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Achievable Secrecy Rates
of an Energy Harvesting Device

Alessandro Biason, Student Member, IEEE, Nicola Laurenti, and Michele Zorzi, Fellow, IEEE

Abstract—The secrecy rate represents the amount of informa-
tion per unit time that can be securely sent on a communication
link. In this work, we investigate the achievable secrecy rates
in an energy harvesting communication system composed of a
transmitter, a receiver and a malicious eavesdropper. In particu-
lar, because of the energy constraints and the channel conditions,
it is important to understand when a device should transmit
and to optimize how much power should be used in order to
improve security. Both full knowledge and partial knowledge of
the channel are considered under a Nakagami fading scenario.
We show that high secrecy rates can be obtained only with
power and coding rate adaptation. Moreover, we highlight the
importance of optimally dividing the transmission power in the
frequency domain, and note that the optimal scheme provides
high gains in secrecy rate over the uniform power splitting case.
Analytically, we explain how to find the optimal policy and prove
some of its properties. In our numerical evaluation, we discuss
how the maximum achievable secrecy rate changes according
to the various system parameters. Furthermore, we discuss the
effects of a finite battery on the system performance and note
that, in order to achieve high secrecy rates, it is not necessary
to use very large batteries.

Index Terms—energy harvesting, secrecy rate, physical layer
security, WSN, MDP, optimization, policies, finite battery.

I. INTRODUCTION

SECURITY and privacy are becoming more and more im-
portant in communications and networking systems, and

have key applications in the Wireless Sensor Network (WSN)
and Internet of Things (IoT) world [2]. While most works in
this area deal with security protocols [3], [4], implementing
security mechanisms at the physical layer represents an inter-
esting complement to those networking approaches [5], and
has the potential to provide stronger (information-theoretic)
secrecy properties [6].

In the context of energy-constrained and green networking,
the design of low-power systems and the use of renewable
energy sources in network systems are prominent areas of
investigation. In particular, the use of Energy Harvesting (EH)
technologies as a way to prolong unattended operation of a
network is becoming more and more appealing. However, de-
spite these trends, security and privacy issues so far have been
addressed mostly by neglecting low-power design principles
(except possibly for some attempts at limiting the computation
and processing costs and/or the number of messages needed
to implement a secure protocol). In particular, the impact
of power allocation policies and of system features related
to energy harvesting has only been studied in some special
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cases [7], [8]. Since green aspects will play an increasingly
large role in future networks, it is essential to bring low-power,
energy-constrained and green considerations into this picture.
In this paper, we try to partly fill this gap, studying how the
use of energy harvesting affects the design and performance
of physical layer security methods.

We consider an Energy Harvesting Device (EHD) (i.e.,
a device with the capability of gathering energy from the
environment [9], e.g., through a solar panel or a rectenna)
that sends data to a receiver over an insecure communication
channel. The goal is to transmit data securely, i.e., in such
a way that an adversary (or eavesdropper) with access to
the communication link is not able to gather useful infor-
mation about the data sent. We study how the specific EH
characteristics influence the achievable secrecy rate (i.e., the
information rate at which the EHD can reliably send data to
the receiver while keeping it secret from the eavesdropper).
Deciding whether the EHD should transmit or not, how much
power should be transmitted or how to divide the power
among the different sub-carriers is not obvious, and all these
aspects need to be appropriately optimized. Moreover, while
in the classic throughput optimization problem if the available
resources were used improperly the corresponding penalty
would be a performance reduction, in the secrecy optimization
problem an improper use of the resources may imply not only
a reduced transmission rate, but also a security loss, possibly
making sensitive data accessible to a malicious party.

In the literature, many papers studied energy harvesting
communication systems because of their ability to increase
the network lifetime, provide self-sustainability and, ideally,
allow perpetual operations [10]. [11] presented a survey on
the several different environmental energy harvesting tech-
nologies for WSNs. Analytically, [12] formulated the problem
of maximizing the average value of the reported data using
a node with a rechargeable battery. In [13], [14], Sharma et
al. studied heuristic delay-minimizing policies and sufficient
stability conditions for a single EHD with a data queue. Ozel et
al. set up the offline throughput optimization problem from an
information theoretic point of view in [15], where they derived
the information-theoretic capacity of the AWGN channel and
presented two schemes that achieve such capacity (save-
and-transmit and best-effort-transmit). In [16], the authors
also modeled a battery-less system by a channel with state
dependent amplitude constraints and causal information at the
transmitter, and derived the capacity of this channel by making
use of a result by Shannon. The throughput optimization
problem with finite batteries in an EH system was studied
in [17], [18].

Security aspects have been widely studied in the WSN



literature [2], [3], [19]. Examples of relevant applications in a
WSN/IoT context include health-care monitoring [20], [21],
where the sensitive data of patients may be exposed to a
malicious party, or military use [22], [23], where a WSN can
be used for monitoring or tracking enemy forces. In particular,
in addition to higher layers [24], that are relatively insensitive
to the physical characteristics of the wireless medium, phys-
ical layer can be used to strengthen the security of digital
communication systems and improve already existing security
measures. The basic idea behind the concept of physical layer
secrecy is to exploit the randomness of the communication
channel to limit the information that can be gathered by
the eavesdropper at the signal level. Through channel coding
techniques, it is possible to simultaneously allow the legit-
imate receiver to correctly decode a packet and prevent a
potential third party malicious eavesdropper from decoding
it and thus provide information-theoretic or unconditional
security. Differently from computational security methods,
that are based on the limited computational capabilities of
the adversary (as in a cryptographic system), unconditional
security is considered the strongest notion of security [25]
because no limits on the adversary’s computing power are
assumed. Perfect secrecy [6] is achieved when there is zero
mutual information between the information signal, s, and the
signal received by the eavesdropper, z, i.e., I(s; z) = 0 and z
is useless when trying to determine s. In [26], Wyner showed
that if the eavesdropper’s channel is degraded with respect to
the legitimate channel, then it is possible to exchange secure
information at a non-zero rate while keeping the information
leakage to the eavesdropper at a vanishing rate. This result
was extended in [27] for non-degraded channels provided the
eavesdropper channel is not less noisy than the legitimate
channel. In [28], the secrecy capacity of fading channels in
the presence of multiple eavesdroppers is studied. It was
shown in [29] that in a fading scenario it is also possible
to obtain a non-zero secure rate even if, on average, the
eavesdropper’s channel is better than the legitimate one. The
authors also established the importance of variable rate coding
(i.e., matching the code rate to the channel rate) in enabling
secure communications. In [30], the authors compute the
secrecy capacity of a MIMO wiretap channel with one receiver
and one eavesdropper and an arbitrary number of antennas.
A survey of physical layer security in modern networks is
presented in [31].

The secrecy capacity paradigm in an energy harvesting com-
munication system was studied in [32], [33], where the authors
considered the case of a batteryless transmitter and found
the rate-equivocation region. [34] studied the deployment of
an energy harvesting cooperative jammer to increase physical
layer security. In [8] the authors presented a resource allocation
algorithm for a multiple-input single-output secrecy system
for a communication system based on RF energy harvesting.
Also [35] studied how to efficiently allocate power over several
sub-carriers in an EH system with secrecy constraints. In [36]
the authors employed a physical layer secrecy approach in a
system with a transmitter that sends confidential messages to
a receiver and transfers wireless energy to energy harvesting
receivers. Our focus is substantially different from those: in the
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Figure 1: Block diagram of the system. g and h are the channel gains and ρ
represents the power allocated over the N sub-carriers.

present paper we consider an EHD that harvests energy from
an external, non-controllable and renewable energy source.
Our goal is to maximize the achievable secrecy rate, i.e., to
define how to correctly exploit the available (random) energy
according to the device battery dynamics.

Our main contribution lies in the definition of a new
practical and challenging problem. As in [32], [33], we inves-
tigate the physical layer secrecy in an EH system. However,
differently from those papers, we explicitly consider the effects
of a finite battery and we focus on finding the transmission
strategy that maximizes the secrecy rate, namely the Optimal
Secrecy Policy (OSP). Since in a WSN the devices operate
under the same conditions for long periods, the steady-state
regime is generally reached, and thus we focus on the long-
term optimization. Similarly to [18], [37], we set up an
optimization problem based on a Markov Decision Process
(MDP) approach but, unlike in those works, we focus on
the security aspects, considering the presence of a malicious
eavesdropper and a generic number of sub-carriers. Thus,
even if the proposed analytical framework is similar to those
provided in the literature, since additional dimensions are
considered, the optimization process is more challenging and
different considerations and insights are derived. In particular,
we prove several properties of OSP and describe a technique
to compute it by decomposing the problem into two steps.
We specify how to allocate the power over the different
sub-carriers and remark that a smart power splitting scheme
is important to achieve high secrecy rates. As in [29], we
consider several degrees of knowledge of the channel state
information, describing both variable and constant rate coding
techniques and discussing how the achievable secrecy rate
changes in these cases. However, unlike [29], we study an
energy constrained system with N parallel sub-carriers, and
accordingly formulate and solve an optimization problem to
determine the maximum secrecy rate. Therefore, our paper
considers aspects that either have not yet been considered or
have been separately studied in the literature, and represents
an advancement of the state of the art in the important areas of
green networking and security, leading to novel insights about
the interaction of many different system design aspects.

