117 research outputs found

    Robust Object Tracking by Nonlinear Learning

    Get PDF
    We propose a method that obtains a discriminative visual dictionary and a nonlinear classifier for visual tracking tasks in a sparse coding manner based on the globally linear approximation for a nonlinear learning theory. Traditional discriminative tracking methods based on sparse representation learn a dictionary in an unsupervised way and then train a classifier, which may not generate both descriptive and discriminative models for targets by treating dictionary learning and classifier learning separately. In contrast, the proposed tracking approach can construct a dictionary that fully reflects the intrinsic manifold structure of visual data and introduces more discriminative ability in a unified learning framework. Finally, an iterative optimization approach, which computes the optimal dictionary, the associated sparse coding, and a classifier, is introduced. Experiments on two benchmarks show that our tracker achieves a better performance compared with some popular tracking algorithms.This work was supported in part by the National Natural Science Foundation of China under Grant 61472036, Grant 61272359, Grant 61672099, and Grant 81627803, in part by the National Key Research and Development Program of China under Grant 2017YFC0112000, in part by the Australian Research Council’s Discovery Projects Funding Scheme under Grant DP150104645, in part by the Fok Ying-Tong Education Foundation for Young Teachers, and in part by the Joint Building Program through the Beijing Municipal Education Commission

    REPRESENTATION LEARNING FOR ACTION RECOGNITION

    Get PDF
    The objective of this research work is to develop discriminative representations for human actions. The motivation stems from the fact that there are many issues encountered while capturing actions in videos like intra-action variations (due to actors, viewpoints, and duration), inter-action similarity, background motion, and occlusion of actors. Hence, obtaining a representation which can address all the variations in the same action while maintaining discrimination with other actions is a challenging task. In literature, actions have been represented either using either low-level or high-level features. Low-level features describe the motion and appearance in small spatio-temporal volumes extracted from a video. Due to the limited space-time volume used for extracting low-level features, they are not able to account for viewpoint and actor variations or variable length actions. On the other hand, high-level features handle variations in actors, viewpoints, and duration but the resulting representation is often high-dimensional which introduces the curse of dimensionality. In this thesis, we propose new representations for describing actions by combining the advantages of both low-level and high-level features. Specifically, we investigate various linear and non-linear decomposition techniques to extract meaningful attributes in both high-level and low-level features. In the first approach, the sparsity of high-level feature descriptors is leveraged to build action-specific dictionaries. Each dictionary retains only the discriminative information for a particular action and hence reduces inter-action similarity. Then, a sparsity-based classification method is proposed to classify the low-rank representation of clips obtained using these dictionaries. We show that this representation based on dictionary learning improves the classification performance across actions. Also, a few of the actions consist of rapid body deformations that hinder the extraction of local features from body movements. Hence, we propose to use a dictionary which is trained on convolutional neural network (CNN) features of the human body in various poses to reliably identify actors from the background. Particularly, we demonstrate the efficacy of sparse representation in the identification of the human body under rapid and substantial deformation. In the first two approaches, sparsity-based representation is developed to improve discriminability using class-specific dictionaries that utilize action labels. However, developing an unsupervised representation of actions is more beneficial as it can be used to both recognize similar actions and localize actions. We propose to exploit inter-action similarity to train a universal attribute model (UAM) in order to learn action attributes (common and distinct) implicitly across all the actions. Using maximum aposteriori (MAP) adaptation, a high-dimensional super action-vector (SAV) for each clip is extracted. As this SAV contains redundant attributes of all other actions, we use factor analysis to extract a novel lowvi dimensional action-vector representation for each clip. Action-vectors are shown to suppress background motion and highlight actions of interest in both trimmed and untrimmed clips that contributes to action recognition without the help of any classifiers. It is observed during our experiments that action-vector cannot effectively discriminate between actions which are visually similar to each other. Hence, we subject action-vectors to supervised linear embedding using linear discriminant analysis (LDA) and probabilistic LDA (PLDA) to enforce discrimination. Particularly, we show that leveraging complimentary information across action-vectors using different local features followed by discriminative embedding provides the best classification performance. Further, we explore non-linear embedding of action-vectors using Siamese networks especially for fine-grained action recognition. A visualization of the hidden layer output in Siamese networks shows its ability to effectively separate visually similar actions. This leads to better classification performance than linear embedding on fine-grained action recognition. All of the above approaches are presented on large unconstrained datasets with hundreds of examples per action. However, actions in surveillance videos like snatch thefts are difficult to model because of the diverse variety of scenarios in which they occur and very few labeled examples. Hence, we propose to utilize the universal attribute model (UAM) trained on large action datasets to represent such actions. Specifically, we show that there are similarities between certain actions in the large datasets with snatch thefts which help in extracting a representation for snatch thefts using the attributes from the UAM. This representation is shown to be effective in distinguishing snatch thefts from regular actions with high accuracy.In summary, this thesis proposes both supervised and unsupervised approaches for representing actions which provide better discrimination than existing representations. The first approach presents a dictionary learning based sparse representation for effective discrimination of actions. Also, we propose a sparse representation for the human body based on dictionaries in order to recognize actions with rapid body deformations. In the next approach, a low-dimensional representation called action-vector for unsupervised action recognition is presented. Further, linear and non-linear embedding of action-vectors is proposed for addressing inter-action similarity and fine-grained action recognition, respectively. Finally, we propose a representation for locating snatch thefts among thousands of regular interactions in surveillance videos

