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Face recognition (FR) has received great attention and tremendous progress

has been made during the past two decades. While FR at close range under con-

trolled acquisition conditions has achieved a high level of performance, FR at a dis-

tance under unconstrained environment remains a largely unsolved problem. This

is because images collected from a distance usually suffer from blur, poor illumina-

tion, pose variation etc. In this dissertation, we present models and algorithms to

compensate for these variations to improve the performance for FR at a distance.

Blur is a common factor contributing to the degradation of images collected

from a distance, e.g., defocus blur due to long range acquisition, motion blur due

to movement of subjects. For this purpose, we study the image deconvolution prob-

lem. This is an ill-posed problem, and solutions are usually obtained by exploiting

prior information of desired output image to reduce ambiguity, typically through

the Bayesian framework. In this dissertation, we consider the role of an exam-

ple driven manifold prior to address the deconvolution problem. Specifically, we

incorporate unlabeled image data of the object class in the form of a patch mani-

fold to effectively regularize the inverse problem. We propose both parametric and

non-parametric approaches to implicitly estimate the manifold prior from the given

unlabeled data. Extensive experiments show that our method performs better than

many competitive image deconvolution methods.



More often, variations from the collected images at a distance are difficult

to address through physical models of individual degradations. For this problem,

we utilize domain adaptation methods to adapt recognition systems to the test

data. Domain adaptation addresses the problem where data instances of a source

domain have different distributions from that of a target domain. We focus on the

unsupervised domain adaptation problem where labeled data are not available in the

target domain. We propose to interpolate subspaces through dictionary learning to

link the source and target domains. These subspaces are able to capture the intrinsic

domain shift and form a shared feature representation for cross domain recognition.

Experimental results on publicly available datasets demonstrate the effectiveness of

our approach for face recognition across pose, blur and illumination variations, and

cross dataset object classification.

Most existing domain adaptation methods assume homogeneous source do-

main which is usually modeled by a single subspace. Yet in practice, oftentimes

we are given mixed source data with different inner characteristics. Modeling these

source data as a single domain would potentially deteriorate the adaptation per-

formance, as the adaptation procedure needs to account for the large within class

variations in the source domain. For this problem, we propose two approaches to

mitigate the heterogeneity in source data. We first present an approach for select-

ing a subset of source samples which is more similar to the target domain to avoid

negative knowledge transfer. We then consider the scenario that the heterogenous

source data are due to multiple latent domains. For this purpose, we derive a do-

main clustering framework to recover the latent domains for improved adaptation.

Moreover, we formulate submodular objective functions which can be solved by an

efficient greedy method. Experimental results show that our approaches compare

favorably with the state-of-the-art.
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Chapter 1: Introduction

Face recognition (FR) has been one of the most successful applications in

image analysis and computer vision. Tremendous progress has been made in the

field of FR during the past two decades. Active research activities in FR have led

to a wide range of practical applications in biometrics, information security, access

control, surveillance systems and social networks. For example, in access control

applications, a face recognition system is used to monitor continuously who is in

front of a computer terminal. It allows the user to log on or continue a previous

session if the user is recognized. Otherwise, the user who tries to log on without

authorization is denied. Besides, as security is of primary concern at public places

such as airports and train stations, surveillance systems that use face recognition

technology will become a reality soon. Such a system can send out alerts whenever

someone matching the appearance of a known terrorist suspect enters a security

checkpoint.

The general problem of FR can be described as follows: identify or verify

one or more persons from a given still or video images of a scene, using a stored

database of faces. The design of a generic FR system usually involves three steps:

1) detecting faces from cluttered scenes, 2) extracting features from face regions and

1



3) recognition.

Detection: Face detection is the first step in automatic face recognition. A

successful face detection algorithm is able to correctly identify the presence and the

rough location of a face in the image. There are different categories of face de-

tection techniques. Template matching methods compute the correlation between

an input image and the stored patterns for detection. Feature invariant methods

aim to find structural features which exist under varying lighting, pose or viewpoint

conditions. These features are then used for face localization. Appearance-based

approaches learn models from a set of training images which capture the represen-

tative variations of facial appearances, and then the learned models are used for

detection.

Feature Extraction: Extracting reliable facial features are very important

for FR. Even holistic approaches need key facial features to normalize the detected

faces. Typical features under consideration include eyebrows, eyes, nostrils, mouth,

cheeks, chin and geometric constraints on the features.

Recognition: In this dissertation, we focus on recognition from intensity im-

ages. Typical methods fall into two categories: holistic and feature-based methods.

Holistic approaches try to identify faces using representations based on the entire

image rather than local features. One of the most wildly used representations is

eigenfaces [6], which assumes that any face can be approximately reconstructed us-

ing just a small number of eigenfaces and the corresponding projection coefficients

along each eigenface. Later on, Linear Discriminant Analysis [7] was proposed which

maximizes the ratio of the between-class scatter and within-class scatter, and is

2



better suited for classification than eigenfaces. More recently, a compact face rep-

resentation learned from a deep neural network was proposed in [8], which closely

approaches human-level performance on the LFW benchmark dataset. In feature-

based methods, local features such as eyes, nose and mouth are extracted and local

statistics of these features are fed into a structural classifier. One well-known ap-

proach is the Elastic Bunch Graph Matching (EBGM) system [9]. Besides, high

level visual features (gender, race, age, hair color, etc.) are also exploited to train

an attribute classifier for face verification [10].

The difficulties of the FR problem arise due to variations among the face

images of the same individual which can be larger than the variations resulting

from changes in identity. The sources of variations can be categorized into two

groups: intrinsic and extrinsic factors [11]. Intrinsic factors are purely due to the

physical nature of the faces, e.g., facial expression, glasses, cosmetics, ethnicity etc,

while extrinsic factors usually include illumination, pose, resolution etc.

Numerous datasets are now available for the development of FR algorithms,

e.g., the CMU PIE dataset, the FRGC/FRVT dataset, the FERET dataset, Ex-

tended Yale B dataset, AR dataset and the LFW dataset. Some of these datasets

are collected at close range (less than a few meters) and under different levels of

controlled acquisition conditions. For instance, studio lights are used to control the

illumination and pose variations are controlled by cooperative subjects, etc.

While FR systems on these datasets have reached high levels of recognition

performance, research in unconstrained FR field is still at a nascent stage. In this

dissertation, we are interested in studying and developing more robust algorithms

3



for FR at a distance in unconstrained environment. Various artifacts can occur in

face images as a result of long range acquisition. First, as the subjects may not be

cooperative, the pose of the face and body relative to the sensor is likely to vary

greatly. Second, the lighting is uncontrolled and could be extreme in its variation.

Third, the effects of scattering and high magnification resulting from long distance

contribute to the blurriness of face images.

This dissertation focuses on investigating models and algorithms to compen-

sate for FR in unconstrained environments. In particular, this dissertation focuses

on addressing the following aspects: image restoration for reliable feature extrac-

tion, domain adaptation methods for handling more complicated variations between

training and test data, and submodular optimization frameworks for tackling het-

erogenous source training data.

1.1 Image Restoration

The purpose of image restoration is to compensate for defects which degrade

an image. There are several manifestations of the restoration problem. For instance,

deblurring tries to estimate clear images from blurred and noisy inputs. Inpainting

is the process of reconstructing lost or deteriorated parts of images. Super-resolution

aims to enhance the resolution of a down-sampled image. These problems are ill-

posed due to inadequate (noisy) observations. Solutions are usually obtained by

exploiting the structure of the desired output image to reduce ambiguity. In the first

part of this dissertation, we specifically study the deblurring problem, as blurriness

4



is a common problem in long range acquisition conditions. Blurriness can be due to

camera motion, defocusing as well as atmospheric turbulence. Effectively restoring

a blurred image is important for subsequent feature extraction.

The blurring process can usually be described using a convolution model: an

observed image is produced as the convolution of an unknown desired image with

a linear time-invariant point spread function, and then contaminated by additive

or multiplicative white or colored noise. The act of restoring the unknown clear

image is typically an under-constrained problem. Prior knowledge about natural

images is usually employed for achieving improved results. For instance, Tikhonov

regularization [12] is one of the most commonly used methods for regularizing the

desired smoothness of the recovered image. Yet it often creates Gibbs oscillations

in the neighborhood of discontinuities in the image. Alternatively, sparsity-based

priors [13, 3] have been successfully designed to improve the visual quality of the

recovered image. Another popular prior exploits the heavy-tailed characteristics

of an image’s gradient distribution, which is often parameterized as a mixture of

Gaussian distributions [5]. Yet recent studies suggest that using priors learned from

examples usually lead to improved performance compared with pre-specified ones.

For example, priors based on image gradients may not work well for face images

where the majority region is smooth.

In the first part of this dissertation, we propose a learning-based patch mani-

fold prior to effectively constrain the ill-posed deconvolution problem. We consider

the problem of exploiting extra information in the form of prior knowledge of the

object class to regularize the inverse problem. This approach can be broadly termed

5



as example-based image enhancement [14]. An important step in our work involves

learning the appropriate image representation. Images are formed through the in-

teraction of light with surfaces. Surface properties such as geometry and reflectance

can give rise to varied appearances, which are then imaged by a projective camera.

For simple scenes, we can use a clear model of each of these factors to characterize

the image space. However, it would be much more difficult to extend the factoriza-

tion for more general classes of objects. Alternatively, manifold learning tools which

are usually used to learn the underlying embedding space from high dimensional

data would become less helpful here due to the extreme high dimensionality of im-

age space. While image manifolds are very difficult to model in the general case,

we exploit a far weaker requirement instead. We exploit patch manifold for image

representation and assume that small patches from a given class lie on a manifold,

which is far easier than the image manifold assumption. Since we do not have an an-

alytical characterization of the patch manifold, we learn the manifold through dense

sampling of patches using training images from the class of images under considera-

tion. The goodness of fit between a given image and the manifold is then measured

by averaging the distance of each patch of the image to the manifold. The proposed

regularization term enforces the condition that the restored image traces a curve

close to the manifold, so that the restored image has statistics similar to clear nat-

ural images. Significant computations may be involved in finding the closest point

on the manifold to a given patch; for this purpose, we derive both non-parametric

and parametric manifold learning methods to efficiently implement the projection

operator on the manifold. Experiments demonstrate that the proposed method is
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very competitive with state-of-the-art deconvolution methods.

1.2 Domain Adaptation

Typical pattern recognition systems often face a major challenge when applied

”in the wild”: conditions under which the system was developed are usually different

from the actual conditions in which the system may be employed. For example, face

recognition systems trained under constrained laboratory environments may be used

to recognize face images acquired in unconstrained environment where the images

suffer from a variety of degradations. One way to handle the variations in the

test data which are not seen in the training data is to acquire labels in each new

environment. Yet in many scenarios it is very expensive and impractical to collect

new labels and rebuild the recognition system from scratch. Therefore it is essential

to leverage the original ”out-of-domain” data to transfer the classification knowledge

to the new domain.

Typical methods to address this problem usually fall into two categories: do-

main adaptation (DA) and transfer learning (TL). DA addresses the problem where

the conditional distributions of labels are similar while the marginal distributions

of data in the training and test are different. For example, in unconstrained face

recognition settings, the marginal distribution shift can be due to pose, illumina-

tion, resolution etc. On the other hand, TL handles the scenario where the marginal

distributions are similar while the conditional distributions differ in the training and

test domains. For instance, in object detection, to learn a detector for a new cate-

7



gory with insufficient training data, TL is used to leverage the detectors that have

previously been learnt for similar categories by regularizing the distance between

the new model and the source models.

Although DA and TL are fundamental problems in machine learning, they

have not received much attention in the field of computer vision until recently. In

this dissertation, we focus on the DA problem. We call the training data with plenty

of labels as the source domain while the target domain is defined as data samples

collected from a different distribution.

Based on the availability of labels in the target domain, DA methods can be

broadly classified into two categories: semi-supervised DA and unsupervised DA.

Semi-supervised DA is usually performed by utilizing the correspondence between

source and target domains or a few labels in the target domain to learn the simi-

larity among data instances across domains. In unsupervised DA, oftentimes prior

assumption is needed to relate the source and target domains. For example, the

structural correspondence learning method [15] induces correspondence among fea-

tures from two domains by modeling their correlations with pivot features which

appear frequently in both domains. Manifold alignment-based [16] DA methods at-

tempt to compute the similarity between data points in different domains through

the local geometry of data points within each domain, where the local geometry is

defined by the distance between a data instance and the samples in its neighborhood.

Inspired by incremental learning, recent works in DA attempt to gradually

learn a smooth transition path between the source and target domains in order

to model the underlying domain shift. Incremental learning refers to using newly

8



obtained information to refine the existing knowledge of a certain subject. This self-

adaptation process is a pre-requisite for many general learning tasks. One major

reason is that information is often received in a sequential manner, and sometimes

a learning process is needed long before all the information is available, and then

the knowledge structure is constantly revised based on newly acquired information.

The methodology of incremental learning has been applied in many computer vision

applications. For instance, in object tracking, due to the drastic appearance changes

of a target object, it is important to adapt the appearance model incrementally so

as to produce a robust tracker. In a recent Grassmannian manifold-based [17] DA

method, potential intermediate domains between the source and target are identified

by gradually following the geodesics between the two domains, so as to discover

the underlying domain shift. In the second part of this dissertation, we focus on

learning the intermediate domains using dictionary models. We make use of the

good reconstruction property of dictionaries to gradually reduce the reconstruction

residue of target data while learning the intermediate dictionaries. The learned

transition path is then used to form a new feature space for subsequent classification.

Most existing DA methods assume that the source data contain a single domain

with very similar inner characteristics. Yet with the deluge of data from sources such

as internet search engines and surveillance videos, this simplified assumption may

not be valid in many realistic applications. For example, face images collected from

the web usually consist of a mixture of illumination, expression and pose variations.

Modeling these source data as a single domain would potentially result in negative

knowledge transfer. Therefore, in the third part of this dissertation, we investigate
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methods to mitigate the heterogeneity in the source data to facilitate the following

adaptation task.

We first propose to select pivot samples which are a subset of the source data

distributed most similar to the samples in the target domain. Identifying these

samples can reduce the divergence between the two domains and boost subsequent

adaptation performance. Alternatively, we consider the scenario that the hetero-

geneity in the source data is attributed to the presence of multiple latent domains

without specific domain labels. This is different from previous approaches that deal

with multiple source datasets where the partitions among the source domains are

known a priori. For this problem, we adopt an entropy rate-based clustering frame-

work which separates the heterogeneous source data into compact and homogeneous

latent domains. More importantly, both of our objective functions are submodular

which enables us to derive efficient optimization algorithms with guaranteed perfor-

mance of at least 1− 1
e

approximation to the optimum.

1.3 Contributions of This Dissertation

We make the following contributions in this dissertation:

•We investigate the problems and challenges that are present for FR in remote

and unconstrained environments. We describe a face database collected in remote

acquisition conditions, and evaluate a subset of still image-based FR algorithms on

this dataset.

•We study the image deconvolution problem as image blurriness is a common
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problem due to long range acquisition. Specifically, we consider the role of prior

knowledge of the object class in the form of a patch manifold for regularizing the

deconvolution problem. We implicitly estimate the manifold prior from the given

unlabeled data using both non-parametric and parametric methods. Furthermore,

we derive a generalized cross validation technique for automatically determining

the regularization parameter at each iteration without explicitly knowing the noise

variance.

•We consider the concept of DA to handle the large variations between train-

ing and test data in unconstrained FR. We propose to interpolate subspaces through

dictionary learning to link the source and target domains. These subspaces are able

to capture the intrinsic domain shift and form a shared feature representation for

cross domain recognition. We then introduce a quantitative measure to characterize

the shift between two domains, which enables us to select the optimal domain to

adapt, given multiple source domains. Further, we extend our work to learn the set

of intermediate dictionaries in a high dimensional feature space to handle the non-

linearities in the data. We present experiments on FR across pose, illumination and

blur variations, face re-identification, cross dataset object recognition, and report

improved performances over the state-of-the-art.

• We investigate the problem of DA with heterogeneous source data. We

first propose to select pivot source samples which are distributed more similar to

the samples in the target domain. We derive a domain similarity function which

encourages the selected source samples to be most representative of the target data.

Further, in order to preserve the discrimination power of the source domain, we
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derive a class balance function which ensures the labels of each class in the selected

subset to follow the distribution in the original source domain. We then tackle the

scenario that the heterogenous source data contain different latent domains and

utilize an entropy rate-based domain clustering approach to obtain compact and

homogeneous latent domains. Besides, we incorporate a domain balancing function

which enforces the constraint that the distribution of class labels within each latent

domain follow the prior label distribution in the original source domain. As our

objective functions are submodular, we exploit the diminishing return property of

submodularity to solve the problems efficiently. Experimental results demonstrate

the advantage of our approaches compared to the state-of-the-art.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows.

In chapter 2, we present the prospects and progress of the remote and un-

constrained FR problem. We introduce a face dataset collected at a distance in

outdoor environment and report the experimental results of two representative FR

algorithms on this dataset. Discussions and conclusions from the corresponding

recognition results are also provided.

Chapter 3 presents the work on using example-driven patch manifold prior for

the deconvolution problem. We review different regularization methods used in prior

work and then present our approach in detail. Extensive experiments demonstrate

that our method is very competitive with state-of-the-art deconvolution methods.

12



In chapter 4, we review some representative DA methods, and then propose

a novel unsupervised DA method based on dictionary learning models. We use FR

across pose variations, blur and illumination variations, face re-identification and

2D object recognition to demonstrate the effectiveness of the proposed method.

Further, in chapter 5, we introduce our submodular optimization approaches

for handling heterogeneous source data. We first present a pivot sample selection

algorithm, and then describe a latent domain recovery method. We evaluate our

methods for cross dataset object recognition, face recognition across pose and illu-

mination variations, cross view activity recognition, and report competitive perfor-

mance with the state-of-the-art.

Finally, conclusions and directions for future work are discussed in chapter 6.
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Chapter 2: Background on Remote Identification of Faces

During the past two decades, FR has received great attention and tremen-

dous progress has been made [18]. FR has a wide range of practical applications in

access control, identification systems, surveillance, pervasive computing and social

networks etc. Numerous image-based algorithms [6, 19, 7, 9, 20, 21, 22, 18] and

video-based algorithms [23, 24] have been developed in the FR community. Cur-

rently, most of the existing FR algorithms have been evaluated using databases

which are collected at close range (less than a few meters) and under different levels

of controlled acquisition conditions. Some of the most extensively used face datasets

such as CMU PIE [1], FERET [25] and YaleB [26] were captured in constrained set-

tings. For instance, studio lights are used to control the illumination and pose

variations are controlled by cooperative subjects etc.

While FR techniques on these datasets have reached a high level of recognition

performance over the years, research in remote unconstrained FR field is still at a

nascent stage. Recently a new database called ”Labeled Faces in the Wild” (LFW)

[27] whose images are collected from the web, has been widely used to address some

of the issues in unconstrained FR problem. Yet concerns have been raised that these

images are typically posed and framed by photographers and there is no guarantee
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that such a set accurately captures the range of variations found in the real world

settings [28]. Yao et al. [29] describe a face video database, UTK-LRHM, which is

acquired from long distances with high magnifications. The magnification blur is

described as a major source of degradation in their data.

