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Abstract—In this paper, we investigate the achievable secrecy
rates in an Energy Harvesting communication system composed
of one transmitter and multiple receivers. In particular, because
of the energy constraints and the channel conditions, it is
important to understand when a device should transmit or not
and how much power should be used. We introduce the Optimal
Secrecy Policy in several scenarios. We show that, if the receivers
demand high secrecy rates, then it is not always possible to satisfy
all their requests. Thus, we introduce a scheme that chooses which
receivers should be discarded. Also, we study how the system is
influenced by the Channel State Information and, in particular,
how the knowledge of the eavesdropper’s channel changes the
achievable rates.

I. INTRODUCTION

Security and privacy are becoming more and more important
in communications and networking systems, and have key
applications in the Wireless Sensor Network (WSN) and
Internet of Things (IoT) world [1]. While most works in this
area deal with security protocols [2], implementing security
mechanisms at the physical layer represents an interesting
complement to those networking approaches [3], and has the
potential to provide stronger (information-theoretic) secrecy
properties [4].

In the context of energy-constrained and green networking,
the design of low-power systems and the use of renewable
energy sources in network systems are prominent areas of
investigation. In particular, the use of Energy Harvesting
(EH) technologies as a way to prolong unattended operation
of a network is becoming more and more appealing [5]–
[8]. However, despite these trends, security and privacy is-
sues so far have been addressed mostly by neglecting low-
power design principles (except possibly for some attempts
at limiting the computation and processing costs and/or the
number of messages needed to implement a secure protocol).
In particular, the impact of power allocation policies and of
system features related to energy harvesting has only been
studied in some special cases [9], [10]. Since green aspects
will play an increasingly large role in future networks, it is
essential to bring low-power, energy-constrained and green
considerations into this picture. In this paper, we try to partly
fill this gap, studying how the use of energy harvesting affects
the design and performance of physical layer security methods.

Perfect secrecy [4] is achieved when the mutual information
between the information signal (s) and the signal received
by the eavesdropper (z) is zero, i.e., I(s; z) = 0. In this
case, signal z is useless when trying to determine s. In [11],

Wyner showed that if the eavesdropper’s channel is degraded
with respect to the legitimate channel, then it is possible to
exchange secure information at a non-zero rate while keeping
the information leakage to the eavesdropper at a vanishing
rate. It was shown in [12] that in a fading scenario it is
also possible to obtain a non-zero secure rate even if the
eavesdropper’s channel is better than the legitimate one on
average, by exploiting advantageous time intervals. In [13], the
secrecy capacity of fading channels in the presence of multiple
eavesdroppers is studied. Moreover, [14] presents a resource
allocation algorithm for achieving secrecy in a Multiple-Input
Single-Output (MISO) energy harvesting communication sys-
tem based on energy transfer. Also [10] considered the energy
transfer mechanism and studied how to efficiently allocate the
power over several sub-carriers in an EH system. [15] studied
the secrecy capacity of a Gaussian wiretap channel with
an amplitude constraint. In [16] the secrecy capacity was
analyzed in a batteryless energy harvesting communication
system. In this paper, on the other hand, we focus on a system
with a battery and characterize the problem with a dynamic
programming approach.

The goal of the present work is to investigate the achievable
secrecy rates when an Energy Harvesting transmitter with
a finite battery is considered. In particular, because of the
energy constraints, choosing when to transmit is fundamental
to obtain higher rates, thus we derive the Optimal Secrecy
Policy in several cases. First we consider a static channel and
maximize the long-term average secrecy rate with and without
minimum secrecy requirements. Then, in Section IV we extend
the problem to the case in which the channel is affected by
random fading and show how the achievable secrecy rate
changes when only partial Channel State Information (CSI)
is available.

The paper is structured as follows. Section II defines the
system model and introduces the notion of secrecy rate.
Section III studies the maximization of the secrecy rate in
the case of complete CSI and static channel. This hypothesis
is relaxed in Section IV where we consider partial CSI for a
random fading channel. The numerical evaluation is presented
in Section V. Section VI concludes the paper.

