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Abstract

Energy harvesting from environmental energy sources (e.g., sunlight) or from man-made
sources (e.g., RF energy) has been a game-changing paradigm, which enabled the possibility
of making the devices in the Internet of Things or wireless sensor networks operate
autonomously and with high performance for years or even decades without human
intervention. However, an energy harvesting system must be correctly designed to achieve
such a goal and therefore the energy management problem has arisen and become a critical
aspect to consider in modern wireless networks. In particular, in addition to the hardware
(e.g., in terms of circuitry design) and application point of views (e.g., sensor deployment),
also the communication protocol perspective must be explicitly taken into account; indeed,
the use of the wireless communication interface may play a dominant role in the energy
consumption of the devices, and thus must be correctly designed and optimized. This
analysis represents the focus of this thesis.

Energy harvesting for wireless system has been a very active research topic in the past
decade. However, there are still many aspects that have been neglected or not completely
analyzed in the literature so far. Our goal is to address and solve some of these new
problems using a common stochastic optimization setup based on dynamic programming.
In particular, we formulate both the centralized and decentralized optimization problems
in an energy harvesting network with multiple devices, and discuss the interrelations
between these two schemes; we study the combination of environmental energy harvesting
and wireless energy transfer to improve the transmission rate of the network and achieve a
balanced situation; we investigate the long-term optimization problem in wireless powered
communication networks, in which the receiver supplies wireless energy to the terminal
nodes; we deal with the energy storage inefficiencies of the energy harvesting devices,
and show that traditional policies may be strongly suboptimal in this context; finally, we
investigate how it is possible to increase secrecy in a wireless link where a third malicious
party eavesdrops the information transmitted by an energy harvesting node.
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CHAPTER 1

Introduction

In the context of energy-constrained and green networking, the design of low-power
systems and the use of renewable energy sources in wireless networks are prominent areas
of investigation. If equipped with harvesting capabilities, the nodes in the Internet of
Things (IoT) or in a Wireless Sensor Network (WSN) can recharge their batteries with
renewable energy sources. Since one of the main goals in this context is to keep the network
operational for a very long time (even decades), Energy Harvesting (EH) is a promising
technique to achieve such a target.

From a networking perspective, one of the main challenges in EH scenarios consists
in correctly managing the available energy in order to optimize the network performance
(e.g., in terms of throughput, transmission rate, etc.). Indeed, EH adds a new level of
complexity to the system, which must be correctly analyzed in order to really exploit its
benefits. The goal of this thesis is to address, formalize and solve some of the problems
related to the energy management.

The three main topics that will be covered are:

• Energy Harvesting Networks with Multiple Devices. Studying an Energy
Harvesting Device (EHD) alone is useful to understand the key trade-offs and limits
of an energy harvesting system. However, when multiple devices are considered,
new network concerns (e.g., coordination, scheduling and channel access) need to be
addressed and may significantly change the behavior of the EHDs. In the first part
of the thesis, we will focus on the centralized and decentralized network optimization
schemes. In the first case, the Receiver (RX) knows the state of the system (i.e., the
energy level of the devices) and decides the actions the EHDs should perform (e.g.,
whether to transmit or not) in every time instant. Instead, in the latter, the receiver
knows the state of the system sporadically and tries to compute the best possible
series of actions using partial information only.

• Wireless Energy Transfer. In the second part of the thesis, we will study more
recent applications of the energy harvesting technologies. We focus on man-made
energy (and not only on the traditional environmental energy sources as, for example,
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sunlight) and define how the capabilities of controlling and transfer the energy
wirelessly bring new life to wireless systems. More specifically, we focus on the
energy cooperation paradigm, in which users transfer energy to each other to improve
the overall performance of the system, and on Wireless Powered Communication
Networks (WPCNs), in which an Energy Rich Node (ERN) (e.g., the receiver)
transfers Radio-Frequency (RF) energy to the other nodes in the network.

• Peculiar Aspects of Energy Harvesting Systems. Although EHDs have al-
ready been studied in the literature from different points of view, many aspects have
been neglected or only marginally addressed so far. One of the contributions of
this thesis is the study of the effects of inefficiencies of the EHDs (e.g., in terms
of non-ideal batteries or limited State of Charge (SoC) knowledge) on the network
performance and some security-related aspects from a physical layer perspective.
First, we will show that neglecting these inefficiencies may lead to wrong energy
management policies and consequently threaten the system performance; finally, we
characterize how the maximum achievable secrecy rate changes according to the
various system parameters and describe the importance of adapting the transmission
power and coding rates.

Although we focus on slightly different applications in every chapter, throughout this
thesis we use similar techniques and methodologies to model and optimize the networks. In
particular, the key tools we will use are based on dynamic programming [14] and Markov
decision processes [122].

1.1 Related Work
Energy Harvesting (EH) refers to the process of gathering energy from an external
energy source. There are two main categories that can be considered in this context:
Environmental Energy Harvesting (EEH) and man-made EH (i.e., Wireless Energy Transfer
(WET) in this thesis). The first one represents the traditional idea of an EH system
and summarizes the energy sources available in the ambient, e.g., sunlight [41, 106, 123],
vibrational [13, 127], piezoelectric [39], indoor lighting [29, 139, 155], biological, chemical,
thermal [139], electromagnetic [120], acoustic noise, etc. On the other hand, the latter
represents the sources explicitly designed to deliver energy to the terminals, e.g., Radio-
Frequency Wireless Energy Transfer (RF-WET) [38, 67, 99, 104, 116, 142, 159], Strongly
Coupled Magnetic Resonances Wireless Energy Transfer (SCMR-WET) [71], inductive
coupling [152], etc. We will discuss these techniques in more detail in the next sections.

Practical examples of EH scenarios include: a network of temperature sensing EHDs,
where a high temperature measurement can be an indicator of overheating or fire; a
sensor network which routes different priority packets [10]; data transmission over a fading
channel where the EHDs adjust the transmitted redundancy according to the instantaneous
channel realization [132].

1.1.1 Environmental Energy Harvesting
Environmental energy harvesting was also dubbed “energy scavenging,” since the devices
scavenge or harvest unused energy from the external environment. This is a very powerful
technique, since an Energy Harvesting Device (EHD) does not need to interact with other
devices or people to be operational, and its lifetime only depends on its own hardware
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failures. Nevertheless, the main drawback of EEH is the intrinsic stochastic nature of the
energy source, as it may not be possible to predict how much energy will be harvested in
the future, if any. As a consequence, there is not a single solution that fits all possible
scenarios, and the optimal series of actions to perform will depend on the environment [45].
Defining the correct way of managing the EH uncertainty is the common fundamental
problem addressed in every chapter of the thesis.

There are many different ambient sources that have been used to design an EEH
system ([169] presented a survey on the several different environmental energy harvesting
technologies for WSNs). Two important parameters that are common to most technologies
are the size of the energy harvester module and the power density delivered from the
source (see [127] for a survey of many energy scavenging methods, with particular focus on
vibrational energy). The size is generally constrained by the applications, since nodes in
the IoT and WSNs are typically very compact. Instead, the power density strongly depends
on the used technology (this can be clearly seen in Table 1.1) and on the environment; for
example, using a solar panel of size 1 cm2, the sunlight irradiation power may oscillate
from hundreds of µW to tens of mW, depending on the time of the day, the day of the
year, the geographic position, the weather conditions, etc. The analytic characterization
of the energy sources have been addressed in the literature but is not the focus of this
thesis, in which we will assume to know the stochastic model of the energy arrivals.

Table 1.1. Energy Sources [120, 123, 127].

Energy Source Power Density

Solar outdoors - sunny day 15 mW/cm2

Piezoelectric 330 µW/cm3

Vibrations 200 µW/cm3

Solar outdoors - cloudy day 150 µW/cm2

Ambient Radio-Frequency (in London) 6.39 µW/cm2

Acoustic Noise (at 100 dB) 0.96 µW/cm3

Many previous papers studied energy harvesting communication systems from a net-
working perspective because of their ability to increase the network lifetime, provide
self-sustainability and, ideally, allow perpetual operations [150]. [41] studied the network
performance when solar cells are used to receive energy, showing how the harvested energy
changes as a function of the latitude, time of the day and season. Analytically, [74]
formulated the problem of maximizing the average value of the reported data using a node
with a rechargeable battery. In [132, 133], Sharma et al. studied heuristic delay-minimizing
policies and sufficient stability conditions for a single EHD with a data queue. Ozel et al.
set up the offline throughput optimization problem from an information theoretic point
of view in [113], where they derived the information-theoretic capacity of the AWGN
channel and presented two schemes that achieve such capacity (“save-and-transmit” and
“best-effort-transmit”). Some researchers focused on batteryless devices [112, 138]. In
particular, [112] considered a traditional EH system with amplitude constraints and found
the channel capacity under causal channel information knowledge. The throughput opti-
mization problem with finite batteries in an EH system was studied in [93, 145]. A common
technique to model the batteries is to approximate them with finite energy queues, in
which energy arrives and departs over time. Markov models are suitable for these cases [6]
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and were largely adopted in the literature so far [17, 74, 93, 91, 95]. Energy harvesting
receivers were analyzed in [85, 86, 165], with a focus on the optimization of the sampling
strategies. Also, [8] considered a transmitter-receiver pair with harvesting capabilities. For
more references about energy harvesting, we refer the readers to the surveys in [84, 150].

Nevertheless, despite the extensive literature about EH, many different aspects still
have to be analyzed and are an active research topic nowadays.

1.1.2 Wireless Energy Transfer
There are three main techniques used to transfer energy wirelessly: Radio-Frequency
Wireless Energy Transfer (RF-WET), Strongly Coupled Magnetic Resonances (SCMR),
and inductive coupling (this technology operates at distances less than a wavelength;
clearly, although this mechanism is very efficient, it cannot be used in many WSNs or IoT
scenarios because of the very short operating distance [128]). In this thesis, we focus on
the first two techniques.
1.1.2.1 Radio-Frequency Wireless Energy Transfer
This paradigm has been studied for several decades (see [19] for a brief history of RF energy
transmission) and, in the last few years, RF-WET was also considered in WSNs [61, 65, 84].
Via dedicated components, namely rectifiers [38] (which, for example, can be composed
of a diode [49], a bridge of diodes or a voltage rectifier multiplier), the devices are able
to convert the input RF signal into Direct Current (DC) voltage, which can be used to
refill their batteries. In many papers, the authors assume to have an Energy Rich Node
(ERN) (a typical example is the Powercaster Transmitter [121]) that supplies energy to
several passive sensor nodes (equipped with a Powerharvester Receiver, for example). One
of the main problems studied in this area so far has been the combination of energy and
information transmission. Indeed, even if it would be theoretically possible to transmit
energy and data simultaneously using the same signal, this is not feasible with current
technology [44]. Therefore, two techniques were developed: Time Splitting (TS) and Power
Splitting (PS) [167]. In the first case the transferred energy and data are sent at different
times. In the second case, the transmit power is split: part of it is used for data and the
rest for energy. Articles such as [116] or [142] studied the optimal power splitting for the
PS technique. TS was used in [67], where transmission policies for a relay in a topology
composed of three nodes (source, relay and destination) were studied. [65] proposed a
medium access control mechanism based on WET that achieves a high degree of fairness
among the devices. [107] studied a network composed of one access point that transmits
RF energy to several nodes, with the aim to design an admission control mechanism.
In [62], the authors studied the interleaving problems related to transmitting and receiving
energy simultaneously, introducing a polling-based MAC protocol. [26] studied the case
where some devices (energy rich nodes) move through the network and refill the batteries
of the sensors with RF radiation. In [99] and [105] the authors introduced a Medium
Access Control (MAC) protocol, where nodes request energy from some transmitters, and
these cooperate by sending RF energy to those nodes.

Another important class of networks studied in the literature are the Wireless Powered
Communication Networks (WPCNs) [58], in which an ERN supplies energy to several
devices using RF-WET, and these transmit data in uplink. In these scenarios, a doubly
near-far problem is present, since users far away from the base station experience, on
average, worse channel conditions than the others both in uplink and in downlink. The
doubly near-far problem was initially studied in [58]. The authors introduced the “harvest-
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then-transmit” scheme in which the time horizon is divided in slots and every slot is
divided in two phases: first, the energy rich node transfers energy to the devices and,
secondly, the devices use the harvested energy to transmit data in the uplink channel. The
trade-offs between the times to use for transferring energy and transmitting data were
investigated and the optimal scheduling scheme was provided. The authors extended their
work in [59], where user cooperation was taken into account in a two-device system. It
was shown that cooperation is a powerful technique which can effectively improve the
system performance. Nevertheless, because of the additional complexity demanded to
compute the scheduling scheme, and the unavoidable coordination and physical proximity
required among devices, the cooperation solution may not be suitable for every scenario.
[24] described the “harvest-then-cooperate” protocol, in which source and relay work
cooperatively in the uplink phase for the source’s information transmission. The authors
also derived an approximate closed-form expression for the average throughput of the
proposed protocol. [1] generalized conventional Time Division Multiple Access (TDMA)
wireless networks (no energy harvesting) to a new type of wireless networks named
generalized-WPCNs (g-WPCNs), where nodes are assumed to be equipped with RF energy
harvesting circuitries along with energy supplies. It was shown that both conventional
TDMA wireless networks and WPCNs with only RF energy harvesting nodes provide
lower bounds on the performance of g-WPCNs in terms of maximum sum-throughput and
max-min throughput. [64] studied the case of devices with energy and data queues and
described a Lyapunov approach to derive the stochastic optimal control algorithm which
minimizes the expected energy downlink power and stabilizes the queues. Optimization
over multiple slots was considered in an Orthogonal Frequency-Division Multiplexing
(OFDM) based WPCN in [171], where non-causal (offline) and causal (online) strategies
are proposed to maximize the average transmission rate. The long-term performance of a
single-user system for a simple transmission scheme was presented in closed form in [96].
[52] modeled a WPCN with a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) and minimized the total number of waiting packets in the network. Similarly
to [58], a WPCN was studied in [80], where the energy rich node has also the capability of
beamforming the transferred RF signal in order to serve the most disadvantaged users
and to guarantee throughput fairness. The authors managed to convert a non-convex
optimization problem into a spectral radius minimization problem, which can be efficiently
solved. [162] studied the applicability of the massive Multiple-Input-Multiple-Output
(MIMO) technology to a WPCN. With massive MIMO it becomes possible to receive data
from several different devices simultaneously (thanks to spatial multiplexing), but also to
improve the downlink performance by using sharp beams. Most previous works describe
a half-duplex system in which uplink and downlink cannot be operated simultaneously.
Instead, the full duplex case was studied in [57, 60]. [57] optimized the time allocations
for WET and data transmission for different users in order to maximize the weighted sum
rate of the uplink transmission. The authors considered perfect as well as imperfect self-
Interference Cancellation (IC) at the access point and showed that, when IC is performed
effectively, the full-duplex case outperforms the half-duplex one. A survey of recent
advances and future perspectives in the WPCN field can be found in [16].

Although it has been used in many applications, it is important to note that RF
wireless energy transfer, due to the radiative nature of the mechanism, has a very low
energy efficiency [53] and requires line-of-sight to achieve high performance.
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1.1.2.2 Strongly Coupled Magnetic Resonances Wireless Energy Transfer
Wireless energy transfer based on SCMR is a compromise between inductive coupling and
RF-WET: it can be used in mid-range applications (order of 2− 3 meters) and has a high
efficiency.

In [71], it was shown that it is possible to power a 60 W light bulb at a distance of
2 m with an efficiency of 40% using SCMR-WET. The authors also extended this work
in [72], showing that SCMR wireless energy transfer can be used to power several devices
at the same time with high efficiency. This is possible because non-radiative wireless
energy transfer is used, which relies on near-field magnetic coupling of conductive loops.
In [128], the authors showed that it is possible to achieve the maximum possible energy
transfer efficiency regardless of the orientation of the device, as long as the receiver is in
the working range of the transmitter. The two main problems related to SCMR-WET are
that: 1) it is necessary to use coils of large size (order of 20 cm) and 2) the transmission
range is limited only to a few meters. For these reasons, using SCMR-WET in WSNs may
be feasible only in very particular applications in which the positions of the transmitter
and receiver are stationary (e.g., we may consider two devices in adjacent rooms of a
building).

Although SCMR-WET seems promising, only a few applications can be found in
the literature so far. [136] considered a vehicle that travels inside a WSN, periodically
recharging the nodes (one at a time) wirelessly, and showed that through periodic charges
the network may ideally remain operational for an unlimited amount of time. The authors
extended the study to multiple transmissions in [160], and a similar technique was also
discussed in [168]. Some applications can be found in biomedical implants, e.g., [124], and
a wireless charger prototype based on SCMR-WET was proposed in [164].

1.1.3 Environmental Energy Harvesting and Wireless Energy
Transfer

Equipping an EEH system with a WET interface can be a powerful solution to avoid energy
outages and increase the capabilities of the devices. However, only a few papers investigated
the optimization strategies for EEH system with WET capabilities. In particular, in [46–
48], Gurakan et al. introduced the concept of energy cooperation, unifying the study of
environmental energy harvesting and wireless energy transfer techniques. They considered
a system composed of a few nodes and investigated optimal offline communication schemes.
However, none of these papers considered the effects of finite batteries, which instead will
be a key feature of our models. Also [146, 147] studied the combination of WET and
EEH with infinite batteries and bi-directional energy transfer, whereas in [148] the authors
presented the case of two transmitters with finite batteries. A model that considers the
circuitry cost was published in [103], where a transmitter and a receiver powered by the
same power source with infinite batteries can exchange energy.

1.2 Organization of the Thesis
The thesis is subdivided into five chapters. Chapter 2 defines the generic system model
analyzed in the remainder of the thesis. Chapters 3-5 can be read separately using
Chapter 2 as a baseline. In particular:
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• In Chapter 3 we analyze the networking problem in which multiple energy harvesting
devices are considered in the same network. The main results of this chapter are
based on [C1], [C13] and [J6] (see page 155 for a list of publications).

• In Chapter 4 we investigate the benefits of using wireless energy transfer to further
boost the network performance. The main results of this chapter are based on [C3],
[C7], [C11], [J1] and [J3].

• In Chapter 5 we study the inefficiencies that can be found in real devices and set up
a physical layer security optimization problem. The main results of this chapter are
based on the conference papers [C4]-[C6] and on the journal paper [J2].

Finally, Chapter 6 concludes this thesis.
Notation. Table 1.2 summarizes the variables we consider in this thesis. In general,

subscripts refer to the time indices or to the states of the system whereas superscripts
denote the indices of the devices or of the sub-carriers. Boldface letters indicate vectors.
P(·) and E[·] refer to probabilities and expectations, respectively.

Table 1.2. Notation and parameters.

Symbol Meaning

Indices

k Slot index (subscript)
b or s MC state (subscript)
i = 1, . . . , N EHD index (superscript)
r = 1, . . . ,M Sub-carrier index (superscript), Section 5.2

Energy related

bk Battery level [e.q.]
bmax Maximum battery level [e.q.]
Pk Transmission power [W]
q(Pk) Transmission energy [e.q.]
eEEH

k (or ek) Harvested energy from environmental sources [e.q.]
eRF

k Harvested energy with RF-WET [e.q.]
eSCMR

k Harvested energy with SCMR-WET [e.q.]
zk Transferred energy (e.g., using SCMR-WET) [e.q.]

Slot

T Slot duration
τ

(i)
k Duration of the data transmission phase
τ rx

k Duration of the WET downlink phase
βk Probability of the “Extraction of the SoC” phase

Losses

ηECL Energy Conversion Losses
ηESL Energy Storage Losses
ηSCMR Efficiency of the SCMR-WET link (including all

losses)

Markov chains
Sk, s State of the system
r Reward in a single slot
G Reward in the long term





CHAPTER 2

Preliminaries and System Model

In this chapter we present a generic energy harvesting model that will be used in the
remainder of the thesis. Chapters 3, 4 and 5 will always refer to this model, possibly with
some extensions or changes according to the aspects being analyzed.

2.1 Generic Model for an Energy Harvesting Device
The network is always composed of one Receiver (RX) and one or more terminal nodes
(also referred as users, nodes, sensors, or Energy Harvesting Devices (EHDs)) with Energy
Harvesting (EH) capabilities. The receiver may coincide with the Access Point (AP) or
with a terminal node itself, depending on the scenario. Users gather environmental data
and report it to RX via a point-to-point wireless communication channel. Multi-hop
networks are not the focus of this thesis, although they have been investigated in the
literature (e.g., see the routing protocols described in [56, 87]). In the following we present
the model for a single node; this will be properly extended in Chapters 3 and 4 for the
cases with multiple users.

2.1.1 Slot Division
The time horizon of our framework is typically infinite in order to consider the steady-state
conditions of the network. Indeed, EH systems generally operate in the same working
conditions for a long time and usually reach stationary conditions. The time is slotted
(see [34, 111, 145] for continuous time models) and slot k corresponds to the time interval
[k T, (k + 1)T ), k = 0, 1, . . ., where T is the common duration of all slots (in several cases,
we will consider a normalized slot duration T = 1 s without loss of generality). In every
slot, the following operations are performed:

• Battery Charging. During every slot, the node gathers energy from the environ-
ment and/or from man-made sources and store it in its finite size battery. When
ambient EH or SCMR-WET are considered, this phase generally lasts for the whole
slot duration since the harvesting circuitry is independent of the other parts of
the device (e.g., consider a solar panel). Instead, with Radio-Frequency Wireless
Energy Transfer (RF-WET), the node must reserve a portion of time for the energy
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reception,1 as transmit/receiving data and energy simultaneously using the same
antenna is not considered here.

• Extraction of the State of Charge (SoC). The node inspects its battery level
and communicate it to RX, which plays the role of a controller that computes the
policy, i.e., the series of actions that defines how the node should behave, according
to the SoC.
In a fully centralized approach (Section 3.1 and Chapters 4 and 5), this phase is
repeated every slot with a probability βk = 1. Instead, in the decentralized scheme
of Section 3.2, this task will be performed with a probability βk ∈ [0, 1].
We also remark that although in an ideal scenario the SoC is perfectly known by
the EHD and RX, in practice, because of hardware limitations, the state of charge
may be known with a finite accuracy only. We will consider this particular case in
Section 5.1.

• Policy Computation and Dissemination. Using the available information (e.g.,
the SoC), RX computes the actions the EHD should use in the current or future slots
(e.g., to transmit or not, the transmission power to use, the transmission duration,
etc.) and communicate it to the node. In the centralized case, a new action is
computed in every slot according to the state of charge of the user, whereas in
decentralized scenarios the actions are computed only when the SoC is extracted
(see the previous bullet point). The series of actions is called policy.
The policies we consider can always be decomposed in two steps. First, a policy
is fully evaluated offline: the actions to use are defined in every case of interest
(i.e., for every possible state of the system). Then, the policy is used online: in
every slot, given the state of the system, RX decides the action to use according to
the precomputed offline actions. The online phase is very lightweight and does not
require any optimization, since the actions to use have been previously computed in
the offline phase, therefore it can be implemented in real devices with low computing
capabilities. We will mainly deal with dynamic programming and Markov Decision
Processes (MDPs) [14] to define the policy.

• Data Transmission. This is the main phase in which the node, if necessary (i.e.,
if it has data packets to send) and possible (i.e., if it has enough energy), transmits
data packets to RX in uplink. When multiple EHDs are considered, this may be
performed in many different ways; some of them will be separately studied in the next
chapters (e.g., random access in Section 3.2, Time Division Multiple Access (TDMA)
in Section 4.2), whereas others (e.g., Code Division Multiple Access (CDMA)) can
be found in the literature (e.g., see paper [C14] at page 155). These schemes have
pros and cons, and may also depend on the scenario under investigation.

The previous phases will be further discussed in the following chapters, where relevant.
We now give more details about the battery charging and discharging processes and the
battery modeling.

1There is also another technique, named Simultaneous Wireless Information and Power Transfer
(SWIPT) (see [63, 135]), that studies how to transmit data and energy simultaneously. However, this is
not the focus of this thesis.
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2.1.2 Energy Arrival Process
The energy arrives at the node from environmental (i.e., EEH) and/or man-made sources
(i.e., WET). Quantity Ex

k denotes the harvested energy in slot k using technology x.
2.1.2.1 Environmental Energy Harvesting
In general, we will model the environmental energy using a random process independent and
indentically distributed (i.i.d.) over time {EEEH

k } (and among nodes, when multiple EHDs
are considered), e.g., deterministic, Bernoulli or truncated geometric (see [92, 134, 156],
or [43] for a characterization of the energy gathered from the light). This is a particular
case of the Generalized Markov model described in [51], where EEEH

k statistically depends
on the amount of energy (EEEH

k−1 , ..., E
EEH
k−L ) harvested in the previous L time slots as well as

on a scenario parameter. In [51] it is shown that different energy sources can be efficiently
modeled by means of different values of L. In particular, piezoelectric energy is well
described using L = 0, while solar is better characterized by L = 1. In this thesis, we use
L = 0 to maintain the analysis simpler [90]. However, the models can be extended to the
more general, temporally correlated (e.g., via an underlying common Markov model as
in [93]) or spatial correlated cases (see [40] for a discussion about temporal and spatial
correlation).2 More detailed models have been proposed in the literature (e.g., see [106]),
which however are strictly related with the energy source under investigation and may be
more computationally demanding.

Finally, we note that using Bernoulli energy arrival processes is a common choice in
the literature so far, e.g., [92, 134, 156] and it was shown that for a traditional EH system,
the optimal policy for Bernoulli arrivals is approximately optimal for generic i.i.d. arrival
processes as well [134].
2.1.2.2 Radio-Frequency Wireless Energy Transfer
Man-made sources present different characteristics and strongly depend on the technology
(see Section 1.1.2). For modeling the RF energy, we use the following formula:

ERF
k = τ rx

k P rx
k ηECL gk = τ rx

k P rx
k ηECL g0d

−δk
k κk, (2.1.1)

where τ rx
k is the duration of the WET phase, ηECL is a constant in (0, 1] that models the

Energy Conversion Losses (ECL) at the device, P rx
k is the transmission power of the energy

rich node (which always coincides with the receiver in our model), and {gk} is the random
process related to the channel conditions, and on the specific beamforming technique (if
any). The term gk can be explicitly written as gk = g̃k κk, where {κk} is a random process
that represents the fading and g̃k is the average channel gain, obtained by considering
the path loss effects as g̃k = g0 d

−δk
k . The term g0 is the signal power gain at a reference

distance of 1 m, dk is the distance between the device and rx expressed in meters, and δk is
the path loss exponent. Note that the parameters depend on k and may change over time.
We note that, because of fading, the channel conditions may not be known in advance,
thus the exact amount of transferred energy is unknown a priori.
2.1.2.3 Strongly Coupled Magnetic Resonances Wireless Energy Transfer
In this thesis, we consider only a very particular example of wireless energy transfer based
on SCMR in which we know the efficiency of the link, namely ηSCMR, in advance, so that

2The outcomes of this thesis are not strictly related with the model nor with the harvesting technology
we consider, but are general design considerations that can be applied to many EH systems.
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the received energy is

ESCMR
k = τ rx

k P
rx
k ηSCMR (2.1.2)

where τ rx
k and P rx

k are defined as before.
Note that the 40% efficiency claimed in [71] for a distance of 2 m using SCMR is

only referred to the transmission itself. Indeed, the effective wall-to-load efficiency (ratio
between the power extracted from the wall power outlet and the received power) was 15%,
which will be used as a baseline for our numerical evaluations. However, we remark that
this technology presents many pitfalls for IoT applications and may not always be feasible
in practice.

2.1.3 Energy Consumption Process
The two main sources of energy consumption we consider for an EHD are due to data
transmission and to energy transfer to other devices (e.g., using WET based on SCMR).
When a device is in sleep mode, it is assumed to consume negligible energy.
2.1.3.1 Data Transmission
In general, modeling the data transmission energy costs is a difficult task: in addition
to the energy directly injected into the channel (which would be equal to τk × Pk when
the device transmits for a time interval of duration τk with a constant power Pk), also
the costs of sensing, pre-processing (coding) and (eventually) compressing the data [144]
have to be considered (see papers [J4], [C12], and [J5] at page 155). In addition to
that, inefficiencies should be taken into account in real devices and generally degrade the
performance of the transmission phase (e.g., non-linear behavior, and thus inefficiencies,
of the power amplifier, reflections, mismatched circuits, etc.). Formally, we describe the
energy consumption with a generic continuous, increasing and concave3 function Q(Pk),
where Pk is the transmit power and Q(0) = 0 (sleep mode). More details about the
structure of Q(Pk) will be given in the next chapters.
2.1.3.2 Energy Transfer
In some scenarios, the node may receive much more energy and/or consume less energy
than some of its neighbors. In these cases, it is reasonable to transfer energy from the node
to other devices in order to balance the energy levels. This operation may be performed
using SCMR-WET, since RF-WET would involve much higher losses. We will consider
this scenario in Section 4.1, in which the receiver itself is an EHD with WET capabilities
(and thus will be modeled similarly to a terminal node).

Throughout this thesis, we use the notation Zk to indicate the transferred energy.

2.1.4 Battery Modeling
The energy harvesting node is equipped with a rechargeable battery, so that the energy
stored in slot k, namely Bk (expressed in joules), can be used in a later slot. According to
the energy arrival process (environmental and/or man-made), to the energy consumption
process, and to the parameters set in the decision phase (i.e., the policy), the battery level

3In this thesis, the term “concave” will be used to designate concave functions, e.g., functions with
non-positive second derivative.
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changes dynamically in every slot as follows

Bk+1 = min{Bmax, (battery size [J]) (2.1.3a)
Bk (previous battery level [J]) (2.1.3b)
−Q(Pk) (data transmission, uplink [J]) (2.1.3c)
+ EEEH

k (Environmental EH, received [J]) (2.1.3d)
+ ERF

k (RF-WET, received [J]) (2.1.3e)
+ ESCMR

k (SCMR-WET, received [J]) (2.1.3f)
− Zk} (WET, transferred [J]) (2.1.3g)

The “min” operator is used to consider overflow situations. The energy losses due to ineffi-
ciencies are already included in the term Q(Pk). We note that the battery update formula
may slightly change when only a partial SoC knowledge if available (see Equation (5.1.3)
in Section 5.1 for more details).

The finite battery capacity entails the following.

Definition 2.1.1 (Energy Outage and Overflow). In slot k, energy outage occurs if
Bk < Q(Pmin), where Pmin is the minimum available transmission power (greater than
zero), and energy overflow occurs if Bk −Q(Pk) + EEEH

k + ERF
k + ESCMR

k − Zk > Bmax.

Energy outage prevents any transmission from being executed, due to the fact that
the battery is empty, and hence the data transmission energy, Q(Pk), must be equal to 0,
regardless of the policy or other parameters. Differently, when energy overflow occurs, the
new harvested energy cannot be stored in the energy buffer of the EHD, due to its finite
storage capacity: consequently, as energy is lost, this event may potentially represent a
future lost transmission opportunity. In summary, energy outage and overflow degrade the
system performance and have to be considered in the design of a transmission policy [92].

2.2 Stochastic Optimization Tools
Different optimization problems related to EH can be found in the literature so far.
Generally, the main focus is on optimizing some network parameters, e.g., throughput,
delay, packet drop rate, etc. A lot of research focused on the offline optimization, where
it was assumed that RX (or, eventually, the EHD itself) knows everything about the
environment of the EHD (future energy arrivals, past history, channel status, etc.) [163].
Some relevant papers were produced by Sharma et al. [132], where the authors found
throughput and mean delay optimal policies when the considered device has an infinite
data queue. Also, Ozel et al. in [113] set up the offline throughput optimization problem
and presented schemes to achieve the AWGN capacity. Tutuncuoglu et al. studied offline
policies for more than one device [144]. The authors also presented several works on the
imperfect storage capabilities of energy harvesting devices [149].

Instead, another class of problems regards online optimization. In this context, only
a statistical knowledge of the environment is required. Generally, a Markov approach
is used to model and solve the problem [17, 74, 93, 95]. [93] considered the case of a
correlated energy generation process. [76] studied the use of relays in an energy harvesting
communication system. The interactions among multiple devices were analyzed in [52, 94].
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2.2.1 Battery Quantization
In order to perform the optimization, we model the battery of an EHD with a discrete
Markov Chain (MC). In particular, we discretize the battery of the device in bmax + 1
levels, where bmax represents the maximum amount of energy quanta (e.q.) that can be
stored in the battery and one energy quantum corresponds to δ , Bmax/bmax J. By doing
so, the battery is modeled as a finite size energy buffer. There exists a trade-off between
the precision of the discrete approximation and the corresponding numerical complexity of
the model. In general, if bmax is sufficiently high, the discrete model can be considered as a
good approximation of the continuous system. The accuracy of the discrete approximation
can always be improved by using a finer quantization, which however results in a model
with more states and therefore higher complexity. Equation (2.1.3) can be rewritten in
terms of energy quanta (bk ∈ B , {0, . . . , bmax}):

bk+1 = min{bmax, (battery size [e.q.]) (2.2.1a)
bk (previous battery level [e.q.]) (2.2.1b)
− ⌈Q(Pk)/δ⌉ (data transmission, uplink [e.q.]) (2.2.1c)
+ ⌊EEEH

k /δ⌋ (Environmental EH, received [e.q.]) (2.2.1d)
+ ⌊ERF

k /δ⌋ (RF-WET, received [e.q.]) (2.2.1e)
+ ⌊ESCMR

k /δ⌋ (SCMR-WET, received [e.q.]) (2.2.1f)
− ⌈Zk/δ⌉}. (WET, transferred [e.q.]) (2.2.1g)

Note that, in every slot, only an integer amount of energy quanta can be extracted from
the battery. Similarly, only an integer amount of energy quanta can be harvested. Our
choice of the floor and ceiling operations will lead to a lower bound to the real performance
(however, if the quantization is fine, this almost coincides with the continuous model).

Equation (2.2.1) can be rewritten using the new lowercase notation as follows:

bk+1 = min{bmax, bk − q(Pk) + eEEH
k + eRF

k + eSCMR
k − zk}, (2.2.2)

where all terms are expressed in terms of energy quanta.

2.2.2 Markov Decision Processes for Energy Harvesting
The model described so far can be studied as a MDP [14] with the following properties
(this section is generic and presents the features of the MDP without a precise formulation,
which however will be properly given in each chapter).

State of the MC. The state of the Markov chain is given by the battery level, which,
thanks to Equation (2.1.3) or (2.2.2), satisfy the Markov property (i.e., it is conditionally
independent of the past, given the current level). This means that the behavior of the
EHD depends on its SoC: intuitively, when the battery is almost fully charged, the policy
will be more aggressive and consume more energy. Vice-versa, when the battery is almost
in outage, the policy will be more conservative and consume less resources.

Transition Probabilities. The transition probabilities from one state of charge
to another depend on the energy harvesting process and on the policy according to
Equation (2.2.2). In general, the transitions are not deterministic. Indeed, with EEH,
the future energy arrivals are known only statistically because of the intrinsic random
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nature of the environment, whereas with RF-WET the channel conditions (in particular
the fading effects) make the energy arrivals unknown a priori. On the other hand, the
policy, which will be formally specified in the next chapters, directly influences the energy
consumption (and thus the transition probabilities of the MC) of the device.

Actions. The actions of the MDP are defined by the policy. Depending on the scenario
under investigation, the policy may decide the transmission power, the transmission
duration, the coding, the probability of accessing the channel, etc.

Reward. The reward is generally given by the total amount of bits that the device
transmits in a given amount of time, i.e., the transmission rate, although also some
variations of that are presented (e.g., in Section 5.2). Different actions lead to different
rewards.

The above model was proposed in the literature [92] for traditional EH systems;
our results are based on that with some extensions (e.g., in Section 3.2 we will use a
Decentralized-MDP instead of a standard MDP) and different considerations.

Some common tools used to solve MDPs are the Value Iteration Algorithm (VIA)
or the Policy Iteration Algorithm (PIA) [14]. Both algorithms entail a common phase,
namely policy improvement step, in which the Bellman equation is recursively solved
until convergence (see [14] for more details). In addition to that, PIA also adds a value
determination step to speed up the convergence of the procedure. In the next chapters, we
will use and, eventually, extend these two methods.





CHAPTER 3

Energy Harvesting Networks with Multiple Devices

Many of the protocols proposed in the Energy Harvesting (EH) literature considered isolated
nodes and did not account for the interactions among devices. However, when multiple
nodes are considered, new network considerations may arise and new transmission policies
must be considered. For example, simultaneous transmissions toward the same Receiver
(RX) may lead to unrecoverable collisions and thus degrade the system performance. This
aspect should be explicitly taken into account in the system design.

Coordinated and uncoordinated approaches have been followed in the literature so far
to deal with the Medium Access Control (MAC) scheduling problem. Protocols such as
Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), etc.
fall into the first category, since all nodes in the network only use a predefined amount of
resources assigned by RX. Instead, Aloha-like protocols constitute the set of uncoordinated
schemes, in which multiple nodes take individual actions to achieve a common goal (e.g.,
maximizing the throughput of the network). When EH is considered, both coordinated
and uncoordinated schemes change according to the energy availability of the devices. The
study of these two paradigms represents the focus of this chapter.

Structure of the Chapter. The chapter is divided into the following two parts. The
two sections can be read separately using Chapter 2 as a baseline.

Section 3.1 focuses on the fully centralized (i.e., coordinated) problem in which nodes
are managed by RX and analyzes low-complexity policies for such a scenario. In particular,
we consider the case of a pair of Energy Harvesting Devices (EHDs), with the main
goal of maximizing the long-term aggregate average potential reward associated with
the transmitted data. The devices, at each time instant, have data of different potential
rewards to be transmitted, as well as different battery energy levels. In order to avoid
collisions, the Receiver (RX) allows at most the transmission of a single EHD per time
slot. Assuming a negligible processing cost in terms of energy, our objective is to identify
low-complexity transmission policies, that achieve good performance with respect to the
optimal one. We numerically show that two policies, namely the Balanced Policy (BP)
and the Heuristic-CEIP (HCEIP), despite being independent from the battery energy
levels, achieve near optimal performance in most cases of interest, and can be easily found
with an adaptation to the ambient energy supply. Moreover, we derive analytically an
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approximation of BP and we show that this policy can be considered a good lower bound
for the performance of the optimal policy.

Section 3.2 studies the decentralized optimization in which the RX cannot communicate
with the nodes all the time and thus introduces a compromise between coordinated and
uncoordinated schemes. Designing decentralized policies for wireless communication
networks is a crucial problem, which has only been partially solved in the literature so
far. In the second part of this chapter, we propose a Decentralized Markov Decision
Process (Dec-MDP) framework to analyze a wireless sensor network with multiple users
which access a common wireless channel. We consider devices with energy harvesting
capabilities, that aim at balancing the energy arrivals with the data departures and with
the probability of colliding with other nodes. Over time, the receiver triggers a SYNC
slot, wherein it recomputes the optimal transmission parameters of the whole network,
and distributes this information. Every node receives its own policy, which specifies how
it should access the channel in the future, and, thereafter, proceeds in a fully decentralized
fashion, with no interactions with other entities in the network. We propose a multi-layer
Markov model, where an external MDP manages the jumps between SYNC slots, and an
internal Dec-MDP computes the optimal policy in the short term. We numerically show
that, because of the harvesting, stationary policies are suboptimal in energy harvesting
scenarios, and the optimal trade-off lies between an orthogonal and a random access
system.

3.1 Centralized Approach
3.1.1 Introduction
In this section, as a first step towards the study and design of multi-user EH systems, we
study a system model consisting of two EHDs that report data with different potential
rewards to a common Receiver (RX), with the aim of maximizing the long-term aggregate
average potential reward of the reported data. In order to avoid collisions, we consider a
centralized case, in which the receiver allows at most the transmission of one EHD at the
same time. RX knows the battery energy level and the potential reward of each EHD. This
approach can be considered as an upper bound to the decentralized scenario described in
the second part of this chapter in terms of overall performance.

Contributions. Using the structure of the optimal policy, we derive different subop-
timal policies which are shown to perform closely to the optimal one. First, we introduce
the Energy Independent Policy (EIP), i.e., a threshold policy which, on average, transmits
with a constant probability, independent of the battery energy levels. Furthermore, in
accordance to the values of the average energy harvesting rates, we define the Balanced
Policy (BP) and the Heuristic-CEIP (HCEIP), that are particular cases of EIP. These
are low-complexity policies, that do not require any optimization process to compute the
transmission probabilities. The main implication of these results is that near-optimal
performance can be obtained without precise knowledge of the energy stored in the sensor
batteries at any given time and with a simple adaptation to the ambient energy supply.
Moreover, we find an analytical approximation of the balanced policy, numerically showing
that this can be considered as a good analytical lower bound of the optimal policy in most
cases of interest.

Structure. The first part of the chapter is organized as follow. In Section 3.1.2 we
present the system model. In Section 3.1.3 we discuss the general optimization problem



3.1 Centralized Approach 19

and introduce the analyzed policies. Section 3.1.4 studies the balanced policy and an
analytical approximation of its performance. In Section 3.1.5 we derive the heuristic
constrained energy independent policy. Section 3.1.6 presents the numerical results.
Finally, Section 3.1.7 concludes this part of the thesis.

References. This section is based on the conference paper [C1].

3.1.2 System Model
Consider a WSN composed of two EHDs, reporting data to a common Receiver (RX) via
a shared wireless channel. Time is slotted, ans slot k corresponds to the time interval
[k, k + 1), k = 0, 1, . . .. We assume that in every time slot k each device has a packet
to transmit, i.e., its data queue is nonempty. Packet transmission occupies one slot and,
if not sent, the packet is lost. The receiver always allows only the transmission of one
EHD, so as to avoid collisions and, hence, the loss of both packets. The battery of each
EHD is modeled as an energy buffer, and we assume that each position in the buffer
contains exactly one energy quantum (e.q.) (see the discrete model of Section 2.2.1).
In addition, as assumed in [55, 129], the transmission of one data packet requires the
expenditure of one energy quantum. The maximum amount of energy that can be stored
in the battery of EHD i is denoted as b(i)

max, and the set of its possible energy levels is
B(i) = {0, 1, . . . , b(i)

max}, i = 1, 2. If the energy level of EHD i in slot k is b(i)
k ∈ B(i), the

evolution of b(i)
k is described by Equation (2.2.2), which in this scenario can be simplified

to

b
(i)
k+1 = min{b(i)

max, b
(k)
i − qk

i + e
(i)
k }, (3.1.1)

where {e(i)
k } is the energy arrival process (we omit the superscript “EEH” because we

only consider environmental energy sources), modeling the randomness in the amount of
energy that can be harvested from the environment. In the following, we assume that
{e(i)

k } is an independent and indentically distributed (i.i.d.) Bernoulli process with mean
ē(i) ∈ (0, 1], independent across EHDs, and that a quantum harvested in slot k can only be
exploited at a subsequent time instant > k. Furthermore, the amount of energy devoted
to transmission by EHD i in slot k is represented by {q(i)

k }, the action process, which is
one if the current data packet is transmitted (and one energy quantum is drawn from the
buffer and consumed), and zero otherwise (note that q(i)

k of Equation (3.1.1) coincides
with q(i)(P (i)

k ) of Equation (2.2.2) when the value of P (i)
k can only be 0 or equal to a fixed

value). Clearly, due to the adopted collision model, the elements of the pair qk = (q(1)
k , q

(2)
k )

cannot be simultaneously positive.
The assumption of two users can be extended in order to consider larger networks,

but this would require a higher computational cost. However, conceptually, the step from
the single user to the case with two users is the most interesting one because channel
contention problems and collision problems firstly arise.

In slot k, the state of the system is Sk = (bk,νk) = (b(1)
k , b

(2)
k , ν

(1)
k , ν

(2)
k ), where ν(1)

k and
ν

(2)
k are the potential rewards of the current data packets at both EHDs. The term ν

(i)
k

can be interpreted as the realization of a positive continuous random variable V (i)
k with

probability density function (pdf) f
V

(i)(ν), ν ≥ 0, and we assume that {V (i)} are i.i.d.
across time and EHDs.
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3.1.3 Policy Definition and General Optimization Problem
For a given value of Sk, a policy µ decides on the amounts of energy (q(1)

k , q
(2)
k ) ∈

{(0, 0), (0, 1), (1, 0)} to devote to transmission at time k. In detail, µ is a probabil-
ity measure on the action space {(0, 0), (0, 1), (1, 0)}, parameterized by state Sk: given
Sk = (bk,νk) ∈ B(1) × B(2) × (R+)2, µ(qk; bk,νk) is the probability of drawing q(1)

k and
q

(2)
k energy quanta from the two EHDs. Clearly, to avoid collisions, the central controller

prevents q(1)
k and q

(2)
k from being simultaneously equal to one.

Using policy µ, the long-term average reward is defined as

G(µ,S0) = lim inf
K→∞

1
K

E
[

K−1∑
k=0

(
q

(1)
k ν

(1)
k + q

(2)
k ν

(2)
k

) ∣∣∣∣S0

]
(3.1.2)

where S0 is the initial state of the system, qk is selected according to µ, and the expectation
is taken with respect to the energy arrival, the potential packet reward and action processes.
Consequently, the optimization problem is to determine the optimal policy µ∗ such that

µ∗ = arg max
µ

G(µ,S0). (3.1.3)

As stated in [33], the optimal policy µ∗, must have a threshold structure with respect
to the importance of the current data packet: a pair of thresholds (ν(1)

th (b), ν(2)
th (b)) is

associated to every pair of joint energy levels b ∈ B(1) × B(2), such that
µ((1, 0); b,ν) = 1, ν(1) > ν

(1)
th (b) and ν(1) − ν(1)

th (b) ≥ ν(2) − ν(2)
th (b),

µ((0, 1); b,ν) = 1, ν(2) > ν
(2)
th (b) and ν(2) − ν(2)

th (b) > ν(1) − ν(1)
th (b),

µ((0, 0); b,ν) = 1, ν(1) ≤ ν
(1)
th (b) and ν(2) ≤ ν

(2)
th (b).

(3.1.4)

Consequently, in the following we consider only the subset of policies with such threshold
structure.