In the following, we address some of the issues related to the problem of FR

when face images are captured in unconstrained and remote setting. As one has very

little control of the acquisition process, the images one gets often suffer from low

resolution, poor illumination, blur, pose variation and occlusion etc. These varia-

tions present serious challenges to existing FR algorithms. We provide a brief review

of developments and progress in the field of remote FR. We then introduce the re-

identification problem and address the difficulties of this problem coupled with other

inherent variations in remote acquisition conditions. Further, we introduce a new

dataset which was collected in a remote maritime environment. We provide some

preliminary experimental studies on this dataset and offer insights and suggestions

for the remote FR problem.

2.1 Face Recognition At a Distance

Reliable extraction and matching of biometric signatures from faces acquired

at a distance is a challenging problem [30]. First, as the subjects may not be

cooperative, the pose of the face and body relative to the sensor is likely to vary

greatly. Second, the lighting is uncontrolled and could be extreme in its variation.

Third, when the subjects are at a long distance, the effects of a scattering media
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(static: fog and mist, dynamic: rain, sleet, or sea spray) are greatly amplified.

Fourth, the relative motion between the subjects and the sensors produce jitter and

motion blur in the images. In this section, we investigate various factors that can

affect long range FR system performance, which can be summarized into four types

[30]: (1) technology (dealing with the quality of face images, heterogeneous face

images, etc.), (2) environment (lighting, etc.), (3) user (expression, facial hair, facial

ware etc.), and (4) user-system (pose, height, etc.). In what follows, we discuss some

of these factors in detail.

Illumination: Variation in illumination conditions is one of the major chal-

lenges in remote FR. In particular, when images are captured from long ranges, one

does not have control over lighting conditions. As a result, the captured images

often suffer from extreme (due to sun) or low light conditions (due to shadow, bad

weather, evening, etc.).

The performance of most existing FR algorithms is highly sensitive to illumi-

nation variations. Changes induced by illumination can usually render face images

of the same subject farther apart than those of different subjects. Various methods

have been introduced to deal with this problem in FR. Among them are methods

based on the illumination cone [26, 31], spherical harmonics [32, 33, 34], quotient im-

ages [35, 36], gradient faces [37], logarithmic total variation [38], albedo estimation

[39], photometric stereo [40], dictionaries [41, 42] etc.

Estimates of albedo are often used to mitigate the illumination effect. Albedo

is the fraction of light that a surface point reflects when it is illuminated. It is

an intrinsic property that depends on the material properties of the surface and
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Figure 2.1: Results of albedo estimation for remotely acquired images. Left: Original

images; Right: Estimated albedo images.

it is invariant to changes in illumination. Assuming that the facial surface can

be described using the Lambertian reflectance model, one can relate the surface

normals, albedo and the intensity image by an image formation model. The diffused

component of the surface reflection is given by

xi,j = ρi,j max(nTi,js, 0) (2.1)

where x is the pixel intensity, s is the light source direction, ρi,j is the surface albedo

at position (i, j), ni,j is the surface normal of the corresponding surface point and

1 ≤ i, j ≤ N . The max function in (2.1) accounts for the formation of attached

shadows. Neglecting the attached shadows, (2.1) can be linearized as

xi,j = ρi,j max(nTi,js, 0) ≈ ρi,jn
T
i,js. (2.2)

Let n
(0)
i,j and s(0) be the initial values of the surface normal and illumination direc-

tion, which can be domain dependent average values. The Lambertian assumption

imposes the following constraints on the initial albedo

ρ
(0)
i,j =

xi,j

n
(0)
i,j .s

(0)
(2.3)
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where . is the standard dot product operator. Using (2.2), (2.3) can be re-written

as

ρ
(0)
i,j = ρi,j

ni,j.s

n
(0)
i,j .s

(0)
= ρi,j +

ni,j.s− n
(0)
i,j .s

(0)

n
(0)
i,j .s

(0)
ρi,j (2.4)

= ρi,j + ωi,j, (2.5)

where ωi,j =
ni,j .s−n

(0)
i,j .s

(0)

n
(0)
i,j .s

(0)
ρi,j. This can be viewed as a signal estimation problem

where ρi,j is the original signal, ρ(0) is the degraded signal and ω is the signal

dependent noise. Based on this model, the albedo map can be estimated as the

linear minimum mean square error estimate of the true albedo [39]. The illumination

insensitive albedo image can then be used as the input for recognition. Figure 2.1

shows the results of albedo estimation for two face images acquired at a distance

using the method presented in [39].

Pose variation: Pose variation can be considered as one of the most impor-

tant and challenging problems in FR. Magnitudes of variations of innate character-

istics, which distinguish one face from another, are often smaller than magnitudes

of image variations caused by pose variations [43]. Popular frontal FR algorithms,

such as Eigenfaces [6] or Fisherfaces [19, 7], usually have low recognition rates un-

der pose changes as these holistic appearance-based methods are very sensitive to

misalignment.

Existing methods for FR across poses can be roughly divided into two cat-

egories: techniques that rely on 3D models [44, 45] and 2D techniques which do

not require 3D prior information [46, 47, 48]. Image patch-based approaches have

also received significant attention in recent years [49, 50, 51, 52, 53], as modeling
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Figure 2.2: Pose normalization. Left column: Original input images. Middle col-

umn: Recovered albedoes corresponding to frontal face images. Right column: Pose

normalized relighted images.

face images as a collection of patches is more robust to pose changes than using the

holistic appearance.

As the pose change is often coupled with other parameters such as illumination

variation, it is desirable to compensate for joint pose and lighting variations. One

solution is to estimate pose-robust albedo maps which can be considered as an

extension of the approach in [39]. Let n̄i,j, s̄ and Θ̄ be some initial estimates of

the surface normals, illumination direction and initial estimate of surface normals

in pose Θ, respectively. Then, the initial albedo at pixel (i, j) can be obtained by

ρ̄i,j =
xi,j

n̄Θ̄
i,j.s̄

, (2.6)

where n̄Θ̄
i,j denotes the initial estimate of surface normals in pose Θ̄. Using this

model, we can re-formulate the problem of recovering albedo as a signal estimation

problem. Using arguments similar to (2.3), we get the following formulation for the
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albedo estimation problem in the presence of pose variation:

ρ̄i,j = ρi,jhi,j + ωi,j, (2.7)

where wi,j =
n̄Θ
i,j .s−n̄Θ

i,j .s̄

n̄Θ̄
i,j .s̄

ρi,j, hi,j =
n̄Θ
i,j .s̄

n̄Θ̄
i,j .s̄

, ρi,j is the true unknown albedo and ρ̄i,j is

the rough estimate of albedo. Then a stochastic filtering framework which iterates

between updating the albedo and pose estimates is performed to output a frontal

albedo image. Figure 2.2 shows some examples of pose normalized images using this

method. These normalized images can then be utilized for illumination and pose

robust FR.

Occlusion: Another challenge in remote FR is that since face images are

usually captured from non-cooperative subjects, acquired images are often contam-

inated by occlusion. The occlusion may be the result of subject wearing sunglasses,

scarf, hat or a mask. Some representative techniques for recognizing subjects in the

presence of occlusion include the principal component pursuit method [54], and the

sparse representation-based method [20]. They are based on the fact that errors due

to occlusion are often sparse with respect to the given basis. Figure 2.3 shows some

images with occlusion from the remote face dataset.

Figure 2.3: Some occluded face images in remote face dataset.
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Blur: In remote FR, the distance between the subject and the sensor results

in producing degraded face images. Motion blur is another phenomenon that occurs

when the subject is moving rapidly or the camera is shaking. [55, 56] are some of the

methods that attempt to address this issue in FR. In [56], blurred face images are

recognized using local phase quantization, which is based on quantizing the Fourier

transform phase in local neighborhoods. It is shown that the quantized phase is

blur invariant when certain conditions are met. [55] proposes a method to infer the

point spread function (PSF) by using the prior information derived from a training

set of blurred faces, such that the ill-posed problem becomes more tractable.

In remote acquisition settings, oftentimes blur is coupled with illumination

variations. It might be desirable to develop an algorithm that can restore an image

free from blur and illumination variations simultaneously. For this problem, one

possible solution is to estimate the intrinsic albedo in the presence of blur. This

turns out to be an inverse problem which is bilinear in the unknown albedo and blur.

Given the N ×N arrays y and x, representing the observed image and the image to

be estimated, respectively, the image deconvolution problem can be described as

y = Hx + γ, (2.8)

where y, x, and γ are N2 × 1 column vectors representing the arrays y, x, and γ

lexicographically ordered, H is the N2 × N2 matrix that models the blur operator

and γ denotes an N × N array of noise signals. Using the Lambertian model in
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(2.2), (2.8) can be re-written as

y = Hx + γ = HΦρ+ γ

= Gρ+ γ, (2.9)

where Φ = diag(nTi,js) of size N2 × N2, ρ is N2 × 1 vector representing ρ and

G = HΦ. Having observed y, the general inverse problem is to estimate ρ with

incomplete information of G. It is well-known that regularization is often used to

find a unique and stable solution to the ill-posed inverse problem. One learning

based regularization method using the patch-manifold prior was developed in [57].

Figure 2.4 shows an example of recovered albedo using the method in [57].

(a) (b) (c)

Figure 2.4: Albedo recovery result in presence of blur. (a) Original image. (b) Noisy

blurred image. (c) Recovered albedo.

Low resolution: Image resolution is an important parameter in remote face

acquisition, where there is no control over the distance of the subject from the cam-

era. Figure 2.5 illustrates a practical scenario where one is faced with a challenging

problem of recognizing humans when the captured face images are of very low res-

olution (LR). Many methods have been proposed in the literature to deal with this
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problem for FR. Most of these methods are based on some application of super-

resolution (SR) techniques to increase the resolution of images so that the recovered

higher-resolution (HR) images can be used for recognition. One of the major draw-

backs of applying the SR techniques is that the recovered HR images may contain

serious artifacts. This is often the case when the resolution of the image is very low.

As a result, these recovered images may not look like the images of the same person

and the recognition performance may degrade significantly.

Figure 2.5: A typical low-resolution face image in remote face dataset.

An Eigen-face domain SR method for FR was proposed in [58]. This method

proposes to perform FR at LR by applying super-resolution (SR) on multiple LR

images using their PCA domain representation. Given a LR face image, [59] proposes

to directly compute a maximum likelihood identity parameter vector in the HR

tensor space that can be used for SR and recognition. A Tikhonov regularization

method that can combine SR and recognition in one step was proposed in [60].
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As LR images are not directly suitable for the purpose of FR and the problem

of recognition is not the same as SR, therefore, different approaches which do not

require SR before recognition have been suggested. Coupled Metric Learning [61] at-

tempts to solve this problem by mapping the LR and HR images to a joint subspace,

where the distance measure is more ideal for recognition. A similar approach for

improving the matching performance of the LR and HR images using multidimen-

sional scaling was recently proposed in [62]. Additional methods for LR FR include

a log-polar domain-based method [63], a correlation filter-based approach [64], a

support vector data description-based method [65], a dictionary-based method [66],

and 3D face modeling-based techniques [67, 68].

Atmospheric and weather artifacts: Most of the current vision algorithms

and applications are applied to the images that are captured under clear and nice

weather conditions. However, oftentimes in outdoor applications, one faces adverse

weather conditions such as extreme illumination, fog, haze, rain and snow [30, 69,

70]. These extreme conditions can also present additional difficulties in developing

robust algorithms for FR. [71] proposes to recover pertinent scene properties, such

as the 3-D structure, from images taken under poor weather conditions. Yet the

manifestations of weather on face images is still rarely explored in the literature.

2.2 Long Range Facial Image Quality

As discussed in the previous section, various factors could affect the quality

of remotely acquired images. It is therefore essential to derive an image quality
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Figure 2.6: Extreme illumination conditions caused by the sun.

measurement to study the relation between the image quality and recognition per-

formance. To this end, a blind signal-to-noise ratio estimator has been defined for

determining the qualify of facial images [30]. It is based on the concept that the

statistics of the edge intensities of an image are correlated with the noise level of

the image [72].

Suppose the pdf f‖∇I‖(r) of the edge intensity image ‖∇I‖ can be calculated

as a mixture of Rayleigh pdfs, we define the following quantity

Q =

∫ ∞
2µ

f‖∇I‖(r) dr,

where µ is the mean of ‖∇I‖. It has been shown that the value of Q for a noisy

image is always smaller than that for an image with no noise [72]. Then, the face
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Figure 2.7: Typical original images from our remote face dataset.
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image quality is defined as

Q′ =

∑
edge above 2 µ’s pixels∑

edge pixels
'
∫ ∞

2µ

f‖∇I‖(r) dr.

It has been experimentally verified that the estimator Q′ is well correlated with the

recognition performance in FR [30]. Hence, setting up a comprehensive metric to

evaluate the quality of face images is essential in remote FR. Also, these measure-

ments can be used to reject images of low quality.

2.3 Re-identification

In re-identification, one has to identify a subject initialized at one location

with a feasible set of candidates at other locations and over time. We define the

remote face re-identification problem as follows.

Definition 1 (Remote re-identification) Given a probe set acquired at location Lp,

remote re-identification aims to match them with the subjects in a gallery set, which

were collected at a different location Lg and at a different time. Both gallery and

probe sets are collected in remote and unconstrained setting.

Note that the data capture process of the gallery and probe sets may not be

the same. That is, facial hair and ware of the subjects, the weather condition and

illumination effect can be quite different, which might cause a large information

gap between the face images collected at two different locations. In particular, this

information gap is coupled with the variations we discussed before, which makes the

remote face re-identification problem intrinsically difficult.
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2.4 Remote Face Database

In this section, we introduce a remote face database in which a significant

number of images are taken from long distances and under an unconstrained outdoor

maritime environment. As discussed previously, the quality of the images differs

in following aspects: the illumination is not controlled and is often severe; there

are pose variations and occluded faces due to non-cooperative subjects; finally, the

effects of scattering and high magnification resulting from long distance contribute

to the blurriness of face images.

The distance from which the face images were taken varies from 5m to 250m

under different scenarios. Since we could not reliably extract all the faces in the

data set using existing state-of-the-art face detection algorithms and the faces only

occupied small regions in large background scenes, we manually cropped the faces

and rescaled them to a fixed size. The resulting database for still color face images

contains 17 different individuals and 2106 face images in total.

We manually labeled the faces according their type (i.e. different illumination

conditions, occlusion, blur etc.). In total, the database contains 688 clear images,

85 partially occluded images, 37 severely occluded images, 540 images with medium

blur, 245 with sever blur, and 244 in poor illumination conditions. The remaining

images have two or more coupled conditions, such as coupled poor lighting and blur,

coupled occlusion and blur etc. Figure 2.7 shows two sample images acquired in a

remote maritime setting. Some of the extracted images from the database are shown

in Figure 2.8.
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Figure 2.8: Cropped face images with different variations from the remote face

database.

2.5 Evaluation of Face Recognition Algorithms

In this section, we first describe two state-of-the-art FR algorithms and then

present and compare the recognition performance of these two algorithms on the

remote face database.

2.5.1 Baseline Algorithm

The baseline recognition algorithm used in this chapter performs Principle

Component Analysis (PCA) [73] followed by Linear Discriminate Analysis (LDA)

[19, 7] for dimension reduction and a Support Vector Machine (SVM) [74] for clas-

sification.

LDA is a well-known feature extraction method for pattern recognition and

classification tasks. It finds projection matrix A in such a way that the ratio of the

between-class scatter and the within-class scatter is maximized [7]. The objective
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function is defined as

Aopt = arg max
A

|ATΣBA|
|ATΣWA|

where |.| denotes the determinant of a matrix, ΣB and ΣW are between-class and

within-class scatter matrices, respectively.

The within-class scatter matrix becomes singular when the dimension of the

input data is larger than the number of training samples. To deal with this issue,

we first use PCA to project the raw data onto an intermediate feature space with

much lower dimension. Then, LDA is applied on the features from this intermediate

space.

It is well known that LDA is not feasible when there is only one image per sub-

ject. To further mitigate this small sample size problem, we impose a regularization

term in the objective function

aopt = arg max
a

=
aTΣBa

aTΣWa + αJ(a)

where the resulting solutions form the columns of the optimal projection matrix

Aopt. We choose the Tikhonov regularizer J(a) = ‖a‖2
2 in our experiments. The

resulting method is often known as Regularized Discriminate Analysis (RDA) [75].

Then, the low-dimensional discriminant features from RDA are fed into a linear

SVM for classification.

2.5.2 Sparse Representation-based Algorithm

A state-of-the-art sparse representation-based classification (SRC) algorithm

for FR was proposed in [20]. It demonstrates that if sparsity in the recognition
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problem is properly harnesses, the choice of feature extraction method is no longer

critical. Besides, the proposed framework can handle errors due to occlusion and

corruption uniformly by exploiting the fact that these errors are often sparse with

respect to the standard (pixel) basis.

Let each image be represented as a vector in Rn, D be the training dictionary

and y be the test image. The SRC algorithm is as follows:

1. Create a matrix of training samples D = [D1, ...,Dk] for k classes, where

{Di}, i = 1, ..., k are the set of images of each class.

2. Reduce the dimensionality of the training images and the test image by any

feature extraction method. Denote the resulting dictionary and the test vector

as D̃ and ỹ, respectively.

3. Normalize the columns of D̃ and ỹ.

4. Solve the following `1 minimization problem

α̂ = arg min
α′
‖ α′ ‖1 subject to ỹ = D̃α′, (2.10)

5. Calculate the residuals

ri(ỹ) = ‖ỹ − D̃δi(α̂)‖2,

for i = 1, ..., k where δi a characteristic function that selects the coefficients

associated with the ith class.

6. Identity(y)=arg mini ri(ỹ).
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The assumption made in this method is that given sufficient training samples

Di of the ith class, any new test image y that belongs to the same class will ap-

proximately lie in the linear span of Di. This implies that most of the coefficients

not associated with class i in α̂ will be close to zero. Hence, α′ is a sparse vector.

Further, a method of rejecting invalid test samples can also be incorporated within

this framework. In particular, the notion of Sparsity Concentration Index (SCI) [20]

has been proposed to decide whether a given test sample is a valid sample or not.
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Figure 2.9: Comparison of intensity images and albedo maps using baseline.

2.5.3 Experimental Results

In the following, we report experimental results using the algorithms described

earlier in this section.

The first set of experiments was designed to test the effectiveness of albedo

maps [39]. We select the gallery set from clear images, and gradually increase the
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Figure 2.10: Performance of the baseline algorithm as the condition of probe varies.

number of gallery images from one to fifteen images per subject, and all the remain-

ing clear images are selected for testing. We choose the gallery images randomly,

and repeat five different trials to obtain the average recognition result. We compare

the input of albedo maps with the intensity images using the baseline algorithm.

All the parameters of PCA, LDA and SVM are fine tuned. The results are shown

in Figure 2.9. We observe that intensity images outperform albedo maps although

the albedo images are not sensitive to illumination variations. One possible reason

is that, some face images in the database are a bit away from frontal. As albedo

estimation needs a good alignment between the observed image and the ensemble

mean, the resulting albedo map becomes erroneous. These artifacts are also seen in

Figure 2.1.