II. SYSTEM MODEL AND SECRECY RATE

We consider an Energy Harvesting Device (EHD) that
simultaneously transmits data over N sub-carriers. In the
next we suppose that every sub-carrier is associated to a
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single receiver. (Equivalently, we can consider a transmitter
that sends data to a single receiver in a large frequency
band composed of N independent narrow bands, and similar
results would be obtained [17].). Each receiver requires a
secrecy rate greater than zero in order to guarantee secure
transmission. For every receiver, there is one eavesdropper
that attempts to intercept the transmitted data. We initially
assume that the EHD knows the CSI of all the receivers and
eavesdroppers instantaneously1 and later relax this hypothesis
(Section IV). Time is divided into slots of equal duration T ,
chosen according to the channel coherence time, in order to
guarantee constant channel gains in every slot.

The EHD is equipped with a battery of finite size emax and
in slot k the device has Ek ∈ E = {0, 1, . . . , emax} energy
quanta stored. The harvesting is described through an energy
quanta arrival process {Bk}, e.g., deterministic, Bernoulli or
truncated geometric (e.g., see [18] for a characterization of the
light energy). The average harvesting rate is b̄, the maximum
number of energy quanta harvested per slot is bmax and a
quantum harvested in slot k can only be used in time slots
> k. The system is described through a Markov Chain (MC)
whose state e corresponds to having e energy quanta stored
in the battery. We suppose that the device always has data to
send and that the energy cost that the device sustains is mainly
due to data transmission.

A. Secrecy Rates and Capacity

We introduce the concept of Secrecy Rate and Secrecy
Capacity with only one sub-carrier [12], [16] (every sub-
carrier can be analyzed independently and the overall defi-
nition of secrecy rate with N sub-carriers can be derived as
in Equation (3)). The transmitter sends a message s to the
legitimate receiver. An (M, l) code consists of three elements:
1) a message set S = {1, . . . ,M}, 2) a probabilistic encoder
f encl at the transmitter that maps a random message s ∈ S
(realization of the r.v. S) into a codeword of length l, and 3) a
decoder at the legitimate receiver that extracts ŝ (realization of
the r.v. Ŝ) from the received message in Yl, i.e., fdecl : Yl → S.
The average error probability of an (M, l) code is given by

P lerr ,
1

M

∑
s∈S

P
(
Ŝ 6= s|S = s

)
. (1)

The equivocation rate at the eavesdropper is Rle =
(1/l)H(S|Zl), i.e., the conditional entropy rate of the trans-
mitted message given the eavesdropper’s channel output Zl.
Rle represents the level of ignorance of the transmitted signal at
the eavesdropper. Information theoretic secrecy (unconditional
security) is obtained if Rle = R, where R is the message rate.
The secrecy rate Rs is said to be achievable if there exists a
set of (2lRs , l) codes, l = 1, 2, . . . , such that

lim
l→∞

P lerr = 0, Rs ≤ Re , lim
l→∞

Rle (2)

and the secrecy capacity is defined as the supremum of the
set of achievable secrecy rates. In the next we discuss how
the secrecy rate changes in several scenarios.

1This is reasonable if also the eavesdroppers are potential receivers of the
transmitter, thus they are legitimate nodes [10].

III. STATIC CHANNEL ANALYSIS

The channel gains in slot k are gk = [g1,k, . . . , gN,k]
and hk = [h1,k, . . . , hN,k] for the N receivers and their
corresponding eavesdroppers, respectively. gk and hk can
be interpreted as realizations of two joint random vectors
G = [G1, . . . , GN ] and H = [H1, . . . ,HN ] (assumed i.i.d.
over time).

In this section we assume that gk = g, hk = h are constant
over time, i.e., G and H are deterministic (in Section IV we
will relax this hypothesis), and g � h (element-to-element
condition). Indeed, if ∃i : gi ≤ hi, then the secrecy rate
over sub-carrier i is zero and i cannot be used for secure
transmission. In this case the problem can be reformulated by
neglecting sub-carrier i.