The paper is organized as follows. Section II defines the
system model we analyze and introduces the notion of secrecy
rate. In Section III we introduce the secrecy rate optimization
problem. Section IV describes how to find OSP and some of
its properties with full CSI. In Section V we study the case of
imperfect CSI knowledge. Section VI presents our numerical
results. Finally, Section VII concludes the paper.



II. SYSTEM MODEL AND SECRECY RATE

We consider an Energy Harvesting Device (EHD) that
simultaneously transmits data in a wide frequency band com-
posed of N narrow bands. The transmission power can be
different for every sub-carrier. The transmission model can be
described as a set of N parallel Gaussian wiretap channels,
affected by independent fading, as in [38]. The goal of the
transmitter is to send data to the legitimate receiver with a
positive secrecy rate in order to guarantee secure transmission.
An eavesdropper attempts to intercept the transmitted data (see
Figure 1 for the block diagram of the system model).

We initially assume that the EHD knows the Channel
State Information (CSI) of all the sub-carriers toward the
receiver and the eavesdropper instantaneously, and will relax
this hypothesis in Section V. Time is divided into slots of
equal duration T , chosen according to the channel coherence
time, in order to guarantee constant channel gains in every
slot. The EHD is equipped with a battery of finite size emax

and in slot k the device has E(k) ∈ E , {0, . . . , emax} energy
quanta stored.1 Knowledge of the state of charge is useful
at the transmitter side only to determine when to schedule
a transmission. The harvesting process is described through
an energy quanta arrival process {B(k)}, e.g., deterministic,
Bernoulli or truncated geometric (for example, see [39] for a
characterization of the light energy). The average harvesting
rate is b̄, the maximum (minimum) number of energy quanta
harvested per slot is bmax (bmin), and a quantum harvested in
slot k can only be used in time slots > k. We assume that
the device always has data to send and that the energy cost
that the device sustains is mainly due to data transmission.
Extensions to more general models are left for future work.

The channel gains in slot k are g(k) = [g
(k)
1 , . . . , g

(k)
N ] and

h(k) = [h
(k)
1 , . . . , h

(k)
N ] for the N legitimate and eavesdropper

sub-carriers, respectively. g(k) and h(k) can be interpreted as
realizations of two jointly random vectors G = [G1, . . . , GN ]
and H = [H1, . . . ,HN ] (i.i.d. over time) with supports G

and H. We assume that the receiver has complete CSI of its
channel in order to decode the received signal. Instead, the
eavesdropper has knowledge on every aspect of the system
(this is a reasonable worst-case assumption, as the transmis-
sion strategy should not rely on assuming the eavesdropper’s
ignorance of any state). Nevertheless, we should point out that,
for a passive eavesdropper, knowledge of the main channel
state is totally immaterial. In the following, when we refer to
“full” or “partial” CSI, we always refer to the transmitter side.

A. Secrecy Rates and Capacity

We refer to the notions of secrecy rate and secrecy capacity
as known in the physical layer secrecy literature [5], [26]
and their ergodic counterparts in the fading scenario [40].
Specifically, we define an (M,N, `) code for the parallel
wiretap channel as consisting of: 1) a message set S with

1While in reality energy is a continuous quantity, we decide to adopt an
approximate approach and discretize it in order to simplify the numerical
optimization and apply the discrete MDP theory. However, we remark that it
is always possible to use a finer quantization in order to improve the accuracy
of the discrete approximation (which however implies higher complexity).

cardinality M , 2) a probabilistic encoder f enc
` at the transmitter

that maps each message s ∈ S (realization of the r.v. S) to
each N × ` codeword x ∈ X`, with X = X1 × · · · ×XN

according to some conditional distribution pX|S(x|s), and 3) a
(deterministic) decoder at the legitimate receiver that extracts
ŝ (realization of the r.v. Ŝ) from the received message y ∈ Y`,
where Y = Y1 × · · · ×YN i.e., fdec

` : Y` → S.
The average error probability of an (M,N, `) code is given

by

P `err ,
1

M

∑
s∈S

P
(
Ŝ 6= s|S = s

)
. (1)

The equivocation rate at the eavesdropper is R`e =
(1/`)H(S|Z`), i.e., the conditional entropy rate of the trans-
mitted message given the eavesdropper’s channel output Z`.
R`e represents the level of ignorance on the target secret
message at the eavesdropper. Perfect secrecy (unconditional
security) would be obtained if R`e = R`, where R` =
(1/`)H(S) is the secret message rate. However, this is not
possible in general with wiretap coding techniques, so we must
settle for a weaker requirement, that holds asymptotically.
Therefore, a secrecy rate Rs is said to be achievable if there
exists a sequence of (2`Rs , N, `) codes, ` = 1, 2, . . . , such
that

lim
`→∞

P `err = 0, Rs ≤ lim
`→∞

R`e (2)

and the secrecy capacity is defined as the supremum of the set
of achievable secrecy rates.

B. Coding Strategy

The transmitter coding strategy influences the secrecy rate.
In particular, in this paper we consider constant and variable
rate coding defined as follows (a construction procedure for
these codes can be derived as explained in [29, Theorems 1
and 2]).

Variable rate coding consists in adapting the code rate
to the main channel state. This can be accomplished by
constructing a separate codeword x for every realization of
the channel, i.e., x = x(current channel). In this case, in
every slot k and on every sub-carrier r = 1, . . . , N the
transmitter observes the channel and picks the symbols to be
transmitted from the current codeword x(g

(k)
r ). We study the

long-term regime and thus we consider the case of infinite
length codewords. With variable rate coding, when the gain
of the legitimate channel in a given sub-carrier is g, the
transmitter uses symbols from codewords at rate log(1 + gρ)
(where ρ is the transmission power, which will be the objective
of our optimization). To achieve such a rate, it is required
to use a codeword specifically designed for this channel, i.e.,
x(g). Then, if the eavesdropper’s channel gain is h > g, thanks
to the chosen coding rate, the mutual information between
the transmitter and the eavesdropper is upper-bounded by
log(1 + gρ). Instead, when h ≤ g, the mutual information
becomes log(1+hρ) (Shannon’s theorem). We can summarize
the two previous cases as log(1+min{g, h}ρ). Therefore, even
if h > g, the eavesdropper does not receive more information
than the legitimate receiver (they both experience the same



rate log(1+gρ)). In the long run, the average rate of the main
channel and the information accumulated at the eavesdropper
are

lim inf
K→∞

1

K + 1

K∑
k=0

N∑
r=1

log(1 + g(k)
r ρ) (3)

and

lim inf
K→∞

1

K + 1

K∑
k=0

N∑
r=1

log(1 + min{g(k)
r , h(k)

r }ρ), (4)

respectively. In this case, by constructing a code and the
corresponding coding map, the long-term secrecy rate (amount
of secret information that can be sent) is

lim inf
K→∞

1

K + 1

K∑
k=0

N∑
r=1

(
log(1 + g(k)

r ρ)

− log(1 + min{g(k)
r , h(k)

r }ρ)
)
.

(5)

Constant rate coding consists in keeping the code rate con-
stant, regardless of the legitimate and eavesdropper’s channel
states. In this case, a single codeword x is used in every fading
condition. In every slot, the transmitter picks the symbols to
be transmitter from the only available codeword x. In the long
run, since we consider infinite length codewords, x spans the
entire fading statistic of the channel. With constant rate coding,
regardless of the current channel state, the transmitter uses
codewords at a fixed rate Rcon such that Rcon ≥ log(1 + gρ)
for every g and ρ. In this case, if the current legitimate channel
is g, the mutual information between transmitter and receiver
is upper bounded by Shannon’s theorem as log(1 + gρ).
Similarly, the mutual information between transmitter and
eavesdropper is given by log(1+hρ). The secrecy rate can be
expressed as[

lim inf
K→∞

1

K + 1

K∑
k=0

N∑
r=1

(
log(1 + g(k)

r ρ)− log(1 + h(k)
r ρ)

)]+

,

(6)

where [·]+ , max{0, ·} is used to obtain a non-negative
rate. Note that (6) is lower than (or equal to) (5), i.e., higher
secrecy is achieved with variable rate coding. However, its
implementation is more difficult as the code rate has to be
changed frequently according to the legitimate channel state.

For simplicity, in the next we use Rg,h(ρ) to indicate the
terms of the sum in (5) if variable rate coding is considered,
or (6) in the constant rate coding case, i.e.,

Rg,h(ρ) ,

{
log(1 + gρ)− log(1 + min{g, h}ρ), var. rate,
log(1 + gρ)− log(1 + hρ), con. rate.

(7)

c(ρ,g,h) is the generalization with a generic number of sub-
carriers N :

c(ρ,g,h) =

N∑
r=1

Rgr,hr (ρr), (8)

and ρtot is the corresponding total transmission power, defined
as

ρtot , 1TNρ. (9)

The value of c(ρ,g,h) depends on the choice of the power
allocation over the several sub-carriers, ρ , [ρ1, . . . , ρN ]T , the
channel conditions g and h, and the coding rate strategy. 1N
is a column vector consisting of N ones. In the general case,
the choice of ρ that maximizes the secrecy rate, among those
satisfying (9), will in turn depend upon the channel conditions
g and h.

