantee that the relaxed

problem yields rank-one solution in the AN-aided MISO secure SWIPT

system. The optimal resource allocation in the AN-aided secure Or-

thogonal Frequency-Division Multiple Access (OFDMA) systems with

SWIPT was investigated in [27].

Overall, exploitation of MIMO communication channel diversity,

secure downlink beamforming techniques, adaptive beamforming tech-

niques, resource allocation methods, simultaneous power and infor-

mation transfer and energy harvesting provide promising grounds for

improvements in multi-antenna wireless communication systems. This

thesis presents and describes new methods associated with the afore-

mentioned approaches.

1.2 Thesis Outline

Optimal beamforming, interference attenuation, secure downlink com-

munication, simultaneous power and information transfer and energy

harvesting are crucial challenges facing reliable data communication in

multi-antenna wireless systems. This is especially so when one takes into

consideration the ever increasing demand for secure portable wireless

devices with multi-antenna, fast data rates and high throughputs. The

work in this thesis therefore focuses on techniques for addressing the

aforementioned challenges and improving the respective solutions. The

proposed solutions as well as improvements to solutions are presented
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and detailed in the subsequent chapters. Specifically, the outline of this

thesis is as follows:

In Chapter 1, the focus is on introducing the motivation, overview

as well as the contributions of the thesis. A list of publications steming

from this thesis can be found also in Chapter 1.

In Chapter 2, background material and key concepts related to

reliable data communication in multi-antenna wireless systems are

introduced. In addition, some solution concepts used to offer improve-

ments in relation to wireless communication systems are studied . In

particular, the idea of multi-antenna wireless communication is exam-

ined along with beamforming techniques followed by the introduction

of some key fundamentals of convex optimization techniques.

In Chapter 3, mathematical optimization techniques for coordinated

multi-cell beamforming in the presence of local users and a global

user are investigated. The global user is served by multiple bases

tations (BS) while the local users are served by only the corresponding

basestation. With the aid of multiple antennas, the global user is able

to decode multiple data streams transmitted by various transmitters

through singular value decomposition of the channels at the receiver

while using left dominant singular vectors as the receiver beamforming.

The coordinating basestations employ semidefinite programing based

transmitter beamforming and agree to perform optimum data rate split

for the global user in order to minimise the transmission power.

In Chapter 4, study the problem of maximizing the worst-case user

signal-to-interference-plus-noise ratio (SINR) in a multi input single

output (MISO) system within the context of energy harvesting. The
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interference channel is exploited by users for radio frequency energy

harvesting (RFEH) while satisfying QoS and power constraints within

a framework of beamforming and resource allocations. The power

splitting technique where each user divides the received signal into data

information and energy charging is considered. The worst-user case

SINR is maximized while satisfying the transmission power and energy

harvesting constraints in addition to meeting the RFEH constraints.

Chapter 5 focuses on the study of a downlink wireless network

consisting of wireless powered communication (WPC) system and a

simultaneous wireless information and power transfer (SWIPT) system.

The SWIPT system simultaneously serves one information receiver

(IR) while transferring power to a wireless device (WD). The wireless

powered system consists of the WD and its IR. Both systems operate on

the same frequency band. The WD is therefore able to take advantage

of the wireless energy transfer from the SWIPT basestation (BS),

interference power from the BS due to transmission of signals to IRs

and the recycled power for energy harvesting. The aim is to minimize

the total transmitted power of the SWIPT BS subject to the signal-to-

interference-and-noise ratio (SINR) target at the information receivers.

Furthermore, a set of constraints SINR less than one are introduced in

order to preserve the secrecy of the information transmitted by BS to

IRs on the BS.

Chapter 6 considers secrecy rate optimizations for a simultaneous

wireless information and power transfer (SWIPT) and wireless powered

communication (WPC)system. The SWIPT system simultaneously

serves one information receiver (IR1) and transfers power to a wireless
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device (WD). The second information receiver (IR2) is served by the

WD. Additionally, it is assumed that the (IR1) is an eavesdropper for

the information signal transmitted by the (WD), and the (IR2) is an

eavesdropper for the information signal transmitted by the (BS). The se-

crecy rate maximization problem is non-convex due to the non-concavity

of the secrecy rate function. As a result, Taylor series approximation

of the secrecy rate function is employed to reformulate the problem as

a convex one.

Chapters 3 to 6 form the heart of the original contributions of this

thesis.

Finally, concluding remarks are drawn and possible future research

challenges are discussed in Chapter 7.
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Chapter 2

Literature Review and

Technical Background

2.1 Introduction

In this chapter, background material and key concepts related to data

communication in multi-antenna wireless systems are introduced. In

addition, some solution concepts used to offer improvements in relation

to wireless communication systems are studied. In particular, the idea of

multi-antenna wireless communication is examined along with different

multi-antenna types. Exploitable techniques often used to derive the

benefits in multi-antenna wireless systems including beamforming and

singular value decomposition are studied. This chapter further looks

at the convex optimization theory where the idea of convex and non-

convex problems is introduced along with techniques for handling such

problems.
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2.2 Communication in Multi-Antenna Wire-

less Systems

In wireless systems, multi-antenna transmission has been employed

largely as way of increasing and improving the system robustness, ca-

pacity and error rate performance [9, 8]. A multi-antenna wireless

system usually involves equipping both the transmitter and receiver

with multiple antennas. The multi-antenna wireless system configu-

ration has garnered attention and raised expectations in the wireless

communication community owing to the promising improvements it

offers as a way of countering challenges due to resource availability

constraints and channel impairments. The most important advantages

of multiple antenna systems are array gain, interference reduction, and

diversity gain. A typical configuration of the multi-antenna types is

Fig. 2.1 Different types of multi-antenna configurations.

shown in Fig. 2.1. For the purpose of this thesis, the single-input

multiple-output (SIMO) version of multi-antenna wireless system is not
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considered. Although it offers receive diversity and help combat fading

and channel interference.

2.2.1 Multiple-Input Single-Output (MISO)

The MISO configuration is such that there are more than one antennas

at the transmitter and one antenna is present at the receiver. An

example MISO configuration is shown in Fig. 2.2. This configuration

allows for transmit diversity where data are transmitted redundantly

from the two or more transmit antennas and the receive receives the

optimum signal. The MISO configuration offers desirable properties

Fig. 2.2 Exapmle MISO configuration.

which include the redundancy coding and processing being done at the

transmitter end. This property is of significant advantage to wireless

mobile devices because it helps to reduce the processing levels required

at the receiver and also less space is required for the receiver.

2.2.2 Multiple-Input Multiple-Output (MIMO)

The MIMO system configuration consists of two or more antennas at

both the transmitter and receiver ends. The MIMO system configuration
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offers many advantages including providing improvement in channel

capacity and robustness, data throughput and additional diversity to

help combat fading ([7–9]). Furthermore, the a MIMO system offers

what is known as multiplexing gain compared to the traditional antenna

array systems in addition to being able to exploit the transmit and

receive multi-antenna benefits simultaneously [28]. An example MIMO

Fig. 2.3 Example MIMO configuration with M transmit antennas and
N receive antennas.

configuration is shown in Fig. 2.3. From the Figure, there are M

transmit antennas and N receive antennas. The MIMO channel gain,

H is expressed as an N ×M matrix given as

H =


h1,1 · · · h1,M

... . . . ...

hN,1 · · · hN,M

 , (2.1)
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and the received signal is given by

y = Hx + n, (2.2)

where H ∈ CN×M with hn,m being the single -input single-output (SISO)

channel gain between the n-th receive and the m-th transmit antenna

pair. The vector y ∈ CN×1 denotes the received signal, x ∈ CM×1

represents the transmit signal vector, and n ∈ CN×1 denotes an additive

white complex Gaussian noise vector.

2.2.3 Singular Value Decomposition (SVD)

SVD is a valuable tool that can be employed in a wireless MIMO

system to help handle data transmission issues including interference

elimination thereby enhancing data throughput and coverage. The SVD

technique can be thought of as a way to look at the MIMO channel as

a set of independent channel. SVD involves the specific decomposition

of the wireless MIMO channel matrix, H of (2.1). The SVD technique

is useful for analysing/characterising the behaviour of a MIMO channel

matrix and it can be applied to a non-square matrix. In addition,

SVD has the advantage of achieving parallelization in a MIMO channel.

Using SVD, the channel gain matrix of (2.1), can be decomposed into

a product of three matrices as [Jie Tang 64]:

H = UΣVH , (2.3)

where U ∈ CM×M is an M ×M matrix and V ∈ CN×N is an N ×N

matrix. Σ ∈ CM×N is an M × N diagonal matrix. These singular
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values are non-negative and arranged in decreasing order of magnitude.

The number of non-zero singular values denotes the rank of the matrix.

The SVD technique is valid for N ≥M .

2.2.4 Null Spaces

Null space is a technique which applies to linear transformations. The

right null space (or simply the null space) of a matrix G ∈ Rn×m is

that matrix, X such that

GX = 0, (2.4)

where X ∈ Rm×(m−r) with r = rank(G) ≤ min(n,m). The left null

space of G is that matrix Y such that

YG = 0, (2.5)

where Y ∈ R(n−r)×n with r = rank(G) ≤ min(n,m). Therefore, the

left null space of the channel matrix of (2.1) H is the columns of U

(of (2.3)) corresponding to singular values equal to zero, transposed.

The null space (or the right null space) of H are the columns of V

corresponding to where singular values equal to zero.

2.2.5 Beamforming Techniques

Beamforming, also known as a spatial filtering technique is a signal pro-

cessing method used to achieve transmission or reception directionality

control in the physical layer of a multi-antenna system. In addition

to improve transmission/reception gain, this technique is utilized at

the transmit and receive end of a MIMO system to achieve spatial
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selectivity. Furthermore, beamforming exploits interference in order to

change the directionality of the transmit/receive array [Tang 44].

Transmitter Beamforming

In transmit beamforming, the data in each symbol period is multiplied

by a set of weighting coefficients. This is to precompensate for the

channel effects before transmission. When transmitting, the beam-

former controls the relative phase and the amplitude of the signal at

each transmitter so as to form a constructive radiation pattern and

destructive interference in the wave front. Beamforming at the trans-

mitter is also known as downlink beamforming. In the transmitter

beamforming, beamformers for all users within a coverage area must

be jointly designed so as to avoid interference to unintended users

within that area. Furthermore, in order to be able to estimate channel

coefficients, channel knowledge is needed and this could be provided by

sending the estimates of what is known as the channel state information

(CSI) from the receiver through a finite rate feedback channel [Tang

45–48]. Fig. 2.4 shows an illustration of transmit beamforming. Let

w = [w1, w2, · · · , wM ]T be the weighting factors imposed on the set of

M transmit antennas, respectively. The signal transmitted on the m-th

antenna is given by

xm(n) = wms(n), (2.6)

where xm(n) is the transmitted signal, s(n) is the information stream

and wm is the weighting factor

Suppose user i is a recipient of the signal from the transmit beam-

former, therefore, the signal received by the user i can be written
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X
X

X

Fig. 2.4 Example transmitter beamformer format.

as

yi(n) = hH
i x + vi(n), (2.7)

where hi denotes the channel coefficient vector between the transmitter

and the user i and vi denotes the receiver noise.

Receiver Beamforming

In receive beamforming, the goal is to estimate the desired signal in

the presence of interference and noise. When receiving, the different

signals from each of the receiving antennas are combined such that

what is observed is the expected pattern of radiation. Fig. 2.5 shows

an illustration of receiver beamforming. Let w∗ = [w∗
1, w

∗
2, · · · , w∗

N ]T
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X
X

X

Fig. 2.5 Example receiver beamformer format.

be the complex weighting vector imposed on the set of N receive

antennas, where [·]T denotes the transpose operator; and denote r(n) =

[r1(n), r2(n), · · · rN(n)]T as a N × 1 vector of array observations. The

received signal, y[n] is given by

y(n) = wHr(n), (2.8)

where the array observation vector, r(n) given as

r(n) = d(n) + ι(n) + γ(n), (2.9)

and the terms d(n), ι(n) and γ(n) are the desired signal, the receiver

noise and the interference respectively.
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2.3 Emerging Concepts

Owing to the to advances witnessed in the evolution of wireless commu-

nication systems and the prospects of multiple-antenna wireless systems

over the last three decades; some new concepts have emerged as a way

of exploring new dimensions and as well as proffering solutions to some

of the challenges associated with these advances. Some of these new

dimensions include wireless energy harvesting and simultaneous wireless

energy transfer and ensuring secure communication in the presence of

an eavesdropper. These concepts are briefly introduced.

2.3.1 Summary of Wireless Power Transfer (WPT)

Energy harvesting for wireless communication networks is a new system

that allows wireless terminal and devices to recharge their batteries

from wireless energy sources. There has been alot of requirement and

interest to implement energy harvesting technologies into communi-

cation networks. Many researchers and studies concentrate on WPT

and energy harvesting. The efforts on WPT have concentrated on high

power applications and long distance. However health consideration

and poor transmission process prevent further development. Thus most

studies on WPT work on short distance transmission such as charging

mobile , wireless phones, electrical vehicle and some medical applica-

tions. In the literature [29], many experimental results for different

WPT scenarios are presented. In terms of energy consumption and

interference management, (SWIPT) can give better result by superpos-

ing information and power transfer. For example, with the same signal
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wireless device receiver can be charged and receive information from

the information and energy transmitter on the same time. The need

for SWIPT technologies will increase in the field of Internet of Things

in small cells, MIMO technologies and new generation mobile networks

to overcome path loss effect and support energy sustainability and high

throughput. A typical WEH enabled sensor device usually consists of

a WEH unit, a transceiver, an antenna, a power management unit, a

sensor/processor unit, and possibly an onboard battery [30].

2.3.2 WPT Module

There are three different modules of WPT system, near field, far field

directive power and far field low power. For far field low power type,

the distance and communication range up to several kilometers and the

collected and harvested power are about microwatts. In this chapter,

the far field low power WPT module will be considered. WD is a

wireless device can receive wireless energy and use this harvested energy

to transmit it is own information to specific information receiver. In

figure 2.6, block diagram of a WD in WPC far field low power module.

The WD consist of special antenna array system call Rectenna, which

is include RF power collection antenna, matching network and a radio

frequency to direct current (RF to DC) converter, an energy storage unit

and the power management unit (PMU). The rechargeable battery will

provide power to the central processing unit (CPU) [31], the transmitter

will use this power to transmit information through transmitter antenna.
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Fig. 2.6 Block diagram of a WD in WPC far field low power module.