A. Secrecy Capacity Expression

Under the assumption that the total transmission power ω
is used and N sub-carriers are considered, the corresponding
secrecy capacity is given by (we consider AWGN channels)

c(σ) =

N∑
m=1

cm(σm), (3)

cm(σm) =

{
0, if hm ≥ gm,
Rgm,hm

(σm), otherwise,
(4)

Rgm,hm(σm) , log2

(
1 + gmσm
1 + hmσm

)
, (5)

ω ,
N∑
m=1

σm, (6)

i.e., c(σ) is the sum of the secrecy capacities over the
several sub-carriers. The value of c(σ) changes according
to the choice of the power allocation over the several sub-
carriers σ , [σ1, . . . , σN ]. Note that, in general, c(σ) =
c(σ(g,h), g,h), i.e., both the power allocation and the secrecy
capacity depend upon the channel state vectors g and h.
Since in this section g and h are constant, we omit these
dependencies for notational simplicity.

A policy µ specifies the power allocation σ that is used
in slot k. In the long run, the average secrecy rate under a
policy µ is given by the average undiscounted reward Cµ

Cµ , lim inf
K→∞

1

K

K−1∑
k=0

EBk
[c(σk)], (7)

where EBk
[·] is the expectation taken with respect to {Bk}.

Without loss of generality (see [17]), in the next we consider
only unichain policies, i.e., those that induce an irreducible
MC. In this case, Cµ does not depend upon the initial state.
The policy µ is described through the (emax + 1)×N secrecy
policy matrix

Ω =

 σ1(0) . . . σN (0)
...

...
σ1(emax) . . . σN (emax)

 , (8)

that, for every energy state e ∈ E , represents the amount of
energy that should be spent in every sub-carrier (in the next
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we will use µ and Ω interchangeably). We also define the
row-sum of Ω as

ω(e) ,
N∑
m=1

σm(e) (9)

and the corresponding column vector of row sums is ω =
[ω(0), . . . , ω(emax)]T . ω(e) represents the amount of energy
quanta that are drawn from the battery in state e, thus it is
an integer value in {0, . . . , e}. Instead, σm(e) represents the
amount of energy that is sent over sub-carrier m in state e
and is not restricted to be an integer (e.g., in state e = 5 with
N = 2, we may extract ω(5) = 3 energy quanta and assign
σ1(5) = σ2(5) = 1.5).

It can be shown that (7) can be rewritten as:

CΩ =
∑
e∈E

πω(e)c(σ(e)), (10)

where πω(e) is the steady-state probability of being in state
e and σ(e) is the power allocation choice in state e, given a
policy matrix Ω. Note that, since the steady-state probabilities
are found using the battery transition probabilities (that are
influenced by ω only), πω(e) depends only upon the column
vector ω.

B. Maximization of the Secrecy Rate
We study the following problem

P : Ω? = arg max
Ω

CΩ. (11)

The policy µ? that maximizes CΩ is named Optimal Secrecy
Policy (OSP). In particular, in the previous section we implic-
itly restricted our study to deterministic policies because it can
be proved that OSP is deterministic [17]. Note that, since we
are considering two dimensions (battery size and sub-carriers),
in this case the maximization of CΩ can be simplified in two
steps.

Theorem 1. The maximization of CΩ can be decomposed into
two steps:

1) for every choice of ω, find the optimal power splitting
choice

σ? = arg max
σ

N∑
m=1

cm(σm), (12)

s.t. ω =

N∑
m=1

σm; (13)

2) maximize CΩ by considering only the vector ω

ω? = arg max
ω : ω(e)=

∑N
m=1 σ

?
m(e)

∑
e∈E

πω(e)c(σ?(e)). (14)

The optimal secrecy policy matrix Ω? can be found by fixing
the sum of every row according to point 2) and choosing σm(e)
with the optimal power splitting choice of point 1).

Proof. Problem P can be rewritten in the following form:

max
ω

(
max

Ω : Ω1=ω

(∑
e∈E

πω(e)c(σ(e))

))
, (15)

i.e., we fix the row sums of Ω (outer max) and we focus on all
the Ω with column vector ω (inner max). This is equivalent
to searching through all the possible entries of Ω (as in (11)).