III. OPTIMIZATION PROBLEM

The system state S(k) in time slot k is defined by the (2N+
1)-tuple (E(k),g(k),h(k)). A policy µ is a set of rules that,
given the state of the system, specifies the power allocation
over the N sub-carriers.

In the long run, the average secrecy rate under a policy µ
is given by the average undiscounted reward Cµ

Cµ(E(0)) ,

[
lim inf
K→∞

1

K + 1

K∑
k=0

c(Σ(k),g(k),h(k))

]+

, (10)

where c(·, ·, ·) is the instantaneous partial contribution defined
in (8), Σ(k) is the power allocation vector defined by the
policy2 and E(0) is the energy in the initial time slot. A secure
communication can be performed if Cµ(E(0)) > 0. (10) is a
generalization of (5) and (6) for N sub-carriers and a dynamic
transmission power.

The battery evolution is as follows

E(k+1) = min

{
E(k) −

N∑
r=1

Σ(k)
r +B(k), emax

}
, (11)

where Σ
(k)
r is the rth component of the vector Σ(k), and the

min is used to account for the finite battery. Note that Σ(k)

must satisfy
∑N
r=1 Σ

(k)
r ≤ E(k), ∀k and Σ

(k)
r ≥ 0, ∀k, ∀r.

Thus, Problem (10) is implicitly influenced by the evolution
of E(k) because of Σ(k).

Our aim is to solve the following maximization problem

µ? = arg max
µ

Cµ(E(0)). (12)

A policy that solves (12) is an Optimal Secrecy Policy
(OSP). In the next subsection we explain in more detail
the optimization variables and the constraints of the above
problem.

A. Markov Decision Process Formulation

Since we consider a long-term optimization, we recast the
problem using a Markov Decision Process (MDP) formulation.
In particular, we model our system by a Markov Chain (MC)

2Given a temporal sequence of energy arrivals and channel states, the policy
µ can be applied to obtain the power allocation vector Σ(k). In this case we
use a deterministic policy for presentation simplicity, and prove later that this
choice is optimal.



with a finite number of states. For every MC state (e,g,h), a
power allocation policy µ is the set of rules

µ = {µ(·; e,g,h), ∀e ∈ E, ∀g ∈ G, h ∈ H}, (13)

where µ(·; e,g,h) is the conditional distribution (pmf) of the
power allocation vector defined as follows

µ(ρ; e,g,h) , P
( using a power

splitting vector ρ
∣∣e,G=g,H=h

)
, (14)

and, for every g, h, is subject to∑
ρ∈P≤(e)

µ(ρ; e,g,h) = 1, (15a)

µ(ρ; e,g,h) ≥ 0, ∀ρ ∈ P≤(e), (15b)

P≤(e) ,
{
ρ : ρ � 0 ∩ ρtot , 1TNρ ≤ e

}
. (15c)

P≤(e) is the set of all feasible vectors ρ when the energy level
is e. The reward function becomes

Cµ(E(0)) =
∑
e∈E

πµ(e|E(0)) (16)

×
∫
G×H

∑
ρ∈P≤(e)

c(ρ,g,h)µ(ρ; e,g,h)

︸ ︷︷ ︸
secrecy rate given the MC state (e,g,h)

dF (g,h),

where πµ(e|E(0)) ∈ [0, 1] is the steady-state probability of
having e energy quanta stored starting from state E(0) under
a policy µ and F (g,h) is the joint cumulative distribution
function of G and H . πµ(e|E(0)) summarizes the battery
evolution and is evaluated according to (11). The optimization
variables in Problem (12) are the pmfs µ(·; e,g,h). Also, it
can be shown (see Section IV-A) that an OSP which admits
steady-state distribution always exists. Therefore, without loss
of optimality, we decided to restrict our study to the class
of policies with steady-state distribution. For these policies,
since we focus on the average long-term optimization, (16) is
equivalent to (10).

It is possible to separate µ into the product of a transmit
power policy, which specifies the conditional distribution of
the total transmission power given the current state, namely
γµ(ρtot; e,g,h), and the conditional distribution of the power
allocation given the total transmission power and the current
state, namely φµ(ρ; ρtot, e,g,h):

µ(ρ; e,g,h) = φµ(ρ; ρtot, e,g,h)γµ(ρtot; e,g,h). (17)

The above expression will be useful to decompose the
problem into two steps in Theorem 2.

We highlight that µ performs a power control mechanism,
i.e., it specifies how much power is used in every MC state
but, in addition to power control, also the code rate can be
changed according to Section II-B.

B. Finite Model

In the previous subsection, we assumed that the policy can
be defined for every possible value of the channel gains. This
can be done by simple enumeration if |G| <∞ and |H| <∞.
However, the channel gains may be continuous variables in the

general case. Instead of defining a policy for a continuously
infinite set of values, we want to find a set of points where the
policy can be computed and optimized efficiently. The follow-
ing approach can be followed. Consider the random variable
G1 (for the others the reasoning is similar). We discretize the
support of G1 in n intervals with an equally likely strategy
(P(G1 ∈ [pi, pi+1)) = 1/n, i = 1, . . . , n). Then, we specify
the policy in the centroid of every interval. If the number of
intervals n is sufficiently large, the approximation is very close
to the continuous case.

Remark 1. Since we consider a discrete channel, we focus
without loss of generality on channel conditions with non-zero
probability, i.e., P(G = g,H = h) > 0, ∀g ∈ G,h ∈ H.

IV. OPTIMAL SECRECY POLICY WITH COMPLETE CSI
In this section we study the case when the transmitter has

perfect CSI knowledge, and introduce a technique to compute
OSP and some of its properties. All our results are useful to
simplify the numerical evaluation. In particular: 1) we prove
that there exists a deterministic OSP (Theorem 1); 2) we
propose a technique to derive a unichain OSP (Section IV-A);
3) we decompose the optimization process in two steps (Theo-
rem 2); and 4) we show that the transmission power increases
(decreases) with the channel gain of the legitimate receiver’s
(eavesdropper’s) sub-carriers (Theorem 3).

Theorem 1. There exists a deterministic OSP, i.e., an optimal
secrecy policy in which, for every MC state (e,g,h)

µ?(ρ; e,g,h) =

{
1, if ρ = ρ?e,g,h,

0, otherwise,
(18)

for some ρ?e,g,h depending upon the current MC state in
general.

Proof. See Appendix A. �

By exploiting Equation (17), it also follows that ∃ρtot?

e,g,h such
that the transmit power policy γµ defined in (17) satisfies

γµ(ρtot; e,g,h) =

{
1, if ρtot = ρtot?

e,g,h,

0, otherwise.
(19)

Definition 1 (Deterministic Policy). Since a deterministic OSP
always exists, we only need to study deterministic policies, thus
µ can be redefined as

µ = {ρe,g,h ∈ P≤(e), ∀e ∈ E, ∀g ∈ G, h ∈ H}. (20)

ρe,g,h = [ρ1;e,g,h, . . . , ρN ;e,g,h] characterizes the transmission
powers on different sub-carriers in state (e,g,h).

We also introduce the sub-policy µtot as

µtot = {ρtot
e,g,h, ∀e ∈ E, ∀g ∈ G, h ∈ H}, (21)

which accounts for the total transmission powers only. µtot

and µ are consistent if the sum of the elements of ρe,g,h in µ
is equal to ρtot

e,g,h in µtot, ∀e ∈ E,g ∈ G,h ∈ H.
The deterministic property is particularly useful to simplify

the numerical evaluation because a policy needs to define
only a scalar value for every state of the system and not a
probability distribution.



A. Unichain Policies

We restrict our study to the class of unichain policies, i.e.,
those that induce a unichain MC (i.e., a MC with a single
recurrent class). This is useful in order to apply the standard
optimization algorithms in the next section.

Some sufficient conditions to obtain a unichain policy are
presented in the following proposition (in this subsection we
use deterministic policies for presentation simplicity, but the
results can be easily extended).

Proposition 1. If a policy satisfies one of the following
conditions, then it is unichain. If it satisfies both conditions,
the policy induces an irreducible, positive recurrent MC.

1) For every e ∈ E\{emax} there exists a pair (g′,h′)
such that ρtot

e,g′,h′ < bmax (maximum number of energy
arrivals).

2) For every e ∈ E\{0} there exists a pair (g′′,h′′) such
that ρtot

e,g′′,h′′ > bmin.

Proof. See Appendix B. �

In practice, the first and second points ensure that there
is a positive probability that the battery moves from level e
to higher and lower energy levels, respectively. When they
are both verified, no transient state can exist, and the MC is
irreducible.

When at least one point of Proposition 1 is satisfied, the
corresponding policy is guaranteed to be unichain. However,
in general, these conditions may not be satisfied and a policy
may not be unichain. In addition, there may exist more than
one policy with the same maximum achievable secrecy rate
(the highest secrecy rate among Cµ(0), . . . , Cµ(emax)). Some
of these are unichain, whereas others are not. Consider the
following example to justify these claims.