In the second set of tests, the same gallery is chosen as the first set of exper-

iments, while the test images are chosen to be clear, poorly illuminated, medium
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Figure 2.11: Comparison between SRC and baseline algorithms.

Figure 2.12: Cropped face images with different variations from the second remote

dataset.

blurred, severely blurred, partially occluded and severely occluded respectively. The

intensity images are used as input. The rank-1 recognition results using the base-

line algorithm are given in Figure 2.10. We observe that the degradations in the

conditions of test images decrease the performance, especially when the faces are

occluded and severely blurred.
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In the third set of experiments, we compare the performance of the SRC

method and the baseline algorithm. We selected 14 subjects with 10 clear images

per subject to form the gallery set. The test images are selected to contain clear,

blurred, poorly illuminated and occluded images respectively. For the SRC method,

we compute the SCI value of each image which can be used as a criteria to reject

images of low quality.
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Figure 2.13: Re-identification performance of the baseline algorithm as the condition

of the probe set varies.

From the comparison results reported in Figure 2.11, we observe that when no

rejection of test images is allowed, the recognition accuracy of the baseline algorithm

is superior to the SRC method. One possible reason is that when gallery images

do not contain variations that occurred in the test images, the SRC method can

not approximate the test images correctly through linear span of the gallery images.

However, when rejection of test images is allowed, we remove those images with lower
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Figure 2.14: Comparison of baseline and sparse representation for re-identification.

SCI values so that test images become closer to the linear span of training images,

and the performance of the SRC method improves accordingly. The rejection rates

in Figure 2.11 are 6%, 25.11%, 38.46% and 17.33% when the test images are clear,

poorly lighted, occluded and blurred, respectively. Besides, the advantage of the

SRC method for handling occluded images is also observed.

2.5.3.1 Results on Remote Re-identification

To study the difficulty of remote face re-identification, we present some results

using the datasets we collected. The above remote dataset is used as the gallery set,

and another outdoor remote dataset which was collected at a distance around 200

meters is used as the probe set. The time gap between these two datasets is more

than two years. Five subjects which appear in both datasets are selected for the

re-identification experiments. Figure 2.12 shows some of the cropped face images

with different variations from the second remote dataset.
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In the fist set of experiments on re-identification, we gradually increase the

number of gallery images in the first remote dataset from one to fifteen per subject.

The probe images from the second remote dataset is partitioned into four different

subsets: clear, blurred, occluded and with illumination variation. Figure 2.13 shows

the rank-1 recognition result using the baseline algorithm.

In the second set of experiments, we select 10 clear images per subject from the

first remote dataset as gallery, and the same set of images as in previous experiment

from the second dataset are used as probe. The comparison between the baseline

algorithm and sparse representation-based method is reported in Figure 2.14.

Comparing Figure 2.10 and Figure 2.13, we see that the performance drops

significantly in the remote re-identification case. Note that in both cases, the gallery

settings are very similar except the number of subjects. This may be the result of

large variations in facial appearances between these two datasets. Similarly, the

decrease in the recognition performance can also be found by comparing Figure 2.11

and Figure 2.14.

2.6 Discussions

In this chapter, we briefly discussed some of the key issues in remote FR and

introduced the remote re-identification problem. We then described a remote face

database collected by UMD researchers and reported the performance of state-of-the-

art FR algorithms on it. The results demonstrate that recognition rate decreases

as the remotely acquired face images are affected by illumination variation, blur,
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occlusion, pose variation etc. The coupling among different variation factors makes

the remote FR problem extremely difficult. Therefore, it is essential to develop

robust recognition algorithms under these conditions, as well as finding features

that are robust to these variations. In the mean time, the re-identification problem

raises an interesting new challenge for FR: how to make the FR system self-adaptive

at a different location and over time is also worth investigating.
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Chapter 3: Example-Driven Patch Manifold for Image Deconvolu-

tion

3.1 Introduction

Image deconvolution is a classical inverse problem where we observe a two-

dimensional image y that consists of an unknown desired image x degraded by a

point spread function (PSF) h (often assumed to be known) and then corrupted by

zero-mean additive white Gaussian noise (AWGN) γ with variance σ2 (see Fig. 3.1).

Assuming that the images are of size M ×M , this model can be expressed as

y(n1, n2) = (x~ h)(n1, n2) + γ(n1, n2), (3.1)

where 0 ≤ n1, n2 ≤M − 1. Using matrix notation, this model can be written as

y = Hx + γ, (3.2)

where y,x, and γ are M2× 1 lexicographically ordered column vectors representing

the arrays y, x and γ, respectively and H is the M2 ×M2 matrix that models the

point spread function. In the discrete Fourier transform (DFT) domain, we have for

(3.1)

Y (k1, k2) = H(k1, k2)X(k1, k2) + Γ(k1, k2), (3.3)
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where Y (k1, k2), H(k1, k2), X(k1, k2) and Γ(k1, k2) are the 2D DFTs of y, h, x, and

γ, respectively, for −M/2 ≤ k1, k2 ≤ M/2− 1. Given y and h, we seek to estimate

x. Such linear inverse problems often arise in many image processing applications

such as radiometry, satellite imaging, optical systems, magnetic resonance imaging

and seismic processing.

Figure 3.1: Model for the deconvolution problem.

It is well known that the deconvolution problem is ill-posed. To find a unique

and stable solution, regularization is often used. A popular way to estimate the

unknown image x is to use Tikhonov regularization [12] which consists of minimizing

the following term

JT (x) = ‖y −Hx‖2
2 + λE(x), (3.4)

where E(x) = ‖Cx‖2
2 and C is an M2×M2 matrix operator, known as the regular-

izing operator (e.g. Laplacian). The first term in (3.4) expresses the fidelity to x,

and the second term expresses the desired smoothness of the restored image. Here,

λ is the regularization parameter that represents the trade-off between fidelity to

the data and the smoothness of the recovered image. The solution to the Tikhonov

regularization problem can be obtained directly in the Fourier space

X̃(k1, k2) =
H∗(k1, k2)Y (k1, k2)

|H(k1, k2)|2 + λ|C(k1, k2)|2
. (3.5)

40



The Tikhonov method offers computational advantages. However, it often creates

Gibbs oscillations in the neighborhood of discontinuities in the image [76]. As a

result, the visual quality of the recovered image often degrades.

Recently, considerable efforts have been spent on designing alternative spar-

sity constraints which preserve such features. Methods based on these sparsity

constraints have been successfully used for image deconvolution (c.f. [13, 77, 78,

79, 80, 3, 81, 82]). Among various signal transformations, transformations based on

wavelets, curvelets [83], contourlets [84, 85] and shearlets [86] are popular for image

representation and are often used for image restoration. This is because wavelet

transformations provide economical representations for a diverse class of signals,

including signals with singularities. In fact, among all orthogonal transformations,

the wavelet transformation can capture the maximum signal energy using any fixed

number of coefficients for the worst-case Besov space signal [78].

Another popular deconvolution method is based on total variation [87], where

E(x) in (3.4) is set equal to ‖Cx‖1, where ‖Cx‖1 is the `1-norm of gradients of

x. Variations of this method have also been proposed [88, 89]. A local polynomial

approximation method that uses intersecting confidence intervals was proposed in

[4]. In [90], a locally adaptive kernel regression method was proposed to solve (3.4).

However, it has been shown recently that for image restoration, learning a rep-

resentation from examples instead of using pre-specified ones, usually leads to im-

proved results. For instance, [14] proposes an example-based image super-resolution

method. As the richness of real world images is difficult to be captured analytically,

a training set is used to learn the fine details that correspond to different image
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regions observed at a low resolution. Then a Markov network is used to model the

probabilistic relationships between high and low resolution patches, and between

neighboring high resolution patches. Finally, fine details in high resolution images

are predicted by exploiting the learned relationships. The reason this category of

generic learning algorithm works is that the collection of image pixels are special sig-

nals that have much less variability than the corresponding set of completely random

variables. These regularities can be utilized to create plausible image information.

Following this line of pursuit, in this chapter, we take a learning-based ap-

proach to the problem of image deconvolution by exploiting extra information in

the form of prior knowledge of the object class to regularize the inverse problem

[91]. Specifically, we use image data of the object class, as the available extra in-

formation. The proposed method assumes that the set of all patches (e.g. 3 × 3)

from a given class of images - say faces, or natural images - live on a manifold. We

shall define this in more precise terms as we progress. First, let us motivate the role

of patch-manifolds in representing images. Images are formed by the interaction of

light with surfaces. Surface properties such as geometry and reflectance give rise to

varied appearances, which are then imaged by a projective camera. To characterize

the space of images thus formed, one needs to have a clear model for each of these

factors. For example, under variations in lighting conditions, with fixed viewing

angle and pose, the set of face images obtained live on a ‘cone’ [31]. However, it

is difficult to extend these results to more general classes of objects and scenes.

Alternately, vision researchers have explored the tools of ‘manifold learning’ in such

cases when one may have access to a large set of examples from each class. Manifold

42



learning algorithms such as Isomaps [92], LLE [93] etc, have proven useful in many

cases and have been used to estimate the manifold of faces under pose variations.

However, image manifolds are extremely high dimensional in the general case, since

real images result from all of the above factors playing out simultaneously instead

of in isolation. The situation gets much more complicated when several objects are

present in the scene, each with its own surface properties. Since the number of

samples needed to estimate even relatively low-dimensional manifolds is quite high

(c.f. [94]), this makes the estimation of image-manifold in a general unconstrained

setting, a difficult proposition.

On the other hand, assuming that small patches from a given class lie on a

manifold is a far weaker requirement. It can be shown that even simple patch-

manifold models give rise to complex imagery. For example, by assuming that each

patch consists of small binary line segments, one can span the set of all ‘cartoon’ im-

ages. Similarly, the patch-manifold of locally parallel textures gives rise to complex

finger-print type images [91]. Locally parallel textures can be analytically described

by 2D sinusoidal functions, whereas the global manifold of images thus obtained are

hard to describe in closed-form. When one does not have an analytical form for

the patch-manifold, patch-manifold learning is still far easier than image-manifold

learning. Since even a single image gives rise to an abundance of patches, and this

affords a large set of samples on the patch manifold from unlabeled data. Coupled

with the fact that the space of patches is far smaller than the space of images, this

makes estimating the patch-manifold far easier.

Learning and using the patch-manifold often requires expensive computations
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as the patch-manifold consists of a large number of samples. Hence we propose

efficient parameterizations for computing the parameters of the manifold. Further,

as the debluring performance is dependent on the regularization parameter, we drive

a closed-form generalized cross validation function to automatically find a value

of the regularizer λ without explicitly calculating the noise variance. We present

experimental results on a wide variety of images and also discuss the computational

expenses.

3.2 Manifold Learning Techniques

In this section, we introduce the fundamentals of manifold and several common

manifold learning techniques.

A manifold M is a topological space that is locally Euclidean, i.e, around

every point of M is a neighborhood which is topologically the same as the open

unit ball in RD [95]. A manifold is usually represented by an embedding in a certain

space, e.g., RD so that its topological properties are preserved in the embedded

space [95]. Over the years, several manifold learning techniques have been raised to

learn the underlying low dimensional manifold. We list several popular techniques

in the following.

Principal Component Analysis (PCA): PCA is probably the most known

and widely used method for analyzing high-dimensional data. It transforms a num-

ber of possibly correlated data into a smaller number of uncorrelated data called

principal components.
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Let the input data be Y1,Y2, ...,YM , and Φi = Yi − 1/M
∑M

i=1 Yi. Then by

performing an eigen-decomposition of the covariance matrix C = 1/M
∑M

i=1 ΦiΦ
T
i ,

one can get the principal components xk and the associated eigenvalues λk.

In many practical applications, one cannot overlook the intrinsic nonlinearity

of the data. From the historic perspective, preserving distance is the first criteria

proposed for manifold learning in a nonlinear way. Intuitively, as any manifold

can be described by pairwise distances, the low-dimensional representation can be

learned so that the initial distances are preserved [95].

Metric Multidimensional scaling (MDS): Metric MDS preserves the pair-

wise distance

EmMDS =
N∑

i,j=1

wi,j(dy(i, j)− dx(i, j))2

where dy(i, j), dx(i, j) are the Euclidean distances in the high and low dimensional

spaces, respectively. Non-degenerative weights wi,j are often equal to one.

Isomap: Isomap [92] is a simple nonlinear dimension reduction method which

shares similarity with metric MDS. The difference is that it uses the graph distance

to approximate the geodesic distance.

Another category of manifold learning methods uses the topology of the data

instead of pairwise distances. Topology, i.e., the neighborhood relationship is an

important characteristic of a manifold. To some extent, distances give too much

information, while comparative information between distances, like inequalities or

ranks, suffice to characterize a manifold for any embedding [95].

Local Linear Embedding (LLE): LLE [93] proposes to preserve topology
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based on a conformal mapping which is a transformation that preserves local angles.

It first represents each data point y(i) as a linear combination of its neighbor points

ε(W) =
N∑
i=1

‖y(i)−
∑
j∈N (i)

wi,jy(j)‖2

where N (i) is the neighbor set of the ith data instance, and wi,j represents the

weights of the neighbor data points. LLE assumes that such geometry also stands

for the underlying low-dimensional manifold and optimizes the following objective

function

Φ(X) =
N∑
i=1

‖x(i)−
∑
j∈N (i)

wi,jx(j)‖2

Alternatively, manifold learning has been cast as an inference problem on

two special manifolds: the Grassmannian and Stefiel manifold. The Grassmannian

manifold is the space of d−dimensional subspaces in Rn and the Stiefel manifold is

the space of d orthonormal vectors in Rn. Statistical modeling of these two special

manifolds have been derived by the Riemannian geometric properties [96]. Studies of

these manifolds have been used for face recognition [97], shape analysis [98], human

activity recognition [99] and dynamic textures [100].

In the next section, we describe the details of our approach for manifold mod-

eling of a given image class for deblurring. We show the limitations of traditional

manifold learning methods in our patch-manifold setting, and propose efficient pa-

rameterizations suitable for learning the patch-manifold.
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3.3 Manifold Modeling of Image Classes

In the following, we use x to denote the unknown image to be solved for, and

x as the vector representation of the image x. We follow the theoretical foundations

set forth in [91] for modeling images using a patch-manifold. We briefly review the

required preliminaries before describing how we employ it for the deblurring problem.

Let us denote a patch extracted from the image x, at location q ∈ [0, 1]2 of width

τ > 0 by pq(x)(t) = x(q + t),∀t ∈ [−τ/2, τ/2]2. Further, we have x ∈ L2[0, 1]2,

which denotes the set of 2-dimensional finite energy signals. The class dependent

image-ensemble is then denoted as Θ ⊂ L2[0, 1]2. The patch-manifold associated

with this ensemble is denoted as M = {pq(x)|q ∈ [0, 1]2, x ∈ Θ} ⊂ L2[−τ/2, τ/2]2.

An image x is now represented as a surface traced on the manifold M given as

cx : q 7→ pq(x) ∈M. (3.6)

Given an image and the manifold representation, one can now measure the

goodness of fit between them. To do this, first one needs a way to compute the closest

point on the manifold. This is done in two stages. First, patches from an image are

projected onto the patch-manifold. This step is denoted by c(q) = ProjM(pq(x)),

which assigns closest patches from the manifold to the given image patches. Thus,

ProjM(p) = arg min
t∈M

‖p− t‖. The distance of a patch from the manifold is then

given by d(p,M) = ‖p− ProjM(p)‖. Then, the goodness of fit of a given image is

measured by averaging the distance of each patch from the patch-manifold
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EM(x) =

∫
[0,1]2

d(pq(x),M)2dq (3.7)

=

∫
[0,1]2
‖pq(x)− ProjM(pq(x))‖2 dq. (3.8)

An image x has low-energy EM(x) if it traces a curve cx = {pq(x)} close to

the manifold. This curve can be projected onto the manifold by means of the Proj

operator. The projected curve is thus represented as

c̃x(q) = ProjM(pq(x)) ∈M. (3.9)

Now, from this projected curve one can compute the projection of the image x

onto the set of images generated by the patch manifold. Reconstruction is achieved

by means of averaging overlapping patches. Specifically, the projection of the image

x is represented by ProjM(x) = Aver(c̃x), where

Aver(cx) =
1

τ 2

∫
‖q−z‖≤τ/2

pz(x− z)dz,with pz(c) = c(z). (3.10)

3.3.1 Regularizing the deblurring problem with the manifold prior

The optimization problem for deblurring is now recast by introducing a new

variable c∗ which is a manifold-valued function. The optimization is rewritten as

finding an optimal x∗, given an observation y and the manifold prior as
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(x∗, c∗) = E(x, c) (3.11)

= arg min
x,c

‖y −Hx‖2 + λ

∫
[0,1]2
‖pq(x)− c(q)‖2dq (3.12)

where λ controls the relative weightage between the data and prior terms.

A stationary point is obtained by means of an iterative procedure that alternates

between solving for x∗ and c∗. Given a current estimate of the image x(k), c(k) is

obtained as

c(k+1) = ProjM(x(k)). (3.13)

Next, given c(k+1), we solve for x as

x(k+1) = (HTH + λI)−1(HTy + λvec(Aver(c(k+1))), (3.14)

where Aver(c) is as defined in (3.10), and vec() returns the vectorized version of

its argument. This procedure is repeated till convergence and it is summarized in

Table 3.1.

As (3.12) is non-convex, the algorithm in Table 3.1 may not converge to the

global optimum. However, for a smooth manifold M, the iterates (x(k), c(k)) of

our algorithm will converge to a stationary point (x∗,c∗) [91]. Note that the ma-

trix inversions involved in the optimization steps in Table 3.1 are all implemented

implicitly using the properties of the PSF matrix H [101].
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Table 3.1: Algorithm for patch-manifold based regularization for deblurring.

1. Set x(0) = HTy and k ← 0.

2. Update the manifold-valued function as

∀q ∈ [0, 1]2, c(k+1)(q) = ProjM(pq(x
(k))).

3.Update the current estimate of x as

x(k+1) = (HTH + λI)−1(HTy + λvec(Aver(c(k+1)))).

4. Repeat till convergence or till maximum iterations are

reached.
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3.4 Sampling and learning the patch-manifold

In actual implementation, we do not have an analytical characterization of the

patch manifold. An analytical characterization would lead to a closed-form version

of the Proj operator. We instead learn the manifold using training examples of

images from the class of images under consideration, e.g. faces or natural images.

The Proj operation then amounts to searching for the closest point to a given patch

in the learnt manifold. We explore two ways to solve this problem - non-parametric

and parametric. We describe these two approaches in the following.

Figure 3.2: Locally-linear parametrization of a densely sampled manifold.

3.4.1 Non-parametric manifold learning

In the non-parametric case, we assume that we have a large number of samples

from the underlying patch-manifold. In experiments we find that the assumption of

a dense sampling is in fact very well justified given the easy availability of a large

number of patches. With this, the Proj operation is efficiently implemented using

approximate nearest neighbor search strategies. We choose locality sensitive hashing

(LSH) [102] for this task due to its sub-linear search efficiency. Given a training set
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of images, patches centered at all pixel locations are extracted from every image.

The set of patches thus obtained constitutes the sampling of the manifold. This set

is then indexed using LSH.