2.3.3 Simultaneous Wireless Information and Power

Transfer (SWIPT)

SWIPT is a promising technology for multi-antenna wireless systems

where remote receivers simultaneously extract information and power

from the common transmit signal [32, 33, 16, 34, 35]. The SWIPT

approach exploits the same emitted electromagnetic wave field in or-

der to deliver both energy and information at the same time. The

SWIPT technique offers such advantages as: energy scavenging ability

by wireless devices while receiving data, hence prolonging their life time

and interference control [35] An example SWIPT setting is depicted

in Fig. 2.7. It is seen from this figure that a single multi-antenna

transmitter transmits both information and power signal to different

receivers simultaneously.
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Fig. 2.7 An example MIMO system for SWIPT.

2.3.4 Secure Communications for Multi-Antenna

Transceiver

This subsection introduces the concept of reliable and secure commu-

nications for multi-antenna systems. Particularly, in the case where a

transmitter equipped with multiple antennas is required to transmit

securely to a multi-antenna receiver in the presence of an eavesdropper.

The concept of secure communications in multi-antenna systems has

also been researched widely; see [36–40] for more details. The problem

of a transmitter communicating with a receiver in the presence of an

eavesdropper can be considered as a wiretap channel problem. Consider

the diagram of Fig. 2.8. In this figure, a legitimate transmitter com-

municates with a legitimate receiver while an eavesdropper attempts

to listen in on the communication. Suppose the legitimate transmitter

and receiver consist of M and N transmit and receive antennas, re-

spectively, and the eavesdropper has Ne receive antennas. The channel
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EVS

Tx

Rx...

Fig. 2.8 A simple wiretap channel. Tx is the legitimate transmitter, Rx
is the legitimate receiver and EVS is the eavesdropper.

coefficients between the legitimate transmitter and receiver and the

eavesdropper can be represented as Hl ∈ CM×N and He ∈ CMe×Ne ,

respectively. Denote P as the maximum available transmit power at the

legitimate transmitter. The signal received at the legitimate receiver

can be expressed as

yl = HH
l x + vl, ye = HH

e x + ve, (2.10)

with x ∈ CM×1 denoting the desired signal intended to the legitimate

receiver. The covariance of the transmit matrix is expressed as Ql =

E{xxH}. The two noise terms vl and ve are zero mean circularly

symmetric complex Gaussian random variables with identity covariance

matrices. Achievable transmission rate to both the legitimate receiver

and the eavesdropper can be written as [8]:

Rl = log
∣∣∣∣∣I + 1

σ2
l

HH
l QlHl

∣∣∣∣∣, Re = log
∣∣∣∣∣I + 1

σ2
e

HH
e QlHe

∣∣∣∣∣ (2.11)
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respectively. The achievable secrecy rate at the legitimate receiver is:

[37]

R = [Rl −Re]+. (2.12)

The notation [·]+ denote max{·, 0}. The secrecy rate maximization

is then formulated as:

max
Ql≽0

R,

s.t. Tr(Ql) ≤ P, (2.13)

where, Ql,Tr(Ql) and P are the information signal covariance matrix

at the transmitter, the trace of the information signal covariance matrix

at the transmitter and the maximum transmit power at the transmitter

respectively.

2.4 Convex Optimization Theory

The use of mathematical optimization techniques to facilitate analytical

and numerical solutions in the field of multi-antenna wireless commu-

nication and other engineering problems has grown widely within the

last three decades [41]. These techniques have been used to perform

design and analysis of communication systems and development of

signal processing algorithms. This is mainly because many communica-

tion problems can either be cast as or be converted into mathematical

optimization problem. One of such optimization techniques is known
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as convex optimization. Convex optimization generally refers to the

minimization of a convex objective function subject to one or more con-

vex constraints [41]. In convex optimization problems, a local optimum

is also a global optimum. This key feature make convex optimization

techniques attractive and important in many communications and engi-

neering problems. More so, the optimal solution of a convex problem

can be verified by employing rigorous optimality conditions known as

the Karush-Kuhn-Tucker (KKT) conditions and duality theory. Once

a problem has been formulated as a convex one, software tools such as

CVX [newcastle 90], MATLAB, Yalmip [newcastle 89] can be used to

to solve convex optimization problems. This in turn make solutions

to convex problems in communication and engineering more imple-

mentable. Most problems are however not convex and hence cannot be

solved directly. However, some non-convex problems can be recast as a

convex problem and solved using convex optimization problems solving

methods. It is therefore key to be able recognize problems which can

be solved directly using convex optimization approaches and those that

require reformulation into a convex problem in order to apply convex

optimization techniques. Subsequently, the key concepts of convex

optimization techniques for both convex and non-convex problem will

be introduced.

2.4.1 Basic Concepts in Optimization

Being familiar with the basic concepts of convexity as well as the

convex optimization models is a key step in understanding and recog-

nizing convex optimization problems in communication and engineering
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applications [41]. Some of these basic concepts are introduced next,

particularly the idea of convex sets, cones and functions.

Convex Sets

A set S is said to be convex if the line segment joining any two points

x1, x2 ∈ S also lies in S. This property is defined mathematically as

µ = θx1 + (1− θ)x2 ∈ S, ∀θ ∈ [0, 1], (2.14)

where θ ∈ R with the parameter value θ = 0 and θ = 1 corresponding

to when µ = x2 and µ = x1 respectively [1].

Convex Cones

A set C is referred to as a cone or nonnegative homogeneous if there

exists α ≥ 0 and for every y ∈ C, αy is such that αy ∈ C. The set C is

called a convex cone if the set is convex and a cone. This implies that

for any y1, y2 ∈ C and α1, α2 ≥ 0, the following holds [1]:

α1y1 + α2y2 ∈ C. (2.15)

Convex cones can be realised in different forms in communication and

engineering applications. The most common forms of convex cones are

[41]:

i. Second-order cone (SOC). This is also known as ice cream cone.

ii. Nonnegative orthant Rn
+

iii. Positive semidefinite matrix cone.
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Convex Functions

A function f(y) : Rn → R is said to be convex if its domain, domf(y)

is a convex set and if ∀y1, y2 ∈ domf(y), and α with 0 ≤ α ≤ 1 the

following inequality holds [1]:

f(αy1 + (1− α)y2) ≤ αf(y1) + (1− α)f(y2). (2.16)

Considering Fig. 2.9, the inequality of (2.16) geometrically implies that

1 1

2 2

Fig. 2.9 An example graph of a convex function. The line segment (i.e.,
chord) between any two points on the graph lies above the graph [1].

the chord from y1 to y2 i.e. the line segment between (y1, f(y1)) and

(y2, f(y2)) lies above the graph of f(y) as seen in Fig. 2.9. Moreover,

a function f(y) is termed strictly convex if strict inequality holds in

(2.16) whenever y1 ̸= y2 and 0 < α < 1. Furthermore, the function

f(y) is concave if f(y) is convex, and strictly concave if the function

f(y) is strictly convex. In addition, a function is convex iff it is

convex when restricted to any line that intersects its domain. That is

to say f(y) is convex iff for all y1 ∈ domf(y1) and all b, the function

g(v) = f(y1 + vb) is convex (on its domain, {v|y1 + vb ∈ domf(y1)}).
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The above is a useful property as it allows for the convexity check of a

function by restricting it to a line [1].

2.4.2 Convex Optimization Problems

In this subsection, the basic format of a convex optimization problem

as well as some basic terminologies used in formulating such problem

are introduced. In addition, some example types of convex optimization

problems are presented.

A generic convex optimization problem can be coined in the following

form [1]:

min
y

f0(y)

subject to fj(y) ≤ 0, j = 1, · · · , p,

hj(y) = 0, j = 1, · · · , r, (2.17)

where y ∈ Rn denotes the optimization variable, the function f0 :

Rn → R is the objective function or cost function and the functions

f0, · · · , fp : Rn → R and h1, · · · , hr are convex and linear functions

respectively; fj(y) ≤ 0 and hj(y) = 0 are termed as the inequality

constraint and equality constraint respectively. The corresponding

functions fj : Rn → R and hj : Rn → R are called the inequality

constraint functions and equality constraint functions respectively. Note

that in some convex optimization problems, the terms in the first and

second line of (2.17) are shortened from minimize and subject to to

min and s.t. respectively. The set of points for which all constraint

functions and the objective function are defined is known as the domain,
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D of the example optimization problem of (2.17). This domain, D is

given as

D =
p⋂

j=0
domfj ∩

r⋂
j=1

domhj. (2.18)

If a point y ∈ D satisfies the inequality and equality constraints fj(y) ≤

0 and hj = 0 then it is feasible. The problem in (2.17) is feasible if

at least one feasible point exists, else it is infeasible. The set of all

points that are feasible is called the constraint set or the feasible set.

The optimal solution to the problem of (2.17) can be achieved at the

optimal point y∗ such that the following inequality holds

f0(y∗) ≤ f0(y), ∀y ∈ D. (2.19)

The example optimization problem described in (2.17) is said to be

convex if the following conditions are true:

i. The functions fj(j = 0, 1, · · · , p) are convex;

ii. hj(x) are affine functions, and

iii. The set domain of the optimization problem is convex.

In what follows, some example types of convex optimization problems

are presented.

Linear Programming

In a convex optimization problem, when the objective and all con-

straint functions are affine, this type of problem is then called linear
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programming. A linear programming problem can be written as:

min
y

aT y

s.t. bT
j y ≼ cj, j = 1, · · · , p, (2.20)

where vectors a, b1, · · · ,bp ∈ Rn and scalars c1, · · · , cp ∈ R are the

parameters of the optimization problem that specify the objective and

constraint functions.

Quadratic Programming

Another example of a type of convex optimization problem is quadratic

programming. In this type of problem, the objective function is

quadratic (or convex) and the constraint functions are affine. A

quadratic programming problem can be written as:

min
y

yT Qy + pT y + l

s.t. Py ≼ h,

Gy = b, (2.21)

where Q ∈ Sn
+, P ∈ Rm×n and G ∈ Rm×n. Linear programming is a

special case of quadratic programming when Q from first line of (2.21)

is zero.
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Second-Order Cone Programming

A convex optimization problem in the following form is called a second-

order cone programming (SOCP) problem [1]:

min
y

fT y

s.t. ||Ajy + bj||2 ≤ cT
j y + dj, j = 1, · · · , p,

Fy = g, (2.22)

where y ∈ Rn is called the optimization variable, A ∈ Rnj×n, and

F ∈ Rm×n. The constraint ||Ay + b||2 ≤ cT y + d, is called as second-

order cone constraint, since it is the same as requiring the affine function

Ay + b, cT y + d to lie in the second-order cone in Rk+1. If Aj = 0, j =

1, · · · , p then the SOCP problem of (2.22) reduces to a (general) linear

programming problem.

2.4.3 Quasi-Convex Problem

Some convex optimization problems can be quasi-convex (or unimodal).

A function f : Rn → R is called quasi-convex if for a certain α ∈ R, its

domain and all its sub-level sets

Sα = y ∈ domf |f(y) ≤ α, (2.23)
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are convex [1]. The standard for a quasi-convex problem can be written

as [1]:

min
y

f(y)

s.t. fj(y) ≤ 0, j = 1, · · · , p,

Ay = b. (2.24)

A function is called quasi-concave if the function f is quasi-convex, i.e.,

every super-level set {y|f(y) ≥ α} is convex. A function that is quasi-

convex and also quasi-concave is termed quasi-linear. For quasi-linear

function f , its domain, and every level set {y|f(y) = α} are all convex

[1].

2.4.3.1 Bisection Method

A quasi-convex optimization problem can be solved by solving a sequence

of convex optimization problems. This relies on the fact that the sub-

level sets of a quasi-convex function can be represented by a family of

convex inequalities. Define a non-increasing function, ψt(y) : Rn →

R, t ∈ R, as a family of convex functions which has the following

property:

f(y) ≤ t⇔ ψt(y) ≤ 0. (2.25)
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The quasi-convex optimization problem in (2.24) can be formulated to

consider the feasibility problem below:

find y

s.t. ψt(y) ≤ 0,

fj(y) ≤ 0, j = 1, · · · , p,

Ay = b. (2.26)

The equation in (2.26) is a convex feasibility problem due to its equality

constraints being linear and inequality constraints being convex. Sup-

pose x∗ is the optimal value of the quasi-convex optimization problem of

(2.24); then x∗ ≤ t or x∗ ≥ t if (2.24) is feasible or infeasible respectively.

The inequality x∗ ≤ t means that for any given t, any feasible point

y is also feasible for the problem of (2.24). Therefore, the problem of

(2.24) can be solved using the bisection method by solving (2.26) at

each step [1, 42]. The bisection method in this case is based on the

assumption that (2.26) is feasible and the optimal value x∗ lies within

an initial interval [u, v].

- Assume t = (u+v)
2 and use to solve (2.26).

- If x∗ ≤ t, the optimal value is in the lower half of the interval,

then update the interval [u, v] by reducing v.

- If x∗ ≥ t, the optimal value is in the upper half of the interval,

then update the interval [u, v] by increasing u.

- The optimal value x∗ can be obtained when v − u ≤ τ , where

τ > 0 is a tolerance value [42].
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2.4.4 Convex Optimization for Non-Convex Prob-

lems

Having a convex problem is desired as there are a variety of methods

that can be employed to solve them and these problems can usually be

solved directly. However, most of problems are generally not convex and

a reformulation is required to recast the problem to a convex one. Once

a problem is formulated in a convex manner, it can be solved at least

from a numerical perspective. Convex optimization techniques play an

important role in non-convex problems. Convex optimization can be

applied to problems that are not convex in various ways which include

combining convex optimization with a local optimization method as

a way of handling initialization point issues for local optimization

method [1]. Another useful role convex optimization plays in solving

non-convex problems is in terms of bounds for global optimization.

Many techniques used for global optimization require an inexpensive

computable lower bound on the optimal value of the non-convex problem

[1]. The (two) standard approaches for achieving this are based on

convex optimization. The first involves relaxation where each non-

convex constraint is replaced with a looser or relaxed, but convex,

constraint. The second involves what is called Lagrangian relaxation

where the Lagrangian dual problem is solved. This is a convex problem

which provides a lower bound on the optimal value of the non-convex

problem [1]. Some basic convex optimization concept which are required

especially in terms of bounds for global optimization are discussed next.
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2.4.4.1 Semi-definite Programming (SDP)

Denote K to be a pointed, closed convex cone. when K is Sk
+, the

associated conic form problem is called semi-definite programming and

has the form [1]:

min
y

aT y

s.t. y1F1 + y2F2 + · · ·+ ymFm + G ≽ 0,

Ay = b, (2.27)

where y ∈ Rm, A ∈ Rp×m. . The inequality constraint in (2.27) is

called the linear matrix inequality (LMI) [1] with G,F1, · · · ,Fm ∈ Sk.