Let us start from the inner max operation. The structure
of its argument can be divided into two parts: 1) the steady-
state probabilities πω(e) and 2) the secrecy capacities c(σ(e)).
Since ω is fixed, so is πω(e). Moreover, c(σ(e)) depends only
upon row e of matrix Ω. Therefore, (15) can be expressed as

max
ω

(∑
e∈E

πω(e) max
ω(e)=

∑N
m=1 σm(e)

(
c(σ(e))

))
. (16)

Points 1) and 2) of the theorem solve the inner and outer
max operations in (16), respectively. �

For a fixed ω, the optimal power splitting choice σ? that
solves (12)-(13) was found in [12]:

σ?m =

[√
α2
m

4
+
αm
η
− βm

2

]+
, (17)

αm ,
1

hm
− 1

gm
, βm ,

1

hm
+

1

gm
, (18)

where η is a parameter used to satisfy ω =
∑N
m=1 σ

?
m

(note the dependence upon the channel coefficients). In the
remainder of the paper we assume that this optimal power
splitting choice is used, unless otherwise stated.

To solve point 2) instead, the Optimal Secrecy Policy can
be found numerically via dynamic programming techniques,
e.g., the Policy Iteration Algorithm (PIA) [19]. Note that
both points 1) and 2) can be easily solved, therefore the
decomposition strategy of Theorem 1 greatly simplifies the
numerical evaluation.

Analytically, the problem can be solved for a fixed emax.
However, except for very small emax, the solutions are com-
plicated and not easily readable, and do not provide further
insight on the general structure of OSP.

C. Minimum Secrecy Rate Constraints

Problem P can be extended to consider also the following
common requirements

cm(σm(e)) ≥ cm,min, (19)

for m = 1, . . . , N , i.e., a minimum secrecy rate is required
over every sub-carrier. If a constraint cannot be satisfied, then
the device should not transmit over that sub-carrier.

We define the problem P ′ as the extension of P with
constraints induced by (19). Using (5), the inequality can be
rewritten in the power domain:

(19) ⇔ σm(e) ≥ 2cm,min − 1

gm − hm2cm,min
, σm,min. (20)

If in state e we have
∑N
m=1 σm,min > e (see Eq. (9)), then

it is not possible to satisfy all the constraints because too much
transmission energy is demanded (we cannot consume more
energy than the stored amount). Thus, we have to identify a
proper set of discarded receivers I(e) such that

N∑
m=1

m6∈I(e)

σm,min ≤ e. (21)

Several techniques can be adopted to choose I(e), e.g.,
random, overall secrecy maximization, maximum fairness.
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Cµ =

emax∑
e=0

(
πω(e)

∫
RN

+

∫
RN

+

N∑
m=1

[
Rγm,νm

(
σm(e,γ,ν)

)]+ N∏
m=1

(
fGm

(γm)fHm
(νm)

)
dγdν

)
(22)

Here we choose a simple scheme, namely Maximum Active Re-
ceivers (MAR), that keeps the maximum number of receivers,
and leave considerations of other techniques as future work.
The first element to put in I(e) is chosen as

i = arg max
m

{σm,min, m = 1, . . . , N}. (23)

In this way, we remove the highest constraint, thus it is
more likely that

∑N
m=1
m6=i

σm,min ≤ e. If there exist m1,m2

such that maxm σmin = σm1,min = σm2,min, then i is chosen
randomly. If, even after removing σi,min, the sum of σm,min

is still greater than e, the procedure is repeated. Note that
this choice results in the maximization of the number of used
sub-carriers because we are discarding the highest constraints.

In order to maximize CΩ, the technique in Theorem 1 can
still be employed but the optimal power splitting choice in
point 1) changes accordingly.

IV. ANALYSIS WITH FADING AND STATISTICAL CSI
In this section we focus on problem P when fading is

considered. Here, we explicitly write the dependences upon
the channel gains. With fading, the ergodic secrecy rate can
be computed according to

Cµ =

emax∑
e=0

πω(e)

∫
R2N

+

c(σ(e,γ,ν),γ,ν)fG,H(γ,ν)dγdν,

(24)

where γ ∈ RN+ and ν ∈ RN+ are the channel gains vectors for
the N receivers and eavesdroppers, respectively. fG,H(γ,ν)
is the joint probability density function of G, H . πω(e) is
the steady-state probability of having e energy quanta stored.
The system state is defined by the (2N +1)-tuple (e,γ,ν). A
policy µ defines the value of the transmission power for every
possible system state. As in the previous section, the optimal
secrecy policy can still be found with PIA.2

A more explicit expression of Cµ is given in Eq. (22) on
the top of the page. For the sake of simplicity, the random
variables Gm and Hm (with means ḡm and h̄m) are assumed
independent among the several sub-carriers and of each other,
which justifies the product inside the integrals in (22).