It is now possible to define the marginal transmission probability of EHD i, when the
joint energy energy level state is b = (b(1), b(2))

ω(i)(b) , E[q(i)
k = 1|bk = b], i = 1, 2, (3.1.5)

whereas the probability of no EHD transmitting is denoted by ω(0)(b) = 1−ω(1)(b)−ω(2)(b).
The expected reward can thus be defined as a function of the marginal probabilities ω(i)(b):

r(ω(1)(b), ω(2)(b)) = E
[
q

(1)
k ν

(1)
k + q

(2)
k ν

(2)
k |bk = b

]
. (3.1.6)

The threshold structure allows a one-to-one mapping between v
(i)
th , ω(i) and µ, and

hence both the policy µ and the transition probabilities of the time-homogeneous Markov
Chain (MC) related to the energy states, can be reformulated as a function of the pair
(ω(1), ω(2)). Consequently, if (ω(1), ω(2)) induces an irreducible MC, the long-term reward
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of Equation (3.1.2) does not depend on the initial state S0, and can be formulated as

G(ω(1), ω(2)) =
b

(1)
max∑

b
(1)=0

b
(2)
max∑

b
(2)=0

πω(b(1), b(2))r(ω(1)(b(1), b(2)), ω(2)(b(1), b(2))), (3.1.7)

with πω(b(1), b(2)) being the steady-state distribution of the joint energy levels given by
policy ω = (ω(1), ω(2)). The optimization problem (3.1.3) becomes

ω⋆ = arg max
ω

G(ω), (3.1.8)

and can be solved via standard stochastic optimization techniques, like the Value Iteration
Algorithm (VIA) or the Policy Iteration Algorithm (PIA) (see Section 2.2.2).
3.1.3.1 Maximization of the Transmission Rate
A practically important case is the optimization of Equation (3.1.3) for the case in which
the goal is the maximization of the long-term average transmission rate from the EHDs to
the receiver. Denoting the normalized channel gain random variables as H(1) and H(2),
and assuming them i.i.d. across EHDs and over time and exponentially distributed with
unit mean (i.e., with pdf f

H
(i)(h) = e−h, h > 0, where e is the Napier’s constant), the

total SNR enjoyed by device i in slot k is Λ(i)h
(i)
k , where Λ(i) is the average SNR of link i

at RX and h
(i)
k is the realization of the random variable H(i). Hence, the rate achievable

by EHD i in slot k is proportional to

V
(i)

k = log(1 + Λ(i)h
(i)
k ), (3.1.9)

and a threshold on the importance level ν(i)
th corresponds to a threshold on the normalized

channel gain h
(i)
th = (eν

(i)
th − 1)/Λ(i). As derived in [33], in the practical case in which the

sensor nodes are energy constrained and Λ(i) ≪ 1 (low SNR regime [132]), the Shannon
capacity expression (3.1.9) can be approximated as V (i)

k ≃ Λ(i)h
(i)
k and the formulations

for the marginal probabilities and the reward function (3.1.6) become, respectively:

ω(0)(b) =
(

1− e−h
(1)
th (b)

)(
1− e−h

(2)
th (b)

)
, (3.1.10)

ω(1)(b) = e−h
(1)
th (b)

(
1− Λ(2)

Λ(1) + Λ(2) e
−h

(2)
th (b)

)
, (3.1.11)

ω(2)(b) = e−h
(2)
th (b)

(
1− Λ(1)

Λ(1) + Λ(2) e
−h

(1)
th (b)

)
(3.1.12)

and

r(ω(1)(b), ω(2)(b)) =
2∑

i=1
Λ(i)e−h

(i)
th (b)(h(i)

th (b) + 1)

+ Λ(1)Λ(2)

Λ(1) + Λ(2) e
−(h(1)

th (b)+h
(2)
th (b))(h(1)

th (b) + h
(2)
th (b) + 1).

(3.1.13)
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In addition, it is possible to derive the channel thresholds h
(1)
th (b) and h

(2)
th (b) as func-

tions of the marginal probabilities ω(1)(b) and ω(2)(b) by performing the inversion of
Equations (3.1.11) and (3.1.12):

h
(1)
th (b) = log

(
−(ω(1)(b) + ω(2)(b))Λ(2) + (Λ(1) + Λ(2))(ω(1)(b) + 1) + ∆

2(Λ(1) + Λ(2))ω(1)(b)

)
, (3.1.14)

h
(2)
th (b) = log

(
2Λ(2)

(ω(1)(b) + ω(2)(b))Λ(2) + (Λ(1) + Λ(2))(1− ω(1)(b))−∆

)
, (3.1.15)

where

∆ ,
√

[(ω(1)(b) + ω(2)(b))Λ(2)+(Λ(1)+Λ(2))(1− ω(1)(b))]2−4Λ(2)ω(2)(b)(Λ(1)+Λ(2)).
(3.1.16)

3.1.3.2 Definition of the Analyzed Policies

In Table 3.1 the following policies are compared, according to the value of ē(1) + ē(2), where
ē(i) is the average energy arrival rate of device i expressed in energy quanta.

• Optimal Policy (OP). The optimal policy that, for each ē(1), ē(2), b(1)
max and b(2)

max,
identifies the values of ω(1)(b), ω(2)(b) maximizing Equation (3.1.7). This policy can
be calculated using VIA or PIA.

• Energy Independent Policy (EIP). A policy in which ω(1)(b) = ω(1)χ{b(1) > 0}
and ω(2)(b) = ω(2)χ{b(2) > 0}, where χ{·} is the indicator function and ω(1), ω(2) are
scalar values. With this policy, the values of ω(1)(b) and ω(2)(b) do not depend on
the battery status, provided that the batteries are not empty. In particular, we are
interested in the Optimal-EIP (OEIP). Special cases of EIP include:

– Balanced Policy (BP). A particular case of EIP, only defined for ē(1)+ē(2) ≤ 1,
where ω(1) = ē(1) and ω(2) = ē(2), which can be shown to be asymptotically
optimal for large batteries. An approximation of the performance obtained
with this policy will be discussed in Section 3.1.4.

– Constrained Energy Independent Policy (CEIP). A particular case of
EIP, only defined for ē(1) + ē(2) > 1, where ω(1) +ω(2) = 1 and min{ω(1), ω(2)} ≤
min{ē(1), ē(2)}. In particular, we are interested in the Optimal-CEIP (OCEIP).

– Heuristic-CEIP (HCEIP). A heuristic approximation of OCEIP, which will
be discussed in Section 3.1.5.

Table 3.1. Available policies for different values of ē(1) + ē(2).

EH condition Available policies

ē(1) + ē(2) ≤ 1 OP, EIP, BP
ē(1) + ē(2) > 1 OP, EIP, CEIP, HCEIP
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Our objective is to analyze suboptimal low-complexity policies, avoiding the compu-
tationally demanding optimization processes needed to compute OP, but still achieving
good performance with respect to it. In particular, BP and HCEIP do not require any
optimization, and hence are ideal for low-performing EHDs.

The comparison of the performance achieved by the introduced policies is based on the
following metric.

Definition 3.1.1 (Reward Precision). The reward precision of two policies A and B is
defined as:

RB
A ,

GA −GB

GA

, (3.1.17)

where GA and GB are the long-term reward of policies A and B, respectively, as defined in
Equation (3.1.7).

For example, a policy B can be considered a good lower bound of policy A if RB
A ≪ 1.

In Section 3.1.4, we consider the case ē(1) + ē(2) ≤ 1, first discussing the balanced policy,
and then deriving an analytical approximation of its reward function GBP. Section 3.1.5,
instead, describes an energy independent policy for the case ē(1) + ē(2) ≥ 1, defining a
heuristic low-complexity policy HCEIP, for which no optimization is required.

3.1.4 Balanced Policy
The Balanced Policy (BP) is a particular case of energy independent policy and is defined
only when ē(1) + ē(2) ≤ 1, as ω(i)(b) = ē(i)χ{bi > 0}.

As an analytical formulation for GBP cannot be easily computed, we now derive its
approximation ĜBP, so as to characterize the performance obtained by BP in a closed-form
expression. In addition, we will numerically show that GBP ≥ ĜBP and, since GOP ≥ GBP,
it would be possible to find an approximate analytical lower bound to the optimum reward
GOP.

The basic idea is to divide the set of energy states in four classes and force the steady-
state probability of all states in the same class to be equal. Also, solving a reduced system
of steady-state equations, it will be possible to find explicitly the value of the approximate
steady-state distribution π̂ω(b), from which the approximate reward function ĜBP can be
computed. After the analysis of some properties of ĜBP, in Section 3.1.6 we numerically
evaluate the goodness of this approximation with respect to the balanced policy GBP.
3.1.4.1 Computation of the Approximate Reward Function
The computation of the exact steady state distribution would involve the solution of a
system of (b(1)

max + 1)× (b(2)
max + 1) equations.

In order to simplify the problem, we use the following working assumption

π̂ω(b(1), b(2)) =


π00, if b(1) = 0, b(2) = 0,
π

b
(1) , if b(1) > 0, b(2) = 0,

π
b

(2) , if b(1) = 0, b(2) > 0,
πb, if b(1) > 0, b(2) > 0

(3.1.18)



24 Energy Harvesting Networks with Multiple Devices

and we find the previous values solving the reduced system of equations involving states
(0, 1), (1, 0) and (1, 1) and the normalization equation

b
(1)
max∑

b
(1)=0

b
(2)
max∑

b
(2)=0

π̂ω(b(1), b(2)) = 1. (3.1.19)

This analysis requires b(1)
max > 1 and b(2)

max > 1, otherwise the structure of the system of
steady-state equations would be different. Thus, we neglect the case b(1)

max = 1 or b(2)
max = 1,

which seems of less practical importance, and can be solved in a similar way. In particular,
we obtain: 

π00
π

b
(1)

π
b

(2)

πb

 = 1
D


1− ē(1) − ē(2) + 2 ē(1)ē(2)

1− ē(2)

1− ē(1)

1

 , (3.1.20)

where

D = (b(1)
max + 1)(b(2)

max + 1)− ē(1)(b(2)
max + 1)− ē(2)(b(2)

max + 1) + 2 ē(1)ē(2). (3.1.21)

The approximate reward function ĜBP is thus derived as:

ĜBP =b(1)
maxπb

(1)r(1) + b(2)
maxπb

(2)r(2) + b(1)
maxb

(2)
maxπb r

(1,2), (3.1.22)

where we have defined r(1) , r(ē(1), 0), r(2) , r(0, ē(2)) and r(1,2) , r(ē(1), ē(2)).
3.1.4.2 Approximate Reward Function Properties

Limit values. We want to investigate the values that ĜBP assumes when b(1)
max →∞

or b(2)
max →∞ or both.

lim
b

(1)
max→∞

ĜBP = (1− ē(2))r(1) + b(2)
maxr

(1,2)

b(2)
max + 1− ē(2) , (3.1.23)

lim
b

(2)
max→∞

ĜBP = (1− ē(1))r(2) + b(1)
maxr

(1,2)

b(1)
max + 1− ē(1) , (3.1.24)

lim
b

(1)
max→∞

b
(2)
max→∞

ĜBP = r(1,2). (3.1.25)

From the previous equations, it is possible to derive the gap between the asymptotic
reward (when both b(i)

max → ∞) and the one achieved in a scenario where only a single
device i has a large battery, as r(1,2)− lim

b
(i)
max→∞ ĜBP. For example, if b(1)

max →∞, we have

r(1,2) − lim
b

(1)
max→∞

ĜBP = (1− ē(2)) r(1,2) − r(1)

b(2)
max + 1− ē(2) , (3.1.26)

which allows us to justify the reward loss in the non symmetric case.
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OP bounds. In Section 3.1.6, we will show that the approximate reward function
ĜBP numerically results to be a lower bound for the balanced policy. Furthermore, as
GBP ≤ GOP for every parameter choice and, if ē(1) + ē(2) ≤ 1, GOP ≤ r(1,2) (see [33]), the
following inequality chain holds:

ĜBP ≤ GBP ≤ GOP ≤ r(1,2), (3.1.27)

i.e., ĜBP can be used as an analytical lower bound for the optimal reward GOP.

3.1.5 Heuristic Constrained Energy Independent Policy
In this section we consider the case ē(1) + ē(2) > 1, first discussing the Constrained Energy
Independent Policy (CEIP) and then introducing its heuristic low-complexity version
(HCEIP). The latter is interesting because:

• For a given set of ē(1), ē(2), b(1)
max and b(2)

max, it provides the values of ω(1) and ω(2) with
no optimization needed.

• It achieves near optimal performance among the CEIPs, i.e., ROCEIP
HCEIP ≪ 1.

Note that in the case ē(1) + ē(2) > 1, the balanced policy where ω(1) = ē(1), ω(2) = ē(2)

cannot be defined, otherwise ω(1) +ω(2) > 1, which would be infeasible. Therefore, we must
have ω(1) + ω(2) < ē(1) + ē(2); however the choice of the marginal transmission probabilities
is not obvious.

A constrained energy-independent policy can be seen as a particular EIP, with the
following additional constraints:

• ω(1) + ω(2) = 1, i.e., ω(0) is forced to be zero;

• min{ω(1), ω(2)} ≤ min{ē(1), ē(2)}. This constraint will be useful to design HCEIP
described next.

CEIP can be defined for every ē(1) + ē(2), but we focus on the case ē(1) + ē(2) > 1, as, if
ē(1)+ē(2) ≤ 1, the simpler balanced policy already achieves good performance. Although the
Optimal-CEIP (OCEIP) behaves differently from the Optimal-EIP, i.e., ω(i)

OCEIP ̸= ω
(i)
OEIP,

a CEIP has the peculiarity of allowing to reduce the number of the variables from two
to one and hence, to compute the OCEIP, only one parameter needs to be optimized.
Exploiting this fact, in the next subsection we define the Heuristic-CEIP, an approximation
of OCEIP, whose objective is to achieve good performance avoiding the resource-demanding
optimization process. Also, we consider only the case bmax , b(1)

max = b(2)
max, leaving the

asymmetric case as future work.
3.1.5.1 Computation of the Heuristic-CEIP
The design of HCEIP is based on the analysis of the marginal transmission probabilities
of the Optimal-CEIP. In particular we approximate ω(1)

OCEIP and ω
(2)
OCEIP with ω

(1)
HCEIP and

ω
(2)
HCEIP, which are simple functions of the system parameters.

By evaluating OCEIP, for ē(1), ē(2) ∈ (0, 1], with ē(2) ≤ ē(1) and ē(1) + ē(2) > 1, for a
given value of ē(1) and bmax the behavior of ω(2)

OCEIP as a function of ē(2) can be divided
into three regions: a first linear zone with slope equal to one (ω(2)

OCEIP = ē(2)); a second
non-linear part; a last constant zone (ω(2)

OCEIP = 0.5). Defining the thresholds dividing the
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Figure 3.1. ω(2)
HCEIP and ω

(2)
OCEIP as a function of ē(2) in the range [0.02, 1] with ē(1) = 0.98

and bmax = 6.

three regions as ΨA and ΨB (with ΨA < ΨB), as in Figure 3.1, we now introduce the
heuristic marginal transmission probability ω(2)

HCEIP (note that ω(1)
OCEIP = 1− ω(2)

OCEIP).
Given ΨA and ΨB for each ē(1) and bmax, we deduce ω(2)

HCEIP as a function of these
thresholds, approximating the central region of Figure 3.1 as a straight line. With the
previous assumptions, we have:

ω
(2)
HCEIP =


ē(2), if ē(2) ≤ ΨA,
0.5−ΨA

ΨB −ΨA

(ē(2) −ΨA) + ΨA, if ΨA < ē(2) < ΨB,

0.5, if ΨB ≤ ē(2).

(3.1.28)

Thresholds. In the general case, each threshold is a function of both bmax and ē(1).
However, it can be numerically verified that:

ΨA , ΨA(ē(1), bmax) ≈ ΨA(ē(1)), (3.1.29)
ΨB , ΨB(ē(1), bmax) ≈ min{ΨB(bmax), ē(1)}, (3.1.30)

that is, ΨA only depends on ē(1), while ΨB also depends on a function ΨB(bmax), defined
in (3.1.32).

In Figure 3.1 we show, as an example, both ω
(2)
OCEIP and ω

(2)
HCEIP as a function of ē(2),

with the thresholds ΨA and ΨB when ē(1) = 0.98 and bmax = 6.
We now discuss how the derivation of ΨA and ΨB has been accomplished. ΨA has been

computed numerically, for different values of bmax and ē(1), as the value for which ω(2) is
no longer equal to ē(2). Since it can be observed that ΨA is approximately independent of
bmax, for each value of ē(1) we have dropped this dependence averaging ΨA over all possible
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values of bmax. Finally, by a linear interpolation with respect to ē(1), Equation (3.1.31) has
been derived.

The threshold ΨB has been determined as the value for which ω(2) saturates to 0.5. We
have found that ΨB has the structure in (3.1.30), where ΨB has been determined with a
technique similar to the one used to find ΨA, first averaging on ē(1) and then interpolating
in bmax, resulting in (3.1.32).

The resulting heuristic expressions of the thresholds ΨA(ē(1)) and ΨB(bmax) are given
by

ΨA(ē(1)) = −0.6875× ē(1) + 0.84375, (3.1.31)
ΨB(bmax) = 0.5159e−0.1775×bmax + 0.5624 (3.1.32)

and are valid for every possible choice of bmax and ē(1) and hence represent a general result
for this scenario.

From Equations (3.1.29)-(3.1.32), it is possible to compute ΨA and ΨB, used to derive
ω

(2)
HCEIP from (3.1.28) and ω(1)

HCEIP = 1−ω(2)
HCEIP, for all values of ē(1), ē(2) and bmax. Finally,

with the marginal probabilities, GHCEIP is obtained.

3.1.6 Numerical Results
In our numerical evaluation we use the following parameters: b(1)

max, b
(2)
max ∈ {1, . . . , 20},

ē(1), ē(2) ∈ {0.05, 0.10, . . . , 1} and Λ(1) = Λ(2). Since there are twenty cases for each
parameter, we have a total number of cases equal to 204 = 160000.

In the following, we show that the reward functions ĜBP and GHCEIP are good lower
bounds for GOP in most cases of interest.1

Table 3.2. Policies comparison in the worst-case scenarios.

EH condition Policies max{RB
A}

ē(1) + ē(2) R 1 OP OEIP 5.36%

ē(1) + ē(2) ≤ 1
OEIP BP 10.17%
OP BP 10.18%
BP B̂P 4.14%

ē(1) + ē(2) > 1
OEIP OCEIP 1.59%

OCEIP HCEIP 0.45%
OP HCEIP 4.56%

We now comment the results shown in Table 3.2, based on the value of b̄1 + b̄2.
3.1.6.1 Case ē(1) + ē(2) Q 1

OP and OEIP comparison. As max{ROEIP
OP } = 5.36%, OEIP is a good lower bound

for OP. This is an important result, which implies that only few parameters need to be
optimized to achieve near-optimal performance.

1In the following comparison, B̂P refers to the approximate performance of BP, obtained with Equa-
tion (3.1.22).
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Figure 3.2. Percentage reward precision RBP
OP when ē(1) = ē(2) = 0.05 (worst case) and

b(1)
max and b(2)

max range between 1 and 20.

3.1.6.2 Case ē(1) + ē(2) ≤ 1
OEIP and BP comparison. The balanced policy is not always a good lower bound

for OEIP, as max{RBP
OEIP} = 10.17%. However, in general, BP is rather close to OEIP,

especially if b(1)
max and/or b(2)

max are not too small. In particular, we have noticed that RBP
OEIP

is high when both ē(1) and ē(2) are close to 0, which is not a very practical scenario.
For example, if b(1)

max = b(2)
max = 1 and ē(1) = 0.4, ē(2) = 0.2, RBP

OEIP = 1.2%, but if
b(1)

max = b(2)
max = 5, this value decreases to 0.14%. We can finally say that BP is a good lower

bound of OEIP in most cases of interest.
OP and BP comparison. From the previous paragraphs, we can state that in most

cases of interest BP is a good lower bound for OP. As an example, in Figure 3.2, we plot
the worst case scenario (ē(1) = ē(2) = 0.05) for RBP

OP, with different values of b(i)
max. It can be

seen that RBP
OP decreases quickly when b(1)

max and/or b(2)
max increase, i.e., the balanced policy

is better for high values of bmax.

B̂P and BP comparison. For each pair of b(1)
max and b(2)

max, the maximum of RB̂P
BP is

reached when ē(1) = ē(2) = 0.5 and, in particular, in the worst possible case RB̂P
BP is equal

to 4.14%. Moreover, the lower bound of RB̂P
BP is 0, i.e., ĜBP is always lower than GBP.

Since RB̂P
BP ≪ 1, we can state that the approximate balanced policy can be considered a

good lower bound for BP. Note that this result is not obvious, as ĜBP has been derived
as an approximation of GBP. In Figure 3.3, we depict the reward precision RB̂P

BP for
b(1)

max = b(2)
max = 2, for different values of ē(1) and ē(2). It can be seen that ē(1) = ē(2) = 0.5 is

the worst case, but for low values of ē(1) or ē(2), the two rewards are comparable.
3.1.6.3 Case ē(1) + ē(2) > 1

OEIP and OCEIP comparison. The difference between OCEIP and OEIP is mainly
due to the constraint ω(1) + ω(2) = 1. However, we have verified that ω(1)

OEIP + ω
(2)
OEIP is
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Figure 3.3. Percentage reward precision RB̂P
BP when b(1)

max = b(2)
max = 2 and ē(1) and ē(2) range

between 0.05 and 1 with ē(1) + ē(2) ≤ 1.

approximately equal to one, even for the optimal unconstrained EIP. The results show
that ROCEIP

OEIP is always lower than 1.59%, and the worst case occurs when ē(1) + ē(2) is close
to 1. Indeed, in this case, OEIP is more conservative than OCEIP, i.e., ω(1)

OEIP < ω
(1)
OCEIP

and ω
(2)
OEIP < ω

(2)
OCEIP, because OEIP generally attempts to avoid energy outage, whose

probability increases if ē(1) and ē(2) decrease.
OCEIP and HCEIP comparison. We have verified that the quantity RHCEIP

OCEIP has
a maximum that is less than 0.45%, i.e., with the considered parameters, the heuristic
approximation can be considered as a good lower bound of OCEIP. Clearly, the approxi-
mation performs worse when ē(2) ∈ (ΨA,ΨB), where we have fitted a non-linear function
with a linear one. In Figure 3.4, we show the reward precision RHCEIP

OCEIP as a function of
ē(2) for the same parameters of Figure 3.1. It can be seen that RHCEIP

OCEIP is low even in the
non-linear zone, where the approximation is worse.

OP and HCEIP comparison. By the aforementioned results, it follows that

GOP & GOEIP & GOCEIP & GHCEIP, (3.1.33)

i.e., HCEIP is a good lower bound for OP. In particular, from Table 3.2, max{RHCEIP
OP } =

4.56%: this is an interesting result, as HCEIP, differently from OP, can be analytically
formulated with a closed form expression.

Finally, in Figures 3.5 and 3.6 we compare GOP, GOEIP, ĜBP, and GHCEIP, when
b(1)

max = b(2)
max ∈ {1, . . . , 20}. It can be seen that all the policies approach OP for high values

of bmax and are very close already for bmax = 20.

3.1.7 Conclusions of Section 3.1
The first part of this chapter focused on the case of two energy harvesting devices which
report data associated to different rewards to a common access point, and are managed by
a central controller. We distinguished two cases, depending on the global energy harvesting
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with ē(1) = 0.98 and bmax = 6.

2 4 6 8 10 12 14 16 18 20

Battery size, b
(1)
max = b

(2)
max [e.q.]

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

L
on

g-
te
rm

re
w
ar
d
,
G

[n
or
m
al
iz
ed
]

GOP

GOEIP
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rate of the system. In the first one, when ē(1) + ē(2) ≤ 1, we used the balanced policy
and we derived an analytic approximation of its performance. We showed that BP can
be considered a good lower bound for the optimal policy when ē(1) and ē(2) are not too
close to zero. Furthermore, we numerically derived an approximate reward function of
BP, that is always lower than or equal to the real reward function. In this way, we found
an analytical lower bound to BP and, consequently, to the optimal policy. Future work
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may complete the analysis of BP in the particular case b(1)
max = 1 or b(2)

max = 1. In the case
ē(1) + ē(2) > 1, we introduced a chain of policies that leads to the heuristic constrained
energy independent policy, which is computable with no optimization which nevertheless
achieves good performance with respect to the optimal policy. Future work may also
include the case b(1)

max ̸= b(2)
max.

3.2 Decentralized Approach
In this section we introduce a decentralized optimization framework for an energy harvesting
network. Differently from Section 3.1, in this case the receiver is unaware of the state of
the system in every slot, and thus it must compute the policy using partial information
only.

3.2.1 Introduction
Environmental Energy Harvesting (EEH) has been established as one of the most prominent
solutions for prolonging the lifetime and enhancing the performance of wireless networks.
Although this topic has been widely investigated in the literature so far, finding proper
energy management schemes is still an open issue in many cases of interest. In particular,
using decentralized policies, in which every node in the network acts autonomously and
independently of the others, is a major problem of practical interest in Wireless Sensor
Networks (WSNs) where a central controller may not be used all the time. Many decen-
tralized communication schemes (e.g., Aloha-like) can be found in the literature; however,
most of them were designed without a principle of optimality, i.e., without explicitly trying
to maximize the network performance. Instead, in this section we characterize the optimal
decentralized policy in a WSN with EH constraints and describe the related computational
issues. Although this approach intrinsically leads to a more complex protocol definition, it
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also characterizes the maximum performance a network can achieve, and may serve as a
benchmark for defining quasi-optimal low-complexity protocols.

Differently from the approach we investigate in this section, most of the protocols
proposed in the literature considered isolated nodes and did not account for the interactions
among devices, or focused on centralized policies, in which a controller coordinates all
nodes and knows the global state of the system over time. [94] analyzed decentralized
policies with a particular focus on symmetric systems, and proposed a game theoretic
approach for solving the problem. Instead, in this section we use a different framework
based on decentralized Markov decision processes, which can handle asymmetric scenarios.
Decentralized theory was also used in [52] for a wireless powered communication network.
However, the scenario proposed therein is different from ours and the authors only focused
on a narrow subclass of policies. [91] considered a scenario similar to ours and used a
low-complexity approach to solve access problem; in particular, they replaced the battery
dynamics with average power constraints, therefore simplifying the system model but
introducing suboptimal policies.

To model our energy harvesting system, we use the results about decentralized control
theory developed by Dibangoye et al. [36, 37, 35]. In particular, [35] presented a detailed
study of Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and
proposed different approaches to solve them. The notion of occupancy state was introduced
as a fundamental building block for Dec-POMDPs, and it was shown that, differently
from classic statistical descriptions (e.g., belief states), it represents a sufficient statistic
for control purposes. Using the occupancy state, we can convert the Dec-POMDP in an
equivalent MDP with a continuous state space, called occupancy-MDP. Then, standard
techniques to solve POMDPs and MDPs can be applied; for example, an approach to
solve a continuous state space MDP is to define a grid of points (see Lovejoy’s grid
approximation [83]) and solve the MDP only in a subset of states. Although several papers
introduced more advanced techniques to refine the grid [170], this approach may still
be inefficient and difficult to apply. Instead, in this section we use a different scheme,
namely the Learning Real Time A∗ (LRTA∗) algorithm [66], which has the key advantage
of exploring only the states which are actually visited by the process, without the difficulty
of defining a grid of points.

Converting the Dec-POMDP to an occupancy-MDP produces a simpler formulation of
the problem, which however does not reduce its complexity. Indeed, for every occupancy
state, it is still required to perform an exhaustive backup operation, i.e., to compute a
decentralized control policy. This is the most critical operation in decentralized optimiza-
tion, since it involves solving a non-convex problem with many variables. Dibangoye et
al. proposed an alternate formulation of the exhaustive backup operation as a Constraint
Program [31], which can be solved, e.g., using the bucket-elimination algorithm [30]. The
problem can be further simplified by imposing a predefined structure to the policy [52],
so that only few parameters need to be optimized. While this may lead to suboptimal
solutions, it greatly simplifies the numerical evaluation and, if correctly designed, produces
close to optimal results. In this section, we explore and compare both these directions.

Contributions. We consider a decentralized network with multiple devices and a
receiver that computes and distributes to all nodes the randomized transmission policy.
A multi-layer Markov model, in which an internal Dec-MDP is nested inside an external
MDP, is proposed and solved. The external layer models the time instants, namely SYNC
slots, at which RX computes the policy, whereas the internal layer models the system
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evolution between consecutive SYNC slots. To solve the external layer, we use the Value
Iteration Algorithm (VIA) (see Section 2.2.2) as in [17] or our paper [J3] (see page 155).
However, differently from these papers, in our model the transition probabilities between
states are derived from the optimization of the internal layer; moreover, the sojourn times
in every state are not deterministic. Instead, the internal layer is solved using the Markov
Policy Search algorithm [36]. Because of the complexity of the optimal approach, we
introduce two simpler schemes, which still exploit the structure of the optimal policy
but can be computed in practice. In our numerical results we compare centralized and
decentralized approaches, and discuss the performance loss of using a decentralized scheme.

Our main contributions lie in the design and analysis of decentralized policies and
of the tools to construct them for a star topology network; in particular, they can be
summarized as follows

1. We present a decentralized random access transmission scheme derived using a
principle of optimality, and discuss which are the computational pitfalls of this
approach;

2. We introduce two suboptimal policies, which are closely related to the structure of
the optimal policy but can be numerically computed with reasonable complexity.
These can be used as a baseline for developing heuristic schemes and real-time
protocols. Moreover, although we present these approaches for an EH scenario, they
may also be used in other contexts;

3. We show that a decentralized scheme, if correctly designed, may achieve high
performance, comparable with that of centralized solutions, while greatly reducing
the signaling in the network;

4. Finally, we show that, differently from traditional networks (i.e., without energy
constraints), where using an orthogonal resource allocation all the time is optimal,
the best transmission policy with energy harvesting is a hybrid approach between
random and orthogonal access.

Structure. The second part of this chapter is organized as follows. Section 3.2.2
presents the system model. The internal layer is described in Section 3.2.3, whereas the
external layer and the optimization problem are shown in Section 3.2.4. Optimal and
suboptimal solutions are derived in Sections 3.2.5 and 3.2.6, respectively. The numerical
results are shown in Section 3.2.7. Finally, Section 3.2.8 concludes the section.

References. This section is based on the conference paper [C13] and on the journal
paper [J6].

3.2.2 System Model
The network is composed of one Receiver (RX) and N harvesting nodes. We focus on
an infinite time horizon framework, where a time slot k corresponds to the time interval
[k T, (k + 1)T ), k = 0, 1, . . ., and T is the common duration of all slots (see Section 2.1.1).
During a slot, every node independently decides whether to access the uplink channel and
transmit a message to RX, or to remain idle. We adopt an on/off collision model in which
overlapping packet transmissions are always unrecoverable.
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Figure 3.7. Time evolution of the system. After the SYNC slots every user acts indepen-
dently of the others.

In slot k, node i harvests energy from the environment according to a distribution
EEEH,i

k , independent of the other nodes. In this section, we consider Bernoulli energy
arrival processes.

Every node stores the harvested energy in a rechargeable battery. We assume that the
energy scavenged in slot k can be used only in a later slot. The global energy level vector in
slot k is bk = ⟨b(1)

k , . . . , b
(N)
k ⟩. Vector bk is not known to the devices, which only see their

own battery status, and is known to RX only in certain slots, namely the “SYNC slots”.
In particular, in slot k, with probability (w.p.) βk ∈ [0, 1], RX may trigger a SYNC slot
and request all nodes to share their energy levels so that it can acquire bk. We neglect the
energy costs of these synchronization messages, which however, if considered, would make
the benefits of using decentralized policies even higher. For example, when βk = 1, ∀k,
RX has full knowledge of the battery levels in every time slot, and our model degenerates
to [33] (see Section 3.2.4.2); instead, if βk = β0, ∀k, where β0 is a constant value in (0, 1],
RX uses a fully stochastic approach and asks for bk with the same probability in every
slot. Another possibility may be βk = 1 for some predefined k, and βk = 0 for others, so
that the SYNC slots are deterministically defined a priori.

RX uses the information about bk to initialize the transmission parameters of the
whole network. Therefore, every time bk is acquired (a SYNC slot), a coordination phase
is performed and RX disseminates the policy to all nodes (the policy is decentralized, so
every node receives only its own policy).2 Thereafter, every device acts independently of
the others until the next SYNC slot.

Although the proposed framework is very simple, modeling and solving it formally
requires a complex mathematical structure. In particular, we decompose the system in
two nested layers (see Figure 3.7 for a graphical illustration):

• The external layer considers the jumps between consecutive SYNC slots. Indeed,
since the global battery level bk is completely known in every SYNC state, the
system follows a Markov evolution;

• The internal layer models the actions to take between two SYNC slots and requires
to compute a decentralized policy given bk. This will be modeled as a Dec-MDP,
since multiple devices indirectly collaborate to achieve a common goal.

2We note that, although a user may also receive the policy of other devices, this information would not
be useful. Indeed, the decentralized transmission policy is jointly designed by RX, and therefore implicitly
considers the contributions of all nodes.
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The two layers will be separately analyzed in the following sections.

3.2.3 Internal Layer
We first consider the internal layer and present a mathematical tool to model the actions
of the devices between two SYNC slots. In particular, we adopt the Decentralized Markov
Decision Process (Dec-MDP) framework [37], which in our context is formally defined as
follows.
3.2.3.1 Decentralized–MDPs for EH Systems
An N -user Dec-MDP M = (k,B,Ω, pint, r, ηk, β) is specified by

• Initial Index. k represents the index of the SYNC slot that triggers the beginning
of the internal layer. Thus, all the slots k < k are of no interest in this section. Note
that, since βk is a probability, the position of the next SYNC slot is unknown a
priori, therefore the time horizon of the Dec-MDP M begins at k and may extend
to arbitrarily large time indices;

• Battery Level. B = B(1) × · · · × B(N) is the set of global battery levels bk =
⟨b(1)

k , . . . , b
(N)
k ⟩, with b(i)

k ∈ B(i) , {0, . . . , b(i)
max} (device i can store up to b(i)

max discrete
energy quanta). Throughout, the terms “battery level” or “state” will be used
interchangeably;

• Action. Ω = Ω(1) × · · · × Ω(N) is the set of global actions ωk = ⟨ω(1)
k , . . . , ω

(N)
k ⟩,

where ω(i)
k ∈ Ω(i) , [0, 1] denotes the transmission probability. Although ω

(i)
k should

assume continuous values, we only consider Sa uniformly distributed samples of
the interval [0, 1] for numerical tractability. Action ω

(i)
k is chosen by user i in slot

k ≥ k through a function σ
(i)
k : B(i) → Ω(i), and depends only on the local state b(i)

k .
Finding σ(i)

k will be the objective of the optimization problem;

• Reward. r is the reward function r : B × Ω → R+ that maps the global action
ω ∈ Ω to the reward r(b,ω) when the global state is b ∈ B;

• Transition Probability. pint is the probability transition function pint : B ×Ω×
B→ [0, 1] which defines the probability pint(b̄|b,ω) of moving from a global battery
level b = ⟨b(1), . . . , b(N)⟩ ∈ B to a global battery level b̄ = ⟨b̄(1), . . . , b̄(N)⟩ ∈ B under
the global action ω ∈ Ω. When user i performs a transmission, it consumes m(i) ≥ 1
energy quanta;

• Initial State Distribution. ηk is the initial state distribution. In our scenario we
take

ηk(b) =

1, if b = bk,

0, if b ∈ B \ {bk},
(3.2.1)

where bk is the global state in correspondence of the initial SYNC slot and is fully
known by RX;
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• SYNC Probability. β represents the sequence βk, βk+1, . . ., which are the proba-
bilities that a SYNC slot occurs.

In Section 3.2.4.1 we will describe the optimization problem related to M. Its solution
provides a decentralized control policy, which will be discussed in Sections 3.2.5 and 3.2.6.

Before presenting in more detail the previous bullet points, it is important to emphasize
the following key characteristics of the Dec-MDP under investigation:

• M is jointly fully observable, i.e., if all nodes collaborated and shared their local
energy levels, the global state would be completely known (actually, this is what
differentiates Dec-MDPs from Dec-POMDPs [7]);

• M is a transition independent Dec-MDP, i.e., the action taken by node i influences
only its own battery evolution in that slot and not the others. Formally, the transition
probability function pint can be decomposed as

pint(b̄|b,ω) =
N∏

i=1
p

(i)
int(b̄(i)|b(i), ω(i)). (3.2.2)

This feature is important to develop compact representations of the transmission poli-
cies, and in particular to derive Markovian policies as discussed in our Section 3.2.3.3
and in [36, Theorem 1].

3.2.3.2 Battery Level
We adopt a discrete model for the energy-related quantities, so that every battery can
be referred to as an energy queue, in which arrivals coincide with the energy harvesting
process, and departures with packet transmissions. In particular, a battery of B(i)

max J
is quantized in bmax + 1 uniform levels {0, 1, . . . , b(i)

max}; in this context, the basic energy
unit is called energy quantum and corresponds to B(i)

max/b
(i)
max J of energy. This model has

been widely used in the EH literature [17, 94, 156], and represents a good approximation
of a real battery when b(i)

max is sufficiently high, i.e., the battery quantization is fine (see
Section 2.2.1).

In particular, the battery level of node i in slot k is B(i)
k , and it corresponds to b(i)

k

energy quanta. The battery status evolves as

b
(i)
k+1 = min{b(i)

max, b
(i)
k − q

(i)
k + e

(i)
k }, (3.2.3)

where the “min” accounts for the finite battery size, q(i)
k is the energy used for transmission

and e(i)
k is the energy arrived in slot k. q(i)

k is equal to 0 w.p. 1−ω(i)
k , and to m(i) w.p. ω(i)

k .
3.2.3.3 Action and Reward
We will use the term “global reward” to indicate the overall performance of the system in
a slot, and simply “single-user reward” to refer to the performance of individual users.

Single-User Reward. Assume to study isolated users, which do not suffer from
interference, as in [93]. Data messages are associated with a potential reward, described
by a random variable V (i) which evolves independently over time and among nodes.
The realization ν

(i)
k is perfectly known only at a time t ≥ k T and only to node i; for

t < k T , only a statistical knowledge is available. Every node can decide to transmit
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(and accrue the potential reward ν
(i)
k ) or not in the current slot k according to its value

ν
(i)
k (see [92]). Our model is very general and can be specialized to different practical

cases. For example, in our numerical evaluation we will consider Shannon capacity and set
V (i) = log(1 + Λ(i)H(i)), where H(i) is the fading random variable. Another example would
be to consider transmissions with different levels of importance, according to a random
distribution.

It can be shown that a threshold transmission model is optimal for this system [93];
thus, node i always transmits when ν

(i)
k ≥ ν

(i)
th (b(i)) and does not otherwise. Note that

ν
(i)
th (b(i)) depends on the underlying state (battery level) of user i but not on the time

index k (thus a stationary scheduler can be developed).
On average, the reward of user i in a single slot when the battery level is b(i) will be

g(ν(i)
th (b(i))) , E[χ(V (i) ≥ ν

(i)
th (b(i)))V (i)] =

∫ ∞

ν
(i)
th (b(i))

νf
(i)
V (ν) dν, (3.2.4)

where χ(·) is the indicator function and f
(i)
V (·) is the pdf of the potential reward, V (i). It

is now clear that the transmission probability ω(i) is inherently dependent on the battery
level as3

ω(i) = σ(i)(b(i)) =
∫ ∞

ν
(i)
th (b(i))

f
(i)
V (v) dv = F̄

(i)
V (ν(i)

th (b(i))), (3.2.5)

where we explicitly introduced the function σ(i)(b(i)), which maps local observations (b(i))
to local actions σ(i)(b(i)) = ω(i). Note that the complementary cumulative distribution
function F̄

(i)
V (·) is strictly decreasing and thus can be inverted. Therefore, there exists

a one-to-one mapping between the threshold values and the transmission probabilities.
In the following, we will always deal with ω(i) instead of ν(i)

th (·), and write g(ω(i)) with a
slight abuse of notation.

It follows from basic analysis that g(ω(i)) is increasing and concave in ω(i) [92, Lemma 1],
i.e., transmitting more often leads to higher rewards, but with diminishing returns. Finally,
note that this model is quite general and, depending on the meaning of V (i), can be
adapted to different scenarios. For example, in a standard communication system in which
the goal is the throughput maximization, V (i) can be interpreted as the transmission rate
subject to fading fluctuations [92].

Global Reward. The global reward is zero when multiple nodes transmit simultane-
ously, whereas it is equal to w(i)ν

(i)
k if only node i transmits in slot k (w(i) is the weight of

node i). On average, since the potential rewards are independent among nodes, we have

r(νth,k(bk)) = E
[

N∑
i=1

w(i) V
(i)

k χ(V (i)
k ≥ ν

(i)
th,k(b(i)

k ))

×
∏
j ̸=i

χ(V j
k < νj

th,k(bj
k))
]
,

(3.2.6)

3We adopt a probabilistic approach because, as will be clear from the numerical results, a binary choice
that forces ω(i)

k ∈ {0, 1} is suboptimal in general.
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Figure 3.8. Global reward r(ω) when N = 2.

which can be rewritten as

r(ωk) = r(σk(bk)) =
N∑

i=1
w(i)g(ω(i)

k )
∏
j ̸=i

(1− ωj
k), (3.2.7)

where we used ωk instead of νth,k(bk) for ease of notation, and we introduced the vector
function σk , ⟨σ(1)

k , . . . , σ
(N)
k ⟩. We highlight that σk summarizes the actions of all users

given every battery level in slot k, i.e., it specifies all the following quantities

σ
(1)
k (0) . . . σ

(1)
k (b(1)

max),
...

σ
(N)
k (0) . . . σ

(N)
k (b(N)

max).
(3.2.8)

Finding σk,σk+1, . . . represents the biggest challenge when solving a Dec-MDP. Since,
when a transmission is performed, m(i) energy quanta are drained from the battery, if we
had b

(i)
k < m(i), no transmission could be performed and ω

(i)
k = σ

(i)
k (b(i)

k ) = 0.
An important observation is that the reward (3.2.7) is not necessarily increasing nor

convex in ω, which significantly complicates the solution. An example of r(ω) for the case
with two users can be seen in Figure 3.8. Note that the maximum is achieved when only
one device transmits w.p. 1 and the other does not transmit. This implies that, when
the devices are not energy constrained (i.e., they have enough energy for transmitting
and the current transmission policy does not influence the future), the optimal user
allocation should follow an orthogonal approach so as to avoid collisions (the corner points
⟨ω(1), ω(2)⟩ = ⟨1, 0⟩ and ⟨ω(1), ω(2)⟩ = ⟨0, 1⟩ achieve the maximum reward). Although
Figure 3.8 describes a system with two users only, this observation holds for a generic
number of users, as shown in Lemma 3.2.2. However, as we will discuss later, when EH is
taken into account, maximizing r(ω) alone is not optimal because an action in the current
slot influences the future energy levels and, consequently, the future rewards. Therefore,
the user allocation is not guaranteed to be orthogonal.

Note that, in the previous expressions, we have implicitly restricted our study to
Markovian policies, which map local observations to local actions (i.e., σk(bk) = ωk). In
general decentralized frameworks, tracking previous observations can be used to optimally
decide the current action (i.e., ωk depends on bk, . . . ,bk, k ≥ k). However, it can be
proved [36] that under transition independent conditions (which hold in our case, see
Section 3.2.3.1), Markovian policies are optimal and thus keeping track of previous states
is not necessary.
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3.2.3.4 Transition Probability

The transition probability function of user i, namely p(i)
int (see Equation (3.2.2)), is defined

as follows

p
(i)
int(b̄(i)|b(i), ω(i)) =


(1− P(i)

E )ω(i), if b̄(i) = b(i) −m(i),

(1− P(i)
E )(1− ω(i)) + P(i)

E ω
(i), if b̄(i) = b(i) −m(i) + 1,

P(i)
E (1− ω(i)), if b̄(i) = b(i) + 1,

0, otherwise,

(3.2.9)

when b̄(i) < b(i)
max and b(i) ≥ m(i), whereas analogous formulas hold in the other cases. The

term P(i)
E is the probability that user i harvests one energy quantum. More sophisticated

models, in which an arbitrary number of energy quanta can be simultaneously extracted
can be integrated into our model (involving, however, higher computational costs).
3.2.3.5 Occupancy State
Before formulating the optimization problem in the next section, we first introduce the
concept of occupancy state.

The occupancy state ηk is defined as

ηk(b̄) , P(bk = b̄|ηk,σk, . . . ,σk−1), k ≥ k (3.2.10)

and represents a probability distribution over the battery levels given the initial distribution
ηk (introduced in Equation (3.2.1)) and all decentralized decision rules prior to k.

It can be shown that the occupancy state represents a sufficient statistic for control
purposes in Dec-MDPs, and can be easily updated in every slot using old occupancy
states (k > k):

ηk(b̄) = ι(ηk−1,σk−1) =
∑

b
pint(b̄|b,σk−1(b))ηk−1(b), (3.2.11)

where ι is the occupancy update function.
Occupancy-MDP. Dibangoye et al. [35] developed a technique to solve Dec-MDPs by

recasting them in equivalent continuous state MDPs. Similarly to the reduction techniques
of POMDPs, in which the belief is used as the state in an equivalent MDP for solution,
for Dec-MDPs the occupancy state will represent the building block of the equivalent
MDP (called occupancy-MDP). Intuitively, there is an analogy between traditional states
in MDPs, beliefs in POMDPs and occupancy states in Dec-MDPs, since they all represent
a sufficient statistic for control purposes.

The state space of the occupancy-MDP is the occupancy simplex, the transition
rule is given by Equation (3.2.11), the action space is Ω, and the instantaneous reward
corresponding to decentralized decision rule σk is

ρ(ηk,σk) =
∑
b̄∈B

ηk(b̄)r(σk(b̄)), (3.2.12)

Note that ρ(ηk,σk) ≤ maxb̄ r(σk(b̄)), i.e., the loss of information corresponds to a lower
reward. Moreover, note that if k were a SYNC slot, we would have ρ(ηk,σk) = r(σk(bk)).

The complete structure of the occupancy-MDP will be given in Section 3.2.5.1.
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3.2.4 External Layer and Optimization Problem
So far, we have described how the system evolves between two SYNC slots. We now
introduce the external Markov Chain, which models the long-term evolution of the network
by considering the subset of all slots composed only by the SYNC slots.

Assume that, without loss of generality, the first SYNC slot occurs at k = 0, and that
the state of the system is b0. According to Section 3.2.3, RX uses b0 to compute and
distribute to all nodes a decentralized policy σ0,σ1, . . .. Moreover, the initial occupancy
state η0 is defined in (3.2.1), whereas the occupancy states η1, η2, . . . are evaluated as in
Section 3.2.3.5.

Assume now that the first SYNC slot after k = 0 is slot k′; thus, when the new SYNC
slot occurs, we know that the transition probability from the initial global state b0 to the
final global state b̄ is ηk

′(b̄) (i.e., it is given by the occupancy state by its definition), with
ηk = η0 = χ{b = b0}.