If the matrices G,F1, · · · ,Fm of (2.27) are all diagonal, then the LMI

in (2.27) is equivalent to a set of m linear inequalities, and the SDP

problem of (2.27) reduces to linear programming problem [1].

2.4.4.2 Semi-definite Relaxation (SDR)

Consider a non-convex quadratically constrained quadratic program-

ming (QCQP) problem of the form

min
y

yT Q0y + pT
0 y + r0

s.t. yT Qjy + pT
j y + rj ≤ 0, j = 1, · · · ,m, (2.28)

where y ∈ Rn, Q ∈ Sn p ∈ Rn and r ∈ Rm×n. The above problem is

not convex when at least one of the Qj is not positive semi-definite.

The SDR method utilizes the property, Y = yyT to linearise (2.28).

This definition of Y implies that rank(Y) = 1 and yT Qjy = tr(QjY).
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As a result, (2.28) can be reformulated as

min
Y

tr(Q0Y) + pT
0 y + r0

s.t. tr(QjY) + pT
j y + rj ≤ 0, j = 1, · · · ,m,

Y = yyT (2.29)

The equality constraint Y = yyT of (2.29) is a non-convex constraint.

This constraint can however be relaxed introducing a looser positive

semi-definite inequality constraint Y ≽ yyT . Afterwards, the problem

of (2.29) can be rewritten as:

min
Y

tr(Q0Y) + pT
0 y + r0

s.t. tr(QjY) + pT
j y + rj ≤ 0, j = 1, · · · ,m,

Y− yyT ≽ 0 (2.30)

Using a property known as the Schur complement, the last constraint

in (2.30) can be rewritten as

min
Y

tr(Q0Y) + pT
0 y + r0

s.t. tr(QjY) + pT
j y + rj ≤ 0, j = 1, · · · ,m,Y y

yT 1

 ≽ 0. (2.31)

The problem seen in (2.31) is known as the SDP relaxation of the

original non-convex problem in (2.28). The optimal value of the relaxed
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problem gives the lower bound on the optimal value of the original

non-convex QCQP.

2.4.4.3 Lagrangian Duality and KKT Conditions

As earlier stated, the Lagrangian duality is one of the techniques used

to computable lower bound on the optimal value of the non-convex

problem. Here, the Lagrangian duality and the Karush-Kuhn-Tucker

(KKT) conditions are introduced.

Consider the problem of (2.17). Lagrange duality involves combining

the objective function with a weighted sum of the constraint functions.

For the problem of (2.17), the Lagrange dual problem L : Rn × Rm ×

Rp → R can be expressed as:

L(y,λ,ν) = f0(y) +
m∑

j=1
λjfj(y) +

p∑
j=1

νjhj(y), (2.32)

where νj ≥ 0, and λj ≥ 0 are the Lagrange dual multipliers that are

associated with the j-th equality hj(y) = 0 and inequality fj(y) ≤ 0

constraints, respectively. The objective function f0(y) of (2.17) and the

optimization variable y are called the primal objective and the primal

variable respectively. The Lagrange dual multipliers λ and ν known as

the dual variables. The Lagrange dual objective or the Lagrange dual

function g : Rm × Rp → R

g(y,λ,ν) = inf L(y,λ,ν), (2.33)

is the minimum value of the Lagrange dual function over y for λ ∈

Rm, ν ∈ Rp. The function g(y,λ,ν) is always concave irrespective of
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the convexity or otherwise of the original problem. This is because the

dual function, g(y, λ, ν) is the pointwise infimum of a series of affine

functions in (λ,ν). g(y,λ,ν) produces a lower bound on the optimal

value f0(y∗) to (2.17). Given any ν and λ ≥ 0, the following is true:

g(λ,ν) ≤ f0(y∗). (2.34)

The difference between the primal objective f0(y) and the dual objective

g(λ,ν) is known as the duality gap. Weak duality occurs when strict

inequality holds in (2.34), strong duality holds when the inequality

is satisfied with equality between the primal problem and the dual

problem. Solving the dual problem below can ensure best lower bound

of the original problem is achieved:

max
λ,ν

g(λ,ν)

s.t. λ ≥ 0. (2.35)

KKT Conditions

The under listed are known as KKT conditions, and they confirm the

optimality of the solutions

i. The primal inequality and and equality constraints: fj(y) ≤

0, j = 1, · · · ,m hj(y) = 0, j = 1, · · · , p

ii. The dual constraints: λ ≥ 0

iii. Complementary slackness: λjfj(y) ≤ 0, j = 1, · · · ,m
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iv. Gradient of the Lagrange dual function with respect to y:

▽ f0(y) +
m∑

j=1
λj ▽ fj(y) +

p∑
j=1

νj ▽ hj(y) = 0. (2.36)

These conditions are necessary optimality conditions but not suffi-

cient for general optimization. With optimization problems, the KKT

conditions can be satisfied when strong duality holds. For convex op-

timization problems however, strong duality holds between the dual

problem and the primal problem (both of which are optimal) if the

KKT conditions hold [1].

2.5 Summary

In this chapter, fundamental concepts of multi-antenna wireless com-

munication are outlined. Different configurations used in wireless

communication systems were introduced and discussed in addition to

spatial and signal processing methods used to derive useful performance

benefits. Lastly, mathematical optimization methods used to facilitate

numerical and analytical solutions in communications and engineering

were introduced. In particular, convex optimization theory and its basic

concepts and ideas for handling both convex and non-convex problems

were discussed.

In the next chapter, a coordinated multicell beamforming technique

will be proposed for achieving required data rate by a local and global

user in a multi-antenna setting.



Chapter 3

Coordinated Multicell

Beamforming with Local and

Global Data Rate

Constraints

In the previous chapter, background material and key concepts related

to data communication in multi-antenna wireless systems as well as

mathematical optimization techniques for solving both convex and

non-convex problem have been introduced.

In this chapter, optimization techniques for coordinated multi-cell

beamforming in the presence of local users and a global user are pro-

posed. The local users are served by only the corresponding base station

(BS), while the global user is served by multiple base stations. The

global user, with the aid of multiple antennas, is able to decode multiple

data streams transmitted by various transmitters through singular value
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decomposition of the channels at the receiver and using left dominant

singular vectors as the receiver beamforming. The coordinating bases

tations employ semidefinite programing based transmitter beamforming

and agree to perform optimum data rate split for the global user in

order to minimise the transmission power.

3.1 Introduction

With technology trends of today, where wireless networks have data

hungry users, it is necessary to consider cell densification that enhances

frequency reusage [43, 44]. Multiantenna deployment at both mobile

users and BSs also enables the mobile network to take advantage of

the spatial diversity in order to increase the overall performance of

the network. Various coordinated beamformer techniques have been

developed for downlink beamforming in multiantenna wireless systems

[45–47]. The use of generalized singular value decomposition (GSVD)

for coordinated beamforming in MIMO system was examined in [48].

In [49], a multiuser multi-input multi-output (MU-MIMO) network

was considered. The work in [49] showed that by introducing a lim-

ited number of zero-forcing constraints, the SINRs of all streams are

decoupled and this reduces the problem to a multiuser multi-input

single-output (MU-MISO) problem. The setback of this approach is the

reduced degrees-of-freedom and inefficiency. Coordinated beamform-

ing design with weighted power minimization was considered in [50]

using Lagrangian duality theory. The work in [51] considered power

minimization problem in a network wherein users are served by joint
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non-coherent multiflow beamforming. The authors in [51] emphasized

that even though the users can be served by multiple transmitters, the

information symbols are coded and transmitted independently. Coordi-

nated beamforming with user fairness based SINR balancing techniques

were also considered in [52–55]. In this paper, we aim to study joint

downlink beamforming using power minimization approach. The users

have known specific data rate targets that need to be satisfied. We

consider optimal solution that meets the target SINRs for all users.

The set of users considered in this work consist of single antenna lo-

cal users and a single multiantenna global user. The global user is

served by multiple BSs. By using SVD, we decompose the multi-input

multi-output (MIMO) channels between the BSs and the global user

to form parallel and independent multi-input single-output (MISO)

channels. The approach requires no phase synchronization between the

BSs that are serving the global user. According to the proposed scheme,

certain users are served by only a single base station (BS). However,

one multiantenna terminal is served by two BSs. The latter user is

known as global user which receives data from both BSs simultaneously.

Hence, optimum split of data rate from different BS is also considered

in this paper. Even though one global user is considered in this paper,

it is possible to extend it to multiple global users who can benefit from

different channel conditions of both BSs, especially when the users are

at the cell edge.
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3.2 Detection and Precoding for Multiple

Input Multiple Output Channels

Figure 3.1 shows singular value decomposition-based MIMO transmis-

sion systems. Precoding is a generalization of beamforming to support

multi-layer transmission in multi-antenna wireless communications. In

conventional beamforming, the same signal is emitted from each of the

transmit antennas with appropriate weighting such that the signal power

is maximized at the receiver output [49]. Thus, in order to maximize

the throughput in multiple receive antenna systems, multi-layer beam-

forming is required. The benefits of beamforming are to increase the

received signal gain, by making signals emitted from different antennas

add up constructively, and to reduce the multipath fading effect. The

Fig. 3.1 Singular value decomposition-based MIMO transmission sys-
tems.

Precoding can be separated by two classifications which are precoding

for single user MIMO and precoding for multi user MIMO. SVD is

a mathematical application that lets us create an alternate structure

of the MIMO signal. In particular the MIMO signal is examined by

looking at the eigenvalues of the H matrix. The received signal is given
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by

y = Hx + n (3.1)

The H matrix can be written in SVD form as

H = UΛVT (3.2)

where U and V are orthogonal matrices and Λ = diag(λ1, λ2......., λn)

a diagonal matrix of the singular values. Then received signal can be

rewritten as

y = (UΛVT )x + n (3.3)

Then the received signal y is multiplied by UH which gives

r = UHy (3.4)

The parallel decomposition is essentially a linear mapping function

performed by pre-coding the input signal s, consisting of multiplying it

with matrix V, such that x = Vx̃. Therefore, the received signal r can

be written as

r = UH [UΛVT ]Vx̃ + n, (3.5)

where U and V are unitary matrices (UHU = I and VVT = I) and Λ

is a diagonal matrix of singular values (λi) of H matrix.

r = Λx̃ + n (3.6)
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where

Λ =



λ1 0 . .

0 λ2 0 .

. . . .

0 . . λn


(3.7)

In general, the singular value decomposition (SVD) is used to get the

orthogonal and the best channel gain.

3.2.1 Precoding for Single User MIMO

In single user multiple-input multiple-output (MIMO) systems as shown

in figure 3.2, a transmitter equipped with multiple antennas communi-

cates with a receiver that has multiple antennas. Most classic precoding

results assume narrowband, slowly fading channels, meaning that the

channel for a certain period of time can be described by a single chan-

nel matrix. In practice, such channels can be achieved, for example,

through orthogonal frequency division multiplexing (OFDM). The pre-

coding strategy that maximizes the throughput, called channel capacity,

depends on the channel state information available in the system.

3.2.2 Precoding for Multi User MIMO

In multi-user MIMO, a multi-antenna transmitter communicates si-

multaneously with multiple receivers (each having one or multiple

antennas) as illustrated in Figure 3.3. This is known as space-division

multiple access (SDMA). From an implementation perspective, pre-

coding algorithms for SDMA systems can be sub-divided into linear

and nonlinear precoding types. The capacity achieving algorithms are
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V U
HH

X r

Fig. 3.2 One signal input singular value decomposition-based MIMO
transmission systems.

nonlinear, but linear precoding approaches usually achieve reasonable

performance with much lower complexity. Linear precoding strategies

include minimum mean square error (MMSE) precoding and the sim-

plified zero-forcing (ZF) precoding. There are also precoding strategies

tailored for low-rate feedback of channel state information, for example

random beamforming. Nonlinear precoding is designed based on the

concept of dirty paper coding (DPC), which shows that any known

interference at the transmitter can be subtracted without the penalty

of radio resources [49] if the optimal precoding scheme can be applied

on the transmit signal.

The model systems SISO, SVD-MIMO and Alamouti schemes were

explained on previous section perform good performance. Figure (3.4)

shows the comparison of average bit error rate (BER) performance

between singular value decomposition-based MIMO transmission, Alam-

outi and SISO schemes. All the schemes use Binary Phase Shift Keying
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r(1)

r(2)

Fig. 3.3 Two signal input singular value decomposition-based MIMO
transmission systems.

(BPSK) modulation. From the figure it can be seen that, SVD scheme

with one signal input gives best performance comparing to SISO, Alam-

outi (2x2) and SVD with two signals input schemes due to that the

SVD with one signal and Alamouti have divesity of four whereas SVD

with two signals has diversity of two and SISO has no diversity. Since

the singular values are often of very different magnitudes, this approach

proves beneficial.

3.3 System Model and Assumptions

Considers a network comprising of two base-stations denoted by n ∈ 1, 2

as depicted in Figure 3.5. Each BS is equipped with M antennas and

it serves Ln single antenna local users in the cell n. T sets of all local

users and all BSs are denoted by L and N respectively. There is a

global user denoted by g, being served by both BSs. The global user is



3.4 Problem Formulation 51

2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 
SVD Two signals 
SISO
SVD One signal
Alamouti 2 x 2

Fig. 3.4 Singular value decomposition-based MIMO transmission sys-
tems.

equipped with Nr antennas to be able to receive multi signals from multi

transmitters. Assume that all the BSs operate in the same frequency

and that all users experience considerable intercell interference.

3.4 Problem Formulation

In the downlink, the transmitted signal for l-th local user from n-th BS

can be written as

xnl(t) = wnlsl(t), (3.8)

where sl(t) ∈ C represents the information symbol at time t and

wnl ∈ CM is the transmit beamforming vector, the squared ℓ2-norm

of which represents the transmission power, for user l at n-th BS.

Without loss of generality assume that sl(t) is normalised such that
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Fig. 3.5 Network topology. Both BS1 and BS2 serve two local user and
one global user.