    Robust subspace learning for static and dynamic affect and behaviour modelling

    Get PDF
    Machine analysis of human affect and behavior in naturalistic contexts has witnessed a growing attention in the last decade from various disciplines ranging from social and cognitive sciences to machine learning and computer vision. Endowing machines with the ability to seamlessly detect, analyze, model, predict as well as simulate and synthesize manifestations of internal emotional and behavioral states in real-world data is deemed essential for the deployment of next-generation, emotionally- and socially-competent human-centered interfaces. In this thesis, we are primarily motivated by the problem of modeling, recognizing and predicting spontaneous expressions of non-verbal human affect and behavior manifested through either low-level facial attributes in static images or high-level semantic events in image sequences. Both visual data and annotations of naturalistic affect and behavior naturally contain noisy measurements of unbounded magnitude at random locations, commonly referred to as ‘outliers’. We present here machine learning methods that are robust to such gross, sparse noise. First, we deal with static analysis of face images, viewing the latter as a superposition of mutually-incoherent, low-complexity components corresponding to facial attributes, such as facial identity, expressions and activation of atomic facial muscle actions. We develop a robust, discriminant dictionary learning framework to extract these components from grossly corrupted training data and combine it with sparse representation to recognize the associated attributes. We demonstrate that our framework can jointly address interrelated classification tasks such as face and facial expression recognition. Inspired by the well-documented importance of the temporal aspect in perceiving affect and behavior, we direct the bulk of our research efforts into continuous-time modeling of dimensional affect and social behavior. Having identified a gap in the literature which is the lack of data containing annotations of social attitudes in continuous time and scale, we first curate a new audio-visual database of multi-party conversations from political debates annotated frame-by-frame in terms of real-valued conflict intensity and use it to conduct the first study on continuous-time conflict intensity estimation. Our experimental findings corroborate previous evidence indicating the inability of existing classifiers in capturing the hidden temporal structures of affective and behavioral displays. We present here a novel dynamic behavior analysis framework which models temporal dynamics in an explicit way, based on the natural assumption that continuous- time annotations of smoothly-varying affect or behavior can be viewed as outputs of a low-complexity linear dynamical system when behavioral cues (features) act as system inputs. A novel robust structured rank minimization framework is proposed to estimate the system parameters in the presence of gross corruptions and partially missing data. Experiments on prediction of dimensional conflict and affect as well as multi-object tracking from detection validate the effectiveness of our predictive framework and demonstrate that for the first time that complex human behavior and affect can be learned and predicted based on small training sets of person(s)-specific observations.Open Acces

    Side information in robust principal component analysis: algorithms and applications