Using ηk
′(b̄), we can compute the probability of going from b0 to b̄. Since k′ is a

random quantity (β represents a sequence of probabilities), we provide the expression of
the probability averaged over k′ (this models the jumps of the external Markov Chain
(MC) between SYNC states)

pext(b̄|b0) =
∞∑

k
′=1

βk
′

(
k

′−1∏
k

′′=1

(1− βk
′′)
)
ηk

′(b̄). (3.2.13)

In the previous expression, k′ represents the index > 0 of the first SYNC slot; βk
′ is the

probability that k′ is a SYNC slot; the product ∏k
′−1

k
′′=1(1 − βk

′′) is the probability that
no slots prior to k′ are SYNC slots; ηk

′(b̄) is the transition probability, which implicitly
depends on b0. We remark that, to evaluate (3.2.13), we need the sequence σ0,σ1, . . .
in order to compute all the future occupancy states η1, η2, . . .. In Section 3.2.4.1, we will
specify how to compute σ0,σ1, . . ..

Observation The sequence of SYNC slots satisfies the Markov property, i.e., if k′ is a
SYNC slot, the system evolution for k ≥ k′ is conditionally independent of past states
given bk

′ .

We now formally define the optimization problem and link the internal and external
layers.
3.2.4.1 Optimization Problem

Define ρk|k , ρ(ηk,σk) as the decentralized reward given the SYNC slot k. Then, prior to
the next SYNC slot, the reward of the system will be: ρk|k w.p. βk+1, ρk|k + ρk+1|k w.p.
(1−βk+1)βk+2, ρk|k +ρk+1|k +ρk+2|k w.p. (1−βk+1)(1−βk+2)βk+3, and so forth. Summing
together the previous terms, and taking the average over the energy harvesting processes,
we obtain the normalized average reward

Rk , E
[ ∞∑

k=k

ρk|k

∞∑
k

′=k+1

βk
′

k
′−1∏

k
′′=k+1

(1− βk
′′)
]
. (3.2.14)



3.2 Decentralized Approach 41

The final goal of the system is to maximize the cumulative weighted undiscounted
long-term reward, defined as

G(Π,b0) = lim inf
K→∞

1
K

K−1∑
k=0

βk ×Rk(µk,bk). (3.2.15)

Rk(µk,bk) is given in (3.2.14) when the initial state of the system is bk and a policy
µk , (σµk

k ,σ
µk

k+1, . . .) is employed. Policy µk is decentralized, and it is drawn from Π, which
includes all the decentralized transmission policies µk, µk+1, . . .. Equation (3.2.15) focuses
on the long run because nodes in wireless sensor networks generally operate in the same
condition for long times (e.g., in an environmental monitoring application). Moreover,
the problem is weighted because of the terms w(1), . . . , w(N) included in Equation (3.2.7).
Using weights gives more flexibility to the system, since, by tuning them, it is possible
to assign priority to one user or another, according to the network requirements, or to
achieve fairness in asymmetric networks.

Since the sequence β is a design parameter and its choice is arbitrary, we restrict our
attention to the following case.

Assumption The SYNC probability sequence is periodic with period τ (i.e., βk =
βk+τ , ∀k).

For example, the simplest case is τ = 1, and βk = β0 for every k. Under Assumption 3.2.4.1,
it can be shown that (3.2.15) is equivalent to [126]

G(Π) =
τ−1∑
k=0

∑
b∈B

βk ×Rk(µb,b)× πk(b), (3.2.16)

where πk(b) is the steady-state probability of the global energy level b associated with βk,
and, instead of iterating over all k, we take the sum over the energy levels (i.e., we iterate
over the states of the external MC). Note that, in this case, the long-term undiscounted
reward does not depend on the initial state of the system, therefore G(Π,b0) = G(Π) for
every b0. The optimal solution of the external problem will be

Π⋆ = arg max
Π

G(Π), (3.2.17)

which is a Markov Decision Process (MDP). The underlying MC states are all the elements
of B, whereas the actions, which influence the transition probabilities (Equation (3.2.13)),
are given by the evolution of the internal Dec-MDP. We note that it is fundamental to
consider the two layers of optimization together, so as to avoid suboptimal approaches
(e.g., focusing on the internal layer only would correspond to a greedy optimization). In
the following, for the sake of presentation simplicity, we impose βk = β0, ∀k (i.e., τ = 1).
However, the results can be straightforwardly extended to the more general case.

Value Iteration Algorithm (VIA). The optimization problem of Equation (3.2.17)
can be solved using VIA [14, Vol. 1, Sec. 7.4]. Since we focus on τ = 1, thanks to
Equation (3.2.16) we only examine k = 0 (in the more general case τ > 1, the procedure is
analogous but with τ different equations). The Bellman equation (see [14]) to iteratively
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solve is

ziter(b)← max
µb

{
β0 R0(µb,b) +

∑
b̄∈B

pext(b̄|b)ziter−1(b̄)
}
, (3.2.18)

where “iter” is the index of VIA; β0 R0(µb,b) represents the initial reward, whereas the
other term is the expected future reward (this is derived from the old values of the Bellman
equation, ziter−1(·)). After a number of iterations (typically only a few), VIA converges,
and the Bellman equations yield the optimal solution G(Π⋆).
3.2.4.2 Centralized Optimization
In a centralized system, RX knows the state of the batteries and communicates with the
users in every time slot and thus can compute the policy using this information. In our
model, the centralized scheme is obtained when every slot is a SYNC slot, i.e., βk = 1, ∀k.
The long-term reward (3.2.15) can be rewritten in the centralized scenario as

Gcent(Π,b0) = lim inf
K→∞

1
K

K−1∑
k=0

E
[
ρ(ηk,σ

µk

k )
]
, (3.2.19)

where ρ(ηk,σ
µk

k ) degenerates to r(σµk

k (bk)) because ηk(b̄) = χ{b̄ = bk} according to
Equation (3.2.12). In this case, policy µk = (σµk

k ) defines the action to perform in any
state deterministically.

The centralized scheme can be modeled with a Markov decision process and Func-
tion (3.2.19) can be maximized using VIA (more details about the centralized optimization
can be found in Section 3.1). The centralized scheme always represents an upper bound
to the performance of the decentralized one, as it exploits more information about the
system to compute the policy.

3.2.5 Optimal Solution of the Internal Layer
In the previous section we discussed the external optimization problem and its solution
via the value iteration algorithm. However, every iteration of VIA requires to solve the
“max” in Equation (3.2.18). This is equivalent to solving the Dec-MDP of the internal
layer, since (3.2.18) depends on the decentralized policy sequence µb. In this section, we
discuss how to do that optimally, whereas in Section 3.2.6 we discuss suboptimal solutions.
3.2.5.1 Bellman Equation
The right-hand side of the Bellman equation (3.2.18) can be rewritten by replacing the
terms pext(b̄|b) and R0(·) with their definitions given in Equations (3.2.13) and (3.2.14),
respectively. After algebraic manipulations, we obtain:

max
µb

{
β0 E

[ ∞∑
k=0

φk(ηk,σ
µb
k )
∣∣∣∣b
]}
, (3.2.20)

φk(η,σ) , (1− β0)k
(
ρ(η,σ) +

∑
b̄∈B

η+1(b̄)ziter−1(b̄)
)
. (3.2.21)

Equation (3.2.20) represents the occupancy-MDP under investigation. For ease of notation,
we used η+1 , ι(η,σ). Therefore, it is formally possible to find the optimal µb by applying
VIA and exploit the policy stationarity with respect to the occupancy states [126]. However,



3.2 Decentralized Approach 43

this operation is impossible in practice because of the huge size of the occupancy state
space. Therefore, we resort to the following alternative approach.

Since (1− β0)k decreases with k and all the other terms are bounded, φk(·) decreases
with k. In particular, by definition of “max”, we have φk(η,σ) ≤ ∆(1 − β0)k, with
∆ , maxη,σ(ρ(η,σ) + ∑

b̄∈B η+1(b̄)ziter−1(b̄)). Therefore, once we select ϵ > 0, there
always exists K = ⌈log1−β0

(ϵ/∆)− 1⌉ such that:

β0

∞∑
k=K+1

∆(1− β0)k ≤ ϵ, (3.2.22)

Since the left-hand side of (3.2.22) is an upper bound to the tail of (3.2.20), the following
expression

max
µb

{
β0 E

[
K∑

k=0
φk(ηk,σ

µb
k )
∣∣∣∣b
]}
, (3.2.23)

differs from the optimal solution (3.2.20) by at most ϵ. Thus, in the following we focus on
ϵ-optimal policies and examine only the first K + 1 slots.

We can solve the “max” by rewriting it in recursive form as:

vk(ηk) = max
σ

φk(ηk,σ) + vk+1(ι(ηk,σ)), if k < K,

φK(ηK ,σ), if k = K,
(3.2.24)

where vk(·) is the cost-to-go function. Equation (3.2.23) is equivalent to β0 × v0(η0).
The trivial solution to find µb is to apply VIA in the finite horizon; however, this would

require, for every k, to specify vk(ηk) for every ηk, which is impossible in practice.
An alternate solution is to use techniques originally developed for POMDPs which

were later used for Dec-POMDPs. In particular, the Learning Real Time A∗ (LRTA∗)
algorithm is suitable for our case, since it explores only the occupancy states which are
actually visited during the planning horizon and avoids grid-based approaches (e.g., as
used in [83]). In [36], the Markov Policy Search (MPS) algorithm was introduced as an
adaptation of LRTA∗ to decentralized scenarios.

In summary, MPS operates as follows

1. It starts at k = 0 and, for every k ≥ 0, it computes the LHS of (3.2.24) with LRTA∗,
i.e., the maximization problem is solved only for the occupancy states which are
actually visited and not for every ηk;

2. It replaces vk+1 in the right-hand side with an upper bound, which can be computed
using the convexity of the cost-to-go function. In Section 3.2.5.2 we will further
discuss this point;

3. When k = K is reached, a lower bound of the optimal cost-to-go function is evaluated
in a backward direction (see [36, Section 5.1]).

The procedure is repeated until upper and lower bounds converge to the optimal
solution. We refer the readers to [36, 37] for a full description of the algorithm. In the
following, we discuss how to find the upper bound of the cost-to-go function, which will
be used as a building block in Section 3.2.5.3.
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3.2.5.2 Upper Bound of the Cost-to-go Function
It can be shown by induction that the optimal cost-to-go function v⋆

k is a convex function
of the occupancy states and can be approximated by piecewise linear functions [37,
Theorem 4.2]. The upper bound v̄k of v⋆

k can be written as

v̄k(ηk) = max
σ
{φk(ηk,σ) + C(Υk, ι(ηk,σ))}, (3.2.25)

where C interpolates the occupancy state ι(ηk, σ) using the point set Υk, which contains
the visited occupancy states along with their upper bound values. Every time (3.2.25) is
solved, a new point (ηk, v̄k(ηk)) is added to Υk. The first points to be put in Υk are the
corners of the occupancy simplex (i.e., the |B| points [1, 0, . . . , 0], . . . , [0, . . . , 0, 1]) with
their upper bound values obtained solving the following full knowledge MDP:

R0(µb,b) , E
[ ∞∑

k=0
r(σµb

k (bk)) (1− β0)k
∣∣∣∣b
]
, (3.2.26)

which is equivalent to (3.2.14) but with r(·) instead of ρk|0 and with τ = 1. Expres-
sion (3.2.26) implicitly assumes that the state of the system bk is globally known in slot k.
Since this is a standard MDP, it can be easily solved with VIA.

Sawtooth Projection. Ideally, we could use a linear interpolation as the function C
(i.e., map ηk on the convex hull of point set Υk). However, the complexity of mapping
ηk into the convex hull would increase polynomially with the number of points in Υk (it
requires to solve a linear program), making this approach infeasible in practice. Because
of that, in the literature so far, different interpolation methods have been proposed as a
replacement (e.g., see [35, 50]). An approach that has shown good performance in many
applications is to replace C with the sawtooth projection:4

sawtooth(Υk, η) = y0(η)−max
ℓ∈L
{(y0(ηℓ)− vℓ)ξℓ}, (3.2.27)

where η is the occupancy state to interpolate, (ηℓ, vℓ) is the ℓ-th element of Υk, L is the set
of indices of Υk, ξℓ is the interpolation coefficient, and y0(·) is the upper bound computed
using the corner points of Υk, i.e.,

y0(η) =
∑
b∈B

η(b)Υk(b). (3.2.28)

In the previous expression, with a slight abuse of notation, Υk(b) indicates the upper
bound value at the corner b of the simplex. The interpolation coefficient is defined as

ξℓ , min
b : η

ℓ(b)>0

η(b)
ηℓ(b)

, (3.2.29)

and can be derived geometrically (see Figure 3.9). Note that we use the “max” in (3.2.27)
so as to obtain the lowest (i.e., best) upper bound. We now rewrite the sawtooth projection

4The term “sawtooth” comes from the shape of the interpolating function in the two-dimensional case
(see Figure 3.9). The idea of the approach is to interpolate a point η using |B| − 1 corner points of the
simplex, and one point taken from Υk (ℓ in Equation (3.2.27)) [50].
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Figure 3.9. Sawtooth projection in the two-dimensional case. The arrow identifies the
quantity maxℓ∈L{(y0(ηℓ)− vℓ)ξℓ} when η = ⟨0.5, 0.5⟩.

in a simpler form:

sawtooth(Υk, η) (a)= y0(η) + min
ℓ∈L

{
(vℓ − y0(ηℓ)) min

b : η
ℓ(b)>0

η(b)
ηℓ(b)

}
(b)= y0(η) + min

ℓ∈L
max

b : η
ℓ(b)>0

{
η(b)
ηℓ(b)

(vℓ − y0(ηℓ))
}

(c)= min
ℓ∈L

{
y0(η) + max

b : η
ℓ(b)>0

{
η(b)
ηℓ(b)

(vℓ − y0(ηℓ))
}}

(d)= min
ℓ∈L

sawtoothℓ(Υk, η). (3.2.30)

Step (a) coincides with Definition (3.2.27); step (b) holds because vℓ is not greater than
y0(ηℓ), since y0(ηℓ) represents the interpolation using only the corner points (see Figure 3.9);
in step (c), we move y0(η) inside the “minℓ”, since it does not depend on ℓ; finally, we
define sawtoothℓ(Υk, η) in step (d).
We also introduced sawtoothℓ(Υk, η), which will be used in the next subsection, as the
sawtooth projection obtained using the ℓ-th element of Υk.

The sawtooth projection produces higher (i.e., worse) upper bounds than the convex
hull projection and thus MPS may require more iterations to converge (however, a single
iteration can be performed much more quickly), but convergence to the optimum is still
guaranteed [35, Section 5.2].
3.2.5.3 Constraint Programming Formulation
The key step to perform to find the policy is solving the “max” in (3.2.25). Although
this would be possible by performing the exhaustive backup, i.e., by inspecting all possible
choices of σ, it is more practical to introduce faster solutions. Constraint Programming [31]
is a technique to express hard and soft constraints as an optimization problem. We now
use it to reformulate (3.2.25) with C = sawtooth.

Using the notation of Dibangoye et al. [35], we define

Wk(ηk,σ, ℓ) , φk(ηk,σ) + sawtoothℓ(Υk, ι(ηk,σ)). (3.2.31)
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Combining (3.2.30) and (3.2.31), we can rewrite Equation (3.2.25) as

v̄k(ηk) = max
σ
{φk(ηk,σ) + sawtooth(Υk, , ι(ηk,σ))}

= max
σ
{φk(ηk,σ) + min

ℓ∈L
sawtoothℓ(Υk, ι(ηk,σ))}

= max
σ

min
ℓ∈L

Wk(ηk,σ, ℓ). (3.2.32)

To solve the previous equation, we split it in |L| separate mixed-integer programs:

v̄k(ηk) = max
ℓ∈L

v̄ℓ
k(ηk), (3.2.33)

with

v̄ℓ
k(ηk) , max

σ
Wk(ηk,σ, ℓ), (3.2.34a)

subject to: W (ηk,σ, ℓ) ≤ Wk(ηk,σ, l), ∀l ∈ L. (3.2.34b)

Weighted Constraint Satisfaction Problem (WCSP). Focus now on the op-
timization maxσ W (ηk,σ, ℓ) without any constraints. This can be formulated as a
WCSP as follows. First, we rewrite W (ηk,σ, ℓ) using (3.2.12), (3.2.21), (3.2.28), (3.2.30),
and (3.2.31):

Wk(ηk,σ, ℓ) = (1− β0)k
∑
b∈B

ηk(b)r(σ(b)) (3.2.35)

+ (1− β0)k
∑

b′∈B

ηk+1(b′)ziter−1(b′)

+
∑

b′∈B

ηk+1(b′)Υk(b′) + max
b′′:ηℓ(b′′)>0

{
ηk+1(b′′)
ηℓ(b′′)

(vℓ − y0(ηℓ))
}
,

where ηk+1 = ι(ηk,σ), and we used b, b′ and b′′ to differentiate the indices. Note
that, since ℓ is given, the term y0(ηℓ) is fixed. Using the occupancy update formula of
Equation (3.2.11), we get

W (ηk,σ, ℓ) = (1− β0)k
∑
b∈B

ηk(b)r(σ(b)) (3.2.36)

+ (1− β0)k
∑

b′∈B

∑
b∈B

ηk(b)p(b′|b,σ(b))ziter−1(b′)

+
∑

b′∈B

∑
b∈B

ηk(b)p(b′|b,σ(b))Υk(b′)

+ max
b′′:ηℓ(b′′)>0

{ ∑
b∈B

ηk(b)p(b′′|b,σ(b))
ηℓ(b′′)

(vℓ − y0(ηℓ))
}
.

Since the first terms of (3.2.36) do not depend on b′′, we move them inside the “maxb′′”
and take the common sum over b; then, we note that all terms multiply ηk(b). Thus, by
introducing a variable uℓ(·), we obtain

W (ηk,σ, ℓ) = max
b′′ : η

ℓ(b′′)>0

∑
b∈B

ηk(b)uℓ(b,σ(b),b′′). (3.2.37)
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For every fixed ℓ, the WCSP is formally defined as follows. The variables are defined by
σ as in (3.2.8) (i.e., the actions ω ∈ Ω for every b ∈ B) plus the index b′′. The domains
are the same as in the original problem, i.e., Ω for σ and B for b′′. A WCSP is fully
specified by its constraints, which are of the form

constraintℓ(b) = M − ηk(b)uℓ(b,σ(b),b′′). (3.2.38)

The total number of constraints is at most |B|, one for every possible battery level. M
is a large number used to cast the WCSP in its standard form. Standard WCSP solvers
compute the following quantity:

min
σ

(i)
k (b(i)), ∀b

(i)
, ∀i, and b′′∈B

∑
b∈B

constraintℓ(b), (3.2.39)

whose solution is equal to the solution of (3.2.34a). In practice, for every b ∈ B, the
quantity constraintℓ(b) is evaluated for all the combinations of σ(b) ∈ Ω and b′′ ∈
B independently of the others constraints. Then, they are summed together and the
minimum among all the solutions is chosen. However, a solution referred to a constraint
constraintℓ(b) may be related to other solutions. For example, different states b have some
common entries (e.g., both ⟨0, 0⟩ ∈ B and ⟨0, 1⟩ ∈ B have the first entry equal to 0); in this
case, the corresponding actions must have some common element even if they are referring
to different constraints (e.g., σ(⟨0, 0⟩) = ⟨σ0(0), σ(1)(0)⟩ and σ(⟨0, 1⟩) = ⟨σ0(0), σ(1)(1)⟩
must have the first entry in common).

The main advantage of using a WCSP solver is that the decentralized policy does
not need to be computed as a whole, but can be divided in constraints which are later
combined together.

So far, we have only focused on (3.2.34a) (i.e., on a single ℓ). To solve (3.2.33), we need
to compute |L| different WCSPs (one for every ℓ ∈ L) and take the maximum among
all solutions. However this approach presents one major drawback: for a fixed ℓ, solving
a single WCSP may not be sufficient. Indeed, the solution must also satisfy (3.2.34b),
which has been completely neglected in the definition of the WCSP. If a constraint were
violated, then the solution of the WCSP would be infeasible and should be discarded. In
this case, Dibangoye et al. (see [37, Section 3.4.2]) propose to formulate a new WCSP in
which the previous infeasible solution results in a very high cost constraint (and thus it is
never chosen in the solution process). If the new solution also turns out to be infeasible,
the procedure is repeated. The iterations stop if a feasible solution is found or if all
decentralized actions have been examined.

Although the previous method formally leads to the optimal solution, it may often
degenerate in an exhaustive search (i.e, examining all the decentralized policies). The
corresponding complexity would be O((Sa)bmax×N) if all users had the same battery size
bmax (see the structure of σ(b) in Equation (3.2.8)), i.e., exponential in N . This operation
is computationally infeasible when lots of possibilities are involved. Thus, optimally solving
a Dec-MDP with guarantees on the worst case performance is still an open issue. In
Section 3.2.6, we propose two suboptimal approaches for handling the problem based on
the previous results.
3.2.5.4 Stationary Policies
We define a stationary policy as follows.
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Definition 3.2.1. (Stationary Policy) A policy Π is stationary with respect to the battery
levels if:

1. (External Layer) The decentralized policies of two different SYNC slots with the
same state are equal, i.e., µk

′ = µk
′′ for any k′, k′′, when bk

′ = bk
′′.

2. (Internal Layer) Given the SYNC slot k, the actions to use in two different slots with
the same state are equal, i.e., σ

µk

k
′ (b) = σ

µk

k
′′(b), for any b, k′, k′′, k, with k′, k′′ ≥ k.

In practice, a stationary policy always uses the same action over time when the battery
levels are the same. Note that, thanks to [126], point 1) of the previous definition is
always satisfied in our model, since the external layer is formulated and solved as an MDP.
This is also the reason why using (3.2.16) is optimal. However, in general, point 2) is
not satisfied (this will be very clear from our numerical evaluation, e.g., see Figure 3.10)
because the internal layer is not an MDP but a Dec-MDP. In particular, Equations (3.2.20)
and (3.2.21) depend on the occupancy states and not on the battery levels only; thus,
there is no guarantee that a stationary scheduler is optimal in EH scenarios, in general.
This is not the case for traditional systems in which EH is not considered, as shown in the
next lemma.
Lemma 3.2.2. In a traditional system with an infinite energy supply and no EH, a
stationary orthogonal policy is optimal.

Proof. A system with an infinite energy supply and no EH can be modeled as an EH
system in which the harvested energy is deterministically equal to one in every slot. In
this case, the term η+1(b̄) in Equation (3.2.21) is equal to χ{b̄ = bmax}. Moreover,
according to (3.2.12), the instantaneous reward ρ(η,σ) degenerates to r(σ(bmax)). Thus,
we rewrite (3.2.20) as

arg max
µb

{
β0 E

[ ∞∑
k=0

(1− β0)k
(
r(σµb

k (bmax)) + ziter−1(bmax)
)∣∣∣∣b]}

= arg max
µb

{ ∞∑
k=0

(1− β0)kr(σµb
k (bmax))

}
,

where in the second equality we removed all the constant terms and the expectation.
Since the actions performed in slot k do not influence any other slot (the batteries are
always charged at bmax), the optimization can be performed for each k independently:
arg maxσ

µb
k
{r(σµb

k (bmax))}, which leads to the same solution for every k and b. Therefore,
a stationary policy is optimal.

Moreover, since a system without EH is deterministic, it can be modeled as a centralized
system [33], as all the quantities are known to RX in every slot. [33] discusses why an
optimal policy is orthogonal in this scenario; intuitively, the best option is to schedule
only (at most) one user in every slot so as to avoid collisions, which would degrade the
system performance. �

In summary, using a fully orthogonal policy all the time in a traditional environment is
optimal because the system evolves deterministically and thus collisions can be avoided.
Instead, with EH, the unpredictable future energy arrivals introduce a stochastic component
in the system so that full knowledge is not possible. As a consequence, the use of stochastic
policies is optimal, even though collisions may be incurred in this case. This is a major
difference between decentralized schemes with and without EH.
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3.2.6 Sub-Optimal Solutions of the Internal Layer
Since the main issue of the exhaustive search is that the space of variables in Prob-
lem (3.2.33)-(3.2.34) is exceedingly large, we aim at reducing this space, so that σ cannot
take all possible values but is constrained to lie in a smaller subset. The problem now is
to define such a subset. In the next subsection we present an approach based on WCSPs,
whereas in Section 3.2.6.2 we introduce a different scheme based on parametric policies.
3.2.6.1 WCSP-Based Policies
In this case, we exploit the results about WCSPs presented in Section 3.2.5.3 to find a
suboptimal policy. The proposed algorithm is as follows.

Algorithm 1 (Suboptimal policy using WCSPs)
1: for ℓ ∈ L do
2: σℓ ← Solve WCSP for ℓ given ηk

3: for l ∈ L do
4: Evaluate W (ηk,σℓ, l)
5: l⋆ ← arg minl∈LW (ηk,σℓ, l)
6: v̄ℓ

k(ηk)← W (ηk,σℓ, l
⋆)

7: ℓ⋆ ← maxℓ v̄
ℓ
k(ηk)

8: return σℓ
⋆

As required by the “max” in (3.2.33), we look at every ℓ ∈ L (Line 1) and, at the end
of the algorithm, we return the solution with the maximum value (Lines 7-8). Lines 2-6
solve Problem (3.2.34) suboptimally as described in the following.

First, we solve the WCSP for a fixed ℓ (i.e., we solve (3.2.34a)), and find the corre-
sponding solution σℓ. Then, using σℓ, we evaluate W (ηk,σℓ, l) for every index l. Two
cases should now be examined, which can be handled in a fully equivalent way, but have
different meanings:

• If W (ηk,σℓ, ℓ) ≤ W (ηk,σℓ, l), ∀l ∈ L, then σℓ would be an optimal solution
of (3.2.34), since it maximizes (3.2.34a) (Line 2) and satisfies (3.2.34b). In this
case, ℓ ≡ l⋆ (Line 5), and v̄ℓ

k(ηk) is the solution of (3.2.34);

• Instead, when there exists l ̸= ℓ such that W (ηk,σℓ, l) < W (ηk,σℓ, ℓ), then σℓ is not
optimal for index ℓ. In this case, the optimal approach would require the execution of
a new WCSP discarding the previous solution (in the new WCSP, σℓ would become
a very high cost solution). Instead, in Algorithm 1, we implicitly make the following
observation: σℓ is a feasible solution (i.e., it satisfies (3.2.34b)) of v̄l

⋆

k (ηk), where
l⋆ is such that W (ηk,σℓ, l

⋆) ≤ W (ηk,σℓ, l), ∀l ∈ L (Line (5)). Therefore, solution
W (ηk,σℓ, l

⋆) is feasible; for simplicity, we improperly save its value in v̄ℓ
k(ηk) (Line 6).

By doing so, at the end of Line 6, v̄ℓ
k(ηk) does not represent the solution of (3.2.34)

associated to index ℓ, but it contains a feasible solution for some index l⋆.

In practice, while executing Algorithm 1, the space of variables of Problem (3.2.33) is
defined by the solutions of WCSPs at every iteration (thus, it is not determined a priori).

The proposed approach is faster than the optimal one, since it completely avoids
the exhaustive search; however, in general, it is suboptimal and thus achieves worse
performance.
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3.2.6.2 Parametric Policies
Another possibility to avoid the exhaustive search step is to use parametric policies and
thus reduce the number of optimization variables to few parameters. In particular, we
force the actions of user i to follow a predetermined structure:

σ(i)(b(i)) = f (i)
par(Θ(i), b(i)) (3.2.40)

where b(i) is the independent variable and Θ(i) is a set of parameters which specify the
structure of f (i)

par. For example, if we used Θ(i) = {θ(i)}, and a simple linear function
f (i)

par(Θ(i), b(i)) = θ(i)b(i), the only optimization variable of user i would be θ(i), and not
σ(i)(0), . . . , σ(i)(b(i)

max) as in the original problem. In this case, for a symmetric scenario, the
complexity of the exhaustive search step goes from O((Sa)bmax×N) to O((Sθ)N), therefore
it remains exponential in N but with a much smaller coefficient in the exponent. Sθ is the
number of values that θ(i) can assume.5

In our scenario we force f (i)
par(Θ(i), b(i)) to be a non-decreasing function of b(i) as in [93],

which implies that higher energy levels cannot correspond to lower transmission probabili-
ties.

3.2.7 Numerical Results
The numerical evaluation is performed using two nodes, since the complexity grows super-
exponentially with the number of users. Indeed the size of the occupancy state (i.e.,
the number of all possible probabilities ηk(b̄), as defined in Equation (3.2.10)) evolves
exponentially with N , and the exhaustive search operation (exponential in N), or a
suboptimal approach, is to be performed for every element of the occupancy state. If
not otherwise stated, we adopt the following parameters: the batteries can contain up
to b(1)

max = b(2)
max = 8 energy quanta; the energy arrival processes are i.i.d. over time

and the probability of receiving one energy quantum is P(1)
E = P(2)

E in every slot; when a
transmission is performed a reward V (i) = log(1+Λ(i)H(i)) is accrued, where V (i) represents
the normalized transmission rate in a slot, and H(i) is an exponentially distributed random
variable with mean 1 (see [92]); the transmission probabilities in [0, 1] are uniformly
quantized with Sa = 19 samples; the average normalized SNRs are Λ(1) = 6 and Λ(2) = 3;
both devices have the same weight; to perform a transmission m(1) = m(2) = 2 energy
quanta are drawn from the battery; finally, β has period τ = 1 (i.e., it is constant over
time). All the numerical evaluations were written in C++ and, for the solution of the
weighted constraint satisfaction problems, we used ToulBar2 [143], a highly efficient solver
of WCSPs. We first focus on the solution of the internal layer (i.e., we only look at
R0(µb0 ,b0)), and discuss later how the external layer performs.

Transmission Probabilities. In Figures 3.10 (low energy arrival rates) and 3.11 (high
energy arrival rates) we show the transmission probabilities of the parametric decentralized
policy of Section 3.2.6.2, where fpar is a linear function, Θ(i) = {θ(i)} and θ(i) is such that
θ(i)b(i)

max ∈ Ω(i). The dashed lines have been slightly manually shifted to the right only
for graphical purposes to avoid that superposition of the two curves makes it hard to

5We note that, although we did not reduce the theoretical complexity of the exhaustive search (which
is still exponential), using smaller coefficients allows much faster numerical evaluations. The more general
problem of developing heuristic schemes with lower complexity is still open.
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Figure 3.10. Transmission probabilities as a function of time for two users when β0 = 0.05
and P(1)

E = P(2)
E = 0.1 for different initial battery levels.
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Figure 3.11. Transmission probabilities as a function of time for two users when β0 = 0.05
and P(1)

E = P(2)
E = 0.9 for different initial battery levels.

distinguish between them. In these figures, we only focus on the internal layer, thus we
study the system behavior between two consecutive SYNC slots.

The main difference between Figures 3.10 and 3.11 is that, after many slots, the
transmission probabilities are both greater than zero in the first case, whereas an almost
pure time-orthogonal approach is used in the latter, regardless of the initial energy levels.
Thus, when the energy resources are scarce (i.e., low energy arrivals) then, if k is large, an
orthogonal scheme in which collisions are avoided is suboptimal. The trade-off between
orthogonal and random access schemes can be intuitively explained as follows. As time
goes on, nodes lose information about the global state of the system, thus a device does
not know the energy level of the other. In this case, an orthogonal scheme might be highly
inefficient: if a slot were assigned only to user 1, but this did not have enough energy for
transmission, then the slot would be unused. Since the energy resources are scarce, it is
likely that such a case happens. Instead, when both have a lot of energy, it is easier to
estimate the energy level of the nodes, and thus pre-assigning the slots is possible (and in
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Figure 3.12. Battery level evolution as a function of time for two users when β0 = 0.05,
and P(1)

E = P(2)
E = 0.1 or 0.9 for different initial battery levels.

fact optimal). This means that, in the low energy case, it is better to transmit even if the
collision probability is non-negligible, to compensate the (likely) lack of energy of the other
user. This represents the main novelty of EH scenarios over traditional ones in which, as
explained in Section 3.2.3.3, an orthogonal decentralized access scheme is optimal.

The same effect can be observed in Figure 3.10 when the initial energy levels are high.
Indeed, when k is small, nodes still have information about the state of the other device;
therefore, an orthogonal approach is optimal in this case also, and collisions are avoided
since it is very likely that a node has enough energy to perform the transmission.

Note that when an orthogonal access scheme is employed, user 1 is advantaged with
respect to user 2 (this can be clearly seen in Figure 3.11, where more slots are allocated to
the first node). Indeed, the SNR of the first node (Λ(1)) is greater than the SNR of the
other (Λ(2)), and therefore higher returns are obtained by user 1 when a transmission is
performed. In this case, fairness is not achieved because of the near-far effect (a node with
a better channel is advantaged over the other); however, the network could be rebalanced
by changing the weights w(1), w(2).

Finally, note that in Figure 3.10 the average transmission probabilities in the long
run almost coincide with the energy arrival rate divided by m(i), so as to achieve energy
neutrality.

Energy Levels. Figure 3.12 shows another interesting, though predictable, result:
despite the initial energy level, in the long run all the energy levels of the same device
converge, approximately, to the same value. This is because all the initial fluctuations
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Figure 3.13. Long-term rewards of the internal layer as a function of the energy arrival
rates P(1)

E = P(2)
E for two users when β0 = 0.2 for batteries initially empty (left) or fully

charged (right).

have been absorbed by the batteries. Note that the energy levels of user 2 are higher
because Λ(2) < Λ(1), thus user 2 transmits less frequently than the other and consumes
less energy, on average.

Internal Reward. In Figure 3.13 we show the long-term discounted reward as a
function of the energy arrival rate for the decentralized scheme solved using WCSPs
(Section 3.2.6.1), the decentralized parametric scheme (Section 3.2.6.2), a fully orthogonal
approach, and a fully symmetric scheme. The curves are normalized with respect to the
upper bound, given by the full knowledge scheme of Equation (3.2.26). To understand the
trend of the curves, it is important to remark that the first slots after the initial SYNC
slot are the most important ones for two reasons:

1. The decentralized reward φk(·) defined in Equation (3.2.21) decreases with k. There-
fore, the initial slots have higher weights and contribute more to the global reward;

2. There is more information about the state of the other device in the initial slots.

Therefore, when the initial batteries are fully charged, the decentralized schemes are
close to the upper bound. Indeed, since b0 = bmax, the reward of the decentralized scheme
and the upper bound are very close. Instead, if the batteries are initially fully discharged,
the gap between the two is wider. In this case, the first slots do not play a fundamental
role, since there is not a lot of energy to exploit. Therefore, most of the gain is obtained
for higher k, which in turn leads to a less informative situation about the state of the
other device. In this case, the full knowledge scheme (which represents our upper bound)
may perform much better than the decentralized one because of this lack of information.

Although it is not visible from Figure 3.13 because of the normalization, the curves
increase with P(1)

E = P(2)
E , because more energy can be harvested (see Section V of our
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Figure 3.14. Transmission probabilities as a function of time for two users with batteries
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E = 0.05.

paper [C13] at page 155). The lowest normalized reward for the WCSP-based policy is
obtained around P(1)

E = P(2)
E = 0.5; indeed, this corresponds to the least informative case,

since the battery fluctuations are not predictable at all.
Finally, note that the decentralized policy obtained using WCSP outperforms the

parametric policy in almost every case. However, this is also strongly influenced by the
number of parameters Θ(i) we used, and using more parameters would lead to better
performance. Moreover, it can be clearly seen that the fully orthogonal and the symmetric
policies are strongly suboptimal in this scenario, therefore using an optimized approach
significantly improves the throughput of the network. An interesting outcome of Figure 3.13
is that the gap between upper bound and decentralized scheme may be small (< 15%),
when the decentralized policy is correctly designed. Therefore, using low values of β (e.g.,
β = 0.05) we are able to achieve the twofold goal of greatly reducing the overhead in the
network, since the policy is distributed only during the SYNC slots, and of achieving good
performance.

External Reward. We now describe the performance of the complete system, i.e., of
the external layer. First, we show the iterations of VIA (Equation (3.2.18)) in Figure 3.14.
Note that the y-axis represents the difference between two consecutive steps of VIA, which
converges to G(Π⋆) (see the Relative Value Iteration Algorithm in [14, Vol. 1, Sec. 7.4]).
The case iter = 1 corresponds to the internal layer only (i.e., β0 × R0(µ0,0)), since
z0(b) = 0, ∀b ∈ B. We highlight that, to solve a single step of VIA, many decentralized
optimization steps are performed (one for every b ∈ B). From the figure, it can be
clearly seen that only few iterations are required for convergence, especially for lower β0
(which are the most computationally expensive, since the intervals between SYNC slots
are longer). Note that, when VIA converges, the higher β0, the higher the reward, as
expected; moreover, the upper bound curve (i.e., the centralized case of Section 3.2.4.2)
outperforms the others (in this case, there is less uncertainty and more global information).
In Figure 3.15, we plot the reward G(Π) of the external layer as a function of the energy
arrival rates. The values reported here are derived from the last step of VIA. As expected,
G(Π) increases with P(1)

E = P(2)
E (more energy available). It is interesting to observe that

the parametric policy is very close to the upper bound, whereas the rewards of the other,
simpler policies are much lower.
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Figure 3.15. Long-term rewards as a function of the energy arrival rates for two users
when P(1)

E = P(2)
E = 0.05.

3.2.8 Conclusions of Section 3.2
In the part of this chapter, we studied a decentralized optimization framework for a star
topology energy harvesting communication network with collisions. We used a multi-layer
Markov setup to model the system. An external layer, that models the jumps between
SYNC slots (the time instants at which the policy is computed) is optimized as a Markov
Decision Process (MDP) whose actions are given by an internal layer, modeled as a
decentralized-MDP. To solve the external layer we used the Value Iteration Algorithm,
whereas the Markov Policy Search algorithm was employed for the internal layer. Because
of the exponential complexity of the exhaustive search used in the optimal policy, we
presented two simpler schemes, namely WCSP-based and parametric approaches. In
our numerical evaluations we described the trade-off between accessing the channel and
energy arrivals, and we showed that a stationary access mechanism (e.g., fully orthogonal)
is not guaranteed to be optimal under harvesting constraints. Moreover, we noted
that decentralized schemes, if correctly designed, may achieve high performance while
significantly reducing the signaling overhead in the network.

Our work introduces a principle of optimality in decentralized energy harvesting
networks. However, because of the complexity of the optimal policy, additional studies
are required for proposing more practical schemes which inherit the key properties of our
framework while being less computationally demanding. Our future work will also include
the investigation of different network topologies.





CHAPTER 4

Wireless Energy Transfer

In the previous chapters we have extensively discussed the importance of prolonging the
lifetime of Wireless Sensor Networks (WSNs) and Internet of Things (IoT) networks. In
this chapter we introduce the concept of Wireless Energy Transfer (WET) as a technique
to achieve such a goal. Indeed, WET, differently from Environmental Energy Harvesting
(EEH), has the major benefit of being controllable, and thus can be conveniently used
when the devices are running out of energy.

Wireless energy transfer techniques have experienced a renewed research interest in the
last few years [159] and several applications can be found in the WSN field, where low-power
devices are fed with the transferred energy and use it for transmission or computation
and sensing purposes. Different aspects of WET have been studied by both industry and
academia, e.g., in terms of circuit and rectenna design [104] but also in terms of transmission
protocols by the communication and networking community. In this field, three major
research areas can be identified so far: Simultaneous Wireless Information and Power
Transfer (SWIPT), energy cooperation and Wireless Powered Communication Networks
(WPCNs). In SWIPT systems, the trade-offs between information and energy transfer are
investigated [44]. Nowadays, because of hardware constraints of the current technology,
a real simultaneous data and energy transmission is not possible yet, and therefore the
Time Splitting (TS) and Power Splitting (PS) approaches were introduced [167]. The TS
approach, in which WET and data transmission are temporally interleaved, was studied
in [67, 79], whereas PS was analyzed in [100, 116, 135, 142]. The energy cooperation
paradigm and WPCNs are the focus of this chapter.

Structure of the Chapter. The chapter is composed of two main parts which
deal with different problems related to WET and can be read separately. In particular,
Section 4.1 is devoted to the study of the energy cooperation paradigm in a network
composed of two Energy Harvesting Devices (EHDs). We show that WET and EEH can be
used jointly to improve the system performance. We consider a transmitter-receiver pair,
showing how the WET improvement depends upon the statistics of the energy arrivals and
the energy consumption of the devices. With the aim of maximizing a reward function, e.g.,
the average transmission rate, we find performance upper bounds with and without WET,
define both online and offline optimization problems, and present results based on realistic
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energy arrivals in indoor and outdoor environments. We show that WET can significantly
improve the system performance even when a sizable fraction of the transmitted energy
is wasted and that, in some scenarios, the online approach can obtain close to optimal
performance.

Instead, Section 4.2 deals with wireless powered communication networks, which are
becoming an effective solution for improved self sustainability of mobile devices. In
this context, a hybrid access point transfers energy to a group of nodes, which use the
harvested energy to perform computation or transmission tasks. While the availability
of the wireless energy transfer mechanism opens up new frontiers, an appropriate choice
of the network parameters (e.g., transmission powers, transmission duration, amount of
transferred energy, etc.) is required in order to achieve high performance. In Section 4.2,
we study the throughput optimization problem in a system composed of a receiver which
recharges the batteries of two devices at different distances. In the literature, the main
focus so far has been on the slot-oriented optimization, in which all the harvested energy
is used in the same slot in which it is harvested. However, this approach is strongly
suboptimal because it does not exploit the possibility to store the energy and use it at a
later time. Thus, instead of considering the slot-oriented case, we address the long-term
maximization. This assumption greatly increases the optimization complexity, as it requires
to consider, e.g., the channel state statistics and the batteries evolution. Our objective is
to find the best scheduling scheme, both for the energy transferred by the access point
and for the data sent by the two nodes. We discuss how to perform the maximization
with optimal as well as approximate techniques and show that the slot-oriented policies
proposed so far are strongly suboptimal in the long run.

4.1 Energy Cooperation
4.1.1 Introduction
In the first part of this chapter we discuss the combination of two different techniques:
Environmental Energy Harvesting (EEH), that allows a device to refill its battery gathering
energy from the environment, and Wireless Energy Transfer (WET), that makes it possible
to exchange energy among different devices. We show how WET and EEH can be jointly
used to improve the overall system performance and prolong network lifetime. Indeed,
in some scenarios, a node may receive much more energy and/or consume less energy
than some of its neighbors. In these cases, it is reasonable to transmit energy from the
rich energy source to other nodes in order to balance the energy levels. WET enables
this possibility, and combining it with environmental energy harvesting is interesting
because it allows to better exploit the renewable energy source and avoid energy overflows
(see Definition 2.1.1). An example of application is the design of energy-aware routing
algorithms that exploit the possibility of sharing energy.

As a first step to understand the key trade-offs before addressing more complex
scenarios, in this part of the chapter we consider a network composed of two devices (here
we focus on a transmitter and a receiver but the model can be readily extended to the
case of two transmitters) equipped with EEH and WET interfaces. We explicitly take into
account the effects of finite batteries and, differently from most of the related literature,
model the devices energy consumption with generic functions. We show that, in the cases
where the scenario is unbalanced, i.e., a device harvests much more energy than the other,
it is possible to use wireless energy transfer to balance the energy levels of the two devices



4.1 Energy Cooperation 59

and, as a consequence, to achieve higher rewards even when a significant fraction of the
transmitted energy is wasted. We initially find analytical performance upper bounds with
and without WET. Then, we investigate both online and offline approaches and compare
them. We present two scenarios with realistic irradiation data showing that WET can
be used to increase the average transmission rate. We also describe the effects of finite
batteries on the system performance.

The model that we use in this section is based on Chapter 2, and is also similar to the
one proposed in [90] for the optimization of an energy harvesting system without WET.

Several different technologies for Energy Transfer have been considered so far (see
Section 1.1.2.1), e.g., Radio-Frequency Wireless Energy Transfer (RF-WET), Strongly
Coupled Magnetic Resonances Wireless Energy Transfer (SCMR-WET), or inductive
coupling. In this section we will set up a generic model which does not rely on any
particular technology; however, our results are based on the parameters of a typical WET
performed via SCMR.

Contributions. For a transmitter/receiver pair, we present performance upper bounds
with and without WET when the energy costs are general functions that can include, e.g.,
the circuitry costs. The optimal online and offline policies are introduced and characterized.
In particular, we use the offline case as a benchmark for our online policies in the finite
horizon setting. We show that WET can significantly improve the system performance
and that, in some scenarios, the online policies are close to optimal. We also consider the
effects of finite batteries, showing that, although the reward improvement depends upon
the battery size, it is not necessary to have very large batteries to obtain high gains.

Structure. The first part of this chapter is organized as follows. Section 4.1.2
defines the system model we analyzed, and Section 4.1.3 provides the performance upper
bounds. In Sections 4.1.4 and 4.1.5 we introduce the online and offline policies, respectively.
Section 4.1.6 presents the numerical evaluation for the online policies. In Section 4.1.7
we analyze two practical examples using realistic irradiation data. Finally, Section 4.1.8
draws the conclusions.

References. This section is based on the conference paper [C3] and on the journal
paper [J1].

4.1.2 System Model and Optimization Problems
We study Energy Harvesting Devices (EHDs) that, in addition to the capability of gathering
energy from the environment through an EEH interface, are also able to transmit and/or
receive energy via a WET mechanism. To characterize this technique, we will deal with a
pair of EHDs where one device is the Transmitter (TX) that sends data to a Receiver (RX),
whereas RX can send energy to TX (we will comment on the extension to bi-directional
WET in Section 4.1.3.4).1

We assume a slotted-time system, where slot k corresponds to the time interval [k, k+1)
(see Section 2.1.1), with k = 0, 1, . . .. Both devices are equipped with some interface
that can harvest ambient energy, e.g., from solar light, indoor light, or vibrations (see
Section 1.1.1).

TX transmits data packets toward RX and, in every slot, has a new data packet to
send. The contributions to consider for data transmission are described in Section 2.1.3.