Here, we briefly review the basic concepts of LSH. LSH attempts to solve a

problem called the (r, ε)-NN problem. The problem is described as follows: given

a database of points D = {xi} in Rn and a query xq, if there exists a point x ∈ D

such that d(x, xq) ≤ r, then with high probability, a point x′ ∈ D is retrieved such

that d(x′, xq) ≤ (1 + ε)r. Now, LSH solves this problem by constructing a family of

hash functions F over Rn. These functions are called locality sensitive, if for any

u, v ∈ D

d(u, v) ≤ r ⇒ Pr(f(u) = f(v)) ≥ p1 (3.15)

d(u, v) ≥ (1 + ε)r ⇒ Pr(f(u) = f(v)) ≤ p2 (3.16)

Popular choices of f include random projections, i.e. f(v) = sgn(v.r) where

r is a randomly chosen unit vector, and sgn is the signum function. In this case,

f is a binary variable taking values in {+1,−1}. A generalization of this is termed

random projections using ‘p-stable’ distributions [103], with f(v) = bv.r+b
w
c where r

is a randomly chosen direction whose entries are chosen independently from a stable

distribution, and b is a random number chosen between [0, w]. In this case, the

hash function takes on integer values. A k−bit hash is constructed by appending k

randomly chosen hash functions as follows
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F (x) = [f1(x), f2(x), . . . fk(x)] (3.17)

where F ∈ Fk. Then, L hash tables are constructed by randomly choosing

F1, F2 . . . FL ∈ Fk. All the training examples (patches) are hashed into the L hash

tables. For a query point xq, an exhaustive search is carried out among the examples

in the union of the L hash buckets indexed by q. Appropriate choices of k and L

ensure that the algorithm succeeds in finding a (r, ε)-NN of the query xq with a high

probability. In our work, we used random projections based hashing, i.e. the hash

function is f(v) = sgn(v.r).

3.4.2 Parametric manifold learning

Even though a dense sampling of the patch-manifold appears to be a reasonable

assumption, implementing the Proj operation involves significant computation for

the entire image, as we need to hash and search for every patch in the given image.

Also, the Proj operator implemented in this manner is susceptible to noise in the

dataset. Further, if the sampling density is reduced, the quality of reconstructions

can be significantly affected. To deal with these situations, we explore a parametric

way for modeling the patch manifold. While several parameterizations of the patch-

manifold are possible, we choose the one that leads to computationally efficient

algorithms for implementing the Proj operation. Note that one could potentially

use algorithms such as LLE [93] and Isomaps [92] to estimate the manifold, but there

are a few considerations which make their use prohibitive in the current setting. To
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begin with, these algorithms have a high computational complexity for estimating

the manifold when the number of samples is high. Further, out-of-sample extension,

i.e. finding the parameters of a new patch which is not in the training database, is

a non-trivial task [104]. Here, we propose a much simpler parametrization of the

patch-manifold which is computationally efficient to learn when a dense sampling

of the patch-manifold is available, and has a graceful out-of-sample extension when

the sampling density reduces.

We assume that the patch manifold can be decomposed into a union of sub-

spaces, i.e. M =
⋃K
i=1 Si, where each Si is a d-dimensional affine subspace in

Rn, represented by its offset µi and orthonormal basis vectors Vi (written in ma-

trix form). Each patch on the manifold is then parameterized by the index of the

subspace on which it lies and the coefficients of its projection on the appropriate

subspace as follows

ψ(p) = (̂i, α̂) = arg min
i,α

‖p− µi −Viα‖ . (3.18)

Figure 3.2 presents a graphical illustration of the locally linear parametrization

of the manifold. To learn this manifold from the training data, we adopt a two stage

approach. In the first stage, given the training set of patches D = {xi}, we cluster all

the patches into K distinct clusters. Each cluster center is associated with the offset

of the subspaces µi. Within each cluster, we then estimate the optimal basis vectors

using principal component analysis (PCA). Given a new patch, the closest patch on

the manifold is estimated in two stages. In the first stage, the closest cluster center

is computed by comparing it with all the cluster centers. Once the closest cluster
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center is found, the patch is projected onto the subspace of that cluster. Therefore,

given a new patch p, we obtain the parameterizations as follows

î = min
i
‖p− µi‖ , α̂ = VT

î
(p− µî) (3.19)

Then, the Proj operation is easily implemented as

ProjM(p) = µî + Vîα̂, (3.20)

where (̂i, α̂) are as defined in (3.19).

3.5 Generalized Cross Validation (GCV)

Note that the deblurring cost function in (3.12) and thereby the solution in

(3.14) depends on the value of λ. The deblurred image depends greatly on the

degree of regularization which is determined by the regularization parameter [101].

In this section, we describe a generalized cross validation (GCV) function [105, 106]

to compute the regularization parameter automatically. The GCV method is based

on statistical considerations, namely, a good value of the regularization parameter

should predict missing data values [107]. One of the main advantages of this GCV

method is that it can obtain the regularization parameter without knowing the noise

variance.

First, we define the singular value decomposition (SVD) of the blur matrix H

as H = UΣVT , where U and VT are orthogonal matrices, satisfying UTU = IM2
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and VTV = IM2 , and Σ = diag(σi) is a diagonal matrix. Let ui and vi be the

columns of U and V, respectively.

In the principle of minimizing the predictive mean-square error, [107] defines

the GCV function as

G(λ) =
‖Hx− y‖2

2

(trace(I−HH]))2
(3.21)

where x is the restored image and H] is the regularized inverse given by

H] = (HTH + λI)−1HT

= (VΣ2VT + λI)−1VΣUT

= V(Σ2 + λI)−1ΣUT .

(3.22)

Let φi =
σ2
i

σ2
i+λ

, Φ = diag(φi), then (3.22) can be written as

H] = VΦΣ−1UT . (3.23)

Substituting (3.23) into (3.21), the GCV function becomes

G(λ) =
‖y −Hx‖2

2

(trace(I−HVΦΣ−1UT ))2
. (3.24)

By replacing x in (3.24) with the manifold-based solution, we obtain the GCV

function of our proposed algorithm.

We split the manifold solution into two parts: x = xλ + x̃, where xλ =

(HTH + λI)−1HTy = H]y = VΦΣ−1UTy, x̃ = (HTH + λI)−1λvec(Aver(c(k))).

Hence, y −Hx = (y −Hxλ)−Hx̃, where

y −Hxλ = y −HVΦΣ−1UTy

= y −UΣVTVΦΣ−1UTy

= y −UΦUTy.

(3.25)
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Also,

Hx̃ = H(HTH + λI)−1λvec(Aver(c(k)))

= UΣVTV(Σ2 + λI)−1VTλvec(Aver(c(k)))

= UΣ(Σ2 + λI)−1VTλvec(Aver(c(k)))

(3.26)

Since the 2-norm is invariant under orthogonal transformation, ‖y −Hx‖2
2 =

‖UT (y −Hx)‖2
2, so we can work in the coordinates of the SVD. From (3.25) and

(3.26), we have

‖y −Hx‖2
2

= ‖UT (y −Hxλ −Hx̃)‖2
2

= ‖UT (y −UΦUTy−

UΣ(Σ2 + λI)−1VTλvec(Aver(c(k))))‖2
2

= ‖(I−Φ)UTy −Σ(Σ2 + λI)−1VTλvec(Aver(c(k)))‖2
2

=
M2∑
i=1

(
λuTi y − λσivTi vec(Aver(c(k)))

σ2
i + λ

)2

.

(3.27)

Further,

(trace(I−HVΦΣ−1UT ))2

= (trace(I−UΣVTVΦΣ−1UT ))2

= (trace(U(I−Φ)UT ))2

= (trace(I−Φ))2

=

(
M2∑
i=1

λ

λ+ σ2
i

)2

.

(3.28)

Hence, substituting the expressions from (3.27) and (3.28) into (3.24), we obtain
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the GCV function for our manifold-based algorithm

G(k)(λ) =

∑M2

i=1

(
uTi y−σivTi vec(Aver(c(k)))

σ2
i+λ

)2

(∑M2

i=1
1

σ2
i+λ

)2 . (3.29)

Note that the GCV function changes with every iteration and is thus indexed

with k. This means that the optimal value of λ changes with every iteration. Hence,

at each iteration we need to compute the best λ by evaluating the GCV function

for various values of λ and choosing one that minimizes the GCV function. Thus,

λ
(k)
optimal = arg min

λ
G(k)(λ), (3.30)

where G(k)(λ) is as given in (3.29).

3.6 Experimental Results

In this section, we present the results of our algorithm and compare them with

various state-of-the-art methods: deconvolution based on sparsity prior in wavelet

domain [3], hyper-Laplacian prior-based deconvolution [2], Fourier-Wavelet Regular-

ized deconvolution (ForWaRD) [78], Anisotropic nonparametric image resotoration

(LPA-ICI) [4] and Tikhonov deconvolution [101]. The regularization parameters for

these methods are either chosen from a set of values within a wide range or set to

be the optimal value reported in the corresponding papers. In the following ex-

periments, we use the improvement in signal-to-noise-ratio (ISNR) as an criteria to

compare the different methods. The ISNR is defined as

ISNR = 10 log10

(
‖x− y‖2

2

‖x− x̂‖2
2

)
.
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For an image of size M ×N , the BSNR is defined in decibels as

BSNR = 10 log10

(
‖Hx− µ(Hx)‖2

2

MNσ2

)
,

where µ(Hx) represents the mean of Hx.

Figure 3.3: Some of the natural images used to learn the patch-manifold of natural

images.

Fig. 3.3 shows some of the images used to learn the patch manifold for our

algorithm. We randomly sample 22, 500 patches of size 4 × 4 from each image. So

we have 112, 500 patches in total to learn the patch manifold. In Fig. 3.4, we display

the test images used for different experiments in this paper.

In the first set of experiments, a Barbara image, shown in Fig. 3.4(a), is blurred

by the following point spread function: h(n1, n2) = (1 + n2
1 + n2

2)−1, for n1, n2 =

−7, ..., 7. The AWGN variance σ2 is chosen with a BSNR of 40 dB. The ISNR values

obtained by different methods are compared in Table 3.2 under the Experiment 1
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Images used in this chapter for different experiments. (a) Barbara image,

(b) Tiger image, (c) a face image, (d) Koala image, (e) Flowers image and (f) Boat

image.
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column. The parametric and non-parametric manifold-based methods yield ISNR

values of 7.98 dB and 7.95 dB respectively, which are better than the values obtained

by any of the other methods. A portion of the image is zoomed in to reveal the

visual detail of the results obtained by the different methods, and are shown in

Fig. 3.5(a)-(f). As can be seen from the figure, our manifold-based method recovers

details better than the other methods.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Details of the image deconvolution experiment with a Barbara image. (a)

Original image. (b) Noisy blurred image. (c) Hyper-Laplacian [2] estimate (ISNR

5.19 dB). (d) Wavelet domain sparsity-based estimate [3] (ISNR 6.24 dB).(e)LPA-

ICI [4] estimate (ISNR 7.88 dB) (f) Parametric manifold-based estimate (ISNR 7.98

dB) suggested in this chapter.
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In the second set of experiments, the Tiger image, shown in Fig. 3.4(b), is

blurred by a real-world camera shake kernel [108]. In this experiment, we choose

the noise variance σ2 with a BSNR of 30 dB. The simulation results are reported

under the Experiment 2 column of Table 3.2. The deblurred image details obtained

by the different methods are shown in Fig. 3.6(a)-(f). The blur PSF used in this

experiment is shown in Fig. 3.6(g). The LPA-ICI method gives an ISNR value of

9.14 dB which is slightly better than our method. Note that the LPA-ICI method

obtains the initial estimate using a local polynomial approximation method. To

further enhance their performance, a regularized Wiener filtering (RW) is applied

to the initial estimate. Similarly, we can enhance the performance of our algorithm

by adapting RW filtering as a postprocessing step as was done in [78] and [80].

In the third set of tests, a face image is blurred by a Gaussian PSF defined as

h(i, j) = De
− i

2+j2

2η2

for i, j = −5, ..., 5, where D is a normalizing constant ensuring that the blur is of

unit mass, and η2 is the variance that determines the severity of the blur. Noise is

added with a BSNR of 40 dB. The results are summarized under the Experiment

3 column of Table 3.2. Again, our manifold-based algorithm performs the best in

terms of ISNR. A portion of the deblurred images from different methods are shown

in Fig. 3.7(a)-(f).

In the fourth set of tests, the image of Koala is blurred by a separable filter

[4] with weights [1, 4, 6, 4, 1]/16 in both the horizontal and vertical directions and

the AWGN is added such that the BSNR value equals to 30 dB. The simulation
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.6: Details of the image deconvolution experiment with a Tiger image. (a)

Original image. (b) Noisy blurred image. (c)Hyper-laplacian [2] estimate (ISNR

8.14 dB). (d) Wavelet domain sparsity-based estimate [3] estimate (ISNR 8.28 dB).

(e) LPA-ICI [4] estimate (ISNR 9.14 dB) (f) Parametric manifold-based estimate

suggested in this chapter (ISNR 9.02 dB). (g) Blur kernel.
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Details of the image deconvolution experiment with a face image. (a)

Original image. (b) Noisy blurred image. (c) Hyper-Laplacian [2] estimate (ISNR

5.16 dB). (d) Wavelet domain sparsity-based estimate [3] estimate (ISNR 6.1 dB).

(e) LPA-ICI estimate [4] (ISNR 7.4 dB) (f) Parametric manifold-based estimate

(ISNR 8.49 dB) suggested in this paper.
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Table 3.2: ISNR for different experiments. The highest ISNR for each experiment

is shown in bold.

Experiments

Method Barbara Tiger Face Koala Flowers

Non-parametric Manifold-based deconvolution 7.95 8.96 8.27 3.48 7.65

Parametric Manifold-based deconvolution 7.98 9.02 8.49 3.21 7.65

Anisotropic Nonparametric Image Restoration 7.88 9.14 7.40 3.38 5.13

Fourier-Wavelet Regularized Deconvolution 7.6 9.02 7.74 3.04 7.4

Wavelet domain sparsity-based deconvolution 6.24 8.28 6.1 3.25 6.03

Hyper-laplacian prior-based deconvolution 5.19 8.14 5.16 2.74 5.39

Tikhonov deconvolution 3.04 4.26 4.39 1.02 4.64
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results are reported under the Experiment 4 column of Table 3.2. Both wavelet

domain sparsity-based method and parametric manifold-based method perform ap-

proximately the same with ISNR values of 3.25 dB and 3.21 dB respectively. In this

experiment, the non-parametric manifold-based algorithm performs the best with

an ISNR value of 3.48 dB.

In the fifth experiment, we apply a horizontal motion blur kernel with length

7 on a Flowers image. For this experiment, the BNSR value is set to be 25 dB.

The deconvolution results obtained by different methods are reported under the

Experiment 5 column of Table 3.2. Both parametric and non-parametric manifold-

based methods perform the same yielding an ISNR value of 7.65 dB. This experiment

shows that, even in the case of low BSNR, our manifold-based method can provide

better reconstruction than some of the competitive deconvolution methods.

In Fig. 3.8(a)-(c), we display a few of the GCV curves obtained from Exper-

iment 1, 4 and 5, respectively. The minimizers of these GCV curves are chosen

to be the regularization parameters in each experiment. Hence, unlike some of the

other deconvolution algorithms such as [78], our method does not require the ex-

plicit knowledge of noise variance and it automatically determines the regularization

parameter at each iteration.

In Fig. 3.9, we compare the values of ISNR of different methods as a function

of the value of BSNR. For this experiment, we used a Gaussian blur on the Barbara

image. As it is seen from the figure, the performance of the manifold-based method

decreases slower than other methods when the noise level increases.

The stopping criterion for our method is usually that the norm of the difference
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Figure 3.8: GCV function for regularization with manifold prior. (a) Barbara Ex-

periment. (b) Koala Experiment. (c) flowers Experiment.
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between two successive estimates falls below a pre-specified threshold. That is, we

stop when ‖x(k) − x(k+1)‖2
2 < 10−3. Empirical results show that our manifold-based

methods typically converge in about 3 to 5 iterations. In Fig. 3.10, we plot the value

of the data fidelity term as the number of iterations increases, for the case when a

Gaussian blur is applied on the image shown in Fig. 3.4(c) with a BSNR value of

35 dB. As it is seen from the figure, our method converges in about 3 iterations and

the difference between two successive estimates after 3 iterations is very small.
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Figure 3.10: 1
MN
‖y −Hx(k)‖2

2 vs. number of iterations to determine the stopping

criteria.

3.6.1 Blind Deconvolution

In many realistic applications, we don’t have the form of the blur kernel.

Hence, this requires blind deconvolution methods. It is stated in [108] that a robust

blind deconvolution strategy is to first use the maximum a-posterior (MAP) estimate
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to recover the blur kernel, and then use the recovered kernel to solve for the sharp

image using a non-blind deconvolution algorithm. In this experiment, we employ

this strategy and test the robustness of our method to small errors in blur-kernel

estimation. We apply a 5 × 5 box-car blur on an image, as shown in Fig. 3.4(f),

with BSNR of 35 dB. Fig. 3.11 shows the details of blind deconvolution result using

the method proposed in [5] and the deconvolution result using parametric manifold

method based on the blur kernel estimated by [5]. The ISNR values are -0.19 dB

and 1.59 dB, respectively. We observe that our method can suppress the ringing

artifacts and is more robust when the estimated kernel is not accurate enough.

(a) (b) (c) (d)

(e)

Figure 3.11: Details of the blind deconvolution experiment with a Boat image. (a)

Original image. (b) Blurred noisy image. (c) Result obtained by applying a blind

deconvolution method in [5] (ISNR -0.19 dB). (d) Result obtained by applying the

parametric manifold deconvolution method using blur kernel estimated from [5]

(ISNR 1.59 dB). (e) Estimated kernel.
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3.6.2 Computational Complexity

In our deconvolution method, the most computationally intensive part is to

find the projection on the manifold. Using Matlab on a linux system with Intel

Core 2.00 GHz/2.00 GB processor, projecting one patch onto a manifold formed by

112,500 patches using non-parametric manifold learning takes around 2.5e-2 seconds,

while parametric manifold learning reduces the computation time to 5e-3 seconds.

On average our algorithm takes about 3 minutes to process an image of size 256×256.

Based on the experimental results, we observe that using the parametric man-

ifold gives similar performance as the non-parametric case, while the former is much

more computationally efficient. Further, the computation can be made more efficient

by making the sampling of the patch manifold more compact.

3.7 Discussions and Conclusion

In this chapter, we have presented a way of utilizing unlabeled image data

to regularize the deconvolution problem. We formalized this via a patch-manifold

prior for image classes which was shown to work very well for a wide variety of image

content. This paves the way for interesting new directions of work. For example,

using image formation models for specific cases, one could ask if there exist closed

form expressions for the patch manifold. Further, several other inverse problems

such as super-resolution, recovery of compressed signals, etc can be explored using

example-driven priors. Finally, it would be interesting to fuse the example data with

multi-view geometric constraints to better estimate the patch manifold with fewer
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examples.
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Chapter 4: Subspace Interpolation via Dictionary Learning for Un-

supervised Domain Adaptation

4.1 Introduction

Traditional classification problems often assume that training and testing data

are captured from the same underlying distribution. Yet this assumption is often

violated in many real life applications. For instance, images collected from an inter-

net search engine are compared with those captured from real life [109, 110]. Face

recognition systems trained on frontal and high resolution images, are applied to

probe images with non-frontal poses and low resolution [111]. Human actions are

recognized from an unseen target view using training data taken from source views

[112, 113]. We show some examples of dataset shifts in Figure 4.1.