Example 1. We want to show a case in which 1) multiple
policies with the same maximum reward exist and 2) some of
them are not unichain.

Assume that the harvesting process is deterministic and
equal to bmax < emax/2, N = 1, and the channel is constant
g1 > h1. Consider the following policies

µ1 = {ρ1;e,g1,h1
= min{e, bmax}, ∀e, ∀g1, h1},

µ2 =

ρ1;e,g1,h1
= 2bmax, e = emax, ∀g1, h1

ρ1;e,g1,h1 = bmax, e = bmax, ∀g1, h1

ρ1;e,g1,h1 = 0, otherwise

 .

µ1 is a unichain policy (the recurrent class is the bat-
tery level {bmax}) that provides a long-term secrecy rate
c(bmax, g1, h1). Instead, µ2 is not unichain (the two recurrent
classes are {bmax} and {emax − bmax, emax}) and its long-
term secrecy rate depends upon the initial state (it can be
c(bmax, g1, h1) or 0.5c(2bmax, g1, h1)). Also, note that be-
cause of the concavity of Equation (8), c(bmax, g1, h1) >
0.5c(2bmax, g1, h1). Therefore, there exist more than one pol-
icy with the same maximum achievable reward c(bmax, g1, h1).
Moreover, in µ2, there are two recurrent classes, and thus it
is not unichain.

This example shows that the long-term secrecy rate for a
non-unichain policy may depend upon the starting state. Also,

it shows that in general there may exist different policies,
unichain and not unichain, with the same maximum achievable
secrecy rate. The following proposition establishes that there
is no loss in generality in considering only unichain policies.

Proposition 2. Given a generic policy, it is always possible
to derive another policy which is unichain and attains the
same maximum achievable secrecy rate as the original policy,
regardless of the initial state.

Proof. We provide a constructive proof in Appendix C. �

In the rest of the paper we always refer to unichain policies,
for which Cµ(E(0)) is independent of E(0) [41]. In particular,
Proposition 2 holds for the optimal secrecy policies, i.e., there
always exists a unichain OSP, and therefore we will focus on
unichain policies with no loss in optimality. Note that, since
we consider a finite MC (we discretized both the battery level
and the channel gains), a unichain policy always implies the
existence of a steady-state distribution as in Equation (16).

B. Computation of OSP

We now want to simplify the expression of Cµ by exploiting
the results we have found so far. If µ and µtot are consistent,
the long-term secrecy function Cµ can be rewritten as

Cµ =
∑
e∈E

πµtot(e)

∫
G×H

c(

specified by µ︷ ︸︸ ︷
ρe,g,h,g,h) dF (g,h). (22)

An interesting fact is that the steady-state probability
πµtot(e) depends upon the sub-policy µtot only. This is
because πµtot(e) describes the battery energy evolution, that
depends only upon the total energy consumption in a slot, not
upon the particular power splitting scheme. This result leads
to the following theorem.

Theorem 2. The maximization of Cµ can be decomposed into
two steps:

1) fix a value x and the channel gain vectors g, h and find
the optimal power splitting choice

ρ? = arg max
ρ

c(ρ,g,h), (23a)

s.t.: ρ ∈ P=(x) ,
{
ρ : ρ � 0, x = 1TNρ

}
;

(23b)

2) maximize Cµ by considering only µtot

µtot? = arg max
µtot

Cµ, (24a)

s.t.: µtot and µ are consistent, (24b)
ρe,g,h solves (23) with x = ρtot

e,g,h,

∀e ∈ E,∀g ∈ G, ∀h ∈ H.
(24c)

The optimal µ? can be found by fixing ρtot? according
to point 2) and choosing ρ with the optimal power splitting
choice of point 1).

Proof. See Appendix D. �



The optimal power splitting choice ρ? that solves (23) can
be found with a Lagrangian approach (for further details, see
Theorem 1 and Equation (7) in [29]):

ρ?r =

[√
α2
r

4
+
αr
η
− βr

2

]+

, (25)

αr ,
1

hr
− 1

gr
, βr ,

1

hr
+

1

gr
, (26)

where η is a parameter used to satisfy x =
∑N
r=1 ρ

?
r . In the

remainder of the paper we assume that this optimal power
splitting choice is used, unless otherwise stated. We highlight
that OSP yields ρ?r = 0 if gr ≤ hr, which implies that
the achievable secrecy rate with complete CSI is independent
of the coding scheme (the two expressions in Equation (7)
coincide).

To solve Step 2) instead, the Optimal Secrecy Policy can
be found numerically via dynamic programming techniques,
e.g., using the Policy Iteration Algorithm (PIA) [42].3 PIA
alternates between a value determination phase, in which
the current policy is evaluated, and a policy improvement
phase, in which an attempt is made at improving the current
policy. Policy improvement and evaluation can be performed
in O((emax)3n2N ) and O((emax)3) arithmetic operations,
respectively, where O(·) is the standard asymptotic notation.
This result is derived as follows. For every state of the system
(emax × nN × nN ), the policy improvement step requires
to find the best transmission power (which is O(emax)) to
reach every other battery level (emax). Instead, the O((emax)3)
performance of the policy evaluation step is due to a matrix
inversion cost (which can be reduced to O((emax)2.373) using
Coppersmith-Winograd like algorithms). The previous two
steps are performed iteratively until the optimal policy is
found, which, in general, requires few iterations (< 10).
Therefore, PIA has a polynomial complexity in the number
of states of the system.

Note that Theorem 2 with (25)-(26) decompose the opti-
mization into two steps. Therefore, the numerical evaluation
only requires to study the two points separately instead of
performing a (more computationally intensive) bi-dimensional
optimization.

We also remark the following.

Lemma 1. By restricting the study to the unichain policies
constructed as in Appendix C, OSP is uniquely determined.

Proof. In all the transient states, by construction (Ap-
pendix C), we have ρtot?

e,g,h = 0. For the recurrent states,
thanks to [42, Vol. II, Sec. 4], we know that ρtot?

e,g,h is uniquely
determined. �

C. Properties

We now derive a property that is useful to understand when
the transmission power increases or decreases.

3A key assumption of PIA is that, at every algorithm step, a unichain
policy is produced. In order to satisfy this condition, we apply the technique
of Appendix C.

Proposition 3. Consider two channel states g′, h′ and g′′,
h′′ and define

D(ρtot;g′,h′;g′′,h′′) (27)

,
∂

∂ρtot

(
c(ρ?e,g′′,h′′ ,g

′′,h′′)− c(ρ?e,g′,h′ ,g′,h
′)
)
,

where ρ?e,g′′,h′′ and ρ?e,g′,h′ are defined as the solutions4 of
Problem (23) with x = ρtot.

OSP has the following trend
• if D(ρtot;g′,h′;g′′,h′′) ≥ 0, ∀ρtot, then ρtot?

e,g′′,h′′ ≥
ρtot?

e,g′,h′ ;
• if D(ρtot;g′,h′;g′′,h′′) ≤ 0, ∀ρtot, then ρtot?

e,g′′,h′′ ≤
ρtot?

e,g′,h′ .

Proof. See Appendix E. �

In practice, it is better to use more energy in the directions
where the function c(·, ·, ·) increases. A consequence of the
previous proposition is derived in the following theorem.

Theorem 3. Consider N = 1. The transmission power of OSP
is non-decreasing with g and non-increasing with h (we omit
the “1” subscripts). Formally
• if g′′ ≥ g′, then ρtot?

e,g′′,h ≥ ρtot?

e,g′,h;
• if h′′ ≥ h′, then ρtot?

e,g,h′′ ≤ ρtot?

e,g,h′ .

Proof. See Appendix F. �

This is an expected result, i.e., when the legitimate channel
improves, then it is reasonable to use more energy in order to
get a higher rate. Conversely, when the eavesdropper’s channel
improves, it is better not to use a lot of energy because only
low rates can be obtained. In this case, it is better to conserve
energy and wait for a better slot. The previous theorem is
useful to prune the action space in the numerical computation:
if we found the optimal transmission power for a given channel
state, we could exploit it as lower [upper] bound for better
[worse] channel states.

We expect that a result similar to Theorem 3 holds for
a generic N > 1. A formal proof would require to ex-
plicitly compute D(ρtot;g′,h′;g′′,h′′) and show that it is
non-negative or non-positive (see Appendix F). However, this
would require the computation of an analytical expression for
η in Equation (25). Even though this is in principle possible for
any fixed N , the corresponding expression is very complicated
and, in practice, the resulting D(ρtot;g′,h′;g′′,h′′) is too long
to be analytically tractable.

V. OPTIMAL SECRECY POLICY WITH PARTIAL CSI

In the previous sections we assumed that the realizations of
G and H , namely g and h, are known at the transmitter. This
may not be true in practice. In particular, it is likely that, since
the eavesdropper does not cooperate with the transmitter, its
channel gain is unknown. In this section we gradually remove
these assumptions and discuss how the achievable secrecy rate
changes as a result.

4Note that ρ?
e,g′′,h′′ and ρ?

e,g′,h′ depend upon ρtot.