1The model we consider in this part is analogous to the one described in Section 2.1 when only one
terminal node is considered and RX has energy harvesting capabilities.
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For packet reception, instead, the main contributions are sampling (demodulation, filtering,
quantization), processing (decoding) and storage [165]. We simplify the energy consumption
models as follows. For reliable communications at rate R, TX needs to provide an SNR
(thus a transmit power) that depends upon R. Similarly, also the reception power depends
upon R because of sampling and processing. By combining these concepts, it is possible
to establish a relationship between the reception power and the transmit power (see [8]).
Formally, we describe the energy consumptions with two generic continuous, increasing
and concave downward functions Qtx(P ), Qrx(P ), where P is the transmit power and
Qtx(0) = Qrx(0) = 0 (sleep mode). The transmit power used in slot k, Pk ∈ P , [0, Pmax],
is decided at the beginning of each slot.

Example 4.1.1. For a transmitter, a common model for the energy function is [47, 132]

Qtx(P ) = σtxP. (4.1.1)

For the receiver, instead, a reasonable approximation is to assume that the energy function
is proportional to the transmission rate:

Qrx(P ) = αrx log(1 + ΛP ). (4.1.2)

This model is a good approximation when the circuitry costs are negligible. Note that in
the low-SNR regime, we can approximate Qrx(·) as Qrx(P ) ≈ σrxP .
σtx, σrx, αrx are proper constants and Λ is an SNR scaling factor. The contributions of
the circuitry costs can be included in this model by adding to Equations (4.1.1) and (4.1.2)
two terms ζtx(P ) and ζrx(P ) that, starting from 0, increase quickly until constant values
in order to preserve the continuity and concavity of Qtx(P ) and Qrx(P ). Note that, in the
general case, our model allows the circuitry costs for TX and RX to be different.

The amount of energy to be sent with the WET mechanism, Zrx→tx
k ≥ 0, is decided in

every slot. The energy received in slot k can be exploited only in a later slot. We mainly
focus on uni-directional energy transfer from RX to TX and discuss in Section 4.1.3.4 how
to extend this hypothesis to the bi-directional case. We assume that only a fraction ηrx→tx

WET
of the transmitted energy is received, where ηrx→tx

WET ∈ [0, 1] is the wireless energy transfer
efficiency (when SCMR technology is used to perform WET, we have ηrx→tx

WET ≡ ηSCMR
defined in Section 2.1.2). In this section, although our analysis is general, we will use a
transfer efficiency ηrx→tx

WET = 0.15 as a baseline.
The devices have finite batteries that can store at most Btx

max and Brx
max joule of energy.

The randomness of the energy arrivals is described through two independent processes
{Etx

k } and {Erx
k } with some statistics, e.g., deterministic, Bernoulli or truncated geometric

(see Section 2.1.2). The energy arrival processes have means Ētx > 0 and Ērx > 0 and the
energy harvested in a slot can be exploited only in a later slot.

With the introduced quantities, the evolutions of the two batteries can be described
as:

Btx
k+1 = min{Btx

max, B
tx
k −Qtx(Pk) + Etx,EEH

k + Etx,WET
k }, (4.1.3)

Brx
k+1 = min{Brx

max, B
rx
k −Qrx(Pk) + Erx,EEH

k − Zrx→tx
k }, (4.1.4)

where Btx
k , Brx

k are the energy levels in slot k and Etx,WET
k ≡ ηrx→tx

WET Zrx→tx
k . Since we

consider slots of fixed length, in this section we refer to power or energy interchangeably.
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4.1.2.1 Optimization Problems

The state of the system Sk = (Btx
k , B

rx
k ) is known to RX at the beginning of every slot. A

policy µ defines which action to perform in every slot k, i.e., how much energy should be used
to transmit data (which is equivalent to define the transmission powers P , {P0, P1, . . .})
and how much energy should be transferred (i.e., Zrx→tx , {Zrx→tx

0 , Zrx→tx
1 , . . .}).2

We consider as metrics the average unconstrained rewards in K slots and in the long
term, defined as

GK
µ ,

1
K

K−1∑
k=0

r(Pk), (4.1.5)

Gµ , lim inf
K→∞

GK
µ , (4.1.6)

where r(x) is a non-decreasing and concave function of x. As a baseline, we focus on the
average normalized transmission rate, obtained when r(x) = log(1 + Λx), where Λ is an
SNR scaling factor.

We consider the following optimization problem

µ⋆ = arg max
µ

Gµ, (4.1.7)

subject to appropriate feasibility constraints (i.e., the transmission power and the trans-
ferred energy must be non-negative and must not exceed the energy available in the
batteries). Since the optimization variables and the specific constraints depend upon the
chosen approach, this problem will be discussed in more detail in Sections 4.1.4 and 4.1.5.
4.1.2.2 Optimization Approaches
To solve the optimization problem set up in the previous subsections, we proceed as
follows. Initially, we introduce some performance upper bounds (Section 4.1.3), i.e., upper
bounds to Gµ. These do not depend upon the optimization technique. Then, we discuss
Problem (4.2.8) with the following approaches (Sections 4.1.4 and 4.1.5).

Online approach. In this case, in every time slot k, the policy chooses an action that
depends upon the current state of the system Sk and upon the energy arrival statistics. In
the online case, the output of the optimization process is a set of rules (one for every state
of the system) that, given Sk, can be applied to choose the action to perform. In order
to model the system as a Markov Decision Process, in Section 4.1.4 we approximate the
continuous model with a discrete one.

Offline approach. In this case, the policies are found by exploiting the non-causal
knowledge of the energy arrivals (not only the statistics). In the offline case, the output of
the optimization process is a pair of sequences (P,Zrx→tx) that define in every slot from 0
to K − 1 which action to use.

The main focus of our work is on online policies which, though performing worse
than offline policies in general, have the important advantage of not requiring non-causal
knowledge of the energy arrivals, and are therefore practically usable. Offline policies
will be used in Section 4.1.7 as a benchmark, showing that in some relevant cases the
performance loss incurred by the online approach can be quite small.

2The specific structure of µ depends upon the considered scenario and will be discussed in more detail
in Sections 4.1.4 and 4.1.5.
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4.1.3 Upper Bounds
In this section we introduce upper bounds to Gµ for the cases with and without WET.
This is an interesting problem because the presented upper bounds are closely approached
in several cases of interest and provide an easy characterization of the system reward
without performing any optimization.

They are derived in the infinite horizon case, but can be simply reformulated in the finite
horizon case by changing the long-term means Ētx and Ērx with the means in K slots.3
In particular, we will generalize the following intuitive results. As an example, consider
Q(i)(P ) = P (in the following, i ∈ {tx, rx}) and Ērx > Ētx (RX harvests more energy than
TX). An upper bound to Gµ without WET is given by r(Ētx) and is achievable if the
devices consume in every slot (except possibly for a vanishing fraction of them) an amount
equal to the average harvested energy. This can happen if the battery sizes are infinite or if
the batteries are finite and the energy arrivals are deterministic. Moreover, since Ērx > Ētx,
it may be interesting to use WET to improve the performance (we recall that RX can
send energy to TX). In this case an upper bound is given by a balanced combination of
the transmitter and receiver average energy arrivals: r((ηrx→tx

WET Ērx + Ētx)/(ηrx→tx
WET + 1)).

Note that in this last expression both Ētx and Ērx contribute to increasing the upper
bound. Also, we remark that the transfer efficiency ηrx→tx

WET needs to be considered. These
considerations are formalized in the general case in the following (note that, unlike in the
above example, we do not impose any constraints on Ētx and Ērx).
4.1.3.1 Upper Bound without WET
We first focus on the case without WET. We have the following result.

Theorem 4.1.2 (Upper Bound without WET). If there exist two continuous and increasing
functions Ψtx(P ), Ψrx(P ) such that

1. 0 ≤ Ψtx(P ) ≤ Qtx(P ) and 0 ≤ Ψrx(P ) ≤ Qrx(P ), ∀P ∈ P, and

2. r(Ψtx−1
(·)) and r(Ψrx−1

(·)) are concave functions,

then an upper bound for the reward is

GnoET
u.b. = r

(
min

{
Ψtx−1

(Ētx),Ψrx−1
(Ērx)

})
. (4.1.8)

If only Ψ(i)(P ) exists, i ∈ {tx, rx}, then an upper bound is GnoET
u.b. = r

(
Ψi

−1
(Ē(i))

)
.

If neither Ψtx(P ) nor Ψrx(P ) exists, then the optimal reward is infinite.

Proof. See Appendix 4.A. �

Note that, in the previous theorem, we convert a energy consumption Ē(i) (or, equiva-
lently, a power consumption, since the slot length is fixed) to a reward in two steps. First,
we apply the inverse function Ψi

−1
to convert the power consumption into a transmission

power. Then, we apply the function r(·) to the transmission power in order to obtain the
corresponding reward.

3In the following, we find upper bounds based on the means of the harvesting processes. Thus, even if
we do not explicitly take into account the specific random behavior of the energy arrivals, we are still
considering the fact that energy is gathered over time, which is a fundamental feature of EEH.
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In practice, Ψ(i)(·) is an optimistic auxiliary energy consumption function that makes
it possible to mathematically obtain (4.1.8). Intuitively, the closer Ψ(i)(·) and Q(i)(·), the
tighter the upper bound.

Remark If P is bounded, i.e., Pmax <∞, then the conditions of Theorem 4.1.2 only need
to be satisfied for a finite range of P , and therefore it is always possible to find Ψ(i)(·).

Note that a particular case of the previous remark is obtained when the battery sizes
are finite. In this case Pmax is bounded by the maximum battery size (in particular
Q(i)(Pmax) ≤ B(i)

max).
As shown in the following corollaries, there exist cases in which the upper bound of

Theorem 4.1.2 can be achieved.
Corollary 4.1.3. If Qtx(·) = Ψtx(·) and Qtx−1

(Ētx) ≤ Qrx−1
(Ērx) (TX is the bottleneck)

then, in the deterministic energy arrivals case,4 the upper bound (4.1.8) is achievable with
finite batteries Btx

max ≥ Ētx, Brx
max ≥ Qrx(Qtx−1

(Ētx)). An optimal policy is

Pk =

Q
tx−1

(Ētx), if Ētx ≤ Btx
k and Qrx(Qtx−1

(Ētx)) ≤ Brx
k ,

0, otherwise.
(4.1.9)

The same holds if the roles of TX and RX are exchanged.

Proof. Let v = Qtx−1
(Ētx).

Assume that at the beginning Etx
0 = Erx

0 = 0. The batteries evolution is the following:
Etx

1 = Ētx, Erx
1 = Ērx. Note that Qtx(v) = Ētx by definition and Qrx(v) ≤ Ērx by

hypothesis. At k = 2, we have: Etx
2 = 2Ētx −Qtx(v) = Ētx (transmit with power v and

then harvest an amount of energy exactly equal to Ētx) and Erx
2 = 2Ērx −Qrx(v) ≥ Ērx.

Thus, in every slot, excluding an initial transient, TX can transmit data with power v and
RX is always able to receive them, thus the reward per slot is r(v). In the long-term, the
upper bound in Equation (4.1.8) is achieved. With different initial states the reasoning is
the same.
Note that in the previous considerations we implicitly used the hypotheses Btx

max ≥ Ētx,
Brx

max ≥ Qrx(Qtx−1
(Ētx)), that are necessary to obtain the thesis. �

The policy of Equation (4.1.9), possibly excluding an initial transient, consumes all
the energy that is received in every slot, and thus achieves the upper bound r(Ētx).

When the battery sizes are infinite, Corollary 4.1.3 generalizes to any energy arrival
process.

Corollary 4.1.4. If Qtx(·) = Ψtx(·), Qtx−1
(Ētx) ≤ Qrx−1

(Ērx) (TX is the bottleneck) and
the battery sizes are infinite then the upper bound (4.1.8) is achievable for any statistics of
the energy arrivals. The same holds if the roles of TX and RX are exchanged.

A formal proof of Corollary 4.1.4 is given in [113] for the special case of a linear energy
consumption model in a single EHD, but can be extended to our case. To show that a
reward arbitrarily close to the upper bound can be achieved, a Save-and-Transmit Scheme
was introduced, where the device does not transmit in an initial transient in order to
accumulate enough energy to absorb energy fluctuations, so as to avoid energy outage and
manage to consume and receive, on average, the same energy.

4Note that, since we consider i.i.d. energy arrivals, deterministic is equivalent to constant.



64 Wireless Energy Transfer

4.1.3.2 Upper Bound with WET
We now derive similar results for the case where WET is considered. We introduce two
new functions C̄tx(·) and C̄rx(·) defined as follows:

C̄tx(ξ) = Ētx + ηrx→tx
WET Ērx(1− ξ), (4.1.10)

C̄rx(ξ) = Ērxξ, (4.1.11)

where ξ ∈ [0, 1] is a constant that represents the average fraction of the harvested energy
that is transferred with WET under a policy µ. C̄(i)(ξ) represents the average amount of
energy that can be exploited at device i ∈ {tx, rx} to transmit or receive. In particular,
RX transfers part of the harvested energy, thus the residual energy that it can exploit
is, on average, only a fraction ξ of the harvested one (Ērx). TX, in addition to its own
harvested energy (Ētx), receives the energy that RX transferred (scaled by the energy
transfer efficiency ηrx→tx

WET ). One of the key results of this section is stated in the following
theorem.

Theorem 4.1.5 (Upper Bound with WET). Under the hypotheses of Theorem 4.1.2,
when WET is used, an upper bound to Gµ is

GWET
u.b. = r

(
Ψrx−1

(C̄rx(ξ⋆))
)
, (4.1.12)

where

• if Ψrx−1
(C̄rx(1)) ≤ Ψtx−1

(C̄tx(1)), then ξ⋆ = 1;

• otherwise, ξ⋆ is such that Ψtx−1
(C̄tx(ξ⋆)) = Ψrx−1

(C̄rx(ξ⋆)).

Proof. From Theorem 4.1.2, an upper bound is given using Ētx and Ērx inside the “min”
operation. When WET is used, the average amounts of incoming energy at TX and RX
are C̄tx(ξ) and C̄rx(ξ), respectively. Thus, when ξ is fixed, an upper bound is

GWET
u.b. (ξ) = r

(
min

{
Ψtx−1

(C̄tx(ξ)),Ψrx−1
(C̄rx(ξ))

})
. (4.1.13)

In practice, we replaced Ētx and Ērx with C̄tx(ξ) and C̄rx(ξ) because, with WET, the
energy that the devices can exploit is described by C̄tx(ξ) and C̄rx(ξ) (see the description
of Equation (4.1.10)-(4.1.11)).

Note that Ψi
−1

(·) is an increasing and continuous function because Ψ(i)(·) is increasing
and continuous. Moreover, ∂C̄tx(ξ)/∂ξ < 0 and ∂C̄rx(ξ)/∂ξ > 0. Thus, the first argument
of the minimum in Equation (4.1.13) is decreasing in ξ, whereas the second one is increasing.
The minimum of the two is maximized when they are equal, if this is possible, or otherwise
for the maximum value of ξ, i.e., ξ⋆ = 1. Note that, since Ψtx−1

(C̄tx(0)) > Ψrx−1
(C̄rx(0)) =

0, ξ⋆ is equal to one if and only if at ξ = 1 we have Ψrx−1
(C̄rx(1)) ≤ Ψtx−1

(C̄tx(1)), i.e.,
Ψtx−1

(C̄tx(ξ)) and Ψrx−1
(C̄rx(ξ)) do not have an intersection point in [0, 1). �

Corollaries 4.1.3 and 4.1.4 can be generalized as follows.
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Corollary 4.1.6. If Qtx(·) = Ψtx(·) and Qrx(·) = Ψrx(·) then, in the deterministic
energy arrivals case, the upper bound (4.1.12) is achievable with finite batteries Btx

max ≥
Qtx(Qrx−1

(C̄rx(ξ⋆))), Brx
max ≥ Ērx. An optimal policy is

Pk =

Q
rx−1

(C̄rx(ξ⋆)), if C̄rx(ξ⋆) ≤ Brx
k and Qtx(Qrx−1

(C̄rx(ξ⋆))) ≤ Btx
k ,

0, otherwise,
(4.1.14)

Zrx→tx
k =

Ē
rx −Qrx(Pk), if Brx

k ≥ Ērx,

0, otherwise.
(4.1.15)

Proof. The proof is similar to that of Corollary 4.1.3. Let v = Qrx−1
(C̄rx(ξ⋆)). At k = 1,

Etx
1 = Ētx and Erx

1 = Ērx.
If Ētx is greater than or equal to Qtx(v), then the policy chooses P1 = v because

C̄rx(ξ⋆) ≤ Ērx by definition of C̄rx(·) and D1 = Ērx − Qrx(v) because Erx
1 ≥ Ērx. Note

that the sum Qrx(P1) + D1 is equal to Ērx, thus, at k = 2, Erx
2 = Ērx. Instead, for TX,

Etx
2 = Ētx−Qtx(v) + Ētx + ηrx→tx

WET (Ērx−Qrx(v)) = Ētx−Qtx(v) + C̄tx(ξ⋆). If ξ⋆ < 1, then
Etx

2 = Ētx because v = Qtx−1
(C̄tx(ξ⋆)), otherwise Etx

2 ≥ Ētx (see Theorem 4.1.5).
If instead Ētx < Qtx(v), the policy chooses P1 = 0 and D1 = Ērx. Note that, if

ξ⋆ = 1, we have Qrx−1
(Ērx) ≤ Qtx−1

(Ētx) and the inequality chain becomes Qrx−1
(Ērx) ≤

Qtx−1
(Ētx) < Qrx−1

(Ērx), which is not possible. Thus ξ⋆ must be less than 1 and
Qtx−1

(C̄tx(ξ⋆)) = Qrx−1
(C̄rx(ξ⋆)) implies that Qtx(v) = C̄tx(ξ⋆) > Ētx. At k = 2,

Etx
2 = 2Ētx + ηrx→tx

WET Ērx > C̄tx(ξ⋆) = Qtx(v) and Erx
2 = Ērx. For k ≥ 2, TX always

has enough energy to transmit with power v.
The previous considerations hold if the battery sizes satisfy the hypotheses of the

theorem. Thus, after an initial transient, the devices always have enough energy to transmit
and receive with power v and in the long term the upper bound (4.1.12) is achieved. �

Corollary 4.1.7. If Qtx(·) = Ψtx(·), Qrx(·) = Ψrx(·) and the battery sizes are infinite,
then the upper bound (4.1.8) is achievable for any statistics of the energy arrivals.

Proof. See Corollary 4.1.4. �

The following result establishes when it is beneficial to use WET.

Proposition 4.1.8. If Qtx(·) = Ψtx(·) and Qrx(·) = Ψrx(·), WET always improves the
upper bound (i.e., GWET

u.b. > GnoET
u.b. ) if and only if ξ⋆ < 1.

Proof. WET improves the performance if GnoET
u.b. < GWET

u.b. , i.e.,

r
(

min
{
Qtx−1

(Ētx), Qrx−1
(Ērx)

})
< r

(
Qrx−1

(C̄rx(ξ⋆))
)
. (4.1.16)

Since r(·) is an increasing function, the previous condition is equivalent to

min
{
Qtx−1

(Ētx), Qrx−1
(Ērx)

}
< Qrx−1

(C̄rx(ξ⋆)). (4.1.17)

• (if) ξ⋆ < 1 means that (see Theorem 4.1.5) Qrx−1
(Ērx) > Qtx−1

(Ētx), thus the
condition becomes Qtx−1

(Ētx) < Qrx−1
(C̄rx(ξ⋆)). Thanks to Theorem 4.1.5 and to
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(4.1.10)-(4.1.11), and since Qtx−1
(·) is increasing, if ξ⋆ < 1, then Qrx−1

(C̄(ξ⋆)) =
Qtx−1

(Ētx + ηrx→tx
WET Ērx(1− ξ⋆)) > Qtx−1

(Ētx);

• (only if) Assume ξ⋆ = 1. In this case Qrx−1
(Ērx) ≤ Qtx−1

(Ētx), which implies
GnoET

u.b. = r(Qrx−1
(Ērx)) and GWET

u.b. = r(Qrx−1
(Ērx)), thus WET does not improve the

performance upper bound.

�

Note that whenQtx(·) = Ψtx(·) andQrx(·) = Ψrx(·), ξ⋆ < 1 is equivalent toQtx−1
(Ētx) <

Qrx−1
(Ērx). Thus, independently of the transfer efficiency ηrx→tx

WET , if the average amount of
energy harvested per slot at RX (Ērx) corresponds to a transmission power (Qrx−1

(Ērx))
greater than what is used at TX (Qtx−1

(Ētx)), then the use of WET results in an increased
upper bound. When ξ⋆ = 1, WET cannot provide any improvement because RX is the
energy bottleneck and therefore is unable to cooperate with TX. Also, note that the
previous considerations also apply to the actual performance for the deterministic energy
arrival case (in which the upper bounds can be achieved).

According to the above results, we can identify three main reasons why the upper
bounds may not be achieved: 1) The functions Q(i)(·) and Ψ(i)(·) do not coincide. In this
case, the only chance to obtain a better upper bound is to redefine Ψ(i)(·), if possible.
In the following examples we show how to derive Ψ(i)(·) in several cases of interest. 2)
The batteries are small (see Corollaries 4.1.4 and 4.1.7). As the battery sizes grow, the
performance gets closer to the upper bounds. 3) The time horizon is finite. Indeed, the
save and transmit scheme of Corollary 4.1.4 can be applied only if an infinite number of
slots are available.
4.1.3.3 Examples
Example 4.1.9. Consider the low-SNR regime (see Example 4.1.1). In this case the
energy consumptions of both the transmitter and the receiver are linear in P . The functions
Ψ(i)(·) can then be taken equal to Q(i)(·) and the upper bounds are

GnoET
u.b. = r

(
min

{
Ētx

σtx ,
Ērx

σrx

})
, GWET

u.b. = r

(
Ērx

σrx ξ
⋆

)
,

ξ⋆ = min
{

1, σ
rx

Ērx
ηrx→tx

WET Ērx + Ētx

ηrx→tx
WET σrx + σtx

}
.

ξ⋆ is a linear combination of the average energy arrivals and is used to balance C̄tx and
C̄rx.

Example 4.1.10. Another interesting case is Qtx = σtxP , Qrx = αrx log(1 + ΛP ) (Equa-
tion (4.1.2)) and r(x) = log(1 + ΛP ). Note that r(·) and Qrx(·) are proportional and
r(Qrx−1

(x)) = x/αrx is concave. Also in this example the functions Ψ(i)(·) can be taken
equal to Q(i)(·). The upper bounds become

GnoET
u.b. = min

{
r

(
Ētx

σtx

)
,
Ērx

αrx

}
, GWET

u.b. = C̄rx(ξ⋆)
αrx ,
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Figure 4.1. Q(P ), Ψ(P ), their inverse functions, and r(Q−1(P )), r(Ψ−1(P )) of Exam-
ple 4.1.11 as a function of P .

where ξ⋆ is the unique solution of

Ētx + ηrx→tx
WET Ērx(1− ξ)
σtx = eξĒ

rx/αrx
− 1

Λ ,

if ΛĒtx/σtx < eb
rx

/α
rx
− 1, and ξ⋆ = 1 otherwise.

Example 4.1.11. We now want to show a case where Ψ(i)(·) and Q(i)(·) are not the same.
Consider r(x) = log(1 + Λx), Ē , Ētx = Ērx and Q(·) , Qtx(·) = Qrx(·) with

Q(P ) =


ζ + Pn

Pn

P, if P < Pn,

ζ + P, if P ≥ Pn,
(4.1.18)

with Pn arbitrarily close to 0. Note that this energy consumption model is suitable for the
cases where the circuitry costs are not negligible. If we choose Ψ(P ) = Q(P ), then it can
be verified that there exist values of ζ and Ē such that r(Q−1(·)) is not concave. In this
case r(Q−1(Ē)) is not guaranteed to be an upper bound.

However, an upper bound can be found by considering a function Ψ(P ) defined as
in Theorem 4.1.2. In Figure 4.1 we plot Q(P ), Ψ(P ) and their inverse functions when
Λ = 10, ζ = 5, Bmax = 11 (normalized quantities). For the purpose of illustration, we
arbitrarily set Pn = 1. Note that r(Q−1(P )) is piece-wise concave whereas r(Ψ−1(P )) is
always concave. The function Ψ(P ) is such that r(Ψ−1(P )) is divided in three regions. The
two external regions are equal to two concave portions of r(Q−1(P )). The central region is
designed to be concave where r(Q−1(P )) is not, and is obtained considering the straight
line that is tangent to r(Q−1(P )) in two points without intersecting it. In Section 4.1.6 we
show that the upper bound given by this choice of Ψ(P ) is close to the real performance.
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4.1.3.4 Extension: Bi-directional Energy Transfer
In the following, we present how our model can be extended to the bi-directional WET case.
In this context, also TX is able to send part of its stored energy to RX when appropriate.
In slot k, TX sends an amount of energy Ztx→rx

k to RX, whereas RX sends Zrx→tx
k to TX.

The second term inside the minimum of Equation (4.1.3) has to be changed to

Btx
k −Qtx(Pk) + Etx,EEH

k + Etx,WET
k − Ztx→rx

k (4.1.19)

and similarly for Equation (4.1.4) by switching “tx” and “rx”.
The optimization of Equation (4.2.8) in this case provides three quantities, i.e., the

transmission power, the energy sent from RX to TX and vice-versa.5
The upper bound of Equation (4.1.8) does not change because it does not depend

upon WET. Theorem 4.1.5 can be reformulated by changing Equations (4.1.10)-(4.1.11)
as follows

C̄tx(ξtx→rx, ξrx→tx) = Ētxξtx→rx + ηrx→tx
WET Ērx(1− ξrx→tx), (4.1.20)

C̄rx(ξtx→rx, ξrx→tx) = Ērxξrx→tx + ηtx→rx
WET Ētx(1− ξtx→rx), (4.1.21)

where ξi→j represents the average fraction of the harvested energy that is sent from device
i to device j.

In our work we decided to focus on the uni-directional case and outline in this section
how to extend it for presentation simplicity. Moreover, uni-directional WET can be
effectively used in the practically relevant cases where one device harvests more energy
than the other. Finally, uni-directional WET can be seen as a simpler lower bound for the
bi-directional case.

4.1.4 Online Optimization
We now discuss the online approach and focus on long-term optimization. According to
Section 4.1.2.2, the aim of an online policy is to define a set of rules that, given the state
of the system in a slot, specifies which action (transmission power and transferred energy)
should be used in that slot. The online approach is interesting because it requires only a
statistical knowledge of the energy arrival process, thus may be effectively used in practice.

In order to formulate the problem as a discrete Markov Decision Process (MDP) (for
which there exist efficient solving algorithms, see Section 2.2.2), we introduce the notion
of energy quanta (e.q.), i.e., we discretize the amounts of energy (energy arrivals, energy
consumptions, energy stored, energy exchanged). The batteries have integer sizes btx

max,
brx

max and can be considered as buffers (see Section 2.2.1). In order to obtain a consistent
formulation, the values of btx

max and brx
max are chosen such that Btx

max/b
tx
max = Brx

max/b
rx
max.

Under this assumption, one energy quantum corresponds to δ , B(i)
max/b

(i)
max J. Therefore,

when we deal with the online model, all the energy values are expressed as a (not necessarily
integer) number of energy quanta.

With the above formulation, we will model the system as a finite two-dimensional
Markov Chain (MC). When the MC is in state b , (btx, brx), TX and RX have btx and brx

energy quanta stored in their batteries, respectively. In every state of the MC, a decision
5Note that for any realistic system, in which ηrx→tx

WET < 1 and ηtx→rx
WET < 1, under the optimal policy

we must have Ztx→rx
k Zrx→tx

k = 0, i.e., transferring non-zero energy in both directions simultaneously is
strictly suboptimal.
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is made on the transmission power P (b) ∈ P of TX and on how many energy quanta RX
transfers to TX, namely zrx→tx(b) ∈ {0, 1, . . . , brx

max}.
Following the approach of [92, 149], in this part we only consider deterministic policies.

Therefore, an online policy η specifies a mapping between the current state of the system, b,
and the corresponding action (transmitted power P (b) and transferred energy zrx→tx(b)),
i.e., η = {(P (b), zrx→tx(b)), ∀b}. Through an online policy η, a specific sequence of energy
arrivals can be simply mapped to a sequence of actions (P,Zrx→tx).

The batteries evolution (4.1.3)-(4.1.4) can be rewritten in terms of energy quanta where,
instead of ηrx→tx

WET Zrx→tx
k and Q(i)(Pk), we use ⌊ηrx→tx

WET zrx→tx
k ⌋ and q(i)(Pk) , ⌈Q(i)(Pk)/δ⌉,

respectively (see Section 2.2.1).
We restrict our study to the set of feasible policies, i.e., those in which, for every b, we

have P (b) ≥ 0, zrx→tx(b) ≥ 0, qtx(P (b)) ≤ btx, qrx(P (b)) + zrx→tx(b) ≤ brx.
The reward of Equation (4.1.6) does not depend upon the starting state when the

underlying MC has a unique recurrent class [75, 126]. Under this assumption, the long-term
reward can be rewritten as

Gη =
b

tx
max∑

b
tx=0

b
rx
max∑

b
rx=0

πη(b)r(P (b)), (4.1.22)

where πη(b) is the steady-state probability of being in state b under policy η. The opti-
mization variables of Problem (4.2.8) become (P (b), zrx→tx(b)),∀b and the maximization
is performed over all the feasible policies.

The Optimal Online Policy (OP-ON), namely η⋆, that maximizes Gη can be found
numerically with the Policy Iteration Algorithm (PIA) (see Section 2.2.2) by exploiting
the full energy arrivals statistics. The algorithm starts with an initial policy (thus we
arbitrarily initialize P (b) and zrx→tx(b)) and then performs the policy evaluation and
improvement steps in order to iteratively find a new policy, until the reward function Gη

converges (for additional details see [14, Section. 7.2]).
4.1.4.1 Low Complexity Policies
In addition to the optimal online policy OP-ON, here we also introduce some simple
heuristic policies, that will be used in the numerical evaluations in Sections 4.1.6 and 4.1.7
to show that, even when suboptimal policies are adopted, the system reward can be
improved using WET.

When EEH is combined with WET, the structure of the optimal policy is complex
and, moreover, depends upon the energy arrival processes and the energy consumption
functions. For these reasons, it is difficult to introduce a simple policy that approximates
the optimal one in a broad range of values.



70 Wireless Energy Transfer

In the general case, we define the Greedy Policy (GP) as follows6

P (b) = min
{
qtx−1(btx), qrx−1(brx)

}
,

zrx→tx(b) = brx − qrx(P (b)).
(4.1.23)

GP is a simple policy that empties at least one battery in every slot and is independent
of the energy arrivals. Consider now the case where both TX and RX have Q(i)(·) = Ψ(i)(·).
We introduce two other policies, namely BP and LCP, as extensions of GP.

Balanced Policy (BP). The balanced policy is defined as the solution of the following
system (note that BP does not depend upon the energy arrival statistics, a useful feature
when the harvesting process is unknown)

btx
k + ηrx→tx

WET zrx→tx
k − qtx(Pk) = brx

k − zrx→tx
k − qrx(Pk),

Pk = min
{
qtx−1

(btx
k ), qrx−1

(brx
k − zrx→tx

k )
}
.

(4.1.24)

At the end of slot k, neglecting outage and overflow and the floor and ceiling operations
that should be considered in the battery update formulas in the discrete model, the energy
levels of the two devices are: btx

k − qtx(Pk) + etx,EEH
k + ηrx→tx

WET zrx→tx
k and brx

k − qrx(Pk) +
erx,EEH

k − zrx→tx
k . We impose that at the beginning of the next slot these two quantities be

equal. Note that etx,EEH
k and erx,EEH

k are not known a priori,7 thus we neglect them as well
(it is possible to include only the means of the energy arrivals, but we verified that this
refinement would not provide any significant benefit). Also, since we need to specify both
Pk and zrx→tx

k , we need an additional equation. We impose that one of the two batteries
is emptied in every slot, and therefore choose Pk as the minimum between qtx−1

(btx
k ) and

qrx−1
(brx

k − zrx→tx
k ).

Assume that an acceptable solution of (4.1.24) exists and name it (P̄ , z̄rx→tx). Two
cases have to be considered:

1. qtx−1
(btx

k ) < qrx−1
(brx

k − z̄rx→tx)⇔ P̄ = qtx−1
(btx

k ). In this case, the first equation can

be simplified and we find z̄rx→tx = brx
k − qrx(qtx−1

(btx
k ))

ηrx→tx
WET + 1

.

2. qtx−1
(btx

k ) ≥ qrx−1
(brx

k − z̄rx→tx)⇔ P̄ = qrx−1
(brx

k − z̄rx→tx). In this case P̄ and z̄rx→tx

can be numerically found.
Also, it may happen that the system does not have acceptable solutions, i.e., P̄ or

z̄rx→tx is negative or exceeds the current battery levels. In this case we proceed as follows.
First, we substitute the second equation into the first one. Then, we find the solution of
the first equation, namely z̄rx→tx, following the previous reasoning, i.e., considering the
two possible cases. Finally, if z̄rx→tx is negative, we set z̄rx→tx = 0. Instead, if z̄rx→tx > brx

k ,
we set z̄rx→tx = brx

k . P̄ is then derived from the second equation.
6Note that, differently from Q(i)(·), the function q(i)(·) may not be bijective. In this context we define

q(i)−1
(x) , max

P :q(i)(P )=x
P , i.e., q(i)−1

(x) is the greatest element of P that is mapped to x. This is a
reasonable choice because, for all values of P such that q(i)(P ) = x, the energy consumption is the same
but the reward r(P ) is different and, since r(P ) increases with P , we choose the greatest value in order to
obtain the highest reward.

7It is possible to relax this hypothesis if the arrival process is predictable or partially predictable.



4.1 Energy Cooperation 71

Once (P̄ , z̄rx→tx) is specified, we extract the online policy as P (b) = P̄ and zrx→tx(b) =
⌊z̄rx→tx⌋. We used the floor operation in order to guarantee qrx(P (b)) + zrx→tx(b) ≤ brx

(with the round operation, the condition might not be satisfied).
The balanced policy, obtained according to the above procedure, is designed with the

goal to balance the energy levels of the two devices.
Low Complexity Policy (LCP). The low complexity policy is defined as follows

P (b) = min
{
qtx−1(btx), qrx−1(brx), Qrx−1

(C̄rx(ξ⋆))
}
,

zrx→tx(b) = min{brx − qrx(P (b)), Round
(
Ērx/δ

)
− qrx(P (b))},

(4.1.25)

where Ērx is the mean of the energy arrival process at the receiver. Consider the last
terms of the two “min” operations. It can be seen that they are the discretized versions of
Equations (4.1.14)-(4.1.15) (we applied the round operation in order to obtain an integer
value). Note that the policy in (4.1.14)-(4.1.15) does not transmit when the batteries
cannot support the use of a power Qrx−1

(C̄rx(ξ⋆)), whereas in this case LCP would instead
always use the maximum transmit power allowed by the status of the two batteries, which
results in the full discharge of at least one of them. Although different from (4.1.14)-
(4.1.15), LCP can achieve optimality in some cases, e.g., in the presence of deterministic
arrivals.

LCP is a policy that, except for the “min” operators, does not depend upon the energy
status. When the distribution has a small standard deviation, then it is expected that
LCP provides good results and moreover, in the deterministic case, it degenerates to an
optimal policy.

4.1.5 Offline Optimization
We now focus on offline optimization. One of the key aspects of this approach is that
the energy arrival sequence is assumed to be known a priori (a statistical knowledge of
the arrival process is not sufficient). Therefore, we restrict the study to the finite horizon
case, considering separately the two cases of infinite and finite batteries. In this context,
the aim is to find the Optimal Offline Policy (OP-OFF), namely µ⋆, i.e., the sequence
of actions (P,Zrx→tx) that maximize GK

µ (Equation (4.1.5)). In Section 4.1.7 we will use
OP-OFF as a benchmark for the online ones in the finite horizon case.8

4.1.5.1 Optimal Offline Policy with Infinite Batteries
We first set up the offline optimization problem (4.2.8) by clearly specifying the constraints
that have to be satisfied and the optimization variables, in the case where the battery sizes
are infinite. A formulation for the case with finite batteries will be given in Section 4.1.5.2.

In this case, the optimization problem in (4.2.8) can be explicitly written as follows
(we start with empty batteries):

min
µ = (P,Zrx→tx)

K−1∑
k=0
−r(Pk) (4.1.26a)

8In this case, we simply apply to the finite horizon scenario the optimal online policy for infinite horizon
derived in Section 4.1.4.
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subject to:
Qtx(Pk) ≤ Btx

k , k = 0, . . . , K − 1, (4.1.26b)
Qrx(Pk) + Zrx→tx

k ≤ Brx
k , k = 0, . . . , K − 1, (4.1.26c)

Pk ≥ 0, Zrx→tx
k ≥ 0, k = 0, . . . , K − 1, (4.1.26d)

Btx
k+1 = Btx

k −Qtx(Pk) + Etx,EEH
k + Etx,WET

k , k = 0, . . . , K − 2, (4.1.26e)
Brx

k+1 = Brx
k −Qrx(Pk) + Erx,EEH

k − Zrx→tx
k , k = 0, . . . , K − 2, (4.1.26f)

Etx
1 = Erx

1 = 0. (4.1.26g)

Note that the battery evolutions include neither “min” operations (because the batteries
are infinite) nor “max” operations (thanks to (4.1.26b) and (4.1.26c)). We recall that the
energy harvested in slot k can be exploited only in a later slot and similarly for the energy
transferred with WET (Etx,WET

k = ηrx→tx
WET Zrx→tx

k ).
Lemma 4.1.12.

{
µ = (P,Zrx→tx) : (4.1.26b)− (4.1.26d) are satisfied

}
is a convex set.

Proof. The set is convex if Qtx(Pk)−Btx
k , Qrx(Pk) + Zrx→tx

k −Brx
k , −Pk and −Zrx→tx

k are
concave function of (Pk, Z

rx→tx
k ) for every k = 0, . . . , K − 1. These conditions are satisfied

because Q(i)(Pk) are defined as concave functions and the other constraints are linear. �

Since the reward function is convex (sum of convex functions) and Lemma 4.1.12 holds,
(4.1.26) is a convex problem and can be solved using standard optimization techniques.
4.1.5.2 Optimal Offline Policy with Finite Batteries
When the battery sizes are finite, the optimization problem is the same of Equations (4.1.26a)-
(4.1.26d), with the battery update formulas (4.1.26e)-(4.1.26f) replaced by

Btx
k+1 = min{Btx

max, B
tx
k −Qtx(Pk) + Etx,EEH

k + Etx,WET
k }, (4.1.27)

Brx
k+1 = min{Brx

max, B
rx
k −Qrx(Pk) + Erx,EEH

k − Zrx→tx
k }. (4.1.28)

The problem can be formulated in a standard form (convex function to minimize plus
inequality and equality constraints) by adding an inequality constraint for every possible
condition imposed by the “min” operations. For example, for the receiver, the first four
inequalities that have to be satisfied are (set Q(i)

k , Q(i)(Pk) for ease of notation)

Qrx
0 + Zrx→tx

0 ≤ 0, (4.1.29a)

Qrx
1 + Zrx→tx

1 ≤

B
rx
max,

Brx
0 −Qrx

0 − Zrx→tx
0 ,

(4.1.29b)

Qrx
2 + Zrx→tx

2 ≤


Brx

max,

Brx
max +Brx

1 −Qrx
1 − Zrx→tx

1 ,

Brx
0 −Qrx

0 − Zrx→tx
0 +Brx

1 −Qrx
1 − Zrx→tx

1 ,

(4.1.29c)

Qrx
3 + Zrx→tx

3 ≤


Brx

max,

Brx
max +Brx

2 −Qrx
2 − Zrx→tx

2 ,

Brx
max +Brx

1 −Qrx
1 − Zrx→tx

1 +Brx
2 −Qrx

2 − Zrx→tx
2 ,

Brx
0 −Qrx

0 − Zrx→tx
0 +Brx

1 −Qrx
1 − Zrx→tx

1 +Brx
2 −Qrx

2 − Zrx→tx
2 ,

(4.1.29d)
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and similar constraints have to be considered for the transmitter. The total number of
constraints scales as K2.

The general expressions for the transmitter and receiver constraints can be written in
compact form as (ℓ = 0, . . . , k − 1 and k = 0, . . . , K − 1)

k−1∑
j=ℓ

Qtx
j −

k−2∑
j=ℓ

ηrx→tx
WET Zrx→tx

j ≤ Btx
maxχ{ℓ > 0}+

k−2∑
j=ℓ

Btx
j , (4.1.30)

k−1∑
j=ℓ

(Qrx
j + Zrx→tx

j ) ≤ Brx
maxχ{ℓ > 0}+

k−2∑
j=ℓ

Brx
j , (4.1.31)

where χ{·} is the indicator function. The four cases in (4.1.29) can be obtained from (4.1.31)
for k = 0, 1, 2, 3 (note that there are k constraints in each case, obtained for ℓ = 0, . . . , k−1).
For example, when ℓ = 0 or ℓ = k − 1, the last and the first lines of (4.1.29) are obtained,
respectively.

In practice, techniques such as the interior-point algorithm or a Sequential Quadratic
Programming (SQP) method can be used to find the optimal solution. However, if the
time horizon is large, the computational time can be long. Moreover, to run the algorithms
Etx,EEH

k and Erx,EEH
k must be known in advance. Thus, even if the offline optimization

gives the policy with the highest reward among all, in practice it can rarely be used. On
the other hand, finding the optimal offline policy is still useful, as it makes it possible to
understand what are the limits of the energy transfer mechanism, and can be used as a
benchmark for all other policies.

4.1.6 Numerical Results - Online Optimization
In this section we present some numerical results for the online policies. In order to
understand their properties, here we consider some analytical examples in the infinite
horizon case. In Section 4.1.7 we discuss how these policies can be applied to a realistic
scenario, with finite horizon and real data.

In addition to studying the optimal policy OP-ON, we present the performance of
suboptimal policies in several settings. We remark that, since we focus on the online case,
all energies are expressed in terms of energy quanta.

We consider the long-term maximization of Gη (Equation (4.1.22) or, equivalently,
(4.1.6)) when the reward function is the transmission rate r(x) = log(1 + Λx), where Λ is
a scaling factor. The term η⋆ represents the optimal policy obtained when WET is used,
whereas η⋆

0 is the optimal policy without WET.
The numerical results strongly depend upon the system parameters, and on the structure

of r(·) and Q(i)(·). In the following we focus on a particular energy consumption model,
but similar considerations can be made in other cases as well. Consider the following
energy consumption functions (ζ > 0) expressed in energy quanta (e.q.)

Qrx(P ) =


ζ + Pn

Pn

P, if P < Pn,

ζ + Pn − αrx log(1 + ΛPn) + αrx log(1 + ΛP ), if P ≥ Pn

(4.1.32)
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Figure 4.2. Energy consumptions Qtx(P ) and Qrx(P ) as a function of P for several values
of Λ. The transmission power is expressed in terms of energy quanta because the slot
length is fixed and thus we refer to power or energy interchangeably.

and Qtx(P ) is piece-wise linear as in Equation (4.1.18) with Pn = 1/100. ζ and αrx are
parameters that depend upon the considered technology. Both devices have a fixed energy
cost ζ plus a linear or logarithmic curve.9

If not otherwise specified, we consider bmax , btx
max = brx

max = 30 e.q., truncated
geometric arrivals with parameters Ētx = 2 e.q., bmax = 5 e.q. for TX, uniform energy
arrivals with parameters ērx = 12.5 e.q., erx

max = 25 e.q. for RX, ζ = 7 e.q., αrx = 4 e.q.,
Λ = 0.1, ηrx→tx

WET = 0.15, a unit slot length and Pmax = emax (in a slot, potentially, all the
stored energy can be consumed).

In Figure 4.2, the bold curve represents the energy consumption Q(i)(·) considered
in this example. Note that in the online optimization we consider q(i)(·) =

⌈
Q(i)(·)

⌉
as

described in Section 4.1.4.
We define the following functions exploiting the technique introduced in Example 4.1.11

Ψtx(P ) =


1
m

log(1 + ΛP ), if P < x̄− ζ,
ζ + P, otherwise,

Ψrx(P ) = qrx(Pmax)
Pmax

P,

(4.1.33)

with Pmax = bmax − ζ, x̄ = 20.99 and m = 0.0417. It can be verified that these functions
satisfy the hypotheses of Theorem 4.1.2 and the upper bounds are GnoET

u.b. = 0.0834 and
GWET

u.b. = 0.1561.
9We decided to focus on the case ζtx = ζrx for presentation simplicity, but this assumption is not

restrictive.
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Figure 4.3. Steady-state probabilities (10 log10(·) scale) without (left) and with (right)
WET as a function of the batteries energy status btx, brx.
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Figure 4.4. Long-term average transmission rates Gη
⋆
0
, Gη

⋆ (optimal rewards) and corre-
sponding improvement as a function of Λ when btx

max = brx
max = 30 e.q. and ζ = 7 e.q..

In Figure 4.3 we show the steady-state distribution of the system state when using
the optimal policies with and without WET. As expected, when energy transfer is not
used, the energy levels are highly unbalanced and the receiver is almost always in overflow.
With energy transfer, instead, the overflow probability becomes lower. In this case, even
in the presence of a relatively low efficiency, ηrx→tx

WET (85% of the energy sent is wasted),
energy transfer provides a reward improvement of 78%, see Figure 4.4. Note that the
improvement is due to the fact that RX can send part of its energy to TX and this is
particularly effective when RX receives more energy and/or consumes less energy than TX.
A comparison with the upper bounds shows that Gη

⋆
0
> 0.99GnoET

u.b. and Gη
⋆ > 0.95GWET

u.b. .
The reward without WET and its upper bound are very close (this happens because the
batteries are large). Instead, with WET the distance from the upper bound is wider
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Figure 4.5. Long-term average transmission rates Gη
⋆
0
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⋆ (optimal rewards) and corre-
sponding improvement as a function of ζ when btx

max = brx
max = 30 e.q. and Λ = 0.1.

because the function Ψrx(·) is distant from Qrx(·) and the batteries are not sufficiently
large. When Λ ∈ {0.001, 1, 10} the improvements provided by the use of WET become
{83, 64, 45}%, thus the performance is significantly increased in a wide range of values
of Λ. This can be observed in Figure 4.4, where we plot the rewards with and without
WET, along with the corresponding improvement, defined as

(
Gη

⋆ −Gη
⋆
0

)
/Gη

⋆
0
. WET

works better in the low SNR regime because r(·) tends to be linear, thus smart energy
transmission techniques (e.g., delay a transmission in order to transmit with more power)
do not improve the reward significantly.