In these scenarios, magnitudes of variations of innate characteristics, which

distinguish one class from another, are oftentimes smaller than the variations caused

by distribution shift between training and testing datasets. Directly applying the

classifier from the training set to testing set will result in degraded performance.

Therefore, it is essential to adapt classification systems to new environments. This

is often known as the domain adaptation problem which has recently drawn much
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Figure 4.1: Examples of dataset shifts. Each column contains two images of the same

subject collected under different conditions.

attention in the computer vision community [109, 17, 114, 115].

Domain Adaptation (DA) aims to utilize a source domain with plenty of la-

beled data to learn a classifier for the target domain which is collected from a dif-

ferent distribution. Based on the availability of labeled data in the target domain,

DA methods can be classified into two categories: semi-supervised and unsuper-

vised DA. Semi-supervised DA leverages few labels in the target data or correspon-

dence between the source and target data to reduce the difference between two

domains. Unsupervised DA is inherently a more challenging problem without any

labeled target data to build association between the two domains. On the other

hand, unsupervised DA is more representative of real world scenarios. For instance,

face recognition systems trained under constrained laboratory environments will en-
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Figure 4.2: Given labeled data in the source domain and unlabeled data in the target do-

main, our DA procedure learns a set of intermediate domains (represented by dictionaries

{Dk}K−1
k=1 ) and the target domain (represented by dictionary DK) to capture the intrin-

sic domain shift between two domains. {∆Dk}K−1
k=0 characterize the gradual transition

between these subspaces.

counter great challenges when applied to faces ‘in the wild’, where the acquired face

images suffer from a variety of degradations such as low resolution, poor illumina-

tion, blur, pose variation, occlusion etc [116]. Sometimes the coupling effects among

these different factors give rise to more variations. As it is very costly to collect

labels for target data under various acquisition conditions ‘in the wild’, it is more

desirable that the recognition system be able to adapt in an unsupervised fashion.

An important class of unsupervised DA methods attempts to find suitable

representations whose characteristics are shared between the two domains. In this

chapter, we use subspace representations to model the source and target domains.

Subspace modeling has been ubiquitous in the field of computer vision. This is

due to the fact that data of high dimensionality usually lie on an intrinsically low-

dimensional subspace. In this work, we use a dictionary to represent one domain, as

dictionary learning based methods [117, 118] have recently become very popular for
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subspace modeling. It is based on the fact that data signals in the same subspace

can be linearly decomposed with a small number of atoms from an over-complete

dictionary. Unlike traditional subspace modeling using PCA, these atoms are not

constrained to be orthogonal, which allows more flexibility to better adapt to the

given data signals [119]. The resulting sparse codes are usually leveraged as a feature

representation for classification. Effectively learned dictionaries have seen state-of-

the-art performance in reconstruction and recognition tasks [120, 20, 121].

Yet the issue of dictionary learning under distribution shifts has received less

attention. Specifically, the presence of domain shifts violates the assumption that

test data lie in the linear span of training data. As the dictionary atoms learned

for one domain are not optimal for a different domain, and only a small subset of

the atoms are allowed for representation, it will incur large reconstruction errors

for the target data. Further, signals of the same class in the target domain will

not have similar sparse codes as those from the source domain. These factors will

cause inferior performance for both reconstruction and recognition tasks. Therefore,

effectively leverage unlabeled target data to adapt the dictionary from one domain

to another while maintaining certain invariant representation becomes crucial for

successful DA.

In this chapter, we propose a novel unsupervised DA framework by interpolat-

ing subspaces through dictionary learning. We hypothesize the existence of a virtual

path which smoothly connects the source and target domains. Imagine the source

domain consists of face images in the frontal view while the target domain contains

those in the profile view. Intuitively, face images which gradually transform from

75



the frontal to profile view will form a smooth transition path. Recovering inter-

mediate representations along the transition path allows us to more likely capture

the underlying domain shift, as well as to build meaningful feature representations

which are preserved across different domains. We encapsulate this intuition into our

approach. Specifically, we sample several intermediate domains along a virtual path

between the source and target domains, and represent each intermediate domain

using a dictionary. We then utilize the good reconstruction property of dictionaries,

and learn the set of intermediate domain dictionaries which incrementally reduce

the reconstruction residue of the target data. In the mean time, we constrain the

magnitude of changes between dictionaries for adjacent intermediate domains to en-

sure the smoothness of the transition path ( refer to Figure 4.2 for an illustration).

We then apply invariant sparse codes across the source, intermediate and target

domains to render intermediate representations, which convey a smooth transition

in the data signal space. It also provides a shared feature representation where the

sample differences caused by distribution shifts are reduced, and we utilize this new

feature representation for cross domain recognition. Sometimes, we may be faced

with multiple source domains. In order to select the optimal source domain to per-

form adaptation, we provide a quantitative measure of domain shift by measuring

the similarity between the source and target domain dictionaries which are learned

using our proposed DA approach. Further, we extend our framework to nonlinear

cases by learning the set of intermediate domain dictionaries in the high dimen-

sional feature space. We demonstrate the wide applicability of our approach for

face recognition across pose, illumination and blur variations, cross dataset object
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recognition, and report improved performance over existing DA methods.

4.2 Prior work

Several DA methods have been discussed in the literature. We briefly review

the relevant work below.

Semi-supervised DA methods rely on labeled target data to perform cross

domain classification. Daume [122] proposed a feature augmentation technique such

that data points from the same domain are more similar than those from different

domains. The Adaptive-SVM method introduced in [123] selects the most effective

auxiliary classifiers to adapt to the target dataset. The method in [124] designed a

cross-domain classifier based on multiple base kernels. Metric learning approaches

[109, 125] were also proposed to learn a cross domain transformation to link two

domains. Recently, Jhuo et al. [115] utilized low-rank reconstructions to learn a

transformation so that the transformed source samples can be linearly reconstructed

by the target samples.

Given no labels in the target domain to learn the similarity measure between

data instances across domains, unsupervised DA is more difficult to tackle. There-

fore it usually enforces certain prior assumptions to relate source and target data.

Structural correspondence learning [15] induces correspondence among features from

two domains by modeling their relations with pivot features, which appear fre-

quently in both domains. Manifold alignment based DA [16] computes similarity

between data points in different domains through the local geometry of data points
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within each domain. The techniques in [126, 127] reduce the distance across the

two domains by learning a latent feature space where domain similarity is measured

through maximum mean discrepancy. Shi and Sha [128] define an information-

theoretic measure which balances between maximizing domain similarity and min-

imizing expected classification error on the target domain. Two recent approaches

[17], [114] are more relevant to our methodology, where the source and target do-

mains are linked by sampling finite or infinite number of intermediate subspaces

on the Grassmannian manifold. These intermediate subspaces appear to be able

to capture the intrinsic domain shift. Compared to their abstract manifold walk-

ing strategies, our approach emphasizes on synthesizing intermediate subspaces in

a manner which gradually reduces the reconstruction residue of the target data.

Also related is the recent work presented in [129], which jointly learns aligned

dictionaries from multiple domains with correspondence available in those domains.

Domain invariant sparse codes are designed for cross domain recognition, alignment

and synthesis. Our DA approach differs in that we can operate in the unsupervised

mode where no correspondence is available.

4.3 Sparse Representation and Dictionary Learning

As discussed in previous sections, we use dictionaries and sparse representa-

tion for signal representation in this work. A simple but important property of

sparse representation is that: in many applications, data of high dimensionality

exhibits degenerate structure, i.e., they lie on or near low-dimensional subspaces,
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sub-manifolds, or stratifications [20]. Therefore, given a collection of representative

data, a typical data is expected to have a sparse representation with respect to

the given basis. In this section, we present some preliminaries and introduce some

common techniques in sparse representation.

Sparse and redundant representation aims to represent a data signal y as linear

combinations of a few atoms from an over-complete dictionary D ∈ Rn×m,m > n.

The representation can be either exact:

y = Dx

or be an approximation:

‖y −Dx‖p ≤ ε

4.3.1 Sparse Coding

A fundamental step in sparse representation is sparse coding, which finds the

representation coefficients x given the data signal y and the dictionary D:

min
x
‖x‖0, s.t.‖y −Dx‖2 ≤ ε

This is a NP-hard problem. Classical methods tackle this problem by greedily

selecting columns of D and forming successively better approximations to y. Among

them two commonly used methods are Matching Pursuit [130] and the Orthogonal

Matching Pursuit [131].

Matching Pursuit (MP): Matching pursuit is an iterative greedy algorithm

that decomposes a signal into a linear combination of elements from a dictionary. A
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key element in MP is the residue t, which is the as-yet ”unexplained” portion of the

measurements. In each iteration, a vector from the dictionary which is maximally

correlated with the residue is selected. The algorithm stops when the residue is

below some quantity. The pseudo-code of MP is provided in Algorithm 1.

Algorithm 1 Matching Pursuit

Require: Dictionary D, data signal y

return Sparse coefficient x

Initialize r0 = y, x0 = 0, n = 0

while stopping criterion is not met do

n← n+ 1

gn = DT rn−1

in = a
i
rgmax|gni |

xnin = xn−1
in + gnin

rn = rn−1 −Ding
n
in

end while

Orthogonal Matching Pursuit (OMP): As the complexity of MP increases

linearly with the number of iterations, it can be computationally infeasible for many

problems. Orthogonal Matching Pursuit is a simple modification of MP such that

the maximum number of iterations can be upper bounded. In each iteration, it

computes the projection of residue r onto the orthogonal subspace to the linear

span of the currently selected dictionary elements. This quantity better represents

the unexplained portion of the residue. Its pseudo-code is summarized in Algorithm

2, where DΓn represents a sub-matrix of D containing only those columns of D with
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Algorithm 2 Orthogonal Matching Pursuit

Require: Dictionary D, data signal y

return Sparse coefficient x

Initialize r0 = y, x0 = 0,Γ0 = ∅, n = 0

while stopping criterion is not met do

n← n+ 1

gn = DT rn−1

in = a
i
rgmax|gni |

Γn = Γn−1 ∪ in

xn = D+
Γny

rn = y −Dxn

end while

indices in Γn, and D+
Γn is the pseudo-inverse of DΓn .

4.3.2 Design of Dictionaries

The choice of a dictionary is crucial for a successful vision application. While

off-the-shell/pre-specified dictionaries such as DCT, Gabor and wavelet are simple

and efficient, a trained dictionary is more appealing as it can adapt the dictionary

to specific applications. Dictionary learning can be formalized as:

min
D,{xi}Mi=1

M∑
i=1

‖yi −Dxi‖2
2, s.t.‖xi‖0 ≤ K, 1 ≤ i ≤M

We list a few representative dictionary learning techniques in the following.

Method of Optimal Directions: The Method of Optimal Directions (MOD)
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Algorithm 3 Method of Optimal Directions

Require: Data signals Y

return Optimal Dictionary D(k), Sparse coefficient X

Initialize D(0) ∈ Rn×m using random entries , k = 0

while ‖Y −D(k)X(k)‖2
F > ε do

k ← k + 1

Sparse coding: x̂i = arg min
x
‖yi −D(k−1)x‖2

2, s.t.‖x̂i‖0 ≤ K, 1 ≤ i ≤ M . Form

the matrix X(k) = [x̂1, x̂2, ..., x̂M ]

Dictionary updating: D(k) = arg min
D
‖Y −DX(k)‖2

F = YXT
(k)(X(k)X

T
(k))
−1

end while

uses a Block-Coordinate-Relaxation algorithm which was proposed by Engan et.al

[132]. It alternates between sparse coding and dictionary updating steps. In each

iteration, the dictionary is updated by solving a least squares minimization problem

where the error is evaluated using Frobenius norm. The iterations are continued

until a convergence criteria is reached. Let Y = [y1, y2, ..., yM ], X = [x1, x2, ..., xM ],

Algorithm 3 gives the summarization of MOD [133].

The K-SVD Algorithm: The K-SVD is similar to MOD, except in the

dictionary updating stage. Instead of using matrix inversion, K-SVD performs an

atom-by-atom updating in a simple and efficient fashion. We present the dictionary

updating part [133] of the K-SVD algorithm in Algorithm 4, where xj0T is defined as

the j0th row in the sparse coefficient matrix X.
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Algorithm 4 K-SVD Algorithm

Require: Data signals Y

return Optimal Dictionary D(k), Sparse coefficient X

Initialize D(0) ∈ Rn×m using random entries , J = 1

while convergence is not reached do

Sparse coding: x̂i = arg min
x
‖yi −D(J−1)x‖2

2, s.t.‖x̂i‖0 ≤ K, 1 ≤ i ≤M .

Column-wise Dictionary updating:

for j0 = 1, 2, ...,m in DJ−1 do

Define the group of signals which use the atom dj0 : Ωj0 = {i|1 ≤ i ≤

M,xj0T (i) 6= 0}.

Compute the residual matrix Ej0 = Y −
∑
j 6=j0

djx
T
j .

Restrict Ej0 by choosing only the columns corresponding to Ωj0 to obtain

ER
j0

.

Apply SVD decomposition ER
j0

= U∆VT. Choose the updated dictionary

column dj0 to be the first column of U. Update the coefficient vector xj0R to

be the first column of V multiplied by [∆](1, 1).

end for

Set J = J + 1

end while
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4.4 Learning Intermediate Domains for Unsupervised Domain Adap-

tation

In this section, we introduce our general framework for unsupervised DA in

details. We first describe some notations to facilitate subsequent discussions.

Let Ys ∈ Rn∗Ns , Yt ∈ Rn∗Nt be the data instances from the source and target

domain respectively, where n is the dimension of the data instance, Ns and Nt

denote the number of samples in the source and target domains. Let D0 ∈ Rn∗m

be the dictionary learned from Ys using standard dictionary learning methods,

e.g, K-SVD [117], where m denotes the number of atoms in the dictionary. As

introduced in Section 4.1, our approach samples several intermediate domains from

a smooth transition path between the source and target domains. We associate each

intermediate domain with a dictionary Dk, k ∈ [1, K], where K is the number of

intermediate domains which will be determined in our DA approach.

4.4.1 Learning Intermediate Domain Dictionaries

Starting from the source domain dictionary D0, we sequentially learn the in-

termediate domain dictionaries {Dk}Kk=1 to gradually adapt to the target data. This

is also conceptually similar to incremental learning. The final dictionary DK which

best represents the target data in terms of reconstruction error is taken as the target

domain dictionary. Given the k-th domain dictionary Dk, k ∈ [0, K − 1], we learn

the next domain dictionary Dk+1 based on its coherence with Dk and the remaining
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residue of the target data. Specifically, we decompose the target data Yt with Dk

and get the reconstruction residue Jk:

Γk = arg min
Γ
‖Yt −DkΓ‖2

F , s.t.∀i, ‖αi‖0 ≤ T (4.1)

Jk = Yt −DkΓk (4.2)

where Γk = [α1, ..., αNt ] ∈ Rm∗Nt denote the sparse coefficients of Yt decomposed

with Dk, and T is the sparsity level. We then obtain Dk+1 by estimating ∆Dk,

which is the adjustment in the dictionary atoms between Dk+1 and Dk:

min
∆Dk

‖Jk −∆DkΓk‖2
F + λ‖∆Dk‖2

F (4.3)

Equation (4.3) consists of two terms. The first term ensures that the adjustments

in the atoms of Dk will further decrease the current reconstruction residue Jk. The

second term penalizes abrupt changes between adjacent intermediate domains, so

as to obtain a smooth path. The parameter λ controls the balance between these

two terms. This is a ridge regression problem. By setting the first order derivatives

to be zeros, we obtain the following closed form solution:

∆Dk = JkΓ
T
k (λI + ΓkΓ

T
k )−1 (4.4)

where I is the identity matrix. The next intermediate domain dictionary Dk+1 is

then obtained as:

Dk+1 = Dk + ∆Dk (4.5)

Note that when λ = 0, the Method of Optimal Direction (MOD) [132] becomes

a special case of (4.3), where no regularization is enforced.
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Starting from the source domain dictionary D0, we apply the above adaptation

framework iteratively, and stop the procedure when the magnitude of ‖∆Dk‖F is

below certain threshold, so that the gap between the two domains is absorbed into

the learned intermediate domain dictionaries. This stopping criteria also automati-

cally gives the number of intermediate domains to sample from the transition path.

We summarize our approach in Algorithm 5. We also show in Proposition 1 that,

in each step, the residue Jk is non-increasing w.r.t the current intermediate domain

dictionary and the encoding coefficients. We demonstrate the empirical convergence

of our algorithm in Section 4.6.

Proposition 1 Given the estimate of ∆Dk using equation (4.4), the residue Jk is

non-increasing w.r.t Dk and the corresponding sparse coefficients Γk

‖Jk −∆DkΓk‖2
F ≤ ‖Jk‖2

F (4.6)

Proof: Substitute (4.4) into (4.6), we have

‖Jk‖2
F − ‖Jk −∆DkΓk‖2

F

=‖Jk‖2
F − ‖Jk − JkΓ

T
k (λI + ΓkΓ

T
k )−1Γk‖2

F

=tr(2ΓT
k (λI + ΓkΓ

T
k )−1ΓkJ

T
k Jk)− (4.7)

tr(ΓT
k (λI + ΓkΓ

T
k )−1ΓkJ

T
k JkΓ

T
k (λI + ΓT

kΓk)
−1Γk)

Let us define the Singular Value Decomposition (SVD) of Γk as Γk = UΣVT , where

U and V are orthogonal matrices, and Σ = [Σ̃,0] is a rectangular diagonal matrix,
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with Σ̃ = diag(σi) being a diagonal matrix. Then

ΓT
k (λI + ΓkΓ

T
k )−1Γk

=VΣTUT (λI + UΣΣTUT )−1UΣVT

=[V1,V2]ΣTUT (λI + UΣ̃2UT )−1UΣ[V1,V2]T

=V1Σ̃(λI + Σ̃2)−1Σ̃VT
1

=V1ΦVT
1

(4.8)

where V = [V1,V2], with V1 being a square matrix, and Φ = diag(
σ2
i

σ2
i+λ

). Substitute

(4.8) into (4.7), we have

‖Jk‖2
F − ‖Jk −∆DkΓk‖2

F

=tr(2V1ΦVT
1 JTk Jk)− tr(V1ΦVT

1 JTk JkV1ΦVT
1 )

=tr((2Φ−Φ2)VT
1 JTk JkV1)

=tr(HVT
1 JTk JkV1H)

=‖JkV1H‖2
F ≥ 0

(4.9)

where H = diag(

√
σ4
i+2λσ2

i

σ2
i+λ

)

4.4.2 Recognition Under Domain Shift

Up to now, we have learned a transition path which is encoded with the

underlying domain shift. This provides us with rich information to obtain new

representations to associate source and target data. Here, we simply apply invariant

sparse codes across the source, intermediate, target domain dictionaries {Dk}Kk=0.
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Algorithm 5 Algorithm for subspace interpolation between source and target do-

mains through dictionary learning (SIDL).