We assume thatG = [G1, . . . , GN ] andH = [H1, . . . ,HN ]
have independent components and are independent of each
other. In this section we assume that all links are affected by
i.i.d. Nakagami fading. This means that the amplitude of a
received signal has a Nakagami pdf with parameters m and
κ, i.e.,

f(x;m,κ) = 2
(m
κ

)m 1

Γ(m)
x2m−1e−

m
κ x

2

, x ≥ 0, (28)

Γ(m) ,
∫ ∞

0

e−ttm−1 dt. (29)

Therefore, Gr and Hr exhibit a Gamma distribution. The
pdf of Gr (with mean ḡr) is

fGr (g;m) =

(
m

ḡr

)m
1

Γ(m)
gm−1e−

m
ḡr

g,
g ∈ R+,

m ≥ 1
(30)

and similarly for Hr (for presentation simplicity, we assume
that the legitimate receiver and the eavesdropper have the same
index m, but the analysis can be extended to a more general
case). Note that m = 1 corresponds to Rayleigh fading and
fGr (g; 1) = 1

ḡr
e−g/ḡr is an exponential distribution. As m

increases, the strength of the line of sight component increases.
For ease of notation, in the remainder of the paper we drop the
dependence on m and implicitly assume fGr (g) = fGr (g;m).

A. Unknown Eavesdropper’s Channel

In this section, we assume that both the legitimate and
the eavesdropper’s channels are affected by fading but CSI
is available only for G. In this case, due to this lack of
information, it may happen that EHD transmits even when
the eavesdropper’s channel gain is higher than the legitimate
one.

Similarly to Expression (20) in the previous section, a policy
µ can be defined as

µ = {ρe,g , [ρ1;e,g, . . . , ρN ;e,g] ∈ P≤(e), ∀e ∈ E, ∀g ∈ G},
(31)

and similarly for µtot. ρe,g represents the transmission power
used in state (e,g) (since h is unknown, it cannot be included
in the state of the system). We remark that µ performs a power
control mechanism, i.e., a policy specifies only the transmis-
sion power ρe,g. However, in addition to power control, in
every slot also the code rate can be changed (see Section II-B).
In particular, variable rate coding provides higher secrecy rates
than constant rate coding, but is more difficult to implement.
In the following we analyze both these approaches.5

1) Constant Rate Coding: The simplest assumption is that
the coding scheme has constant rate and its choice only
depends on the overall channel statistics. Using constant rate
coding, the eavesdropper is able to gather more information
than the legitimate receiver when its channel is better. Because
of this, for some r, we may have (see Equation (7))

Rgr,hr (ρr;e,g) < 0. (32)

5Differently from the complete CSI case of Section IV, ρr cannot be set
to 0 if gr ≤ hr (see Equation (25)), thus using constant rate or variable rate
coding leads to different results.

The secrecy rate expression becomes

Cµ =

emax∑
e=0

πµtot(e)

∫
RN+

∫
RN+

N∑
r=1

log2

(
1 + grρr;e,g
1 + hrρr;e,g

)

×
N∏
r=1

(
fGr (gr)fHr (hr)

)
dg dh,

(33)

Note that in (33) we integrate both positive and nega-
tive terms. The negative terms are due to the fact that the
eavesdropper’s channel may be better than the legitimate one
(hr > gr).

We now want to extract some properties of the optimal
secrecy policy in this context. We start by performing the
following computations, which will be used to extend the first
point of Theorem 3.

The channel memoryless property can be used to sim-
plify (33) and recast the problem using an MDP. By integrating
over h, we obtain

Cµ =

emax∑
e=0

πµtot(e)

∫
RN+

N∑
r=1

T con
r (gr, ρr;e,g)

N∏
r=1

fGr (gr) dg.

(34)

T con
r (g, ρ) ,

∫
R+

log2

(
1 + gρ

1 + hρ

)
fHr (h) dh. (35)

The function T con
r (g, ρ) is presented in Equation (36),

where Ei(z) = −
∫∞
−z

e−t

t dt is the exponential integral
function and si, ti are constants.6

T con
r (g, ρ) = log2(1 + gρ) +

1

log 2

m∑
i=2

(
si
(
ρh̄r
)i−m

+ e
m
ρh̄r Ei

(
− m

ρh̄r

) m∑
i=1

ti
(
ρh̄r
)i−m)

.

(36)

A secure transmission can be performed only if Cµ > 0.
The maximum of (34) can be found with an MDP approach,
where the MC state is given by the pair (e,g).

A property, that directly follows from the definitions of
T con
r (g, ρ), is the following.

Proposition 4. If for ρ > 0 we obtain T con
r (g, ρ) < 0, then

allocating a power ρ over sub-carrier r is strictly sub-optimal.

This result is intuitive. Indeed, if T con
r (g, ρ) < 0 and ρ > 0,

then in (34) we are adding negative terms. This is clearly sub-
optimal because it lowers the secrecy rate and wastes energy
at the same time.

Even if T con
r (g, ρ) has a complicated expression, as we will

see, we are interested in its double derivative with respect to
g and ρ:

∂2

∂ρ∂g
T con
r (g, ρ) =

1

log 2

1

(1 + gρ)2
. (37)

We now show that even with partial CSI the optimal secrecy
policy increases with the legitimate channel gain. As for

6Closed form expressions for si and ti can be derived but are quite
complicated. Moreover, we will see that they do not contribute to our next
results.



Theorem 3, the following result can be used to prune the action
space.7

Theorem 4. Consider N = 1. With partial CSI, the transmis-
sion power of OSP is non-decreasing with g (we omit the “1”
subscripts). Formally, if g′′ ≥ g′, then ρtot?

e,g′′ ≥ ρtot?

e,g′ .

Proof. The proof follows the same steps presented in Appen-
dices A, E, F. To prove the theorem the key point is that

∂2

∂ρ∂g
T con
r (g, ρ) ≥ 0. (38)

Note that, considering the derivative with respect to ρ, it fol-
lows from (38) that ∂

∂gT
con
r (g, ρB)− ∂

∂gT
con
r (g, ρA) ≥ 0, for

ρA ≤ ρB . We can rewrite the inequality as ∂
∂g

(
T con
r (g, ρB)−

T con
r (g, ρA)

)
≥ 0 and obtain

T con
r (g + ∆, ρA)− T con

r (g, ρA)

≤ T con
r (g + ∆, ρB)− T con

r (g, ρB),
(39)

∀∆ ≥ 0 and ρA ≤ ρB . This condition can be replaced with
Equation (64) in Appendix E to prove the theorem. �

2) Variable Rate Coding: Better performance can be ob-
tained with variable rate coding (see Equations (5) and (6)).
In this case, in every slot, the code rate is matched to the
legitimate channel rate. Thus, even if gr ≤ hr (eavesdropper’s
channel is better), the eavesdropper can gather at most Rgr

bits (legitimate transmission rate) and not Rhr (eavesdropper’s
transmission rate). The secrecy rate expression is

Cµ =

emax∑
e=0

πµtot(e)

∫
RN+

∫
RN+

N∑
r=1

[
log2

(
1 + grρr;e,g
1 + hrρr;e,g

)]+

×
N∏
r=1

(
fGr (gr)fHr (hr)

)
dg dh, (40)

As before, we introduce a function T var
r (g, ρr;e,g) such that

Cµ =

emax∑
e=0

πµtot(e)

∫
RN+

N∑
r=1

T var
r (gr, ρr;e,g)

N∏
r=1

fGr (gr) dg.

(41)

T var
r (g, ρ) ,

∫
R+

[
log2

(
1 + gρ

1 + hρ

)]+

fHr (h) dh (42)

=

∫ g

0

log2

(
1 + gρ

1 + hρ

)
fHr (h) dh. (43)

In Equation (43) we integrate from zero to g, thus we
remove the [·]+ notation (see the structure of Equation (7)
with variable rate coding).

Note that T var
r (g, ρ) ≥ T con

r (g, ρ), which justifies the fact
that the achievable secrecy rate with variable rate coding is
higher than with constant rate coding.

The analogous of Theorem 4 holds in this case, as can be
proved by exploiting the structure of the double derivative of
T var
r (g, ρ):

∂2

∂ρ∂g
T var
r (g, ρ) =

1

log 2

Γ(m)− Γ

(
m,

mg

h̄r

)
(1 + gρ)2Γ(m)

, (44)

7We provide a formal proof only for the case N = 1 because, even if
theoretically possible, the proof for a generic N > 1 is not analytically
tractable (see the related discussion just after Theorem 3).

Figure 2: Transmission power ρtot
?

e,g,h as a function of the battery level e for
several values of h and g ∈ [0.41, 0.51).

where Γ(m, z) ,
∫∞
z
e−ttm−1 dt is the incomplete gamma

function.

B. No Channel State Information

Lower secrecy rates are obtained when also the legitimate
receiver’s channel is unknown. In particular, the transmission
power cannot be adapted to the current channel state. It is easy
to show that Cµ can be greater than zero only if ḡr > h̄r for
some r. However, the mean values of the channel gains are
not controlled by the transmitter (they are physical quantities),
thus if the legitimate channel is (statistically) worse, no secrecy
can be achieved.

VI. NUMERICAL EVALUATION

In this section we discuss how the secrecy rate changes as
a function of the different system parameters.