Figure 4.5 shows how the two rewards (with and without energy transfer) change
as a function of ζ. When ζ is very high, in both cases the value of the reward is very
small in absolute terms (see Figure 4.5), but the use of energy transfer may provide a
significant reward improvement in relative terms as pointed out by the improvement curve
(Gη

⋆ > 1.5Gη
⋆
0
). Thus, it is better to use Energy Transfer even when ζ is high. Even if

we present our results for ζtx = ζrx, similar results can be found in the general case. In
particular, if either energy consumption ζ(i) decreases, then the reward improvement and
the reward itself increase (similarly to Figure 4.5) and vice-versa.

Also, in Figure 4.6 we plot the reward when brx
max = 30 e.q. is fixed and btx

max changes (a
similar curve can be obtained switching btx

max and brx
max). The WET improvement increases

with the battery size. The abscissa values start from 7 e.q. since, for btx
max ≤ 7 e.q., the

reward is zero because of the circuitry costs.
As an additional interesting example, consider the case ζ = 0 e.q., where qtx(·) = Ψtx(·)

and qrx(·) = Ψrx(·). The energy consumption functions are

qtx(P ) = P, qrx(P ) = 4 log(1 + ΛP ). (4.1.34)

In this case Ψ(i)(·) = q(i)(·). The distances from GnoET
u.b. and GWET

u.b. are 0.25% and 3.3%,
respectively. For larger batteries the upper bound gaps are even smaller. We also computed
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the rewards of policies GP, BP and LCP and we found GGP = 0.88Gη
⋆ , GBP = 0.88Gη

⋆ ,
GLCP = 0.82Gη

⋆ , i.e., in this particular case, the simpler policies provide almost as good a
performance as OP, while being significantly faster to compute.

4.1.7 Real Data Analysis
In this section we want to apply the policies found so far to some realistic examples.
Since in reality only a finite sequence of energy arrivals can be available, we focus on the
optimization of GK

µ (Equation (4.1.5)). If we assume that the energy arrivals are known a
priori, the offline optimal policy (OP-OFF) provides the best reward among all. Instead,
to compute the online policies, only the statistics of the energy arrivals is required. In
this section, in addition to discussing the benefits of WET, we compare the offline and
online approaches. As in Section 4.1.5, we consider separately the cases of infinite and
finite batteries.
4.1.7.1 Infinite Batteries
Consider a scenario with two devices in two different rooms of a building, where energy
harvesting is based on indoor light.

At enhants.ee.columbia.edu, a collection of light energy data traces is available.10 The
authors took measurements of the irradiance in different indoor rooms during an extended
period of time. We use part of this data in our performance evaluation.

We assume that TX is located on a bookshelf in an office (Setup A) and the receiver in
another office (Setup B). The receiver, generally, harvests more energy than the transmitter
because it gets more sunshine. We show in Figure 4.7 the irradiance arrivals for the two
devices (measured on 09 January 2010). It can be seen that, in this case, RX receives
significantly more energy than the transmitter, therefore it may be interesting to use

10These data were discussed in [43] by Gorlatova et al..
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Figure 4.7. Indoor light energy arrivals as a function of the time of the day.

energy transfer to try to balance the system. In this setup, the harvested power is at
most 113 µW/cm2, i.e., very low. In an indoor environment, an ultra low power sensor
network should be deployed, otherwise the energy costs would be too high to be sustained
by the renewable energy source. Therefore, we assume that the transmitter can choose its
transmit power to be even lower than 1 mW. In this case, it can be verified that the effects
of a finite battery can be neglected (even if a very small battery is used, e.g., 0.16 J [43]),
thus in this section we can consider infinite batteries with no loss of generality.

Time is divided in slots of 60 s each, and in every slot a new (Pk, Z
rx→tx
k ) is chosen.

The maximum energy that can arrive in 60 s is 60 s× 113 µW/cm2 × S cm2 where S is
the solar panel size (assumed equal for the two devices). We compute the reward using
r(x) = log(1 + Λx) in a low SNR regime (Λ = 0.002). In order to highlight the system
behavior, we present the results for Qtx(P ) = Qrx(P ) = P . The model can be extended,
e.g., using the energy consumption model of Equation (4.1.34), which would result in an
even better improvement because RX would consume less energy.

We use two approaches to apply WET to the system: 1) online low complexity balanced
policy (BP), which is very easy to compute and can be used in practice, and 2) offline
optimal policy (OP-OFF) (presented in Section 4.1.5.1). We selected 1 µW/cm2 as the
minimum non negligible power that can be harvested. In this case, one energy quantum
corresponds to the minimum energy that can arrive in 60 s, i.e.,

1 e.q. ≡ 60 s× 1 µW/cm2 × S cm2. (4.1.35)

Figure 4.8 shows the sent data and energy (expressed in energy quanta) for BP and
OP-OFF. In Figure 4.9, the corresponding energy evolutions are presented.

BP is designed in order to balance the energy of the two devices. Indeed, when the
transmitter battery is low, Zrx→tx

k (transfer energy from RX to TX) is high, i.e., WET is
better exploited when the difference between the energy arrivals is high. Analytically, it
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Figure 4.8. Policies BP (left) and OP-OFF (right) as a function of the time of the day.

can be verified that in the linear energy consumption case, BP degenerates in the following
policy:

zrx→tx(b) =
(⌊

brx − btx

1 + ηrx→tx
WET

⌋)+

, (4.1.36)

P (b) = min{btx, brx − zrx→tx(b)}, (4.1.37)

where (·)+ , max{·, 0}.
On the left side of Figure 4.9 we depicted Btx

k and Brx
k − Zrx→tx

k in order to compare
the two arguments of Equation (4.1.37). It can be seen that Btx

k is always lower than
Brx

k − Zrx→tx
k , thus Equation (4.1.37) becomes P (b) = btx (indeed the curves of Pk and

Btx
k are the same), i.e., the transmitter battery is emptied in every slot. Moreover, note

that Btx
k+1 = Btx

k + ⌊ηrx→tx
WET Zrx→tx

k ⌋, i.e., the status of the transmitter battery is similar to
Etx

k , but higher (thanks to energy transfer).
Instead, OP-OFF chooses the initial values of Pk and Zrx→tx

k in order to reach a situation
where Pk and Zrx→tx

k can be kept constant. This is possible because we consider infinite
batteries. The resulting battery trends are represented on the right side of Figure 4.9. Note
that Pk and Zrx→tx

k were chosen in order to have zero energy stored in the last plus one
slot, i.e., all the available energy is exploited in the finite horizon of K slots. Differently
from the previous case, Btx

k is greater than Brx
k in the central region because TX receives

a lot of energy and RX transfers its energy to TX.
Note that, if WET is not employed, an upper bound for the performance is given by

the minimum between the means of {Etx
k } and {Erx

k }, whereas, if WET is used, the upper
bound is given by Equation (4.1.12).11

11Theorems 4.1.2 and 4.1.5 can be reformulated using the temporal means in this case.



80 Wireless Energy Transfer

11 12 13 14 15 16

Time of the day

0

10

20

30

40

50

60

70

80

90

100

B
at
te
ri
es

st
at
u
s
[e
.q
.]

BP

B
tx
k

B
rx
k
− Z

rx→tx
k

11 12 13 14 15 16

Time of the day

0

500

1000

1500

2000

2500

3000

3500
OP-OFF

B
tx
k

B
rx
k

Figure 4.9. Battery energy status of BP (left) and OP-OFF (right) as a function of the
time of the day.

BP gives a reward equal to 0.0512, whereas Gµ
⋆ = 0.0528 (optimal offline reward with

WET) and Gµ
⋆
0

= 0.0411 (optimal offline reward without WET). The upper bound with
and without WET are GWET

u.b. = 0.0532 and GnoET
u.b. = 0.0414. Note that Gµ

⋆ = 0.99GWET
u.b.

and Gµ
⋆
0

= 0.99GnoET
u.b. , i.e., OP-OFF is very close to but does not achieve the upper bounds

even if the batteries are infinite and this is because we consider a finite time horizon. The
reward improvement due to WET is 28%. Note that, even though BP is a suboptimal
policy (much simpler to compute than OP-OFF) and only has a causal knowledge of the
energy arrivals, its reward GBP is very close to that of the optimal offline policy, Gµ

⋆ .
4.1.7.2 Finite Battery Effects
In the previous section we assumed infinite batteries, which is legitimate in the indoor
environment we considered. However, when the solar panel is powered with direct sunlight,
it is likely that an inappropriate use of the energy may lead to battery overflow. At [101],
a collection of solar light measurements in several locations over the past years is available
and in Figure 4.10 we show the irradiance measured in Elizabeth City on 20 July 2014.
The continuous lines represent all the measured data. We performed a sampling and
considered only the points depicted with squares and circles. This is in order to perform
the offline optimization in a reasonable computational time (we recall that with finite
batteries the number of constraints grows quadratically with the number of samples).
We considered the same energy arrival profile for both transmitter and receiver, but we
assumed that the transmitter has a solar panel three times smaller than RX (in reality,
the two devices could also receive different solar energy because of their position). We
scaled the irradiance data in order to apply an MDP approach to solve the problem: the
histograms of the two energy arrival profiles were assumed as empirical pdfs of the two
arrival processes and we found OP-ON according to the model of Section 4.1.4. Since this
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Figure 4.10. Solar energy arrivals as a function of the time of the day.
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max = brx
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approach is suboptimal because it assumes i.i.d. energy arrivals, we compared it with
OP-OFF, that gives the best possible results.

Figure 4.11 shows the (simulated) rewards with and without WET as a function of the
battery sizes. We considered the model of Equation (4.1.34) with Λ = 0.1, bmax = btx

max =
brx

max and ηrx→tx
WET ∈ {0.15, 0.50, 1.00}. When bmax is low, even when ηrx→tx

WET = 1, WET does
not improve the system reward. This is because the energy harvesting mechanism manages
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several policies.

to fill up both batteries almost all the time, thus it is not necessary to exchange energy.
Instead, when the size of the batteries grows, WET may significantly improve the reward:
when bmax = 5 e.q. the ratio Gµ

⋆/Gµ
⋆
0

for ηrx→tx
WET ∈ {0.15, 0.50, 1.00} is {1.12, 1.30, 1.44},

and becomes {1.33, 1.91, 2.51} when bmax = 20 e.q..
Beyond a certain value of bmax, the rewards can be observed to saturate, thus it is

not necessary to use very large batteries to achieve high rewards. This is because the
effects of outage and overflow become negligible. Note that, because of the transmitter
energy arrivals, without WET the system reward saturates very soon, whereas, with energy
transfer, the saturation value is only reached for higher bmax. Note that for ηrx→tx

WET = 0.15
and bmax ≤ 7 e.q., Gη

⋆ is low and this is due to the discretization (⌊ηrx→tx
WET bmax⌋ = 0 e.q.

for bmax < 7 e.q.).
In this example OP-ON and OP-OFF are very close, which makes online policies very

good candidates for application in real scenarios, because they are easier to implement
while being almost optimal.

Finally, in Figure 4.12 we plot OP-OFF, OP-ON, the suboptimal online policies BP
and LCP and the upper bounds. Note that with the online policies OP-ON may be lower
than BP (at bmax = 6 e.q. for example). This is because OP-ON is optimal in the long-run,
thus in a particular realization it may turn out to be suboptimal. OP-OFF increases with
bmax and almost reaches the upper bound (which is not achieved because the simulation
time is finite). The balanced policy is generally better than the low complexity policy,
because BP operates with the energy levels (see Equation (4.1.24)), whereas LCP operates
with the average energy arrival statistics (see Equation (4.1.25)).

4.1.8 Conclusions of Section 4.1
In the first part of this chapter, we used the combination of environmental energy harvesting
and Wireless Energy Transfer (WET) to improve the network performance. We studied a
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scenario composed of two energy harvesting devices, a transmitter and its receiver, that can
exchange energy through a WET interface. We considered two generic energy consumption
functions and found performance upper bounds with and without WET, showing that,
under some assumptions, they are achievable. Then we studied the online and offline
optimization problems. In the first case we modeled the system with an MDP, studying
numerically the optimal online policy and introducing some low complexity policies. For
the offline optimization we set up the optimization problem and showed that it is convex.
In our numerical evaluations we derived the optimal transmission policies, showing that
WET can significantly improve the system performance and discussing how the system
behaves as a function of the system parameters. For example, we noticed that the reward
improvement increases with the battery sizes and remains high even for large values of
the circuitry cost. Also, we analyzed two realistic examples of indoor and outdoor light
radiation, showing the effects of finite batteries on the transmission strategies.

Possible extensions of our work are the exploitation of the predictability and correlation
of the transmitter and receiver energy sources, and consideration of battery imperfections.

4.2 Wireless Powered Communication Networks
4.2.1 Introduction
New generation devices, e.g., in Wireless Sensor Networks (WSNs) or mobile cellular
networks, are able to provide high communication performance in terms of throughput or
delay at the cost of computational complexity and demanding power supplies. Wireless
Energy Transfer (WET) has been recognized as one of the most appealing solutions
for supplying energy to mobile devices when their batteries cannot be easily or cheaply
replaced. Via WET it becomes possible to greatly extend the network lifetime and improve
the devices performance by avoiding energy outage situations. Nowadays, it is possible
to transfer powers of tens to hundreds of microwatts at distances of up to 10 m (see, for
example, the Powercast company products [121]) and thus it becomes possible to supply
ultra-low power mid-range networks. Differently from standard Environmental Energy
Harvesting (EEH) techniques, WET has the major advantage of being fully controlled, as
it does not rely on an external random phenomenon.

While most literature on WET has focused on the slot-oriented case, in which all the
harvested energy is immediately used [58], in this thesis we consider the battery-powered
case, in which the harvested energy can be stored and used at a later time. In this case,
new considerations can be made (channel conditions, current battery level, battery size,
future energy arrivals, etc.) and studying the system performance becomes more involved.
The goal of the present work is to investigate such a problem.

We focus on Radio-Frequency Wireless Energy Transfer (RF-WET), since it is a far-
field WET technique, and thus is suitable for powering several devices simultaneously
in a distributed area. The RF signal can be harvested from the environment (e.g., this
may be possible in a city where several electromagnetic sources are available), or from
a dedicated source, i.e., a particular node (generally the access point) which emits RF
signals to feed the devices (commercial products for RF-WET transmission/reception are
already available, see [121]). This last kind of scenario is known as Wireless Powered
Communication Network (WPCN).

In a WPCN where multiple devices harvest energy from the receiver or the access point
and transmit data in uplink, a doubly near-far phenomenon is present: a user far away
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from the receiver experiences, on average, a worse channel than the others both in uplink
(therefore it has to use more energy to perform its transmission) and in downlink (thus
it gathers less energy). This is substantially different from the classic energy harvesting
scenarios [150], in which energy is gathered from the environment and thus does not decay
over distance.

Contributions. In this section, we consider a WPCN composed of a Receiver (RX)
and two distributed nodes. RX transfers energy in downlink to the nodes, which use
the harvested energy for transmission purposes. Our system model is similar to that
of [58, 80, 96] and [150, Section IV]. As in [96], we consider battery-powered devices and
focus on the long-term performance. However, [96] considered only one device, whereas,
in the present work, we consider the near-far effect problem when multiple devices are
present. Moreover, differently from [96], we describe how to derive the optimal strategy to
maximize the throughput of the system, whereas [96] focuses on the performance evaluation
of a given strategy. We also take into account the imperfections of the devices in terms
of circuitry costs and energy depletion over time (other sources of inefficiencies can be
modeled as in Section 5.1 or [89, 149, 103]). [58, 80] describe a problem similar to what
we analyze, but focus on the optimization in a single slot and not in the long term. This
assumption turns out to be very restrictive in practice. Indeed, in our numerical evaluation
we will describe the differences between these two approaches and show that focusing only
on a greedy slot-oriented optimization is strongly suboptimal in the long run. We study
the throughput maximization problem and solve it both optimally, via Markov Decision
Process (MDP) theory [122], and approximately, exploiting the results we derived in the
optimization section. Previous papers summarized in [150, Section IV] do not study the
WPCN scenario and do not deal with the doubly near-far effect. Indeed, when the latter is
considered, fairness between different devices should be explicitly addressed so as to avoid
significant performance degradation. Moreover, most previous works did not focus on
finding schemes for approximating the optimal reward. We explicitly study the trade-offs
among battery size, amount of available energy, fading effects and performance. We show
how fading and amount of dowlink energy are related and describe how the system changes
when the power supply is scarce or abundant. This section can be considered as a first
step to understand the key trade-offs and optimization problems in a WPCN with finite
battery-powered devices.

Structure. The second part of this chapter is organized as follows. Section 4.2.2
defines the system model we analyzed and introduces the optimization problem, which
is solved in Sections 4.2.3 and 4.2.4 (optimally and approximately, respectively). Some
interesting extensions are outlined in Section 4.2.5. We briefly describe the slot-oriented
maximization in Section 4.2.6. Section 4.2.7 presents our numerical results. Finally,
Section 4.2.8 concludes the section.

References. This section is based on the conference papers [C7] and [C11] and on
the journal paper [J3].

4.2.2 System Model and Optimization Problem
The system is composed of three nodes: one Receiver (RX) with Wireless Energy Transfer
(WET) capabilities and two devices, namely D(1) and D(2). Via a RF-WET mechanism,
RX recharges the batteries (with finite capacities B(1)

max J and B(2)
max J) of the two devices.
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It is assumed that RX has an unlimited amount of energy available. The devices use the
energy transferred in downlink to upload data packets to the receiver.

An approach similar to the “harvest-then-transmit” protocol proposed in [58] is adopted
to keep the devices operational. Under this scheme and according to Section 2.1.1, time
is divided in slots of length T and slot k corresponds to the time interval [kT, (k + 1)T ).
Every slot is divided in two sequential phases:12

Uplink (UL). In the first phase, which lasts for τ (1) + τ (2) ≤ T seconds, the two
devices transmit data to RX in a TDMA fashion using the energy stored in their batteries.

Downlink (DL). During the second τ rx ≤ T − τ (1) − τ (2) seconds, D(1) and D(2)

harvest the energy transferred from the receiver and store it in their batteries.
RX is assumed to have multiple antennas and is able to perform energy beamforming

in order to split the energy transferred to D(1) or D(2) during the DL phase, whereas D(1)

and D(2) are assumed to be equipped with an omnidirectional antenna.
4.2.2.1 Uplink Phase

At the beginning of a slot, device D(i) (i ∈ {1, 2}) has B(i) ∈ [0, B(i)
max] J of energy stored.

In a TDMA fashion, first device 1 and then device 2 occupy the channel to transmit data
in the uplink for τ (1) and τ (2) seconds, respectively. The transmission powers P (1)→rx and
P (2)→rx and the time allocations τ (1) and τ (2) can change dynamically in every slot and
are the control variables of our optimization.

In the uplink phase, device D(i) is constrained to consume an amount of energy Q(i),
with Q(i) ≤ B(i), decomposed as

Q(i) , Q(i)(τ (i), P (i)→rx) = ζ(i) + τ (i) × P (i)→rx, (4.2.1)

where τ (i) × P (i)→rx is the energy used for the transmission and ζ(i) represents a fixed
energy cost consumed every time a transmission is performed. We also impose P (i)→rx ∈
[P (i)→rx

min , P (i)→rx
max ] when a transmission is performed. We assume that, in every slot, the

devices always have enough data to transmit, i.e., the transmission data queue is always
non-empty. This assumption is useful to characterize the maximum throughput of the
system.

According to Shannon’s formula, when a power P (i)→rx is used, the noise power is σ2
0

and the uplink channel gain is h(i), the maximum reliable transmission rate of device D(i)

is

r(P (i)→rx, h(i)) ∝ log
(

1 + h(i)P (i)→rx

σ2
0

)
. (4.2.2)

Thus, during a single slot, the amount of transmitted data can be approximated as the
time reserved for device D(i) multiplied by the transmission rate (i.e., τ (i)r(P (i)→rx, h(i))).

The uplink channel is affected by flat fading, which remains constant within every slot
but may change from slot to slot. The channel gain h(i) can be expressed as h(i) = h̃(i)θ(i),
where θ(i) is a random variable which represents the fading and h̃(i) is the average channel

12Unlike in [58], and without loss in generality, we chose to consider first the uplink and then the
downlink phases in order to more easily track the energy level of the two devices when we set up the
Markov Decision Process (MDP) formulation in Section 4.2.2.3.
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gain, obtained by considering the path loss effects as

h̃(i) = h
(i)
0 d(i)−γ

(i)
. (4.2.3)

The term h
(i)
0 is the signal power gain at a reference distance of 1 m, d(i) is the distance

between D(i) and RX expressed in meters, and γ(i) is the path loss exponent.
4.2.2.2 Downlink Phase

The downlink period lasts for τ rx ≤ T − τ (1)− τ (2) seconds. During this phase, the receiver
transfers two energy beams (with powers P rx→(1) and P rx→(2)) to the devices, under a
maximum power constraint P rx→(1) + P rx→(2) ≤ P rx

max. The power received at D(i) is
P rx→(i)ηECLg

(i), where ηECL is a constant in (0, 1] that models the energy conversion losses
at the devices and g(i) is a random variable related to the channel conditions, and on
the specific beamforming technique (if any). The term g(i) can be explicitly written as

g(i) = g̃(i)κ(i) in order to consider the flat fading effects, where g̃(i) = g
(i)
0 d(i)−δ

(i)

and κ(i)

are defined similarly to h̃(i) and θ(i), respectively (see Section 4.2.2.1). In summary, when
a power P rx→(i) is transferred to device i, the stored energy is

E(i),RF = τ rx P rx→(i) ηECL g
(i)
0 d(i)−δ

(i)

κ(i). (4.2.4)

The channel gain components in uplink h(1), h(2) and downlink g(1), g(2) can be assumed
equal if the transmission is performed in the same frequency band, which is a common
assumption in WPCNs [58]. Finally, note that the downlink channel of the user farther
from RX is worse (on average), leading to a doubly near-far scenario.
4.2.2.3 Batteries
In every slot, the energy level of battery i is updated according to (see Equation (2.1.3))

B(i) ← min{B(i)
max, [B(i) −Q(i) −Q(i)

d ]+ + E(i),RF}, (4.2.5)

where we defined [·]+ , max{·, 0} to avoid negative energy levels. Q
(i)
d is a constant

term that accounts for the energy depletion over time. Note that, when Q
(i)
d = 0, the

arguments of the “min” are always non-negative because the energy consumption Q(i) is
chosen such that Q(i) ≤ B(i). The circuitry energy term is already enclosed in Q(i). We
also highlight that E(i),RF (defined in (4.2.4)) is a random variable because of the channel
fading. The “min” operation is used to explicitly consider the effects of finite batteries. The
battery evolution depends upon the choices of all parameters τ (1), τ (2), P (1)→rx, P (2)→rx,
τ rx, P rx→(1) and P rx→(2), which are the control variables of our optimization and will be
analyzed in the next section.

In order to perform the optimization, we model the system with a discrete Markov
Chain (MC). In particular, we discretize the battery of D(i) in b(i)

max + 1 levels, where b(i)
max

represents the maximum amount of energy quanta (e.q.) that can be stored in the battery
and one energy quantum corresponds to B(i)

max/b
(i)
max J (see Section 2.2.1). In our numerical

evaluation, we always use a sufficiently high number of quantization levels. Equation (4.2.5)
can be rewritten in terms of energy quanta: b(i) ← min{b(i)

max, [b(i) − q(i) − q(i)
d ]+ + e(i),RF}

(this is analogous to Equation (2.2.2)). In every slot, only an integer amount of energy
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quanta q(i) = Q(i)b(i)
max/B

(i)
max ∈ {0, . . . , b(i)

max} can be extracted from the battery. Similarly,
only an integer amount of energy quanta can be harvested, thus we define e(i),RF =
⌊E(i),RFb(i)

max/B
(i)
max⌋. Moreover, if the channel fading is described by a continuous random

variable, we discretize it using a finite number of intervals.
In the rest of this section, the bold notation is used to identify a pair of values, e.g.,

b = ⟨b(1), b(2)⟩.
4.2.2.4 Optimization Problem
We define a policy µ as an action probability measure over the state set, namely S. S

represents all the combinations of battery levels b and channels g, h. The policy is
computed by a central controller (e.g., the receiver), which knows the state of the two
batteries b and the joint channel state (g,h), and distributed among nodes. We assume
a perfect Channel State Information (CSI) in every slot (causal), and only a statistical
knowledge for future slots, both at the devices and at RX.13 Note that, while estimating the
uplink channel is a standard task, downlink channel estimation may be more challenging
due to the hardware limitations of the energy receivers. However, by exploiting innovative
techniques, e.g., [161], it is possible to obtain accurate CSI for the downlink channel as
well.

For every state s = (b,g,h) ∈ S, µ defines with which probability an action a is
performed. Action a summarizes the data transmission duration τ , ⟨τ (1), τ (2)⟩, the energy
transfer duration τ rx, the transmission powers P→rx , ⟨P (1)→rx, P (2)→rx⟩, and the amount of
power Prx→ , ⟨P rx→(1), P rx→(2)⟩ to send over the two beams, i.e., a = (τ , τ rx,P→rx,Prx→).
Formally, µ defines Pµ(a|s), with ∑a∈As

Pµ(a|s) = 1, where As is the set of the possible
actions in state s (e.g., As includes the energy constraints imposed by the battery levels).

For the sake of presentation simplicity, in the next sections we use a deterministic
policy µ, i.e., Pµ(a|s) is equal to 1 for a = ās and to 0 for a ̸= ās, where ās is an action in
As.14 However, in our numerical evaluation we consider a more general random policy.

Our focus is on the long-term throughput optimization problem. This is suitable for
scenarios in which nodes operate in the same location for a sufficient amount of time (e.g.,
sensors), but can be easily extended to the finite-horizon case with similar techniques. Our
goal is to maximize the minimum throughput value reached by both devices in order to
increase the QoS. Formally, the reward Gµ is expressed as

Gµ = min{G(1)
µ , G(2)

µ }, (4.2.6)

G(i)
µ , lim inf

K→∞

1
K

K−1∑
k=0

E
[
τ

(i)
k r(P (i)→rx

k , h
(i)
k )
]
, i ∈ {1, 2}, (4.2.7)

where the expectation is taken with respect to the channel conditions. The maximization
process is

µ⋆ = arg max
µ

Gµ, (4.2.8)

13In the cases in which CSI is only partially available, our model is useful to characterize a performance
upper bound. A detailed analysis of the partial CSI case is left for future study.

14All our results can be extended to a general random policy by substituting a in Bellman’s equa-
tion (4.2.12) with a probability distribution.
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where µ⋆ is the Optimal Policy (OP). Note that the optimal policy we find in this section
may be useful to compare other suboptimal low-complexity policies, as well as to understand
which is the maximum throughput a network can supply.

4.2.3 Optimal Solution
In this section, we will show how to solve the problem described in Section 4.2.2.4 and
obtain OP. In particular, by exploiting MDP theory, the problem can be simplified by
focusing on the optimization of ās for every fixed s instead of considering the whole function
µ, i.e., the optimization can be parallelized (see Bellman’s equation in [14]). Moreover, we
will describe how it is possible to reduce the action a = (τ , τ rx,P→rx,Prx→) to a simpler
action with only four entries ã = (τ rx, P rx→(1),q).
4.2.3.1 Max-min Problem
We now derive a simple technique to deal with the max-min optimization problem of
Equation (4.2.8). Indeed, since standard dynamic programming techniques are designed
for min or max (and not max-min) problems, we recast the problem in a standard form.

Consider a new optimization problem, similar to the previous one except for the
objective function, which becomes Hµ(α) instead of Gµ:

Hµ(α) = αG(1)
µ + (1− α)G(2)

µ , (4.2.9)

where α ∈ [0, 1] is a constant. Note that the new problem

µ⋆(α) = arg max
µ

Hµ(α) (4.2.10)

is expressed in a max form, and thus is easier to solve. If α = 1 [α = 0], then we are
maximizing the performance of device D(1) [D(2)] only and neglecting the other device.

Let µ⋆(α) be the policy which maximizes Hµ(α) for a given α. Since µ⋆(α) depends
upon α, also G(1)

µ
⋆(α) and G

(2)
µ

⋆(α) implicitly depend upon α. It is straightforward to show
that G(1)

µ
⋆(α) [G(2)

µ
⋆(α)] increases [decreases] as α increases. We now want to find the value ᾱ

such that the new problem coincides with the original one. Consider the following intuitive
result.
Lemma 4.2.1. The optimal solution of Problem (4.2.8) allocates the same throughput to
both users.

Therefore, we impose Lemma 4.2.1 as a design constraint for the new problem and
name ᾱ the value of α at which such condition is satisfied, i.e., G(1)

µ
⋆(ᾱ) = G

(2)
µ

⋆(ᾱ). Under
this condition, we have

Hµ
⋆(ᾱ)(ᾱ) = G

(1)
µ

⋆(ᾱ) = G
(2)
µ

⋆(ᾱ). (4.2.11)

As a consequence, at α = ᾱ, we obtain µ⋆ ≡ µ⋆(ᾱ), i.e., OP (solution of (4.2.8))
coincides with the new policy µ⋆(ᾱ) which maximizes Hµ(ᾱ). This procedure simplifies
the numerical optimization because µ⋆(ᾱ) can be found exploiting standard stochastic
optimization algorithms, e.g., the Value Iteration Algorithm (VIA), or the Policy Iteration
Algorithm (PIA) (see Section 2.2.2).

Practically, the value ᾱ which satisfies (4.2.11) can be found with a bisection search
as follows. First, arbitrarily fix α ∈ [0, 1] and maximize Hµ(α) with VIA or PIA. Using
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the optimal solution, compute G(1)
µ

⋆(α) and G
(2)
µ

⋆(α). If G(1)
µ

⋆(α) is greater [less] than G
(2)
µ

⋆(α),
then decrease [increase] α and repeat the procedure. The algorithm is repeated until
the throughputs of the two nodes are within ϵ of each other, with ϵ a sufficiently small
constant. In the next, we will (equivalently) deal with Hµ(α) instead of Gµ.
4.2.3.2 Bellman’s Equation Structure
The most suitable algorithms to solve our problem are VIA or PIA. In the next we describe
the policy improvement step which is one of the basic operations of both algorithms (see [14,
Sec. 7.4, Vol. 1]).

We define the cost-to-go function associated to state s as Js. The policy improvement
step exploits Bellman’s equation as follows

Js ← max
a∈As

{
rα(τ ,P→rx|h) +

∑
s′

P(s′|s, a)Js′

}
, (4.2.12)

rα(τ ,P→rx|h) , α τ (1)r(P (1)→rx, h(1)) + (1− α)τ (2)r(P (2)→rx, h(2)). (4.2.13)

The probability of going from state s to state s′ given the action a can be expressed as

P(s′|s, a) (a)= P(b′,g′,h′|b,g,h, a) (4.2.14a)
(b)= P(b′,g′,h′|b,g, a) (4.2.14b)
(c)= f(g′,h′)P(b′|b,g, a) (4.2.14c)
(d)= f(g′,h′)P(b(1)′

|b(1), g(1), a)P(b(2)′
|b(2), g(2), a), (4.2.14d)

where f(g,h) is the probability mass function of the channel state (note that the ran-
domness is given by the fading components θ(i) and κ(i) only). (a) holds by definition.
(b) holds because the uplink channel does not influence the battery evolution (given the
action). (c) holds because the channel is independent and indentically distributed (i.i.d.)
over time and independent of other quantities. The last step holds because the states of
the batteries evolve independently in the two devices, given a fixed action. Exploiting
Equation (4.2.4) and the MDP formulation, the transition probabilities can be expressed
as follows. If b(i)′

< b(i)
max,

P(b(i)′
|b(i), g(i), a) = χ

{[
b(i) −

⌈(
ζ(i) + τ (i)P (i)→rx

) b(i)
max

B(i)
max

⌉
− q(i)

d

]+
(4.2.15)

+
⌊
τ rxP rx→(i)ηECLg

(i) b
(i)
max

B(i)
max

⌋
= b(i)′

}
, (4.2.16)

otherwise

P(b(i)
max|b(i), g(i), a) = χ

{[
b(i) −

⌈(
ζ(i) + τ (i)P (i)→rx

) b(i)
max

B(i)
max

⌉
− q(i)

d

]+
(4.2.17)

+
⌊
τ rxP rx→(i)ηECLg

(i) b
(i)
max

B(i)
max

⌋
≥ b(i)

max

}
. (4.2.18)
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χ{·} is the indicator function and the floor is used to discretize the energy and use the
MDP approach. Equations (4.2.15)-(4.2.18) indicate that the battery transitions follow
a deterministic scheme (given the action and the state of the system). Intuitively, this
happens because the randomness of the channel fading is already included in g(i). Therefore,
(4.2.12) can be reformulated as follows

Js ← max
a∈As

 rα(τ ,P→rx|h) +
∑
g

′
,h

′
f(g′,h′)J(b′

,g
′
,h

′)

, (4.2.19)

with b′ defined according to Equation (4.2.15)-(4.2.18). Note that, with this observation,
we can avoid to iterate over b′, saving computation time.

Another interesting point is that b′ does not depend upon the particular values of τ
and P→rx but only upon their products τ (1)P (1)→rx and τ (2)P (2)→rx because of the structure
of q(i). We will use this property in the next section.
4.2.3.3 Variables Reduction
VIA or PIA requires to focus on the maximization of Equation (4.2.19) only, which can be
formally written as (in this section we always refer to a fixed state s = (b,g,h))

max
τ ,τ

rx
,P→rx

,Prx→

{
rα(τ ,P→rx|h) + ∆(τ ◦P→rx, τ rx,Prx→|g)

}
, (4.2.20a)

s.t.:
ζ(i) + τ (i)P (i)→rx ≤ B(i), i ∈ {1, 2}, (4.2.20b)
τ (1) + τ (2) + τ rx ≤ T, (4.2.20c)
P rx→(1) + P rx→(2) ≤ P rx

max, (4.2.20d)
τ ≽ 0, τ rx ≥ 0, P→rx

min ≼ P→rx ≼ P→rx
max , Prx→ ≽ 0. (4.2.20e)

Constraints (4.2.20b)-(4.2.20e) represent the set As.15 ≽ and ≼ are the component-
wise inequalities. ∆(τ ◦ P→rx, τ rx,Prx→|g) is a quantity that, as the second term in
Equation (4.2.19), does not depend upon the individual values of τ and P→rx but only on
their products (◦ denotes the Hadamard, i.e., entry-wise, product). This happens because
the battery update formulas consider only the overall energy consumption of a device in a
slot, that depends on the transmission duration τ (i) multiplied by the transmission power
P (i)→rx (see Equations (4.2.15) and (4.2.18)). Without deriving particular properties of
Js, the classic procedure to solve (4.2.20) is to perform an exhaustive search over all the
seven optimization variables. However, this computation may be too demanding16 and
simpler optimization techniques are desirable. In particular, in this section we propose a
method to simplify the optimization.

First, it can be shown that choosing P rx→(1) + P rx→(2) = P rx
max is optimal (otherwise

the available resources would be underused). Similarly, using τ rx < T − τ (1) − τ (2) is
suboptimal. Therefore, without loss of optimality, we can choose P rx→(2) = P rx

max −P rx→(1)

and τ (2) = T − τ rx − τ (1) and avoid to iterate over P rx→(2) and τ (2). Now, fix the products
15Technically, we should also consider the cases in which P (1)→rx = 0 and/or P (2)→rx = 0. However,

these are trivial cases that can be easily analyzed separately.
16Note that Problem (4.2.20) must be solved for every combination of b, g, h and for every step of PIA.
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τ ◦P→rx = Q− ζ, where Q(i) represents the energy consumed by device D(i). In order to
solve Problem (4.2.20), we consider the vector Q instead of τ and P→rx.

Given P rx→(1), τ rx, Q, the particular values for the duration and the transmission
power are extracted by solving the following sub-problem

max
τ ,P→rx

{
rα(τ ,P→rx|h) + ∆(Q− ζ, τ rx,Prx→|g)

}
, (4.2.21a)

s.t.:
τ ◦P→rx = Q− ζ, (4.2.21b)
τ (1) + τ (2) = T − τ rx, (4.2.21c)
τ ≽ 0, P→rx

min ≼ P→rx ≼ P→rx
max , (4.2.21d)

where ∆(Q − ζ, τ rx,Prx→|g) is a constant term that can be removed from the “max”
argument. Problem (4.2.21) can be rewritten as a function of τ (1) only:

max
τ

(1)

{
α τ (1)r

(
Q(1) − ζ(1)

τ (1) , h(1)
)

+ (1− α)(T − τ rx − τ (1))r
(

Q(2) − ζ(2)

T − τ rx − τ (1) , h
(2)
)}

,

(4.2.22a)
s.t.:

τ (1) ≥ τ
(1)
min , max

{
Q(1) − ζ(1)

P (1)→rx
max

, T − τ rx − Q(2) − ζ(2)

P
(2)→rx
min

}
, (4.2.22b)

τ (1) ≤ τ (1)
max , min

{
Q(1) − ζ(1)

P
(1)→rx
min

, T − τ rx − Q(2) − ζ(2)

P (2)→rx
max

}
, (4.2.22c)

(4.2.22) is a one-dimensional maximization problem which (except in the trivial cases,
e.g., Q(1) = 0 or Q(2) = 0 or no feasible solutions) can be easily solved by taking the
derivative of the reward function, given by the following expression

α

(
log

(
1 + h(1)

σ2
0

Q(1) − ζ(1)

τ (1)

)
− (Q(1) − ζ(1))h(1)

τ (1)σ2
0 + (Q(1) − ζ(1))h(1)

)

+ (1− α)
(

(Q(2) − ζ(2))h(2)

(T − τ rx − τ (1))σ2
0 + (Q(2) − ζ(2))h(2) − log

(
1 + h(2)

σ2
0

(Q(2) − ζ(2))
T − τ rx − τ (1)

))
,

(4.2.23)

and setting it to zero. It can be shown that the previous expression has a unique zero
in (0, T − τ rx) that corresponds to the optimal value τ (1)

n.c. of Problem (4.2.22) without
constraints. The optimal solution of (4.2.22), namely τ (1)⋆, can be found as

τ (1)⋆ = max{min{τ (1)
n.c., τ

(1)
max}, τ

(1)
min}. (4.2.24)

Given τ rx, Q and τ (1)⋆, the values of τ (2)⋆, P (1)→rx⋆ and P (2)→rx⋆ can be derived
from (4.2.21b)-(4.2.21c).

In summary, instead of performing an exhaustive search over seven variables, we just
iterate over τ rx, P rx→(1) and Q, and recover the other parameters by solving (4.2.21) and
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choosing P rx→(2) = P rx
max − P rx→(1), τ (2) = T − τ rx − τ (1). We also remark that Q(1), Q(2)

must satisfy q(i) , Q(i)b(i)
max/B

(i)
max ∈ {0, . . . , b(i)

max}.
4.2.3.4 Low-SNR Regime
An interesting and practical case in which more analytical results can be developed
and explained is the low-SNR regime. In this section we provide additional details
for such a case. We assume h(1)P (1)→rx/σ2

0 ≪ 1 and h(2)P (2)→rx/σ2
0 ≪ 1 (low-SNR

assumption), therefore r(P (i)→rx, h(i)) ≈ h(i)P (i)→rx/σ2
0. In this case, rα(τ ,P→rx|h) reduces

to α(Q(1)− ζ(1))h(1)/σ2
0 + (1−α)(Q(2)− ζ(2))h(2)/σ2

0, i.e., it depends only upon the product
τ ◦P→rx = Q− ζ. Therefore, the best choice becomes to use the maximum transmission
power P (i)→rx

max and the minimum transmission duration (Q(i)− ζ(i))/P (i)→rx
max at both devices.

In this way, the system achieves the same reward per slot and maximizes the downlink
phase, thus more energy is harvested and stored. As a consequence, once Q is specified,
the downlink duration τ rx is uniquely determined as τ rx = T − (Q(1) − ζ(1))/P (1)→rx

max −
(Q(2) − ζ(2))/P (2)→rx

max .
4.2.3.5 Reducing State Space Complexity
In a general step of PIA or VIA, given the current policy, the corresponding cost-to-go
function Js has to be computed (policy evaluation step [14, Sec. 7.4, Vol. 1]). This process
is challenging when the state space is large.

So far, the state of the system is the tuple s = (b,g,h). However, since g and h evolve
independently over time, the state space can be reduced to s = b only, as follows. Define
a new cost-to-go function

Kb ,
∑
g,h

f(g,h)J(b,g,h). (4.2.25)

Kb substitutes J(b,g,h) in the original problem. Indeed, we can rewrite the policy improve-
ment step as

Kb ←
∑
g,h

f(g,h) max
a∈A(b,g,h)

{
rα(τ ,P→rx|h)+

∑
s′

P(s′|s, a)Js′

}
(4.2.26a)

=
∑
g,h

f(g,h) max
a∈A(b,g,h)

{rα(τ ,P→rx|h) +Kb′} , (4.2.26b)

where b′ is defined according to Equations (4.2.15)-(4.2.18).
This procedure further simplifies the numerical computation without loss of optimality

because 1) it reduces the complexity of the policy evaluation step (there is a lower number
of states) and 2) it reduces the number of elementary operations inside the “max” operation
in the policy improvement step.

4.2.4 Approximate Scheme
Finding the optimal policy is practically feasible only for a relatively small number of
discrete values, which however corresponds to a rough quantization. Therefore, in this
section we propose a method which is based on the characteristics of the original solution
but is faster to compute and achieves approximately the same performance of OP. This
is particularly useful to characterize the system performance and identify the system
trade-offs.
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|B̄[ℓ]| = 4 |B̄[ℓ]| = 14 |B̄[ℓ]| = 100

Figure 4.13. Different sets B̄[ℓ] when b(1)
max = b(2)

max = 9. Rows and columns correspond to
b(1) and b(2), respectively.

Even with the simplifications introduced in Section 4.2.3, the main challenge is to
perform the policy improvement step, i.e., solving Equation (4.2.26) for all system states.
To manage this problem, several different approximate techniques have been proposed in
the literature so far. An interesting idea is to approximate the function Kb with another
one that is simpler to compute. We follow this approach in the remainder of this section,
and derive an Approximate Value Iteration Algorithm (App-VIA) (see [15, Sec. 6.5]).
4.2.4.1 Approximate Value Iteration Algorithm
In the classic VIA, the optimal policy is derived by iteratively solving Equation (4.2.26)
until the cost-to-go function converges. In the approximate approach, we modify every
iteration of VIA according to the following two steps:

1. compute K [ℓ]
b for every b ∈ B̄[ℓ] performing the policy improvement step (Equa-

tion (4.2.26)), with B̄[ℓ] ⊆ B = {0, . . . , b(1)
max} × {0, . . . , b(2)

max}. The superscript [ℓ]
denotes the ℓ-th iteration of VIA and B is the set of all battery levels;

2. interpolate K [ℓ]
b for every b ∈ B\B̄[ℓ] using the values of K [ℓ]

b computed in the previous
step.

The advantage is that the policy improvement is performed only for a subset B̄[ℓ] rather
than for every battery level in B. See Figure 4.13 for a graphical interpretation. A black
circle means that b ∈ B̄[ℓ]. In the last case, all the battery levels are in B̄[ℓ], i.e., B̄[ℓ] = B.
In general, B̄[ℓ] can dynamically change at every step of the algorithm in a deterministic or
stochastic manner. We further discuss our approach in the numerical evaluation section.

We now discuss in more detail the two previous points. The policy improvement step
becomes, for every b ∈ B̄[ℓ+1],

K̂
[ℓ+1]
b =

∑
g,h

f(g,h) max
a∈A(b,g,h)

{
rα(τ ,P→rx|h) + K̃

[ℓ]
b′

}
, (4.2.27)

where b′ is defined according to Equations (4.2.15)-(4.2.18). K̂ [ℓ+1]
b represents the approx-

imate value function at step ℓ+ 1 and is defined only in subset B̄[ℓ+1], whereas K̃ [ℓ]
b is such

that

K̃
[ℓ]
b = K̂

[ℓ]
b , if b ∈ B̄[ℓ]. (4.2.28)
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In the second phase of the algorithm, for all b ̸∈ B̄[ℓ], K̃ [ℓ]
b is derived exploiting (4.2.28)

with an interpolation process or using a mean square error approximation. In practice,
K̃

[ℓ]
b is designed in order to approximate the true function K

[ℓ]
b . We remark that K̂ [ℓ+1]

b is
defined only in B̄[ℓ], whereas K̃ [ℓ+1]

b is defined for every b ∈ B.
4.2.4.2 Properties

In the following we show that, provided that the approximation K̃
[ℓ]
b is sufficiently good,

the long-term reward of App-VIA is a good approximation of VIA.
First, we introduce the notation T(·) as follows. Define the two sets K[ℓ] , {K [ℓ]

b , ∀b ∈
B} and K̃[ℓ] , {K̃ [ℓ]

b , ∀b ∈ B}. Then, Equations (4.2.26) and (4.2.27) can be written as

K
[ℓ+1]
b = T

(
K[ℓ],b

)
, ∀b ∈ B, (4.2.29)

K̂
[ℓ+1]
b = T

(
K̃[ℓ],b

)
, ∀b ∈ B̄[ℓ+1], (4.2.30)

respectively. Also, assume that the initial configurations are equal, i.e., K[0] = K̃[0]. Note
that K [ℓ+1]

b is evaluated for every b, whereas we compute K̂ [ℓ+1]
b only in subset B̄[ℓ+1].

Proposition 4.2.2. After I iterations, the cost-to-go functions of App-VIA and VIA
differ by at most Iϵ, i.e.,17

∥K[I]︸ ︷︷ ︸
VIA

− K̃[I]︸ ︷︷ ︸
App−VIA

∥∞ ≤ Iϵ, (4.2.31)

with

ϵ , max
ℓ=0,...,I−1

max
b∈B

∣∣∣K̃ [ℓ+1]
b −T

(
K̃[ℓ],b

)∣∣∣ . (4.2.32)

Proof. See Appendix 4.B. �

We first remark that, because of Definition (4.2.32), Proposition 4.2.2 describes a worst
case analysis. I corresponds to the number of iterations of VIA and, in our problem, it
can be numerically verified that I is typically small, e.g., I ≈ 10. The previous proposition
provides a bound to the algorithm’s performance. When the approximation of K [ℓ+1]

b is
sufficiently good, since I is small, the proposed approach closely approximates the optimal
case.

In Figure 4.14 we show the performance of this approximate approach as we increase
|B̄[ℓ]|. When |B̄[ℓ]| = |B|, we obtain the optimal scheme. It is interesting to note that using
only few states already leads to close to optimal performance, thus it is not necessary to
use very large |B̄[ℓ]| to obtain a good approximation.