E{|sl(t)|2} = 1 and that all data streams are independent such that

E{sl(t)sj(t)∗} = 0 if l ̸= i. Perfect channel state information (CSI) is

assumed at both the transmitter and the receiver. The MIMO channel

between the n-th BS and the global user g denoted as Hng ∈ CNr×M ,

where Nr is the number of receive antennas at the global user. The

intended signal at the global user is given by

r = H1gw1g1sg1(n) + H2gw2g2sg2(n), (3.9)

where, sg1 is the transmitted signal from BS1 through channel g1 to the

global user and sg2 is the transmitted signal from BS2 through channel

g2 to the global user The global user deploys the receive beamformers

U1 and U2. By using SVD, the channel matrices between the BSs can
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be written as

H1g = U1Λ1VH
1 , (3.10)

H2g = U2Λ2VH
2 , (3.11)

where U1 ∈ CNr×Nr (respectively U2 ∈ CNr×Nr) and V1 ∈ CM×M

(respectively V2 ∈ CM×M) are the unitary matrices and Λ1 ∈ CNr×M

(respectively Λ2 ∈ CNr×M ) is the diagonal matrix of the singular values

of H1g (respectively H2g) sorted in descending order. The SVD of the

MIMO channels allows us to represent the global user as two virtual

users denoted as g1 and g2. Denote u1 and u2 as the singular vectors

corresponding to the largest singular values of H1g and H2g respectively.

The decomposed received signal at the virtual users g1 and g2 can be

written as

yg1 = uH
1

[
H1gw1gsg1 + H2gw2gsg2 + H1g (w11s1 + w12s2)

+ H2g (w23s3 + w24s4) + ng1

]
, (3.12)

yg2 = uH
2

[
H2gw2gsg2 + H1gw1gsg1 + H2g (w23s3 + w24s4)

+ H1g (w11s1 + w12s2) + ng2

]
, (3.13)

where ng1 and ng2 denote the additive white Gaussian noise for

virtual users g1 and g1, respectively, with zero mean and variance σ2
g1

and σ2
g2 , respectively. Let us denote the effective channel vector between

the n-th BS and the virtual user gv as qn,gv . The effective channels
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between the BSs and the virtual users can be written as

q11 = uH
1 H1g, (3.14)

q12 = uH
2 H1g, (3.15)

q21 = uH
1 H2g, (3.16)

q22 = uH
2 H2g. (3.17)

3.5 System Metric Design

All the users have specific data rate requirements in order to establish

successful connections. A set of local users belonging to the n-th BS

are denoted as Ln ⊂ L. The correlation matrix of the channel from the

n-th BS to l-th local user is defined as Rnl = [hnlhH
nl]. The correlation

matrix of the channel from the n-th BS to the virtual user gv is denoted

as Gngv = [qngvqH
ngv

]. The intracell and intercell interference powers

experienced by the l-th local user are given as

In =
Ln∑
i=1
i ̸=l

wH
niRnlwni + wH

1g1Rnlw1g1 , (3.18)

Ip =
Lp∑

j=1
p̸=n

wH
pjRplwpj + wH

2g2Rplw2g2 , (3.19)

respectively. The downlink SINR of the l-th local user at n-th BS is

given by

SINRn
l = wH

nlRnlwnl

In + Ip + σ2
l

. (3.20)

where hnl ∈ CM×1 is the channel vector between the n-th BS and

the l-th local user, and σ2
l is the noise variance at the l-th local user.
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Respectively, the SINR of the virtual users gv1 and gv2 are given by

SINRg1 =
wH

1g1G11w1g1

L1∑
i=1

wH
1iG11w1i +

L2∑
j=1

wH
2jG21w2j + σ2

g1

. (3.21)

SINRg2 =
wH

2g2G22w2g2

L1∑
i=1

wH
1iG12w1i +

L2∑
j=1

wH
2jG22w2j + σ2

g2

. (3.22)

According to [56], the total data rate of the global user is given by

Rg = Rg1 +Rg2 = log2(1 + SINRg1) + log2(1 + SINRg2). (3.23)

3.6 Transmission Beamforming Design

The aim is to operate with the minimum total transmission power that

will guarantee all the users their specific data rate target. The specific

data rate for the l-th local user and the global user is denoted as rl and

rg respectively. Our optimization problem is formulated as

min
W1,W2

∑
n∈N

∑
l∈L
∥wnl∥2

2 + ∥w1g1∥2
2 + ∥w2g2∥2

2,

s.t log2(1 + SINRl) ≥ rl, ∀l,

Rg ≥ rg.

(3.24)

In [46], it was proved that at optimality, the constraints in (3.24) will

be satisfied with equality. For analysis purpose, the data rates are

converted in (3.24) to SINRs. The local user SINR is determined as

SINRl = 2rl−1. By setting the data rate at virtual user g1 as a variable

θ, where 0 ≤ θ ≤ rg, the SINRs of the virtual users g1 and g2 can be
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written as SINRg1 = 2θ − 1 and SINRg2 = 2(rg−θ) − 1, respectively. let

us define the total interference experienced by the l-th local user and

virtual users g1 and g2 as

Il =
∑

n∈N

∑
k ̸=l

wH
pkRnkwpk + wH

1g1Rpg1w1g1

+ wH
2g2R2g2w2g2 , (3.25)

Ig1 =
∑

n∈N

∑
l∈L

wH
nlRnlwnl + wH

2g2G1g2w2g2 , (3.26)

Ig2 =
∑

n∈N

∑
l∈L

wH
nlRnlwnl + wH

1g1G2g1w1g1 . (3.27)

Given the SINR thresholds of the l-th local user and the virtual user

gv as γl and γgv , we rewrite (3.24) as

min
W1,W2

∑
n∈N

∑
l∈L

wH
nlwnl + wH

1g1w1g1 + wH
2g2w2g2

s.t wH
nlRnlwnl − γlIl ≥ γnlσ

2
l , ∀l,

wH
1g1G1g1w1g1 − γg1Ig1 ≥ γg1σ

2
g1 , ∀l,

wH
2g2G2g2w2g2 − γg2Ig2 ≥ γg2σ

2
g2 , ∀l,

(3.28)

where γlIl is the SINR thresholds of the l-th local user and the γg1 , γg2

are the SINR threshold of the global user. The constraints set in (3.24)

makes the whole problem non-convex but after necessary manipulations

[57], the problem can be convexified. Denote Wnl = wnlwH
nl, W1g1 =

w1g1wH
1g and W2g2 = w2g2wH

2g. using the rule wHRw = Tr[RwHw] =
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Tr[RW] to rewrite the (3.25)-(3.28) as

Il =
∑

n∈N

∑
k ̸=l

Tr[RnkWpk] + Tr[G1g1W1g1 ]

+ Tr[G2g2W2g2 ], (3.29)

Ig1 =
∑

n∈N

∑
l∈L

Tr[RnlWnl] + Tr[G2g2W2g2 ], (3.30)

Ig2 =
∑

n∈N

∑
l∈L

Tr[RnlWnl] + Tr[G1g1W1g1 ], (3.31)

min
W1,W2

∑
n∈N

∑
l∈L

Tr[Wnl] + Tr[W1g1 ] + Tr[W2g2 ]

s.t Tr[RnlWnl]− γlIl ≥ γnlσ
2
l , ∀l,

Tr[G1g1W1g1 ]− γg1Ig1 ≥ γg1σ
2
g1 , ∀l,

Tr[G2g2W2g2 ]− γg2Ig2 ≥ γg2σ
2
g2 , ∀l,

Wnl ≽ 0, Wnl = WH
nl, rank[Wnl] = 1, ∀n,∀l,

W1g1 ≽ 0, W1g1 = WH
1g1 , rank[W1g1 ] = 1,

W2g2 ≽ 0, W2g2 = WH
2g2 , rank[W2g2 ] = 1,

(3.32)

where, W ≽ 0 means W positive semidefinite. The ranks of

{Wnl}∀n,∀l, W1g1 , and W2g2 are nonconvex. Nevertheless, relaxing

all the rank constraints gives the following relaxed semidefinite opti-
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mization problem [57]

min
∑

n∈N

∑
l∈L

Tr[Wnl] + Tr[W1g1 ] + Tr[W2g2 ]

s.t Tr[RnlWnl]− γlIl ≥ γnlσ
2
l , ∀l,

Tr[G1g1W1g1 ]− γg1Ig1 ≥ γg1σ
2
g1 , ∀l,

Tr[G2g2W2g2 ]− γg2Ig2 ≥ γg2σ
2
g2 , ∀l,

Wnl ≽ 0, Wnl = WH
nl,∀n,∀l,

W1g1 ≽ 0, W1g1 = WH
1g1 ,

W2g2 ≽ 0, W2g2 = WH
2g2 ,

(3.33)

which can be solved to an arbitrary accuracy using SDP solvers like

YALMIP [58]. We note that if the (3.33) is feasible, it will provide
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rank-1 matrices {Wnl}∀n,∀l, W1g1 , and W2g2 [57, 59]. However, if the

rank of {W⋆
nl}∀n,∀l, W⋆

1g1 , and W⋆
2g2 are greater than one, using the

randomization techniques to heuristically find the wnl,∀n,∀l, w1g1 , and

w2g2 [59]. Note that if rank of {W⋆
nl}∀n,∀l, W⋆

1g1 , and W⋆
2g2 are greater

than one, then the heuristic {wnl}∀n,∀l, w1g1 , and w2g2 will provide a

lower bound for the minimum required transmission power. Apparently,

(3.33) is a dual of a dual program (i.e., bidual) of (3.32) [60].

3.7 Numerical Example

Multicell multiuser network with two BSs and five users is proposed.

Each BS is equipped with M = 5 antennas and it serves two single

antenna local users. A global user is equipped with two receive antennas
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and it is served by both BSs. All BSs operate on the same frequency

henceforth assuming all users experience significant intra-cell and inter-

cell interference. Each user has a specific data rate target which needs

to be satisfied for a successful connection. The channel vectors hnl

and Hng were generated as i.i.d Gaussian random variables and the

noise variance was set to σ2 = 1 for all users. The random channels are

generated between users and all BSs with zero mean and unity variance.

The data rate targets for a pair of local users at each BS were set to

1.5 bits/s/Hz and 2 bits/s/Hz respectively. The data rate target for

the global user was set to 4 bits/s/Hz.

Figure 3.6 shows the total transmission power, for a single channel

realization, when the data rate from BS1 to the global user is varied

from 0 to 4 bits/s/Hz with step size δ = 0.1 bits/s/Hz. It observed that

the minimum total transmission power is achieved when BS1 contribute

2.6 bits/s/Hz of the 4 bits/s/Hz. It is possible that, for a given channel

realization, all the data rate to the global user comes from only one

BS. In Figure 3.7, the average data rate contributed by BS1 to the

global user over 250 random channel realizations were studied . As

anticipated, noted that on average, BS1 will contribute 2 bits/s/Hz,

whereas the remaining data rate will be contributed by BS2.

3.8 Summary

Multicell multiuser network which simultaneously considers coordinated

beamforming and joint transmission is considered. The network consists

of single antenna local users and one multi-antenna global user. The
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global user is served by more than one BS, whereas the local users

are assigned to only one BS at a time. We considered beamforming

design using power minimization criterion. For the global user, on

average, both BSs equally share the data transfer, however, for the

optimality of transmission power, optimum split of data rate is required

for instantaneous channel realizations.

In the next chapter, the problem of maximizing the worst-case user

signal-to-interference-plus-noise-ratio(SINR) in a multi input single

output (MISO) system within the context of energy harvesting is

addressed





Chapter 4

SINR Balancing

Beamforming for MISO

System with Energy

Harvesting Constraints

The previous chapter investigated optimization techniques for coordi-

nated multi-cell beamforming in the presence of local users and a global

user. This chapter looks at the problem of maximizing the worst-case

user signal-to-interference-plus-noise-ratio(SINR) in a multi input single

output (MISO) system within the context of energy harvesting. The

interference channel is exploited by users for radio frequency energy

harvesting (RFEH) while satisfying QoS and power constraints within

a framework of beamforming and resource allocations. The power split-

ting technique where each user divides the received signal into data

information and energy charging is considered. The worst-user case
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SINR is maximized while satisfying the transmission power and energy

harvesting constraints. It has the ability to meet the RFEH constraints.

4.1 Background and Introduction

Radio frequency energy harvesting is being promoted as one of the

main energy supply to the Internet of Things (IoT) wireless devices

in the near future. With billions of new low power wireless electronic

IoT devices expected to appear in the comings years, the necessity

for radio frequency (RF) energy harvesting is increasing significantly.

RFEH can be used effectively to power the wireless devices when other

energy sources are not available. The fact that the radio frequency

resources are available everywhere cannot be ignored. RFEH from

access points, wide spread cellular base stations and broadcast mast,

can offer an alternative solution to powering low energy-IoT devices and

could provide enough energy to extend the lifetime of these devices [61].

many researches on RFEH focused on the circuit and antenna design as

they are major requirements for RFEH technique [62–64, 61]. Although

different protocols and transmission techniques have been developing

for various wireless networks with RFEH capabilities, there are limited

studies in the literature. A channel learning problem for (MISO) point-

to-point wireless energy transfer systems over frequency-selective fading

channel) to maximise the energy harvesting is formulated and optimally

solved in [65]. A random unitary beamforming-based cooperative beam-

selection scheme to enhance the energy harvesting performance at the

sensor is proposed in [66]. The energy beamforming is used to enhance
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the RF energy transfer efficiency by concentrating the radiated power

on target nodes in [67]. The algorithm in [67] is based on the current

state of the energy and the data queues and dynamically steers the

energy beam to nodes that currently have low energy in the energy

queue. A general channel learning design framework for multi-input

multi-output( MIMO) wireless energy transfer (WET) based on the

energy receiver (ER’s) energy feedback over a finite-rate reverse link

from the energy receiver to the energy transfer is proposed in [68]. The

essential concept of simultaneous wireless transmission of energy and

data decoding is discussed in [69]. Different beamforming techniques

in a MIMO network that meet quality-of-service (QoS) and energy

harvesting constraints for many receivers are studied in [70–72]. In [72],

both time switching and power splitting of the decoding information

and energy harvesting are studied for simultaneous wireless power and

information transfer. This work is extended in [73, 61, 74, 75] for

different scenarios.

In this chapter, the focus is on the power splitting technique ex-

plained in [76, 77, 72]. We extend the work in [77], that considered only

power minimization problem. We propose SINR balancing under power

splitting and transmission power constraints. We consider a simple

multiple-input single-output (MISO) network to study the optimal solu-

tion that maximizes the worst case user SINR within the constraints on

total transmitted power and energy harvesting, in the case of splitting

the received power at the user side into data and energy harvesting. For

different beamforming weights at the base station and known channel

state information (CSI) at the user, the power split parameter at each
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user (receiver) is optimized. Also, we optimize the transmission power

and the energy harvested parameter for each user with the objective of

maximizing the worst- user case SINR.