    Get PDF
    Dimensionality reduction and noise removal are fundamental machine learning tasks that are vital to artificial intelligence applications. Principal component analysis has long been utilised in computer vision to achieve the above mentioned goals. Recently, it has been enhanced in terms of robustness to outliers in robust principal component analysis. Both convex and non-convex programs have been developed to solve this new formulation, some with exact convergence guarantees. Its effectiveness can be witnessed in image and video applications ranging from image denoising and alignment to background separation and face recognition. However, robust principal component analysis is by no means perfect. This dissertation identifies its limitations, explores various promising options for improvement and validates the proposed algorithms on both synthetic and real-world datasets. Common algorithms approximate the NP-hard formulation of robust principal component analysis with convex envelopes. Though under certain assumptions exact recovery can be guaranteed, the relaxation margin is too big to be squandered. In this work, we propose to apply gradient descent on the Burer-Monteiro bilinear matrix factorisation to squeeze this margin given available subspaces. This non-convex approach improves upon conventional convex approaches both in terms of accuracy and speed. On the other hand, oftentimes there is accompanying side information when an observation is made. The ability to assimilate such auxiliary sources of data can ameliorate the recovery process. In this work, we investigate in-depth such possibilities for incorporating side information in restoring the true underlining low-rank component from gross sparse noise. Lastly, tensors, also known as multi-dimensional arrays, represent real-world data more naturally than matrices. It is thus advantageous to adapt robust principal component analysis to tensors. Since there is no exact equivalence between tensor rank and matrix rank, we employ the notions of Tucker rank and CP rank as our optimisation objectives. Overall, this dissertation carefully defines the problems when facing real-world computer vision challenges, extensively and impartially evaluates the state-of-the-art approaches, proposes novel solutions and provides sufficient validations on both simulated data and popular real-world datasets for various mainstream computer vision tasks.Open Acces

    Improving Efficiency in Deep Learning for Large Scale Visual Recognition

    Get PDF
    The emerging recent large scale visual recognition methods, and in particular the deep Convolutional Neural Networks (CNN), are promising to revolutionize many computer vision based artificial intelligent applications, such as autonomous driving and online image retrieval systems. One of the main challenges in large scale visual recognition is the complexity of the corresponding algorithms. This is further exacerbated by the fact that in most real-world scenarios they need to run in real time and on platforms that have limited computational resources. This dissertation focuses on improving the efficiency of such large scale visual recognition algorithms from several perspectives. First, to reduce the complexity of large scale classification to sub-linear with the number of classes, a probabilistic label tree framework is proposed. A test sample is classified by traversing the label tree from the root node. Each node in the tree is associated with a probabilistic estimation of all the labels. The tree is learned recursively with iterative maximum likelihood optimization. Comparing to the hard label partition proposed previously, the probabilistic framework performs classification more accurately with similar efficiency. Second, we explore the redundancy of parameters in Convolutional Neural Networks (CNN) and employ sparse decomposition to significantly reduce both the amount of parameters and computational complexity. Both inter-channel and inner-channel redundancy is exploit to achieve more than 90\% sparsity with approximately 1\% drop of classification accuracy. We also propose a CPU based efficient sparse matrix multiplication algorithm to reduce the actual running time of CNN models with sparse convolutional kernels. Third, we propose a multi-stage framework based on CNN to achieve better efficiency than a single traditional CNN model. With a combination of cascade model and the label tree framework, the proposed method divides the input images in both the image space and the label space, and processes each image with CNN models that are most suitable and efficient. The average complexity of the framework is significantly reduced, while the overall accuracy remains the same as in the single complex model