4.2.5 Extensions
The model we present in this section is quite general and can be adapted to different EH
scenarios by changing the energy arrival and consumption models, the fading statistics,
as well as the battery sizes and energy losses. Also, it is easy to include in the model
other sources of inefficiencies (see Section 5.1) by changing the energy evolution model of
Equation (4.2.5).

17We adopt the notation ∥K[I] − K̃
[I]∥∞ , maxb∈B |K

[I]
b − K̃

[I]
b |.
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Figure 4.14. Accuracy of the approximate approach as a function of |B̄[ℓ]|.

An important extension of the model is the study of a system with a generic number
of users > 2. The centralized model we have presented can be straightforwardly extended
to such a case, but finding the optimal policy would also incur high computational
complexity.18 It can be shown that PIA or VIA can be performed with complexity
O(|B|2|S|) = O((b(1)

maxb
(2)
max)3 × n(1)

ch n
(2)
ch ), as for every state of the system s ∈ S, we need

to find the optimal strategy, which is O(b(1)
maxb

(2)
max), to reach every other battery level.19

Thus, when additional states are considered, the state dimension, and thus the complexity,
grow significantly. Instead, the heuristic approach of Section 4.2.4 can be computed in
O(|B̄[ℓ]|2 × b(1)

maxb
(2)
max × n

(1)
ch n

(2)
ch ). Since |B̄[ℓ]| ≪ |B| by construction, the heuristic scheme

may be extended more easily to the case with more than two users. However, for a system
with an arbitrarily large number of users, tracking the battery evolution of all users in a
centralized fashion is a computationally demanding task, thus simpler or decentralized
techniques should be considered. Two interesting approaches to extend our model are
presented in [94], in which a game theoretic formulation is adopted, or [52], where a DEC-
MDP framework is presented. Part of our future work agenda includes the investigation
of these schemes for WPCNs.

4.2.6 Harvest-then-Transmit
In the literature on WPCN, the main focus so far has been on the optimization in a single
time slot, which we briefly report in this section for the sake of completeness. In particular,
we consider the “harvest-then-transmit” scheme, in which all the energy harvested in a
slot is immediately used for transmission.

If E(1),RF and E(2),RF joule of energy are transferred at the beginning of the slot, in
the uplink transmission phase D(i) is subject to the following constraint (for the sake of
continuity with the previous sections, we also consider a limited battery)

P rx→(i) ≤ min{E(i),RF, B(i)
max}, (4.2.33)

i.e., it cannot consume more energy than what it received in the same slot nor can it
exceed the maximum battery size. Note that P rx→(i) accounts for both the circuitry and
transmission energy. The optimization variable is a tuple of 7 elements. Formally, the
optimization problem is (as in Section 4.2.3, we solve separately the trivial cases in which

18It is always possible to decrease the computational burden by focusing on simpler policies, which
however do not necessarily achieve the maximum fair-throughput.

19We recall that |B| = (b(1)
max + 1) × (b(2)

max + 1) and |S| = |B| × n(1)
ch n

(2)
ch , where we define ni,ch as the

number of possible channel realizations for device i.
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at least one device is unused):

max
τ ,τ

rx
,P→rx

,Prx→
min{τ (1)r(P (1)→rx, h(1)), τ (2)r(P (2)→rx, h(2))}, (4.2.34a)

s.t.:
τ (1) + τ (2) + τ rx ≤ T, (4.2.34b)
P rx→(1) + P rx→(2) ≤ P rx

max, (4.2.34c)
ζ + τ ◦P→rx ≼ τ rx ηECL Prx→ ◦ g, (4.2.34d)
ζ + τ ◦P→rx ≼ Bmax, (4.2.34e)
τ ≽ 0, τ rx ≥ 0, P→rx

min ≼ P→rx ≼ P→rx
max , Prx→ ≽ 0 (4.2.34f)

The solution of (4.2.34) is given in Proposition 4.2.3. Constraints (4.2.34e)-(4.2.34f)
identify the feasible region.

Proposition 4.2.3. The optimal P→rx (solution of Problem (4.2.34)) can be derived
as follows (the other parameters are obtained according to Equations (4.C.3)-(4.C.5) in
Appendix 4.C).

• Name P (i)→rx
0 the solution of

ηECLg
(i)P rx

max + P (i)→rx =
(
σ2

0

h(i) + P (i)→rx
)

log
(

1 + h(i)

σ2
0
P (i)→rx

)
. (4.2.35)

If P→rx
0 and the corresponding τ 0, Q0, τ rx

0 lie in the feasible region, then P→rx⋆ =
P→rx

0 ;

• otherwise the optimal solution lies on the boundary of the feasible region of (4.C.2),
as described in the proof.

Proof. See Appendix 4.C. �

Exploiting the results of the previous proposition, we can derive the optimal reward
achieved in a single slot. By averaging over the channel gains, we obtain the corresponding
long-term throughput

Gω ,
∑
g,h

f(g,h) τ (i)⋆
r(P (i)→rx⋆

, h(i)), i = 1, 2, (4.2.36)

where ω is the slot-oriented policy which solves (4.2.34). In the numerical evaluation we
will compare Gω and Gµ

⋆ . Note that, differently from µ⋆, the slot-oriented strategy is
much simpler to compute but provides a lower reward, as expected.
4.2.6.1 Low-SNR Regime

In this section we provide additional details for the low-SNR regime in the case P→rx⋆ =
P→rx

0 . Equation (4.2.35) can be solved in closed form as

P (i)→rx⋆ =

√√√√ηECLg
(i)P rx

maxσ
2
0

h(i) . (4.2.37)
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Note that the optimal transmission power of device i depends upon its own parameters
only. If the downlink channel gain increases, more energy is harvested, therefore a higher
transmission power can be used. Note that the better the uplink channel gain h(i), the lower
the transmission power. The corresponding P rx→(i)⋆ can be derived using Equation (4.C.5)
(for simplicity, we neglect the circuitry costs)

P rx→(1)⋆ = g(2)h(2)P rx
max

g(1)h(1) + g(2)h(2) , P rx→(2)⋆ = g(1)h(1)P rx
max

g(1)h(1) + g(2)h(2) . (4.2.38)

In order to balance the system performance, P rx→(i)⋆ decreases if g(i) or h(i) increases. In
this case, it is better to allocate less resources to the node with a better channel and direct
more energy to the other node.

A closed form expression for the reward in a single slot can be obtained. Starting from
the equations of τ ⋆, P→rx⋆ and Prx→⋆, we have

τ (1)⋆
r(P (1)→rx⋆

, h(1)) = τ (2)⋆
r(P (2)→rx⋆

, h(2)) (4.2.39)

=
ηECLg

(1)g(2)h(1)h(2)

σ2
0

P rx
maxT

g(2)h(2)
(√

ηECLg
(1)h(1)P rx

max
σ2

0
+ 1

)
+ g(1)h(1)

(√
ηECLg

(2)h(2)P rx
max

σ2
0

+ 1
) ,

which represents the highest reward that can be achieved in a single slot. The long-term
reward can be obtained combining the previous expression with Equation (4.2.36), which
can be easily solved numerically.

4.2.7 Numerical Results
We study how the achievable rate changes as a function of the system parameters in
different scenarios. As in [58, 80], we assume channel reciprocity for uplink and downlink,
thus g(i) = h(i) in every slot (however, we remark that our model is general and can be
easily adapted to other cases). We consider an exponential random variable with unit
mean for θ(i) (Rayleigh fading) to model non line-of-sight links or Nakagami fading with
parameter 5 when a strong line-of-sight component is present. We explicitly consider
energy conversion losses by setting ηECL = 0.8. If not otherwise stated, we use the
following parameters h

(1)
0 = h

(2)
0 = 1.25 × 10−3, γ(1) = γ(2) = 2 (path loss exponents),

σ2
0 = −155 dBm/Hz (noise power), a bandwidth of 1 MHz, P rx

max = 3 W (maximum
transfer power), P (1)→rx

min = P
(2)→rx
min = 1 mW and P (1)→rx

max = P (2)→rx
max = 10 mW. Without

loss of generality, we assume a unit slot length T . The battery sizes are important
parameters which influence the performance of the system. In particular, since with large
batteries the throughput of the system saturates, we choose to focus on the case of small
batteries [Infinite Power Solutions]. Also, the relation between batteries and slot length
should be taken into account. We express all the energy quantities as a function of the
reference value B0 = T × 10−3 J. We also assume equal batteries Bmax , B(1)

max = B(2)
max.

In Figure 4.15 we depict the slot division (obtained by averaging all the quantities with
the steady-state probabilities) with and without throughput fairness when d(1) = 1 m and
d(2) = 3 or 5 m. The first figure is obtained by setting α = 0.5, i.e., the objective function
is the unweighted sum of the rewards of the two devices. Since D(1) is closer to RX and
experiences, on average, a better channel, it spends more time transmitting. Moreover,



98 Wireless Energy Transfer

0 0.2 0.4 0.6 0.8 1
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

1.35

1.5

T
ra
n
sm

is
si
on

p
ow

er
s
[m

W
]

d
(2) = 3, α = 0.5

0 0.2 0.4 0.6 0.8 1

d
(2) = 3, α = ᾱ
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Figure 4.15. Average transmission powers P (1)→rx, P (2)→rx, transfer powers P rx→(1)/P rx
max,

P rx→(2)/P rx
max and duration τ (1), τ (2), τ rx with (α = ᾱ) and without (α = 0.5) throughput

balancing when d(1) = 1 m, d(2) = 3 or 5 m and Bmax = 0.25B0.

even if P rx→(1) < P rx→(2), D(1) harvests much more energy than D(2) on average. While
this scheme achieves the maximum system sum-throughput, it does not ensure fairness.
In particular, the throughput of D(1) is 1.76 Mbps, whereas the throughput of D(2) turns
out to be only 0.68 Mbps. It is also worth noting that, thanks to the convexity of (4.2.2),
D(2) does contribute to the global performance, and a lot of resources are used to feed it
(P rx→(2) ≫ P rx→(1)). P rx→(1) is smaller than P rx→(2) because the downlink channel of D(1)

is better and thus the first device harvests much more energy. When d(2) increases as in
the third plot of Figure 4.15, the transmission duration of D(2) and its harvested energy
become much lower. In this case, D(2) is so far from RX with respect to D(1) that it is
not worth using a lot of resources to increase its throughput. Instead, the second plot of
Figure 4.15 is obtained at the end of the algorithm described in Section 4.2.3.1, i.e., for α
equal to ᾱ = 0.91. With this policy, fairness is achieved and the throughput of the two
devices G(1)

µ
⋆ = G

(2)
µ

⋆ is 0.94 Mbps (which, as expected, leads to a smaller sum-throughput
than in the unbalanced case). Note that to achieve this situation and to compensate the
doubly near-far effect, D(2) must receive much more energy and transmit with much more
power than D(1). This phenomenon is emphasized in the last plot, in which 90% of the
transmission power is devoted to D(2).

We remark that we used a discrete model to approximate the continuous nature of the
energy stored in the batteries (see Section 4.2.2.3), thus b(1)

max and b(2)
max play a key role in

the computation of µ⋆. In particular, for larger batteries higher b(1)
max and b(2)

max are required,
incurring additional numerical complexity, whereas for small batteries the quantization can
be coarser. Nevertheless, even with small batteries, computing the optimal policy µ⋆ with
PIA or VIA is a computationally intensive task. Therefore, in the following we present
our results using the approximate App-VIA scheme introduced in Section 4.2.4. To justify
the goodness of our approximation, focus on Figure 4.16, where we depict the throughput
as a function of the distance d(1) for several different battery sizes. It can be seen that
App-VIA closely approaches the optimal schemes, especially if the battery sizes are small.



4.2 Wireless Powered Communication Networks 99

1 1.5 2 2.5 3 3.5 4 4.5 5

Distance of D(1) from RX, d(1) [m]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L
on

g-
te
rm

th
ro
u
gh

p
u
t
[M

b
p
s]

Bmax = 0.5B0

Bmax = 0.3B0

Bmax = 0.25B0

Bmax = 0.2B0

µ
⋆ App-VIA

µ
⋆ PIA/VIA

ω

Battery size:

Policy:

Figure 4.16. Long-term reward of µ⋆ evaluated with PIA/VIA and App-VIA and of ω as
a function of d(1) when d(2) = 3 m and with Rayleigh fading.
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[0]
b (left) and its approximation K̃
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In our numerical evaluation we derived B̄[ℓ] as shown in Figure 4.17 (see the black circles).
The left figure represents the optimal cost-to-go function K

[0]
b , i.e., Problem (4.2.26) has

been solved for every pair (b(1), b(2)), whereas the right plot represents its approximation
K̃

(0)
b defined in Section 4.2.4. K̃(0)

b is obtained with a linear interpolator.
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fading when d(2) = 3 m and Bmax = 0.30B0.

Figure 4.18 represents the throughput region of D(1) and D(2), obtained changing α in
[0, 1]. Blue circles represent the fair-throughput optimal points, whereas the red crosses are
the sum-throughput optimal points. They coincide only in the symmetric cases d(1) = d(2).
Otherwise, to balance the system performance, part of the throughput of one of the two
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devices has be to reduced. Abscissa [ordinate] points are obtained when α = 1 [α = 0],
i.e., D(2) [D(1)] is completely neglected. Similar curves are depicted in Figure 4.19, where
we compare Rayleigh and Nakagami fading. Even if on average the channel gains are
the same in the two scenarios, when a strong line-of-sight component is present (as in
Nakagami fading), better performance can be achieved because 1) it becomes easier to
predict the future energy arrivals and thus to correctly manage the available energy, and
2) the system approaches the deterministic energy arrivals case, which represents an upper
bound for energy harvesting scenarios (see Section 4.1).

We now describe how the throughput changes as a function of the distance of D(1) from
RX. Figures 4.20, 4.21 and 4.22 are obtained in the “high transmission power regime,”
i.e., P (1)→rx

min = P
(2)→rx
min = 1 mW and P (1)→rx

max = P (2)→rx
max = 10 mW, whereas Figure 4.23 is

determined in the “low transmission power regime,” i.e., with P (1)→rx
min = P

(2)→rx
min = 0.01 mW

and P (1)→rx
max = P (2)→rx

max = 0.5 mW. When d(2) is small (Figure 4.20), the difference between
the slot-oriented and the long-term approaches is smaller because a lot of energy is available
at the two devices, thus even an inefficient use of it leads to high performance. Instead, as
d(2) increases (see Figure 4.22), the difference between the two approaches is significant
and this supports the need for a long-term optimization approach. As expected, in all
cases the throughput decreases as d(1) increases. This is particularly emphasized when d(2)

is small because, since it is farther from RX, D(1) represents the performance bottleneck.
On the contrary, when d(2) = 5 m, D(2) is the bottleneck, thus the system performance
shows a weak dependence on the distance of D(1) from RX. The differences between high
and low transmission power regimes can be seen comparing Figures 4.21 and 4.23. It can
be seen that with lower transmission powers it is possible to achieve higher rewards.

Indeed, in the analyzed scenario the distances are small, thus the uplink SNR is high
even for low transmission powers. Therefore, because of the concavity of the reward
function in Equation (4.2.2), with lower transmission powers it may be possible to achieve
high throughput while consuming less energy, leading to an overall improvement of the
system performance.

In Figure 4.24 we plot the long-term reward of µ⋆ as a function of the battery size of
the first device. When Bmax is very small, the batteries represent the system bottleneck
because D(1) and/or D(2) are not able to store and use all the incoming energy. As the
battery sizes grow, the performance of the system saturates because the energy available
at the receiver P rx

max is limited. The throughput difference between low and high Bmax
is larger when d(1) is small because, when the battery of D(1) is small, the device is not
able to fully exploit its channel potential, which instead could be fully used with larger
batteries. Some artifacts can be noticed (e.g., at Bmax = 0.45B0 for the curve d(1) = 3 m)
because we are using App-VIA and not the real optimal policy, whose throughput strictly
increases with the battery sizes.

Finally, Figures 4.25 and 4.26 show how the performance of the system changes
when the circuitry costs and the battery depletion over time are taken into account. In
Figure 4.25, we imposed a fixed circuitry energy consumption when a transmission is
performed ζ , ζ(1) = ζ(2) = 0.125B0, and a fixed energy loss at the end of every slot
Qd , Q

(1)
d = Q

(2)
d = 0.025B0. When losses are taken into account, the system performance

may be greatly degraded, especially because of ζ. An interesting comparison is given by
policy ω and µ⋆ when Qd > 0. We remark that, in our model, policy ω does not suffer
from energy depletion since energy is used in the slot in which it has been harvested.
However, as can be seen in Figure 4.26, policy µ⋆ still achieves higher rewards than ω.
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Figure 4.20. Long-term reward of µ⋆ and ω as a function of d(1) with high transmission
powers when d(2) = 1 m.
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Figure 4.21. Long-term reward of µ⋆ and ω as a function of d(1) with high transmission
powers when d(2) = 3 m.
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Figure 4.22. Long-term reward of µ⋆ and ω as a function of d(1) with high transmission
powers when d(2) = 5 m.
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Figure 4.23. Long-term reward of µ⋆ and ω as a function of d(1) with low transmission
powers when d(2) = 3 m.

Even if Qd =∞ (i.e., all the remaining energy were lost at the end of the slot), looking
at the long term would still provide much better results. Indeed, there is a substantial
difference between the two approaches: while our scheme aims at achieving fairness in the
long run, the slot-oriented scheme achieves fairness in every slot, which may be strongly
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Figure 4.24. Long-term reward of µ⋆ as a function of Bmax when d(2) = 3 m.
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Figure 4.25. Long-term rewards G(1) and G(2) of µ⋆ with and without circuitry costs and
battery depletion when d(1) = d(2) = 3 m and Bmax = 0.4B0.

suboptimal. Instead, the circuitry costs have a much stronger impact on the performance
of the system and may push the throughput to zero if ζ is comparable with the battery
sizes.
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Figure 4.26. Long-term reward of µ⋆ and ω as a function of the circuitry costs ζ(i) and
depletion energy Q(i)

d when d(1) = d(2) = 3 m and Bmax = 0.4B0.

4.2.8 Conclusions of Section 4.2
In this section we studied the long-term throughput optimization in a wireless powered
communication network composed of a receiver and two distributed devices. The system
alternates a downlink phase, in which RX recharges the batteries of the nodes via an
RF-WET mechanism, and an uplink phase, in which both devices transmit data toward RX
in a TDMA fashion. We explained how to solve the long-term throughput maximization
problem optimally and approximately while explicitly considering the batteries evolution
and the channel state information. We simplified the optimization by exploiting the
structure of Bellman’s equation. Finally, we compared the long-term approach with the
slot-oriented one and noticed that, in terms of achievable performance, the traditional
schemes proposed in the literature are strongly suboptimal. The schemes proposed here
can be considered as an upper bound to the real performance of a network.

As part of our future work we would like to extend the model of the system in order
to consider partial CSI or storage losses, extend the long-term optimization to the case
with a generic number of nodes, and compare our results with those obtained using a
distributed approach.

Appendix 4.A Proof of Theorem 4.1.2
The energy harvesting mechanism imposes

lim inf
K→∞

1
K

K−1∑
k=0

Q(i)(Pk) ≤ Ē(i).
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Using Definitions (4.1.5)-(4.1.6) and the hypotheses, we have

Gµ = lim inf
K→∞

1
K

K−1∑
k=0

r(Pk)

= lim inf
K→∞

1
K

K−1∑
k=0

r(Ψi
−1

(Ψ(i)(Pk)))

≤ lim inf
K→∞

r

(
Ψi

−1
(

1
K

K−1∑
k=0

Ψ(i)(Pk)
))

≤r
(

Ψi
−1
(

lim inf
K→∞

1
K

K−1∑
k=0

Q(i)(Pk)
))
≤ r(Ψi

−1
(Ē(i))).

The relation holds for both TX and RX, thus, since we deal with increasing functions,
(4.1.8) is obtained. For the last point of the theorem we introduce the following proposition.

Proposition 4.A.1. If Ψ(i)(P ) does not exist, then the battery of device i is infinite.

Proof. We will equivalently show that if the battery size is finite, then Ψ(i)(·) always exists.
Since the battery is finite, the transmission power is bounded by Pmax < ∞. Function
Ψi(·) can be chosen as a linear function Ψ(i)(P ) = mP where m is a slope such that
mP ≤ Q(i)(P ), ∀P ∈ P. Thus, since Ψ(i)(·) is linear, also its inverse is linear. In this case
r(Ψi

−1
(·)) is concave because r(·) is concave, therefore Ψ(i)(·) can be correctly defined and

therefore always exists. �

Now, assume that both Ψtx(P ) and Ψrx(P ) do not exist. This implies that the battery
sizes are infinite and in this case r(Qi

−1
(P )) for large P increases faster than P (otherwise

Ψ(i)(P ) can be found). To show that the reward tends to infinity, consider the following
policy over a time horizon of K slots:

P0 = P1 = . . . = PK−2 = 0, PK−1 = Qi
−1
(

K−2∑
k=0

E
(i)
k

)
.

The corresponding reward is

GK
µ = 1

K
r

(
Qi

−1
(

K−2∑
k=0

E
(i)
k

))

and limK→∞ GK
µ =∞ because the argument of Qi

−1
(·) grows linearly in K.
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Appendix 4.B Proof of Proposition 4.2.2
The proof is by induction on I. If I = 0, Equation (4.2.31) holds because K[0] = K̃[0].
Then, assume that (4.2.31) holds for some I. The inductive step is as follows

∥K[I+1] − K̃[I+1]∥∞ = max
b∈B

∣∣∣K [I+1]
b − K̃ [I+1]

b

∣∣∣ (4.B.1a)

≤ max
b∈B

∣∣∣K [I+1]
b −T

(
K̃[I],b

)∣∣∣+ max
b∈B

∣∣∣T (
K̃[I],b

)
− K̃ [I+1]

b

∣∣∣ (4.B.1b)

≤ max
b∈B

∣∣∣K [I+1]
b −T

(
K̃[I],b

)∣∣∣+ ϵ (4.B.1c)

= max
b∈B

∣∣∣T (
K[I],b

)
−T

(
K̃[I],b

)∣∣∣+ ϵ (4.B.1d)

≤ max
b∈B

∣∣∣K [I]
b − K̃

[I]
b

∣∣∣+ ϵ (4.B.1e)

= ∥K[I] − K̃[I]∥∞ + ϵ ≤ Iϵ+ ϵ = [I + 1]ϵ. (4.B.1f)

(4.B.1a) holds by definition. (4.B.1b) exploits the triangular inequality. (4.B.1c) uses
the hypothesis of the proposition and in particular Definition (4.2.32). (4.B.1d) is by
definition of T. (4.B.1e) is formally proved in the next lemma. (4.B.1f) uses the inductive
hypothesis. Thus, the proof is concluded by showing the following lemma.

Lemma 4.B.1. Inequality (4.B.1d)-(4.B.1e) holds.

Proof. Using Definitions (4.2.29)-(4.2.30), we obtain

max
b∈B

∣∣∣T (
K[I],b

)
−T

(
K̃[I],b

)∣∣∣ (4.B.2)

= max
b∈B

∣∣∣∣∣∑
g,h

f(g,h)
(

max
a∈A(b,g,h)

{
rα(τ ,P→rx|h)+K [I]

b′

}
− max

a∈A(b,g,h)
{rα(τ ,P→rx|h)+K̃ [I]

b′ }
)∣∣∣∣∣,

(4.B.3)

where we recall that b′ is defined according to Equations (4.2.15)-(4.2.18). Using the
triangular inequality, we work as follows

(4.B.3) ≤max
b∈B

∣∣∣∣∣∑
g,h

f(g,h) max
a∈A(b,g,h)

{
rα(τ ,P→rx|h) +K

[I]
b′ − rα(τ ,P→rx|h)− K̃ [I]

b′

}∣∣∣∣∣
(4.B.4)

= max
b∈B

∣∣∣∣∣∑
g,h

f(g,h) max
a∈A(b,g,h)

{
K

[I]
b′ − K̃ [I]

b′

}∣∣∣∣∣. (4.B.5)

Since ∑g,h f(g,h) = 1, we can substitute the sum with a “max” to obtain the upper
bound:

(4.B.5) ≤ max
b∈B

max
g,h

max
a∈A(b,g,h)

∣∣∣∣K [I]
b′ − K̃ [I]

b′

∣∣∣∣, (4.B.6)

which is less than or equal to maxb∈B

∣∣∣K [I]
b − K̃

[I]
b

∣∣∣. �
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Appendix 4.C Proof of Proposition 4.2.3
First, similarly to Lemma 4.2.1, note that the optimal choice leads to τ (1)⋆

r(P (1)→rx⋆
, h(1)) =

τ (2)⋆
r(P (2)→rx⋆

, h(2)). Also, in order not to underuse the available resources, (4.2.34b)-
(4.2.34c) are satisfied with equality. Additionally, we have τ rx⋆ηECLP

rx→(i)⋆
g(i) ≤ B(i)

max,
otherwise the transferred energy would be wasted, which is suboptimal because the battery
could be equivalently filled by reducing τ rx and increasing τ (1) and/or τ (2) (thus leading to
a better solution). Based on this result, it also follows that Constraint (4.2.34d) is always
satisfied with equality, i.e., all the energy harvested in a slot is also consumed in the same
slot. The problem becomes (we define r(i) , r(P (i)→rx, h(i)) for notation simplicity)

max
τ ,τ

rx
,P→rx

,Prx→
τ (1)r(1) = max

τ ,τ
rx

,P→rx
,Prx→

τ (2)r(2), (4.C.1a)
s.t.:

τ (1) + τ (2) + τ rx = T, (4.C.1b)
P rx→(1) + P rx→(2) = P rx

max, (4.C.1c)
ζ + τ ◦P→rx = τ rxηECL Prx→ ◦ g, (4.C.1d)
τ (1)r(1) = τ (2)r(2), (4.C.1e)
ζ + τ ◦P→rx ≼ Bmax, (4.C.1f)
τ ≽ 0, τ rx ≥ 0, P→rx

min ≼ P→rx ≼ P→rx
max , Prx→ ≽ 0. (4.C.1g)

By solving the previous equalities, we can write all the variables as a function of P→rx

max
P→rx

τ (1)r(1) = max
P→rx

τ (2)r(2), (4.C.2a)
s.t.:

ζ + τ ◦P→rx ≼ Bmax, (4.C.2b)
τ ≽ 0, τ rx ≥ 0, P→rx

min ≼ P→rx ≼ P→rx
max , Prx→ ≽ 0, (4.C.2c)

where the other parameters are obtained as

τ rx = g
(1)(ζ(2)(r(1)+r

(2))+T r
(1)

P
(2)→rx)+g

(2)(ζ(1)(r(1)+r
(2))+T r

(2)
P

(1)→rx)
ηECLg

(1)
g

(2)
P

rx
max(r(1)+r

(2))+g
(1)

r
(1)

P
(2)→rx+g

(2)
r

(2)
P

(1)→rx , (4.C.3)

τ (1) = (T ηECLg
(1)

g
(2)

P
rx
max−ζ

(2)
g

(1)−ζ
(1)

g
(2))r(2)

ηECLg
(1)

g
(2)

P
rx
max(r(1)+r

(2))+g
(1)

r
(1)

P
(2)→rx+g

(2)
r

(2)
P

(1)→rx , (4.C.4)

P rx→(1) = P
rx
maxηECL(ζ(1)

g
(2)(r(1)+r

(2))+g
(2)

P
(1)→rx

r
(2)

T )+ζ
(1)

P
(2)

r
(1)−ζ

(2)
P

(1)
r

(2)

ηECL

(
g

(1)(ζ(2)(r(1)+r
(2))+T r

(1)
P

(2)→rx)+g
(2)(ζ(1)(r(1)+r

(2))+T r
(2)

P
(1)→rx)

) , (4.C.5)

and τ (2), P rx→(2) can be found by switching the subscripts 1 and 2. To solve the problem,
we can take the partial derivatives of τ (i)r(i) over P (1)→rx and P (2)→rx and set them to zero
(see Expression (4.2.35)). Using [58, Lemma 3.2] it can be shown that there exists a unique
pair of values (P (1)→rx

0 , P
(2)→rx
0 ) that solves (4.2.35), which then corresponds to the global

maximum of τ (i)r(i). Therefore, if P→rx
0 and the corresponding τ 0, Q0, τ rx

0 obtained with
Equations (4.C.3)-(4.C.5) satisfy Constraints (4.C.2b)-(4.C.2c), then P→rx

0 is the optimal
solution (unique maximum).

Otherwise, the optimal solution must fall on the boundary of the admissible region
(since there exists only one stationary point, starting from P→rx

0 , the reward function
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decreases in every direction). In this case, the bottleneck is given by the device which
violates some constraint. For example, if (4.C.2b) were violated for device i, then we
would impose ζ(i) + τ (i)P (i)→rx = B(i)

max, derive τ (i) as a function of P (i)→rx and solve

max
P (i)→rx ∈ [P (i)→rx

min , P (i)→rx
max ]

B(i)
max − ζ(i)

P (i)→rx r(i). (4.C.6)





CHAPTER 5

Peculiar Aspects of Energy Harvesting Systems

Traditional Energy Harvesting Devices (EHDs) have been widely studied in previous
works [150]. However, despite this trend, some practical aspects have not been properly
considered by the literature so far. In particular, the study of non-ideal devices has been
conducted only partially; moreover, security and privacy issues have been addressed mostly
by neglecting low-power design principles (except possibly for some attempts at limiting
the computation and processing costs and/or the number of messages needed to implement
a secure protocol). The goal of this chapter is to investigate how the performance and
behavior of the networks change when these aspects are taken into account.

Structure of the Chapter. The chapter is divided in two main sections which can
be read separately. We also refer the reader to Chapter 2 for more details about the system
models. Section 5.1 deals with the inefficiencies of energy harvesting devices. Indeed,
while in the literature the main focus is on EHDs with ideal batteries, in reality several
inefficiencies have to be considered to correctly design the operating regimes of an EHD.
In Section 5.1 we describe how the throughput optimization problem changes under real
battery constraints. In particular, we consider imperfect knowledge of the state of charge
of the battery and storage inefficiencies, i.e., part of the harvested energy is wasted in
the battery recharging process. We formulate the problem as a Markov Decision Process
(MDP), basing our model on some realistic observations about transmission, consumption
and harvesting power. We find the performance upper bound with a real battery and
numerically discuss the novelty introduced by the real battery effects. We show that using
the old policies obtained without considering the real battery effects is strongly suboptimal
and may even result in zero throughput.

In Section 5.2, we focus on the security aspects of a wireless communication link with
energy constraints from a secrecy rate point of view. The secrecy rate represents the
amount of information per unit time that can be securely sent on a communication link.
We investigate an energy harvesting communication system composed of a transmitter, a
receiver and a malicious eavesdropper. In particular, because of the energy constraints
and the channel conditions, it is important to understand when a device should transmit
and to optimize how much power should be used in order to improve security. Both full
knowledge and partial knowledge of the channel are considered under a Nakagami fading
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scenario. We show that high secrecy rates can be obtained only with power and coding rate
adaptation. Moreover, we highlight the importance of optimally dividing the transmission
power in the frequency domain, and note that the optimal scheme provides high gains
in secrecy rate over the uniform power splitting case. Analytically, we explain how to
find the optimal policy and prove some of its properties. In our numerical evaluation,
we discuss how the maximum achievable secrecy rate changes according to the various
system parameters. Furthermore, we discuss the effects of a finite battery on the system
performance and note that, in order to achieve high secrecy rates, it is not necessary to
use very large batteries.

5.1 Battery Imperfections in an Energy Harvesting
Device

5.1.1 Introduction
Several aspects in terms of inefficiencies are frequently neglected when designing the
optimal policy for energy harvesting devices, e.g., battery degradation [89] (although
ideally with Energy Harvesting (EH) the network may operate for an unlimited amount of
time, in practice the network lifetime is constrained by hardware failures, e.g., the batteries
have a limited number of charging/discharging cycles), energy leakage [34], imperfect
knowledge of the State of Charge (SoC) [90], storage losses [43, 149] or circuitry costs [103].
In reality, the battery of an EHD is affected by all these aspects and, in general, the
optimal policy obtained without considering them is not necessarily optimal.

Contributions. In this section we redefine the traditional optimization problem of an
EHD when the device 1) has only a limited knowledge of its SoC and 2) the battery has
storage inefficiencies (possibly dependent upon the current SoC). Even if in the literature
these problems were partially studied separately, the combination of the two represents
a more realistic case. Moreover, we find that the existing policies for the two separate
scenarios are not applicable to the combined case because they would provide very poor
performance. To model the system, we use an online approach (see Section 2.2) and
focus on the throughput optimization problem. In the definition of the system model
we take into account some realistic and practical considerations (for example, using the
energy consumption of a real device). We present two heuristic suboptimal policies and
discuss how they can be applied to our case. In our numerical evaluation we remark the
importance of computing a new optimal policy, explicitly designed for the imperfect SoC
case with a real battery.

Structure. The first part of this chapter is organized as follows. Section 5.1.2 defines
the system model. The optimization model, the performance upper bound and the
suboptimal policies are discussed in Section 5.1.3. Section 5.1.4 presents our numerical
results. Section 5.1.5 concludes the section.

References. This section is based on the conference papers [C4] and [C6].

5.1.2 System Model
We focus on a single EHD with energy losses in the battery storage process and imperfect
knowledge of its SoC.

Time is divided in slots where slot k corresponds to the time interval [kT, (k+ 1)T ). At
the beginning of every slot, EHD decides whether to stay idle or become active according
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to its SoC (see Section 2.1.1). In the idle phase, the energy consumption is assumed
negligible. In the active phase, a stream of bits is sent to the access point during the first
τ tx

k < T seconds of the slot. We consider a fixed transmission duration, therefore we have
τ tx , τ tx

k , ∀k. We assume that τ tx is much lower than T . This is a realistic assumption
that will be discussed in more detail in Section 5.1.2.3.1

5.1.2.1 State of Charge
The device has the capability of gathering energy from the environment and store it
in a finite battery. We model the energy quantities as in Section 2.2.1. In every time
slot, the energy stored in the battery is bk ∈ B , {0, . . . , bmax}. As in [90], we assume
that, in the general case, EHD cannot read all the values of B, but can only observe
the partition T̃ (with |T̃| subsets). For example, the node may only know if the energy
level is low or high (|T̃| = 2). In this case, we would have T̃ = {LOW,HIGH}, with
LOW , {0, . . . , ⌊bmax/2⌋} and HIGH , {⌊bmax/2⌋+ 1, . . . , bmax}. When the battery level
is b ∈ B, the node can observe only t̃ ∈ T̃, where t̃ is given by t̃ = ψ(b). In the previous
example, ψ(b) = LOW, ∀b ≤ ⌊bmax/2⌋ and ψ(b) = HIGH, ∀b ≥ ⌊bmax/2⌋+ 1.2

We focus on the case where T̃ is a partition of B, but future extensions may include
the scenario where different subsets of T̃ are partially overlapped. This may be useful to
study the cases where only a noisy observation of b is available.

Note that it is meaningful to consider the imperfect SoC case because, in reality, the
battery level cannot be known with absolute precision but can only be approximated
(this strongly depends upon the considered technology). Moreover, we will find that, even
restricting the study to the imperfect knowledge case, high performance can be achieved.
5.1.2.2 Harvested and Stored Energy
The energy arrivals are modeled as a i.i.d. discrete random process according to Sec-
tions 2.1.3 and 2.2.1. Thus, in slot k, eEEH

k (in this chapter we will write ek = eEEH
k for

ease of notation) energy quanta arrive at the device, according to some energy arrival
statistics with probability mass function (pmf) P(e), mean ē and maximum arrivals emax.
In an ideal battery (no losses), all the ek energy quanta can be stored in the battery, if this
is not fully charged. Instead, in this section we consider a real battery with losses in the
energy storage process. Different energy loss models exist, e.g., we can assume that only
a fixed fraction ηEnergy Storage Losses = ηESL of the incoming power can be stored [149], or,
more generally, that ηESL depends upon the current state of charge of the battery. This is
a realistic assumption, e.g., in a capacitor [43]. In this case, when the state of charge bk is
low or high, then only a small fraction of the incoming energy can be stored, whereas, if
bk ≈ bmax/2, then almost all the energy can be successfully stored. An example, that was
proposed in [43] as an approximation for the storage losses in a capacitor and will be used
in our numerical evaluations (however, our results are general and do not depend upon
the particular structure of ηESL(b)), is

ηESL(b) = 1− (b− bmax/2)2

φn.l.(bmax/2)2 , (5.1.1)

1It is also possible to extend the model to the case τ tx ≈ T by redefining the function yT of Equa-
tion (5.1.2).

2Note that the perfect SoC case is obtained when the partition T̃ has bmax + 1 subsets (one for every
energy state) and the function ψ(b) = {b}.
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Figure 5.1. Function ηESL(b) (Equation (5.1.1)) as a function of the normalized battery
level when bmax = 100 (however, the structure of ηESL(b) is only weakly dependent on
bmax).

where φn.l. > 1 is a constant which strictly depends upon the used technology. An example,
that we will use as a baseline in this thesis, is φn.l. = 1.05 (see [43]). In Figure 5.1 we
plot ηESL(e) as a function of the state of charge b ∈ B, normalized with respect to bmax.
Note that, as φn.l. increases, the storage losses decrease, until the asymptotic situation
φn.l. →∞ where we obtain an ideal battery with no losses.

Assume that a harvesting power ek/T is received (constant over a slot). In this case,
only a power ηESL(b)ek/T can be converted and stored in the battery. Note that, at
b = bmax/2 there are no energy losses, i.e., ηESL(b) = 1, whereas when b ∈ {0, bmax}, the
losses are highest, i.e., ηESL(b) = 1− 1/φn.l..

We now describe how to evaluate the evolution of the stored energy during a single
slot. Equation (5.1.1) is an instantaneous expression that has to be applied only to powers.
Assume that during a slot the harvested power is constant and equal to ek/T and the
battery is charged at bk. After t ≤ T seconds, the battery status will ideally be

yt = yt(ek, bk) = bk + 1
T

∫ t

0
ekηESL(yτ )dτ. (5.1.2)

At t = T we obtain the battery level after an entire slot, i.e., bk+1 = yT (ek, bk). Also,
since the battery energy levels are discretized (Section 2.2.1), we approximate yT (ek, bk)
with a Round(·) operation. In Equation (5.1.3) we will present the full expression of the
battery evolution by also considering other phenomena (overflow and transmission energy).

Note that the procedure to evaluate yT (ek, bk) does not depend upon the partic-
ular structure of ηESL(b). The only basic hypothesis that has to be made is that
Round(yT (emax, b)) ≥ 1 for every b (otherwise, there may exist a state where recharging
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the battery would not be possible). However, it is always possible to satisfy this hypothesis
by redefining the notion of energy quantum or the slot length.
5.1.2.3 Energy Consumption

In slot k, a power Pk ∈ P (e.g., P , {0, Pmin, . . . , Pmax}) is used for transmitting a new
stream of bits (we assume that in every slot there is always enough data to be transmitted).
Transmitting with a power P ≥ 0 provides a reward r(P ), where r(·) is the instantaneous
reward function, positive, concave, increasing in P and with r(0) = 0. A typical example
of r(P ), that we also use as a baseline in this section, is r(P ) = log(1 + hP ), where
h represents an SNR scaling factor [17, 93, 113, 132]. In this case, r(·) represents the
transmission rate.

In slot k, the device spends q(Pk) energy quanta to perform the transmission. In
order to consider the circuitry costs (e.g., due to inefficiencies and processing), in general
q(Pk)/τ tx > Pk (i.e., the consumed power is higher than the transmission power). An
example of power consumption and corresponding transmission power is given in Table 5.1.

Table 5.1. MSP430 SoC With RF Core [140].

Tx Power (Pk) Power Consumption (q(Pk)/τ tx)
315 MHz 433 MHz 868 MHz 915 MHz

14 mW 79.2 mW 100.2 mW 106.5 mW 104.4 mW
10 mW 75.6 mW 86.4 mW 99.0 mW 96.3 mW
1 mW 43.8 mW 50.4 mW 53.4 mW 52.8 mW

0.25 mW 44.1 mW 52.5 mW 53.4 mW 52.8 mW

The previous table refers to an MSP430 device from Texas Instruments, a microcon-
troller designed with low power consumption operations and with transmission/reception
capabilities. The “Tx Power” column represents, approximately, the power sent into the
channel. The other columns describe the overall power consumption in different frequency
bands. Note that, in general, Pk ≪ q(Pk)/τ tx, regardless of the operating frequency.
5.1.2.4 Battery Evolution
In order to understand how the battery evolves, we briefly discuss how a slot is structured.
During the first τ tx seconds, a stream of bits may be sent. We assume τ tx ≪ T (i.e., the
time required for a transmission is much smaller than the time required to obtain enough
energy quanta for a transmission). This can be seen by comparing the values of Table 5.1
and Table 1.1 (copied below for simplicity).

In Table 5.2 we report some common energy sources with the corresponding power
density levels. These values should be compared with the power consumption q(Pk)/τ tx

in Table 5.1. In general, except for the solar light in a sunny day, the harvested power
is several orders of magnitude smaller than the transmission power when small devices
are considered. Thus, to store enough energy to perform a transmission, a long time is
required.

If a device with much smaller power consumption and a rich energy harvesting source
were considered, then it might be possible to allow the device to directly send the harvested
energy instead of storing it. This is particularly useful in the cases of imperfect real batteries
in order to avoid the storage losses [149].
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Table 5.2. Energy Sources [120, 123, 127].

Energy Source Power Density

Solar outdoors - sunny day 15 mW/cm2

Piezoelectric 330 µW/cm3

Vibrations 200 µW/cm3

Solar outdoors - cloudy day 150 µW/cm2

Ambient Radio-Frequency (in London) 6.39 µW/cm2

Acoustic Noise (at 100 dB) 0.96 µW/cm3

Because of the presented situation, in our model we assume that the transmission is
instantaneous and happens at the beginning of a slot (i.e., τ tx is considered negligible with
respect to T ). Under this assumption, the value bk of Equation (5.1.2) is replaced with
bk − q(Pk). Following the previous reasoning, the battery evolution from slot k to k + 1
can be computed as

bk+1 = min{bmax, yT (ek, [bk − q(Pk)]+)}. (5.1.3)

Note that we explicitly take into account the effects of a finite battery. [·]+ , max{0, ·}
has to be applied to bk − q(Pk) because, in the imperfect SoC knowledge case, it may
happen that a too high transmission power is selected, and q(Pk) > bk. In this case,
we assume that the reward in the corresponding slot is zero (only a partial codeword is
transmitted). In summary, the attained reward in slot k is

r(Pk) =

r(Pk), if q(Pk) ≤ bk,

0, otherwise.
(5.1.4)

5.1.3 Optimization Problem
The system described so far can be modeled with a discrete Markov Chain (MC), whose
states correspond to the actual level of charge of the battery (see Section 2.2.2). Since we
assume that only partial SoC knowledge is available in general, the device cannot see the
state of the system (partially observable MC).

Our goal is to maximize the average long-term reward Gµ obtained with the function
r(·):

Gµ(b0) = lim inf
K→∞

1
K

E

K−1∑
k=0

r(Pk)

∣∣∣∣∣∣b0

 , (5.1.5)

where the average is taken with respect to the harvesting process and the policy. If r(·) is
the transmission rate, then Gµ represents the throughput of the system. We remark that
in this case we are maximizing the throughput only over τ tx (i.e., the device is always in
idle mode for a fraction (T − τ tx)/T of the time). µ is the policy, i.e., the function that
defines which transmission power should be used. b0 is the initial charge of the battery (in
general we fix b0 = 0).
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Since we focus on the long-term optimization (see Section 2.1.1), it can be shown [126]
that the problem can be formulated by exploiting the MC structure:

Gµ(b0) =
∑
b∈B

πµ(b|b0)jµ(b), (5.1.6)

where

• πµ(b|b0) is the long-term probability of being in state b given the initial state of the
system b0.

• jµ(b) , EΘb
[r(Θb)]. Θb is a random variable with probability mass function f(P ; b),

P ∈ P. The policy µ specifies the pmf of Θb for every b ∈ B.

When perfect SoC is available, the problem can be formulated as a Markov Decision
Process (MDP) and solved with standard algorithms as described in Section 2.2.2. In
this case, the role of µ is to define, for every possible battery level b ∈ B, the pmf f(·; b).
It can be proved that the optimal policy is deterministic (see paper [C4] at page 155),
i.e., given the state of the system, then f(P ; b) = χ{P = P ⋆}, where χ{·} is the indicator
function and P ⋆ is the optimal transmission power when the state is b.

In the general case (imperfect SoC knowledge), the problem is a Partially Observable
Markov Decision Process (POMDP) [14]. This kind of problems can be solved using a
belief state as described in [14, Chapter 5]. With this technique, in order to find the
optimal policy, in general it is necessary to keep track of the energy arrivals in all past
slots. However, this would incur a very high computational cost and, moreover, storing the
optimal policy would require a large memory because all possible combinations of the past
events have to be taken into account. Because of these, following [90], in this thesis we
focus on a suboptimal approach, i.e., we do not consider the history and focus only on the
current slot. In this context, the policy µ defines a pmf f(·; t̃) for every partition t̃ ∈ T̃.
Also, we restrict our study to deterministic policies as in the perfect SoC case for simplicity.
Unfortunately, the problem is non-convex, thus standard optimization algorithms cannot
be applied. Because of this, in our numerical evaluation, we resort to an exhaustive search
(that is computationally affordable when the cardinality of P and the number of partitions
|T̃| are not too high).
5.1.3.1 Upper Bound

We want to find an upper bound to the performance in the case q(Pk) = τ txPk (no losses).
When q(Pk)/τ tx > Pk, the upper bound is still valid but looser.

Assume that e energy quanta arrive. An interesting quantity to evaluate is

b⋆ = arg max
b

yT (e, b), (5.1.7)

y⋆
T (e) , yT (e, b⋆). (5.1.8)

In practice, for a given harvesting power e, y⋆
T (e) represents the maximum energy that

can be stored in the battery (maximized over all possible values of the current state of
charge, b). For example, using Equation (5.1.1), we would have b⋆ < bmax/2. Instead, with
a constant ηESL, we obtain y⋆

T (e) = ηESLe for any b.
Using the previous equations, it is possible to derive an upper bound for the performance.
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Proposition 5.1.1. An upper bound to Gµ is given by

Gu.b. = r
(
ēs

τ tx

)
, ēs ,

emax∑
e=0

P(e)y⋆
T (e), (5.1.9)

where y⋆
T (e) is defined in (5.1.8) and P(e) is the pmf of the energy arrivals.