The efficient use of the available resources has become a significant

challenge in current wireless networks [78–80]. Various SINR balancing

techniques have been developed for downlink beamforming in multi-

antenna wireless systems in [81–84]. The SINR-balancing approach

introduces fairness to the system so that each user can achieve the same

rate [85–88].

The subsequent sections are organized as follows: Section 4.2

presents the system model and assumptions; also it explains the mathe-

matical aspects of the SINR balancing and power splitting. Performance

analysis are produced in section 4.3. Section 4.4 concludes with a brief

summary.

4.2 System Model and Assumptions

Let us consider a MISO system consisting of M Transmitters (Tx) and

M Receivers (RX), each Tx is equipped with NT antennas. The set of

Tx’s serve single antenna local users. We assume that all the Tx’s operate

in the same frequency band and that all users experience considerable

intercell interference. Each Txi communicates with its corresponding

user Rxi i = 1,....,M. It is supposed that the transmitter Txi sends

signals with power Pi, and its transmitted data symbol denoted as si(n)

= ∥si(n)∥2 = 1. The transmitted data symbol si(n) is mapped into

the antenna array elements by the beamforming vector vi ∈ CNT ×1
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with ∥vi∥ = 1. We assumed that si(n) is a complex Gaussian (CSCG)

random variable with zero mean and unit variance.
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Fig. 4.1 Network topology with date receiver and energy harvesting.

The received signal at user Rxi can be expressed as

ri(n) =
√
PihH

i,ivisi(n) +
∑
j ̸=i

√
PihH

i,jvjsi(n) + ni(n), (4.1)

where ni(n) is the additive white Gaussian noise (AWGN) with zero

mean and variance σ2 and hi,j ∈ CNT ×1 denotes the vector channel

from Txj to user Rxi.

The received signal ri(n) as in (4.1) consists of desired information

signal
√
PihH

i,ivisi and the interference ∑
j ̸=i

√
PihH

i,jvjsj. The power at

Rxi can be expressed as
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P r
i =

M∑
j=1
|hH

i,jvj|
2
Pj + σ2. (4.2)

Each user has RFEH capabilities from the received signal via power

splitting technique as explained in [76, 75]. Hence each user separates

the received signal into two different parts, first part is used for data

detection whereas the latter is used for RFEH. Suppose that the splitting

parameter is denoted as ρi ⊂ (0, 1) for any user Rxi, where portion of

the received power will be used for data detection while the rest will

be used for RFEH. i.e., ρi P
r
i is directed towards the data detection

while the (1− ρi)P r
i part is used for radio frequency energy harvesting.

Figure. 4.1 shows the MISO topology and the power splitting approach

for the ith user. During the baseband conversion, additional circuit

noise is appeared due to the phase offsets and non-linearities which is

modeled as AWGN with zero mean and variance σ2
c [72].

The SINR of the ith user is given by

Γi =
ρiPi|hH

i,ivi|
2

ρi(
∑
j ̸=i

Pj|hH
i,jvj|

2 + σ2) + σ2
c

,∀i. (4.3)

The SINR can be rewritten into an equivalent form by dividing

the numerator and the denominator by ρi, and using unnormalized

beamforming weights wi =
√
Pivi which incorporates beamforming and

the power allocation as:

Γi =
|hH

i,iwi|
2∑

j ̸=i
|hH

i,jwj|
2 + σ2 + σ2

c/ρi

∀i. (4.4)
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4.2.1 Problem Formulation

The beamforming vectors were designed for all users to maximize the

SINR subject to each user’s transmission power constraint and energy

harvesting constraint. When the RF signals arrive at the receiver,

the power splitter divides the power P r
i into two parts as it is shown

in Figure. 4.1. The radio frequency energy received at the energy

harvesting unit can be stored as electrical energy, and it relies on the

conversion efficiency of the ith EH unit [77, 89]. The SINR balancing

optimization is performed as

max
W

min
i

(Γi),∀i

subject to
M∑

i=1
∥wi∥2 ≤ P,

M∑
j=1
|hH

i,jwj|
2 ≥ λi/(1− ρi)− σ2∀i,

0 ≤ ρi ≤ 1,∀i,

(4.5)

where λi is the energy harvesting threshold and P is the maximum

transmit power. The second and third term in the denominator of

SINR equation σ2 +σ2
c/ρi can be expressed as σ2(ρi + 1)/ρi for σ2 = σ2

c .

This means that the value of the part σ2 + σ2
c/ρi is bigger than ≥ σ2,

taking into consideration that the values of splitting parameters lie in

the range ρi ∈ [0, 1].

The right-hand side of the inequality in the energy harvesting con-

straint should be bigger than zero λi/(1− ρi) − σ2 > 0. To achieve

that λi/(1− ρi) should be bigger than > σ2. (1− ρi) ≥ 0 ∀ρi ∈ [0, 1],

so as long as λi/(1− ρi) − σ2 > 0 is achieved, the energy harvesting

constraint is feasible for a proper value of beamforming. It is good to
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mention that making the value ρi = 1 or very close to one will increase

the energy harvesting threshold to highest levels. This will affect the

radio frequency energy harvested, so it is crucial to adapt and control

the splitting parameters to be able to distribute the power and meet

the QoS and the energy harvesting constraints.

4.2.1.1 Feasibility of SINR Balancing optimization problem

In [88], the authors proved that at the optimality problem and SINR

balancing, in (4.5) will result into equal SINR for all users. Therefore

τ can be used to represent the common SINR values attained by all

users. To check the feasibility of the problem (4.6), the proof is needed

whether for a given γi there exists a wi.

4.2.1.2 The Connection between SINR Balancing with power

optimization

In order to tackle the SINR balancing problem, new matrix variables

Wi = wiwH
i , ∀i can be introduced. Using both {Wi} and coloration

matrix of the channel fromM th transmitter to ith user |hi,ihH
i,i|, the SINR

balancing problem (4.5) can be solved using the power optimization

problem with bisection method and the formulation can be expressed
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min
W

M∑
i=1

Tr(Wi)

s.t
Tr(hi,ihH

i,iWi)∑
j ̸=i

Tr(hi,jhH
i,jWj) + σ2 + σ2

c/ρi

≥ τ∀i,

M∑
j=1

Tr(hi,jhH
i,jWj) ≥ λi/(1− ρi)− σ2∀i,

Wi ≽ 0

0 ≤ ρi ≤ 1,∀i,
M∑

i=1
Tr(Wi) ≤ P, ∀i,

(4.6)

where τ is the SINR target value which = (γmin + γmax)/2 and

γmin = 0dBm, γmax = 100dBm.

Formulation in (4.6) can be further expressed in standard Semi

Definite Programming (SDP) form with linear matrix inequalities.

4.2.2 Solution of SINR balancing problem

Problem (4.5) can be solved via bisection method. At every iteration

the SINR targets of all users set to τ . The first step to solve the problem

in (4.5) is to formulate it as a quasi-convex problem in wi. So the SINR

balancing problem can be solved by the bisection method as explained

below:

1. Initialize γmin = SINRmin and γmax = SINRmax where SINRmin

and SINRmax refers to the lower and upper SINRs values.

2. Set τ = (γmin + γmax)/2

3. Check the feasibility using equation (4.6)
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4. If the problem is feasible then set γmin = τ (replace the lower

SINR with the candidate point τ in 2), and store W as current

best solution

5. If the problem is not feasible then set γmax = τ (replace the upper

SINR with the candidate point τ in 2).

6. Return the optimal SINR and power harvested values.
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Fig. 4.2 The achievable SINR vs energy harvesting threshold.
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4.3 Numerical Example

The SINR balancing problem was evaluated using the network topology

as depicted in Fig. 4.1, consider a multicell network with two BSs and

two users. Each BS is equipped with N = 2 antennas and it serves

two users with single antenna. All BSs were assumed to operate on

the same frequency and all users experience significant intra-cell and

inter-cell interference. The maximum transmit power is set to 0.1 Watt

at both transmitters. The γmin = 0 dBm and γmax = 100 dBm whereas

the energy harvesting threshold is chosen to be in the range of -40 to

40 dBm. The random channels between the users and the BSs are

modeled as a sequence of independent and identically distributed (i.i.d.)

Gaussian random variables. The noise variance σ2 is set to be -20 dBm.

Figure 4.2 shows the achievable SINR as evolution on the energy har-

vesting threshold is varied. The worst-case users’ SINR of all users was

maximized while satisfying the target SINRs and the energy harvesting

power constraints according to (4.6).

Figure.4.3 indicates that the radio frequency harvesting thresholds λi

for both users are converged and balanced. Also, the RFEH threshold

λi is achievable for the threshold values from -40 to 16 during the

evolution of SINR as it is demonstrated in Fig. 4.3. The achievable

energy harvested for the energy harvesting values from 12 to 16 is

converged. Results in Fig. 4.2 and Fig. 4.3 are obtained for different

energy splitting parameters ρi = (0.2, 0.8).

SINR balancing technique persuades energy harvested for all users

to be balanced and converged. The SINR-balancing technique has an

essential role since its solution introduces a wide range of flexibility to
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the system. With energy splitting parameters ρi is very close to one

the energy harvesting threshold will not be reachable for all λi values.

Numerical results agree with what has been discussed about the ρi

values.
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4.4 Summary

The problem of SINR balancing in MISO network was addressed for

two users with two transmitters. The energy splitting technique is used

with power and RFEH constraints. Maximization of worst case user

SINR has been formulated through an optimization problem under
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power and energy harvesting constraints. The performance of the

SINR balancing problem with interference was evaluated numerically.

Simulation results confirm that SINR balancing technique is able to

fairly allocate resources to users while allowing energy harvesting.

The next chapter studies the problem of downlink beamforming

design with simultaneous energy and secure information transmission.





Chapter 5

Downlink Beamforming

Design with Simultaneous

Energy and Secure

Information Transmission

In the previous chapter, SINR balancing beamforming for a MISO

system with energy harvesting constraints was proposed.

In this chapter, downlink wireless network consisting of WPC system

and a SWIPT systems is considered. The SWIPT system simultaneously

serves one IR while transferring power to a WD. The wireless powered

system consists of the WD and its IR. Both systems operate on the

same frequency band. The WD is therefore able to take advantage of

the wireless energy transfer from the SWIPT BS, interference power

from the BS due to transmission of signals to IRs and the recycled power

for energy harvesting. The aim is to minimize the total transmitted
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power of the SWIPT BS subject to the SINR target at the information

receivers. In order to preserve the secrecy of the information transmitted

by BS to IRs on the BS, a set of constraints SINR less than one is

introduced.

5.1 Background and Introduction

Radio-frequency (RF) radiation has become a viable source for energy

harvesting. It is possible to transfer the energy through wireless medium.

The wireless sensors are able of harvest RF energy to power their own

transmission [90]. The combination of wireless energy transfer (WET)

and wireless information transfer (WIT) has stimulated new studies

in wireless communications. For example, SWIPT and WPC have

been studied in [91–93] to enable simultaneous RF energy harvesting

and information transmission for wireless devices. SWIPT is not only

a theoretical possibility but also shown to be practically viable for

enabling both wireless data and energy access to mobile devices. The

improving energy efficiency on massive multiple-input single-output

(MIMO) and small cell were studied in [94]. Joint transmission of energy

and information in multiuser systems was studied in [95–98]. Different

SWIPT techniques that split the received signal have been discussed in

[99]. Coordinated beamforming based SINR balancing techniques were

discussed in [52, 100, 101, 87, 55]. In [102], multi-antenna co-channel

WET and WIT system was considered. Authors in [103] proposed a

wireless powered amplify and forward relaying system under co-channel

interference from WET to WIT links. The energy constrained relay
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assists the information transmission from the source to the destination

using the energy harvested from the source in term of self-energy

recycling. The authors in [102] considers spectrum sharing between a

multiuser multiple-input multiple-output (MIMO) WET system and a

coexisting point-to-point MIMO WIT system, where WET generates

interference to WIT and degrades its throughput performance.
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Fig. 5.1 Multiuser system model with energy and information transfer.

5.2 System Model and Assumptions

The SWIPT system consists of one BS, one IR, and one ER located at

the WD. The WPC consists of the WD and one IR. The IR1 and IR2

were denoted as the receiver of the SWIPT and the WPC systems,

respectively. The IR1 is supposed to receive information from BS, IR2

is supposed to receive information from WD and WD is supposed
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to harvest energy from BS transmissions. Assume that the BS and

the WD operate in the same frequency band. Also assume that the

transmission at both the transmitters occur simultaneously, hence

inducing interference across the systems. The BS and the WD are

equipped with multiple antennas and the ER and the IRs are equipped

with single antenna as shown in figure 5.1. By using the harvested

energy from the ER and the recycled self-energy, the WD transmits

information to the IR2. We denote the number of antennas at the BS

as NB. The WD has 1 + NW antennas in total, one dedicated for energy

harvesting and the other NW antennas are for information transmission.

5.3 System Metric Design

The baseband equivalent channels from the BS to IR1, IR2, and the

ER are denoted by h11 ∈ CNB×1, h12 ∈ CNB×1 and h1e ∈ CNB×1,

respectively. The channels from the WD to IR1, IR2 and the ER are

denoted by h21 ∈ CNW ×1, h22 ∈ CNW ×1 and h2e ∈ CNW ×1, respectively.

It is assumed that all the channels are quasi-static flat-fading and remain

constant during certain transmission block interval T > 0, where T

is the coherence time. Also assumed that the BS knows perfectly the

CSI of h11 and h12 and the WD knows h22 and h2e. The energy signal

transmitted by the BS to the ER is denoted as xe ∈ CNB×1, and the

information signal transmitted by the BS to the IR1 is denoted as

xI1 ∈ CNB×1. The transmitted energy signal xe by BS is circularly

symmetric complex Gaussian (CSCG) random sequence. We denote the

energy covariance matrix at the BS as ∥We∥2 = E(xexH
e ) ≽ 0, where
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E(.) denotes the statistical expectation, the superscript H denotes the

conjugate transpose. The maximum transmit power at the BS denoted

as P . The constraint of transmit power at the BS is given by

∥we∥2 + ∥w1∥2 ≤ P. (5.1)

where hH
11w1s1 is the desirable information signal, hH

21w2s2 is the in-

terference due to the information signal sent from WD to IR2, and the

hH
11wese is the interference due to the energy signal sent from BS to WD.