1: Input: Dictionary D0 trained from the source data, target data Yt, sparsity

level T , stopping threshold δ, parameter λ, k = 0.

2: Output: Dictionaries {Dk}K−1
k=1 for the intermediate domains, dictionary DK for

the target domain.

3: while stopping criteria is not reached do

4: Decompose the target data with the current intermediate domain dictionary

Dk, get the reconstruction residue Jk using (4.1) and (4.2)

5: Get an estimate of the adjustment in dictionary atoms ∆Dk and the next

intermediate domain dictionary Dk+1 using (4.4) and (4.5). Normalize the

atoms in Dk+1 to have unit norm.

6: k ← k + 1

7: check the stopping criteria ‖∆Dk‖F ≤ δ

8: end while

The new augmented feature representation is obtained as follows:

[(D0α)T , (D1α)T , ..., (DKα)T ]T

where α ∈ Rm is the sparse code of a source data signal decomposed with D0, or

a target data signal decomposed with DK . This new representation incorporates

the smooth domain transition recovered in the intermediate dictionaries into the

signal space. It brings the source and target data into a shared feature space where

the data distribution shift is mitigated. Therefore, it can serve as a more robust
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characteristic across different domains. Given the new feature vectors, we apply

PCA for dimension reduction1, and then employ a SVM classifier for cross domain

recognition.

4.4.3 Quantification of Domain Shift

We now introduce a metric, Quantification of Domain Shift (QDS) to compare

the similarity of two domains, which has much practical utility. For instance, we

may be faced with more than one source domains in some scenarios. QDS will allow

us to select the optimal source domain which has the least domain shift w.r.t the

target domain to perform adaptation. We propose to obtain QDS by measuring the

similarity between the source domain dictionary D0 and the target domain dictio-

nary DK which is learned using Algorithm 5. This similarity measure characterizes

the amount of domain shift encoded along the transition path. Specifically, it is de-

fined as Qs,t = ‖DT
KD0‖F , where a higher value indicates higher coherence between

D0 and DK , and less domain shift along the learned transition path. Similarly, by

reversing the role of source and target domain to learn the transition path, we can

obtain Qt,s which is the amount of shift from target to source domain. Then the

symmetric QDS between two domains is defined as (1/2)(Qs,t +Qt,s).

1The number of principal components is chosen to preserve 98% of the input data’s energy.

Alternatively, one can choose any other dimension reduction method for this step.
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4.5 Nonlinear Dictionary Learning for Unsupervised Domain Adap-

tation

The unsupervised DA framework introduced in Section 4.4 uses a linear dictio-

nary to represent a domain, which may not be sufficient to capture the non-linearity

presented in the input data. In this section, we extend our DA framework by learn-

ing the set of intermediate dictionaries in a high dimensional RKHS induced by a

Mercer kernel mapping.

4.5.1 Learning Nonlinear Intermediate Domain Dictionaries

Let Φ : Rn → F be a mapping from Rn into a dot product space F . We adopt

the model in [134] to represent the kth intermediate domain dictionary as follows:

Φ(Dk) = Φ(Y)Ak = Φ(Ys)Ask + Φ(Yt)Atk (4.10)

where Φ(Y) = [Φ(Ys) Φ(Yt)] serves as a base dictionary, and Ak = [ Ask
Atk

] is the

atom representation matrix for the kth intermediate domain. This model allows

the intermediate dictionary lie in the linear span of the samples Φ(Y) and provides

adaptive representation via modification of the matrix Ak. The base dictionary

Φ(Y) implicitly incorporates the prior knowledge that the intermediate domain

consists of a mixture representation of the source and target. Further, we penalizes

the magnitude of differences between two adjacent atom representation matrixes so

that the resulting intermediate domains represent the incremental domain shift by

gradually varying the proportions of source and target combinations.
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We first initialize source dictionary Φ(D0) by solving the following problem

using the kernel KSVD algorithm [134]:

(A0,Γ0) = arg min
A,Γ

‖Φ(Ys)− Φ(Y)A0Γ‖2
F , s.t.,∀i, ‖αi‖0 ≤ T (4.11)

where A0 denotes the representation matrix for the source dictionary. Details of

optimization can be found in [134]. Using the same notations as in (4.1) and (4.2), we

obtain the reconstruction residue of the target data Φ(Jk) given the kth intermediate

dictionary in the feature space F as follows:

Γk = arg min
Γ
‖Φ(Yt)− Φ(Y)AkΓ‖2

F , s.t.∀i, ‖αi‖0 ≤ T (4.12)

Φ(Jk) = Φ(Yt)− Φ(Y)AkΓk (4.13)

where (4.12) can be solved using the kernel orthogonal matching pursuit al-

gorithm [134]. Similar to (4.4), we then solve for the next intermediate domain

dictionary in the feature space F by estimating ∆Ak, the difference between two

adjacent atom representation matrixes:

min
∆Ak

‖Φ(Jk)− Φ(Y)∆AkΓk|2F + λ‖Φ(Y)∆Ak‖2
F (4.14)

(4.14) has a closed form solution by setting the first order derivatives of ∆Ak

to be zeroes:

∆Ak = (K(Y,Y)−1K(Y,Yt)−AkΓk)Γ
T
k (ΓkΓ

T
k + λI)−1 (4.15)

where K(Y,Y) is a kernel matrix whose entries are computed as:
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k(i, j) = Φ(yi)
TΦ(yj)

The kernel matrix only requires dot products, which can be computed using the

Mercer kernel function, instead of explicitly carrying out the mapping Φ. We then

obtain the next intermediate dictionary in the kernel space as follows:

Φ(Dk+1) = Φ(Y)(Ak + ∆Ak) (4.16)

We summarize our nonlinear intermediate dictionary learning framework in

Algorithm 6.

4.5.2 Nonlinear Recognition Under Domain Shift

After we obtain the set of nonlinear intermediate dictionaries, we are now able

to form the augmented feature vectors in the kernel space F as follows:

f(α) = [((Φ(Y)A0α)T , (Φ(Y)A1α)T , ..., (Φ(Y)AKα))T ]T

where α is the sparse code of a source (target) data instance decomposed with the

source (target) dictionary using KOMP. Then for two original data signals with

corresponding sparse codes αi and αj, we compute the inner product between their

augmented feature vectors fi and fj as follows:

fT (αi)f(αj) = αTi

K∑
k=0

AT
kK(Y,Y)Akαj = αTi Hαj (4.17)

with H =
∑K

k=0 AT
kK(Y,Y)Ak ∈ Rm×m denoting a positive semi-definite

matrix. The kernel matrix H is then used to train a SVM classifier for cross domain
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Algorithm 6 Algorithm for subspace interpolation between source and target do-

mains through nonlinear dictionary learning (KerSIDL).

1: Input: Source data Ys, target data Yt, sparsity level T , stopping threshold ε,

parameter λ, k = 0.

2: Output: Atom representation matrixes {Ak}Kk=0 for the source, intermediate

and target domains.

3: Obtain the atom representation matrix for the source domain A0 using (4.11).

4: while stopping criteria is not reached do

5: Decompose the target data with the current intermediate domain dictionary

Φ(Dk), and get the reconstruction residue Φ(Jk) using (4.12) and (4.13).

6: Estimate the difference of the two adjacent atom representation matrixes ∆Ak

and the next intermediate domain dictionary Φ(Dk+1) using (4.15) and (4.16).

7: k ← k + 1

8: check the stopping criteria ‖∆Ak‖F ≤ ε

9: end while

classification. Our nonlinear domain adaptation framework has the advantage that

inner products between cross domain feature vectors can be computed efficiently

in closed-form, instead of explicitly carrying out the high dimensional augmented

feature representations as in Section 4.4.
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4.6 Experiments

In this section, we evaluate our DA approach on face recognition across pose,

lighting and blur variations, face re-identification and 2D cross dataset object recog-

nition.

4.6.1 Face Recognition Under Pose Variation

We carried out the first experiment on face recognition across pose variation

on the CMU-PIE dataset [1]. We included 68 subjects under 5 different poses in this

experiment. Each subject has 21 images at each pose, with variations in lightings.

We selected the frontal face images as the source domain, with a total of 1428

images. The target domain contains images at different poses, which are denoted

as c05 and c29 (yawn angle about ±22.5o), c37 and c11 (yawn angle bout ±45o)

respectively. We chose the front-illuminated source images to be the labeled data

in the source domain. The task is to determine the identity of the images in the

target domain with the same illumination condition. The classification results are

in Table 4.1. We compare our SIDL and KerSIDL frameworks with the following

methods. 1) Baseline K-SVD [117], where target data is directly decomposed with

the dictionary learned from the source domain, and the resulting sparse codes are

compared using a nearest neighbor classifier. 2) GFK [114] and SGF [17], which

perform subspace interpolation via infinite or finite sampling on the Grassmann

manifold. 3) Eigen light-field [135], where eigen light-field is used as the set of

features for pose invariant recognition. 4) SMD [136], which uses stereo matching to
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compare the similarity of two faces seen from different poses. We observe that the

baseline is heavily biased under domain shift, and all DA methods improve upon

it. Both SIDL and KerSIDL demonstrate their advantages over SGF and GFK,

the Grassmannian manifold based DA methods. Overall, SMD has the highest

average recognition rate, while our KerSIDL method ranks the second. Besides, our

approaches do not rely on a generic training set to build pose specific models as the

Eigen light-field method, or use feature points to exploit the epipolar geometry of

face images as the SMD method. We believe that the incorporation of pose specific

knowledge into our framework can further improve the performance. We also show

some of the synthesized intermediate images using the SIDL method in Figure 4.3

for illustration. As our DA approach gradually updates the dictionary learned from

frontal face images using non-frontal images, these transformed representations thus

convey the transition process in this scenario. These transformations could also

provide additional information for certain applications, e.g. face reconstruction

across different poses.

4.6.2 Face Recognition Across Blur and Illumination Variations

Next, we present the results of a face recognition experiment for dealing with

blur and illumination variations. We chose the frontal images of 34 subjects un-

der 21 lighting conditions from the CMU-PIE dataset [1] in this experiment. We

selected images of each subject under 11 different illumination conditions to form

the source domain. The remaining images with the other 10 illumination conditions
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Table 4.1: Face recognition under pose variation on CMU-PIE dataset [1]

c11 c29 c05 c37 average

KerSIDL 79.4 100.0 98.5 89.7 91.9

SIDL 76.5 98.5 98.5 88.2 90.4

GFK [114] 63.2 92.7 92.7 76.5 81.3

SGF [17] 58.8 89.7 89.7 72.1 77.6

SMD [136] 97.0 99.0 97.0 99.0 98.0

Eigen light-field [135] 78.0 91.0 93.0 89.0 87.8

K-SVD [117] 48.5 76.5 80.9 57.4 65.8

were convolved with a blur kernel to form the target domain. Experiments were per-

formed with the Gaussian kernels with standard deviations of 3 and 4, and motion

blurs with lengths of 9 (angel θ = 135o) and 11 (angel θ = 45o), respectively. We

compare the performance of SIDL and KerSIDL with those of K-SVD [117], GFK

[114] and SGF [17]. Besides, we also compare with the Local Phase Quantization

(LPQ) [56] method, which is a blur insensitive descriptor, and the method in [39],

which estimates an albedo map (Albedo) as an illumination robust signature for

matching. We report the results in Table 4.2.

It is observed that KerSIDL achieves the highest recognition rate, while SIDL

gives the second best performance and slightly improves upon GFK [114]. Since the

domain shift in this experiment consists of both illumination and blur variations,

96



Figure 4.3: Synthesized intermediate representations between frontal face images and

face images at pose c11. The first row shows the transformed images from a source image

(in red box) to the target domain. The second row shows the transformed images from a

target image (in green box) to the source domain.

traditional methods which are only illumination insensitive or robust to blur are not

able to fully handle both variations. DA methods are useful in this scenario as they

do not rely on the knowledge of physical domain shift. We also show transformed

intermediate representations along the transition path using the SIDL approach in

Figure 4.4, which clearly captures the transition from clear to blur images and vice

versa. Particularly, we believe that the transformation from blur to clear conditions

is useful for blind deconvolution, which is a highly under-constrained problem [108].

4.6.3 Face Re-identification

Next, we perform experiments on face re-identification using the dataset de-

scribed in Section 2. Face re-identification aims to match one subject’s face image

collected at one location with candidate sets acquired at a different location and

over time. Re-identification is a fundamentally challenging problem due to the

large visual appearance changes caused by variations in view angles, lighting and
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Table 4.2: Face recognition across illumination and blur variations on CMU-PIE

dataset [1]

σ = 3 σ = 4 L = 9 L = 11

KerSIDL 86.47 82.65 89.71 83.24

SIDL 80.29 77.94 85.88 81.18

GFK [114] 78.53 77.65 82.35 77.65

SGF [17] 70.88 60.29 72.35 67.94

LPQ [56] 66.47 32.94 73.82 62.06

Albedo [39] 50.88 36.76 60.88 45.88

K-SVD [117] 40.29 25.59 42.35 30.59
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Figure 4.4: Synthesized intermediate representations from face recognition across blur and

illumination variations (motion blur with length of 9). The first row shows the transformed

images from a source image (in red box) to the target domain. The second row shows the

transformed images from a target image (in green box) to the source domain. (The left

most image in the second row is an approximation to the blur-free image in the source

domain.)

background clutter etc during the data acquisition process. We formulate the face

re-identification problem as a domain adaptation problem.

We use the face dataset collected at Baltimore Inner Harbor as the source

domain, and another face dataset collected at Comcast Center as the target domain,

where the time gap between two datasets is more than two years. Five subjects that

appear in both datasets are used in the experiments, with 75 images in the source

domain, and 150 images in the target domain. We compare SIDL and KerSIDL

with 1) a baseline which performs PCA followed by a SVM classifier 2) a sparse

representation based method [20] 3) SGF [17] 4) GFK [114], and report the results

in Table 4.3. It is observed that the sparse representation-based method performs

ineffectively in this experiment setting, as the complicated variations presented in

the target domain severely violates the assumption that the test data lie in the linear
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Table 4.3: Face re-identification with the Baltimore dataset as the source domain

and the Comcast dataset as the target domain

Method SVM Sparse representation [20] SGF [17] GFK [114] SIDL KerSIDL

Accuracy 32.00 20.0 27.33 29.33 46.0 59.33

span of the training data. Both SIDL and KerSIDL outperform other approaches by

a large margin, which demonstrate that our intermediate domain dictionaries can

better capture the underlying domain shift in the re-identification setting.

4.6.4 Cross Dataset Object Recognition

Following the experiment setting in [114], we evaluated our DA approach for

2D object recognition on four datasets, with a total of 2533 images from 10 cate-

gories. The first three datasets were collected by [109], which include images from

amazon.com (Amazon), collected with a digital SLR (DSLR) and a webcam (Web-

cam). The fourth dataset is Caltech-256 (Caltech) [137]. Each dataset constitutes

one domain. We used a SURF detector [138] to extract interest points. Then a

randomly chosen subset of the interest point descriptors from the Amazon dataset

were quantized to visual words by k-means clustering. Each image was represented

as a histogram over the quantized visual words of dimension 800. Based on this

data representation, we applied our DA approach.

We report performance on eight different pairs of source and target combina-

tions. In the source domain, we randomly selected 8 labeled images per category for
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Table 4.4: Cross dataset object recognition in unsupervised setting

Domain Unsupervised

source target K-SVD [117] SGF [17] GFK [114] SIDL KerSIDL

Caltech Amazon 20.5±0.8 36.8±0.5 40.4±0.7 45.4±0.3 48.2±1.0

Caltech DSLR 19.8±1.0 32.6±0.7 41.1±1.3 42.3±0.4 44.7±1.5

Amazon Caltech 20.2±0.9 35.3±0.5 37.9±0.4 40.4±0.5 41.3±0.5

Amazon webcam 16.9±1.0 31.0±0.7 35.7±0.9 37.9±0.9 38.6±1.0

webcam Caltech 13.2±0.6 21.7±0.4 29.3±0.4 36.3±0.3 36.6±1.1

webcam Amazon 14.2±0.7 27.5±0.5 35.5±0.7 38.3±0.3 38.4±0.8

DSLR Amazon 14.3±0.3 32.0±0.4 36.1±0.4 39.1±0.5 40.6±1.3

DSLR webcam 46.8±0.8 66.0±0.5 79.1±0.7 86.2±1.0 86.7±1.4
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Table 4.5: Cross dataset object recognition in semi-supervised setting

Domain Semi-supervised

source target K-SVD [117] SGF [17] GFK [114] SIDL KerSIDL

Caltech Amazon 31.2±1.0 40.2±0.7 46.1±0.6 50.0±0.5 53.4±0.8

Caltech DSLR 34.6±1.0 36.6±0.8 55.0±0.9 57.1±0.4 58.0±1.2

Amazon Caltech 25.2±0.7 37.7±0.5 39.6±0.4 41.5±0.8 44.3±0.8

Amazon webcam 42.7±0.6 37.9±0.7 56.9 ±1.0 57.8±0.5 60.9±0.9

webcam Caltech 23.4±0.4 29.2±0.7 32.8±0.7 40.6±0.4 41.1±1.3

webcam Amazon 32.9±0.7 38.2±0.6 46.2±0.7 51.5±0.6 51.0±0.7

DSLR Amazon 31.2±1.2 39.2±0.7 46.2±0.6 50.3±0.2 52.9±1.9

DSLR webcam 49.9±1.4 69.5±0.9 80.2±0.4 87.8±1.0 88.5±1.6
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(a) (b)

(c) (d)

Figure 4.5: Example images of the bike category from the (a) Caltech (b) Webcam (c)

Amazon (d) DSLR dataset. (Images best viewed in color)

Webcam/DSLR/Caltech and 20 for Amazon. Our SIDL and KerSIDL approaches

are compared with K-SVD [117], GFK [114] and SGF [17]. To draw complete

comparison with existing DA methods, we also carried out experiments in the semi-

supervised setting where we additionally sampled 3 labeled images per category from

the target domain. We ran 20 different trials corresponding to different selections of

labeled data from the source and target domains. The average recognition rate and

standard deviation was reported in Table 4.4 and Table 4.5 for both unsupervised
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and supervised settings. It is seen that baseline K-SVD has the lowest recognition

rate except for one pair of source and target combination in the semi-supervised

setting. Overall, our methods, both SIDL and KerSIDL, consistently demonstrate

better performance over state-of-the-art methods.
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Figure 4.6: Average reconstruction error of the target domain decomposed with the source

and intermediate domains. The combinations of source and target domains are (a) frontal

face images v.s. face images at pose c29 (b) DSLR v.s. Webcam (c) Caltech v.s. Amazon,

respectively.

Choice of parameters: In our experiments, the regularization parameter λ

varies from 1000 to 2000, and the stopping threshold δ is chosen to be between 0.2

to 0.8.