Proof. See Appendix 5.A. �

Note that the upper bound may depend upon the battery size. For example, focus on
Equation (5.1.1). As the battery size increases, the region where ηESL(b) ≈ 1 increases.
Thus, for large batteries, y⋆

T (e) ≈ e and the upper bound degenerates in r(ē/τ tx).
Instead, if ηESL is constant, the upper bound simply becomes r(ηESLē/τ

tx) and does
not depend upon the particular battery size.
5.1.3.2 Suboptimal Policies
In our numerical evaluation we will present results for the Optimal Policy (OP). However,
in general, computing the optimal policy is a difficult task, especially if the number
of partitions |T̃| is high (exhaustive search). Because of this, here we introduce some
simpler policies that are easier to implement than the optimal one. The first, named Low
Complexity Policy (LCP), provides good performance when the battery size is not too
large, whereas the second one, named Balanced Policy (BP), works well for large batteries.

LCP is derived from the optimal policy with perfect SoC knowledge, namely OPRP
(Real battery and Perfect knowledge), which can be efficiently found solving a linear
program. Once the optimal RP policy is computed for every b ∈ B, we define LCP as
follows.

The energy consumption of LCP in the subset t̃ is denoted by q(PLCP(t̃)), where
PLCP(t̃) represents the transmission power in subset t̃, and is defined as the average energy
consumption of RP over all the values b ∈ t̃, i.e.,3

q(PLCP(t̃)) = 1
|t̃|
∑
b∈t̃

q(PRP(b)). (5.1.10)

LCP can be seen as the adaptation of OPRP to the imperfect knowledge case. We will
show that this approximation is legitimate if the battery is small, but degenerates quickly
as the battery size increases. This remarks the importance of using ad hoc policies for the
cases of imperfect SoC knowledge with real batteries.

The aim of BP is to consume, on average, a power equal to ēs/τ
tx (Equation (5.1.9)).

If this were always possible, then BP would achieve the upper bound. The definition of BP
strictly depends upon the number of partitions |T̃| and the battery inefficiencies (function
ηESL(b)). In the case |T̃| = 2 (LOW-HIGH) and for ηESL(b) defined in Equation (5.1.1) we
define BP as q(PBP(LOW)) = 0 and q(PBP(HIGH)) = ēs. Note that it is important to set
PBP(LOW) = 0 in order to avoid to be trapped in the low energy states (we will discuss
this effect in more detail in the next section).

3An alternative definition of LCP would consider a weighted mean (e.g., with the steady-state proba-
bilities). However, we have numerically verified that this leads to worse performance.
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Figure 5.2. Energy consumption q(P (b)) (without circuitry costs q(P (b))/τ tx = P (b)) of
the optimal policies in Table 5.3 as a function of the battery level b ∈ B.

5.1.4 Numerical Results
In our numerical results we discuss the behavior and compare the performance of the
policies in Table 5.3.

Table 5.3. Policies.

Perfect SoC Imperfect SoC
Ideal Battery OPIP OPII
Real Battery OPRP OPRI, BP, LCP, OPII

We denote with OPx the optimal policy in scenario x. Our focus is on the RI case.4
Here, we also evaluate the performance of OPII applied to this scenario and of BP and
LCP, defined in Section 5.1.3.2.
5.1.4.1 Optimal Policies Structure
We now discuss the shape and the performance of the four optimal policies of Table 5.3.
A channel gain h = 10−2 is chosen in order to operate in the low SNR regime [132].
Also we set T̃ = {LOW,HIGH} (|T̃| = 2) and neglect the circuitry costs, thus the
power consumption in state b is equal to P (b). The storage losses are modeled with
Equation (5.1.1). The battery size is set to bmax = 100 energy quanta and the energy
arrival process is described by a truncated geometric random variable with mean ē = 20
and maximum arrivals emax = 50.

In Figure 5.2 we plot the transmission energy q(P (b)) as a function of the SoC b. Note
that, because of the battery imperfections, the curve of OPRP (Real battery with Perfect

4OPIP was studied in [92], OPII in [90] and OPRP in [C4] (see page 155).
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knowledge) is not as smooth as the one for the ideal case OPIP (Ideal battery with Perfect
knowledge).

Interestingly, for the low energy states, the curves for a real battery are lower than
their counterparts for an ideal battery. In practice, when the battery is almost empty, the
energy losses are high, thus only a small fraction of the harvested energy can be stored.
In this case, it is better not to transmit (or transmit with low power) and wait until the
battery reaches a more favorable region.

We now want to highlight the importance of applying the right optimal policy. In
particular, we show that applying OPII (Ideal battery with Imperfect knowledge) and
OPRP (Real battery with Perfect knowledge) is suboptimal in the RI case.
5.1.4.2 OPII applied to the Case with Real Battery and Imperfect SoC
It can be verified that applying OPII to the RI case provides a reward equal to zero whereas
OPRI provides a reward of 0.1655 (we discuss how the reward changes in Section 5.1.4.4).
This result can be explained as follows. In state b = 0, the maximum storable energy is
given by yT (emax, 0). In our example, emax = 50 and, using Equation (5.1.1), it can be
verified that yT (emax, 0) = 6.3, i.e., approximately 6 energy quanta. Starting from b0 = 0,
after the first slot we have b1 = 6. In this slot, a transmission energy corresponding to
11 energy quanta is demanded (as shown by the red curve), but, since b1 < 11, only 6
energy quanta are drawn from the battery. However, this results in a failed transmission
(the transmission is interrupted at 55%), thus the corresponding reward is zero. In the
successive slot, b2 = 0 and the process repeats periodically, providing a global reward equal
to zero. Note that this behavior is not influenced by the initial state: even if the battery
were initially fully charged, there would exist a positive probability of reaching state 0
and being trapped there. A similar behavior can be noticed in the perfect SoC case, but
with less disruptive effects. This example highlights an important characteristics of real
batteries, that has to be accurately taken into account when a system is designed.
5.1.4.3 OPRP applied to the Case with Real Battery and Imperfect SoC
The optimal policy with perfect knowledge cannot be directly applied to the imperfect
SOC case. Therefore we have to resort to the approximation described in Section 5.1.3.2,
namely LCP. OPRP takes into account the fact that the low energy states should be avoided
in order not to trap the battery level. However, by taking the average over every subset, it
may happen that, as in the OPII case, a too high energy consumption is employed, resulting
also in this case in zero reward. This behavior is better explained in Section 5.1.4.4.

While applying a suboptimal policy to the RI case may result in zero reward, OPRI takes
into account this effect and avoids the inefficient energy states. This is easy to obtain when
|T̃| is high. However, if |T̃| is very low (|T̃| = 1, i.e., no SoC knowledge) this may result
in a significant performance degradation. In Figure 5.3 we plot the transmission energy of
OPRI when we use one, two or three partitions. Note that in the case |T̃| = 1, in order
to avoid the effect previously described (reward equal to zero if the power consumption
is too high), P (b) has to be very low. With |T̃| = 3, any transmission is avoided for the
low energy states in order not to operate in an inefficient battery region. The normalized
rewards obtained in the three cases are 0.0488, 0.1655 and 0.1670, respectively. Also, the
reward obtained with perfect SoC knowledge is 0.1714. We notice that even a rough idea
of the battery SoC (quantization to two levels, LOW and HIGH) provides close-to-optimal
performance, and therefore a more accurate representation is not necessary. On the other
hand, if no information is provided (|T̃| = 1) the performance is heavily suboptimal.
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Figure 5.3. Energy consumption q(P (b)) (without circuitry costs q(P (b))/τ tx = P (b)) of
OPRI for |T̃| = 1, 2, 3 as a function of the battery level b ∈ B.

5.1.4.4 Throughput
Another interesting quantity to analyze is the throughput of the various policies when the
battery size increases. In this case (see Figure 5.4) we also want to show the system upper
bounds and the performance of LCP and BP. As expected, as the battery size increases,
the optimal policy and the upper bound (5.1.9) converge to r(ē) (upper bound with an
ideal battery). An interesting point is that Gu.b. is much closer to the performance of the
optimal policy than r(ē), especially for low batteries.

We remark that Gu.b. is an upper bound also for the RP (Real battery with Perfect
knowledge) case. Thus, since the upper bound and the performance of OPRI are quite
close, we can state that it is almost equal to considering T̃ with a LOW-HIGH subsets, or
the perfect knowledge case (|T̃| = bmax + 1), i.e., even considering T̃ with very few subsets
it is still possible to achieve close to optimal rewards.

The figure also reports the Balanced Policy. Its performance is very close to the reward
of OPRI, for both low and high batteries. BP also converges to the upper bound Gu.b. for
very large batteries. This is because, on average, BP transmits data with energy ēs.

Finally, we applied the optimal II (Ideal battery with Imperfect knowledge) and RP
(Real battery with Perfect knowledge) policies to the RI scenario. As pointed out in
Section 5.1.4.3, in order to apply RP to the RI case, we introduced LCP. As can be seen
from the figure, OPII achieves a very low reward that quickly degenerates to zero. Instead,
LCP seems to work well for low batteries but as soon as the battery size grows too much,
its reward degenerates to zero as well. This further emphasizes the importance of using
the proper policy when a real battery with imperfect knowledge is considered.
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Figure 5.4. Long-term average throughput Gµ (Equation (5.1.6)) as a function of the
battery size bmax (with ē = 20).

5.1.4.5 Real Case Example

Table 5.4. Numerical example parameters.

Parameter Value

One energy quantum 10 µJ
Slot length (T ) 1 s
Transmission duration (τ tx) 5 ms
Available bandwidth (W ) 2 MHz
Noise power density (N0) 10−20.4 W/Hz
Channel state (h) 3 · 10−13 W/Hz

Min/Max power consumption 44.1/106.5 mW
(22/53 e.q.)

Min/Mean/Max harvested energy 10/300/500 µJ
(1/30/50 e.q.)

We present numerical results for the device reported in Table 5.1. In Table 5.4 we
summarize the parameters used for our example.

The considered energy source can be, e.g., piezoelectric or vibrations. In order to model
the statistics of the energy source we use a truncated Poisson random variable in order
to have a distribution centered around its mean. Note that T ≫ τ tx. The instantaneous
reward function is defined according to Shannon’s formula

r(P ) = τ tx

T
W log2

(
1 + h

WN0
P

)
. (5.1.11)
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Figure 5.5. Long-term average throughput Gµ (Equation (5.1.6)) as a function of the
battery size bmax (with ē = 30) for the various frequency bands of Table 5.1. The bandwidth
is W = 2 MHz.

The term τ tx/T takes into account the fact that the optimization is performed in the
first τ tx seconds of the slot.

We assume that the device fixes the transmission frequency according to the columns
of Table 5.1 a priori. In Figure 5.5 we show the throughput for a 2 MHz bandwidth,
expressed in kbps, at the four frequencies. At 315 MHz, the throughput is greater because,
for every fixed transmission power P , the corresponding power consumption q(P )/τ tx is
lower.

5.1.5 Conclusions of Section 5.1
In the first part of this chapter, we studied the throughput optimization problem of
an energy harvesting device with a Markov decision process approach. We explicitly
considered the effects of imperfect batteries and in particular the imperfect SoC knowledge
and the energy storage inefficiencies (with losses related to the SoC status). We based
our model on some realistic consideration about the transmission/consumption/harvesting
power. We found a performance upper bound and showed that, with a real battery, the
upper bound and the performance are lower than in the ideal case. We proposed low
complexity policies and showed that the balanced policy is a good approximation for the
optimal case. We discussed the application of the policies derived in traditional settings
and showed that they are strongly suboptimal and that, in some cases, the corresponding
throughput could even be zero. This emphasizes the importance of considering the real
characteristics of an EHD when the optimization process is performed.

As part of the future work we would like to set up a model where also an ultra-low
power device can be studied, i.e., τ and T are similar. Also, other model imperfections
can be included, e.g., energy leakage or battery degradation.
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5.2 Physical Layer Security
5.2.1 Introduction
Security and privacy are becoming more and more important in communications and
networking systems, and have key applications in the Wireless Sensor Network (WSN)
and Internet of Things (IoT) worlds [82]. While most works in this area deal with security
protocols [20, 114], implementing security mechanisms at the physical layer represents
an interesting complement to those networking approaches [18], and has the potential to
provide stronger (information-theoretic) secrecy properties [131]. In particular, the impact
of power allocation policies and of system features related to energy harvesting has only
been studied in some special cases [5, 102]. Since green aspects will play an increasingly
large role in future networks, it is essential to bring low-power, energy-constrained and
green considerations into this picture. In this section, we try to partly fill this gap, studying
how the use of energy harvesting affects the design and performance of physical layer
security methods.

We consider an Energy Harvesting Device (EHD) (i.e., a device with the capability
of gathering energy from the environment [45], e.g., through a solar panel or a rectenna)
that sends data to a receiver over an insecure communication channel. The goal is to
transmit data securely, i.e., in such a way that an adversary (or eavesdropper) with access
to the communication link is not able to gather useful information about the data sent.
We study how the specific EH characteristics influence the achievable secrecy rate (i.e., the
information rate at which the EHD can reliably send data to the receiver while keeping
it secret from the eavesdropper). Deciding whether the EHD should transmit or not,
how much power should be transmitted or how to divide the power among the different
sub-carriers is not obvious, and all these aspects need to be appropriately optimized.
Moreover, while in the classic throughput optimization problem if the available resources
were used improperly the corresponding penalty would be a performance reduction, in
the secrecy optimization problem an improper use of the resources may imply not only a
reduced transmission rate, but also a security loss, possibly making sensitive data accessible
to a malicious party.

Security aspects have been widely studied in the WSN literature [82, 114, 119]. Exam-
ples of relevant applications in a WSN/IoT context include health-care monitoring [3, 4],
where the sensitive data of patients may be exposed to a malicious entity, or military
use [151, 157], where a WSN can be used for monitoring or tracking enemy forces. In
particular, in addition to higher layers [172], that are relatively insensitive to the physical
characteristics of the wireless medium, physical layer can be used to strengthen the security
of digital communication systems and improve already existing security measures. The
basic idea behind the concept of physical layer secrecy is to exploit the randomness of the
communication channel to limit the information that can be gathered by the eavesdropper
at the signal level. Through channel coding techniques, it is possible to simultaneously
allow the legitimate receiver to correctly decode a packet and prevent a potential third
party malicious eavesdropper from decoding it and thus provide information-theoretic or
unconditional security. Differently from computational security methods, that are based
on the limited computational capabilities of the adversary (as in a cryptographic system),
unconditional security is considered the strongest notion of security [88] because no limits
on the adversary’s computing power are assumed. Perfect secrecy [131] is achieved when
there is zero mutual information between the information signal, s, and the signal received
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by the eavesdropper, z, i.e., I(s; z) = 0 and z is useless when trying to determine s.
In [158], Wyner showed that if the eavesdropper’s channel is degraded with respect to
the legitimate channel, then it is possible to exchange secure information at a non-zero
rate while keeping the information leakage to the eavesdropper at a vanishing rate. This
result was extended in [27] for non-degraded channels provided the eavesdropper channel
is not less noisy than the legitimate channel. In [154], the secrecy capacity of fading
channels in the presence of multiple eavesdroppers is studied. It was shown in [42] that in
a fading scenario it is also possible to obtain a non-zero secure rate even if, on average,
the eavesdropper’s channel is better than the legitimate one. The authors also established
the importance of variable rate coding (i.e., matching the code rate to the channel rate) in
enabling secure communications. In [108], the authors compute the secrecy capacity of a
MIMO wiretap channel with one receiver and one eavesdropper and an arbitrary number
of antennas. A survey of physical layer security in modern networks is presented in [97].

The secrecy capacity paradigm in an energy harvesting communication system was
studied in [109, 110], where the authors considered the case of a batteryless transmitter and
found the rate-equivocation region. [98] studied the deployment of an energy harvesting
cooperative jammer to increase physical layer security. In [102] the authors presented
a resource allocation algorithm for a multiple-input single-output secrecy system for a
communication system based on RF energy harvesting. Also [166] studied how to efficiently
allocate power over several sub-carriers in an EH system with secrecy constraints. In [77]
the authors employed a physical layer secrecy approach in a system with a transmitter
that sends confidential messages to a receiver and transfers wireless energy to energy
harvesting receivers. Our focus is substantially different from those, since we consider an
EHD that harvests energy from an external, non-controllable and renewable energy source.
Our goal is to maximize the achievable secrecy rate, i.e., to define how to correctly exploit
the available (random) energy according to the device battery dynamics.

Contributions. Our main contribution lies in the definition of a new practical and
challenging problem. As in [109, 110], we investigate the physical layer secrecy in an EH
system. However, differently from those papers, we explicitly consider the effects of a finite
battery and we focus on finding the transmission strategy that maximizes the secrecy rate,
namely the Optimal Secrecy Policy (OSP). Since in a WSN the devices operate under the
same conditions for long periods, the steady-state regime is generally reached, and thus we
focus on the long-term optimization. Similarly to [93], we set up an optimization problem
based on a Markov Decision Process (MDP) approach but, unlike in those works, we focus
on the security aspects, considering the presence of a malicious eavesdropper and a generic
number of sub-carriers. Thus, even if the proposed analytical framework is similar to those
provided in the literature, since additional dimensions are considered, the optimization
process is more challenging and different considerations and insights are derived. In
particular, we prove several properties of OSP and describe a technique to compute it
by decomposing the problem into two steps. We specify how to allocate the power over
the different sub-carriers and remark that a smart power splitting scheme is important
to achieve high secrecy rates. As in [42], we consider several degrees of knowledge of the
channel state information, describing both variable and constant rate coding techniques
and discussing how the achievable secrecy rate changes in these cases. However, unlike [42],
we study an energy constrained system with M parallel sub-carriers, and accordingly
formulate and solve an optimization problem to determine the maximum secrecy rate.
Therefore, this section considers aspects that either have not yet been considered or have
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been separately studied in the literature, and represents an advancement of the state of
the art in the important areas of green networking and security, leading to novel insights
about the interaction of many different system design aspects.

Structure. The second part of this chapter is organized as follows. Section 5.2.2 defines
the system model we analyze and introduces the notion of secrecy rate. In Section 5.2.3 we
introduce the secrecy rate optimization problem. Section 5.2.4 describes how to find OSP
and some of its properties with full CSI. In Section 5.2.5 we study the case of imperfect CSI
knowledge. Section 5.2.6 presents our numerical results. Finally, Section 5.2.7 concludes
the chapter.

References. This section is based on the conference paper [C5] and on the journal
paper [J2].

5.2.2 System Model and Secrecy Rate
An EHD simultaneously transmits data in a wide frequency band composed of M nar-
row bands to RX. The transmission power can be different for every sub-carrier. The
transmission model can be described as a set of M parallel Gaussian wiretap channels,
affected by independent fading, as in [12]. The goal of the transmitter is to send data to
the legitimate receiver (i.e., the receiver) with a positive secrecy rate in order to guarantee
secure transmission. An eavesdropper attempts to intercept the transmitted data.

We initially assume that the EHD knows the Channel State Information (CSI) of
all the sub-carriers toward the receiver and the eavesdropper instantaneously, and will
relax this hypothesis in Section 5.2.5. Time is divided into slots of equal duration T ,
chosen according to the channel coherence time, in order to guarantee constant channel
gains in every slot. The EHD is equipped with a battery of finite size bmax and in slot k
the device has bk ∈ B , {0, . . . , bmax} energy quanta stored. Knowledge of the state of
charge is useful at the transmitter side only to determine when to schedule a transmission.
The harvesting process is described through an energy quanta arrival process {eEEH

k } (see
Sections 2.1.2 and 2.2.1), or simply {ek} in this section. The average harvesting rate is ē,
the maximum (minimum) number of energy quanta harvested per slot is emax (emin), and
a quantum harvested in slot k can only be used in time slots > k. We assume that the
device always has data to send and that the energy cost that the device sustains is mainly
due to data transmission (Section 2.1.3).

The channel gains in slot k are hk = [h(1)
k , . . . , h

(M)
k ] and jk = [j(1)

k , . . . , j
(M)
k ] for the

M legitimate and eavesdropper sub-carriers, respectively. hk and jk can be interpreted as
realizations of two jointly random vectors H = [H(1), . . . , H(M)] and J = [J (1), . . . , J (M)]
(i.i.d. over time) with supports H and J. We assume that the receiver has complete
CSI of its channel in order to decode the received signal. Instead, the eavesdropper has
knowledge on every aspect of the system (this is a reasonable worst-case assumption, as
the transmission strategy should not rely on assuming the eavesdropper’s ignorance of any
state). Nevertheless, we should point out that, for a passive eavesdropper, knowledge of
the main channel state is totally immaterial. In this section, when we refer to “full” or
“partial” CSI, we always refer to the transmitter side.
5.2.2.1 Secrecy Rates and Capacity
We refer to the notions of secrecy rate and secrecy capacity as known in the physical
layer secrecy literature [18, 158] and their ergodic counterparts in the fading scenario [78].
Specifically, we define an (M̃,M, ℓ) code for the parallel wiretap channel as consisting of:
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1) a message set M with cardinality M̃ , 2) a probabilistic encoder f enc
ℓ at the transmitter

that maps each message s ∈M (realization of the r.v. S) to each M × ℓ codeword x ∈Xℓ,
with X = X(1) × · · · ×X(M) according to some conditional distribution p(x|s), and 3) a
(deterministic) decoder at the legitimate receiver that extracts ŝ (realization of the r.v. Ŝ)
from the received message y ∈ Yℓ, where Y = Y(1) × · · · ×Y(M), i.e., fdec

ℓ : Yℓ →M.
The average error probability of an (M̃,M, ℓ) code is given by

Perr(ℓ) ,
1
M̃

∑
s∈M

P
(
Ŝ ̸= s|S = s

)
. (5.2.1)

The equivocation rate at the eavesdropper is Re(ℓ) = (1/ℓ) H(S|U ℓ), i.e., the conditional
entropy rate of the transmitted message given the eavesdropper’s channel output U ℓ.
Re(ℓ) represents the level of ignorance on the target secret message at the eavesdropper.
Perfect secrecy (unconditional security) would be obtained if Re(ℓ) = R(ℓ), where R(ℓ) =
(1/ℓ) H(S) is the secret message rate. However, this is not possible in general with wiretap
coding techniques, so we must settle for a weaker requirement, that holds asymptotically.
Therefore, a secrecy rate Rs is said to be achievable if there exists a sequence of (2ℓRs ,M, ℓ)
codes, ℓ = 1, 2, . . . , such that

lim
ℓ→∞

Perr(ℓ) = 0, Rs ≤ lim
ℓ→∞

Re(ℓ) (5.2.2)

and the secrecy capacity is defined as the supremum of the set of achievable secrecy rates.
5.2.2.2 Coding Strategy
The transmitter coding strategy influences the secrecy rate. In particular, in this section
we consider constant and variable rate coding defined as follows (a construction procedure
for these codes can be derived as explained in [42, Theorems 1 and 2]).

Variable rate coding. It consists in adapting the code rate to the main channel state.
This can be accomplished by constructing a separate codeword x for every realization
of the channel, i.e., x = x(current channel). In this case, in every slot k and on every
sub-carrier r = 1, . . . ,M the transmitter observes the channel and picks the symbols to be
transmitted from the current codeword x(h(r)

k ). We study the long-term regime and thus
we consider the case of infinite length codewords. With variable rate coding, when the
gain of the legitimate channel in a given sub-carrier is h, the transmitter uses symbols
from codewords at a rate proportional to log(1 + hP ) (where P is the transmission power,
which will be the objective of our optimization). To achieve such a rate, it is required to
use a codeword specifically designed for this channel, i.e., x(h). Then, if the eavesdropper’s
channel gain is j > h, thanks to the chosen coding rate, the mutual information between the
transmitter and the eavesdropper is upper-bounded by log(1 + hP ). Instead, when j ≤ h,
the mutual information becomes log(1 + jP ) (Shannon’s theorem). We can summarize
the two previous cases as log(1 + min{h, j}P ). Therefore, even if j > h, the eavesdropper
does not receive more information than the legitimate receiver (they both experience the
same rate log(1 + hP )). In the long run, the average rate of the main channel and the
information accumulated at the eavesdropper are

lim inf
K→∞

1
K

K−1∑
k=0

M∑
r=1

log(1 + h
(r)
k P ) (5.2.3)
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and

lim inf
K→∞

1
K

K−1∑
k=0

M∑
r=1

log(1 + min{h(r)
k , j

(r)
k }P ), (5.2.4)

respectively. In this case, by constructing a code and the corresponding coding map, the
long-term secrecy rate (amount of secret information that can be sent) is

lim inf
K→∞

1
K

K−1∑
k=0

M∑
r=1

(
log(1 + h

(r)
k P )− log(1 + min{h(r)

k , j
(r)
k }P )

)
. (5.2.5)

Constant rate coding. It consists in keeping the code rate constant, regardless of
the legitimate and eavesdropper’s channel states. In this case, a single codeword x is
used in every fading condition. In every slot, the transmitter picks the symbols to be
transmitted from the only available codeword x. In the long run, since we consider infinite
length codewords, x spans the entire fading statistic of the channel. With constant rate
coding, regardless of the current channel state, the transmitter uses codewords at a fixed
rate Rcon such that Rcon ≥ log(1 + hP ) for every h and P . In this case, if the current
legitimate channel is h, the mutual information between transmitter and receiver is upper
bounded by Shannon’s theorem as log(1 +hP ). Similarly, the mutual information between
transmitter and eavesdropper is given by log(1 + jP ). The secrecy rate can be expressed
as [

lim inf
K→∞

1
K

K−1∑
k=0

M∑
r=1

(
log(1 + h

(r)
k P )− log(1 + j

(r)
k P )

)]+

, (5.2.6)

where [·]+ , max{0, ·} is used to obtain a non-negative rate. Note that (5.2.6) is lower than
(or equal to) (5.2.5), i.e., higher secrecy is achieved with variable rate coding. However, its
implementation is more difficult as the code rate has to be changed frequently according
to the legitimate channel state.

For simplicity, in the next we use Rh,j(P ) to indicate the terms of the sum in (5.2.5) if
variable rate coding is considered, or (5.2.6) in the constant rate coding case, i.e.,

Rh,j(P ) ,

log(1 + hP )− log(1 + min{h, j}P ), variable rate,
log(1 + hP )− log(1 + jP ), constant rate.

(5.2.7)

c(P ,h, j) is its generalization with a generic number of sub-carriers M :

c(P ,h, j) =
M∑

r=1
R

h
(r)

,j
(r)(P (r)), (5.2.8)

and P tot is the corresponding total transmission power, defined as

P tot , 1T
MP . (5.2.9)

The value of c(P ,h, j) depends on the choice of the power allocation over the several
sub-carriers, P , [P1, . . . , PM ]T , the channel conditions h and j, and the coding rate
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strategy. 1M is a column vector consisting of M ones. In the general case, the choice of P
that maximizes the secrecy rate, among those satisfying (5.2.9), will in turn depend upon
the channel conditions h and j.

5.2.3 Optimization Problem
The system state Sk in time slot k is defined by the (2M + 1)-tuple (bk,hk, jk). A policy
µ is a set of rules that, given the state of the system, specifies the power allocation over
the M sub-carriers.

In the long run, the average secrecy rate under a policy µ is given by the average
undiscounted reward Cµ

Cµ(b0) ,
[
lim inf
K→∞

1
K

K−1∑
k=0

c(Σk,hk, jk)
]+

, (5.2.10)

where c(·, ·, ·) is the instantaneous partial contribution defined in (5.2.8), Σk is the power
allocation vector defined by the policy5 and b0 is the energy in the initial time slot. A
secure communication can be performed if Cµ(b0) > 0. (5.2.10) is a generalization of (5.2.5)
and (5.2.6) for M sub-carriers and a dynamic transmission power.

The battery evolution of Equation (2.2.1) can be modified as follows (note that in this
case we do not consider wireless energy transfer nor transmission inefficiencies)

bk+1 = min
{
bmax, bk −

M∑
r=1

Σ(r)
k + Ek

}
, (5.2.11)

where Σ(r)
k is the rth component of the vector Σk, and the “min” is used to account for the

finite battery. Note that Σk must satisfy ∑M
r=1 Σ(r)

k ≤ bk, ∀k and Σ(r)
k ≥ 0, ∀k, ∀r. Thus,

Problem (5.2.10) is implicitly influenced by the evolution of bk because of Σk.
Our aim is to solve the following maximization problem

µ⋆ = arg max
µ

Cµ(b0). (5.2.12)

A policy that solves (5.2.12) is an Optimal Secrecy Policy (OSP). In the next subsection
we explain in more detail the optimization variables and the constraints of the above
problem.
5.2.3.1 Markov Decision Process Formulation
Since we consider a long-term optimization, we recast the problem using a Markov Decision
Process (MDP) formulation. In particular, we model our system by a Markov Chain (MC)
with a finite number of states. For every MC state s = (b,h, j) ∈ S , B×H×J, a power
allocation policy µ is the set of rules

µ = {µ(·; s), ∀s ∈ S}, (5.2.13)
5Given a temporal sequence of energy arrivals and channel states, the policy µ can be applied to obtain

the power allocation vector Σk. In this case we use a deterministic policy for presentation simplicity, and
prove later that this choice is optimal.
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where µ(·; s) is the conditional distribution (pmf) of the power allocation vector defined as
follows

µ(P ; s)
(

= µ(P ; b,h, j)
)
, P

(
using a power splitting vector P

∣∣∣the MC state s
)
,

(5.2.14)

and, for every h, j, is subject to∑
P ∈P≤(b)

µ(P ; s) = 1, (5.2.15a)

µ(P ; s) ≥ 0, ∀P ∈ P≤(b), (5.2.15b)
P≤(b) ,

{
P : P ≽ 0 ∩ P tot , 1T

MP ≤ b
}
, (5.2.15c)

s = (b,h, j). (5.2.15d)

P≤(b) is the set of all feasible vectors P when the energy level is b. The reward function
becomes

Cµ(b0) =
∑
b∈B

πµ(b|b0)×
∫
H×J

∑
P ∈P≤(b)

c(P ,h, j)µ(P ; b,h, j)

︸ ︷︷ ︸
secrecy rate given the MC state (b,h,j)

dF (h, j), (5.2.16)

where πµ(b|b0) ∈ [0, 1] is the steady-state probability of having b energy quanta stored
starting from state b0 under a policy µ and F (h, j) is the joint cumulative distribution
function of H and J . πµ(b|b0) summarizes the battery evolution and is evaluated according
to (5.2.11). The optimization variables in Problem (5.2.12) are the pmfs µ(·; b,h, j). Also,
it can be shown (see Section 5.2.4.1) that an OSP which admits steady-state distribution
always exists. Therefore, without loss of optimality, we decided to restrict our study to
the class of policies with steady-state distribution. For these policies, since we focus on
the average long-term optimization, (5.2.16) is equivalent to (5.2.10).

It is possible to separate µ into the product of a transmit power policy, which specifies
the conditional distribution of the total transmission power given the current state,
namely γµ(P tot; s), and the conditional distribution of the power allocation given the total
transmission power and the current state, namely φµ(P ;P tot, s):

µ(P ; s) = φµ(P ;P tot, s)γµ(P tot; s). (5.2.17)

or, equivalently, to

µ(P ; b,h, j) = φµ(P ;P tot, b,h, j)γµ(P tot; b,h, j). (5.2.18)

The above expression will be useful to decompose the problem into two steps in
Theorem 5.2.6.

We highlight that µ performs a power control mechanism, i.e., it specifies how much
power is used in every MC state but, in addition to power control, also the code rate can
be changed according to Section 5.2.2.2.
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5.2.3.2 Finite Model
In the previous paragraphs, we assumed that the policy can be defined for every possible
value of the channel gains. This can be done by simple enumeration if |H| < ∞ and
|J| < ∞. However, the channel gains may be continuous variables in the general case.
Instead of defining a policy for a continuously infinite set of values, we want to find a
set of points where the policy can be computed and optimized efficiently. The following
approach can be followed. Consider the random variable H(1) (for the others the reasoning
is similar). We discretize the support of H(1) in n intervals with an equally likely strategy
(P(H(1) ∈ [pi, pi+1)) = 1/n, i = 1, . . . , n). Then, we specify the policy in the centroid of
every interval. If the number of intervals n is sufficiently large, the approximation is very
close to the continuous case.

Remark Since we consider a discrete channel, we focus without loss of generality on
channel conditions with non-zero probability, i.e., P(H = h,J = j) > 0, ∀h ∈ H, j ∈ J.

5.2.4 Optimal Secrecy Policy with Complete CSI
In this section we study the case when the transmitter has perfect CSI knowledge, and
introduce a technique to compute OSP and some of its properties. All our results are
useful to simplify the numerical evaluation. In particular: 1) we prove that there exists a
deterministic OSP (Theorem 5.2.1); 2) we propose a technique to derive a unichain OSP
(Section 5.2.4.1); 3) we decompose the optimization process in two steps (Theorem 5.2.6);
and 4) we show that the transmission power increases (decreases) with the channel gain of
the legitimate receiver’s (eavesdropper’s) sub-carriers (Theorem 5.2.9).

Theorem 5.2.1. There exists a deterministic OSP, i.e., an optimal secrecy policy in
which, for every MC state s = (b,h, j)

µ⋆(P ; s) =

1, if P = P ⋆
s,

0, otherwise,
(5.2.19)

for some P ⋆
s depending upon the current MC state in general.

Proof. See Appendix 5.B. �

By exploiting Equation (5.2.17), it also follows that ∃P tot⋆
s such that the transmit

power policy γµ defined in (5.2.17) satisfies

γµ(P tot; s) =

1, if P tot = P tot⋆
s ,

0, otherwise.
(5.2.20)

Definition 5.2.2 (Deterministic Policy). Since a deterministic OSP always exists, we
only need to study deterministic policies, thus µ can be redefined as

µ = {P s ∈ P≤(b), ∀s ∈ B ×H× J}. (5.2.21)

P s = [P (1)
s , . . . , P (M)

s ] characterizes the transmission powers on different sub-carriers in
state s = (b,h, j).
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We also introduce the sub-policy µtot as

µtot = {P tot
s , ∀s ∈ B ×H× J}, (5.2.22)

which accounts for the total transmission powers only. µtot and µ are consistent if the sum
of the elements of P s in µ is equal to P tot

s in µtot, ∀s ∈ B ×H× J.
The deterministic property is particularly useful to simplify the numerical evaluation

because a policy needs to define only a scalar value for every state of the system and not
a probability distribution.
5.2.4.1 Unichain Policies
We restrict our study to the class of unichain policies, i.e., those that induce a unichain
MC (i.e., a MC with a single recurrent class). This is useful in order to apply the standard
optimization algorithms in the next section.

Some sufficient conditions to obtain a unichain policy are presented in the following
proposition (in this subsubsection we use deterministic policies for presentation simplicity,
but the results can be easily extended).

Proposition 5.2.3. If a policy satisfies one of the following conditions, then it is unichain.
If it satisfies both conditions, the policy induces an irreducible, positive recurrent MC.

1. For every b ∈ B\{bmax} there exists a pair (h′, j′) such that P tot
b,h

′
,j

′ < emax (maximum
number of energy arrivals).

2. For every b ∈ B\{0} there exists a pair (h′′, j′′) such that P tot
b,h

′′
,j

′′ > emin.

Proof. See Appendix 5.C. �

In practice, the first and second points ensure that there is a positive probability that
the battery moves from level b to higher and lower energy levels, respectively. When they
are both verified, no transient state can exist, and the MC is irreducible.

When at least one point of Proposition 5.2.3 is satisfied, the corresponding policy is
guaranteed to be unichain. However, in general, these conditions may not be satisfied. In
addition, there may exist more than one policy with the same maximum achievable secrecy
rate (the highest secrecy rate among Cµ(0), . . . , Cµ(bmax)). Some of these are unichain,
whereas others are not. Consider the following example to justify these claims.

Example 5.2.4. We want to show a case in which 1) multiple policies with the same
maximum reward exist and 2) some of them are not unichain.

Assume that the harvesting process is deterministic and equal to ē < bmax/2, M = 1,
and the channel is constant h1 > j1. Consider the following policies

µ1 = {P1;b,h1,j1 = min{b, ē}, ∀b, ∀h1, j1},

µ2 =


P1;b,h1,j1 = 2ē, b = bmax, ∀h1, j1
P1;b,h1,j1 = ē, b = ē, ∀h1, j1
P1;b,h1,j1 = 0, otherwise

 .
µ1 is a unichain policy (the recurrent class is the battery level {ē}) that provides a

long-term secrecy rate c(ē, h1, j1) (Equation 5.2.8). Instead, µ2 is not unichain (the two
recurrent classes are {ē} and {bmax− ē, bmax}) and its long-term secrecy rate depends upon
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the initial state (it can be c(ē, h1, j1) or 0.5c(2ē, h1, j1)). Also, note that because of the
concavity of Equation (5.2.8), c(ē, h1, j1) > 0.5c(2ē, h1, j1). Therefore, there exist more
than one policy with the same maximum achievable reward c(ē, h1, j1). Moreover, in µ2,
there are two recurrent classes, and thus it is not unichain.

This example shows that the long-term secrecy rate for a non-unichain policy may
depend upon the starting state. Also, it shows that in general there may exist different
policies, unichain and not unichain, with the same maximum achievable secrecy rate. The
following proposition establishes that there is no loss in generality in considering only
unichain policies.

Proposition 5.2.5. Given a generic policy, it is always possible to derive another policy
which is unichain and attains the same maximum achievable secrecy rate as the original
policy, regardless of the initial state.

Proof. We provide a constructive proof in Appendix 5.D. �

In the remainder of the section we always refer to unichain policies, for which Cµ(b0)
is independent of b0 [75]. In particular, Proposition 5.2.5 holds for the optimal secrecy
policies, i.e., there always exists a unichain OSP, and therefore we will focus on unichain
policies with no loss in optimality. Note that, since we consider a finite MC (we discretized
both the battery level and the channel gains), a unichain policy always implies the existence
of a steady-state distribution as in Equation (5.2.16).
5.2.4.2 Computation of OSP
We now want to simplify the expression of Cµ by exploiting the results we have found so
far. If µ and µtot are consistent, the long-term secrecy function Cµ can be rewritten as

Cµ =
∑
b∈B

πµ
tot(b)

∫
H×J

c(
specified by µ︷ ︸︸ ︷

P b,h,j,h, j) dF (h, j). (5.2.23)

An interesting fact is that the steady-state probability πµ
tot(b) depends upon the

sub-policy µtot only. This is because πµ
tot(b) describes the battery energy evolution, that

depends only upon the total energy consumption in a slot, not upon the particular power
splitting scheme. This result leads to the following theorem.

Theorem 5.2.6. The maximization of Cµ can be decomposed into two steps:

1. Fix a value x and the channel gain vectors h, j and find the optimal power splitting
choice

P ⋆ = arg max
P

c(P ,h, j), (5.2.24a)

s.t.:
P ∈ P=(x) ,

{
P : P ≽ 0, x = 1T

MP
}
. (5.2.24b)
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2. Maximize Cµ by considering only µtot

µtot⋆ = arg max
µ

tot
Cµ, (5.2.25a)

s.t.:
µtot and µ are consistent, (5.2.25b)
P s solves (5.2.24) with x = P tot

s ,∀s ∈ B ×H× J. (5.2.25c)

The optimal µ⋆ can be found by fixing P tot⋆ according to point 2) and choosing P with
the optimal power splitting choice of point 1).

Proof. See Appendix 5.E. �

The optimal power splitting choice P ⋆ that solves (5.2.24) can be found with a La-
grangian approach (for further details, see Theorem 1 and Equation (7) in [42]):

P (r)⋆ =


√√√√1

4

(
1
j(r) −

1
h(r)

)2

+ 1
η

(
1
j(r) −

1
h(r)

)
− 1

2

(
1
j(r) + 1

h(r)

)
+

, (5.2.26)

where η is a parameter used to satisfy x = ∑M
r=1 P

(r)⋆. In the remainder of the section
we assume that this optimal power splitting choice is used, unless otherwise stated. We
highlight that OSP yields P (r)⋆ = 0 if h(r) ≤ j(r), which implies that the achievable
secrecy rate with complete CSI is independent of the coding scheme (the two expressions
in Equation (5.2.7) coincide).

To solve Step 2) instead, the Optimal Secrecy Policy can be found numerically via
dynamic programming techniques, e.g., using PIA or VIA as described in Section 2.2.2.6

Note that Theorem 5.2.6 with Equation (5.2.26) decomposes the optimization into two
steps. Therefore, the numerical evaluation only requires to study the two points separately
instead of performing a (more computationally intensive) bidimensional optimization.

We also remark the following.

Lemma 5.2.7. By restricting the study to the unichain policies constructed as in Ap-
pendix 5.D, OSP is uniquely determined.

Proof. In all the transient states, by construction (Appendix 5.D), we have P tot⋆
s = 0.

For the recurrent states, thanks to [14, Vol. II, Sec. 4], we know that P tot⋆
s is uniquely

determined. �

5.2.4.3 Properties
We now derive a property that is useful to understand when the transmission power
increases or decreases.

6A key assumption of PIA is that, at every algorithm step, a unichain policy is produced. In order to
satisfy this condition, we apply the technique of Appendix 5.D.
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Proposition 5.2.8. Consider two channel states h′, j′ and h′′, j′′ and define

D(P tot;h′, j′;h′′, j′′) , ∂

∂P tot

(
c(P ⋆

b,h
′′

,j
′′ ,h′′, j′′)− c(P ⋆

b,h
′
,j

′ ,h′, j′)
)
, (5.2.27)

where P ⋆
b,h

′′
,j

′′ and P ⋆
b,h

′
,j

′ are defined as the solutions7 of Problem (5.2.24) with x = P tot.
OSP has the following trend:

• if D(P tot;h′, j′;h′′, j′′) ≥ 0, ∀P tot, then P tot⋆
b,h

′′
,j

′′ ≥ P tot⋆
b,h

′
,j

′;

• if D(P tot;h′, j′;h′′, j′′) ≤ 0, ∀P tot, then P tot⋆
b,h

′′
,j

′′ ≤ P tot⋆
b,h

′
,j

′.

Proof. See Appendix 5.F. �

In practice, it is better to use more energy in the directions where the function c(·, ·, ·)
increases. A consequence of the previous proposition is derived in the following theorem.

Theorem 5.2.9. Consider M = 1. The transmission power of OSP is non-decreasing
with h and non-increasing with j (we omit the “1” subscripts). Formally

• if h′′ ≥ h′, then P tot⋆
b,h

′′
,j ≥ P tot⋆

b,h
′
,j;

• if j′′ ≥ j′, then P tot⋆
b,h,j

′′ ≤ P tot⋆
b,h,j

′.

Proof. See Appendix 5.G. �

This is an expected result, i.e., when the legitimate channel improves, then it is
reasonable to use more energy in order to get a higher rate. Conversely, when the
eavesdropper’s channel improves, it is better not to use a lot of energy because only low
rates can be obtained. In this case, it is better to conserve energy and wait for a better slot.
The previous theorem is useful to prune the action space in the numerical computation: if
we found the optimal transmission power for a given channel state, we could exploit it as
lower [upper] bound for better [worse] channel states.

We expect that a result similar to Theorem 5.2.9 holds for a generic M > 1. A formal
proof would require to explicitly compute D(P tot;h′, j′;h′′, j′′) and show that it is non-
negative or non-positive (see Appendix 5.G). However, this would require the computation
of an analytical expression for η in Equation (5.2.26). Even though this is in principle
possible for any fixed M , the corresponding expression is very complicated and, in practice,
the resulting D(P tot;h′, j′;h′′, j′′) is too long to be analytically tractable.

5.2.5 Optimal Secrecy Policy with Partial CSI
In the previous sections we assumed that the realizations of H and J , namely h and j,
are known at the transmitter. This may not be true in practice. In particular, it is likely
that, since the eavesdropper does not cooperate with the transmitter, its channel gain is
unknown. In this section we gradually remove these assumptions and discuss how the
achievable secrecy rate changes as a result.

We assume that H = [H(1), . . . , H(M)] and J = [J (1), . . . , J (M)] have independent
components and are independent of each other. In this section we assume that all links

7Note that P ⋆
b,h

′′
,j

′′ and P ⋆
b,h

′
,j

′ depend upon P tot.
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are affected by i.i.d. Nakagami fading. This means that the amplitude of a received signal
has a Nakagami pdf with parameters m and κ, i.e.,

f(x;m,κ) = 2
(
m

κ

)M 1
Γ(m)x

2m−1e− m
κ

x
2
, x ≥ 0, (5.2.28)

Γ(m) ,
∫ ∞

0
e−ttm−1 dt, (5.2.29)

where e is the Napier’s constant. Therefore, H(r) and J (r) exhibit a Gamma distribution.
The pdf of H(r) (with mean h̄(r)) is

f
H

(r)(h;m) =
(
m

h̄(r)

)M 1
Γ(m)h

m−1e
− m

h̄
(r) h, h ∈ R+, m ≥ 1 (5.2.30)

and similarly for J (r) (for presentation simplicity, we assume that the legitimate receiver
and the eavesdropper have the same index m, but the analysis can be extended to a more
general case). Note that m = 1 corresponds to Rayleigh fading and f

H
(r)(h; 1) = 1

h̄
(r) e

−h/h̄
(r)

is an exponential distribution. As m increases, the strength of the line of sight component
increases. For ease of notation, in the remainder of the section we drop the dependence on
m and implicitly assume f

H
(r)(h) = f

H
(r)(h;m).

5.2.5.1 Unknown Eavesdropper’s Channel
In this section, we assume that both the legitimate and the eavesdropper’s channels are
affected by fading but CSI is available only for H. In this case, due to this lack of
information, it may happen that EHD transmits even when the eavesdropper’s channel
gain is higher than the legitimate one.

Similarly to Expression (5.2.21) in the previous section, a policy µ can be defined as

µ = {P b,h , [P (1)
b,h , . . . , P

(M)
b,h ] ∈ P≤(b), ∀b ∈ B, ∀h ∈ H}, (5.2.31)

and similarly for µtot. P b,h represents the transmission power used in state (b,h) (since
j is unknown, it cannot be included in the state of the system). We remark that µ
performs a power control mechanism, i.e., a policy specifies only the transmission power
P b,h. However, in addition to power control, in every slot also the code rate can be changed
(see Section 5.2.2.2). In particular, variable rate coding provides higher secrecy rates than
constant rate coding, but is more difficult to implement. In the following we analyze both
these approaches.8

Constant Rate Coding. The simplest assumption is that the coding scheme has
constant rate and its choice only depends on the overall channel statistics. Using constant
rate coding, the eavesdropper is able to gather more information than the legitimate receiver
when its channel is better. Because of this, for some r, we may have (see Equation (5.2.7))

R
h

(r)
,j

(r)(P (r)
b,h ) < 0. (5.2.32)

8Differently from the complete CSI case of Section 5.2.4, P (r) cannot be set to 0 if h(r) ≤ j
(r) (see

Equation (5.2.26)), thus using constant rate or variable rate coding leads to different results.
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The secrecy rate expression becomes

Cµ =
bmax∑
b=0

πµ
tot(b)

∫
RM

+

∫
RM

+

M∑
r=1

log2

1 + h(r)P
(r)
b,h

1 + j(r)P
(r)
b,h

 M∏
r=1

(
f

G
(r)(h(r))f

H
(r)(j(r))

)
dh dj,

(5.2.33)

Note that in (5.2.33) we integrate both positive and negative terms. The negative
terms are due to the fact that the eavesdropper’s channel may be better than the legitimate
one (j(r) > h(r)).