The total received signal at the IR1 user is

y1 = hH
11w1s1 + hH

21w2s2 + hH
11wese + n1, (5.2)

where hH
11w1s1 is the desirable information signal, hH

21w2s2 is the in-

terference due to the information signal sent from WD to IR2, and the

hH
11wese is the interference due to the energy signal sent from BS to WD.

The transmitted information signal by WD to IR2 can be expressed as

xI2 = w2s2, where w2 ∈ CNW ×1 denotes the information beamforming

vector at the WD and s2 denotes the desired signal for the IR2. The total

received signal at the IR2 user is

y2 = hH
22w2s2 + hH

12w1s1 + hH
12wese + n2, (5.3)

where hH
22w2s2 is the desirable information signal, h12w1s1 is the in-

terference due to the information signal sent from BS to IR1, and the

hH
1ewese is the interference due to the energy signal sent from BS to WD.
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The total received signal at the ER is

ye = hH
1ewese + hH

1ew1s1 + hH
2ew2s2 + ne, (5.4)

where hH
1ewese is the desirable information signal, hH

1ew1s1 is the inter-

ference due to the information signal sent from BS to IR1. Hence, the

received signal-to-interference-plus-noise ratio (SINR) at the IR1 and

IR2 user is given by

SINR1 = |hH
11w1|2

|hH
11we|2 + |hH

21w2|2 + σ2
1
. (5.5)

SINR2 = |hH
22w2|2

|hH
12w1|2 + |hH

12we|2 + σ2
2
. (5.6)

The SINR of the information signal meant for IR1 at the ER is given by

SINR1
e = |hH

1ew1|2

|hH
1ewe|2 + σ2

e

. (5.7)

The SINR of the information signal meant for IR2 at the IR1 is

given by

SINR2
1 = |hH

21w2|2

|hH
11w1|2 + σ2

1
. (5.8)

The SINR of the information signal meant for IR1 at the IR2 is

given by

SINR1
2 = |hH

12w1|2

|hH
22w2|2 + σ2

2
. (5.9)
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The total harvested energy at the WD is expressed as

PWD = ηE(|hH
1ewese + hH

2ew2s2 + hH
1ew1s1|2)

= η(|hH
1ewe|2 + |hH

2ew2|2 + |hH
1ew1|2), (5.10)

where η ∈ (0, 1] is a constant denoted the energy harvesting efficiency

at the WD. The total harvested energy should be more than the energy

requirement for transmission of information from WD. Hence the energy

harvesting constraint at the WD is written as

∥w2∥2 ≤ η|hH
1ewe|2 + η|hH

2ew2|2 + η|hH
1ew1|2, (5.11)

which can be rewritten as

wH
2 (I− ηh2ehH

2e)w2 ≤ η[hH
1e(wewH

e + w1wH
1 )h1e]. (5.12)

w2I− η(wH
2 H2ew2) ≤ η(wH

1 H1ew1) + η(wH
e H1ewe). (5.13)

w2I− η(wH
2 H2ew2) ≤ η(wH

1 H1ew1 + wH
e H1ewe). (5.14)

In order to establish successful connection, the two users IR1 and IR2

have specific date rate requirements. The correlation matrices of the

channels from BS and WD transmitters are written as H11 = h11hH
11,

H1e = h1ehH
1e, H12 = h12hH

12, H21 = h21hH
21, H2e = h2ehH

2e and H22 =

h22hH
22.



84
Downlink Beamforming Design with Simultaneous Energy

and Secure Information Transmission

5.4 Beamforming Design

The aim is to minimize the total transmission power while guarantee all

users their specific SINR requirements. Let us denote the SINR targets

for IR1 and IR2 as γ1 and γ2, respectively. In order to prevent the ER

and both the IR1 and the IR2 from decoding the information meant for

receivers, we introduce a set of constraints SINR1
e < αγ1, SINR2

1 < αγ2,

SINR1
2 < αγ1 , where α < 1 to make the interference signal less than

the desired signal. Our optimization problem is formulated as

min Tr(w1wH
1 ) + Tr(wewH

e )

s.t wH
1 H11w1 ≥ γ1(wH

2 H21w2 + wH
e H11we + σ2

1),

wH
2 H22w2 ≥ γ2(wH

1 H12w1 + wH
e H12we + σ2

2),

wH
1 H1ew1 ≤ αγ1(wH

e H1ewe + σ2
e),

wH
2 H21w2 ≤ αγ2(wH

1 H11w1 + wH
e H11we + σ2

1),

wH
1 H12w1 ≤ αγ1(wH

2 H22w2 + wH
e H12we + σ2

2),

w2wH
2 I− ηwH

2 H2ew2 ≤ η(wH
1 H1ew1 + wH

e H1ewe),

wewH
e + w1wH

1 ≤ P.

(5.15)

The constraints set in (5.15) makes the whole problem nonconvex

but after necessary manipulation, the problem can be convexified.

Let us denote W1 = w1wH
1 , We = wewH

e . We then use the rule
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wHHw = Tr[HwwH ] = Tr[HW] to rewrite the (18) as

min Tr[W1] + Tr[We],

s.t Tr[H11W1]− γ1(Tr[H21W2] + Tr[H11We]) ≥ γ1σ
2
1,

Tr[H22W2]− γ2(Tr[H12W1] + Tr[H12We]) ≥ γ2σ
2
2,

Tr[H1eW1]− αγ1(Tr[H1eWe]) ≤ αγ1σ
2
e ,

Tr[H21W2]− αγ2(Tr[H11W1] + Tr[H11We]) ≤ αγ2σ
2
1,

Tr[H12W1]− αγ1(Tr[H22W2] + Tr[H12We]) ≤ αγ1σ
2
2,

Tr[W2] ≤ ηTr[H1eWe] + ηTr[H1eW1] + ηTr[H2eW2]

W1 ≽ 0, W1 = WH
1 , rank[W1] = 1,

We ≽ 0, We = WH
e , rank[We] = 1,

W2 ≽ 0, W2 = WH
2 , rank[W2] = 1,

Tr[We] + Tr[W1] ≤ P.

(5.16)

The ranks of W1, We, and W2 are nonconvex. Nevertheless, relaxing all

the rank constraints gives the following relaxed semidefinite optimization
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problem [57]

min Tr[W1] + Tr[We],

s.t Tr[H11W1]− γ1(Tr[H21W2] + Tr[H11We]) ≥ γ1σ
2
1,

Tr[H22W2]− γ2(Tr[H12W1] + Tr[H12We]) ≥ γ2σ
2
2,

Tr[H1eW1]− αγ1Tr[H12We] ≤ αγ1σ
2
e ,

Tr[W2] ≤ ηTr[H12W1] + ηTr[H12W2] + ηTr[H22W2]

W1 ≽ 0, W1 = WH
1 ,

We ≽ 0, We = WH
e ,

W2 ≽ 0, W2 = WH
2 ,

Tr[We] + Tr[W1] ≤ P,

(5.17)

which can be solved using SDP solvers like YALMIP [58]. It is noted

that if the (5.17) is feasible, it will provide rank-1 matrices W1, We,

and W2 [57, 59]. However, if the rank of W⋆
1, W⋆

e, and W⋆
2 are greater

than one, we can use the randomization techniques to heuristically find

the w1, we, and w2 [59].

5.5 Numerical Example

Considering a multiuser network system with energy and information

transmission consisting of one BS and one WD as described in Section

5.3. We set the number of transmit antennas at the BS and WD as

NB = NW = 2. The energy harvesting efficiency at the ER and the noise

powers at the IRs were set as η = 0.8 and σ2 = −90 dBm, respectively.

The channel vectors are randomly generated from i.i.d. Rayleigh fading
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Fig. 5.2 Average achievable SINR at fixed IR2’s SINR.

model and the loop channel h2e was scaled by
√
β with β = −15 dB.

We set α = 0.8, the SINR target fixed of IR2 to γ2 = 13 dB while

the SINR target of IR1 was varied between 2 to 20 dB. The results in

figure 5.2 show that both IRs are able to achieve their SINR targets.

In figure 5.3, the harvested energy by the ER and the allocated power

to the IRs is illustrated. We observe that at low SINR targets, the

harvested power at the ER is equal to the power allocated to IR1. At

very high target SINRs, the harvested power at the ER surpasses the

power allocated to IR1. The power allocated to IR2, is less than the

harvested power at the ER when the SINR targets of IR2 are low. The

SINR target fixed of IR1 to γ1 = 13 dB while the SINR target of IR2

was varied between 2 to 20 dB. The results in figure 5.4 show that both

IRs are able to achieve their SINR targets. In figure 5.5, the harvested
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Fig. 5.3 Power harvested and power allocated for IR1 and IR2 at fixed
SINR at IR2.

energy by the ER and the allocated power to the IRs are illustrated.

We observe that at high SINR targets, the harvested power at the ER

is equal to the power allocated to IR1. At very low target SINRs, the

harvested power at the ER surpasses the power allocated to IR1. The

power allocated to IR2, is less than the harvested power at the ER when

the SINR targets of IR2 are high.

5.6 Summary

Downlink energy and information transmission in a multiuser trans-

mission system is proposed. The system consisting of a WPC system

and a SWIPT system. ET’s energy beamforming and WD’s information
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beamforming were designed, to minimize the total transmitted power

subject to the SINR constraints at IR1 and IR2. This work provided a

joint wireless energy transfer and wireless information transfer design

with two information receivers and one energy receiver. The optimiza-

tion constraint also introduced a mechanism to control the SINR of

the information signal at the energy receiver to enhance security. In

the next chapter, a technique for secrecy rate maximization in wireless

information and power transfer in MIMO channels is proposed.
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Chapter 6

Secrecy Wireless Information

and Power Transfer in

MIMO Channels

The previous chapter looked at the problem of downlink beamforming

design with simultaneous energy and information transmission. In

this chapter, sum secrecy rate optimization techniques for a system

that consist of simultaneous wireless information and power transfer

SWIPT and wireless powered communication WPC was considered.

The SWIPT system simultaneously serves one information receiver

(IR1) while transferring power to a wireless device WD. A second

information receiver (IR2) that is served by the WD is also considered.

The WD is charged by the wireless energy signal power from the SWIPT

basestation (BS) and the recycled energy harvested by one antenna

Energy Receiver (ER) located at the WD. It is a requirement that IR1

should not be able to decode signal intended for IR2 and vice versa,
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hence for this purpose IR1 is treated as eavesdropper for WD and

IR2 is considered as eavesdropper for BS. Optimization methods for

maximizing secrecy rates are proposed. The secrecy rate maximization

problem is non-convex due to the non-concavity of the secrecy rate

function. Hence two alternative algorithms are proposed to reformulate

the optimization as a convex problem, namely a null-space method

based optimization and Taylor series approximated optimization.

6.1 Introduction

The simultaneous wireless information and power transfer (SWIPT)

system has drawn considerable attention due to the battery limited

wireless devices and consideration for green communications [104–106].

It is possible to simultaneously transfer energy through wireless medium

and send information. The wireless devices are able to harvest RF

energy to power their own transmission [107]. Because of the open

nature of wireless signals and channels, some other information re-

ceivers and energy receivers may able to decode information signal

which will result in information leakage. Authors in [108] illustrated

that the physical layer (PHY) security can be an effective alternative

to provide secure communications based on the interference and chan-

nel noise. The information signal can be used as a power source to

increase the harvested energy at the WD, and establish a secured data

transmission between a transmitter and a legitimate receiver [109–111].

The achievable rate-energy for SWIPT with many user interference

channel is studied in [112]. The authors in [113] studied the secure
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communication for MISO SWIPT system from energy harvesting and

secrecy rate maximization. In [70], the coordinating basestations were

investigated by employing semidefinite programing based transmitter

beamforming design and performing optimum data rate split for the

global user in order to minimise the transmission power. Taylor expan-

sion and zero-forcing algorithms are used in [114] for solving the sum

power constrained beamforming design for the purpose of maximizing

the sum secrecy-rate. The authors in [115] maximize the minimum

harvested energy among energy harvesting (EH) receiver guaranteeing

the secrecy transmission to the legitimate user in SWIPT system for a

MISO secrecy channel. In [116], optimal transmit covariance matrix

designs were developed and solved based on the convex optimization ap-

proach for MISO secrecy system with the presence of a multiple-antenna

eavesdroppers. In addition, authors in [117] proposed a robust jamming

scheme for MISO secrecy channel by considering the worst-case perfor-

mance. In [118], the author solved the secrecy rate maximization and

power minimization problems for the MIMO secrecy channel with an

eavesdropper with multiple-antenna. The authors in [119] investigated

secrecy rate optimization technique for a MIMO communication system

incorporating a multiantenna cooperative jammer and multiantenna

eavesdropper.

In this chapter, a SWIPT scenario of a MIMO secrecy channel

overheard by a multiple-antenna eavesdropper was considered. For this

secrecy network, two information receivers served by different transmit-

ters, each transmitter treats the receiver of the other transmitter as

an eavesdropper. The goal is to achieve secure communications over
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Fig. 6.1 Multiuser SWIPT and WPC system model with two IRs and
Eavesdroppers

the two information receivers by designing secrecy rate maximization

problems subject to maximum transmission power constraints for BS

and WD. In order to eliminate the non-convexity of the secrecy rate

maximization problem, two different approaches, namely orthogonal

projection based maximization and Taylor series approximation of the

secrecy rate function are proposed.

6.2 System Model and Assumptions

Secrecy network as shown in Fig. 6.1 was presented, where a transmit-

ters establishes a MIMO communication link with a legitimate user for

data transmission in the presence of a multipleantenna eavesdropper.

There are two sub-systems, a SWIPT system and a WPC systems.
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The SWIPT system consists of one BS, one IR, and one ER located at

the WD. The WPC consists of the WD and one IR. The IR1 and IR2

were denoted as the information receivers of SWIPT and the WPC

systems, respectively. The BS transmits energy and information to the

ER and IR1 respectively while the WD transmits information to IR2.

It is assumed that the BS and the WD operate in the same frequency

band. A further assumption is that the transmissions at both trans-

mitters occur simultaneously, hence inducing interference across the

systems. The BS, the WD and the IR1, IR1 are equipped with multiple

antennas, whereas the ER is equipped with a single antenna as shown in

Fig. 6.1. By using the harvested energy from the ER and the recycled

self-energy, the WD transmits information to the IR2. The antennas

at the BS were denoted as NB, the antennas at the IR1 as M1 and the

antennas at the IR2 as M2. The WD has 1 + NW antennas in total,

with one antenna for energy harvesting and the other NW antennas for

information transmission.