We also assume that, while the power allocation depends
on the channel state, the coding scheme is constant rate [12]
and its choice only depends on the overall channel statistics.

A. Partial Channel State Information

In this section we focus on N = 1 that represents a realistic
special case where there is only one receiver, and makes it
possible to derive analytical results. In the general case, the
optimal power splitting scheme has to be found for every
possible state of the system (in particular, the parameter η
in (17) cannot be easily expressed in closed form).

2Note that, when there is an infinite number of system states, it is possible
to discretize the channel gains and apply PIA to solve the problem.

We study the case where G = [G1] and H = [H1] (in the
next we omit the “1” subscript) are affected by fading but CSI
is available only for G. This is a realistic assumption, i.e., the
legitimate channel gain can be found by collaborating with
the receiver, whereas the eavesdropper’s channel is unknown.
In this case it may happen that EHD transmits even when the
eavesdropper’s channel gain is higher than the legitimate one.
Because of this, from Eq. (5), without full CSI it is unavoidable
to have some slots with Rγ,ν(ω) < 0. A policy defines the
values of the transmission power ω for every state (e, γ) (ν is
unknown). The secrecy rate expression becomes

Cµ =

[
emax∑
e=0

πω(e)

∫
R2

+

Rγ,ν(ω(e, γ))fG(γ)fH(ν)dγdν

]+
.

(25)
Note that in this case we integrate both positive and neg-

ative terms. The negative terms are due to the fact that the
eavesdropper’s channel may be better than the legitimate one.
A secure transmission can be performed only if Cµ > 0.
By integrating over ν and assuming Rayleigh fading (H ∼
Exp(1/h̄)) we obtain

Cµ =

[
emax∑
e=0

πω(e)

∫
R+

fG(γ)T (γ, h̄, ω(e, γ))dγ

]+
, (26)

T (γ, h̄, ω) , log2(1 + γω)− e
1

ωh̄

ln(2)
Γ

(
0,

1

ωh̄

)
, (27)

where Γ(·, ·) is the incomplete gamma function.3 In order to
maximize Cµ, we want to sum as many positive terms as
possible. We have the following intuitive results.

Proposition 1. Consider N = 1 and an unknown eaves-
dropper’s channel. In the optimal secrecy policy we have
ω?(e, γ) = 0, ∀e ≤ ω0, where ω0 = min{ω : T (γ, h̄, ω′) >
0,∀ω′ > ω}. If such a ω0 does not exist, then ω?(e, γ) =
0, ∀e. Moreover,

1) if limω→∞ T (γ, h̄, ω) ≤ 0, then ω0 does not exist;
2) if limω→∞ T (γ, h̄, ω) > 0, then ω0 exists.

Proof. It can be verified that in general T (γ, h̄, ω) decreases
in ω in the range (0, ωmin) and then increases in (ωmin,∞).
It may also be that ωmin = 0, i.e., T (γ, h̄, ω) is always
increasing. If the asymptote is positive, then there exists
ω0 ≥ 0, otherwise the function is always negative. Thus, if
a transmission is performed with T (γ, h̄, ω) < 0, the device
wastes energy and degrades its reward at the same time, which
is sub-optimal. �

From the above results, if ω0 exists and the battery is
sufficiently large, it is possible to achieve positive secrecy rate
by knowing the statistics of the eavesdropper fading process
only. With a finite battery, the secrecy achievability depends

3The incomplete gamma function is defined as Γ(a, z) ,
∫∞
z ta−1e−tdt.
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Figure 1: T (γ, h̄, ω) as a function of ω for several values of
γ when h̄ = 0.30.
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Figure 2: Secrecy rate Cµ as a function of x.

upon emax, ḡ and h̄ (ω0 has to exist and to be sufficiently
small). In this case, instead of limω→∞ it is sufficient to
evaluate T (γ, h̄, ω(emax, γ)).