We now want to extract some properties of the optimal secrecy policy in this context.
We start by performing the following computations, which will be used to extend the first
point of Theorem 5.2.9.

The channel memoryless property can be used to simplify (5.2.33) and recast the
problem using an MDP. By integrating over j, we obtain

Cµ =
bmax∑
b=0

πµ
tot(b)

∫
RM

+

M∑
r=1

T (r)
con(h(r), P

(r)
b,h )

M∏
r=1

f
G

(r)(h(r)) dh. (5.2.34)

T (r)
con(h, P ) ,

∫
R+

log2

(
1 + hP

1 + jP

)
f

H
(r)(j) dj. (5.2.35)

The function T (r)
con(h, P ) is presented in Equation (5.2.36), where Ei(z) = −

∫∞
−z

e
−t

t
dt

is the exponential integral function and si, ti are constants.9

T (r)
con(h, P ) = log2(1 + h P ) + 1

log 2

(
M∑

i=2
s(i) ×

(
P h̄(r)

)i−m

+ e
m

P h̄
(r) Ei

(
− m

P h̄(r)

) M∑
i=1

t(i) ×
(
P h̄(r)

)i−m
)
.

(5.2.36)

A secure transmission can be performed only if Cµ > 0. The maximum of (5.2.34) can
be found with an MDP approach, where the MC state is given by the pair (b,h).

A property, that directly follows from the definitions of T (r)
con(h, P ), is the following.

Proposition 5.2.10. If for P > 0 we obtain T (r)
con(h, P ) < 0, then allocating a power P

over sub-carrier r is strictly suboptimal.

This result is intuitive. Indeed, if T (r)
con(h, P ) < 0 and P > 0, then in (5.2.34) we are

adding negative terms. This is clearly suboptimal because it lowers the secrecy rate and
wastes energy at the same time.

Even if T (r)
con(h, P ) has a complicated expression, as we will see, we are interested in its

double derivative with respect to h and P :

∂2

∂P∂h
T (r)

con(h, P ) = 1
log 2

1
(1 + hP )2 . (5.2.37)

9Closed form expressions for s(i) and t(i) can be derived but are quite complicated. Moreover, we will
see that they do not contribute to our next results.
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We now show that even with partial CSI the optimal secrecy policy increases with the
legitimate channel gain. As for Theorem 5.2.9, the following result can be used to prune
the action space.10

Theorem 5.2.11. Consider M = 1. With partial CSI, the transmission power of OSP is
non-decreasing with h (we omit the “1” subscripts). Formally, if h′′ ≥ h′, then P tot⋆

b,h
′′ ≥

P tot⋆
b,h

′ .

Proof. The proof follows the same steps presented in Appendices 5.B, 5.F, 5.G. To prove
the theorem the key point is that

∂2

∂P∂h
T (r)

con(h, P ) ≥ 0. (5.2.38)

Note that, considering the derivative with respect to P , it follows from (5.2.38) that
∂

∂h
T (r)

con(h, PB) − ∂
∂h
T (r)

con(h, PA) ≥ 0, for PA ≤ PB. We can rewrite the inequality as
∂

∂h

(
T (r)

con(h, PB)− T (r)
con(h, PA)

)
≥ 0 and obtain

T (r)
con(h + ∆, PA)− T (r)

con(h, PA) ≤ T (r)
con(h + ∆, PB)− T (r)

con(h, PB), (5.2.39)

∀∆ ≥ 0 and PA ≤ PB. This condition can be replaced with Equation (5.F.5) in Ap-
pendix 5.F to prove the theorem. �

Variable Rate Coding. Better performance can be obtained with variable rate
coding (see Equations (5.2.5) and (5.2.6)). In this case, in every slot, the code rate is
matched to the legitimate channel rate. Thus, even if h(r) ≤ j(r) (eavesdropper’s channel
is better), the eavesdropper can gather at most R

h
(r) bits (legitimate transmission rate)

and not R
j

(r) (eavesdropper’s transmission rate). The secrecy rate expression is

Cµ =
bmax∑
b=0

πµ
tot(b)

∫
RM

+

∫
RM

+

M∑
r=1

log2

1 + h(r)P
(r)
b,h

1 + j(r)P
(r)
b,h

+
M∏

r=1

(
f

G
(r)(h(r))f

H
(r)(j(r))

)
dh dj,

(5.2.40)

As before, we introduce a function T (r)
var(h, P (r)

b,h ) such that

Cµ =
bmax∑
b=0

πµ
tot(b)

∫
RM

+

M∑
r=1

T (r)
var(h(r), P

(r)
b,h )

M∏
r=1

f
G

(r)(h(r)) dh. (5.2.41)

T (r)
var(h, P ) ,

∫
R+

[
log2

(
1 + hP

1 + jP

)]+

f
H

(r)(j) dj (5.2.42)

=
∫ h

0
log2

(
1 + hP

1 + jP

)
f

H
(r)(j) dj. (5.2.43)

In Equation (5.2.43) we integrate from zero to h, thus we remove the [·]+ notation (see
the structure of Equation (5.2.7) with variable rate coding).

10We provide a formal proof only for the case M = 1 because, even if theoretically possible, the proof
for a generic M > 1 is not analytically tractable (see the related discussion just after Theorem 5.2.9).
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Note that T (r)
var(h, P ) ≥ T (r)

con(h, P ), which justifies the fact that the achievable secrecy
rate with variable rate coding is higher than with constant rate coding.

The analogous of Theorem 5.2.11 holds in this case, as can be proved by exploiting the
structure of the double derivative of T (r)

var(h, P ):

∂2

∂P∂h
T (r)

var(h, P ) = 1
log 2

Γ(m)− Γ
(
m, mh

h̄(r)

)
(1 + hP )2Γ(m)

, (5.2.44)

where Γ(m, z) ,
∫∞

z e−ttm−1 dt is the incomplete gamma function.
5.2.5.2 No Channel State Information
Lower secrecy rates are obtained when also the legitimate receiver’s channel is unknown.
In particular, the transmission power cannot be adapted to the current channel state. It
is easy to show that Cµ can be greater than zero only if ḡ(r) > h̄(r) for some r. However,
the mean values of the channel gains are not controlled by the transmitter (they are
physical quantities), thus if the legitimate channel is (statistically) worse, no secrecy can
be achieved.

5.2.6 Numerical Evaluation
In this section we discuss how the secrecy rate changes as a function of the different system
parameters.

We compare the following scenarios: OSP with Full CSI (OSP-FULL), OSP with only
legitimate channel knowledge and constant rate coding (OSP-PAR-CON) or variable rate
coding (OSP-PAR-VAR) and OSP with only statistical channel knowledge (OSP-STAT).

If not otherwise stated, the simulation parameters are: bmax = 30, truncated geometric
energy arrivals with emax = 6 and ē = 1, n = 15 quantization intervals (see Section 5.2.3.2),
M = 1 (single sub-carrier), ḡ = h̄ = 1 (symmetric scenario), H = J = R+ with m = 1
(Rayleigh fading). Since the slot length is fixed, we will deal with powers instead of energies
and express them in energy quanta without loss of generality. After showing results for
this choice of parameters, we study the sensitivity of the system performance by changing
one or more parameters while keeping the others fixed.
5.2.6.1 Fixed Parameters

Figure 5.6 shows the optimal transmission power P tot⋆
s as a function of the battery level

e when h ∈ [0.41, 0.51) and j ∈ R+. We recall that, when H = J = R+, we use the
technique explained in Section 5.2.3.2, i.e., we have a finite number of points where the
transmission power is computed (n = 15). When j ≥ 0.51, the transmission power is
identically zero because the eavesdropper is always advantaged. Also when j ∈ [0.41, 0.51)
the transmission power is zero. This is not obvious a priori and strongly depends upon
the considered interval of h. It can be seen that Theorem 5.2.9 holds, i.e., P tot⋆

s does
not increase with j. Finally, we note that the behavior of the transmission power is not
obvious a priori, e.g., it is significantly different from a simple greedy policy (P tot⋆

s = b)
even when j is low.

Figure 5.7, instead, shows the steady-state probabilities as a function of the energy level
b, for fixed bmax and in the different scenarios. In all cases, the curves are similar. This is
because the device tends to operate in an efficient region, i.e., approximately at bmax/2.
This is in order to avoid energy outage and overflow, that degrade the performance of the
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Figure 5.6. Transmission power P tot⋆
s as a function of the battery level b for several values

of j and h ∈ [0.41, 0.51).
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Figure 5.7. Steady-state probabilities πµ
tot(b) as a function of the battery level b.

system. When b approaches bmax, the steady-state tails increase because of the overflow
(when the battery is almost full, all harvesting events leading to overflow contribute to
increasing the steady-state probability of state bmax, which is then higher than those of
the immediately lower states).
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Figure 5.8. Secrecy rate Cµ as a function of the battery size bmax in the case of symmetric
channel conditions.

5.2.6.2 Battery Size
In Figure 5.8 we show the rate achieved by the various policies as a function of the battery
size bmax. We use Rayleigh (m = 1) and a general Nakagami fading with a strong Line of
Sight (LoS) component (m = 5). The curves of OSP-STAT are identically zero because
h̄ = j̄. As expected, OSP-FULL has the highest secrecy rate for every value. It can be
seen that the curves saturate after a certain value. This is due to the combination of two
effects: 1) the harvesting rate of the EHD is limited (it can be shown that the performance
of an EH system is bounded) and 2) the achievable secrecy rate always saturates in the
high power regime (because of the structure of Equation (5.2.7)). Note that the curves
saturate already for small bmax, therefore, in practice, it may be sufficient to use small
batteries to obtain high secrecy rates.

In [42, Section IV-B] the authors showed that, when the transmission is subject to
an average power constraint, the performance of the optimal transmission scheme with
variable rate coding and partial CSI knowledge approaches the performance of the full
CSI case when the transmission power is sufficiently high. In our previous example, OSP-
PAR-VAR does not achieve OSP-FULL when bmax increases because an energy harvesting
system imposes an average power constraint ē.11 It can be verified that, when ē increases,

11This can be easily derived starting from the causality constraint

K−1∑
k=0

M∑
r=1

Σ(r)
k ≤ b0 +

K−2∑
k=0

ek, ∀K = 0, 1, . . . (5.2.45)

where, according to Equation (5.2.11), Σ(r)
k is the transmission power over sub-carrier r in time slot k,

ek is the amount of energy harvested in slot k and b0 is the amount of energy initially available in the
battery. In the long run, the right-hand side becomes the power constraint of our system.
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Figure 5.9. Secrecy rate Cµ as a function of the battery size bmax in the case of asymmetric
channel conditions and Rayleigh fading.

if the battery size is sufficiently large, the gap between OSP-PAR-VAR and OSP-FULL is
smaller.

Note that the achievable secrecy rates strongly depend upon the fading statistics. With
m = 5, we have strong LoS components, i.e., the channel pdfs tend to be narrow around
their means (h̄ = j̄). It follows that the legitimate and eavesdropper’s channel gains are
close to each other most of the time. This corresponds to low values of R

h
(r)

,P
(r)(P (r)),

thus a low secrecy rate. With Rayleigh fading, instead, exploiting channel diversity allows
to obtain higher rewards. This is also the reason why, with Rayleigh fading, full channel
state information (OSP-FULL) provides a great improvement with respect to the partial
knowledge cases.

Figure 5.9 is similar to the previous one but with asymmetric channel gains. When the
eavesdropper is advantaged (h̄ = 1, j̄ = 2), even if low performance can be achieved, secret
transmission is still possible. When OSP-PAR-CON is used, it is likely that EHD transmits
even when the eavesdropper’s channel is better and in this case, from Equation (5.2.34), the
secrecy rate is lower. This effect is emphasized if the eavesdropper’s channel is advantaged,
because it is more likely that the legitimate channel is the worse of the two.

On the other hand, if the legitimate channel is better (h̄ = 2, j̄ = 1), the secrecy rate
can reach high values. In this case, OSP-STAT is also considered and, as expected, is the
worst among the optimal policies.
5.2.6.3 Number of Sub-Carriers
When M = 1, finding the optimal policies for high values of n (fine quantization of the
channel gains) is feasible. We recall that the number of states of the MC is directly
proportional to the number of possible combinations of channel gains. Thus, with M = 1,
the possible combinations are n× n (legitimate channel × eavesdropper’s channel). With
a generic M , the combinations become nM × nM . Thus, the number of states grows
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Figure 5.10. Secrecy rate Cµ as a function of the number of sub-carriers M .

exponentially with the number of sub-carriers, making the optimization process for high
M infeasible in practice (curse-of-dimensionality). Even when the problem symmetry can
be exploited (when H(r) and J (r) are i.i.d.), the computational effort still remains heavy.
In pratice, this approach can be applied to multi-carrier scenarios if the number of carriers,
M , and the number of quantization levels for the channel, n, are not too large. Note
however that our solution suffers from a dimensionality problem because it is the optimal
solution. Part of our future work agenda may include the design of suboptimal schemes
and the study of trade-offs between computational times and performance.

In the following, as an example, we consider a discrete GOOD-BAD channel and
discuss the importance of the power splitting scheme. We define H = J = {B,G} =
{1/30, 3/30} = {−15 dB,−10 dB} with probabilities 0.7 and 0.3, respectively. We also set
bmax = 10 because, generally, the saturation region is almost reached for this battery size
(see Figures 5.8 and 5.9). In Figure 5.10, we plot OSP-FULL as a function of the number of
sub-carriers M when the optimal (Equation (5.2.26)) or a uniform power splitting is used.
In the optimal case, as M increases, the reward also increases. This is expected because,
when one user experiences a bad channel condition, then the power can be directed to
other good sub-carriers. Instead, with uniform power splitting, the secrecy rate decreases
with M . In practice, this happens because, instead of sending all the transmission power in
the “good” sub-carriers, a fraction of this is wasted in the “bad” sub-carriers. For example,
with M = 2, it may happen that over sub-carrier 1 the pair legitimate-eavesdropper’s
channel gain is (G,B) whereas, for sub-carrier 2, the pair is (B,B), i.e., sub-carrier 1 is
a “good” sub-carrier while sub-carrier 2 is not. In this case, if a positive transmission
power were used, the corresponding reward would be greater than zero but the power sent
over sub-carrier 2 would be wasted (only when the two pairs are (G,B) and (G,B), is no
power wasted during the transmission). This explains why the performance degrades as
the number of sub-carriers increases. Moreover, the effect is emphasized with larger M
because there are more cases where the transmission power cannot be fully exploited.
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Figure 5.11. Secrecy rate Cµ of OSP-FULL as a function of the eavesdropper’s BAD
channel probability in a binary channel system.

When the legitimate and the eavesdropper’s channel gains are known in every slot,
using a smart power splitting scheme is convenient because it can significantly improve the
network performance. If this is not possible (e.g., because this information is not available
or not reliable), a suboptimal strategy needs to be adopted, e.g., uniform power splitting,
which is simpler to implement but yields lower performance in general. The study of the
information/performance trade-off for power splitting strategies is left for future work.

Finally, Figure 5.11 shows how the optimal secrecy rate changes as a function of
P(h1 = B) = P(h2 = B) ∈ [0, 1] for different numbers of sub-carriers. It can be noticed
that the case with five sub-carriers and P(h1 = B) = 0.2 achieves the same performance as
the system with only one sub-carrier but P(h1 = B) = 1. In practice, the diversity offered
by a greater number of sub-carriers can be efficiently exploited to obtain higher secrecy
rates. An interesting point is that, as M increases, the improvement obtained from M to
M + 1 decreases. This is due to the concavity properties of Equation (5.2.8). Therefore, it
may not be necessary to use a large number of sub-carriers to obtain high secrecy rates.

5.2.7 Conclusions of Section 5.2
In the second part of this chapter we analyzed an energy harvesting device that has a
finite energy storage and transmits secret data to a receiver over M parallel channels
exploiting physical layer characteristics. We found the best power allocation technique,
namely the Optimal Secrecy Policy (OSP), in several contexts depending on the degree of
channel knowledge the device has. We proved several properties of OSP and in particular
that it is deterministic and monotonic. We also described a technique to compute OSP
by decomposing the problem in two steps and using a dynamic programming approach.
When only partial channel state information is available, we described how the maximum
secrecy rate varies with constant and variable rate coding, explaining and numerically
evaluating the advantages of variable rate coding. We numerically showed that, because



5.A Proof of Proposition 5.1.1 145

of the limited harvesting rate that is inherently provided by the renewable energy source,
OSP-PAR-VAR does not achieve the same performance of OSP-FULL as the battery size
increases, and noted that it is not necessary to use very large batteries to achieve close
to optimal performance. We also set up the problem when more than one sub-carrier
is considered, and discussed the scalability problems related to such scenario. Also, we
found that using the optimal power splitting scheme provides a significant advantage with
respect to the simpler uniform splitting approach.

Future work may include the study of suboptimal strategies for the case with N sub-
carriers in order to avoid the curse-of-dimensionality problem. Also, other optimization
techniques can be investigated, e.g., offline approach, Lyapunov optimization or reinforce-
ment learning approach. Finally, it would be interesting to set up a simulation experiment
with real data measurements (e.g., for the harvesting process) in order to validate our
results in a realistic scenario.

Appendix 5.A Proof of Proposition 5.1.1
The energy causality constraint imposes

k∑
i=0

Pi ≤
1
τTX

k−1∑
i=0

ei, ∀k = 0, 1, 2, . . . (5.A.1)

that immediately leads to the upper bound g(ē/τTX) as k grows to infinity [90]. However,
in the case of storage losses, the previous inequality can be changed as follows in order to
provide a better upper bound. The slot evolution is as follows

b0 = 0 =⇒ P0 = 0,
b1 = yT (e0, b0) =⇒ P1 ≤ yT (e0, b0)/τTX,

b2 = yT (e0, b0) + yT (e1, b1)− τTXP1 =⇒ P1 + P2 ≤ (yT (e0, b0) + yT (e1, b1))/τTX,

...

bk =
k−1∑
i=0

yT (ei, bi)− τTX

k−1∑
i=0

Pi =⇒
k∑

i=0
Pi ≤

1
τTX

k−1∑
i=0

yT (ei, bi), k > 0.

In order to obtain a simple upper bound, we remove the terms Ei from the previous
equation, assuming that they are always chosen optimally. Obviously, in the general case
this is not possible and this is why, with this assumption, we only obtain an upper bound

k∑
i=1

Pi ≤
1
τTX

k−1∑
i=1

y⋆
T (Bi), ∀k = 1, 2, . . . (5.A.2)

With the previous equation, by exploiting the concavity of g, we obtain the upper
bound (5.1.9).
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Appendix 5.B Proof of Theorem 5.2.1
We want to show that OSP is a deterministic policy, i.e., given the state of the system,
µ(P ; b,h, j) = δP ,P

⋆
b,h,j

, where δ·,· is the Kronecker delta function.12

Note that the study can be split into two parts according to Equation (5.2.17). Thus, we
only need to prove that both γµ(P tot; b,h, j) (transmit power policy) and φµ(P ;P tot, b,h, j)
are deterministic. In the following we prove the first part. The latter is derived in [42].

5.B.1 Deterministic Transmit Power Policy
As a preliminary result, we need the following proposition (in this subsubsection, the
expectation is always taken with respect to H and J).

Proposition 5.B.1. P(bk = b|b0) depends upon the policy only through E[γµ(P tot; b,H ,J)],
∀P tot ∈ {0, . . . , b}, ∀b ∈ B.

Proof. The proof is by induction on k. At k = 0, P(b0 = b|b0 = b0) is equal to 1 if b = b0
and to 0 otherwise. In this case there is no dependence upon the policy.

Assume that the thesis is true for k (inductive hypothesis). Using the chain rule, the
probability that bk+1 = b′ given the initial state is

P(bk+1 = b′|b0) =
bmax∑
b=0

P(bk+1 = b′|bk = b)× P(bk = b|b0). (5.B.1)

Thus, to prove the thesis, we focus on P(bk+1 = b′|bk = b), whereas for P(bk = b|b0)
we use the inductive hypothesis. Assume b′ < bmax (P(e) is the probability of gathering e
energy quanta via the EEH interface)

P(bk+1 = b′|bk = b) =
min{b

′
,emax}∑

e=max{0,b
′−b}

P(e)E[γµ(b− b′ + e; b,H ,J)], (5.B.2)

whereas, if b′ = bmax

P(bk+1 = bmax|bk = b) =
emax∑

e=max{0,bmax−b}
P(e)

b−bmax+e∑
d=0

E[γµ(d; b,H ,J)]. (5.B.3)

Note that we used the transmit power policy γµ(·) and not the power allocation policy
µ(·). Indeed, the battery evolution does not depend upon the particular power splitting
scheme but only on the total energy consumed. Thus, P(bk+1 = b′|b0) depends upon the
policy only through the expectations E[γµ(P tot;Ek,H ,J)]. �

Define now the long-term probabilities of being in the energy level e given the initial level
b0 as π(b|b0) = lim infK→∞

1
K

∑K−1
k=0 P(bk = b|b0). Thanks to the above proposition, we know

that π(b|b0) depends upon the policy only through E[γµ(P tot; b,H ,J)], ∀P tot ∈ {0, . . . , b},
∀b ∈ B.

Fix a value α(P tot; b) for every pair P tot and b, and consider the set of policies Ξ that
induce E[γµ(P tot; b,H ,J)] = α(P tot; b) for every pair. For every policy in Ξ, the long-term

12A proof of this result in the discounted horizon case can be found in [122, Theorems 6.2.9 and 6.2.10].
In our discussion we follow a different approach which will also be useful to prove Proposition 5.2.8.
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probabilities are the same. The long-term average secrecy rate given an initial state b0
can be expressed as in Equation (5.2.16)

Cµ(b0) =
∑
b∈B

π(b|b0)× E
[ ∑

P ∈P≤(b)
µ(P ; b,H ,J)c(P ,H ,J)

]
. (5.B.4)

For every policy in Ξ, the terms π(b|b0) of the previous expression are the same.
Therefore, in order to maximize Cµ(b0), we focus on the terms E[·] for each value of b. In
particular, the problem can be decomposed in bmax + 1 simpler optimization problems
(according to (5.2.13), define µ(b) , {µ(·; b,h, j), ∀h ∈ H, j ∈ J})

max
µ(b)

E
[ ∑

P ∈P≤(b)
µ(P ; b,H ,J)c(P ,H ,J)

]
, (5.B.5a)

s.t.:
Constraints in (5.2.15); (5.B.5b)
E[γµ(P tot; b,H ,J)] = α(P tot; b), ∀P tot ∈ {0, . . . , b}. (5.B.5c)

We rewrite the first expression as follows

max
µ(b)

E
[ ∑

P
tot∈{0,...,b}

γµ(P tot; b,H ,J)×
∑

P ∈P=(P tot)

φµ(P ;P tot, b,h, j)c(P ,H ,J)
]
. (5.B.6)

where P=(P tot) , {P : P ≽ 0, P tot = ∑M
r=1 P

(r)}. As derived in [42, Eq. 7] with a
Lagrangian approach, φµ(P ;P tot, b,h, j) = δP ,τ

⋆

P
tot

,h,j

(φµ(·) is deterministic and there is
no dependence upon b when P tot is fixed). τ ⋆

P
tot

,h,j
is the optimal transmit power splitting

given the total transmission power P tot and the channel gains (we use τ instead of P for
notation clarity). Therefore, we can rewrite (5.B.6) as

max
γµ(b)

E
[ ∑

P
tot∈{0,...,b}

γµ(P tot; b,H ,J)c(τ ⋆
P

tot
,H,J

,H ,J)
]
. (5.B.7)

For every fixed b, we want to define γµ(b) , {γµ(·; b,h, j), ∀h ∈ H, j ∈ J}. Note
that the problem is concave, thus a Lagrangian approach can be used. The Lagrangian
function is

L(b) = E
[ ∑

P
tot∈{0,...,b}

γµ(P tot; b,H ,J)×
(
c(τ ⋆

P
tot

,H,J
,H ,J)− λ(P tot; b)

)]
, (5.B.8)

where λ(P tot; b) is the Lagrange multiplier associated with constraint E[γµ(P tot; b,H ,J)] =
α(P tot; b).
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We now show that an optimal policy is γµ(P tot; b,h, j) = 1 if P tot = P tot
b,h,j

⋆ and zero
otherwise, with

P tot
b,h,j

⋆ = arg max
P

tot∈{0,...,b}

{
c(τ ⋆

P
tot

,h,j
,h, j)− λ(P tot; b)

}
. (5.B.9)

In order to maximize Equation (5.B.8), we can focus on each argument of the expecta-
tion

max
γµ(P tot;b,h,j),
∀P

tot∈{0,...,b}

∑
P

tot∈{0,...,b}

γµ(P tot; b,h, j)×
(
c(τ ⋆

P
tot

,h,j
,h, j)− λ(P tot; b)

)
︸ ︷︷ ︸

u(P tot
,b,h,j)

. (5.B.10)

We recall that ∑P
tot∈{0,...,b} γµ(P tot; b,h, j) = 1. (5.B.10) is a weighted sum that is

maximized when γµ(P tot; b,h, j) = 1 if P tot = P tot
b,h,j

⋆ and zero otherwise. Indeed, suppose
by contradiction that there exist P tot′ and P tot′′ (the argument can be generalized to
more than two) such that γµ(P tot′; b,h, j) > 0, γµ(P tot′′; b,h, j) > 0 and γµ(P tot′; b,h, j) +
γµ(P tot

B ; b,h, j) = 1. The max argument in (5.B.10) would be γµ(P tot′; b,h, j)u(P tot′
, b,h, j)+

(1− γµ(P tot′; b,h, j))u(P tot′′
, b,h, j), which is smaller than or equal to u(P tot

b,h,j
⋆
, b,h, j).

Appendix 5.C Proof of Proposition 5.2.3
The MC has three dimensions: the battery, the legitimate channel and the eavesdropper’s
channel. Since the fading is not controlled by the EHD, the MC is always free to move
along the last two dimensions (we assume that the channel evolution is i.i.d. over time).
Thus, the only potential problem is related to the battery dimension, i.e., if the policy is
not unichain, the device energy level may be stuck in different subsets of E.

Also, we recall that we consider only discrete channel conditions with non-zero proba-
bility (Remark 5.2.3.2). We now discuss Point 1). We want to show that the recurrent
class is composed by the states with high energy levels, i.e., for every b < bmax, there exists
a positive probability of increasing the energy level. This is true by hypothesis because
the maximum transmit power in state b is lower than the maximum number of energy
arrivals emax (P tot

b,h
′
,j

′ < emax). Therefore, since it is possible to reach the energy level bmax
(fully charged battery) within a certain number of steps from every state, the policy is
unichain. To prove Point 2), a symmetric reasoning can be followed.

If both conditions hold, it is possible to reach every b ∈ B from any element of B,
thus the policy induces an irreducible MC. Since the number of states is finite, the MC is
positive recurrent.

Appendix 5.D Deriving a Unichain Policy
As in Appendix 5.C, it is always possible to move along the channel dimensions. Therefore,
we focus on the battery dimension, which represents the only limitation for obtaining a
unichain policy.

Consider a policy µA that has two recurrent classes, namely Π′
A and Π′′

A (this approach
can be generalized to more than two classes) and assume, without loss of generality, that if
b0 ∈ Π′′

A the greatest long-term reward is reached. We now propose a technique to derive a
new policy that, regardless of the initial state, achieves the same maximum reward of µA.
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Consider a second policy, namely µB, obtained from µA as follows. For every bA =
0, . . . ,max{Π′′

A}, set P
µB
bB ,h,j = P

µA
bA,h,j, with bB = bA + bmax −maxe{Π′′

A}, i.e., we shift the
recurrent class Π′′

A toward higher energy levels (we name Π′′
B the new recurrent class).

For bB ∈ {0, . . . , bmax −max{Π′′
A} − 1}, set P

µB
bB ,h,j = 0. In this way, the device cannot

be stuck in energy levels lower than bmax − |Π′′
B|+ 1 (the harvested energy increases the

battery level) and, after a certain number of transitions, it reaches the recurrent class Π′′
B.

Finally, since the power splitting vectors in the recurrent classes Π′′
A and Π′′

B coincide, µB

achieves the same maximum reward of µA, regardless of the initial b0.
This proves that it is always possible to obtain a unichain policy with the same

maximum long-term secrecy rate as the initial one and shows how to derive it.

Appendix 5.E Proof of Theorem 5.2.6
Problem (5.2.12) can be rewritten using (5.2.22) in the following form:

max
µ

Cµ = max
µ

tot
max

µ∈X(µtot)
Cµ (5.E.1)

X(µtot) , {µ : µtot and µ are consistent}, (5.E.2)

i.e., we fix the transmission powers (outer “max”) and focus on all the policies which are
consistent with such choice (inner “max”). This is equivalent to searching through all the
possible feasible policies (as in (5.2.12)).

Consider the expression of Cµ in Equation (5.2.23) and note that πµ
tot(b) does not

depend upon the particular power splitting scheme, but only upon µtot. Thus, the inner
“max” can be moved inside the integral

max
µ

tot

( bmax∑
b=0

πµ
tot(b)×

∫
H×J

max
µ∈X(µtot)

(
c(P b,h,j,h, j)

)
dF (h, j)

)
. (5.E.3)

Note that inside the integral b, h and j are fixed. Therefore, the only degree of freedom
in the inner “max” operation is given by the power splitting choice P b,h,j.

Since µtot and µ are consistent, in the inner “max” we have P b,h,j ∈ P=(P tot
b,h,j) (specified

in (5.2.24)). Therefore,

max
µ∈X(µtot)

(
c(P b,h,j,h, j)

)
≡ Problem (5.2.24) with x = P tot

b,h,j (5.E.4)

Thus, Points 1) and 2) of the theorem solve the internal and external “max” operations,
respectively.

Appendix 5.F Proof of Proposition 5.2.8
The proof exploits the results of Appendix 5.B, and in particular Equation (5.B.9). Also,
we focus on the energy levels in the unique recurrent class (for the transient states the
proposition is trivial to prove since P tot⋆

b,h
′
,j

′ is always zero).
Assume that P tot′

, P tot⋆
b,h

′
,j

′ is the optimal transmission power given the state of
the system (b,h′, j′), i.e., P tot⋆

b,h
′
,j

′ = arg maxP
tot∈{0,...,b}{c(τ

⋆
P

tot
,h

′
,j

′ ,h′, j′)− λ(P tot; b)} (we
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remark that τ ⋆
P

tot
,h

′
,j

′ is the optimal power splitting vector given P tot and the channel
gains). Similarly, P tot′′

, P tot⋆
b,h

′′
,j

′′ is the optimal power for state (b,h′′, j′′).
We first show by contradiction that if D(P tot;h′, j′;h′′, j′′) ≥ 0, ∀P tot, then P tot′′

≥
P tot′

. Assume P tot′
> P tot′′

. We now derive some properties of P tot′
and P tot′′

and combine
these with the hypothesis to obtain the contradiction. From the definitions of P tot′

and
P tot′′

, we have

c(τ ⋆

P
tot′

,h
′
,j

′ ,h
′, j′)− λ(P tot′

; b) ≥ c(τ ⋆

P
tot′′

,h
′
,j

′ ,h
′, j′)− λ(P tot′′

; b), (5.F.1)

c(τ ⋆

P
tot′′

,h
′′

,j
′′ ,h

′′, j′′)− λ(P tot′′
; b) ≥ c(τ ⋆

P
tot′

,h
′′

,j
′′ ,h

′′, j′′)− λ(P tot′
; b). (5.F.2)

By hypothesis, we have, for every P tot,

∂

∂P tot

(
c(τ ⋆

P
tot

,h
′′

,j
′′ ,h′′, j′′)− c(τ ⋆

P
tot

,h
′
,j

′ ,h′, j′)
)
≥ 0. (5.F.3)

Assume that the inequality is strict. This implies, for every PA < PB

c(τ ⋆
PA,h

′′
,j

′′ ,h′′, j′′)− c(τ ⋆
PA,h

′
,j

′ ,h′, j′) < c(τ ⋆
PB ,h

′′
,j

′′ ,h′′, j′′)− c(τ ⋆
PB ,h

′
,j

′ ,h′, j′). (5.F.4)

In particular, since P tot′
> P tot′′

, choose PA = P tot′′
and PB = P tot′

and obtain

c(τ ⋆

P
tot′′

,h
′′

,j
′′ ,h

′′, j′′)− c(τ ⋆

P
tot′′

,h
′
,j

′ ,h
′, j′) < c(τ ⋆

P
tot′

,h
′′

,j
′′ ,h

′′, j′′)− c(τ ⋆

P
tot′

,h
′
,j

′ ,h
′, j′).
(5.F.5)

Finally, by combining (5.F.2) with (5.F.5), we obtain

c(τ ⋆

P
tot′

,h
′′

,j
′′ ,h

′′, j′′)− λ(P tot′
; b) + λ(P tot′′

; b)

≤ c(τ ⋆

P
tot′′

,h
′′

,j
′′ ,h

′′, j′′)

< c(τ ⋆

P
tot′

,h
′′

,j
′′ ,h

′′, j′′)− c(τ ⋆

P
tot′

,h
′
,j

′ ,h
′, j′) + c(τ ⋆

P
tot′′

,h
′
,j

′ ,h
′, j′),

(5.F.6)

which is equivalent to

c(τ ⋆

P
tot′

,h
′
,j

′ ,h
′, j′)− λ(P tot′

; b) < c(τ ⋆

P
tot′′

,h
′
,j

′ ,h
′, j′)− λ(P tot′′

; b), (5.F.7)

and violates Equation (5.F.1), leading to a contradiction.
Assume now that (5.F.3) holds with equality. Following the previous reasoning, we

obtain

c(τ ⋆

P
tot′′

,h
′′

,j
′′ ,h

′′, j′′)− c(τ ⋆

P
tot′′

,h
′
,j

′ ,h
′, j′) = c(τ ⋆

P
tot′

,h
′′

,j
′′ ,h

′′, j′′)− c(τ ⋆

P
tot′

,h
′
,j

′ ,h
′, j′)
(5.F.8)
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and, instead of (5.F.7),

c(τ ⋆

P
tot′

,h
′
,j

′ ,h
′, j′)− λ(P tot′

; b) ≤ c(τ ⋆

P
tot′′

,h
′
,j

′ ,h
′, j′)− λ(P tot′′

; b), (5.F.9)

Inequality (5.F.9) must be satisfied with equality, otherwise it would violate (5.F.1).
This means that, for the same state (b,h′, j′), there exist two distinct values of P tot (i.e.,
P tot′

and P tot′′
) that maximize (5.B.9). This is not possible because in the recurrent states

the optimal solution is unique [14, Vol. II, Sec. 4].
The first point of Proposition 5.2.8 is thus proved. The proof of the second point is

symmetric.

Appendix 5.G Proof of Theorem 5.2.9
We want to prove that, for OSP and M = 1, P tot⋆

b,h,j does not decrease with h and does not
increase with j.

D(P tot; h′, j′; h′′, j′′) can be written as

D(P tot; h′, j; h′′, j) = ∂

∂P tot

[log2

(
1 + h′′P tot

1 + jP tot

)]+

−
[
log2

(
1 + h′P tot

1 + jP tot

)]+ . (5.G.1)

Assume h′′ ≥ h′. If h′′ ≤ j, then both terms are zero because h′ ≤ h′′ ≤ j. If
h′ ≤ j < h′′, then only the right term is zero. In this case, D(P tot; h′, j; h′′, j) ∝ h′′−j > 0.
If j < h′ ≤ h′′, then D(P tot; h′, j; h′′, j) ∝ h′′ − h′ ≥ 0.

The proof of the second part is similar.





CHAPTER 6

Conclusions

In this thesis, we investigated how Environmental Energy Harvesting (EEH) and Wireless
Energy Transfer (WET) can be used to improve the lifetime of the devices in wireless
networks. We studied the problem from a communications point of view, introducing
optimal and suboptimal policies that define when the nodes should transmit and their
transmission parameters. Our results are always based on a dynamic programming
framework, in which a Markov Chain (MC) models the battery evolution of the devices.

We focused on several different scenarios with EH capabilities. In particular, we
studied and analyzed the centralized and decentralized networks with more than one
energy harvesting device and their interrelations, the energy cooperation paradigm in
which EEH and WET are used jointly, the wireless powered communication networks, the
impact of data storage inefficiencies on the optimal policies, and finally we investigated
how to maximize the secrecy rate of a communication link using optimal secrecy policies.

Although the model we presented in every chapter is different, they all share some
common features. For example, the nodes are always battery-equipped and batteries evolve
according to a random process related to EEH or WET; the performance of the networks
is generally evaluated in the long run, so that we do not focus on greedy approaches that
only take into consideration the current slot; the policies we introduced are online and
thus they are causal, i.e., they do not require precise knowledge about the future and
therefore can be used in practice.

Although different conclusions apply to each chapter, there are also some common
considerations that can be made. For example, the performance of the networks saturates
as the battery sizes increase; this implies that it is not necessary to equip the devices with
very large batteries to achieve high performance. Another interesting aspect is that, in
many cases, the optimal policy can be replaced by simpler ones that are easier to compute
but still achieve high rewards (e.g., the balanced policy, the low-complexity policy, the
policy derived via the approximate value iteration algorithm, the WCSP-based policy, etc.);
this feature is fundamental in practice and can be considered as an important starting
point for future work.
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Other Publications
In addition to the main topics presented in Chapters 3-5, our research activity also covered
several other themes which are briefly summarized below.

Exploiting Channel State Information for Distributed Active State
Tracking
Distributed estimation is a common application in Wireless Sensor Networks (WSNs) and
in the Internet of Things (IoT) in which different devices collaborate to detect a common
underlying state of a system. Indeed, due to the dense nature of these networks, limited
individual computational capabilities, and energy availability of the devices, data from
multiple sensors can be combined to improve tracking accuracy [9, 153]. Among all the
physical quantities that can be exploited for state estimation and tracking, the use of
Channel State Information (CSI) has been studied only marginally to date. Indeed, most
of the previous works only focused on certain contexts (e.g., target localization [118]), or
channel-aware applications [23], but did not investigate how the channel is influenced by
the underlying state of the system. Nevertheless, in many scenarios, the channel does
depend on the state of the system, therefore CSI can be directly used for tracking. Our goal
in [J8] and [C10] is to exploit this behavior, in addition to standard sensor measurements,
to improve the tracking performance of the system.

In particular, our papers extend the framework of [173] to consider CSI; however,
this model extension necessitates new methods to analyze the resulting POMDP and to
develop complexity reduction techniques. The main contributions of the papers can be
summarized as follows. We set up a distributed estimation model in which, at every time
step, a set of sensors is chosen to track the underlying state of the system and report the
measurements to a fusion center through a wireless communication channel. The optimal
performance in terms of tracking quality and energy consumption is derived exploiting
a Partially Observable Markov Decision Process (POMDP) framework for the infinite
horizon setup, so that only a stationary scheduler needs to be stored in the nodes. We
assume that the sensors are passive (i.e., they do not influence the underlying state) and
heterogeneous in terms of: sensing cost, quality of the measurements and communication
channel quality. As in [141, 173], and differently from most previous works [11, 25, 68–70]
we consider an energy constrained fusion center. Since using the channel as an additional
source of information adds a layer of complexity, we simplify the problem in different steps.
First, with the goal of reducing the size of the belief space [130], we prove and then exploit
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the concavity properties of the cost-to-go function to characterize a lower bound [137].
This, in conjunction with an upper bound can be used to derive the performance of the
optimal sensing strategy. These bounds are instrumental in determining lower complexity,
near optimal strategies. Then, we decompose the tracking procedure into a simpler set of
operations and cast a multi-dimensional problem as a set of simpler lower-dimensional
sub-problems. Finally, we propose a suboptimal greedy technique which further simplifies
the optimization process. Numerical results support the importance of considering channel
and measurements jointly and validate our theoretical results. In particular, we compare
our new method with another without CSI (this is similar to the one proposed in [173]) and
show that the channel information can improve the estimation capabilities of the system
by a factor of two. While we use the Wireless Body Area Network (WBAN) scenario
as an exemplar for the numerical evaluations, the proposed model adopts very general
assumptions and the theoretical framework can be applied to a large variety of applications
(e.g., object tracking, indoor environmental monitoring, etc.).

Acknowledgment. This activity is the result of a collaboration with Prof. Urbashi
Mitra, Ming Hsieh Department of Electrical Engineering, University of Southern California,
Los Angeles.

On the Energy/Distortion Trade-off in the IoT
The presence of many battery-powered sensors in the Internet of things paradigm appeals
for the design of energy-aware protocols. Source coding techniques make it possible to
save some energy by compressing the packets sent over the network, but at the cost of a
poorer accuracy in the representation of the data. Our paper [J5] addresses the problem
of designing efficient policies to jointly perform processing and transmission tasks. In
particular, we aim at defining an optimal scheduling strategy with the twofold goal of
extending the network lifetime and guaranteeing a low overall distortion of the transmitted
data. We propose a Time Division Multiple Access (TDMA)-based access scheme that
optimally allocates resources to heterogeneous nodes. We use realistic rate-distortion
curves to quantify how compression impacts on the data quality and propose a complete
energy model that includes the energy spent for processing and transmitting the data, as
well as the circuitry energy costs. We consider both full and statistical knowledge of the
wireless channels, and derive optimal policies for the two cases. The overall problem is
structured in modules and solved through convex and alternate programming techniques.
Finally, we thoroughly evaluate the proposed algorithms and the influence of the design
variables on the system performance adopting parameters of real sensors.
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Multicast via Point to Multipoint Transmissions in Directional
5G mmWave Communications
Sustaining the increasing demand of new communication services, especially those driven
by multimedia applications (e.g., mobile video), is becoming very difficult with traditional
microwave wireless transmissions. On the other hand, in the past few years, new studies
on the propagation characteristics of millimeter wave (mmWave) frequencies as well as
advances in the hardware design of RF components have shown that using mmWave
bands for the new fifth generation of cellular systems is actually feasible [125]. The new
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communication frequencies in the mmWave spectrum go from tens to hundreds of GHz (e.g.,
30− 300 GHz). The consequences of such changes are huge and involve both the available
bandwidth, which can be impressively increased, and the design of new devices in which
it may be possible to install large arrays of antennas thanks to their reduced dimension.
However, to fully exploit the benefits of this new technology, the communication layer has
to be redefined, as mmWave links are substantially different from traditional ones.

On the other hand, a well known technique to increase the bandwidth efficiency
in traditional communication is the use of multicast. Multicast links, by exploiting the
properties of point-to-multipoint wireless communications, allow one device (e.g., the access
point) to transmit the same information to many devices (e.g., smart phones, tablets,
smart TVs, etc.) simultaneously using the same band, modulation and coding scheme.
This technique can be naturally exploited in the microwave spectrum, as a transmission is
generally omnidirectional. However, its application to directional communication links,
such as those at mmWave, poses new challenges, that have been studied only marginally
to date.

The goal of our papers [J7] and [C15] is to describe how multicast can be realized
in a mmWave system, with particular focus on the design of the transmission beams and
retransmissions. We focus on an analytical model that captures the trade-off between
transmitting more redundancy and consuming more resources at the access point using
directional communications. Our results show that, despite the difficulties due to direction-
ality, it is possible to use multicast with mmWaves and that by doing so the performance
of the system is significantly improved with respect to sequential unicast schemes.

Spreading and Repetitions in Satellite MAC Protocols
Supporting networks with a large number of devices which generate sporadic data (e.g.,
wireless sensor networks, monitoring applications, position reporting, signaling, etc.) is a
key issue in satellite communications. In this kind of scenario, contention free protocols,
e.g., Demand Assignment Multiple Access (DAMA) [73], do not provide good performance
because of their high overhead. Instead, random access schemes, in which users are not
coordinated and collisions may occur, are well suited for uploading packets from ground
nodes to a common satellite receiver and are recognized as one of the most appealing
solutions. In the past few years, the well-known Aloha protocol has been improved and
several new schemes have been proposed. The main focus was on diversity slotted Aloha-
like protocols [21, 22, 28, 81, 115] and spread spectrum techniques [2, 32, 117]. The goal
of our paper [C9] is to study and combine these two approaches. In particular, we discuss
the trade-offs between replicas and spreading by combining the two paradigms in a hybrid
Asynchronous Contention Resolution Diversity Aloha (ACRDA) [28] protocol. Practically,
our algorithm uses the ACRDA scheme and spreads the replicas in order to further reduce
the packet loss rate. The result is a highly tunable protocol which can be dynamically
adapted to the requirements of different devices (e.g., in terms of power) as well as to
the current traffic conditions. The new technique is shown to perform better than the
traditional ACRDA or Enhanced Spread Spectrum Aloha (E-SSA) [32] protocols in terms
of packet loss rates when the offered traffic is low (stable region).
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Non-Orthogonal Multiple Access Schemes in Wireless Powered
Communication Networks
In our paper [C14] we characterize time and power allocations to optimize the sum-
throughput of a Wireless Powered Communication Network (WPCN) with Non-Orthogonal
Multiple Access (NOMA). In our setup, an Energy Rich Node (ERN) broadcasts wireless
energy to several devices, which use it to simultaneously transmit data to an Access
Point (AP) in uplink. Differently from most prior works, in [C14] we consider a generic
scenario, in which the ERN and AP do not coincide, i.e., are two separate entities. We
study two NOMA decoding schemes, namely Low Complexity Decoding (LCD) and
Successive Interference Cancellation Decoding (SICD). For each scheme, we formulate a
sum-throughput optimization problem over a finite horizon. Despite the complexity of the
LCD optimization problem, due to its non-convexity, we recast it into a series of geometric
programs. On the other hand, we establish the convexity of the SICD optimization problem
and propose an algorithm to find its optimal solution. Our numerical results demonstrate
the importance of using successive interference cancellation in WPCNs with NOMA, and
show how the energy should be distributed as a function of the system parameters.
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