6.2.1 System Metric Design

The baseband equivalent channels from the BS to IR1, IR2, and the

ER are denoted by H11 ∈ CNB×M1 , H12 ∈ CNB×M2 and h1e ∈ CNB×1,

respectively. The channels from the WD to IR1, IR2 and the ER are

denoted by H21 ∈ CNW ×M1 , H22 ∈ CNW ×M2 and h2e ∈ CNW ×1, respec-

tively. It is assumed that all the channels are quasi-static flat-fading

and remain constant during each transmission block with T > 0, where

T is the coherence time. It is assumed that the BS and the WD know

perfectly the CSI of H11, H12 and H22 and h2e. The energy signal
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transmitted by the BS to the ER is denoted as xe ∈ CNB×1, and the

information signal transmitted by the BS to the IR1 is denoted as

x1 ∈ CNB×1, and the information signal transmitted by the WD to the

IR2 is denoted as x2 ∈ CNW ×M2 . The energy covariance matrix at the

BS is denoted as Qe = E{xexH
e }, and the information signal covariance

matrix at the BS as Q1 = E{x1xH
1 }. The information signal covariance

matrix at the WD as Q2 = E{x2xH
2 }. The maximum transmit power

at the BS is limited to PBS as follows:

Tr(Qe) + Tr(Q1) ≤ PBS. (6.1)

The signal xe carries no information and unknown to the ER and

both IR1 and IR2. The energy signal xe sent by BS to ER is independent

of the information signals x2 and x1 sent by WD and BS, respectively.

The total received signal at IR1 user is

y1 = H11x1 + H21x2 + H11xe + n1, (6.2)

where H11x1 consists of the desirable information signal, H21x2 is the

interference due to the information signal sent from WD to IR2, and

the H11xe is the interference due to the energy signal sent from BS to

WD.

The total received signal at the IR2 user is

y2 = H22x2 + H12x1 + H12xe + n2, (6.3)

where H22x2 consists of the desirable information signal, H12x1 is the

interference due to the information signal sent from BS to IR1, and
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the H12xe is the interference due to the energy signal sent from BS to

WD. The vectors n1 ∈ CM1×1 and n2 ∈ CM2×1 are the noises at the IR1

and the IR2 and they are CSCG random variable with zero mean and

identity covariance matrices, respectively.

The total received signal at the ER located at the WD is

ye = h1ex1 + h1exe + h2ex2 + ne, (6.4)

where h1ex1 consists of the desirable information signal, h1exe con-

sists of the energy signal, h2ex2 the interference due to the information

signal sent from WD to IR2, ne is the noises at the ER.

The total energy harvested at the WD is expressed as

PW D = ηE(|hH
1exe + hH

2ex2 + hH
1ex1|2), (6.5)

where η ∈ (0, 1] is a constant denoting the energy harvesting effi-

ciency at the WD. The total harvested energy should be more than the

energy requirement for transmission of information from WD. Hence

the energy harvesting constraint at the WD is written as:

∥w2∥2 ≤ η|hH
1ewe|2 + η|hH

2ew2|2 + η|hH
1ew1|2, (6.6)

where w1, w2 and we are the beamformer weights used for transmit-

ting information signals and energy signals from the BS and WD. To

establish successful connection, the two users IR1 and IR2 have specific

date rate requirements. Two channel matrices of the BS and WD
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transmitters are defined as H1e =h1ehH
1e, H2e =h2ehH

2e.

Equation (6.6) can be further reformulated as:

wH
2 (I− ηh2ehH

2e)w2 ≤ η[hH
1e(wewH

e + w1wH
1 )h1e].

w2I− η(wH
2 H2ew2) ≤ η(wH

1 H1ew1) + η(wH
e H1ewe).

w2I− η(wH
2 H2ew2) ≤ η(wH

1 H1ew1 + wH
e H1ewe). (6.7)

W=wwH and hence wHHw = Tr[HwwH ] = Tr[HW],

rewrite the (6.7) as

Tr[W2] ≤ ηTr[H1eWe] + ηTr[H1eW1] + ηTr[H2eW2]. (6.8)

The sum secrecy rate maximization (RIR1 +RIR2) were proposed

with respect to Q1, Qe and Q2 using two different approaches such as,

Taylor series and null space approach. The optimization problem for

the Taylor series approach with respect to all Q1, Qe and Q2 on the

same time which can be formulated as:

max
Q1,Qe,Q2

( RIR1 + RIR2)

s.t Tr(Q2) ≤ PW D,

RIR2 ≥ Z,

Tr(Q1) + Tr(Qe) ≤ PBS,

Q2 ≽ 0,Q1 ≽ 0,Qe ≽ 0, (6.9)
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where RIR1 and RIR2 are the secrecy rate at the IR1 and IR2 respectively.

The second approach is the null space which is simple and not optimum

solution, when we ensure that the transmitted signal orthogonal on the

eavesdropper channel as explained in the following sections.

6.3 Null-Space Optimization Method

According to the null-space scheme, it is ensured that the transmitted

signal x1 from BS is orthogonal to channels H12 and h1e i.e. w1 is chosen

in the null space of the matrices H12 and h1e, this can be achieved as

follows:

H1 = [H12 h1e] = U1Σ1V1
H , (6.10)

where H1 ∈ CNB×(M2+1) is the new null space channel matrix that

w1 is orthogonal to; H12 ∈ CNB×M2 and h1e ∈ CNB×1. Let w1 =

V11[αM2+2, ..., αNB
]T , where V11 ∈ CNB×(NB−(M2+1)) is the null space

matrix of H1 obtained through SVD from the last NB−(M2 +1) column

of VH
1 (6.10); and αM2+2...αNB

∈ C(NB−(M2+1))×1 are eigenvalues and

αM2+2 ≫ αNB

w1 = α4v4 + α5v5 + ..α10v10

= [α4α5..α10][v4v5..v10]T , (6.11)

where α4...α10 is the eigenvalues and v4...v10 is the null space vec-

tors, while v1...v3 is the signal space vectors.
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The data rate and secrecy rate at IR1 are same as

RIR1 = log
∣∣∣∣∣σ2

1I + H11W1HH
11

∣∣∣∣∣, (6.12)

where W1 = w1wH
1 , w1 = v1α, (6.12) can be formulated as:

RIR1 = log
∣∣∣∣∣σ2

1I + H11v1αα
HvH

1 HH
11

∣∣∣∣∣. (6.13)

At the same time, the transmitted signal x2 transmitted from WD

is orthogonal on channel H21 i.e. w2 is chosen in the null space of

the matrix H21. Transmission of signal in this way ensures explicitly

that the information signal intended for a receiver does not reach other

unintended receivers. This is obtained thus:

H2 = [H21] = U2Σ2V2
H , (6.14)

where H2 ∈ CNW ×M1 is the new null space channel matrices that

w2 is orthogonal on it, H21 ∈ CNW ×M1 . Let w2 = V22[υM1+1...υNW
]T ,

where V22 ∈ CNW ×(NW −M1) is the null space matrix of H2 obtained

through SVD from the last NW − M1 column of VH
2 (6.14); and

υM1+1...υNW
∈ C(NW −M1)×1 are eigenvalues and υM1+1 ≫ υNW

w2 = υ3v3 + υ4v4 + ..υ10v10

= [υ3υ4..υ10][v3v4..v10]T , (6.15)
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where υ3...υ10 is the eigenvalues and v3...v10 is the null space vectors,

while v1...v2 is the signal space vectors.

The data rate and secrecy rate at IR2 are same as

RIR2 = log
∣∣∣∣∣σ2

2I + H22W2HH
22

∣∣∣∣∣, (6.16)

where W2 = w2wH
2 , w2 = v2υ, (6.16) is formulated as:

RIR1 = log
∣∣∣∣∣σ2

1I + H11v2υυ
HvH

1 HH
11

∣∣∣∣∣. (6.17)

The transmitted energy signal xe from BS is orthogonal on channels

H11 and H12 i.e. we is chosen in the null space of the matrices H11 and

H12, this can be achieved as:

He = [H11 H12] = UeΣeVe
H (6.18)

where He ∈ CNB×(M2+M1) is the new null space channel matri-

ces that we is orthogonal on it, H11 ∈ C10×2 and H12 ∈ C10×2.

Let we = Vee[γ(M2+M1+1)...γNB
]T , where Vee ∈ CNB×(NB−(M2+M1)) is

the null space matrix of He obtained through SVD from the last

NB − (M2 +M1) column of VH
e (6.18); and γ(M2+M1+1)...γNB

∈ CNB−(M2+M1)×1

are eigenvalues and γ(M2+M1+1) ≫ γNB
.
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we = γ5v5 + γ6v6 + ..γ10v10

= [γ5γ6..γ10][v5v6..v10]T (6.19)

where γ5...γ10 is the eigenvalues and v5...v10 is the null space vectors,

while v1...v4 is the signal space vectors.

The goal in this section is to obtain the optimal vector and maximize

the sum data rate at (RIR1 +RIR2) with respect to α, υ and γ subject

to total transmit power and harvested energy constraints with extra

constraint (RIR2 ≥ Z)

The sum date rate is similar to the sum secrecy rate at null space

method as follow:

RIR1 +RIR2 = log
∣∣∣∣∣σ2

1I + H11W1HH
11

∣∣∣∣∣+
log

∣∣∣∣∣σ2
2I + H22W2HH

22

∣∣∣∣∣, (6.20)

(6.20) can be formulated as:

RIR1 +RIR2 = log
∣∣∣∣∣σ2

1I + H11v1αα
HvH

1 HH
11

∣∣∣∣∣+
log

∣∣∣∣∣σ2
2I + H22v2υυ

HvH
2 HH

22

∣∣∣∣∣. (6.21)
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The sum secrecy rate at the information receivers IR1 and IR2

is maximized with respect to α, υ and γ as shown on the following

optimization problem

max
υ,γ,α

( RIR1 + RIR2)

s.t Tr(v1αα
HvH

1 ) + Tr(veγγ
HvH

e ) ≤ PBS,

Tr(v2υυ
HvH

2 ) ≤ PW D,

RIR2 ≥ Z,

υ ≽ 0, γ ≽ 0, α ≽ 0. (6.22)

6.4 Taylor Series Based Approximation

The optimization in (6.9) is not convex due to the nonconvex objective

function. Hence, the objective function is approximated based on a

Taylor series expansion to become convex which is presented in the

following sections.

The achievable secrecy rate at IR1 is defined as follows:

RIR1 = log
∣∣∣∣∣I + H11Q1HH

11

×
(
H11QeHH

11 + H21Q2HH
21 + σ2

1

)−1
∣∣∣∣∣

− log
∣∣∣∣∣I + H12Q1HH

12

×
(
H12QeHH

12 + H22Q2HH
22 + σ2

2

)−1
∣∣∣∣∣. (6.23)
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Equation (6.23) can be further reformulated as (6.24) using loga-

rithm quotient rule.

RIR1 = log
∣∣∣H11QeHH

11 + H21Q2HH
21 + σ2

1I + H11Q1HH
11

∣∣∣
− log

∣∣∣H11QeHH
11 + σ2

1I + H21Q2HH
21

∣∣∣
− log

∣∣∣H12QeHH
12 + H22Q2HH

22 + σ2
2I + H12Q1HH

12

∣∣∣
+ log

∣∣∣H12QeHH
12 + H22Q2HH

22 + σ2
2I
∣∣∣ . (6.24)

The objective function is approximated based on a Taylor series

expansion at a given transmit covariance matrix.

The desired secrecy rate function to be maximized is given in (6.24).

However, this function is non-convex due to the second and third terms

in right hand side (RHS) of (6.24). Taylor series approximation can be

used to approximate the second and third terms in RHS of (6.24). The

second term in RHS of (6.24) is given by:

T1 = log
∣∣∣∣∣H11QeHH

11 + H21Q2HH
21 + σ2

1I
∣∣∣∣∣ ≃

log
∣∣∣∣∣H11Q̃eHH

11 + H21Q2HH
21 + σ2

1I
∣∣∣∣∣

+ Tr
[(

H11Q̃eHH
11 + H21Q̃2HH

21 + σ2
1I
)−1

×H11QeHH
11 + H21Q2HH

21

]

− Tr
[(

H11Q̃eHH
11 + H21Q̃2HH

21 + σ2
1I
)−1

×H11Q̃eHH
11 + H21Q̃2HH

21

]
. (6.25)
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The third term in RHS of (6.24) is given by :

T2 = log
∣∣∣∣∣H12QeHH

12 + H22Q2HH
22 + σ2

2I + H12Q1HH
12

∣∣∣∣∣ ≃
log

∣∣∣∣∣H12Q̃eHH
12 + H12Q̃1HH

12 + H22Q̃2HH
22 + σ2

2I
∣∣∣∣∣

+ Tr
[(

H12Q̃eHH
12 + H12Q̃1HH

12 + H22Q̃2HH
22 + σ2

2I
)−1

× (H12QeHH
12 + H12Q1HH

12 + H22Q2HH
22)
]

− Tr
[(

H12Q̃eHH
12 + H12Q̃1HH

12 + H22Q̃2HH
22 + σ2

2I
)−1

× (H12Q̃eHH
12 + H12Q̃1HH

12 + H22Q̃2HH
22)
]

(6.26)

Substituting (6.25) and (6.26) into (6.24) gives:

RIR1 = log
∣∣∣∣∣H11QeHH

11 + H21Q2HH
21 + σ2

1I + H11Q1HH
11

∣∣∣∣∣
+ log

∣∣∣∣∣H12QeHH
12 + H22Q2HH

22 + σ2
2I
∣∣∣∣∣− T1 − T2, (6.27)

where, T1 and T2 are the Taylor series approximation results of term

two and three respectively in (6.24).

Now, the secrecy rate at IR2 will approximate similar to the approx-

imation way of secrecy rate approximation at IR1.
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The achievable secrecy rate at the IR2 is defined as follows:

RIR2 = log
∣∣∣∣∣I + H22Q2HH

22

×
(
H12QeHH

12 + H12Q1HH
12 + σ2

2

)−1
∣∣∣∣∣

− log
∣∣∣∣∣I + H21Q2HH

21

×
(
H11Q1HH

11 + H11QeHH
11 + σ2

1

)−1
∣∣∣∣∣. (6.28)

Equation (6.28) can be further reformulated as (6.29) using loga-

rithm quotient rule.