In Fig. 1, we plot the function T (γ, h̄, ω) for several cases. It
can be seen that the curve for γ = 0.30 is always greater than
zero, i.e., ω0 = 0. Instead, when γ = 0.20, ω0 is greater than
zero but there still exists a region where T (γ, h̄, ω) > 0. The
other cases fall under point 1) of Prop. 1, i.e., no transmission
should be performed in these cases, regardless of the available
energy. Note that, when γ = 0.30, we have γ = h̄ and the
curve is always positive. This happens because it is more likely
that ν < h̄ (prob. (e− 1)/e) than ν ≥ h̄ (prob. 1/e).

Remark 1. As γemax → 0 and h̄emax → 0 (low SNR regime),
ω0 = 0 if γ > h̄ and ω0 does not exist if γ ≤ h̄.

Proof. In the low SNR regime, we have γω → 0 for any
ω ≤ emax and νω → 0 with high probability, therefore we
can approximate log( 1+γω

1+νω ) as ω
ln 2 (γ − ν). Thus, T (γ, h̄, ω)

is equal to ω
ln(2) (γ − h̄), that is greater than zero if and only

if γ > h̄. �

B. No Channel State Information

We now suppose that the state of the legitimate receiver’s
and the eavesdropper’s channels are both unknown at the
transmitter. Following the reasoning of the previous section,
we have

Cµ =

[
emax∑
e=0

πω(e)U(ḡ, h̄, ω(e))

]+
,

U(ḡ, h̄, ω) ,
e

1
ωḡ

ln(2)
Γ

(
0,

1

ωḡ

)
− e

1
ωh̄

ln(2)
Γ

(
0,

1

ωh̄

)
.

In this case, it is harder to obtain a positive secrecy rate
because it is not possible to choose the transmission power
based on the channel gains. Cµ can be greater than zero only
if ḡ > h̄. However, the values of the channel gains are not
controlled by the transmitter (they are given by the physical

scenario), thus if the legitimate channel is (statistically) worse,
no secrecy can be achieved.

V. NUMERICAL EVALUATION

A. Static Channel

In our numerical evaluation we show how the secrecy rate
CΩ is influenced by the system parameters. If not otherwise
stated, we use emax = 30 and a truncated geometric energy
arrival process with b̄ = 5 and bmax = 25. We set N = 8 and
the channel gains are generated by an exponential distribution
with mean ḡ = h̄ = 1/30. The results shown have been
obtained by averaging 30 independent channel realizations,
which has been found to provide adequate statistical accuracy.

First of all, we want to show the importance of the op-
timal power splitting scheme. In Fig. 2 we plot the optimal
secrecy rate CΩ? for several values of N when σm,min(e) ≤
xe/N, ∀m, x ∈ [0, 1], i.e., the minimum transmission
power is a fraction of the current energy state. When no
smart power splitting scheme is used (high values of x),
the reward decreases significantly, especially for higher N ,
becoming even lower than 50% of the maximum achievable.
The maximum is obtained when no constraints are imposed
to cm,min, i.e., x = 0, because in this case the optimal power
splitting choice (17)-(18) can be used. Note that, by choosing
σm,min(e) = xe/N , it is always possible to satisfy all the
constraints, thus MAR is not necessary in this case. Even if
imposing that σm,min(e) depends upon the current battery state
e is not a realistic assumption, Fig. 2 is useful to understand
the importance of the power splitting scheme.

In Fig. 3, instead, we change σm,min = σmin, ∀m inde-
pendently of e. This hypothesis is more realistic. In practice,
we are imposing that a receiver demands to receive data with
a sufficiently high secrecy rate. At σmin = 0, we have that
no receiver is discarded a priori, i.e., I(e) = ∅, ∀e. This is
because

∑N
m=1 σm,min = N × σmin = 0 ≤ e for every e.

As σmin increases, N × σmin ≤ e may not be satisfied for
every battery state. In these cases, MAR is performed and
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Figure 3: Secrecy rate Cµ and number of discarded receivers as a function of σm,min = σmin, ∀m and the battery status e ∈ E
with the same parameters of Fig. 2.
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Figure 4: Transmission power ω?(e, ·) as a function of the
battery status e.

some receivers are discarded, i.e., I(e) 6= ∅ for some e. Note
that CΩ may also increase as σmin increases. To understand
this behavior, focus on a fixed e and suppose N × σ′min = e.
Now, increase σ′min to σ′′min such that N × σ′′min > e but
(N − 1) × σ′′min < e. When σ′min is considered, the power
splitting scheme forces all the sub-carriers to transmit with
power equal to σ′min (as in the right side of Fig. 2). In
this case the power splitting scheme is inefficient, thus the
corresponding secrecy rate is low. With σ′′min, instead, the
power splitting scheme has to satisfy less strict constraints
(because (N − 1) × σ′′min < e), resulting in a higher secrecy
rate.