    Restoration and Domain Adaptation for Unconstrained Face Recognition

    Get PDF
    Face recognition (FR) has received great attention and tremendous progress has been made during the past two decades. While FR at close range under controlled acquisition conditions has achieved a high level of performance, FR at a distance under unconstrained environment remains a largely unsolved problem. This is because images collected from a distance usually suffer from blur, poor illumination, pose variation etc. In this dissertation, we present models and algorithms to compensate for these variations to improve the performance for FR at a distance. Blur is a common factor contributing to the degradation of images collected from a distance, e.g., defocus blur due to long range acquisition, motion blur due to movement of subjects. For this purpose, we study the image deconvolution problem. This is an ill-posed problem, and solutions are usually obtained by exploiting prior information of desired output image to reduce ambiguity, typically through the Bayesian framework. In this dissertation, we consider the role of an example driven manifold prior to address the deconvolution problem. Specifically, we incorporate unlabeled image data of the object class in the form of a patch manifold to effectively regularize the inverse problem. We propose both parametric and non-parametric approaches to implicitly estimate the manifold prior from the given unlabeled data. Extensive experiments show that our method performs better than many competitive image deconvolution methods. More often, variations from the collected images at a distance are difficult to address through physical models of individual degradations. For this problem, we utilize domain adaptation methods to adapt recognition systems to the test data. Domain adaptation addresses the problem where data instances of a source domain have different distributions from that of a target domain. We focus on the unsupervised domain adaptation problem where labeled data are not available in the target domain. We propose to interpolate subspaces through dictionary learning to link the source and target domains. These subspaces are able to capture the intrinsic domain shift and form a shared feature representation for cross domain recognition. Experimental results on publicly available datasets demonstrate the effectiveness of our approach for face recognition across pose, blur and illumination variations, and cross dataset object classification. Most existing domain adaptation methods assume homogeneous source domain which is usually modeled by a single subspace. Yet in practice, oftentimes we are given mixed source data with different inner characteristics. Modeling these source data as a single domain would potentially deteriorate the adaptation performance, as the adaptation procedure needs to account for the large within class variations in the source domain. For this problem, we propose two approaches to mitigate the heterogeneity in source data. We first present an approach for selecting a subset of source samples which is more similar to the target domain to avoid negative knowledge transfer. We then consider the scenario that the heterogenous source data are due to multiple latent domains. For this purpose, we derive a domain clustering framework to recover the latent domains for improved adaptation. Moreover, we formulate submodular objective functions which can be solved by an efficient greedy method. Experimental results show that our approaches compare favorably with the state-of-the-art

    Spatial and temporal background modelling of non-stationary visual scenes

    Get PDF
    PhDThe prevalence of electronic imaging systems in everyday life has become increasingly apparent in recent years. Applications are to be found in medical scanning, automated manufacture, and perhaps most significantly, surveillance. Metropolitan areas, shopping malls, and road traffic management all employ and benefit from an unprecedented quantity of video cameras for monitoring purposes. But the high cost and limited effectiveness of employing humans as the final link in the monitoring chain has driven scientists to seek solutions based on machine vision techniques. Whilst the field of machine vision has enjoyed consistent rapid development in the last 20 years, some of the most fundamental issues still remain to be solved in a satisfactory manner. Central to a great many vision applications is the concept of segmentation, and in particular, most practical systems perform background subtraction as one of the first stages of video processing. This involves separation of ‘interesting foreground’ from the less informative but persistent background. But the definition of what is ‘interesting’ is somewhat subjective, and liable to be application specific. Furthermore, the background may be interpreted as including the visual appearance of normal activity of any agents present in the scene, human or otherwise. Thus a background model might be called upon to absorb lighting changes, moving trees and foliage, or normal traffic flow and pedestrian activity, in order to effect what might be termed in ‘biologically-inspired’ vision as pre-attentive selection. This challenge is one of the Holy Grails of the computer vision field, and consequently the subject has received considerable attention. This thesis sets out to address some of the limitations of contemporary methods of background segmentation by investigating methods of inducing local mutual support amongst pixels in three starkly contrasting paradigms: (1) locality in the spatial domain, (2) locality in the shortterm time domain, and (3) locality in the domain of cyclic repetition frequency. Conventional per pixel models, such as those based on Gaussian Mixture Models, offer no spatial support between adjacent pixels at all. At the other extreme, eigenspace models impose a structure in which every image pixel bears the same relation to every other pixel. But Markov Random Fields permit definition of arbitrary local cliques by construction of a suitable graph, and 3 are used here to facilitate a novel structure capable of exploiting probabilistic local cooccurrence of adjacent Local Binary Patterns. The result is a method exhibiting strong sensitivity to multiple learned local pattern hypotheses, whilst relying solely on monochrome image data. Many background models enforce temporal consistency constraints on a pixel in attempt to confirm background membership before being accepted as part of the model, and typically some control over this process is exercised by a learning rate parameter. But in busy scenes, a true background pixel may be visible for a relatively small fraction of the time and in a temporally fragmented fashion, thus hindering such background acquisition. However, support in terms of temporal locality may still be achieved by using Combinatorial Optimization to derive shortterm background estimates which induce a similar consistency, but are considerably more robust to disturbance. A novel technique is presented here in which the short-term estimates act as ‘pre-filtered’ data from which a far more compact eigen-background may be constructed. Many scenes entail elements exhibiting repetitive periodic behaviour. Some road junctions employing traffic signals are among these, yet little is to be found amongst the literature regarding the explicit modelling of such periodic processes in a scene. Previous work focussing on gait recognition has demonstrated approaches based on recurrence of self-similarity by which local periodicity may be identified. The present work harnesses and extends this method in order to characterize scenes displaying multiple distinct periodicities by building a spatio-temporal model. The model may then be used to highlight abnormality in scene activity. Furthermore, a Phase Locked Loop technique with a novel phase detector is detailed, enabling such a model to maintain correct synchronization with scene activity in spite of noise and drift of periodicity. This thesis contends that these three approaches are all manifestations of the same broad underlying concept: local support in each of the space, time and frequency domains, and furthermore, that the support can be harnessed practically, as will be demonstrated experimentally