We compare the following scenarios: OSP with full CSI
(OSP-FULL), OSP with only legitimate channel knowledge
and constant rate coding (OSP-PAR-CON) or variable rate
coding (OSP-PAR-VAR) and OSP with only statistical channel
knowledge (OSP-STAT).

If not otherwise stated, the simulation parameters are:
emax = 30, truncated geometric energy arrivals with bmax = 6
and b̄ = 1, n = 15 quantization intervals (see Section III-B),
N = 1 (single sub-carrier), ḡ = h̄ = 1 (symmetric scenario),
G = H = R+ with m = 1 (Rayleigh fading). After showing
results for this choice of parameters, we study the sensitivity of
the system performance by changing one or more parameters
while keeping the others fixed.

1) Fixed Parameters: Figure 2 shows the optimal transmis-
sion power ρtot?

e,g,h as a function of the battery level e when
g ∈ [0.41, 0.51) and h ∈ R+. We recall that, when G =
H = R+, we use the technique explained in Section III-B,
i.e., we have a finite number of points where the transmission
power is computed (n = 15). When h ≥ 0.51, the transmission
power is identically zero because the eavesdropper is always
advantaged. Also when h ∈ [0.41, 0.51) the transmission



Figure 3: Steady-state probabilities πµtot (e) as a function of the battery level
e.

power is zero. This is not obvious a priori and strongly
depends upon the considered interval of g. It can be seen
that Theorem 3 holds, i.e., ρtot?

e,g,h does not increase with h.
Finally, we note that the behavior of the transmission power
is not obvious a priori, e.g., it is significantly different from a
simple greedy policy (ρtot?

e,g,h = e) even when h is low.
Figure 3, instead, shows the steady-state probabilities as

a function of the energy level e, for fixed emax and in
the different scenarios. In all cases, the curves are similar.
This is because the device tends to operate in an efficient
region, i.e., approximately at emax/2. This is in order to avoid
energy outage and overflow, that degrade the performance of
the system. When e approaches emax, the steady-state tails
increase because of the overflow (when the battery is almost
full, all harvesting events leading to overflow contribute to
increasing the steady-state probability of state emax, which is
then higher than those of the immediately lower states).

2) Battery Size: In Figure 4 we show the rate achieved by
the various policies as a function of the battery size emax. We
use Rayleigh (m = 1) and a general Nakagami fading with a
strong Line of Sight (LoS) component (m = 5). The curves of
OSP-STAT are identically zero because ḡ = h̄. As expected,
OSP-FULL has the highest secrecy rate for every value. It can
be seen that the curves saturate after a certain value. This is
due to the combination of two effects: 1) the harvesting rate
of the EHD is limited (it can be shown that the performance
of an EH system is bounded) and 2) the achievable secrecy
rate always saturates in the high power regime (because of the
structure of Equation (7)). Note that the curves saturate already
for small emax, therefore, in practice, it may be sufficient to
use small batteries to obtain high secrecy rates.

In [29, Section IV-B] the authors showed that, when the
transmission is subject to an average power constraint, the
performance of the optimal transmission scheme with vari-
able rate coding and partial CSI knowledge approaches the
performance of the full CSI case when the transmission power
is sufficiently high. In our previous example, OSP-PAR-VAR
does not achieve OSP-FULL when emax increases because an

Figure 4: Secrecy rate Cµ as a function of the battery size emax in the case
of symmetric channel conditions.

Figure 5: Secrecy rate Cµ as a function of the battery size emax in the case
of asymmetric channel conditions and Rayleigh fading.

energy harvesting system imposes an average power constraint
b̄.8 It can be verified that, when b̄ increases, if the battery
size is sufficiently large, the gap between OSP-PAR-VAR and
OSP-FULL is smaller.

Note that the achievable secrecy rates strongly depend
upon the fading statistics. With m = 5, we have strong
LoS components, i.e., the channel pdfs tend to be narrow
around their means (ḡ = h̄). It follows that the legitimate
and eavesdropper’s channel gains are close to each other most
of the time. This corresponds to low values of Rgr,ρr (ρr), thus
a low secrecy rate. With Rayleigh fading, instead, exploiting

8This can be easily derived starting from the causality constraint

K∑
k=0

N∑
r=1

Σ
(k)
r ≤ E(0) +

K−1∑
k=0

B(k), ∀K = 0, 1, . . . (45)

where, according to Equation (11), Σ
(k)
r is the transmission power over sub-

carrier r in time slot k, B(k) is the amount of energy harvested in slot k and
E(0) is the amount of energy initially available in the battery. In the long
run, the right-hand side becomes the power constraint of our system.



Figure 6: Secrecy rate Cµ as a function of the number of sub-carriers N .

channel diversity allows to obtain higher rewards. This is
also the reason why, with Rayleigh fading, full channel state
information (OSP-FULL) provides a great improvement with
respect to the partial knowledge cases.

Figure 5 is similar to the previous one but with asymmetric
channel gains. When the eavesdropper is advantaged (ḡ = 1,
h̄ = 2), even if low performance can be achieved, secret
transmission is still possible. When OSP-PAR-CON is used,
it is likely that EHD transmits even when the eavesdropper’s
channel is better and in this case, from Equation (34), the
secrecy rate is lower. This effect is emphasized if the eaves-
dropper’s channel is advantaged, because it is more likely that
the legitimate channel is the worse of the two.

On the other hand, if the legitimate channel is better (ḡ = 2,
h̄ = 1), the secrecy rate can reach high values. In this case,
OSP-STAT is also considered and, as expected, is the worst
among the optimal policies.

3) Number of sub-carriers: When N = 1, finding the
optimal policies for high values of n (fine quantization of
the channel gains) is feasible. We recall that the number of
states of the MC is directly proportional to the number of
possible combinations of channel gains. Thus, with N = 1,
the possible combinations are n × n (legitimate channel ×
eavesdropper’s channel). With a generic N , the combina-
tions become nN × nN . Thus, the number of states grows
exponentially with the number of sub-carriers, making the
optimization process for high N infeasible in practice (curse-
of-dimensionality). Even when the problem symmetry can be
exploited (when Gr and Hr are i.i.d.), the computational effort
still remains heavy. In pratice, this approach can be applied
to multi-carrier scenarios if the number of carriers, N , and
the number of quantization levels for the channel, n, are
not too large. Note however that our solution suffers from a
dimensionality problem because it is the optimal solution. Part
of our future work agenda includes the design of sub-optimal
schemes and the study of trade-offs between computational
times and performance.

In the following, as an example, we consider a discrete

Figure 7: Secrecy rate Cµ of OSP-FULL as a function of the eavesdropper’s
BAD channel probability in a binary channel system.

GOOD-BAD channel and discuss the importance of the
power splitting scheme. We define G = H = {B,G} =
{1/30, 3/30} = {−15 dB,−10 dB} with probabilities 0.7
and 0.3, respectively. We also set emax = 10 because,
generally, the saturation region is almost reached for this
battery size (see Figures 4 and 5). In Figure 6, we plot OSP-
FULL as a function of the number of sub-carriers N when
the optimal (Equations (25)-(26)) or a uniform power splitting
is used. In the optimal case, as N increases, the reward also
increases. This is expected because, when one user experiences
a bad channel condition, then the power can be directed to
other good sub-carriers. Instead, with uniform power splitting,
the secrecy rate decreases with N . In practice, this happens
because, instead of sending all the transmission power in the
“good” sub-carriers, a fraction of this is wasted in the “bad”
sub-carriers. For example, with N = 2, it may happen that
over sub-carrier 1 the pair legitimate-eavesdropper’s channel
gain is (G,B) whereas, for sub-carrier 2, the pair is (B,B),
i.e., sub-carrier 1 is a “good” sub-carrier while sub-carrier 2 is
not. In this case, if a positive transmission power were used,
the corresponding reward would be greater than zero but the
power sent over sub-carrier 2 would be wasted (only when the
two pairs are (G,B) and (G,B), is no power wasted during
the transmission). This explains why the performance degrades
as the number of sub-carriers increases. Moreover, the effect is
emphasized with larger N because there are more cases where
the transmission power cannot be fully exploited.

When the legitimate and the eavesdropper’s channel gains
are known in every slot, using a smart power splitting scheme
is convenient because it can significantly improve the network
performance. If this is not possible (e.g., because this infor-
mation is not available or not reliable), a sub-optimal strategy
needs to be adopted, e.g., uniform power splitting, which is
simpler to implement but yields lower performance in general.
The study of the information/performance tradeoff for power
splitting strategies is left for future work.

Finally, Figure 7 shows how the optimal secrecy rate
changes as a function of P(h1 = B) = P(h2 = B) ∈ [0, 1]



for different numbers of sub-carriers. It can be noticed that
the case with five sub-carriers and P(h1 = B) = 0.2
achieves the same performance as the system with only one
sub-carrier but P(h1 = B) = 1. In practice, the diversity
offered by a greater number of sub-carriers can be efficiently
exploited to obtain higher secrecy rates. An interesting point
is that, as N increases, the improvement obtained from N to
N + 1 decreases. This is due to the concavity properties of
Equation (8). Therefore, it may not be necessary to use a large
number of sub-carriers to obtain high secrecy rates.