Also, we plot the number of discarded receivers as a
function of σmin and of the battery status. Note that the number
of discarded receivers can be simply found as the minimum
value |I(e)| in 0, . . . , N that satisfies (N−|I(e)|)×σmin ≤ e.

When e = 0, no receiver can be served, i.e., |I(0)| = 8 in this
example. As e increases, also the number of possible receivers
increases because there is more energy available. When σmin

is high, the number of served receivers is low and vice-versa.

B. Fading and Statistical CSI

As in Section IV-A, we set N = 1. We consider
H ∼ Exp(1/0.9), emax = 30, and a truncated geometric
arrival process with b̄ = 4 and bmax = 10. We suppose that
the legitimate channel can assume only two values γA = 1.125
and γB = 0.750 with probabilities 0.4 and 0.6, respectively.
Note that ḡ = h̄. With no CSI (Section IV-B), the maximum
secrecy rate is zero, i.e., no security, because U(ḡ, h̄, ω) = 0,
independent of ω. In Fig. 4, instead, we show the optimal
secrecy policy when only partial knowledge of the channel
states is available (Section IV-A). We depict two curves
ω?(e, γA), ω?(e, γB), one for every possible realization of G.
Note that ω?(e, γB) ≤ ω?(e, γA) because γB < γA. ω?(e, γB)
is greater than zero only for high values of e. If we had
considered the low SNR regime, then ω?(e, γB) would have
been identically zero (see Remark 1).

Fig. 5 presents the secrecy rate as a function of the battery
size for h̄ ∈ {0.6, 0.9, 1.2}. The rate saturates at constant
values that depend upon the eavesdropper’s channel, thus it
is not necessary to use very large batteries to obtain high
capacities. For example, to reach 95% of the secrecy rate at
emax = 30, it is sufficient to have a battery of size 12, 12 and
19 for h̄ ∈ {0.6, 0.9, 1.2}, respectively. Note that even when
the eavesdropper’s channel is statistically better, Cµ is greater
than zero.

In Fig. 6 we plot Cµ as a function of h̄ for γA = 0.1
with probability 0.4833 and γB = 0.0333 with probability
0.5167. As expected, the higher h̄, the lower Cµ because the
eavesdropper’s channel improves with h̄. However, note that
even with h̄ = 0 we have a limited secrecy rate (because the
channel capacity is bounded). Between γA and γB, the rate is
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Figure 5: Secrecy rate Cµ as a function of the battery size
emax.

still greater than zero. We have Cµ = 0 at h̄ = 0.14 > γA, i.e.,
there exists a set of values such that, even if the eavesdropper’s
channel is statistically better, it is still possible to have secrecy.
If we had chosen very small values of γA and γB, then we
would have obtained Cµ = 0 for all h̄ ≥ γA (see Remark 1).

VI. CONCLUSIONS

In this work we analyzed an Energy Harvesting Device
that transmits secret data to N receivers exploiting physical
layer characteristics. First, we considered a static channel and
introduced the Optimal Secrecy Policy, i.e., the technique that
maximizes the secrecy rate with and without minimum secrecy
constraints. We showed that the secrecy rate is related to the
number of served receivers. In particular, it may not always
be possible to satisfy all the secrecy constraints, thus we
introduced the Maximum Active Receivers scheme to select
the receivers that should be discarded. In the second part
we considered random fading and studied how the secrecy
rate changes when only partial CSI knowledge is available.
We numerically showed that, even when the eavesdropper’s
channel is statistically better, it is still possible to obtain
positive capacities also with finite batteries. We showed that
the secrecy rate is bounded and that, in general, it is not
necessary to use very large batteries.

Future work includes extensions to the model (e.g., consid-
ering the circuitry costs and correlated channels), the introduc-
tion of alternatives to MAR and the study of larger networks.
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