    On unifying sparsity and geometry for image-based 3D scene representation

    Get PDF
    Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providing a satisfying, immersive experience. Camera networks offer a low cost solution to the acquisition of 3D visual information, by capturing multi-view images from different viewpoints. However, the camera's representation of the data is not ideal for common tasks such as data compression or 3D scene analysis, as it does not make the 3D scene geometry explicit. Image-based scene representations fundamentally require a multi-view image model that facilitates extraction of underlying geometrical relationships between the cameras and scene components. Developing new, efficient multi-view image models is thus one of the major challenges in image-based 3D scene representation methods. This dissertation focuses on defining and exploiting a new method for multi-view image representation, from which the 3D geometry information is easily extractable, and which is additionally highly compressible. The method is based on sparse image representation using an overcomplete dictionary of geometric features, where a single image is represented as a linear combination of few fundamental image structure features (edges for example). We construct the dictionary by applying a unitary operator to an analytic function, which introduces a composition of geometric transforms (translations, rotation and anisotropic scaling) to that function. The advantage of this approach is that the features across multiple views can be related with a single composition of transforms. We then establish a connection between image components and scene geometry by defining the transforms that satisfy the multi-view geometry constraint, and obtain a new geometric multi-view correlation model. We first address the construction of dictionaries for images acquired by omnidirectional cameras, which are particularly convenient for scene representation due to their wide field of view. Since most omnidirectional images can be uniquely mapped to spherical images, we form a dictionary by applying motions on the sphere, rotations, and anisotropic scaling to a function that lives on the sphere. We have used this dictionary and a sparse approximation algorithm, Matching Pursuit, for compression of omnidirectional images, and additionally for coding 3D objects represented as spherical signals. Both methods offer better rate-distortion performance than state of the art schemes at low bit rates. The novel multi-view representation method and the dictionary on the sphere are then exploited for the design of a distributed coding method for multi-view omnidirectional images. In a distributed scenario, cameras compress acquired images without communicating with each other. Using a reliable model of correlation between views, distributed coding can achieve higher compression ratios than independent compression of each image. However, the lack of a proper model has been an obstacle for distributed coding in camera networks for many years. We propose to use our geometric correlation model for distributed multi-view image coding with side information. The encoder employs a coset coding strategy, developed by dictionary partitioning based on atom shape similarity and multi-view geometry constraints. Our method results in significant rate savings compared to independent coding. An additional contribution of the proposed correlation model is that it gives information about the scene geometry, leading to a new camera pose estimation method using an extremely small amount of data from each camera. Finally, we develop a method for learning stereo visual dictionaries based on the new multi-view image model. Although dictionary learning for still images has received a lot of attention recently, dictionary learning for stereo images has been investigated only sparingly. Our method maximizes the likelihood that a set of natural stereo images is efficiently represented with selected stereo dictionaries, where the multi-view geometry constraint is included in the probabilistic modeling. Experimental results demonstrate that including the geometric constraints in learning leads to stereo dictionaries that give both better distributed stereo matching and approximation properties than randomly selected dictionaries. We show that learning dictionaries for optimal scene representation based on the novel correlation model improves the camera pose estimation and that it can be beneficial for distributed coding
    corecore