VII. CONCLUSIONS

In this work we analyzed an Energy Harvesting Device
that has a finite energy storage and transmits secret data to
a receiver over N parallel channels exploiting physical layer
characteristics. We found the best power allocation technique,
namely the Optimal Secrecy Policy (OSP), in several contexts
depending on the degree of channel knowledge the device has.
We proved several properties of OSP and in particular that it is
deterministic and monotonic. We also described a technique to
compute OSP by decomposing the problem in two steps and
using a dynamic programming approach. When only partial
channel state information is available, we described how the
maximum secrecy rate varies with constant and variable rate
coding, explaining and numerically evaluating the advantages
of variable rate coding. We numerically showed that, because
of the limited harvesting rate that is inherently provided by the
renewable energy source, OSP-PAR-VAR does not achieve the
same performance of OSP-FULL as the battery size increases,
and noted that it is not necessary to use very large batteries
to achieve close to optimal performance. We also set up the
problem when more than one sub-carrier is considered, and
discussed the scalability problems related to such scenario.
Also, we found that using the optimal power splitting scheme
provides a significant advantage with respect to the simpler
uniform splitting approach.

Future work may include the study of sub-optimal strategies
for the case with N sub-carriers in order to avoid the curse-of-
dimensionality problem. Also, other optimization techniques
can be investigated, e.g., offline approach, Lyapunov optimiza-
tion or reinforcement learning approach. Finally, it would be
interesting to set up a simulation experiment with real data
measurements (e.g., for the harvesting process) in order to
validate our results in a realistic scenario.

APPENDIX A
PROOF OF THEOREM 1

We want to show that OSP is a deterministic policy, i.e.,
given the state of the system, µ(ρ; e,g,h) = δρ,ρ?e,g,h , where
δ·,· is the Kronecker delta function.9

Note that the study can be split into two parts ac-
cording to Equation (17). Thus, we only need to prove
that both γµ(ρtot; e,g,h) (transmit power policy) and
φµ(ρ; ρtot, e,g,h) are deterministic. In the following we
prove the first part. The latter is derived in [29].

9A proof of this result in the discounted horizon case can be found in [43,
Theorems 6.2.9 and 6.2.10]. In our discussion we follow a different approach
which will also be useful to prove Proposition 3.

A. Deterministic Transmit Power Policy

As a preliminary result, we need the following proposition
(in this subsection, the expectation is always taken with respect
to G and H).

Proposition 5. P(E(k) = e|E(0)) depends upon the policy
only through E[γµ(ρtot; e,G,H)], ∀ρtot ∈ {0, . . . , e}, ∀e ∈
E.

Proof. The proof is by induction on k. At k = 0, P(E(0) =
e|E(0) = e0) is equal to 1 if e = e0 and to 0 otherwise. In
this case there is no dependence upon the policy.

Assume that the thesis is true for k (inductive hypothesis).
Using the chain rule, the probability that E(k+1) = e′ given
the initial state is

P(E(k+1) = e′|E(0)) =

emax∑
e=0

P(E(k+1) = e′|E(k) = e) (46)

× P(E(k) = e|E(0)).

Thus, to prove the thesis, we focus on P(E(k+1) =
e′|E(k) = e), whereas for P(E(k) = e|E(0)) we use the
inductive hypothesis. Assume e′ < emax

P(E(k+1) = e′|E(k) = e) (47)

=

min{e′,bmax}∑
b=max{0,e′−e}

pB(b)E[γµ(e− e′ + b; e,G,H)],

whereas, if e′ = emax

P(E(k+1) = emax|E(k) = e) (48)

=

bmax∑
b=max{0,emax−e}

pB(b)

e−emax+b∑
d=0

E[γµ(d; e,G,H)].

Note that we used the transmit power policy γµ(·) and
not the power allocation policy µ(·). Indeed, the battery
evolution does not depend upon the particular power split-
ting scheme but only on the total energy consumed. Thus,
P(E(k+1) = e′|E(0)) depends upon the policy only through
the expectations E[γµ(ρtot;E(k),G,H)]. �

Define now the long-term probabilities of being in the
energy level e given the initial level E(0) as π(e|E(0)) =
lim infK→∞

1
K+1

∑K
k=0 P(E(k) = e|E(0)). Thanks to the

above proposition, we know that π(e|E(0)) depends upon the
policy only through E[γµ(ρtot; e,G,H)], ∀ρtot ∈ {0, . . . , e},
∀e ∈ E.

Fix a value α(ρtot; e) for every pair ρtot and e, and consider
the set of policies Ξ that induce E[γµ(ρtot; e,G,H)] =
α(ρtot; e) for every pair. For every policy in Ξ, the long-term
probabilities are the same. The long-term average secrecy rate
given an initial state E(0) can be expressed as in Equation (16)

Cµ(E(0)) =
∑
e∈E

π(e|E(0)) (49)

× E
[ ∑
ρ∈P≤(e)

µ(ρ; e,G,H)c(ρ,G,H)

]
.



For every policy in Ξ, the terms π(e|E(0)) of the previous
expression are the same. Therefore, in order to maximize
Cµ(E(0)), we focus on the terms E[·] for each value of e. In
particular, the problem can be decomposed in emax+1 simpler
optimization problems (according to (13), define µ(e) ,
{µ(·; e,g,h), ∀g ∈ G, h ∈ H})

max
µ(e)

E
[ ∑
ρ∈P≤(e)

µ(ρ; e,G,H)c(ρ,G,H)

]
, (50a)

s.t.:
Constraints in (15); (50b)
E[γµ(ρtot; e,G,H)] = α(ρtot; e), ∀ρtot ∈ {0, . . . , e}.

(50c)

We rewrite the first expression as follows

max
µ(e)

E
[ ∑
ρtot∈{0,...,e}

γµ(ρtot; e,G,H) (51)

×
∑

ρ∈P=(ρtot)

φµ(ρ; ρtot, e,g,h)c(ρ,G,H)

]
.

where P=(ρtot) , {ρ : ρ � 0, ρtot =
∑N
r=1 ρr}.

As derived in [29, Eq. 7] with a Lagrangian approach,
φµ(ρ; ρtot, e,g,h) = δρ,τ?

ρtot,g,h
(φµ(·) is deterministic and

there is no dependence upon e when ρtot is fixed). τ ?ρtot,g,h is
the optimal transmit power splitting given the total transmis-
sion power ρtot and the channel gains (we use τ instead of ρ
for notation clarity). Therefore, we can rewrite (51) as

max
γµ(e)

E
[ ∑
ρtot∈{0,...,e}

γµ(ρtot; e,G,H)c(τ ?ρtot,G,H ,G,H)

]
.

(52)

For every fixed e, we want to define γµ(e) ,
{γµ(·; e,g,h), ∀g ∈ G, h ∈ H}. Note that the problem
is concave, thus a Lagrangian approach can be used. The
Lagrangian function is

L(e) = E
[ ∑
ρtot∈{0,...,e}

γµ(ρtot; e,G,H) (53)

×
(
c(τ ?ρtot,G,H ,G,H)− λ(ρtot; e)

)]
,

where λ(ρtot; e) is the Lagrange multiplier associated with
constraint E[γµ(ρtot; e,G,H)] = α(ρtot; e).

We now show that an optimal policy is γµ(ρtot; e,g,h) = 1
if ρtot = ρtot

e,g,h
? and zero otherwise, with

ρtot
e,g,h

?
= arg max
ρtot∈{0,...,e}

{
c(τ ?ρtot,g,h,g,h)− λ(ρtot; e)

}
. (54)

In order to maximize (53), we can focus on each argument
of the expectation

max
γµ(ρtot;e,g,h),

∀ρtot∈{0,...,e}

∑
ρtot∈{0,...,e}

γµ(ρtot; e,g,h) (55)

×
(
c(τ ?ρtot,g,h,g,h)− λ(ρtot; e)

)
︸ ︷︷ ︸

u(ρtot,e,g,h)

.

We recall that
∑
ρtot∈{0,...,e} γµ(ρtot; e,g,h) = 1. (55) is

a weighted sum that is maximized when γµ(ρtot; e,g,h) =
1 if ρtot = ρtot

e,g,h
? and zero otherwise. Indeed, sup-

pose by contradiction that there exist ρtot
1 and ρtot

2 (the
argument can be generalized to more than two) such
that γµ(ρtot

1 ; e,g,h) > 0, γµ(ρtot
2 ; e,g,h) > 0 and

γµ(ρtot
1 ; e,g,h) + γµ(ρtot

2 ; e,g,h) = 1. The max argu-
ment in (55) would be γµ(ρtot

1 ; e,g,h)u(ρtot
1 , e,g,h) + (1−

γµ(ρtot
1 ; e,g,h))u(ρtot

2 , e,g,h), which is smaller than or equal
to u(ρtot

e,g,h
?
, e,g,h).

APPENDIX B
PROOF OF PROPOSITION 1

The MC has three dimensions: the battery, the legitimate
channel and the eavesdropper’s channel. Since the fading is
not controlled by the EHD, the MC is always free to move
along the last two dimensions (we assume that the channel
evolution is i.i.d. over time). Thus, the only potential problem
is related to the battery dimension, i.e., if the policy is not
unichain, the device energy level may be stuck in different
subsets of E.