Decrease of reconstruction residue along the transition path: Figure

4.6 shows the average reconstruction residue of target data decomposed with the

source, and intermediate domain dictionaries {Dk}Kk=0 along the transition path

which were learned using Algorithm 5. We provide results on three pairs of source

and target combinations: frontal face images v.s. face images at pose c29, DSLR v.s.
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Table 4.6: QDS values between Amazon/DSLR/Webcam/Caltech datasets

Amazon DSLR Webcam Caltech

Amazon NA 8.13 9.03 9.78

DSLR 8.13 NA 9.60 8.25

Webcam 9.03 9.60 NA 8.96

Caltech 9.78 8.25 8.96 NA

Webcam dataset, Caltech v.s. Amazon, respectively. We observe that the residue is

gradually reduced along the transition path, and Algorithm 5 generally stops within

five to ten iterations in our experiments, which demonstrates that our framework is

able to bridge the gap between two domains.

QDS values: In Table 4.6, we provide QDS values discussed in Section 4.4.3

between the Amazon/DSLR/Webcam/Caltech datasets. These quantitative values

of domain shift are in line with our experimental performance, i.e., higher QDS

values indicate less domain shift, and a higher recognition rate between the corre-

sponding two domains.

4.7 Conclusions

We presented a fully unsupervised DA method by incrementally learning inter-

mediate domain dictionaries to capture the underlying domain shift. This allows us

to transform original data instances from different modalities into a shared feature

105



representation, which serves as a robust signature for cross domain classification.

We further extended our framework to handle the non-linearities in the data by

learning the intermediate dictionaries in a high dimensional RKHS. We evaluated

our method on public available datasets and obtain improved performance upon the

state of the art. We believe our synthesized intermediate representations are also

beneficial for certain applications, e.g, face reconstruction across different poses,

blur removal etc.
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Chapter 5: Submodular Optimization for Robust Domain Adapta-

tion

5.1 Introduction

Supervised learning usually needs rich labeled data to learn an accurate clas-

sification model. Yet it may be very expensive and impractical to obtain sufficient

labels for new visual domains, e.g., object recognition from fast-growing online im-

ages, person re-identification across camera views from surveillance videos etc. A

feasible solution in these scenarios is to leverage related out-of-domain labeled data

so as to transfer the classification knowledge to the new domain. This is known as

the domain adaptation problem which has received increasing attention in computer

vision. Applications of domain adaptation have been seen in image categorization

[109, 17], object detection [139] and activity recognition [113] etc.

Domain adaptation methods utilize a source domain with plenty of labels to

learn a classifier for a target domain which is collected from a different distribution.

In this work, we are interested in unsupervised domain adaptation where no labels

are available in the target domain. A key step in domain adaptation is to find

suitable representations such that the distribution difference between two domains is
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minimized. One category of popular approaches aim to learn a transformation such

that source and target data are projected to a shared latent feature space, where

Maximum Mean Discrepancy (MMD) is commonly used to compare the distance

between two domains [127, 140, 141]. Another line of research is based on learning

intermediate representations [17, 114, 142] to smoothly connect the source and target

data.

One limitation of these existing approaches is the assumption that the source

data have the same (similar) inner characteristics, usually modeled by a single sub-

space. Yet with the deluge of data from sources such as internet search engines and

surveillance videos, this simplified assumption may not be valid in many realistic

applications. For example, face images collected from the web consist of variations

in lighting, pose, expression, and usually a coupling among these different variation

factors. Such variations in the source data will have the following effect on domain

adaptation: 1) The large variations in visual properties in the source domain would

likely increase the divergence between the source and target, which could result in

negative knowledge transfer. 2) The adaptation algorithm may be less effective to

explore the important portion of the source domain for adaptation, as it needs to

account for the large within-class variations of the source data. Therefore, it is es-

sential to mitigate the heterogeneity in the source domain to facilitate subsequent

adaptation.

We make the following contributions in this chapter.

1) To reduce the divergence between source and target which may be caused

by the large variations in properties in the source domain, we aim to identify pivot
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samples which are a subset of the source domain that are most similar to the target

domain. For example, in object recognition with large appearance changes, those

source images with similar background and lighting conditions as the target images

are more amenable for knowledge transfer. Identifying those pivot samples helps to

form a more homogenous domain closer to the target domain, and boost subsequent

adaptation performance. For this purpose, we propose a domain similarity function

which encourages the selected source samples to be most representative of the target

data. Further, in order to preserve the discrimination power of the source domain,

we derive a class balance function which ensures that the labels of each class in

the selected subset follow the distribution in the original source domain. To this

end, we formulate a submodular objective function for our source sample selection

algorithm which combines the domain similarity term and the class balance term.

By exploiting the diminishing return property of the submodular function, we ob-

tain an efficient greedy algorithm with guaranteed performance of at least 1 − 1
e

approximation to the optimum.

2) We consider the scenario that the heterogeneity in the source data are due

to multiple latent domains. For example, images downloaded from the web can

contain images of low noise captured using a digital SLR camera as well as those of

high noise recorded using a simple webcam. More often, we are not able to define

clear visual characteristics to separate those source data. Our goal is to cluster these

source data into homogeneous latent domains, where the within-class variations are

reduced in each latent domain. This is different from previous approaches dealing

with multiple source datasets where the partitions among the source data are known

109



a prior. The problem is challenging, as a standard clustering algorithm such as K-

means would separate data based on their visual similarities only and are prone

to forming clusters pertaining to category labels. To this end, we formulate this

problem as a constrained clustering problem. We utilize an entropy rate clustering

framework [143] which maps the source data to a graph, with vertices denoting the

samples and edges representing pairwise similarities among data samples. We use the

entropy rate of the random walk over the graph to obtain compact and homogeneous

latent domains. Further, we incorporate a domain balancing function which ensures

that the distribution of class labels within each latent domain follow the prior label

distributions in the original source domain, so that consistent discriminative ability

is preserved within each latent domain. By combining the entropy rate function and

the domain balancing function, we obtain an objective function which is submodular

and enables efficient greedy optimization algorithm.

3) We demonstrate the wide applicability of our source sample selection and

latent domain recovery framework on cross dataset object recognition, face recog-

nition across pose and illumination variations, cross view activity recognition, and

report improved performance over the state-of-the-art.

5.2 Related Work

Domain Adaptation: Existing domain adaptation algorithms can be roughly

classified into three categories: feature transformation, sample re-weighting and pa-

rameter adaptation. Feature transformation-based methods focus on discovering
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a shared feature space to reduce the distribution difference. A popular distance

metric is the Maximum Mean Discrepancy (MMD) which is used to compare the

distribution difference between two domains in the Reproducing Kernel Hilbert

Space (RKHS) [127]. Different methods to learn domain invariant features based

on the MMD criteria have been proposed [140, 141, 144]. Another line of research

is based on learning the intermediate representations to form a common feature

space. [17, 114] propose to represent subspaces as points on the Grassmannian

manifold and identify intermediate domains by sampling along the geodesics path.

More recently, A dictionary-based subspace interpolation approach is proposed in

[142] to bridge the gap between the source and target domains. Sample re-weighting

based methods account for the domain shift by assigning weights to the source data

such that the distance between re-weighted source and target distribution is close

[145]. Parameter adaptation-based methods use pre-learned models from the source

domain as a prior to constrain the classifier learned on the target domain [123].

One relevant work is the constrained assignment algorithm proposed in [146]

which separates heterogeneous training data into latent clusters. Yet the assumption

on the mixture of Gaussian distributions of data instances may not be satisfied. More

closely related is the landmark selection method presented in [147] which discovers

source samples close to the target domain, and the framework presented in [148]

which reshapes datasets into latent domains based on the maximum distinctiveness

and maximum learnability properties. While [147] uses the MMD criterion to select

landmark samples, our proposed domain similarity function for sample selection

encourages the selected source data to be most representative of the target domain.
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Besides, instead of solving for the binary weights of source samples as in [147, 148],

both of our objective functions are submodular which enables more efficient greedy

optimization.

Submodularity: Submodularity is the discrete analogue of convexity in con-

tinuous domains [149]. Maximizing a submodular function is in general a hard

combinatorial problem. Nevertheless, a desirable property of submodularity is that

we can obtain 1 − 1
e

approximation through efficient greedy methods. Optimiza-

tion of submodular functions has been explored in a large spectrum of computer

vision applications, such as image segmentation [143], sparse representation [150],

anisotropic diffusion [151], attribute selection [152] etc. We differ from previous

approaches in that we exploit submodularity in the context of domain adaptation.

5.3 Submodular Sample Selection

In this section, we describe our pivot sample selection algorithm from the

source domain with large inner characteristic variations in order to reduce the di-

vergence between source and target distributions.

5.3.1 Preliminaries

Submodularity: Let V be a finite set. A set function F : 2V → R is

submodular if and only if

F (A ∪ k)− F (A) ≥ F (B ∪ k)− F (B) (5.1)
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for all subsets A ⊆ B ⊆ V and k ∈ V\B. This property is refered as the diminishing

return property, which states that the marginal gain of adding element k is higher

than adding it to any larger set [153].

Let S = {xsi}Nsi=1 ∈ Rd denote samples from the source domain, with yi ∈

{1, 2, ...,M} denoting the label of xsi . Let T = {xti}Nti=1 ∈ Rd represent unlabeled

samples in the target domain. We propose the following domain similarity function

to measure the distance between selected source subsetA ⊆ S and the target domain

T .

5.3.2 Domain Similarity Function

We define sj,k as the similarity between source sample xj and target sample

xk. We aim to select at most K source samples, such that the sum of maximum

similarity between each target sample and the selected source samples in set A is

maximized. Specifically, we define our domain similarity function V(A) as follows:

V(A) =
∑
k∈T

max
j∈A

sj,k

s.t.A ⊆ S, NA ≤ K

(5.2)

where NA is the number of samples in set A. (5.2) favors the selected sample

xj to be similar to the elements in the target domain, such that the final selected

set A is representative of the target domain. Note that when {xj}NAj=1, {xk}Ntk=1 are

considered within the same domain, (5.2) becomes the well studied facility location

problem [154].

The domain similarity function is a submodular function as shown in Proposi-
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tion 2. Monotonicity is easily observed because the addition of any source sample to

A does not decrease the value of max
j∈A

sj,k for each target sample xk. The diminishing

return property comes from the fact that the increase in the value of max
j∈A

sj,k from

adding a source sample is less in a later stage because the value of max
j∈A

sj,k may have

become larger from previously added source samples.

Proposition 2 The domain similarity function V : 2ns → R is a monotonically

increasing submodular function.

Proof. Monotonicity: We prove that V(A) is monotonically increasing by

showing that for all a ∈ S, a /∈ A

V(A ∪ a) ≥ V(A) (5.3)

V(A ∪ a)−V(A) =
∑
k∈T

( max
j∈A∪a

sj,k −max
j∈A

sj,k) ≥ 0. (5.4)

Submodularity: We prove V(A) is submodular by showing that

V(A ∪ {a1})−V(A) ≥ V(A ∪ {a1, a2})−V(A ∪ {a2}) (5.5)

V(A ∪ {a1})−V(A)−V(A ∪ {a1, a2}) + V(A ∪ {a2})

=
∑
k∈T

( max
j∈A∪{a1}

sj,k −max
j∈A

sj,k − max
j∈A∪{a1,a2}

sj,k + max
j∈A∪{a2}

sj,k)

=
∑
k∈T

{max(max
j∈A

sj,k, sa1,k)−max
j∈A

sj,k −max(max
j∈A

sj,k, sa1,k, sa2,k)

+ max(max
j∈A

sj,k, sa2,k)}

(5.6)
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We show that

Vk = max(max
j∈A

sj,k, sa1,k)−max
j∈A

sj,k −max(max
j∈A

sj,k, sa1,k, sa2,k)+

max(max
j∈A

sj,k, sa2,k) ≥ 0,∀k ∈ T
(5.7)

Case 1: Assume max
j∈A

sj,k ≥ sa1,k,max
j∈A

sj,k ≥ sa2,k,

Vk = max
j∈A

sj,k −max
j∈A

sj,k −max
j∈A

sj,k + max
j∈A

sj,k = 0. (5.8)

Case 2: Assume sa1,k ≥ max
j∈A

sj,k,sa1,k ≥ sa2,k,

Vk = sa1,k −max
j∈A

sj,k − sa1,k + max(max
j∈A

sj,k, sa2,k) ≥ 0. (5.9)

Case 3: Assume sa2,k ≥ max
j∈A

sj,k,sa2,k ≥ sa1,k,

Vk = max(max
j∈A

sj,k, sa1,k)−max
j∈A

sj,k − sa2,k + sa2,k ≥ 0. (5.10)

From above three cases, we conclude that V(A) is a submodular function.

5.3.3 Class Balance Function

Further, to preserve the discrimination power in the selected pivot samples,

we add the constraint that the proportions of samples per class in the set A follow

the distribution in the original source domain. Let N(c), NA(c) denotes the number

of samples of class c ∈ {1, 2, ...,M} in the source domain and in the subset A

respectively. Let M denotes the number of classes. We define the class balance

function B(A) as follows:

B(A) = −
M∑
c=1

NA(c)

µN(c)
log

NA(c)

µN(c)
(5.11)
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where µ is a constant. From the log sum inequality, the maximum of B(A)

is achieved when NA(c)
N(c)

are equal, ∀c ∈ {1, 2, ...,M}, i.e., when the percentage of

samples per class is preserved in the subset A. Therefore, the class balancing func-

tion encourages that each class is well represented in the subset A for the following

classification task. B(A) is submodular as shown in the Proposition 3. The dimin-

ishing return property comes from the observation that adding a labeled sample of

one class helps more if we have observed less labels of that class so far.

Proposition 3 The class balancing function B : 2ns → R is a monotonically in-

creasing submodular function.

Proof. Monotonicity: We prove that B(A) is monotonically increasing by

showing that for all a ∈ S, a /∈ A

B(A ∪ a) ≥ B(A) (5.12)

Assume that a belongs to the kth class.

B(A ∪ a)− B(A) (5.13)

=−
nc∑
c=1

NA∪{a}(c)

µN(c)
log

NA∪{a}(c)

µN(c)
+

nc∑
c=1

NA(c)

µN(c)
log

NA(c)

µN(c)
(5.14)

=− nk + 1

µN(k)
log

nk + 1

µN(k)
− (− nk

µN(k)
log

nk
µN(k)

) (5.15)

=f(
nk + 1

µN(k)
)− f(

nk
µN(k)

) (5.16)

≥0. (5.17)

where nk denotes the number of selected samples of the kth class, and f(x) is

116



defined as

f(x) = −x log x

As f(x) is a strictly increasing function when x ∈ (0, 0.36), hence the inequality

in (5.17) holds when µ ∈ [ 1
0.36

,∞).

Submodularity: We prove B(A) is submodular by showing that

B(A ∪ {a1})−B(A) ≥ B(A ∪ {a1, a2})−B(A ∪ {a2}) (5.18)

Without loss of generality, we assume that a1 belongs to class k and a2 belongs

to class m.

Case 1: k 6= m.

B(A ∪ {a1})−B(A) = B(A ∪ {a1, a2})−B(A ∪ {a2})

=− nk + 1

µN(k)
log

nk + 1

µN(k)
+

nk
µN(k)

log
nk

µN(k)

(5.19)

Case 2: k = m.

B(A ∪ {a1})−B(A)−B(A ∪ {a1, a2}) + B(A ∪ {a2})

=− nk + 1

µN(k)
log

nk + 1

µN(k)
+

nk
µN(k)

log
nk

µN(k)

+
nk + 2

µN(k)
log

nk + 2

µN(k)
− nk + 1

µN(k)
log

nk + 1

µN(k)

=h(
nk + 1

µN(k)
)− h(

nk
µN(k)

)

≥0.

(5.20)

Where h(x) = (x + δ) log(x + δ) − x log x. The last inequality is obtained by

utilizing the strictly increasing property of the function h(x).

From above two cases, we conclude that B(A) is a submodular function.
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5.3.4 Objective Function

We combine the above two criteria and obtain our final objective function

J(A):

J(A) = V(A) + λB(A) (5.21)

where λ controls the weight of the class balancing term. As a linear combi-

nation of submodular functions with nonnegative weights preserve submodularity

[153], J(A) is still a submodular function. Directly maximizing (5.21) is an NP

hard problem, therefore, we exploit the submodularity property and adopt a greedy

algorithm to obtain a (1− 1
e
) approximation bound on the optimality of the solution

[153]. We start from an empty set A = ∅, and adds the sample to the set which has

the maximum marginal gain of J(A) at each iteration. The algorithm terminates

when the number of selected samples reaches a pre-specified number or the value of

J(A) decreases. We present our pivot sample selection procedure in Algorithm 7.

Algorithm 7 Algorithm for pivot sample selection.

1: Input: labeled source domain data S,target domain data T ,regularization pa-

rameter λ, constraint on the number of selected samples K.

2: Output: A.

3: while NA ≤ K and J(A ∪ a)− J(A) ≥ 0 do

4: a∗ = max
a

J(A ∪ a)− J(A)

5: A ← a∗.

6: end while

118



5.4 Submodular Latent Domain Discovery

In this section, we present our algorithm to separate source data into latent

domains, so that the within-class variations are reduced in each latent domain. We

adopt an entropy-rate based graph partition framework to perform domain cluster-

ing.

5.4.1 Graph Representation

We map the source data to an undirected k-nearest neighbor graph G(V,E),

where V = {vi} is the vertice set denoting the data points and E = {ei,j} is the

edge set. The edge weights {wi,j} denoting the pairwise similarities between data

points are defined as:

wi,j =
{e− ‖xi−xj‖

2

2σ2 , if xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise

(5.22)

where Nk(x) represents the set of k-nearest neighbors of x, and σ is a normal-

ization constant. Our goal is to select a subset A of the edge set E (A ⊆ E) which

results in K connected subgraphs, each corresponding to one latent domain.

5.4.2 Entropy Rate

We use the entropy rate of the random walk over the graph G to obtain

homogeneous and compact latent domains. The entropy rate is used to measure the

uncertainty of a stochastic process Z. For a stationary 1st-order Markov chain, it
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is defined as H(Z) = limt→∞H(Zt|Zt−1) = limt→∞H(Z2|Z1) = H(Z2|Z1). We then

define the transition probability pi,j from vertex vi to vertex vj as follows:

pi,j(A) =



wi,j
wi
, if i 6= j, ei,j ∈ A

0 if i 6= j, ei,j /∈ A

1−
∑
j:ei,j∈A

wi,j

wi
if i = j.

where wi =
∑

j:ei,j∈E wi,j is the sum of incident weights of the vertex vi, and

the stationary distribution is obtained as follows:

µ = (µ1, µ2, ...µ|V |)
T = (

w1

wa
,
w2

wa
, ...,

w|V |
wa

)T

where wa =
∑|V |

i=1wi is the sum of incident weights of all vertices. The entropy rate

of the random walk can then be computed in the following:

H(A) = −
∑
i

µi
∑
j

pi,j(A) log(pi,j(A)) (5.23)

The entropy rate of the random walk has been proved to be a monotonically

increasing submodular function under the proposed graph construction. Monotonic-

ity is due to that the inclusion of any edge to A increases the uncertainty of a jump

in a random walk. Submodularity is based on the observation that the increase in

uncertainty by selecting edge ei,j is less in a later stage as it has been shared with

more edges connected to vi or vj. For more details, please refer to [143].
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5.4.3 Domain Balancing Function

To encourage consistent discrimination in the latent domains, we then propose

a domain balancing function to constrain the distribution of class labels within each

latent domain. Let M be the number of classes, CA be the number of connected

components in the graph. Our domain balancing function D(A) is defined as:

D(A) = − 1

M

CA∑
l=1

M∑
c=1

Nl,c

Nc

log(
Nl,c

Nc

)− CA (5.24)

where Nc denotes the number of samples from class c in the source domain, and Nl,c

specifies the number of samples from class c within the lth connected component.