RIR2 = log
∣∣∣H12QeHH

12 + H12Q1HH
12 + σ2

2I + H22Q2HH
22

∣∣∣
− log

∣∣∣H12QeHH
12 + σ2

2I + H12Q1HH
12

∣∣∣
− log

∣∣∣H11Q1HH
11 + H11QeHH

11 + σ2
1I + H21Q2HH

21

∣∣∣
+ log

∣∣∣H11Q1HH
11 + H11QeHH

11 + σ2
1I
∣∣∣ . (6.29)

The objective function is approximated based on a Taylor series

expansion at a given transmit covariance matrix.

The desired secrecy rate function to be maximized is given in (6.29).

However, this function is non-convex due to the second and third

terms in RHS of (6.29). Taylor series approximation can be used to

approximate the second and third terms in RHS of (6.29). Firstly, the

second term in RHS of (6.29) approximation is described as follows:
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T3 = log
∣∣∣∣∣H12QeHH

12 + H12Q1HH
12 + σ2

2I
∣∣∣∣∣ ≃

log
∣∣∣∣∣H12Q̃eHH

12 + H12Q̃1HH
12 + σ2

2I
∣∣∣∣∣

+ Tr
[(

H12Q̃eHH
12 + H12Q̃1HH

12 + σ2
2I
)−1

× (H12QeHH
12 + H12Q1HH

12)
]

− Tr
[(

H12Q̃eHH
12 + H12Q̃1HH

12 + σ2
2I
)−1

× (H12Q̃eHH
12 + H12Q̃1HH

12)
]
. (6.30)

The third term in RHS of (6.29) is approximated using Taylor series

approximation as:

T4 = log
∣∣∣∣∣H11Q1HH

11 + H21Q2HH
21 + σ2

1I + H11QeHH
11

∣∣∣∣∣ ≃
log

∣∣∣∣∣H11Q̃1HH
11 + H11Q̃eHH

11 + H21Q̃2HH
21 + σ2

1I
∣∣∣∣∣

+ Tr
[(

H11Q̃1HH
11 + H11Q̃eHH

11 + H21Q̃2HH
21 + σ2

1I
)−1

× (H11Q1HH
11 + H11QeHH

11 + H21Q2HH
21)
]

− Tr
[(

H11Q̃1HH
11 + H11Q̃eHH

11 + H21Q̃2HH
21 + σ2

1I
)−1

× (H11Q̃1HH
11 + H11Q̃eHH

11 + H21Q̃2HH
21)
]
. (6.31)
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Substituting (6.30) and (6.31) into (6.29), RIR2 of (6.29) becomes:

RIR2 = log
∣∣∣∣∣H12QeHH

12 + H12Q1HH
12 + σ2

2I + H22Q2HH
22

∣∣∣∣∣
+ log

∣∣∣∣∣H11Q1HH
11 + σ2

1I
∣∣∣∣∣− T3 − T4, (6.32)

where, T3 and T4 are the Taylor series approximation results of term

two and three respectively in (6.29).

After the previous Taylor series approximation steps, the equation

(6.9) becomes convex. The Q1, Qe and Q2 can be obtained by solving

problem (6.9) based on updating Q̃1, Q̃e and Q̃2.

The direct Taylor series approximated optimization problem as

below can be solved as presented in algorithm 1.

max
Q1,Qe,Q2

( RIR1 + RIR2)

s.t Tr(Q2) ≤ PW D,

RIR2 ≥ Z,

Tr(Q1) + Tr(Qe) ≤ PBS,

Q2 ≽ 0,Q1 ≽ 0,Qe ≽ 0. (6.33)

6.5 Simulation Results

The BS and WD are equipped with NB =NW =10 antennas with one

antenna on ER located at the WD. The IR1 and IR2 receivers are
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1: Set initialization values for transmit covariance matrices: Q̃1, Q̃e,
Q̃2.

2: for i=1:10 do
3: - Obtain Q∗

1, Q∗
e and Q∗

2 from optimization problem (6.33).
4: Q̃1 ← Q∗

1,
5: Q̃e ← Q∗

e and
6: Q̃2 ← Q∗

2
7: end for

Algorithm 1: Direct approximated Sum Secrecy Rate Maximization

equipped with M1 =M2 =2 antennas each. The energy harvesting

efficiency at the ER and the noise powers at the information receivers

IR1 and IR2 were set as η = 0.4 and σ2 = −90 dBm, respectively. The

channel vectors are randomly generated from i.i.d. Rayleigh fading

model and the loop channel h2e was scaled by
√
β with β = −15 dB.

The results in Figure. 6.2 shows the transmitted power regarding

the information signal (P1) and the energy signal (Pe) from the BS. It

is evident that the proposed system opts to allocate the majority of the

available power towards the legitimate receiver IR1 in order to obtain

the maximum secrecy rate possible. Whereas, the power allocated to

WD for energy harvesting is evidently lower and both converge after 10

iterations.

The comparison between the power transmitted by WD for IR2

information receiver (P2) and the harvested energy at WD were depicted

in Figure. 6.3. As expected, the result confirm that the constraints

harvested energy greater than P2 satisfies the optimization problem.

Both converge after 10 iterations. Figure. 6.4 shows the achieved sum

secrecy rate by direct Taylor series approach scheme with different

secrecy rate values constraint Z at IR2, RIR2 >= Z to ensure the
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transmitted power by BS shared to all receivers and also for the QoS,

the smaller Z the higher the sum secrecy rate.

As shown in Figure. 6.5, the convergence of the secrecy rate for

the IR1 and IR2 at direct Taylor series approach with the constraint

secrecy rate at IR2 =0.45 b/s/Hz. It is shown that the sum secrecy rate

is equal to the sum of both receivers secrecy rates and also the secrecy

rate at IR2 is equal to the value of Z which is the optimal value. As

observed in Fig. 6.6, the comparison between the sum secrecy rates at

direct optimization schemes using (6.33) and null space scheme using

(6.22). It’s clear that the direct Taylor series approach outperforms the

null space scheme.

6.6 Summary

A secure SWIPT over the two-user MIMO interference channels with

two eavesdroppers have been investigated. First, A null-space based

scheme was considered, where the transmit covariance matrix of the BS

and WD ensures that the transmitted signal lies in the null space of the

channels between the BS and IR2 and that between the WD and the IR1.

Secondly, the Taylor series expansion is used to reformulate the secrecy

rate maximization problems and the secrecy sum-rate maximization

problems of both BS and WD into convex form. The simulation

results demonstrate the efficient security performance of the proposed

system and the comparison between both systems. The sum-rate

maximization optimization based direct method outperforms the sum-

rate maximization optimization based iterative method. Furthermore,
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Fig. 6.2 Comparison between the power transmitted by BS for IR1
information receiver P1 and the wireless power Pe transmitted by BS
for ER at WD. Both converge after 10 iterations and confirm the
constraints that sum of P1 and Pe equal to the Pmax.

it is evident that the incentive of the BS is to guarantee safe information

transmission, since it opts to use most of the available power for the

communication signal.

In the next chapter, concluding remarks fro this thesis are drawn

and future research directions discussed.
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Fig. 6.3 Comparison between the power P2 transmitted by WD for
IR2 information receiver and the harvested energy HE at the WD.
As expected, the result confirm that the constraints harvested energy
greater than P2 satisfies the optimization problem.

6.7 Appendix

6.8 Secrecy Rate Approximation Proof

The proof for the achievable secrecy rate of (6.23) and (6.28) is provided

using Taylor series expansion. For a MIMO secrecy channel with a

multi-antenna eavesdropper, the secrecy rate can be expressed as [120]:

R = log
∣∣∣∣∣I + 1

σ2
e

HeQlHH
e

∣∣∣∣∣− log
∣∣∣∣∣I + 1

σ2
l

HlQlHH
l

∣∣∣∣∣ (6.34)

From (6.34) above, it is observe that the expression is the difference

of the two nonconvex concave functions. In order to convert R into a
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Secrecy rate at IR1 with different values of (RIR2)

Fig. 6.4 Achieved secrecy rate by direct Taylor series approach scheme
with different secrecy rate values constraint Z at IR2, RIR2 >= Z to
ensure the transmitted power by BS shared to all receivers and also for
the QoS, the smaller Z the higher secrecy rate at IR1.

concave function, various approximations are available to do this with

different accuracy levels. For example, this concave function could be

approximated using the quadratic Taylor series approximation or using

the difference of convex programming technique [118]. Given a function

g(Y), an affine Taylor series approximation of g(Y) : RM×N → R can

be expressed at Ỹ as:

g(Y) = g(Ỹ) + vec
(
g′(Ỹ)

)
vec(Y− Ỹ). (6.35)

When (6.35) is applied along with the property ∂(log |Y|) = Tr(Y(1−)∂Y),

the second term of equation(6.34) can be approximated using Taylor
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Fig. 6.5 Convergence of the secrecy rate for the IR1 and IR2 at direct
approach with the constraint secrecy rate at IR2 =1.3 b/s/Hz. It is
shown that the sum secrecy rate is equal to the sum of both receivers
secrecy rates and also the secrecy rate at IR2 is equal to the value of Z
which is the optimal value.

series expansion as

log
∣∣∣∣∣I + 1

σ2
l

HlQlHH
l

∣∣∣∣∣ ≈ log
∣∣∣∣∣I + 1

σ2
l

HlQ̃lHH
l

∣∣∣∣∣
+ vec

Hl

(
I + 1

σ2
l

HlQ̃lHH
l

)(−1)

HH
l


× vec(Ql − Q̃l)

= log
∣∣∣∣∣I + 1

σ2
l

HlQ̃lHH
l

∣∣∣∣∣
+ Tr

 1
σ2

l

(
I + 1

σ2
l

HlQ̃lHH
l

)(−1)

HlQlHH
l


− Tr

 1
σ2

l

(
I + 1

σ2
l

HlQ̃lHH
l

)(−1)

HlQ̃lHH
l

 . (6.36)
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Fig. 6.6 Comparison between the sum secrecy rates at direct Taylor series
optimization schemes and null space scheme, the direct Taylor series
approach performance overcome the null space scheme performance.

Proof complete. �





Chapter 7

Conclusion and Future Work

In this chapter, the contributions of this thesis along with conclud-

ing remarks are summarized in Section 7.1 and Section 7.2 features

suggestions for future work.

7.1 Conclusions

In this thesis, mathematical optimization techniques were proposed and

investigated towards achieving reliable data communication in wireless

multi-antenna communication systems.

In Chapter 3, a multicell multiuser network that simultaneously

considers coordinated beamforming and joint transmission was studied.

This approach consisted of a network of single antenna local users

and one multi-antenna global user. The global user was served by

more than one BS, whereas the local users were assigned to only

one BS at a time. A beamforming design using power minimization

criterion was also considered. It was shown that for the global user,

on average, both BSs equally share the data transfer, however, for the
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optimality of transmission power, optimum split of data rate is required

for instantaneous channel realizations.

In Chapter 4, the problem of SINR balancing in MISO network was

addressed for two users with two Base stations. An energy splitting

technique was used with power and RFEH constraints. Maximization of

worst case user SINR was formulated through an optimization problem

under power and energy harvesting constraints. The performance of the

SINR balancing problem with interference was evaluated numerically.

Results from simulation confirm that SINR balancing technique was able

to fairly allocate resources to users while allowing energy harvesting.

Chapter 5 investigated a downlink energy and information transmis-

sion problem in a multiuser transmission system. The system consisted

of a WPC system and an SWIPT system. The ET’s energy beamform-

ing and WD’s information beamforming were designed to minimize

the total transmitted power subject to the SINR constraints at IR1

and IR2. As a result, a joint wireless energy transfer and wireless

information transfer design was achieved with two information receivers

and one energy receiver. The optimization constraint also introduced a

mechanism to control the SINR of the information signal at the energy

receiver in order to enhance security.

Lastly, in Chapter 6, an approach for secure communications of

SWIPT over the two-user MIMO interference channel when two eaves-

droppers are present was proposed. Firstly, a null-space-based scheme

of BS and WD transmitters were implemented. By imposing orthogo-

nality among the interfering channels of the system, two sub-optimal

secrecy rate optimization problems regarding IR1 and IR2 were de-
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signed. Taylor series expansion was used to reformulate the secrecy

rate maximization problems of both BS and WD into convex form.

Performance was demonstrated using simulation results which con-

firmed efficient security performance of the proposed system and the

comparison between both systems.

7.2 Future Work

The work presented in this thesis can be extended further in several

research directions. Potential future research areas of stem from firstly,

massive MIMO systems which is a new research into higher channel

count MIMO systems. It indicates that increasing the number of

antennas can significantly improve gains in spectral efficiency and

capacity and can reduce energy consumption at the base station. Second

is high mobility. Mobility is more difficult to achieve in Massive MIMO

setups than in conventional wireless systems. Since Massive MIMO

relies on up-to-date channel-state information to pinpoint each user

via beamforming, the shorter channel coherence time of a mobile user

may prevent accurate beamforming. The channel coherence time is

dependent on the speed of the user device, and the faster the device

movies, the more often the channel state information must be updated.

In other words, a user equipment (UE) could move faster than the beam

could update or track. This is especially challenging in time division

duplex setups. Thirdly, 5G wireless communication network. This is an

area which has attracted more and more attention in recent years. 5G

denotes the next major phase of mobile telecommunications standards
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beyond the current 4G/IMT-Advanced standards, which provide much

more than just fast data speeds on mobile devices, envisioned as the

key to providing seamless communications. Lastly, is IoT. This involves

having a structure where everyday physical objects, each having unique

identifiers, are connected to the Internet without the need for human

interaction. In order for concepts such as this to be self-sustainable,

there is the need to have energy-aware devices that are potentially

capable of harvesting their required energy from ambient sources.

The work in Chapter 3 can be extended to multiple non-static global

users so that the beamforming optimization becomes that of a dynamic

optimization problem. This will then require a reformulation of the

channel decomposition equation and semi definite programming equa-

tion. Once this is achieved, the possibility of attaining optimum power

split between the global and local users would then be investigated.

Investigating the SINR balancing with increased number of MISO

systems in Chapter 4 could be of interest. Performance of such a

model could be evaluated with additional constraints such as SWIPT.

Power splitting technique and other performance measures could also

be studied with the presence of different interference models such as

ISI and channel interference.

A downlink beamforming design with SWIPT in the presence of

eavesdropper and QoS constraints is a possible research direction for

the work in Chapters 5 and 6. This would be considered with the aim

of minimization of total transmitted power of the SWIPT BS subject to

secrecy rate due to eavesdropper and the SINR target at the information

receivers.
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