Also, we recall that we consider only discrete channel
conditions with non-zero probability (Remark 1). We now
discuss Point 1). We want to show that the recurrent class is
composed by the states with high energy levels, i.e., for every
e < emax, there exists a positive probability of increasing the
energy level. This is true by hypothesis because the maximum
transmit power in state e is lower than the maximum number
of energy arrivals bmax (ρtot

e,g′,h′ < bmax). Therefore, since it is
possible to reach the energy level emax (fully charged battery)
within a certain number of steps from every state, the policy
is unichain. To prove Point 2), a symmetric reasoning can be
followed.

If both conditions hold, it is possible to reach every e ∈ E

from any element of E, thus the policy induces an irreducible
MC. Since the number of states is finite, the MC is positive
recurrent.

APPENDIX C
DERIVING A UNICHAIN POLICY

As in Appendix B, it is always possible to move along
the channel dimensions. Therefore, we focus on the battery
dimension, which represents the only limitation for obtaining
a unichain policy.

Consider a policy µA that has two recurrent classes, namely
Π′A and Π′′A (this approach can be generalized to more than
two classes) and assume, without loss of generality, that if
E(0) ∈ Π′′A the greatest long-term reward is reached. We now
propose a technique to derive a new policy that, regardless of
the initial state, achieves the same maximum reward of µA.

Consider a second policy, namely µB , obtained from µA
as follows. For every eA = 0, . . . ,max{Π′′A}, set ρµBeB ,g,h =
ρµAeA,g,h , with eB = eA + emax−maxe{Π′′A}, i.e., we shift the
recurrent class Π′′A toward higher energy levels (we name Π′′B
the new recurrent class). For eB ∈ {0, . . . , emax−max{Π′′A}−
1}, set ρµBeB ,g,h = 0. In this way, the device cannot be stuck
in energy levels lower than emax − |Π′′B | + 1 (the harvested



energy increases the battery level) and, after a certain number
of transitions, it reaches the recurrent class Π′′B . Finally, since
the power splitting vectors in the recurrent classes Π′′A and
Π′′B coincide, µB achieves the same maximum reward of µA,
regardless of the initial E(0).

This proves that it is always possible to obtain a unichain
policy with the same maximum long-term secrecy rate as the
initial one and shows how to derive it.

APPENDIX D
PROOF OF THEOREM 2

Problem (12) can be rewritten using (21) in the following
form:

max
µ

Cµ = max
µtot

max
µ∈X(µtot)

Cµ (56)

X(µtot) , {µ : µtot and µ are consistent}, (57)

i.e., we fix the transmission powers (outer max) and focus on
all the policies which are consistent with such choice (inner
max). This is equivalent to searching through all the possible
feasible policies (as in (12)).

Consider the expression of Cµ in Equation (22) and note that
πµtot(e) does not depend upon the particular power splitting
scheme, but only upon µtot. Thus, the inner max can be moved
inside the integral

max
µtot

( emax∑
e=0

πµtot(e) (58)

×
∫
G×H

max
µ∈X(µtot)

(
c(ρe,g,h,g,h)

)
dF (g,h)

)
.

Note that inside the integral e, g and h are fixed. Therefore,
the only degree of freedom in the inner max operation is given
by the power splitting choice ρe,g,h .

Since µtot and µ are consistent, in the inner max we have
ρe,g,h ∈ P=(ρtot

e,g,h) (specified in (23)). Therefore,

max
µ∈X(µtot)

(
c(ρe,g,h,g,h)

)
≡ Problem (23) with x = ρtot

e,g,h

(59)

Thus, Points 1) and 2) of the theorem solve the internal and
external max operations, respectively.

APPENDIX E
PROOF OF PROPOSITION 3

The proof exploits the results of Appendix A, and in
particular Equation (54). Also, we focus on the energy levels
in the unique recurrent class (for the transient states the
proposition is trivial to prove since ρtot?

e,g′,h′ is always zero).
Assume that ρtot′ , ρtot?

e,g′,h′ is the optimal transmission
power given the state of the system (e,g′,h′), i.e., ρtot?

e,g′,h′ =

arg maxρtot∈{0,...,e}{c(τ ?ρtot,g′,h′ ,g
′,h′)− λ(ρtot; e)} (we re-

mark that τ ?ρtot,g′,h′ is the optimal power splitting vector given
ρtot and the channel gains). Similarly, ρtot′′ , ρtot?

e,g′′,h′′ is the
optimal power for state (e,g′′,h′′).

We first show by contradiction that if
D(ρtot;g′,h′;g′′,h′′) ≥ 0,∀ρtot, then ρtot′′ ≥ ρtot′ .

Assume ρtot′ > ρtot′′ . We now derive some properties of
ρtot′ and ρtot′′ and combine these with the hypothesis to
obtain the contradiction. From the definitions of ρtot′ and
ρtot′′ , we have

c(τ ?
ρtot′ ,g′,h′

,g′,h′)− λ(ρtot′ ; e)

≥ c(τ ?
ρtot′′ ,g′,h′

,g′,h′)− λ(ρtot′′ ; e),
(60)

c(τ ?
ρtot′′ ,g′′,h′′

,g′′,h′′)− λ(ρtot′′ ; e)

≥ c(τ ?
ρtot′ ,g′′,h′′

,g′′,h′′)− λ(ρtot′ ; e).
(61)

By hypothesis, we have, for every ρtot,

∂

∂ρtot

(
c(τ ?ρtot,g′′,h′′ ,g

′′,h′′)− c(τ ?ρtot,g′,h′ ,g
′,h′)

)
≥ 0.

(62)

Assume that the inequality is strict. This implies, for every
ρA < ρB

c(τ ?ρA,g′′,h′′ ,g
′′,h′′)− c(τ ?ρA,g′,h′ ,g

′,h′)

< c(τ ?ρB ,g′′,h′′ ,g
′′,h′′)− c(τ ?ρB ,g′,h′ ,g

′,h′).
(63)

In particular, since ρtot′ > ρtot′′ , choose ρA = ρtot′′ and
ρB = ρtot′ and obtain

c(τ ?
ρtot′′ ,g′′,h′′

,g′′,h′′)− c(τ ?
ρtot′′ ,g′,h′

,g′,h′)

< c(τ ?
ρtot′ ,g′′,h′′

,g′′,h′′)− c(τ ?
ρtot′ ,g′,h′

,g′,h′).
(64)

Finally, by combining (61) with (64), we obtain

c(τ ?
ρtot′ ,g′′,h′′

,g′′,h′′)− λ(ρtot′ ; e) + λ(ρtot′′ ; e)

≤ c(τ ?
ρtot′′ ,g′′,h′′

,g′′,h′′)

< c(τ ?
ρtot′ ,g′′,h′′

,g′′,h′′)− c(τ ?
ρtot′ ,g′,h′

,g′,h′)

+ c(τ ?
ρtot′′ ,g′,h′

,g′,h′),

(65)

which is equivalent to

c(τ ?
ρtot′ ,g′,h′

,g′,h′)− λ(ρtot′ ; e)

< c(τ ?
ρtot′′ ,g′,h′

,g′,h′)− λ(ρtot′′ ; e),
(66)

and violates Equation (60), leading to a contradiction.
Assume now that (62) holds with equality. Following the

previous reasoning, we obtain

c(τ ?
ρtot′′ ,g′′,h′′

,g′′,h′′)− c(τ ?
ρtot′′ ,g′,h′

,g′,h′)

= c(τ ?
ρtot′ ,g′′,h′′

,g′′,h′′)− c(τ ?
ρtot′ ,g′,h′

,g′,h′)
(67)

and, instead of (66),

c(τ ?
ρtot′ ,g′,h′

,g′,h′)− λ(ρtot′ ; e)

≤ c(τ ?
ρtot′′ ,g′,h′

,g′,h′)− λ(ρtot′′ ; e),
(68)

(68) must be satisfied with equality, otherwise it would
violate (60). This means that, for the same state (e,g′,h′),
there exist two distinct values of ρtot (i.e., ρtot′ and ρtot′′ ) that
maximize (54). This is not possible because in the recurrent
states the optimal solution is unique [42, Vol. II, Sec. 4].

The first point of Proposition 3 is thus proved. The proof
of the second point is symmetric.



APPENDIX F
PROOF OF THEOREM 3

We want to prove that, for OSP and N = 1, ρtot?

e,g,h does not
decrease with g and does not increase with h.
D(ρtot; g′, h′; g′′, h′′) can be written as

D(ρtot; g′, h; g′′, h) (69)

=
∂

∂ρtot

([
log2

(
1 + g′′ρtot

1 + hρtot

)]+

−
[
log2

(
1 + g′ρtot

1 + hρtot

)]+
)
.

Assume g′′ ≥ g′. If g′′ ≤ h, then both terms are zero
because g′ ≤ g′′ ≤ h. If g′ ≤ h < g′′, then only the right
term is zero. In this case, D(ρtot; g′, h; g′′, h) ∝ g′′ − h > 0.
If h < g′ ≤ g′′, then D(ρtot; g′, h; g′′, h) ∝ g′′ − g′ ≥ 0.

The proof of the second part is similar.
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