From the log sum inequity, −
∑M

c=1
Nl,c
Nc

log
Nl,c
Nc

achieves maximum when
Nl,c
Nc

is equal, ∀c ∈ {1, 2, ...,M}. Hence, the domain balancing function favors that the

number of samples per class within each latent cluster follow the prior distribution

from the original source domain, such that consistent discriminative ability is pre-

served. In the mean time, the term −CA favors fewer number of clusters. Similarly,

the domain balancing function is a submodular function as shown in the following

proposition.

Proposition 4 The domain balancing function D : 2E → R is a monotonically

increasing submodular function under the proposed graph construction.

Proof. Monotonicity: We show that for all a ∈ E, a /∈ A

D(A ∪ a) ≥ D(A) (5.25)

We are interested in nontrivial cases where the vertices of a belong to different

121



clusters. Without loss of generality we assume that a = e1,2, v1 and v2 be in the

clusters Si and Sj respectively. Clusters Si and Sj are merged into cluster Sk.

D(A ∪ {a = e1,2})−D(A) (5.26)

=− 1

C

nc−1∑
l=1

C∑
y=1

Nl,y

Ny

log
Nl,y

Ny

− (nc− 1)− (− 1

C

nc∑
i=1

C∑
y=1

Nl,y

Ny

log
Nl,y

Ny

− nc) (5.27)

=
1

C
(
C∑
y=1

Ni,y

Ny

log
Ni,y

Ny

+
C∑
y=1

Nj,y

Ny

log
Nj,y

Ny

−
C∑
y=1

Ni,y +Nj,y

Ny

log
Ni,y +Nj,y

Ny

) + 1

(5.28)

=
1

C

C∑
y=1

(
Ni,y

Ny

log
Ni,y

Ni,y +Nj,y

+
Nj,y

Ny

log
Nj,y

Ni,y +Nj,y

) + 1 (5.29)

≥
C∑
y=1

Ni,y +Nj,y

Ny

log
Ni,y +Nj,y

2(Ni,y +Nj,y)
+ 1 (5.30)

=− 1

C

C∑
y=1

Ni,y +Nj,y

Ny

+ 1 (5.31)

≥0. (5.32)

Note that the inequality in (5.30) is obtained by using the log-sum inequity. So

far we have completed the proof of the monotonically increasing property of D(A).

Submodularity: We prove D(A) is submodular by showing that

D(A ∪ {a1})−D(A) ≥ D(A ∪ {a1, a2})−D(A ∪ {a2}) (5.33)

Without loss of generality, we assume that a1 = e1,2,a2 = e3,4,a1 combines

clusters Si and Sj, a2 combines clusters Sm and Sn. We are only interested in

nontrivial cases that a1 combines two different clusters. For the case that i = j,

D(A ∪ {a1}) − D(A) = D(A ∪ {a1, a2}) − D(A ∪ {a2} = 0, hence the submodular

property trivially holds.
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Depends on the relationship among i,j,m and n, we discuss the following four

cases.

Case 1: {m,n} = {i, j}, therefore the addition of a1 has no effect on the

graph partition, hence D(A ∪ {a1})−D(A) ≥ D(A ∪ {a1, a2})−D(A ∪ {a2}) = 0.

Case 2: {m,n} ∩ {i, j} = ∅. Assume that clusters Si, Sj and Sm,Sn are

merged into clusters Sk1, Sk2, respectively.

D(A ∪ {a1, a2})−D(A ∪ {a2})

=
1

C
(
C∑
y=1

Ni,y

Ny

log
Ni,y

Ny

+
C∑
y=1

Nj,y

Ny

log
Nj,y

Ny

−
C∑
y=1

Ni,y +Nj,y

Ny

log
Ni,y +Nj,y

Ny

) + 1

=D(A ∪ {a1})−D(A)

(5.34)

Case 3:m /∈ {i, j},n ∈ {i, j}. Assume that the addition of a2 combines the

clusters Si and Sm.

D(A ∪ {a1})−D(A)− (D(A ∪ {a1, a2})−D(A ∪ {a2})) (5.35)

=
1

C

C∑
y=1

{Ni,y +Nj,y +Nm,y

Ny

log
Ni,y +Nj,y +Nm,y

Ny

− Ni,y +Nj,y

Ny

log
Ni,y +Nj,y

Ny

(5.36)

− (
Ni,y +Nm,y

Ny

log
Ni,y +Nm,y

Ny

− Ni,y

Ny

log
Ni,y

Ny

)} (5.37)

=
1

C

C∑
y=1

(f(
Ni,y +Nj,y

Ny

)− f(
Ni,y

Ny

)) (5.38)

≥0. (5.39)
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Function f(x) in (5.38) is defined as

f(x) = (x+ δ) log(x+ δ)− x log x (5.40)

We utilize the strictly increasing property of (5.40) to arrive at the last in-

equality.

Case 4: m=n, i.e., the addition of a2 does not combine any clusters. There-

fore D(A ∪ {a1})−D(A) = D(A ∪ {a1, a2})−D(A ∪ {a2}).

From above four cases, we arrive at the conclusion that D(A) is a submodular

function.

5.4.4 Objective function

We combine the entropy rate term and the domain balancing term, and obtain

our final objective function F(A):

max
A
F(A) = max

A
H(A) + αD(A)

s.t.A ⊆ E,NA ≥ K

(5.41)

where α controls the contribution of the domain balancing term. Similarly, we

adopt a greedy algorithm to select the edge which gives the largest gain of F at each

iteration, and stops the algorithm when the number of connected component reaches

a pre-specified number. We summarize our latent domain discovery framework in

Algorithm 8. While a naive implementation of the algorithm has complexityO(|E|2),

instead, we adopt a lazy greedy approach [155] to speed up the optimization.
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Algorithm 8 Algorithm for discovering latent domains

1: Input: G = (V,E),regularization parameter α.

2: Output:A

3: while NA ≤ K do

4: a∗ = max
a
F(A ∪ a)−F(A)

5: A← a∗.

6: end while

5.5 Experiments

In this section, we evaluate our pivot sample selection algorithm and latent

domain discovery approach respectively.

Datasets: For 2D object recognition, we use the Office-Caltech datasets [114],

which consists of a total of 2533 images from 10 categories. These datasets include

images from amazon.com (Amazon), images collected with a digital SLR (DSLR),

a webcam camera (Webcam), and the Caltech-256 (Caltech) dataset. We use a

SURF detector [138] to extract interest points. Then a randomly chosen subset of

the interest point descriptors from the Amazon dataset were quantized to generate

a code book of size 800. Each image was then represented as a 800 bin histogram.

For face recognition, we evaluate on the CMU-PIE dataset [1] which includes

41,368 images of 68 subjects. We choose the first 34 subjects under 9 pose variations

(Pose ID 1 ∼ 9) and 21 lighting conditions. The nine poses range from approxi-

mately a full left profile to a full right profile, with neighboring pair of poses about

22.5◦ apart. All images are 64 by 48 pixels and pixel intensities are used for feature
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representation.

For action recognition from videos, we use the IXMAS multi-view action

dataset [156] which contains eleven actions categories. Each action is performed

three times by twelve actors captured from five different views (Camera 0,1,2,3,4).

As suggested in [148], we keep the first five actions (check watch, cross arms, scratch

head, sit down, get up) performed by alba, andreas, daniel, hedlena, julien and nico-

las to remove the irregularly performed actions. We use the shape-flow descriptor

[157] and the spatio-temporal interest point descriptor [158] to characterize the

global and local motions of each action respectively. We then generate a codebook

with 500 clusters for the shape-flow features and a codebook with 1000 clusters for

the spatial-temporal interest point features. Finally, each action sequence is rep-

resented as a 1500 dimensional histogram by concatenating the global and local

features.

5.5.1 Pivot Sample selection

We first evaluate our source sample approach for object and face recognition.

For object recognition, we use the Office-Caltech datasets and evaluate on 9 pairs

of cross dataset combinations following the protocol introduced in [147]. The DSLR

dataset is never used as the source domain as it contains fewer images. For face

recognition, we evaluate on the CMU-PIE dataset. The source and target domain

are formed with images associated with different sets of Pose IDs. Further, the

images in the source domain consist of 11 different illumination conditions at each

126



pose, while those in the target domain contain the remaining 10 lighting conditions

at each pose. The domain shifts are caused by both lighting and pose variations.

To utilize the pivot source samples, we first train a SVM classifier using the

selected samples to predict the category labels of target data. Then we initiate a self-

paced adaptation process. Namely, we want to identify a few easier target samples

whose predicted labels we are more confident of. The confidence of predication of

data sample x is defined as the probability difference between its two most likely

associated classes:

f(x) = max
c∈Ω

p(y = c|x)− max
c∈Ω\c∗

p(y = c|x)

where c∗ = maxc∈Ω p(y = c|x) is the class with the highest probability for x, and

Ω is the set of c classes. In each iteration, we move the identified target samples

to the source domain and retrain the SVM classifier with the augmented training

set. This procedure is stopped until the performance gain between two succussive

iterations falls below certain threshold or till maximum iterations are reached.

We compare our joint pivot sample selection and self-paced adaptation proce-

dure (PSS-SP) with the following methods. 1) GFK [114], a Grassmannian manifold

based domain adaptation method. 2) Kernel mean matching (KMM) [145], a sample

re-weighting method to match the source and target distributions. 3) the landmark

method [147], which selects source landmark samples to bridge the gap between two

domains. Then domain invariant features are learned by minimizing the classifica-

tion error on the landmark samples, which serve as a proxy to the discriminative

loss on the target domain. 4) The statistically invariant sample selection (SISS)
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Table 5.1: Cross dataset object recognition in unsupervised setting

Methods A→C A→D A→W C→A C→D

Noadapt-SVM 41.7 41.4 34.2 51.8 40.8

GFK [114] 42.2 42.7 40.7 44.5 43.3

KMM [145] 42.2 42.7 42.4 48.3 53.5

Landmark [147] 45.5 47.1 46.1 56.7 57.3

SISS [141] 44.4 49.0 46.8 55.1 54.8

SP 42.4 42.7 44.1 51.4 43.3

PSS-SP 44.5 50.3 48.8 57.4 52.9

Methods C→W W→A W→C W→D average

Noadapt-SVM 42.0 31.1 31.5 70.7 42.8

GFK [114] 44.7 31.8 30.8 75.6 44.0

KMM [145] 45.8 31.9 29.0 72 45.3

Landmark [147] 49.5 40.2 35.4 75.2 50.3

SISS [141] 54.9 39.9 33.7 87.3 51.8

SP 49.8 37.8 34.8 84.7 47.9

PSS-SP 57.3 41.1 38.0 87.9 53.1
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Table 5.2: Face recognition across pose and illumination variations on CMU-PIE

dataset [1]

Source Pose 3,4 Pose 7,8,9 Pose 6,7

Target Pose 8 Pose 4 Pose 2,3

NoAdapt-SVM 23.5 41.2 31.3

GFK [114] 20.3 40.3 35.9

KMM [145] 22.5 44.7 35.6

Landmark [147] 26.7 35.0 34.1

SP 27.5 48.8 39.6

PSS-SP 38.2 61.8 54.3
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method [141], which exploits the Hellinger distance for sample selection. Besides,

we also report results using self-paced (SP) adaptation on the whole source data.

We show the classification rates for object and face recognition in Table 5.1 and 5.2

respectively. It is seen that for object recognition, our PSS-SP framework performs

better than other competing methods on most pairs of source and target. For face

recognition, PSS-SP outperforms all other methods significantly in all three cases,

which demonstrates that PSS-SP is superior in handling pose and lighting varia-

tions. Further, we note that our PSS-SP framework improves upon SP by a large

margin in both experiments, which validates that the selected pivot source samples

are beneficial to boost the adaptation performance.

Examples of pivot source samples: In Figure 5.1, we show some exemplar

images identified using Algorithm 7 with Caltech as the source domain and DSLR

as the target domain. We observe that the selected pivot samples are more similar

to the target domain than those non-pivot samples, which validates our assumption.

5.5.2 Latent domain discovery

In this section, we evaluate our latent domain clustering approach for object

recognition on the Office-Caltech datasets and for activity recognition on the IXMAS

action dataset. Each dataset of the Office-Caltech datasets constitutes one domain,

while action videos in the IXMAS dataset from different viewpoints form different

domains. For each experiment, we follow the setting in [148], and choose a subset of

the domains as the source data while the remaining domains are taken as the target
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(a)

(b)

Figure 5.1: Example images of pivot source samples with Caltech as the source domain

and DSLR as the target domain from: (a) the bike category (b) the laptop category.

data. We compare our submodular domain clustering (SDC) algorithm with the

following methods: 1) Baseline Union, which merges all source datasets into a single

domain to adapt to the target. 2) The domain clustering method in [146] which

uses a mixture of Gaussians to model the source data distribution. 3) The dataset

reshaping method proposed in [148], where domain assignment is represented using

binary weights which are then relaxed into box constraints for optimization.

After identifying the latent domains, we use GFK [114] to perform adaptation

between each latent domain and the target domain. Then we adopt the ensemble
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Table 5.3: Recognition performance using the original and recovered latent domains

Source A,C D,W C,D,W Cam 0,1 Cam 2, 3, 4

Target D,W A,C A Cam 2, 3, 4 Cam 0, 1

Union 41.7 35.8 41.0 60.7 66.7

Ensemble[146] 31.7 34.4 38.9 60.4 62.2

Matching [146] 39.6 34.0 34.6 56.7 68.3

Ensemble [148] 38.7 35.8 42.8 59.6 71.1

Matching [148] 42.6 35.5 44.6 63.7 71.7

Ensemble-SDC 46.5 37.1 50.6 62.2 70.6

Matching-SDC 42.7 38.0 48.2 65.9 75.0

and mathching strategies to fuse the adaptation results [148]. The ensemble strategy

first trains a SVM classifier to predict the domain probabilities of each target sample

[146]. Then prediction values from different latent domains are reweighted based on

the probabilities that a given test data belongs to each latent domain. For matching

strategy, we use the MMD criteria to select the most similar source latent domain

to adapt to the target.

We report the comparison results on five different combinations of source and

target in Table 5.3. Both SDL and the method in [148] improves the adaptation

results over the baseline, which validates the necessity of domain partition for het-
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Figure 5.2: Estimation of the number of latent domains using cross validation. (a)

Amazon and Caltech datasets (b) Action videos taken from camera 2,3,4 (c) Caltech,

DSLR and Webcam datasets

erogenous source data. Further, our method consistently gives better performance

over other methods in all five cases using either the ensemble or matching strategy,

which demonstrates the effectiveness of our method in recovering more compact and

homogeneous latent domains.

Determine the number of domains: To estimate the optimal number of

latent domains, we follow a similar cross-validation procedure as in [148]. Staring

from L = 2, we use our domain clustering method described in Section 5.4 to

separate source data into L domains. We then train SVM classifiers and obtain the

five fold cross-validation accuracy zl for the l-th identified domain. Then accuracy

on the whole source data is taken as the weighted average of the accuracies from

latent domains: Z(L) =
∑L

l=1
Nl
N
zl, where Nl is the number of samples in the l-th

latent domain, and N denotes the total number of samples in the source domain.

The optimal number of domains L∗ is assigned as the value which gives the highest
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(a) (b)

Figure 5.3: Example images of latent domains from : (a) Amazon and Caltech datasets

(b) Webcam and DSLR datasets.

cross-validation accuracy: L∗ = maxL Z(L). We plot the cross-validation accuracy

using different source training data in Figure 5.2. We observe that the estimated

optimal number of domains are in line with the actual number of datasets which

the source data contains.

Example images from latent domains: In Figure 5.3, we show some ex-

ample images from the recovered latent domains. In the left part of Figure 5.3, we

provide the domain clustering results from the backpack category using the Ama-

zon and Caltech datasets. It is observed that the first latent domain contains more

colorful images, while the backpacks in the second domain are mostly dark or gray.

The right part of Figure 5.3 demonstrates the results from the mouse category us-

ing the Webcam and DSLR datasets. It is seen that the majority of the images in

the first domain have white background and contain mouses of white color, while

the other domain consists of black mouses with wooden background. The different
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characteristics of identified domains confirm that our algorithm generates compact

and homogeneous latent domains.

5.6 Conclusion

In this chapter, we investigate the problem of domain adaptation with hetero-

geneous source data. We tackle the problem from two perspectives. We first propose

to select pivot source samples that are most similar to the target domain samples

to facilitate subsequent adaptation. Alternatively, we derive an entropy rate-based

domain clustering framework to separate the source data into homogenous latent

domains for improved adaptation. We exploit the submodular property of our ob-

jective functions to efficiently solve the NP hard problems. Experimental results

on publicly available datasets demonstrate the advantage of our approaches com-

pared to the state-of-the-art. For future research, we plan to investigate selecting

informative features for domain adaptation.
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Chapter 6: Summary and Directions for Future Work

6.1 Summary

In this dissertation, we investigated the problems and prospects for FR in re-

mote and unconstrained environments. We developed an example-driven manifold

prior for regularizing the inverse problem to compensate for the blur variation. In

addition, we proposed novel domain adaptation methods for handling more compli-

cated variations between the training and test data. Further, we introduced sub-

modular optimization frameworks to deal with heterogenous source data in domain

adaptation. The problems addressed in this dissertation and the methods proposed

to solve them lead us to several interesting future research directions.

6.2 Future Research Directions

Detector Adaptation: Following unconstrained FR, the problem of per-

son/face detection in surveillance videos acquired at a distance is also worth inves-

tigating, as reliable detection and extraction of robust features are important first

steps toward subsequent recognition tasks. Typical person/face detector trained on

still images would perform poorly on videos, as videos collected from surveillance
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cameras usually suffer from compression artifacts, low resolution, motion blur and

low color contrast.

This motivates us to adapt a detector from the image domain to the video

domain. We are working toward addressing this problem by building upon boosting-

based approaches. We aim to simultaneously minimize the classification error on

the labeled source data and the margin violation error of the unlabeled target data.

Specifically, during each iteration of the learning procedure, we adjust accordingly

the weights of data instances which are wrongly classified in the source domain or

lie inside the margin band of the classifier in the target domain. The final classifier

learned is expected to have a small generalization error on the target data.

Reference Coding for Person Re-identification: Person re-identification

refers to identifying a subject marked at one location with a feasible set of candidates

at other locations and over time. It has important applications for recognition tasks

in remote and unconstrained scenarios. Yet it is fundamentally challenging due to

the large visual appearance changes caused by variations in view angle, lighting,

background etc.

As it is difficult to model the variations through parametric formulations,

we propose a reference-based method by leveraging a reference set which contains

images with different kinds of variations. New feature descriptors of the gallery

and probe data are constructed by measuring the similarity between each data

instance and the reference images. Re-identification is then performed by comparing

the feature descriptors in the reference space. As two images of the same person

would look similar to the same set of reference people, therefore they would have
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similar reference descriptors. The advantage of using the reference set for feature

representation is that it is more robust and consistent than direct comparison in the

original feature space under large appearance variations.
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